

Introduction

Pympler is a development tool to measure, monitor and analyze the
memory behavior of Python objects in a running Python application.

By pympling a Python application, detailed insight in the size and
the lifetime of Python objects can be obtained. Undesirable or
unexpected runtime behavior like memory bloat and other “pymples”
can easily be identified.

Pympler integrates three previously separate modules into a single,
comprehensive profiling tool. The asizeof module
provides basic size information for one or several Python objects,
module muppy is used for on-line monitoring of a Python
application and module Class Tracker provides
off-line analysis of the lifetime of selected Python objects.

A web profiling frontend exposes process statistics, garbage
visualisation and class tracker statistics.

Requirements

Pympler is written entirely in Python, with no dependencies to external
libraries. It integrates Bottle [http://bottlepy.org] and
Flot [http://www.flotcharts.org]. Pympler has been tested with
Python 2.7, 3.5, 3.6, 3.7, 3.8 and 3.9.

Pympler is platform independent and has been tested on various Linux
distributions (32bit and 64bit), Windows 7 and MacOS X.

Download

If you have pip installed, the easiest way to get Pympler is:

pip install pympler

Alternately, download Pympler releases from the Python Package Index [https://pypi.org/projects/Pympler] or check out the latest development
revision [https://github.com/pympler/pympler] with git. Please see the README
file for installation instructions.

Target Audience

Every Python developer interested in analyzing the memory consumption
of their Python program should find a suitable, readily usable
facility in Pympler.

Usage Examples

pympler.asizeof can be used to investigate how much memory certain Python
objects consume. In contrast to sys.getsizeof, asizeof sizes objects
recursively. You can use one of the asizeof functions to get
the size of these objects and all associated referents:

>>> from pympler import asizeof
>>> obj = [1, 2, (3, 4), 'text']
>>> asizeof.asizeof(obj)
176
>>> print(asizeof.asized(obj, detail=1).format())
[1, 2, (3, 4), 'text'] size=176 flat=48
 (3, 4) size=64 flat=32
 'text' size=32 flat=32
 1 size=16 flat=16
 2 size=16 flat=16

Memory leaks can be detected by using muppy. While the garbage
collector debug output can report circular references this does not easily
reveal where the leaks come from. Muppy can identify if objects are leaked out
of a scope between two reference points:

>>> from pympler import tracker
>>> tr = tracker.SummaryTracker()
>>> function_without_side_effects()
>>> tr.print_diff()
 types | # objects | total size
======= | =========== | ============
 dict | 1 | 280 B
 list | 1 | 192 B

Tracking the lifetime of objects of certain classes can be achieved with the
Class Tracker. This gives insight into instantiation
patterns and helps to understand how specific objects contribute to the memory
footprint over time:

>>> from pympler import classtracker
>>> tr = classtracker.ClassTracker()
>>> tr.track_class(Document)
>>> tr.create_snapshot()
>>> create_documents()
>>> tr.create_snapshot()
>>> tr.stats.print_summary()
 active 1.42 MB average pct
 Document 1000 195.38 KB 200 B 13%

History

Pympler was founded in August 2008 by Jean Brouwers, Ludwig Haehne,
and Robert Schuppenies with the goal of providing a complete and
stand-alone memory profiling solution for Python.

Quick Links

Download pympler: https://pypi.org/projects/Pympler

File a bug report: https://github.com/pympler/pympler/issues

Check out repository: https://github.com/pympler/pympler

Table of Content

	Sizing individual objects - A description of the asizeof module.

	Tracking class instances - A description of the ClassTracker facility.

	Identifying memory leaks - A description of the muppy modules.

	Tracking memory in Django - How to use the Django debug toolbar memory panel.

	Library - The library reference guide.

	Pympler Tutorials - Pympler tutorials and usage examples.

	Related Work - Other projects which deal which memory profiling in
Python are mentioned in the this section.

	Glossary - A few basic terms used throughout the documentation.

	Changes in Pympler

	Copyright - Last but not least ..

Also available are

	Index

	Module Index

	Search Page

	Sitemap

Sitemap

Below you can find a complete overview of all pages of this documentation.

