

Python Package for Multi-Resident Tracking

Contents:

	Python Environment Setup
	Python 3.6 Environment

	Setup Tensorflow

	Setup Mayavi

	Known Issues

	Multi-Target Tracking
	Dynamic Models for Multi-target Tracking

	Gaussian Component

	Gaussian-Mixture Probability Hypothesis Density Filter

	API

	Reference
	Multi-Target Tracking

Indices and tables

	Index

	Module Index

	Search Page

Python Environment Setup

As the packages has a few package dependencies and get them set up properly
for your python environment may be tricky sometimes.
The following provides a general suggestion on how to set up each packages
for better performance on various operating systems.

Python 3.6 Environment

On MacOS and Windows 10, I personally recommend MiniConda [https://conda.io/miniconda.html] package
installer for python environment.
MiniConda [https://conda.io/miniconda.html] provides most numerical calculation packages such as numpy
and scipy, pre-compiled for all operating systems with Intel Math kernel
Library - probably the best performance you can get as pre-compiled binaries.
It also includes virtual environment management so that you can have multiple
Python environments co-existing on your machine.
MiniConda [https://conda.io/miniconda.html] is installed with minimal packages and you can add additional
packages that you need incrementally to keep a minimal footprint on your hard
drive.

Windows Setup

Setup MiniConda [https://conda.io/miniconda.html] on windows, simply follow the link and download the
installer for you Windows OS.
Run the installer to install MiniConda [https://conda.io/miniconda.html] to your machine.

Ubuntu 18.04 Setup

Setup MiniConda [https://conda.io/miniconda.html] on Linux, simple follow the link and download the bash
installer for Linux operationg system.
In terminal, make the downloaded bash script executable, and run it with
sudo command as follows.

$ sudo ./Miniconda3-latest-Linux-x86_64.sh

In my case, I installed it under /opt/miniconda3 so that it is accessible
for all users.

Add the path of Miniconda to ~/.bashrc:

export PATH="/opt/miniconda3/bin:$PATH"

MacOS Setup

In MacOS, I would recommend using homebrew [https://brew.sh/] as package manager to install
MiniConda [https://conda.io/miniconda.html].

Install homebrew [https://brew.sh/] in terminal:

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

The command above fetches homebrew [https://brew.sh/] from GitHub and installs Xcode command
line tools as well.

Add homebrew [https://brew.sh/] to path

$ echo export PATH='/usr/local/bin:$PATH' >> ~/.profile

Install basic MiniConda [https://conda.io/miniconda.html] environment using homebrew [https://brew.sh/]

$ brew install wget
$ wget https://repo.continuum.io/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
$ bash Miniconda3-latest-MacOSX-x86_64.sh
$ rm ~/Miniconda3-latest-MacOSX-x86_64.sh
$ echo export PATH='~/miniconda3/bin:$PATH' >> ~/.profile
$ source ~/.profile
$ conda install anaconda
$ conda update --all

Setup Tensorflow

For install tensorflow for your operating system, you can find
instruction on tensorflow document page here [https://www.tensorflow.org/install/].

Note that on Windows with Conda environment, there is a chance that an out-dated
html5lib package dependency may break the Conda setup.
As a walk around, you can run $pip install html5lib==1.0b10 to correct it.
The fix has been merged into tensorflow source tree, but has not released
yet.

Setup Mayavi

Mayavi [https://github.com/enthought/mayavi] library is used for 3D plot and visualization.
However, set it up properly takes quite some work.

Windows Setup

First, make sure that you have Visual Studio installed. In my case, I use
VS2017 Community for compilation.
Moreover, in VS2017, you need to enable *Python Support* and have
Python Native Development Tools installed.

Start *x64 Native Tools Command Prompt for VS2017* in start menu and import
Conda Python environment scripts (usually named as activate.bat).
The default one for base environment is at Scripts\activate.bat under
conda installation directory.
(Replace C:\Anaconda3 in the following command with your installation
path of conda).

> C:\Anaconda3\Scripts\activate.bat C:\Anaconda3

Install pyside 1.2.4

> conda install -c conda-forge pyside=1.2.4

However, if you have pyqt package installed on your system, you may see
it fails with error complaining about version conflicts.
Remove pyqt first.

> conda uninstall pyqt

Install VTK from clinicalgraphics

> conda install -c clinicalgraphics vtk

Due to various bugs and compatibility issue, install mayavi, traits and
pyface from source (Github).

