
PyMVG Documentation
Release 1.0

Andrew Straw

Nov 02, 2017





Contents

1 Ecosystem 3

2 Development 5
2.1 PyMVG file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Plotting utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 API Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Indices and tables 11

i



ii



PyMVG Documentation, Release 1.0

PyMVG is a Python implementation of various computational camera geometry operations.

Features:

• triangulate 2D features from multiple calibrated cameras into a single 3D point (using algorithm from the classic
textbook by Hartley & Zisserman). [example]

• load/save camera calibrations from ROS (which uses OpenCV)

• load/save camera system calibrations from MultiCamSelfCal

• complete implementation of OpenCV camera model in pure Python in a single file for easy understanding

• complete implementation of DLT camera calibration procedure

• completely vectorized code for rapid operation on many points using numpy

• completely written in Python

• plotting utilities [example 1] [example 2]

It contains a complete re-implementation of the OpenCV camera model and can thus use calibrations made by or for
OpenCV. PyMVG is entirely written in Python, and thus – depending on your preferences – it may be significantly
easier to understand than the equivalent OpenCV implementation. PyMVG makes extensive use of numpy, and thus
when called on large batches of points, is no slower than native code.

Contents 1

http://pymvg.readthedocs.org/
http://www.amazon.com/Multiple-View-Geometry-Computer-Vision/dp/0521540518
http://www.amazon.com/Multiple-View-Geometry-Computer-Vision/dp/0521540518
https://github.com/strawlab/pymvg/blob/master/examples/triangulate_point.py
http://ros.org
http://opencv.org
https://github.com/strawlab/MultiCamSelfCal
https://github.com/strawlab/pymvg/blob/master/pymvg/camera_model.py
http://numpy.org
http://python.org
https://github.com/strawlab/pymvg/blob/master/examples/plot_cameras.py
https://github.com/strawlab/pymvg/blob/master/examples/plot_camera_system.py
http://numpy.org


PyMVG Documentation, Release 1.0

2 Contents



CHAPTER 1

Ecosystem

PyMVG is designed to interoperate with OpenCV, ROS, and MultiCamSelfCal. Unit tests ensure exact compatibility
with the relevant parts of these packages.

See also opengl-hz.

3

http://opencv.org
http://ros.org
https://github.com/strawlab/MultiCamSelfCal
https://github.com/strawlab/opengl-hz


PyMVG Documentation, Release 1.0

4 Chapter 1. Ecosystem



CHAPTER 2

Development

All development is done on our github repository.

2.1 PyMVG file format

The PyMVG file format specifies a camera system completely. The file is valid JSON. Here is an example that specifies
a system of 3 cameras:

{ "__pymvg_file_version__": "1.0",
"camera_system": [
{"name": "cam1",
"width": 640,
"height": 480,
"P": [[ 320.0, 0, 319.99999999999994, 0 ],

[ 0, 320.00000000000006, 240.0, 0 ],
[ 0, 0, 1.0, 0 ]],

"K": [[ 320.0, 0, 319.99999999999994 ],
[ 0, 320.00000000000006, 240.0 ],
[ 0, 0, 1.0 ]],

"D": [ 0.2, 0.3, 0.1, 0.1, 0.1 ],
"R": [[ 1.0, 0, 0 ],

[ 0, 1.0, 0 ],
[ 0, 0, 1.0 ]],

"Q": [[ -1.0000000000000004, 0, 0 ],
[ 0, 1.0, 0 ],
[ 0, 0, -1.0000000000000004 ]],

"translation": [ 0, 0, 0.9000000000000005 ]
},
{"name": "cam2",
"width": 640,
"height": 480,
"P": [[ 320.0, 0, 319.99999999999994, 0 ],

[ 0, 320.00000000000006, 240.0, 0 ],
[ 0, 0, 1.0, 0 ]],

5

https://github.com/strawlab/pymvg


PyMVG Documentation, Release 1.0

"K": [[ 320.0, 0, 319.99999999999994 ],
[ 0, 320.00000000000006, 240.0 ],
[ 0, 0, 1.0 ]],

"D": [ 0, 0, 0, 0, 0 ],
"R": [[ 1.0, 0, 0 ],

[ 0, 1.0, 0 ],
[ 0, 0, 1.0 ]],

"Q": [[ 0, 0, 0.9999999999999999 ],
[ 0.847998304005088, 0.5299989400031799, 0 ],
[ -0.5299989400031798, 0.847998304005088, 0 ]],

