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Author Eugenio Piasini

Contact e.piasini@ucl.ac.uk

Documentation http://pymuvr.readthedocs.org

Source code https://github.com/epiasini/pymuvr

PyPI entry https://pypi.python.org/pypi/pymuvr

A Python package for the fast calculation of Multi-unit Van Rossum neural spike train metrics, with the kernel-
based algorithm described in Houghton and Kreuz, On the efficient calculation of Van Rossum distances (Network:
Computation in Neural Systems, 2012, 23, 48-58). This package started out as a Python wrapping of the original C++
implementation given by the authors of the paper, and evolved from there with bugfixes and improvements.
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CHAPTER 1

Contents

1.1 Installation

1.1.1 Requirements

• CPython 2.7 or 3.x.

• NumPy>=1.7.

• C++ development tools and Standard Library (package build-essential on Debian).

• Python development tools (package python-dev on Debian).

1.1.2 Installing via pip

To install the latest release, run:

pip install pymuvr

1.1.3 Testing

From the root directory of the source distribution, run:

python setup.py test

(requires setuptools). Alternatively, if pymuvr is already installed on your system, look for the copy of the
test_pymuvr.py script installed alongside the rest of the pymuvr files and execute it. For example:

python /usr/lib/pythonX.Y/site-packages/pymuvr/test/test_pymuvr.py

1.2 Mathematical methods

We define a compact formalism for multiunit spike-train metrics by opportunely characterising the space of multiunit
feature vectors as a tensor product. Previous results from Houghton and Kreuz (2012, On the efficient calculation of
van Rossum distances. Network: Computation in Neural Systems, 2012, 23, 48-58) on a clever formula for multiunit
Van Rossum metrics are then re-derived within this framework, also fixing some errors in the original calculations.

3
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1.2.1 A compact formalism for kernel-based multiunit spike train metrics

Consider a network with 𝐶 cells. Let

𝒰 =
{︀
𝑢1,𝑢2, . . . ,𝑢𝐶

}︀
be an observation of network activity, where

𝑢𝑖 =
{︁
𝑢𝑖
1, 𝑢

𝑖
2, . . . , 𝑢

𝑖
𝑁𝑢𝑖

}︁
is the (ordered) set of times of the spikes emitted by cell 𝑖. Let 𝒱 =

{︀
𝑣1,𝑣2, . . . ,𝑣𝐶

}︀
be another observation, different

in general from 𝒰 .

To compute a kernel based multiunit distance between 𝒰 and 𝒱 , we map them to the tensor product space 𝒮 .
=

R𝐶
⨂︀

𝐿2(R → R) by defining

|𝒰⟩ =
𝐶∑︁
𝑖=1

|𝑖⟩ ⊗ |𝑢𝑖⟩

where we consider R𝐶 and 𝐿2(R → R) to be equipped with the usual euclidean distances, consequently inducing an
euclidean metric structure on 𝒮 too.

Conceptually, the set of vectors {|𝑖⟩}𝐶𝑖=1 ⊂ R𝐶 represents the different cells, while each |𝑢𝑖⟩ ∈ 𝐿2(R → R) represents
the convolution of a spike train of cell 𝑖 with a real-valued feature function 𝜑 : R → R,

⟨𝑡|𝑢⟩ =
𝑁𝑢∑︁
𝑛=1

𝜑(𝑡− 𝑢𝑛)

In practice, we will never use the feature functions directly, but we will be only interested in the inner products of
the |𝑖⟩ and |𝑢⟩ vectors. We call 𝑐𝑖𝑗

.
= ⟨𝑖|𝑗⟩ = ⟨𝑖|𝑗⟩R𝐶 = 𝑐𝑗𝑖 the multiunit mixing coefficient for cells 𝑖 and 𝑗, and

⟨𝑢|𝑣⟩ = ⟨𝑢|𝑣⟩𝐿2
the single-unit inner product,

⟨𝑢|𝑣⟩ = ⟨{𝑢1, 𝑢2, . . . , 𝑢𝑁} | {𝑣1, 𝑣2, . . . , 𝑣𝑀}⟩ =

=

∫︁
d𝑡⟨𝑢|𝑡⟩⟨𝑡|𝑣⟩ =

∫︁
d𝑡

𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1

𝜑 (𝑡− 𝑢𝑛)𝜑 (𝑡− 𝑣𝑚)

.
=

𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1

𝒦(𝑢𝑛, 𝑣𝑚)

where 𝒦(𝑡1, 𝑡2)
.
=
∫︀

d𝑡 [𝜑 (𝑡− 𝑡1)𝜑 (𝑡− 𝑡2)] is the single-unit metric kernel, and where we have used the fact that the
feature function 𝜑 is real-valued. It follows immediately from the definition above that ⟨𝑢|𝑣⟩ = ⟨𝑣|𝑢⟩.