> pip install git+https://github.com/enthought/envisage.git
> pip install git+https://github.com/enthought/traitsui.git
> pip install git+https://github.com/enthought/pyface.git
> pip install git+https://github.com/enthought/mayavi.git

Ubuntu 18.04 Setup

You can install the mayavi in the same way as in Windows.
In addition to the previous steps, you als need to install
libcanberra-gtk-module and libcanberra-gtk3-module using system package
manager.

$ sudo apt install libcanberra-gtk-module libcanberra-gtk3-module

MacOS Setup

First, install VTK using homebrew [https://brew.sh/].

$ brew install vtk --with-python3 --without-python --with-qt

Install pyside 1.2.4

conda install pyside

Due to various bugs and compatibility issue, install mayavi, traits and
pyface from source (Github).
It takes a while to install and compile all of them from the source.

$ pip install git+https://github.com/enthought/envisage.git
$ pip install git+https://github.com/enthought/traitsui.git
$ pip install git+https://github.com/enthought/pyface.git
$ pip install git+https://github.com/enthought/mayavi.git

Known Issues

mlab.axes() causes exception in Mayavi 4.5.0

When use mlab.axes, the following exception message is observed in terminal:

TypeError: SetInputData argument 1:method requires a vtkDataSet, a
vtkPolyDataNormals was provided. (in _wrap_call)

AttributeError: 'PolyDataNormals' object has no attribute 'bounds'

You can find fix on mayavi github page at #474 [https://github.com/enthought/mayavi/issues/474].

UnicodeDecodeError while trying to close mayavi

When you close mayavi window, you may saw the following error and the
window is not closed unless you kills it using processor manager.
The message may read:

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xff in position 3: invalid start byte

The issued is tracked on mayavi Github page at #576 [https://github.com/enthought/mayavi/issues/576].

The fix for the issue is merged to master branch on Feb 14, 2018.

Multi-Target Tracking

	Dynamic Models for Multi-target Tracking
	GM-based Constant Velocity Model
	State Space

	State Update

	State Error Estimation

	Measurement

	Measurement Error Estimation

	GM-based Constant Velocity Model with Track ID
	State Space

	State Update

	State Error Estimation

	Measurement

	Other Model Parameters for MTT
	Target Birth

	Target Persistence

	Target Detection

	Clutter Process

	Gaussian Mixture Approximation

	Appendix
	Derivation of Error Estimation

	Gaussian Component

	Gaussian-Mixture Probability Hypothesis Density Filter
	Predictor

	Corrector

	Appendix
	Kalman Update for Gaussian Components

	Gaussian Mixture Corrector Proof

	API
	Gaussian Component

	Tracking Models
	Constant Velocity Model Base Class

	Constant Velocity Model Base Class with Track ID

	Base Model for GM-PHD

	Constant Velocity Model for GM-PHD

Dynamic Models for Multi-target Tracking

Namespace pymrt.tracking.models includes multiple classes for commonly used
dynamic models. They serve as the basis of state transition modelling for
multi-target tracking algorithm.

GM-based Constant Velocity Model

pymrt.tracking.models.CVModel provides a base class for constant
velocity maneuvering object in n-dimensional space.

The model is composed of the following parts of information:

State Space

The state of an object maneuvering in a n-dimensional space with constant
velocity can be expressed as an array composed of its location in the space
and velocity at a given time.

\[x = [s_{d_1}, s_{d_2}, ..., s_{d_n}, v_{d_1}, v_{d_2}, ..., v_{d_n}]^T

\]

The state space where \(x\) is drawn from is usually
\(\mathbb{R}^{2n}\).

State Update

If the object is moving according to a constant velocity in the n-dimensional
space, then the new state (after time \(t\)) can be expressed as

\[x_{t+1} = [s_{d_1} + v_{d_1} t,
 s_{d_2} + v_{d_2} t, ...,
 s_{d_n} + v_{d_n} t, v_{d_1}, v_{d_2}, ..., v_{d_n}]^T

\]

In matrix format, we can rewrite it as

\[x_{t+1} = F \cdot x_{t}

\]

where

\[F = \left[
\begin{matrix}
 I_n

 Gaussian Component

Gaussian Component

pymrt.tracking.utils.GaussianComponent class implements a object
class for Gaussian Component used in Guassian Mixture propagation calculation.
Each Gaussian Component is defined with weight, mean vector, and covariant
matrix.
Methods in the class provides calculation for merging, and propagating
Gaussian mixtures.

