
pynetlogo Documentation
Release 0.5.3

J.H. Kwakkel

Feb 13, 2024

CONTENTS

1 Documentation 3
1.1 Installation . 3
1.2 Example 1: NetLogo interaction through the pyNetLogo connector 3
1.3 Example 2: Sensitivity analysis for a NetLogo model with SALib and ipyparallel 10
1.4 Example 3: Sensitivity analysis for a NetLogo model with SALib and Multiprocessing 22
1.5 core . 25
1.6 Changelog . 27

2 Indices and tables 29

Python Module Index 31

Index 33

i

ii

pynetlogo Documentation, Release 0.5.3

sphinx-quickstart on Sat Mar 23 14:18:16 2013. You can adapt this file completely to your liking, but it should at least
contain the root toctree directive.

Interface to use and access NetLogo (Wilensky 1999) from Python. One can interact with NetLogo in either headless
(no GUI) or interactive GUI mode. The library provides functions to load models, execute commands, and get values
from reporters. It is compatible with NetLogo 6.1 and newer. It is largely similar to the NetLogo Mathematica Link
and RNetLogo (deprecated).

CONTENTS 1

https://ccl.northwestern.edu/netlogo/
https://github.com/NetLogo/Mathematica-Link
https://cran.r-project.org/web/packages/RNetLogo/index.html

pynetlogo Documentation, Release 0.5.3

2 CONTENTS

CHAPTER

ONE

DOCUMENTATION

1.1 Installation

pynetlogo requires the NumPy, SciPy and pandas packages, which are included in most scientific Python distributions.

In addition, pynetlogo depends on jpype. When installing pynetlogo, jpype will be installed as well. However, if you
want to have full control over how jpype is installed, check their installation details and install jpype before installing
pynetlogo.

pyNetLogo can be installed using the pip package manager, with the following command from a terminal:

pip install pynetlogo

By default, pynetlogo and jpype will attempt to automatically identify the NetLogo version and installation directory
on Mac or Windows, as well as the Java home directory. On Linux, or in case of issues (e.g. if NetLogo was installed
in a different directory, or if the Java path is not found on a Mac), these parameters can be passed directly to the
NetLogoLink class as described in the module documentation.

1.1.1 Known bugs and limitations

• On a Mac, only headless mode (without GUI) is supported.

• pynetlogo can be used to control NetLogo from within Python. Calling Python from within NetLogo is not
supported by this library. However, this can be achieved using the Python extension for NetLogo.

• See jpype limitations for additional limitations.

• Mixing 32-bit and 64-bit versions of Java, Python, and NetLogo will crash Python.

• on M1 macs, your java architecture must match your python architecture. So you cannot use AArch64 (ARM)
java with an x64 python install or the other way around. Use jvm_path to control which jvm pynetlogo will use.

1.2 Example 1: NetLogo interaction through the pyNetLogo connec-
tor

This notebook provides a simple example of interaction between a NetLogo model and the Python environment, using
the Wolf Sheep Predation model included in the NetLogo example library (Wilensky, 1999). This model is slightly
modified to add additional agent properties and illustrate the exchange of different data types. All files used in the
example are available from the pyNetLogo repository at https://github.com/quaquel/pyNetLogo.

We start by instantiating a link to NetLogo, loading the model, and executing the setup command in NetLogo.

3

https://jpype.readthedocs.io/en/latest/
https://github.com/qiemem/PythonExtension
https://jpype.readthedocs.io/en/latest/install.html#known-bugs-limitations
https://github.com/quaquel/pyNetLogo

pynetlogo Documentation, Release 0.5.3

[1]: %matplotlib inline

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

sns.set_style("white")
sns.set_context("talk")

import pynetlogo

netlogo = pynetlogo.NetLogoLink(
gui=True,
jvm_path="/Users/jhkwakkel/Downloads/jdk-19.0.2.jdk/Contents/MacOS/libjli.dylib",

)

netlogo.load_model("./models/Wolf Sheep Predation_v6.nlogo")
netlogo.command("setup")

We can use the write_NetLogo_attriblist method to pass properties to agents from a Pandas dataframe – for
instance, initial values for given attributes. This improves performance by simultaneously setting multiple properties
for multiple agents in a single function call.

As an example, we first load data from an Excel file into a dataframe. Each row corresponds to an agent, with columns
for each attribute (including the who NetLogo identifier, which is required). In this case, we set coordinates for the
agents using the xcor and ycor attributes.

[2]: agent_xy = pd.read_excel("./data/xy_DataFrame.xlsx")
agent_xy[["who", "xcor", "ycor"]].head(5)

[2]: who xcor ycor
0 0 -24.000000 -24.000000
1 1 -23.666667 -23.666667
2 2 -23.333333 -23.333333
3 3 -23.000000 -23.000000
4 4 -22.666667 -22.666667

We can then pass the dataframe to NetLogo, specifying which attributes and which agent type we want to update:

[3]: netlogo.write_NetLogo_attriblist(agent_xy[["who", "xcor", "ycor"]], "a-sheep")

We can check the data exchange by returning data from NetLogo to the Python workspace, using the report method.
In the example below, this returns arrays for the xcor and ycor coordinates of the sheep agents, sorted by their who
number. These are then plotted on a conventional scatter plot.