Note that, given a cell pair (𝑖, 𝑗) or a spike train pair (𝑢,𝑣), 𝑐𝑖𝑗 does not depend on spike times and ⟨𝑢|𝑣⟩ does not
depend on cell labeling.

With this notation, we can define the multi-unit spike train distance as

‖|𝒰⟩ − |𝒱⟩‖2 = ⟨𝒰|𝒰⟩+ ⟨𝒱|𝒱⟩ − 2⟨𝒰|𝒱⟩

where the multi-unit spike train inner product ⟨𝒱|𝒰⟩ between 𝒰 and 𝒱 is just the natural bilinear operation induced on
𝒮 by the tensor product structure:

⟨𝒱|𝒰⟩ =
𝐶∑︁

𝑖,𝑗=1

⟨𝑖|𝑗⟩⟨𝑣𝑖|𝑢𝑗⟩ =
𝐶∑︁

𝑖,𝑗=1

𝑐𝑖𝑗⟨𝑣𝑖|𝑢𝑖⟩

=

𝐶∑︁
𝑖=1

⎡⎣𝑐𝑖𝑖⟨𝑣𝑖|𝑢𝑖⟩+ 𝑐𝑖𝑗

⎛⎝∑︁
𝑗<𝑖

⟨𝑣𝑖|𝑢𝑗⟩+
∑︁
𝑗>𝑖

⟨𝑣𝑖|𝑢𝑗⟩

⎞⎠⎤⎦

4 Chapter 1. Contents
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But 𝑐𝑖𝑗 = 𝑐𝑗𝑖 and ⟨𝑣|𝑢⟩ = ⟨𝑢|𝑣⟩, so

𝐶∑︁
𝑖=1

∑︁
𝑗<𝑖

𝑐𝑖𝑗⟨𝑣𝑖|𝑢𝑗⟩ =
𝐶∑︁

𝑗=1

∑︁
𝑖<𝑗

𝑐𝑗𝑖⟨𝑣𝑗 |𝑢𝑖⟩ =
𝐶∑︁
𝑖=1

∑︁
𝑗>𝑖

𝑐𝑗𝑖⟨𝑣𝑗 |𝑢𝑖⟩ =
𝐶∑︁
𝑖=1

∑︁
𝑗>𝑖

𝑐𝑖𝑗⟨𝑣𝑗 |𝑢𝑖⟩

=

𝐶∑︁
𝑖=1

∑︁
𝑗>𝑖

𝑐𝑖𝑗⟨𝑢𝑖|𝑣𝑗⟩

and

⟨𝒱|𝒰⟩ =
𝐶∑︁
𝑖=1

⎡⎣𝑐𝑖𝑖⟨𝑣𝑖|𝑢𝑖⟩+ 𝑐𝑖𝑗
∑︁
𝑗>𝑖

(︀
⟨𝑣𝑖|𝑢𝑗⟩+ ⟨𝑢𝑖|𝑣𝑗⟩

)︀⎤⎦
Now, normally we are interested in the particular case where 𝑐𝑖𝑗 is the same for all pair of distinct cells:

𝑐𝑖𝑗 =

{︃
1 if 𝑖 = 𝑗

𝑐 if 𝑖 ̸= 𝑗

and under this assumption we can write

⟨𝒱|𝒰⟩ =
𝐶∑︁
𝑖=1

⎡⎣⟨𝑣𝑖|𝑢𝑖⟩+ 𝑐
∑︁
𝑗>𝑖

(︀
⟨𝑣𝑖|𝑢𝑗⟩+ ⟨𝑢𝑖|𝑣𝑗⟩

)︀⎤⎦
and

‖|𝒰⟩ − |𝒱⟩‖2 =

𝐶∑︁
𝑖=1

{︃
⟨𝑢𝑖|𝑢𝑖⟩+ 𝑐

∑︁
𝑗>𝑖

(︀
⟨𝑢𝑖|𝑢𝑗⟩+ ⟨𝑢𝑖|𝑢𝑗⟩

)︀
+

+⟨𝑣𝑖|𝑣𝑖⟩+ 𝑐
∑︁
𝑗>𝑖

(︀
⟨𝑣𝑖|𝑣𝑗⟩+ ⟨𝑣𝑖|𝑣𝑗⟩

)︀
+

−2

⎡⎣⟨𝑣𝑖|𝑢𝑖⟩+ 𝑐
∑︁
𝑗>𝑖

(︀
⟨𝑣𝑖|𝑢𝑗⟩+ ⟨𝑢𝑖|𝑣𝑗⟩

)︀⎤⎦}︃

Rearranging the terms

‖|𝒰⟩ − |𝒱⟩‖2 =

𝐶∑︁
𝑖=1

[︃
⟨𝑢𝑖|𝑢𝑖⟩+ ⟨𝑣𝑖|𝑣𝑖⟩ − 2⟨𝑣𝑖|𝑢𝑖⟩+

+2𝑐
∑︁
𝑗>𝑖

(︀
⟨𝑢𝑖|𝑢𝑗⟩+ ⟨𝑣𝑖|𝑣𝑗⟩ − ⟨𝑣𝑖|𝑢𝑗⟩ − ⟨𝑣𝑗 |𝑢𝑖⟩

)︀ ]︃

1.2.2 Van Rossum-like metrics

In Van Rossum-like metrics, the feature function and the single-unit kernel are, for 𝜏 ̸= 0,

𝜑VR
𝜏 (𝑡) =

√︂
2

𝜏
· 𝑒−𝑡/𝜏𝜃(𝑡)

𝒦VR
𝜏 (𝑡1, 𝑡2) =

{︃
1 if 𝑡1 = 𝑡2

𝑒−|𝑡1−𝑡2|/𝜏 if 𝑡1 ̸= 𝑡2

1.2. Mathematical methods 5
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where 𝜃 is the Heaviside step function (with 𝜃(0) = 1), and we have chosen to normalise 𝜑VR
𝜏 so that

⃦⃦
𝜑VR
𝜏

⃦⃦
2
=

√︃∫︁
d𝑡 [𝜑VR

𝜏 (𝑡)]
2
= 1 .

In the 𝜏 → 0 limit,

𝜑VR
0 (𝑡) = 𝛿(𝑡)

𝒦VR
0 (𝑡1, 𝑡2) =

{︃
1 if 𝑡1 = 𝑡2

0 if 𝑡1 ̸= 𝑡2

In particular, the single-unit inner product now becomes

⟨𝑢|𝑣⟩ =
𝑁∑︁

𝑛=1

𝑀∑︁
𝑚=1

𝒦VR(𝑢𝑛, 𝑣𝑚) =

𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1

𝑒−|𝑢𝑛−𝑣𝑚|/𝜏

Markage formulas

For a spike train 𝑢 of length 𝑁 and a time 𝑡 we define the index 𝑁̃ (𝑢, 𝑡)

𝑁̃ (𝑢, 𝑡)
.
= max{𝑛|𝑢𝑛 < 𝑡}

which we can use to re-write ⟨𝑢|𝑢⟩ without the absolute values:

⟨𝑢|𝑢⟩ =
𝑁∑︁

𝑛=1

⎛⎝ ∑︁
𝑚|𝑣𝑚<𝑢𝑛

𝑒−(𝑢𝑛−𝑣𝑚)/𝜏 +
∑︁

𝑚|𝑣𝑚>𝑢𝑛

𝑒−(𝑣𝑚−𝑢𝑛)/𝜏 +

𝑀∑︁
𝑚=1

𝛿 (𝑢𝑛, 𝑣𝑚)

⎞⎠
=

𝑁∑︁
𝑛=1

⎛⎝ ∑︁
𝑚|𝑣𝑚<𝑢𝑛

𝑒−(𝑢𝑛−𝑣𝑚)/𝜏 +
∑︁

𝑚|𝑢𝑚<𝑣𝑛

𝑒−(𝑣𝑛−𝑢𝑚)/𝜏 +

𝑀∑︁
𝑚=1

𝛿 (𝑢𝑛, 𝑣𝑚)