The following shows the proper usage and test case in verifying those functions.

""" This file tests Gaussian Component Calculation
"""

import numpy as np
import scipy.stats
from pymrt.tracking.utils import GaussianComponent
from mayavi import mlab

def plot_2d_gm():
 """ This function plot two 2D Gaussian distribution density side by side
 centralized at (-500, 0) and (500, 0) for comparison.

 In this example, the Gaussian density has a covariance matrix of
 .. math::
 cov = \left[
 \begin{matrix}
 10000, 0
 0, 10000
 \end{matrix}
 \right]

 The peak of the density distribution is
 .. math::
 max(\mathcal{N}) = \frac{1}{\sqrt{2\pi 10000}} = 1.59\times 10^{-5}

 You can verify the value according to the plotted graph.
 """
 figure = mlab.figure('GMGaussian')
 X, Y = np.mgrid[-1000:1000:10, -500:500:10]
 Z_GM = np.zeros(X.shape, dtype=np.float)
 Z_PDF = np.zeros(X.shape, dtype=np.float)

 GM_mean = np.array([[-500], [0.]])
 PDF_mean = np.array([[500], [0.]])

 # Covariance matrix - with std to be 100 on both dimensions
 cov = np.eye(2) * 10000

 gm = GaussianComponent(n=2, weight=1., mean=GM_mean, cov=cov)
 mvnormal = scipy.stats.multivariate_normal(mean=PDF_mean.flatten(), cov=cov)

 for i in range(X.shape[0]):
 for j in range(X.shape[1]):
 eval_x = np.array([[X[i, j]], [Y[i, j]]])
 Z_GM[i, j] = gm.dmvnormcomp(eval_x)
 Z_PDF[i, j] = mvnormal.pdf(eval_x.flatten())

 print(Z_GM - Z_PDF)

 scale_factor = max(np.max(Z_GM), np.max(Z_PDF))
 # mlab.surf(X, Y, f, opacity=.3, color=(1., 0, 0))
 mlab.surf(X, Y, Z_GM * (2000 / scale_factor), opacity=.3, color=(1., 0, 0))
 mlab.surf(X, Y, Z_PDF * (2000 / scale_factor), opacity=.3, color=(0., 1., 0))

 mlab.outline(None, color=(.7, .7, .7), extent=[-1000, 1000, -500, 500,
 0, 2000])
 mlab.axes(None, color=(.7, .7, .7), extent=[-1000, 1000, -500, 500, 0, 2000],
 ranges=[-1000, 1000, -500, 500, 0, scale_factor], nb_labels=6)
 mlab.show()

if __name__ == '__main__':
 plot_2d_gm()

Function plot_2d_gm() plot two 2D Gaussian distribution density side by
side centralized at (-500, 0) and (500, 0) for comparison.

In this example, the Gaussian density has a covariance matrix of

\[cov = \left[
\begin{matrix}
10000

 Gaussian-Mixture Probability Hypothesis Density Filter

Gaussian-Mixture Probability Hypothesis Density Filter

GM-PHD, proposed by Vo et. al. in 2006 [Vo2006], is one of the close-form
implementation of PHD filter for multi-target tracking.

GM-PHD is developed with following assumptions:

	Target Independence: each target evolves and generates observations
independently of one another

	Poisson Clutter: clutter porcess is Poisson and independent of
target-originated measurements.

	Poisson RFS: the predicted multi-target RFS governed by
\(p_{k|k-1}\) is Poisson (See [Mahler2003]).

	Linear Gaussian Dynamic Model: each target follows a linear Gaussian
dynamic model represented by

\[f_{k|k-1} \left(x|\zeta\right) = \mathcal{N}(x; F_{k-1}\zeta, Q_{k-1})

\]

	Target Birth: the PHD of the target birth of RFS are gaussian mixtures
of the form

\[D_{\gamma, k}(x) = \sum_{j=1}^{J_{\gamma, k}} w_{\gamma, k}^{(j)}
\mathcal{N}(x; m_{\gamma, k}^{(j)}, P_{\gamma, k}^{(j)})

\]

Predictor

If the posterior PHD of multi-target RFS at time
\(k-1\) is represented in forms of Gaussian Mixtures:

\[D_{k-1}(x) = \sum_{j=1}^{J_{k-1}} w_{k-1}^{(j)}
\mathcal{N}(x; m_{k-1}^{(j)}, P_{k-1}^{(j)})