	Requirements

	Download

	Target Audience

	Usage Examples

	History

	Sizing individual objects
	Introduction

	Asizer

	Public Functions

	Tracking class instances
	Introduction

	Usage

	Basic Functionality
	Instance Tracking

	Class Tracking

	Tracked Object Snapshot

	Print Statistics

	Advanced Functionality
	Per-referent Sizing

	Instantiation traces

	Background Monitoring

	Off-line Analysis

	HTML Statistics

	Limitations and Corner Cases
	Inheritance

	Shared Data

	Accuracy

	Morphing objects

	Identifying memory leaks
	The muppy module

	The summary module

	The tracker module

	The refbrowser module

	Tracking memory in Django
	Introduction

	Usage

	Known issues

	Library
	Modules
	pympler.asizeof
	Introduction

	Asizer

	Public Functions

	pympler.classtracker
	Classes

	pympler.classtracker_stats
	Classes

	pympler.garbagegraph
	Classes

	Functions

	pympler.muppy
	Functions

	pympler.process
	Classes

	pympler.refbrowser
	Classes

	pympler.refgraph
	Classes

	pympler.summary
	output representation

	functions

	pympler.tracker
	Classes

	pympler.web
	Functions

	Pympler Tutorials
	Table of Content
	Tutorial - Track Down Memory Leaks
	IDLE
	Preparations

	Task 1: Is there a leak?

	Task 2: What objects leak?

	Task 3: Where is the leak?

	Tutorial - Tracking Class Instances in SCons
	Installing hooks into SCons

	Test run

	Making sense of the data

	Optimization attempt

	Summary

	Related Work
	asizeof

	Heapmonitor

	Heapy

	Meliae

	muppy

	Python Memory Validator

	PySizer

	Support Tracking Low-Level Memory Usage in CPython

	Glossary

	Changelog
	0.9 - 2020-10-14
	Added

	Removed

	Fixed

	0.8 - 2019-11-12
	Added

	Removed

	Fixed

	0.7 - 2019-04-05
	Added

	Changed

	Fixed

	0.6 - 2018-09-01
	Added

	Changed

	Removed

	Fixed

	0.5 - 2017-03-23
	Added

	Changed

	Removed

	0.4.3 - 2016-03-31
	Added

	Fixed

	0.4.2 - 2015-07-26
	Fixed

	0.4.1 - 2015-04-15
	Changed

	0.4 - 2015-02-03
	Added

	Changed

	Removed

	Fixed

	0.3.1 - 2013-02-16

	0.3.0 - 2012-12-29

	0.2.2 - 2012-11-24

	0.2.1 - 2011-11-13

	0.2

	0.1

	Copyright
	asizeof license

 Pympler is a development tool to measure, monitor and analyze the
memory behavior of Python objects in a running Python application.

By pympling a Python application, detailed insight in the size and
the lifetime of Python objects can be obtained. Undesirable or
unexpected runtime behavior like memory bloat and other “pymples”
can easily be identified.

Pympler integrates three previously separate modules into a single,
comprehensive profiling tool. The asizeof module
provides basic size information for one or several Python objects,
module muppy is used for on-line monitoring of a Python
application and module Class Tracker provides
off-line analysis of the lifetime of selected Python objects.

A web profiling frontend exposes process statistics, garbage
visualisation and class tracker statistics.

Requirements

Pympler is written entirely in Python, with no dependencies to external
libraries. It integrates Bottle [http://bottlepy.org] and
Flot [http://www.flotcharts.org]. Pympler has been tested with
Python 2.7, 3.5, 3.6, 3.7, 3.8 and 3.9.

Pympler is platform independent and has been tested on various Linux
distributions (32bit and 64bit), Windows 7 and MacOS X.

Download

If you have pip installed, the easiest way to get Pympler is:

pip install pympler

Alternately, download Pympler releases from the Python Package Index [https://pypi.org/projects/Pympler] or check out the latest development
revision [https://github.com/pympler/pympler] with git. Please see the README
file for installation instructions.

Target Audience

Every Python developer interested in analyzing the memory consumption
of their Python program should find a suitable, readily usable
facility in Pympler.