[4]: x = netlogo.report("map [s -> [xcor] of s] sort sheep")
y = netlogo.report("map [s -> [ycor] of s] sort sheep")

[5]: fig, ax = plt.subplots(1)

ax.scatter(x, y, s=4)
ax.set_xlabel("xcor")
ax.set_ylabel("ycor")
ax.set_aspect("equal")

(continues on next page)

4 Chapter 1. Documentation

pynetlogo Documentation, Release 0.5.3

(continued from previous page)

fig.set_size_inches(5, 5)

plt.show()

We can then run the model for 100 ticks and update the Python coordinate arrays for the sheep agents, and return an
additional array for each agent’s energy value. The latter is plotted on a histogram for each agent type.

[6]: # We can use either of the following commands to run for 100 ticks:

netlogo.command("repeat 100 [go]")
netlogo.repeat_command('go', 100)

Return sorted arrays so that the x, y and energy properties of each agent are in the␣
→˓same order
x = netlogo.report("map [s -> [xcor] of s] sort sheep")
y = netlogo.report("map [s -> [ycor] of s] sort sheep")
energy_sheep = netlogo.report("map [s -> [energy] of s] sort sheep")

energy_wolves = netlogo.report("[energy] of wolves") # NetLogo returns these in random␣
→˓order

1.2. Example 1: NetLogo interaction through the pyNetLogo connector 5

pynetlogo Documentation, Release 0.5.3

[7]: from mpl_toolkits.axes_grid1 import make_axes_locatable

fig, ax = plt.subplots(1, 2)

sc = ax[0].scatter(x, y, s=50, c=energy_sheep, cmap=plt.cm.coolwarm)
ax[0].set_xlabel("xcor")
ax[0].set_ylabel("ycor")
ax[0].set_aspect("equal")
divider = make_axes_locatable(ax[0])
cax = divider.append_axes("right", size="5%", pad=0.1)
cbar = plt.colorbar(sc, cax=cax, orientation="vertical")
cbar.set_label("Energy of sheep")

sns.histplot(energy_sheep, kde=False, bins=10, ax=ax[1], label="Sheep")
sns.histplot(energy_wolves, kde=False, bins=10, ax=ax[1], label="Wolves")
ax[1].set_xlabel("Energy")
ax[1].set_ylabel("Counts")
ax[1].legend()
fig.set_size_inches(14, 5)

plt.show()

The repeat_report method returns a dictionary with the reporter as key. The value is a list order by ticks. By default,
this assumes the model is run with the “go” NetLogo command; this can be set by passing an optional go argument.

Often, the dictionary can easily be converted into a dataframe, for easy further analysis.In this case, we track the number
of wolf and sheep agents over 200 ticks; the outcomes are first plotted as a function of time. The number of wolf agents
is then plotted as a function of the number of sheep agents, to approximate a phase-space plot.

[8]: counts = netlogo.repeat_report(["count wolves", "count sheep"], 200, go="go")

[12]: counts = pd.DataFrame(counts)

[13]: fig, (ax1, ax2) = plt.subplots(1, 2)

counts.plot(ax=ax1, use_index=True, legend=True)
(continues on next page)

6 Chapter 1. Documentation

pynetlogo Documentation, Release 0.5.3

(continued from previous page)

ax1.set_xlabel("Ticks")
ax1.set_ylabel("Counts")

ax2.plot(counts["count wolves"], counts["count sheep"])
ax2.set_xlabel("Wolves")
ax2.set_ylabel("Sheep")

for ax in [ax1, ax2]:
ax.set_aspect(1 / ax.get_data_ratio())

fig.set_size_inches(12, 5)
plt.tight_layout()
plt.show()

The repeat_reportmethod can also be used with reporters that return a NetLogo list. In this case, the list is converted
to a numpy array. As an example, we track the energy of the wolf and sheep agents over 5 ticks, and plot the distribution
of the wolves’ energy at the final tick recorded in the dataframe. Note that the number of sheep and wolves vary over
time. This means that for each tick, the size of the array will be different. So, we cannot straightforwardly convert these
results into a dataframe.

To illustrate different data types, we also track the [sheep_str] of sheep reporter (which returns a string property
across the sheep agents, converted to a numpy object array), count sheep (returning a single numerical variable), and
glob_str (returning a single string variable).

[16]: results = netlogo.repeat_report(
[

"[energy] of wolves",
"[energy] of sheep",
"[sheep_str] of sheep",
"count sheep",
"glob_str",

],
5,

(continues on next page)

1.2. Example 1: NetLogo interaction through the pyNetLogo connector 7

pynetlogo Documentation, Release 0.5.3

(continued from previous page)

)

fig, ax = plt.subplots(1)

sns.histplot(results["[energy] of wolves"][-1], kde=False, bins=20, ax=ax)
ax.set_xlabel("Energy")
ax.set_ylabel("Counts")
fig.set_size_inches(4, 4)

plt.show()

[18]: list(results.keys())

[18]: ['[energy] of wolves',
'[energy] of sheep',
'[sheep_str] of sheep',
'count sheep',
'glob_str']

The patch_report method can be used to return a dataframe which (for this example) contains the countdown at-
tribute of each NetLogo patch. This dataframe essentially replicates the NetLogo environment, with column labels
corresponding to the xcor patch coordinates, and indices following the pycor coordinates.