\]

The predicted intesity \(D_{k|k-1}\) at time \(k\) is composed of
three terms: target birth \(D_{\gamma, k}(x)\), target persistence
\(D_{S, k|k-1}(x)\) and target spawning \(D_{\beta, k|k-1}(x)\).

\[D_{k|k-1}(x) = D_{S, k|k-1}(x) + D_{\gamma,k}(x) + D_{\beta, k|k-1}(x)

\]

In the application of multi-resident tracking, there is no target spawning,
so term \(D_{\beta, k|k-1}(x)\) is ignored in this implementation.

The persistence term updates each existing Gaussian Components according to
Kalman update equation (for proof, see Kalman Update for Gaussian
Components).

\[D_{S, k|k-1}(x) = p_{S, k} \sum_{j=1}^{J_{k-1}} w_{k-1}^{(j)}
\mathcal{N}(x; m_{S,k|k-1}^{(j)}, P_{S,k|k-1}^{(j)})

\]

where

\[m_{S, k|k-1}^{(j)} = F_{k} m_{k-1}^{(j)}

\]

and

\[P_{S,k|k-1}^{(j)} = F_{k} P_{k-1}^{(j)} F_{k}^T + Q_{k}

\]

This calculation is implemented in
gmphd_predictor().

Corrector

Assume that the predicted intensity (i.e. the output of predictor) for time
\(k\) is a Gaussian mixture of the form

\[D_{k|k-1}(x) = \sum_{j=1}^{J_{k|k-1}} w_{k|k-1}^{(j)}
\mathcal{N}(x; m_{k|k-1}^{(j)}, P_{k|k-1}^{(j)})

\]

The posterior intensity is given by

\[D_{k}(x) = (1-p_{D, k}) D_{k|k-1}(x) + \sum_{z \in Z_k} D_{D, k}(x; z)

\]

\(p_{D, k}\) is the probability that the target will be observed.
The term \((1-p_{D,k}) D_{k|k-1}(x)\) represents the portion that is not
observed at time step \(k\) - and thus do not need to be corrected by the
set of measurement \(Z_k\) at time \(k\).

The term \(\sum_{z \in Z_k} D_{D, k}(x; z)\) calculated the posterior PHD
corrected according to the measurement set at current time step.

In the equation,

\[D_{D, k}(x;z) = \sum_{j=1}^{J_{k|k-1}} w_{k}^{(j)}(z)
\mathcal{N}(x; m_{k}^{(j)}(z), P_{k}^{(j)})

\]

The updated weight is

\[w_{k}^{(j)}(z) = \frac{
 p_{D, k} w_{k|k-1}^{(j)} q_k^{(j)}(z)
}{
 \kappa_k(z) + p_{D, k}
 \sum_{l=1}^{J_{k|k-1}} w_{k|k-1}^{(l)} q_k^{(l)}(z)
}

\]

where

\[\kappa_k(z) = \lambda_{c} c(z)

\]

\[q_k^{(j)}(z) = \mathcal{N}\left(z; H_k m_{k|k-1}^{(j)},
R_{k} + H_{k} P_{k|k-1}^{(j)} H_{k}^T \right)

\]

\[m_{k}^{(j)}(z) = m_{k|k-1}^{(j)} + K(z - H_k m_{k|k-1}^{(j)})

\]

\[P_{k}^{(j)}(z) = [I - K_{k}^{j}H_k] P_{k|k-1}^{(j)}

\]

\[K_{k}^{j} = P_{k|k-1}^{(j)} H_k^T (H_k P_{k|k-1}^{(j)}H_k^T + R_{k})^{-1}

\]

In the equation above, \(I\) stands for the identity matrix.

Appendix

Kalman Update for Gaussian Components

Assume that each target follows a linear Gaussian dynamic model, i.e.

\[f_{k|k-1} \left(x|\zeta\right) = \mathcal{N}(x; F_{k-1}\zeta, Q_{k-1})

\]

where \(\zeta\) is the mean state vector of the target at time \(k-1\),
\(F_{k-1}\) is the state linear multiplier of dynamic model,
\(Q_{k-1}\) is the covariance matrix of error estimation in dynamic model.

If the posterior intensity of a target is represented by a Gaussian Component

\[f_{k-1}(x) = w_{k-1}\mathcal{N}(x; m_{k-1}, P_{k-1})

\]

where \(m_{k-1}\) is the mean vector and \(P_{k-1}\) is the
covariance matrix.