Usage Examples

pympler.asizeof can be used to investigate how much memory certain Python
objects consume. In contrast to sys.getsizeof, asizeof sizes objects
recursively. You can use one of the asizeof functions to get
the size of these objects and all associated referents:

>>> from pympler import asizeof
>>> obj = [1, 2, (3, 4), 'text']
>>> asizeof.asizeof(obj)
176
>>> print(asizeof.asized(obj, detail=1).format())
[1, 2, (3, 4), 'text'] size=176 flat=48
 (3, 4) size=64 flat=32
 'text' size=32 flat=32
 1 size=16 flat=16
 2 size=16 flat=16

Memory leaks can be detected by using muppy. While the garbage
collector debug output can report circular references this does not easily
reveal where the leaks come from. Muppy can identify if objects are leaked out
of a scope between two reference points:

>>> from pympler import tracker
>>> tr = tracker.SummaryTracker()
>>> function_without_side_effects()
>>> tr.print_diff()
 types | # objects | total size
======= | =========== | ============
 dict | 1 | 280 B
 list | 1 | 192 B

Tracking the lifetime of objects of certain classes can be achieved with the
Class Tracker. This gives insight into instantiation
patterns and helps to understand how specific objects contribute to the memory
footprint over time:

>>> from pympler import classtracker
>>> tr = classtracker.ClassTracker()
>>> tr.track_class(Document)
>>> tr.create_snapshot()
>>> create_documents()
>>> tr.create_snapshot()
>>> tr.stats.print_summary()
 active 1.42 MB average pct
 Document 1000 195.38 KB 200 B 13%

History

Pympler was founded in August 2008 by Jean Brouwers, Ludwig Haehne,
and Robert Schuppenies with the goal of providing a complete and
stand-alone memory profiling solution for Python.

Sizing individual objects

Introduction

This module exposes 9 functions and 2 classes to obtain lengths and
sizes of Python objects (for Python 2.6 or later).

Earlier versions of this module supported Python versions down to
Python 2.2. If you are using Python 2.5 or older, please consider
downgrading Pympler to version 0.3.x.

Public Functions 1

Function asizeof calculates the combined (approximate) size
in bytes of one or several Python objects.

Function asizesof returns a tuple containing the (approximate)
size in bytes for each given Python object separately.

Function asized returns for each object an instance of class
Asized containing all the size information of the object and
a tuple with the referents 2.

Functions basicsize and itemsize return the basic-
respectively itemsize of the given object, both in bytes. For
objects as array.array, numpy.array, numpy.matrix,
etc. where the item size varies depending on the instance-specific
data type, function itemsize returns that item size.

Function flatsize returns the flat size of a Python object
in bytes defined as the basic size plus the item size times
the length of the given object.

Function leng returns the length of an object, like standard
function len but extended for several types. E.g. the leng
of a multi-precision int (or long) is the number of digits
4. The length of most mutable sequence objects includes
an estimate of the over-allocation and therefore, the leng value
may differ from the standard len result. For objects like
array.array, numpy.array, numpy.matrix, etc. function
leng returns the proper number of items.

Function refs returns (a generator for) the referents 2
of the given object.

Certain classes are known to be sub-classes of or to behave as
dict objects. Function adict can be used to register
other class objects to be treated like dict.

Public Classes 1

Class Asizer may be used to accumulate the results of several
asizeof or asizesof calls. After creating an Asizer
instance, use methods asizeof and asizesof as needed to
size any number of additional objects.

Call methods exclude_refs and/or exclude_types to exclude
references to respectively instances or types of certain objects.

Use one of the print_… methods to report the statistics.

An instance of class Asized is returned for each object sized
by the asized function or method.

Duplicate Objects

Any duplicate, given objects are sized only once and the size
is included in the accumulated total only once. But functions
asizesof and asized will return a size value respectively
an Asized instance for each given object, including duplicates.

Definitions 3

The length of an objects like dict, list, set,
str, tuple, etc. is defined as the number of items held
in or allocated by the object. Held items are references to
other objects, called the referents.

The size of an object is defined as the sum of the flat size
of the object plus the sizes of any referents 2. Referents
are visited recursively up to the specified detail level. However,
the size of objects referenced multiple times is included only once
in the total size.

The flat size of an object is defined as the basic size of the
object plus the item size times the number of allocated items,
references to referents. The flat size does include the size
for the references to the referents, but not the size of the
referents themselves.