[13]: countdown_df = netlogo.patch_report("countdown")

fig, ax = plt.subplots(1)

(continues on next page)

8 Chapter 1. Documentation

pynetlogo Documentation, Release 0.5.3

(continued from previous page)

patches = sns.heatmap(
countdown_df, xticklabels=5, yticklabels=5, cbar_kws={"label": "countdown"}, ax=ax

)
ax.set_xlabel("pxcor")
ax.set_ylabel("pycor")
ax.set_aspect("equal")
fig.set_size_inches(8, 4)

plt.show()

The dataframes can be manipulated with any of the existing Pandas functions, for instance by exporting to an Excel file.
The patch_set method provides the inverse functionality to patch_report, and updates the NetLogo environment
from a dataframe.

[14]: countdown_df.to_excel("countdown.xlsx")
netlogo.patch_set("countdown", countdown_df.max() - countdown_df)

[15]: countdown_update_df = netlogo.patch_report("countdown")

fig, ax = plt.subplots(1)

patches = sns.heatmap(
countdown_update_df,
xticklabels=5,
yticklabels=5,
cbar_kws={"label": "countdown"},

(continues on next page)

1.2. Example 1: NetLogo interaction through the pyNetLogo connector 9

pynetlogo Documentation, Release 0.5.3

(continued from previous page)

ax=ax,
)
ax.set_xlabel("pxcor")
ax.set_ylabel("pycor")
ax.set_aspect("equal")
fig.set_size_inches(8, 4)

plt.show()

Finally, the kill_workspace() method shuts down the NetLogo instance.

[16]: netlogo.kill_workspace()

[]:

1.3 Example 2: Sensitivity analysis for a NetLogo model with SALib
and ipyparallel

This provides a more advanced example of interaction between NetLogo and a Python environment, using the SALib
library (Herman & Usher, 2017); available through the pip package manager) to sample and analyze a suitable exper-
imental design for a Sobol global sensitivity analysis. Furthermore, the ipyparallel package (also available on pip) is
used to parallelize the simulations.

All files used in the example are available from the pyNetLogo repository at https://github.com/quaquel/pyNetLogo.

10 Chapter 1. Documentation

https://salib.readthedocs.io/en/latest/
https://salib.readthedocs.io/en/latest/
https://joss.theoj.org/papers/431262803744581c1d4b6a95892d3343
http://ipyparallel.readthedocs.io/
https://github.com/quaquel/pyNetLogo

pynetlogo Documentation, Release 0.5.3

[1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

sns.set_style("white")
sns.set_context("talk")

import pynetlogo

Import the sampling and analysis modules for a Sobol variance-based
sensitivity analysis
from SALib.sample import sobol as sobolsample
from SALib.analyze import sobol

SALib relies on a problem definition dictionary which contains the number of input parameters to sample, their names
(which should here correspond to a NetLogo global variable), and the sampling bounds. Documentation for SALib can
be found at https://salib.readthedocs.io/en/latest/.

[2]: problem = {
"num_vars": 6,
"names": [

"random-seed",
"grass-regrowth-time",
"sheep-gain-from-food",
"wolf-gain-from-food",
"sheep-reproduce",
"wolf-reproduce",

],
"bounds": [

[1, 100000],
[20.0, 40.0],
[2.0, 8.0],
[16.0, 32.0],
[2.0, 8.0],
[2.0, 8.0],

],
}

The SALib sampler will automatically generate an appropriate number of samples for Sobol analysis, using a revised
Saltelli sampling sequence. To calculate first-order, second-order and total sensitivity indices, this gives a sample size
of n(2p+2), where p is the number of input parameters, and n is a baseline sample size which should be large enough
to stabilize the estimation of the indices. For this example, we use n = 1000, for a total of 14000 experiments.

[3]: n = 1024
param_values = sobolsample.sample(problem, n, calc_second_order=True)

The sampler generates an input array of shape (n(2p+2), p) with rows for each experiment and columns for each input
parameter.

[4]: param_values.shape

[4]: (14336, 6)

1.3. Example 2: Sensitivity analysis for a NetLogo model with SALib and ipyparallel 11

https://salib.readthedocs.io/en/latest/

pynetlogo Documentation, Release 0.5.3

1.3.1 Running the experiments in parallel using ipyparallel

Ipyparallel is a standalone package (available through the pip package manager) which can be used to interactively run
parallel tasks from IPython on a single PC, but also on multiple computers. On machines with multiple cores, this can
significantly improve performance: for instance, the multiple simulations required for a sensitivity analysis are easy to
run in parallel. Documentation for Ipyparallel is available at http://ipyparallel.readthedocs.io/en/latest/intro.html.

Ipyparallel first requires starting a controller and multiple engines, which can be done from a terminal or command
prompt, or conveniently from within a notebook.