According to the linear Gaussian dynamic model, at time \(k\), the
updated probability density of the target will be

\[f_{k}(x) = w_{k-1}\mathcal{N}(x; m_{k}, P_{k})

\]

where

\[m_{k} = F_{k-1}m_{k-1}

\]

and

\[P_{k} = Q_{k-1} + F_{k-1} P_{k-1} F_{k-1}^T

\]

This calculation is implemented by
kalman_update().

Exemple

A target is modeled by a dynamic model

\[x_{k+1} = F_{k} x_{k} + w_{k}

\]

where the error term \(w_{k}\) has a mean of zero and covariance of
\(Q_{k}\).

At time \(k\), random variable \(x_{k}\) follows Gaussian
distribution \(\mathcal{N}(x_{k}; m_{k}, P_{k})\).

The mean of variable \(x_{k+1}\) is

\[\begin{aligned}
E[x_{k+1}]

 API

API

Gaussian Component

	
class pymrt.tracking.utils.GaussianComponent(n, weight, mean, cov)

	Gaussian Mixture Component

A Gaussian mixture component is composed of weight (\(w\)), mean vector
(\(\mu\)), and covariance matrix (\(\Sigma\)).
A multivariate Gaussian distribution \(\mathcal{N}(\mu, \Sigma)\)
evaluated at position \(x\) is given by

\[f(x) = \frac{1}{\sqrt{(2\pi) ^ k \left| \Sigma \right|}}
e^{-\frac{1}{2} (x - \mu) ^ T \Sigma ^ {-1} (x - \mu)}

\]

A multivariate Gaussian Mixture Component, denoted
\(\mathcal{N}(w, \mu, \Sigma)\) is a equivalent to a multivariate
Gaussian distribution with a weight factor,
i.e. \(w \mathcal{N}(\mu, \Sigma)\).
As a result, a GM evaluated at position \(x\) is given by

\[f_{GM}(x) = w f(x)

\]

where \(f(x)\) is the density of a multivariate Gaussian distribution
evaluated at location \(x\).

	
n

	int [https://docs.python.org/3/library/functions.html#int] – Dimensionality of the space the Gaussian component is
evaluated on.

	
weight

	float [https://docs.python.org/3/library/functions.html#float] – Weight of this Gaussian Component.

	
mean

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] – Mean vector (column) \(\mu\) of shape
(n, 1).

	
cov

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] – Covariance matrix of shape (n, n).

	
dmvnorm(x)

	Density of multivariate normal distribution evaluated at location x

dmv_part1 calculates

\[\frac{1}{\sqrt{(2\pi) ^ k \left| \Sigma \right|}}
e^{-\frac{1}{2} (x - \mu) ^ T \Sigma ^ {-1} (x - \mu)}

\]

	
dmvnormcomp(x)

	Density of multivariate GM component evaluated at location x

	
kalman_update(F, Q)

	Update a GM Component based on a linear prediction model.

Assume each target follows a linear Gaussian dynamic model:

\[f_{k|k=1} (x|\eta) = N(x; F_{k-1}\eta, Q_{k-1})

\]

Tracking Models

Constant Velocity Model Base Class

	
class pymrt.tracking.models.CVModel(n)

	Constant Velocity Model

Assume that the target of interest is moving at a constant velocity in a
n-dimensional space. The location in the n-dimensional space is observable.
Thus the dimensionality of the measurement space is \(n\) and the
dimensionality of the state space is \(2n\).

	Parameters

	n (int [https://docs.python.org/3/library/functions.html#int]) – Dimensionality of space the target is moving in.

	
n

	int [https://docs.python.org/3/library/functions.html#int] – Dimensionality of the space the target is moving in.
It is the same as observation space in constant velocity model.

	
x_dim

	int [https://docs.python.org/3/library/functions.html#int] – Dimensionality of state space.

	
_t

	int [https://docs.python.org/3/library/functions.html#int] – Time intervals for each sample.

	
_F

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] – Dynamic model linear motion multiplier.

	
_G

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] – Dynamic model linea error multiplier.

	
w_generator

	RandomGenerator – Random generator for state update error estimation.

	
r_generator

	RandomGenerator – Random generator for measurement error estimation.

	
generate_new_state(x_prime, noise=True, noise_array=None)

	Generate new state based on previous state vector $x’$.