⎞⎠
=

𝑁∑︁
𝑛=1

⎡⎣𝑁̃(𝑣,𝑢𝑛)∑︁
𝑚=1

𝑒−(𝑢𝑛−𝑣𝑚)/𝜏 +

𝑁̃(𝑢,𝑣𝑛)∑︁
𝑚=1

𝑒−(𝑣𝑛−𝑢𝑚)/𝜏 + 𝛿
(︁
𝑢𝑛, 𝑣𝑁̃(𝑣,𝑢𝑛)+1

)︁⎤⎦
=

𝑁∑︁
𝑛=1

[︃
𝑒−(𝑢𝑛−𝑣𝑁̃(𝑣,𝑢𝑛))/𝜏

𝑁̃(𝑣,𝑢𝑛)∑︁
𝑚=1

𝑒−(𝑣𝑁̃(𝑣,𝑢𝑛)−𝑣𝑚)/𝜏+

+ 𝑒−(𝑣𝑛−𝑢𝑁̃(𝑢,𝑣𝑛))/𝜏

𝑁̃(𝑢,𝑣𝑛)∑︁
𝑚=1

𝑒−(𝑢𝑁̃(𝑢,𝑣𝑛)−𝑢𝑚)/𝜏+

+ 𝛿
(︁
𝑢𝑛, 𝑣𝑁̃(𝑣,𝑢𝑛)+1

)︁]︃
For a spike train 𝑢 of length 𝑁 , we also define the the markage vector 𝑚, with the same length as 𝑢, through the
following recursive assignment:

𝑚1(𝑢)
.
= 0

𝑚𝑛(𝑢)
.
= (𝑚𝑛−1 + 1) 𝑒−(𝑢𝑛−𝑢𝑛−1)/𝜏 ∀𝑛 ∈ {2, . . . , 𝑁}

It is easy to see that

𝑚𝑛(𝑢) =

𝑛−1∑︁
𝑘=1

𝑒−(𝑢𝑛−𝑢𝑘)/𝜏 =

(︃
𝑛∑︁

𝑘=1

𝑒−(𝑢𝑛−𝑢𝑘)/𝜏

)︃
− 𝑒−(𝑢𝑛−𝑢𝑛)/𝜏

=

𝑛∑︁
𝑘=1

𝑒−(𝑢𝑛−𝑢𝑘)/𝜏 − 1

6 Chapter 1. Contents
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and in particular

𝑁̃(𝑢,𝑡)∑︁
𝑛=1

𝑒−(𝑢𝑁̃(𝑢,𝑡)−𝑢𝑛)/𝜏 = 1 +𝑚𝑁̃(𝑢,𝑡)(𝑢)

With this definition, we get

⟨𝑢|𝑣⟩ =
𝑁∑︁

𝑛=1

[︃
𝑒−(𝑢𝑛−𝑣𝑁̃(𝑣,𝑢𝑛))/𝜏

(︁
1 +𝑚𝑁̃(𝑣,𝑢𝑛)

(𝑣)
)︁
+

+ 𝑒−(𝑣𝑛−𝑢𝑁̃(𝑢,𝑣𝑛))/𝜏
(︁
1 +𝑚𝑁̃(𝑢,𝑣𝑛)

(𝑢)
)︁
+

+ 𝛿
(︁
𝑢𝑛, 𝑣𝑁̃(𝑣,𝑢𝑛)+1

)︁]︃

Finally, note that because of the definition of the markage vector

𝑒−(𝑢𝑛−𝑢𝑁̃(𝑢,𝑢𝑛))/𝜏
(︁
1 +𝑚𝑁̃(𝑢,𝑢𝑛)

(𝑢)
)︁
= 𝑒−(𝑢𝑛−𝑢𝑛−1)/𝜏 (1 +𝑚(𝑢)) = 𝑚𝑛(𝑢)

so that in particular

⟨𝑢|𝑢⟩ =
𝑁∑︁

𝑛=1

(1 + 2𝑚𝑛(𝑢))

A formula for the efficient computation of multiunit Van Rossum spike train metrics, used by pymuvr, can then
be obtained by opportunely substituting these expressions for the single-unit scalar products in the definition of the
multiunit distance.