[5]: import ipyparallel as ipp

cluster = ipp.Cluster(n=4)
cluster.start_cluster_sync();

Starting 4 engines with <class 'ipyparallel.cluster.launcher.LocalEngineSetLauncher'>

Next, we can connect the interactive notebook to the started cluster by instantiating a client, and checking that client.ids
returns a list of 4 available engines.

[7]: rc = cluster.connect_client_sync()
rc.ids

[7]: [0, 1, 2, 3]

With the client setup, we can now interact with the cluster. We can for example get a direct view of all engines in the
cluster.

[8]: direct_view = rc[:]

[9]: import os

Push the current working directory of the notebook to a "cwd" variable on the engines␣
→˓that can be accessed later
direct_view.push(dict(cwd=os.getcwd()), block=True)

[9]: [None, None, None, None]

[10]: # Push the "problem" variable from the notebook to a corresponding variable on the␣
→˓engines
direct_view.push(dict(problem=problem), block=True)

[10]: [None, None, None, None]

The %%px command can be added to a notebook cell to run it in parallel on each of the engines. Here the code first
involves some imports and a change of the working directory. We then start a link to NetLogo, and load the example
model on each of the engines.

[12]: %%px
import os
os.chdir(cwd)

import pynetlogo
import pandas as pd

(continues on next page)

12 Chapter 1. Documentation

http://ipyparallel.readthedocs.io/en/latest/intro.html

pynetlogo Documentation, Release 0.5.3

(continued from previous page)

netlogo = pynetlogo.NetLogoLink(gui=False)
netlogo.load_model('./models/Wolf Sheep Predation_v6.nlogo')

%px: 0%| | 0/4 [00:00<?, ?tasks/s]

We can then use the IPyparallel map functionality to run the sampled experiments, now using a “load balanced” view
to automatically handle the scheduling and distribution of the simulations across the engines. This is for instance useful
when simulations may take different amounts of time.

We first set up a simulation function that takes a single experiment (i.e. a vector of input parameters) as an argument,
and returns the outcomes of interest in a pandas Series.

[13]: def simulation(experiment):

Set the input parameters
for i, name in enumerate(problem["names"]):

if name == "random-seed":
The NetLogo random seed requires a different syntax
netlogo.command("random-seed {}".format(experiment[i]))

else:
Otherwise, assume the input parameters are global variables
netlogo.command("set {0} {1}".format(name, experiment[i]))

netlogo.command("setup")
Run for 100 ticks and return the number of sheep and wolf agents at each time step
counts = netlogo.repeat_report(["count sheep", "count wolves"], 100)

results = pd.Series(
[counts["count sheep"].values.mean(), counts["count wolves"].values.mean()],
index=["Avg. sheep", "Avg. wolves"],

)

return results

We then create a load balanced view and run the simulation with the map_sync method. This method takes a function
and a Python sequence as arguments, applies the function to each element of the sequence, and returns results once all
computations are finished.

In this case, we pass the simulation function and the array of experiments (param_values), so that the function will be
executed for each row of the array.

The DataFrame constructor is then used to immediately build a DataFrame from the results (which are returned as a
list of Series). The to_csv method provides a simple way of saving the results to disk; pandas supports several more
advanced storage options, such as serialization with msgpack, or hierarchical HDF5 storage.

[15]: lview = rc.load_balanced_view()

results = pd.DataFrame(lview.map_sync(simulation, param_values))

[16]: results.to_csv("./data/Sobol_parallel.csv")

[17]: results.head(5)

1.3. Example 2: Sensitivity analysis for a NetLogo model with SALib and ipyparallel 13

pynetlogo Documentation, Release 0.5.3

[17]: Avg. sheep Avg. wolves
0 106.861386 82.128713
1 109.465347 65.158416
2 106.861386 82.128713
3 133.267327 154.594059
4 129.297030 45.990099

1.3.2 Using SALib for sensitivity analysis

We can then proceed with the analysis, first using a histogram to visualize output distributions for each outcome:

[18]: fig, ax = plt.subplots(1, len(results.columns), sharey=True)

for i, n in enumerate(results.columns):
ax[i].hist(results[n], 20)
ax[i].set_xlabel(n)

ax[0].set_ylabel("Counts")

fig.set_size_inches(10, 4)
fig.subplots_adjust(wspace=0.1)

plt.show()

Bivariate scatter plots can be useful to visualize relationships between each input parameter and the outputs. Taking
the outcome for the average sheep count as an example, we obtain the following, using the scipy library to calculate the
Pearson correlation coefficient (r) for each parameter, and the seaborn library to plot a linear trend fit.