	Parameters

	
	x_prime (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – State vector of size
(self.x_dim,).

	noise (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the generated state includes
disturbance.

	noise_array (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – First order disturbance to the
target state. It needs to be a column vector of size \(n\).
If it is set to None, the disturbance is generated by
w_generator.

	Returns

	
	Next state vector of size

	(self.x_dim,).

	Return type

	x (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray])

	
generate_observation(x_prime, noise=True, noise_array=None)

	Generate Observation based on current state vector.

	Parameters

	
	x_prime (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – State vector of size
(self.x_dim,).

	noise (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the generated state includes
disturbance.

	noise_array (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – First order disturbance to the
target state. It needs to be a column vector of size \(n\).
If it is set to None, the disturbance is generated by
d_generator.

	Returns

	
	Measurement vector of size

	(self.z_dim,).

	Return type

	z (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray])

Constant Velocity Model Base Class with Track ID

	
class pymrt.tracking.models.CVIDModel(n)

	Constant Velocity Model with Track ID

Assume that the target of interest is moving at a constant velocity in a
n-dimensional space. The location in the n-dimensional space is observable.
However, in order to associate observation with a specific target,
a track_id field needs to be added to the state vector.
Thus the dimensionality of the measurement space is \(n\) and the
dimensionality of the state space is \(2n+1\)

	Parameters

	n (int [https://docs.python.org/3/library/functions.html#int]) – Dimensionality of space the target is moving in.

	
n

	int [https://docs.python.org/3/library/functions.html#int] – Dimensionality of the space the target is moving in.
It is the same as observation space in constant velocity model.

	
x_dim

	int [https://docs.python.org/3/library/functions.html#int] – Dimensionality of state space.

	
_t

	int [https://docs.python.org/3/library/functions.html#int] – Time intervals for each sample.

	
_F

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] – Dynamic model linear motion multiplier.

	
_G

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] – Dynamic model linea error multiplier.

	
generate_new_state(x_prime, noise=True, noise_array=None)

	Generate new state based on previous state vector $x’$.

	Parameters

	
	x_prime (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – State vector of size
(self.x_dim,).

	noise (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the generated state includes
disturbance.

	noise_array (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – First order disturbance to the
target state. It needs to be a column vector of size \(n\).
If it is set to None, the disturbance is generated by
w_generator.

	Returns

	
	Next state vector of size

	(self.x_dim,).

	Return type

	x (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray])

	
generate_observation(x_prime, noise=True, noise_array=None)

	Generate Observation based on current state vector.

	Parameters

	
	x_prime (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – State vector of size
(self.x_dim,).

	noise (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the generated state includes
disturbance.

	noise_array (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – First order disturbance to the
target state. It needs to be a column vector of size \(n\).
If it is set to None, the disturbance is generated by
r_generator.

	Returns

	
	Measurement vector of size

	(self.z_dim,).

	Return type

	z (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray])

Base Model for GM-PHD

	
class pymrt.tracking.models.GmPhdModel

	Defines the parameters needed for the model to be used with
Gaussian-Mixture Probability Hypothesis Density Multi-target Tracking
Filter.

	
birth

	list [https://docs.python.org/3/library/stdtypes.html#list] – List of GMs defining the birth probability
across the state space.

	
ps

	float [https://docs.python.org/3/library/functions.html#float] – Persistence probability (between 0 to 1)

	
pd

	float [https://docs.python.org/3/library/functions.html#float] – Detection probability (between 0 to 1)

	
lambda_c

	float [https://docs.python.org/3/library/functions.html#float] – Poisson distribution parameter for clutter
process (Assume it is a Poission Point Process).

	
gm_T

	float [https://docs.python.org/3/library/functions.html#float] – GM truncate threshold.

	
gm_U

	float [https://docs.python.org/3/library/functions.html#float] – GM merge threshold.

	
gm_Jmax

	int [https://docs.python.org/3/library/functions.html#int] – Max number of GM to track in calculation.

Constant Velocity Model for GM-PHD

	
class pymrt.tracking.models.GmPhdCvModel(n)

	Constant Velocity Model for Gaussian-Mixture Probability Hypothesis
Density Filter

 Reference

Reference

Multi-Target Tracking

	Mahler2003

	Mahler, Ronald PS.
Multitarget Bayes filtering via first-order multitarget moments. [http://ieeexplore.ieee.org/abstract/document/1261119] IEEE
Transactions on Aerospace and Electronic systems 39, no. 4 (2003):
1152-1178.