The flat size returned by function flatsize equals the result
of function asizeof with options code=True, ignored=False,
limit=0 and option align set to the same value.

The accurate flat size for an object is obtained from function
sys.getsizeof() where available. Otherwise, the length and
size of sequence objects as dicts, lists, sets, etc.
is based on an estimate for the number of allocated items. As a
result, the reported length and size may differ substantially
from the actual length and size.

The basic and item size are obtained from the __basicsize__
respectively __itemsize__ attributes of the (type of the)
object. Where necessary (e.g. sequence objects), a zero
__itemsize__ is replaced by the size of a corresponding C type.

The overhead for Python’s garbage collector (GC) is included in
the basic size of (GC managed) objects as well as the space
needed for refcounts (used only in certain Python builds).

Optionally, size values can be aligned to any power-of-2 multiple.

Size of (byte)code

The (byte)code size of objects like classes, functions, methods,
modules, etc. can be included by setting option code=True.

Iterators are handled like sequences: iterated object(s) are sized
like referents 2, but only up to the specified level or
recursion limit (and only if function gc.get_referents()
returns the referent object of iterators).

Generators are sized as (byte)code only, but the generated
objects are never sized.

Old- and New-style Classes

All old- and new-style class, instance and type objects are
handled uniformly such that (a) instance objects are distinguished
from class objects and (b) instances of different old-style classes
can be dealt with separately.

Class and type objects are represented as <class* def>
respectively <type ... def> where the * indicates an old-style
class and the ... def suffix marks the definition object.
Instances of classes are shown as <class module.name*> without
the ... def suffix. The * after the name indicates an
instance of an old-style class.

Ignored Objects

To avoid excessive sizes, several object types are ignored 3
by default, e.g. built-in functions, built-in types and classes
5, function globals and module referents. However, any
instances thereof and module objects will be sized when passed as
given objects. Ignored object types are included unless option
ignored is set accordingly.

In addition, many __...__ attributes of callable objects are
ignored 3, except crucial ones, e.g. class attributes __dict__,
__doc__, __name__ and __slots__. For more details, see
the type-specific _..._refs() and _len_...() functions below.

Footnotes

	1(1,2)

	The functions and classes in this module are not thread-safe.

	2(1,2,3,4)

	The referents of an object are the objects referenced by
that object. For example, the referents of a list are the
objects held in the list, the referents of a dict are
the key and value objects in the dict, etc.

	3(1,2,3)

	These definitions and other assumptions are rather arbitrary
and may need corrections or adjustments.

	4

	See Python source file .../Include/longinterp.h for the
C typedef of digit used in multi-precision int (or long)
objects. The C sizeof(digit) in bytes can be obtained in
Python from the int (or long) __itemsize__ attribute.
Function leng determines the number of digits of an int
(or long) object.

	5

	Type``s and ``class``es are considered built-in if the
``__module__ of the type or class is listed in the private
_builtin_modules.

Asizer

	
class pympler.asizeof.Asized(size, flat, refs=(), name=None)

	Stores the results of an asized object in the following
4 attributes:

size – total size of the object (including referents)

flat – flat size of the object (in bytes)

name – name or repr of the object

refs – tuple containing an Asized instance for each referent

	
class pympler.asizeof.Asizer(**opts)

	Sizer state and options to accumulate sizes.

	
asized(*objs, **opts)

	Size each object and return an Asized instance with
size information and referents up to the given detail
level (and with modified options, see method set).

If only one object is given, the return value is the
Asized instance for that object. The Asized size
of duplicate and ignored objects will be zero.

	
asizeof(*objs, **opts)

	Return the combined size of the given objects
(with modified options, see method set).

	
asizesof(*objs, **opts)

	Return the individual sizes of the given objects
(with modified options, see method set).

The size of duplicate and ignored objects will be zero.

	
exclude_refs(*objs)

	Exclude any references to the specified objects from sizing.

While any references to the given objects are excluded, the
objects will be sized if specified as positional arguments
in subsequent calls to methods asizeof and asizesof.

	
exclude_types(*objs)

	Exclude the specified object instances and types from sizing.