[21]: import scipy

nrow = 2
ncol = 3

fig, ax = plt.subplots(nrow, ncol, sharey=True)

(continues on next page)

14 Chapter 1. Documentation

pynetlogo Documentation, Release 0.5.3

(continued from previous page)

y = results["Avg. sheep"]

for i, a in enumerate(ax.flatten()):
x = param_values[:, i]
sns.regplot(

x=x,
y=y,
ax=a,
ci=None,
color="k",
scatter_kws={"alpha": 0.2, "s": 4, "color": "gray"},

)
pearson = scipy.stats.pearsonr(x, y)
a.annotate(

"r: {:6.3f}".format(pearson[0]),
xy=(0.15, 0.85),
xycoords="axes fraction",
fontsize=13,

)
if divmod(i, ncol)[1] > 0:

a.get_yaxis().set_visible(False)
a.set_xlabel(problem["names"][i])
a.set_ylim([0, 1.1 * np.max(y)])

fig.set_size_inches(9, 9, forward=True)
fig.subplots_adjust(wspace=0.2, hspace=0.3)

plt.show()

1.3. Example 2: Sensitivity analysis for a NetLogo model with SALib and ipyparallel 15

pynetlogo Documentation, Release 0.5.3

This indicates a positive relationship between the “sheep-gain-from-food” parameter and the mean sheep count, and
negative relationships for the “wolf-gain-from-food” and “wolf-reproduce” parameters.

We can then use SALib to calculate first-order (S1), second-order (S2) and total (ST) Sobol indices, to estimate each
input’s contribution to output variance as well as input interactions (again using the mean sheep count). By default,
95% confidence intervals are estimated for each index.

[22]: Si = sobol.analyze(
problem,
results["Avg. sheep"].values,
calc_second_order=True,
print_to_console=False,

)

As a simple example, we first select and visualize the total and first-order indices for each input, converting the dictio-

16 Chapter 1. Documentation

pynetlogo Documentation, Release 0.5.3

nary returned by SALib to a DataFrame. The default pandas plotting method is then used to plot these indices along
with their estimated confidence intervals (shown as error bars).

[23]: Si_filter = {k: Si[k] for k in ["ST", "ST_conf", "S1", "S1_conf"]}
Si_df = pd.DataFrame(Si_filter, index=problem["names"])

[24]: Si_df

[24]: ST ST_conf S1 S1_conf
random-seed 0.050776 0.006568 -0.004114 0.017626
grass-regrowth-time 0.111551 0.016164 0.032316 0.030256
sheep-gain-from-food 0.543193 0.067641 0.359385 0.062889
wolf-gain-from-food 0.225840 0.028651 0.152584 0.045471
sheep-reproduce 0.243577 0.034768 0.142665 0.044973
wolf-reproduce 0.240973 0.039485 0.108223 0.042038

[25]: fig, ax = plt.subplots(1)

indices = Si_df[["S1", "ST"]]
err = Si_df[["S1_conf", "ST_conf"]]

indices.plot.bar(yerr=err.values.T, ax=ax)
fig.set_size_inches(8, 4)

plt.show()

1.3. Example 2: Sensitivity analysis for a NetLogo model with SALib and ipyparallel 17

pynetlogo Documentation, Release 0.5.3

The “sheep-gain-from-food” parameter has the highest ST index, indicating that it contributes over 50% of output
variance when accounting for interactions with other parameters. However, it can be noted that confidence bounds are
still quite broad with this sample size, particularly for the S1 index (which indicates each input’s individual contribution
to variance).

We can use a more sophisticated visualization to include the second-order interactions between inputs estimated from
the S2 values.

[30]: %matplotlib inline
import itertools
from math import pi

def normalize(x, xmin, xmax):
return (x - xmin) / (xmax - xmin)

def plot_circles(ax, locs, names, max_s, stats, smax, smin, fc, ec, lw, zorder):
s = np.asarray([stats[name] for name in names])
s = 0.01 + max_s * np.sqrt(normalize(s, smin, smax))

(continues on next page)

18 Chapter 1. Documentation

pynetlogo Documentation, Release 0.5.3

(continued from previous page)

fill = True
for loc, name, si in zip(locs, names, s):

if fc == "w":
fill = False

else:
ec = "none"

x = np.cos(loc)
y = np.sin(loc)

circle = plt.Circle(
(x, y),
radius=si,
ec=ec,
fc=fc,
transform=ax.transData._b,
zorder=zorder,
lw=lw,
fill=True,

)
ax.add_artist(circle)

def filter(sobol_indices, names, locs, criterion, threshold):
if criterion in ["ST", "S1", "S2"]:

data = sobol_indices[criterion]
data = np.abs(data)
data = data.flatten() # flatten in case of S2
TODO:: remove nans

filtered = [(name, locs[i]) for i, name in enumerate(names) if data[i] >␣
→˓threshold]

filtered_names, filtered_locs = zip(*filtered)
elif criterion in ["ST_conf", "S1_conf", "S2_conf"]:

raise NotImplementedError
else:

raise ValueError("unknown value for criterion")

return filtered_names, filtered_locs

def plot_sobol_indices(sobol_indices, criterion="ST", threshold=0.01):
"""plot sobol indices on a radial plot

Parameters

sobol_indices : dict

the return from SAlib
criterion : {'ST', 'S1', 'S2', 'ST_conf', 'S1_conf', 'S2_conf'}, optional
threshold : float

only visualize variables with criterion larger than cutoff

(continues on next page)

1.3. Example 2: Sensitivity analysis for a NetLogo model with SALib and ipyparallel 19

pynetlogo Documentation, Release 0.5.3

(continued from previous page)