	Mahler2004

	Mahler, R.P., 2004.
“Statistics 101” for multisensor, multitarget data fusion [http://ieeexplore.ieee.org/abstract/document/1263231/]. IEEE Aerospace
and Electronic Systems Magazine, 19 (1), pp.53-64.

	Vo2006

	Vo, B.N. and Ma, W.K., 2006.
The Gaussian mixture probability hypothesis density filter. [http://ieeexplore.ieee.org/abstract/document/1710358] IEEE
Transactions on signal processing, 54(11), pp.4091-4104.

 Index

Index

 _
 | B
 | C
 | D
 | G
 | K
 | L
 | M
 | N
 | P
 | R
 | W
 | X

_

 	
 	_F (pymrt.tracking.models.CVIDModel attribute)

 	(pymrt.tracking.models.CVModel attribute)

 	_G (pymrt.tracking.models.CVIDModel attribute)

 	(pymrt.tracking.models.CVModel attribute)

 	
 	_t (pymrt.tracking.models.CVIDModel attribute)

 	(pymrt.tracking.models.CVModel attribute)

B

 	
 	birth (pymrt.tracking.models.GmPhdModel attribute)

C

 	
 	cov (pymrt.tracking.utils.GaussianComponent attribute)

 	
 	CVIDModel (class in pymrt.tracking.models)

 	CVModel (class in pymrt.tracking.models)

D

 	
 	dmvnorm() (pymrt.tracking.utils.GaussianComponent method)

 	
 	dmvnormcomp() (pymrt.tracking.utils.GaussianComponent method)

G

 	
 	GaussianComponent (class in pymrt.tracking.utils)

 	generate_new_state() (pymrt.tracking.models.CVIDModel method)

 	(pymrt.tracking.models.CVModel method)

 	generate_observation() (pymrt.tracking.models.CVIDModel method)

 	(pymrt.tracking.models.CVModel method)

 	
 	gm_Jmax (pymrt.tracking.models.GmPhdModel attribute)

 	gm_T (pymrt.tracking.models.GmPhdModel attribute)

 	gm_U (pymrt.tracking.models.GmPhdModel attribute)

 	GmPhdCvModel (class in pymrt.tracking.models)

 	GmPhdModel (class in pymrt.tracking.models)

K

 	
 	kalman_update() (pymrt.tracking.utils.GaussianComponent method)

L

 	
 	lambda_c (pymrt.tracking.models.GmPhdModel attribute)

M

 	
 	mean (pymrt.tracking.utils.GaussianComponent attribute)

N

 	
 	n (pymrt.tracking.models.CVIDModel attribute)

 	(pymrt.tracking.models.CVModel attribute)

 	(pymrt.tracking.utils.GaussianComponent attribute)

P

 	
 	pd (pymrt.tracking.models.GmPhdModel attribute)

 	
 	ps (pymrt.tracking.models.GmPhdModel attribute)

R

 	
 	r_generator (pymrt.tracking.models.CVModel attribute)

W

 	
 	w_generator (pymrt.tracking.models.CVModel attribute)

 	
 	weight (pymrt.tracking.utils.GaussianComponent attribute)

X

 	
 	x_dim (pymrt.tracking.models.CVIDModel attribute)

 	(pymrt.tracking.models.CVModel attribute)

_static/file.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Python Package for Multi-Resident Tracking

 		
 Python Environment Setup

 		
 Python 3.6 Environment

 		
 Windows Setup

 		
 Ubuntu 18.04 Setup

 		
 MacOS Setup

 		
 Setup Tensorflow

 		
 Setup Mayavi

 		
 Windows Setup

 		
 Ubuntu 18.04 Setup

 		
 MacOS Setup

 		
 Known Issues

 		
 mlab.axes() causes exception in Mayavi 4.5.0

 		
 UnicodeDecodeError while trying to close mayavi

 		
 Multi-Target Tracking

 		
 Dynamic Models for Multi-target Tracking

 		
 GM-based Constant Velocity Model

 		
 GM-based Constant Velocity Model with Track ID

 		
 Other Model Parameters for MTT

 		
 Appendix

 		
 Gaussian Component

 		
 Gaussian-Mixture Probability Hypothesis Density Filter

 		
 Predictor

 		
 Corrector

 		
 Appendix

 		