All instances and types of the given objects are excluded,
even objects specified as positional arguments in subsequent
calls to methods asizeof and asizesof.

	
print_profiles(w=0, cutoff=0, **print3options)

	Print the profiles above cutoff percentage.

The available options and defaults are:

w=0 – indentation for each line

cutoff=0 – minimum percentage printed

print3options – some keyword arguments, like Python 3+ print

	
print_stats(objs=(), opts={}, sized=(), sizes=(), stats=3, **print3options)

	Prints the statistics.

The available options and defaults are:

w=0 – indentation for each line

objs=() – optional, list of objects

opts={} – optional, dict of options used

sized=() – optional, tuple of Asized instances returned

sizes=() – optional, tuple of sizes returned

stats=3 – print stats, see function asizeof

print3options – some keyword arguments, like Python 3+ print

	
print_summary(w=0, objs=(), **print3options)

	Print the summary statistics.

The available options and defaults are:

w=0 – indentation for each line

objs=() – optional, list of objects

print3options – some keyword arguments, like Python 3+ print

	
print_typedefs(w=0, **print3options)

	Print the types and dict tables.

The available options and defaults are:

w=0 – indentation for each line

print3options – some keyword arguments, like Python 3+ print

	
reset(above=1024, align=8, clip=80, code=False, cutoff=10, derive=False, detail=0, frames=False, ignored=True, infer=False, limit=100, stats=0, stream=None, **extra)

	Reset sizing options, state, etc. to defaults.

The available options and default values are:

above=0 – threshold for largest objects stats

align=8 – size alignment

code=False – incl. (byte)code size

cutoff=10 – limit large objects or profiles stats

derive=False – derive from super type

detail=0 – Asized refs level

frames=False – ignore frame objects

ignored=True – ignore certain types

infer=False – try to infer types

limit=100 – recursion limit

stats=0 – print statistics, see function asizeof

stream=None – output stream for printing

See function asizeof for a description of the options.

	
set(above=None, align=None, code=None, cutoff=None, frames=None, detail=None, limit=None, stats=None)

	Set some sizing options. See also reset.

The available options are:

above – threshold for largest objects stats

align – size alignment

code – incl. (byte)code size

cutoff – limit large objects or profiles stats

detail – Asized refs level

frames – size or ignore frame objects

limit – recursion limit

stats – print statistics, see function asizeof

Any options not set remain unchanged from the previous setting.

Public Functions

	
pympler.asizeof.adict(*classes)

	Install one or more classes to be handled as dict.

	
pympler.asizeof.asized(*objs, **opts)

	Return a tuple containing an Asized instance for each
object passed as positional argument.

The available options and defaults are:

above=0 – threshold for largest objects stats

align=8 – size alignment

code=False – incl. (byte)code size

cutoff=10 – limit large objects or profiles stats

derive=False – derive from super type

detail=0 – Asized refs level

frames=False – ignore stack frame objects

ignored=True – ignore certain types

infer=False – try to infer types

limit=100 – recursion limit

stats=0 – print statistics

If only one object is given, the return value is the Asized
instance for that object. Otherwise, the length of the returned
tuple matches the number of given objects.

The Asized size of duplicate and ignored objects will be zero.

Set detail to the desired referents level and limit to the
maximum recursion depth.

See function asizeof for descriptions of the other options.

	
pympler.asizeof.asizeof(*objs, **opts)

	Return the combined size (in bytes) of all objects passed
as positional arguments.

The available options and defaults are:

above=0 – threshold for largest objects stats

align=8 – size alignment

clip=80 – clip repr() strings

code=False – incl. (byte)code size

cutoff=10 – limit large objects or profiles stats

derive=False – derive from super type

frames=False – ignore stack frame objects

ignored=True – ignore certain types

infer=False – try to infer types

limit=100 – recursion limit

stats=0 – print statistics

Set align to a power of 2 to align sizes. Any value less
than 2 avoids size alignment.

If all is True and if no positional arguments are supplied.
size all current gc objects, including module, global and stack
frame objects.

A positive clip value truncates all repr() strings to at
most clip characters.

The (byte)code size of callable objects like functions,
methods, classes, etc. is included only if code is True.

If derive is True, new types are handled like an existing
(super) type provided there is one and only of those.