1.3 Usage

1.3.1 Examples

>>> import pymuvr
>>> # define two sets of observations for two cells
>>> observations_1 = [[[1.0, 2.3], # 1st observation, 1st cell
... [0.2, 2.5, 2.7]], # 2nd cell
... [[1.1, 1.2, 3.0], # 2nd observation
... []],
... [[5.0, 7.8],
... [4.2, 6.0]]]
>>> observations_2 = [[[0.9],
... [0.7, 0.9, 3.3]],
... [[0.3, 1.5, 2.4],
... [2.5, 3.7]]]
>>> # set parameters for the metric
>>> cos = 0.1
>>> tau = 1.0
>>> # compute distances between all observations in set 1
>>> # and those in set 2
>>> pymuvr.dissimilarity_matrix(observations_1,
... observations_2,
... cos,

1.3. Usage 7
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... tau,

... 'distance')
array([[ 2.40281585, 1.92780957],

[ 2.76008964, 2.31230263],
[ 3.1322069 , 3.17216524]])

>>> # compute inner products
>>> pymuvr.dissimilarity_matrix(observations_1,
... observations_2,
... cos,
... tau,
... 'inner product')
array([[ 4.30817654, 5.97348384],

[ 2.08532468, 3.85777053],
[ 0.59639918, 1.10721323]])

>>> # compute all distances between observations in set 1
>>> pymuvr.square_dissimilarity_matrix(observations_1,
... cos,
... tau,
... 'distance')
array([[ 0. , 2.6221159 , 3.38230952],

[ 2.6221159 , 0. , 3.10221811],
[ 3.38230952, 3.10221811, 0. ]])

>>> # compute inner products
>>> pymuvr.square_dissimilarity_matrix(observations_1,
... cos,
... tau,
... 'inner product')
array([[ 8.04054275, 3.3022304 , 0.62735459],

[ 3.3022304 , 5.43940985, 0.23491838],
[ 0.62735459, 0.23491838, 4.6541841 ]])

See the examples and test directories in the source distribution for more detailed examples of usage. These should
also have been installed alongside the rest of the pymuvr files.

The script examples/benchmark_versus_spykeutils.py compares the performance of pymuvr with the
pure Python/NumPy implementation of the multiunit Van Rossum distance in spykeutils.

1.3.2 Reference

pymuvr.dissimilarity_matrix(observations1, observations2, cos, tau, mode)
Return the bipartite (rectangular) dissimilarity matrix between the observations in the first and the second list.

Parameters

• observations1,observations2 (list) – Two lists of multi-unit spike trains to
compare. Each observations parameter must be a thrice-nested list of spike times, with ob-
servations[i][j][k] representing the time of the kth spike of the jth cell of the ith observation.

• cos (float) – mixing parameter controlling the interpolation between labelled-line mode
(cos=0) and summed-population mode (cos=1). It corresponds to the cosine of the angle
between the vectors used for the euclidean embedding of the multiunit spike trains.

• tau (float) – time scale for the exponential kernel, controlling the interpolation between
pure coincidence detection (tau=0) and spike count mode (very large tau). Note that setting
tau=0 is always allowed, but there is a range (0, epsilon) of forbidden values that tau is
not allowed to assume. The upper bound of this range is proportional to the absolute value
of the largest spike time in observations, with the proportionality constant being system-
dependent. As a rule of thumb tau and the spike times should be within 4 orders of magni-
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tude of each other; for example, if the largest spike time is 10s a value of tau>1ms will be
expected. An exception will be raised if tau falls in the forbidden range.

• mode (string) – type of dissimilarity measure to be computed. Must be either ‘distance’
or ‘inner product’.

Returns A len(observations1) x len(observations2) numpy array containing the dissimilarity (dis-
tance or inner product) between each pair of observations that can be formed by taking one
observation from observations1 and one from observations2.

Return type numpy.ndarray

Raises

• IndexError – if the observations in observations1 and observations2 don’t have all the
same number of cells.

• OverflowError – if tau falls in the forbidden interval.

pymuvr.square_dissimilarity_matrix(observations, cos, tau, mode)
Return the all-to-all (square) dissimilarity matrix for the given list of observations.

Parameters

• observations (list) – A list of multi-unit spike trains to compare.

• cos (float) – mixing parameter controlling the interpolation between labelled-line mode
(cos=0) and summed-population mode (cos=1).