"translation": [ 0, 0, 0.9433981132056602 ]
},
{"name": "cam3",
"width": 640,
"height": 480,
"P": [[ 320.0, 0, 319.99999999999994, 0 ],

[ 0, 320.00000000000006, 240.0, 0 ],
[ 0, 0, 1.0, 0 ]],

"K": [[ 320.0, 0, 319.99999999999994 ],
[ 0, 320.00000000000006, 240.0 ],
[ 0, 0, 1.0 ]],

"D": [ 0, 0, 0, 0, 0 ],
"R": [[ 1.0, 0, 0 ],

[ 0, 1.0, 0 ],
[ 0, 0, 1.0 ]],

"Q": [[ 0, 0, 1.0000000000000002 ],
[ -0.7071067811865475, 0.7071067811865477, 0 ],
[ -0.7071067811865478, -0.7071067811865475, 0 ]],

"translation": [ 0, 0, 0.7071067811865475 ]
}

]
}

2.2 Plotting utilities

Given the above example, we can plot the camera system.

from pymvg import CameraModel, MultiCameraSystem
from pymvg.plot_utils import plot_system

import os

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

fname = os.path.join('..','pymvg_camsystem_example.json')
system = MultiCameraSystem.from_pymvg_file( fname )

fig = plt.figure()
ax = fig.add_subplot(1,1,1, projection='3d')
plot_system( ax, system )
ax.set_xlabel('x'); ax.set_ylabel('y'); ax.set_zlabel('z')
ax.set_xlim(-0.8,0.8); ax.set_ylim(-0.8,0.8); ax.set_zlim(-0.8,0.8)
plt.show()

6 Chapter 2. Development



PyMVG Documentation, Release 1.0

2.3 Camera Model

2.3.1 single camera model

The core of PyMVG is a camera model that is compatible with the calibration outputs of OpenCV and MultiCamSelf-
Cal.

In the above image, you can see that this camera model consists of a linear pinhole projection model followed by a
nonlinear distortion model. The pinhole model is specified completely by the 3x4 matrix M (or, equivalently, the 3x3
intrinsic matrix P, the 3x3 ortho-normal rotation matrix Q, and the translation vector t). The nonlinear distortion model
is specified completely by elements of the intrinsic matrix of the pinhole model and several distortion terms.

2.3.2 camera system (multiple cameras)

PyMVG represents a camera system with the MultiCameraSystem class. You create an instance with a list of individual
camera instances. The class provides additional methods for triangulation of 3D points and so on.

2.4 API Reference

class pymvg.camera_model.CameraModel(name, width, height, _rquat, _camcenter, P, K, distortion,
rect)

an implementation of the Camera Model used by ROS and OpenCV

Tranformations: We can think about the overall projection to 2D in two steps. Step 1 takes 3D world coordinates
and, with a simple matrix multiplication and perspective division, projects them to undistorted 2D coordinates.
Step 2 takes these undistorted 2D coordinates and distorts them so they are ‘distorted’ and match up with a real
camera with radial distortion, for example.

3D world –(step1)—-> undistorted 2D —(step2)—-> distorted 2D

Step 1 is accomplished by making the world coordinates a homogeneous vector of length 4, multiplying by a
3x4 matrix M (built from P, R and t) to get values [r,s,t] in which the undistorted 2D coordinates are [r/t, s/t].
(The implementation is vectorized so that in fact many points at once can be transformed.)

Step 2 is somewhat complicated in that it allows a separate focal length and camera center to be used for
distortion. Undistorted 2D coordinates are transformed first to uncorrected normalized image coordinates using
parameters from P, then corrected using a rectification matrix. These corrected normalized image coordinates
are then used in conjunction with the distortion model to create distorted normalized pixels which are finally
transformed to distorted image pixels by K.