"""
max_linewidth_s2 = 15 # 25*1.8
max_s_radius = 0.3

prepare data
use the absolute values of all the indices
sobol_indices = {key:np.abs(stats) for key, stats in sobol_indices.items()}

dataframe with ST and S1
sobol_stats = {key: sobol_indices[key] for key in ["ST", "S1"]}
sobol_stats = pd.DataFrame(sobol_stats, index=problem["names"])

smax = sobol_stats.max().max()
smin = sobol_stats.min().min()

dataframe with s2
s2 = pd.DataFrame(sobol_indices["S2"], index=problem["names"], columns=problem["names

→˓"])
s2[s2 < 0.0] = 0.0 # Set negative values to 0 (artifact from small sample sizes)
s2max = s2.max().max()
s2min = s2.min().min()

names = problem["names"]
n = len(names)
ticklocs = np.linspace(0, 2 * pi, n + 1)
locs = ticklocs[0:-1]

filtered_names, filtered_locs = filter(sobol_indices, names, locs, criterion,␣
→˓threshold)

setup figure
fig = plt.figure()
ax = fig.add_subplot(111, polar=True)
ax.grid(False)
ax.spines["polar"].set_visible(False)

ax.set_xticks(locs)
ax.set_xticklabels(names)

ax.set_yticklabels([])
ax.set_ylim(top=1.4)
legend(ax)

plot ST
plot_circles(

ax,
filtered_locs,
filtered_names,
max_s_radius,
sobol_stats["ST"],
smax,

(continues on next page)

20 Chapter 1. Documentation

pynetlogo Documentation, Release 0.5.3

(continued from previous page)

smin,
"w",
"k",
1,
9,

)

plot S1
plot_circles(

ax,
filtered_locs,
filtered_names,
max_s_radius,
sobol_stats["S1"],
smax,
smin,
"k",
"k",
1,
10,

)

plot S2
for name1, name2 in itertools.combinations(zip(filtered_names, filtered_locs), 2):

name1, loc1 = name1
name2, loc2 = name2

weight = s2.loc[name1, name2]
lw = 0.5 + max_linewidth_s2 * normalize(weight, s2min, s2max)
ax.plot([loc1, loc2], [1, 1], c="darkgray", lw=lw, zorder=1)

return fig

from matplotlib.legend_handler import HandlerPatch

class HandlerCircle(HandlerPatch):
def create_artists(

self, legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans
):

center = 0.5 * width - 0.5 * xdescent, 0.5 * height - 0.5 * ydescent
p = plt.Circle(xy=center, radius=orig_handle.radius)
self.update_prop(p, orig_handle, legend)
p.set_transform(trans)
return [p]

def legend(ax):
some_identifiers = [

plt.Circle((0, 0), radius=5, color="k", fill=False, lw=1),
plt.Circle((0, 0), radius=5, color="k", fill=True),

(continues on next page)

1.3. Example 2: Sensitivity analysis for a NetLogo model with SALib and ipyparallel 21

pynetlogo Documentation, Release 0.5.3

(continued from previous page)

plt.Line2D([0, 0.5], [0, 0.5], lw=8, color="darkgray"),
]
ax.legend(

some_identifiers,
["ST", "S1", "S2"],
loc=(1, 0.75),
borderaxespad=0.1,
mode="expand",
handler_map={plt.Circle: HandlerCircle()},

)

sns.set_style("whitegrid")
fig = plot_sobol_indices(Si, criterion="ST", threshold=0.005)
fig.set_size_inches(7, 7)
plt.show()

In this case, the “sheep-gain-from-food” variable has strong interactions with the “wolf-gain-from-food” and “wolf-
reproduce” inputs in particular. The size of the ST and S1 circles correspond to the normalized variable importances.

[]:

1.4 Example 3: Sensitivity analysis for a NetLogo model with SALib
and Multiprocessing

This is a short demo similar to example two but using the multiprocessing Pool All files used in the example are available
from the pyNetLogo repository at https://github.com/quaquel/pyNetLogo. This code requires python3.

For in depth discussion, please see example 2.

22 Chapter 1. Documentation

https://docs.python.org/3.6/library/multiprocessing.html#module-multiprocessing.pool
https://github.com/quaquel/pyNetLogo

pynetlogo Documentation, Release 0.5.3

1.4.1 Running the experiments in parallel using a Process Pool

There are multiple libraries available in the python ecosystem for performing tasks in parallel. One of the default
libraries that ships with Python is concurrent.futures. This is in fact a high level interface around several other libraries.
See the documentation for details. One of the libraries wrapped by concurrent.futures is multiprocessing. Below we
use multiprocessing, anyone on python 3.8 or newer can use the either code below or use the ProcessPoolExecuturor
from concurrent.futures (recommended).