• tau (float) – time scale for the exponential kernel, controlling the interpolation between
pure coincidence detection (tau=0) and spike count mode (very large tau).

• mode (string) – type of dissimilarity measure to be computed. Must be either ‘distance’
or ‘inner product’.

Returns A len(observations) x len(observations) numpy array containing the dissimilarity (distance
or inner product) between all possible pairs of observations.

Return type numpy.ndarray

Raises

• IndexError – if the observations in observations don’t have all the same number of cells.

• OverflowError – if tau falls in the forbidden interval.

Effectively equivalent to dissimilarity_matrix(observations, observations, cos,
tau), but optimised for speed. See pymuvr.dissimilarity_matrix() for details.

pymuvr.distance_matrix(trains1, trains2, cos, tau)
Return the bipartite (rectangular) distance matrix between the observations in the first and the second list.

Convenience function; equivalent to dissimilarity_matrix(trains1, trains2, cos, tau,
"distance"). Refer to pymuvr.dissimilarity_matrix() for full documentation.

pymuvr.square_distance_matrix(trains, cos, tau)
Return the all-to-all (square) distance matrix for the given list of observations.

Convenience function; equivalent to square_dissimilarity_matrix(trains, cos, tau,
"distance"). Refer to pymuvr.square_dissimilarity_matrix() for full documentation.

1.3. Usage 9
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1.4 C++ API reference

class ConvolvedSpikeTrain
A class representing a single-unit spike train for which several helper vectors relating to a Van Rossum-like
exponential convolution have been calculated.

Public Functions

ConvolvedSpikeTrain()
Default constructor.

ConvolvedSpikeTrain(std::vector<double> spikes, double tau)
Constructor accepting a spike train.

Parameters

• spikes - A vector of spike times.

• tau - Time scale for the exponential kernel. There is a limit to how small tau can be compared
to the absolute value of the spike times. An exception will be raised if this limit is exceeded;
its value is system-dependent, but as a rule of thumb tau and the spike times should be within 4
orders of magnitude of each other.

Warning: doxygenfunction: Unable to resolve multiple matches for function “distance” with arguments
(std::vector< std::vector< ConvolvedSpikeTrain > > &, double, double **) in doxygen xml output for project
“pymuvr” from directory: _doxygen/xml. Potential matches:

- void distance(std::vector<std::vector<ConvolvedSpikeTrain>>&, double, double **)
- void distance(std::vector<std::vector<ConvolvedSpikeTrain>>&, std::vector<std::vector<ConvolvedSpikeTrain>>&, double, double **)

Warning: doxygenfunction: Unable to resolve multiple matches for function “distance” with arguments
(std::vector< std::vector< ConvolvedSpikeTrain > > &, std::vector< std::vector< ConvolvedSpikeTrain > > &,
double, double **) in doxygen xml output for project “pymuvr” from directory: _doxygen/xml. Potential matches:

- void distance(std::vector<std::vector<ConvolvedSpikeTrain>>&, double, double **)
- void distance(std::vector<std::vector<ConvolvedSpikeTrain>>&, std::vector<std::vector<ConvolvedSpikeTrain>>&, double, double **)

Warning: doxygenfunction: Unable to resolve multiple matches for function “inner_product” with arguments
(std::vector< std::vector< ConvolvedSpikeTrain > > &, double, double **) in doxygen xml output for project
“pymuvr” from directory: _doxygen/xml. Potential matches:

- void inner_product(std::vector<std::vector<ConvolvedSpikeTrain>>&, double, double **)
- void inner_product(std::vector<std::vector<ConvolvedSpikeTrain>>&, std::vector<std::vector<ConvolvedSpikeTrain>>&, double, double **)

Warning: doxygenfunction: Unable to resolve multiple matches for function “inner_product” with arguments
(std::vector< std::vector< ConvolvedSpikeTrain > > &, std::vector< std::vector< ConvolvedSpikeTrain > > &,
double, double **) in doxygen xml output for project “pymuvr” from directory: _doxygen/xml. Potential matches:

- void inner_product(std::vector<std::vector<ConvolvedSpikeTrain>>&, double, double **)
- void inner_product(std::vector<std::vector<ConvolvedSpikeTrain>>&, std::vector<std::vector<ConvolvedSpikeTrain>>&, double, double **)
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1.5 License

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see
http://www.gnu.org/licenses/.
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