2.3. Camera Model 7

http://opencv.org
https://github.com/strawlab/MultiCamSelfCal
https://github.com/strawlab/MultiCamSelfCal


PyMVG Documentation, Release 1.0

Coordinate system: the camera is looking at +Z, with +X rightward and +Y down. For more information, see
http://www.ros.org/wiki/image_pipeline/CameraInfo

As noted on the link above, this differs from the coordinate system of Harley and Zisserman, which has Z
forward, Y up, and X to the left (looking towards +Z).’

camcenter_like(nparr)
create numpy array of camcenters like another array

get_aligned_camera(scale, rotation, translation)
return a copy of this camera with new extrinsic coordinates

get_flipped_camera()
return a copy of this camera looking in the opposite direction

The returned camera has the same 3D->2D projection. (The 2D->3D projection results in a vector in the
opposite direction.)

get_mirror_camera(axis=’lr’, hold_center=False)
return a copy of this camera whose x coordinate is (image_width-x)

axis - string. Specifies the axis of the mirroring, either ‘lr’ or ‘ud’. hold_center - boolean. Preserve the
optical center?

get_view_camera(eye, lookat, up=None)
return a copy of this camera with new extrinsic coordinates

is_distorted_and_skewed(max_skew_ratio=1000000000000000.0)
True if pixels are skewed and distorted

is_opencv_compatible()
True iff there is no skew

is_skewed(max_skew_ratio=1000000000000000.0)
True if pixels are skewed

classmethod load_camera_from_M(pmat, width=None, height=None, name=’cam’, distor-
tion_coefficients=None, _depth=0, eps=1e-15)

create CameraModel instance from a camera matrix M

classmethod load_camera_from_opened_bagfile(bag, extrinsics_required=True)
factory function for class CameraModel

bag - an opened rosbag.Bag instance extrinsics_required - are extrinsic parameters required

project_3d_to_camera_frame(pts3d)
take 3D coordinates in world frame and convert to camera frame

project_camera_frame_to_3d(pts3d)
take 3D coordinates in camera frame and convert to world frame

save_to_bagfile(fname, roslib)
save CameraModel to ROS bag file

fname - filename or file descriptor to save to roslib - the roslib module

class pymvg.multi_camera_system.MultiCameraSystem(cameras)

find3d(pts, undistort=True)
Find 3D coordinate using all data given

Implements a linear triangulation method to find a 3D point. For example, see Hartley & Zisserman section
12.2 (p.312).

8 Chapter 2. Development

http://www.ros.org/wiki/image_pipeline/CameraInfo


PyMVG Documentation, Release 1.0

By default, this function will undistort 2D points before finding a 3D point.

classmethod from_mcsc(dirname)
create MultiCameraSystem from output directory of MultiCamSelfCal

get_aligned_copy(other)
return copy of self that is scaled, translated, and rotated to best match other

2.4. API Reference 9



PyMVG Documentation, Release 1.0

10 Chapter 2. Development



CHAPTER 3

Indices and tables

• genindex

• modindex

• search

11



PyMVG Documentation, Release 1.0

12 Chapter 3. Indices and tables



Index

C
camcenter_like() (pymvg.camera_model.CameraModel

method), 8
CameraModel (class in pymvg.camera_model), 7

F
find3d() (pymvg.multi_camera_system.MultiCameraSystem

method), 8
from_mcsc() (pymvg.multi_camera_system.MultiCameraSystem

class method), 9

G
get_aligned_camera() (pymvg.camera_model.CameraModel

method), 8
get_aligned_copy() (pymvg.multi_camera_system.MultiCameraSystem

method), 9
get_flipped_camera() (pymvg.camera_model.CameraModel

method), 8
get_mirror_camera() (pymvg.camera_model.CameraModel

method), 8
get_view_camera() (pymvg.camera_model.CameraModel

method), 8

I
is_distorted_and_skewed()

(pymvg.camera_model.CameraModel method),
8

is_opencv_compatible() (pymvg.camera_model.CameraModel
method), 8

is_skewed() (pymvg.camera_model.CameraModel
method), 8

L
load_camera_from_M() (pymvg.camera_model.CameraModel

class method), 8
load_camera_from_opened_bagfile()

(pymvg.camera_model.CameraModel class
method), 8

M
MultiCameraSystem (class in

pymvg.multi_camera_system), 8

P
project_3d_to_camera_frame()

(pymvg.camera_model.CameraModel method),
8

project_camera_frame_to_3d()
(pymvg.camera_model.CameraModel method),
8

S
save_to_bagfile() (pymvg.camera_model.CameraModel

method), 8

13


	Ecosystem
	Development
	PyMVG file format
	Plotting utilities
	Camera Model
	API Reference

	Indices and tables