Here we are going to use the ProcessPoolExecutor, which uses the multiprocessing library. Parallelization is an ad-
vanced topic and the exact way in which it is to be done depends at least in part on the operating system one is using.
It is recommended to carefully read the documentation provided by both concurrent.futures and mulitprocessing. This
example is ran on a mac, linux is expected to be similar but Windows is likely to be slightly different

from multiprocessing import Pool
import os
import pandas as pd

import pynetlogo

from SALib.sample import sobol as sobolsample

def initializer(modelfile):
"""initialize a subprocess

Parameters

modelfile : str

"""

we need to set the instantiated netlogo
link as a global so run_simulation can
use it
global netlogo

netlogo = pynetlogo.NetLogoLink(gui=False)
netlogo.load_model(modelfile)

def run_simulation(experiment):
"""run a netlogo model

Parameters

experiments : dict

"""

Set the input parameters
for key, value in experiment.items():

if key == "random-seed":
The NetLogo random seed requires a different syntax
netlogo.command("random-seed {}".format(value))

else:
(continues on next page)

1.4. Example 3: Sensitivity analysis for a NetLogo model with SALib and Multiprocessing 23

https://docs.python.org/3/library/concurrent.futures.html#module-concurrent.futures

pynetlogo Documentation, Release 0.5.3

(continued from previous page)

Otherwise, assume the input parameters are global variables
netlogo.command("set {0} {1}".format(key, value))

netlogo.command("setup")
Run for 100 ticks and return the number of sheep and
wolf agents at each time step
counts = netlogo.repeat_report(["count sheep", "count wolves"], 100)

results = pd.Series(
[counts["count sheep"].values.mean(), counts["count wolves"].values.mean()],
index=["Avg. sheep", "Avg. wolves"],

)
return results

if __name__ == "__main__":
modelfile = os.path.abspath("./models/Wolf Sheep Predation_v6.nlogo")

problem = {
"num_vars": 6,
"names": [

"random-seed",
"grass-regrowth-time",
"sheep-gain-from-food",
"wolf-gain-from-food",
"sheep-reproduce",
"wolf-reproduce",

],
"bounds": [[1, 100000], [20.0, 40.0], [2.0, 8.0], [16.0, 32.0], [2.0, 8.0], [2.0,

→˓ 8.0]],
}

n = 1024
param_values = sobolsample.sample(problem, n, calc_second_order=True)

cast the param_values to a dataframe to
include the column labels
experiments = pd.DataFrame(param_values, columns=problem["names"])

with Pool(4, initializer=initializer, initargs=(modelfile,)) as executor:
results = []
for entry in executor.map(run_simulation, experiments.to_dict("records")):

results.append(entry)
results = pd.DataFrame(results)

[]:

24 Chapter 1. Documentation

pynetlogo Documentation, Release 0.5.3

1.5 core

exception pynetlogo.core.NetLogoException

Base project exception

class pynetlogo.core.NetLogoLink(gui=False, thd=False, netlogo_home=None, jvm_path=None,
jvmargs=[])

Create a link with NetLogo. Underneath, the NetLogo JVM is started through Jpype.

If netlogo_home, netlogo_version, or jvm_home are not provided, the link will try to identify the correct param-
eters automatically on Mac or Windows. netlogo_home and netlogo_version are required on Linux.

Parameters

• gui (bool, optional) – If true, displays the NetLogo GUI (not supported on Mac)

• thd (bool, optional) – If true, use NetLogo 3D

• netlogo_home (str, optional) – Path to the NetLogo installation directory (required on
Linux)

• jvm_path (str, optional) – path of the jvm

• jvmargs (list of str, optional) – additional arguments that should be used when
starting the jvm

command(netlogo_command)
Execute the supplied command in NetLogo

Parameters
netlogo_command (str) – Valid NetLogo command

Raises
NetLogoException – If a LogoException or CompilerException is raised by NetLogo

kill_workspace()

Close NetLogo and shut down the JVM.

load_model(path)
Load a NetLogo model.

Parameters
path (str) – Path to the NetLogo model

Raises

• FileNotFoundError – in case path does not exist

• NetLogoException – In case of a NetLogo exception

patch_report(attribute)
Return patch attributes from NetLogo

Returns a pandas DataFrame with same dimensions as the NetLogo world, with column labels and row
indices following pxcor and pycor patch coordinates. Values of the dataframe correspond to patch attributes.

Parameters
attribute (str) – Valid NetLogo patch attribute

Returns
DataFrame containing patch attributes

1.5. core 25

pynetlogo Documentation, Release 0.5.3

Return type
pandas DataFrame

Raises
NetLogoException – If a LogoException or CompilerException is raised by NetLogo

patch_set(attribute, data)
Set patch attributes in NetLogo

Inverse of the patch_report method. Sets a patch attribute using values from a pandas DataFrame of same
dimensions as the NetLogo world.

Parameters

• attribute (str) – Valid NetLogo patch attribute

• data (Pandas DataFrame) – DataFrame with same dimensions as NetLogo world

Raises
NetLogoException – If a LogoException or CompilerException is raised by NetLogo

repeat_command(netlogo_command, reps)
Execute the supplied command in NetLogo a given number of times

Parameters

• netlogo_command (str) – Valid NetLogo command

• reps (int) – Number of repetitions for which to repeat commands

Raises
NetLogoException – If a LogoException or CompilerException is raised by NetLogo

repeat_report(netlogo_reporter, reps, go='go', include_t0=True)
Return values from a NetLogo reporter over a number of ticks.

Can be used with multiple reporters by passing a list of strings. The values of the returned
DataFrame are formatted following the data type returned by the reporters (numerical or string
data, with single or multiple values). If the reporter returns multiple values, the results are con-
verted to a numpy array.

netlogo_reporter
[str or list of str] Valid NetLogo reporter(s)

reps
[int] Number of NetLogo ticks for which to return values

go
[str, optional] NetLogo command for running the model (‘go’ by default)

include_t0
[boolean, optional] include the value of the reporter at t0, prior to running the go command

dict

key is the reporter, and the value is a list order by ticks

NetLogoException
If reporters are not in a valid format, or if a LogoException or CompilerException is raised by
NetLogo

26 Chapter 1. Documentation

pynetlogo Documentation, Release 0.5.3

This method relies on files to send results from netlogo back to Python. This is slow and can break
when used at scale. For such use cases, you are better of using a model specific way of interfacing.
For example, have a go routine which accumulates the relevant reporters into lists. First run the model
for the required time steps using command, and next retrieve the lists through report.

report(netlogo_reporter)
Return values from a NetLogo reporter

Any reporter (command which returns a value) that can be called in the NetLogo Command Center can be
called with this method.

Parameters
netlogo_reporter (str) – Valid NetLogo reporter

Raises
NetLogoException – If a LogoException or CompilerException is raised by NetLogo

report_while(netlogo_reporter, condition, command='go', max_seconds=10)
Return values from a NetLogo reporter while a condition is true in the NetLogo model

Parameters

• netlogo_reporter (str) – Valid NetLogo reporter

• condition (str) – Valid boolean NetLogo reporter

• command (str) – NetLogo command used to execute the model

• max_seconds (int, optional) – Time limit used to break execution

Raises
NetLogoException – If a LogoException or CompilerException is raised by NetLogo

write_NetLogo_attriblist(agent_data, agent_name)
Update attributes of a set of NetLogo agents from a DataFrame

Assumes a set of NetLogo agents of the same type. Attribute values can be numerical or strings.

Parameters

• agent_data (pandas DataFrame) – DataFrame indexed with a row for each agent, and
columns for each attribute to update. Requires a ‘who’ column for the NetLogo agent ID

• agent_name (str) – Name of the NetLogo agent type to update (singular, e.g. a-sheep)

Raises
NetLogoException – If a LogoException or CompilerException is raised by NetLogo

1.6 Changelog

1.6.1 Version 0.5

• support for netlogo 6.3

• dropped support for netlogo 5.x and 6.0

• renamed library from pyNetLogo to pynetlogo to abide with pep8 naming conventions

• minor changes in names of keyword arguments of various methods

• shift from setup.py to pyproject.toml

1.6. Changelog 27

pynetlogo Documentation, Release 0.5.3

• removal of python 2 support

1.6.2 Version 0.4

support for NetLogo 6.1 and 6.2

1.6.3 Version 0.3

• new repeat_report method

• load_model now raises a FileNotFoundError if the model can’t be found

• use temporary folders created by tempfile module in repeat_report (contributed by tfrench)

• extensions now no longer need to be copied to the model directory (contributed by tfrench)

• addition keyword argument on init of PyNetLogo link for passing additional arguments to jvm

• additional documentation

28 Chapter 1. Documentation

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

29

pynetlogo Documentation, Release 0.5.3

30 Chapter 2. Indices and tables

PYTHON MODULE INDEX

p
pynetlogo.core, 25

31

pynetlogo Documentation, Release 0.5.3

32 Python Module Index

INDEX

C
command() (pynetlogo.core.NetLogoLink method), 25

K
kill_workspace() (pynetlogo.core.NetLogoLink

method), 25

L
load_model() (pynetlogo.core.NetLogoLink method),

25

M
module

pynetlogo.core, 25

N
NetLogoException, 25
NetLogoLink (class in pynetlogo.core), 25

P
patch_report() (pynetlogo.core.NetLogoLink method),

25
patch_set() (pynetlogo.core.NetLogoLink method), 26
pynetlogo.core

module, 25

R
repeat_command() (pynetlogo.core.NetLogoLink

method), 26
repeat_report() (pynetlogo.core.NetLogoLink

method), 26
report() (pynetlogo.core.NetLogoLink method), 27
report_while() (pynetlogo.core.NetLogoLink method),

27

W
write_NetLogo_attriblist() (pynetl-

ogo.core.NetLogoLink method), 27

33

	Documentation
	Installation
	Known bugs and limitations

	Example 1: NetLogo interaction through the pyNetLogo connector
	Example 2: Sensitivity analysis for a NetLogo model with SALib and ipyparallel
	Running the experiments in parallel using ipyparallel
	Using SALib for sensitivity analysis

	Example 3: Sensitivity analysis for a NetLogo model with SALib and Multiprocessing
	Running the experiments in parallel using a Process Pool

	core
	Changelog
	Version 0.5
	Version 0.4
	Version 0.3

	Indices and tables
	Python Module Index
	Index