By default certain base types like object, super, etc. are
ignored. Set ignored to False to include those.

If infer is True, new types are inferred from attributes
(only implemented for dict types on callable attributes
as get, has_key, items, keys and values).

Set limit to a positive value to accumulate the sizes of
the referents of each object, recursively up to the limit.
Using limit=0 returns the sum of the flat sizes of the
given objects. High limit values may cause runtime errors
and miss objects for sizing.

A positive value for stats prints up to 9 statistics, (1)
a summary of the number of objects sized and seen and a list
of the largests objects with size over above bytes, (2) a
simple profile of the sized objects by type and (3+) up to 6
tables showing the static, dynamic, derived, ignored, inferred
and dict types used, found respectively installed.
The fractional part of the stats value (x 100) is the number
of largest objects shown for (stats*1.+) or the cutoff
percentage for simple profiles for (*stats*=2.+). For example,
*stats=1.10 shows the summary and the 10 largest objects,
also the default.

See this module documentation for the definition of flat size.

	
pympler.asizeof.asizesof(*objs, **opts)

	Return a tuple containing the size (in bytes) of all objects
passed as positional arguments.

The available options and defaults are:

above=1024 – threshold for largest objects stats

align=8 – size alignment

clip=80 – clip repr() strings

code=False – incl. (byte)code size

cutoff=10 – limit large objects or profiles stats

derive=False – derive from super type

frames=False – ignore stack frame objects

ignored=True – ignore certain types

infer=False – try to infer types

limit=100 – recursion limit

stats=0 – print statistics

See function asizeof for a description of the options.

The length of the returned tuple equals the number of given
objects.

The size of duplicate and ignored objects will be zero.

	
pympler.asizeof.basicsize(obj, **opts)

	Return the basic size of an object (in bytes).

The available options and defaults are:

derive=False – derive type from super type

infer=False – try to infer types

save=False – save the object’s type definition if new

See this module documentation for the definition of basic size.

	
pympler.asizeof.flatsize(obj, align=0, **opts)

	Return the flat size of an object (in bytes), optionally aligned
to the given power of 2.

See function basicsize for a description of other available options.

See this module documentation for the definition of flat size.

	
pympler.asizeof.itemsize(obj, **opts)

	Return the item size of an object (in bytes).

See function basicsize for a description of the available options.

See this module documentation for the definition of item size.

	
pympler.asizeof.leng(obj, **opts)

	Return the length of an object (in items).

See function basicsize for a description of the available options.

	
pympler.asizeof.refs(obj, **opts)

	Return (a generator for) specific referents of an object.

See function basicsize for a description of the available options.

Tracking class instances

Introduction

The ClassTracker is a facility delivering insight into the memory
distribution of a Python program. It can introspect memory consumption of
certain classes and objects. Facilities are provided to track and size
individual objects or all instances of certain classes. Tracked objects are
sized recursively to provide an overview of memory distribution between the
different tracked objects.

Usage

Let’s start with a simple example. Suppose you have this module:

>>> class Employee:
... pass
...
>>> class Factory:
... pass
...
>>> def create_factory():
... factory = Factory()
... factory.name = "Assembly Line Unlimited"
... factory.employees = []
... return factory
...
>>> def populate_factory(factory):
... for x in xrange(1000):
... worker = Employee()
... worker.assigned = factory.name
... factory.employees.append(worker)
...
>>> factory = create_factory()
>>> populate_factory(factory)

The basic tools of the ClassTracker are tracking objects or classes, taking
snapshots, and printing or dumping statistics. The first step is to decide what
to track. Then spots of interest for snapshot creation have to be identified.
Finally, the gathered data can be printed or saved:

>>> factory = create_factory()
>>> from pympler.classtracker import ClassTracker
>>> tracker = ClassTracker()
>>> tracker.track_object(factory)
>>> tracker.track_class(Employee)
>>> tracker.create_snapshot()
>>> populate_factory(factory)
>>> tracker.create_snapshot()
>>> tracker.stats.print_summary()
---- SUMMARY --
 active 1.22 MB average pct
 Factory 1 344 B 344 B 0%
 __main__.Employee 0 0 B 0 B 0%
 active 1.42 MB average pct
 Factory 1 4.75 KB 4.75 KB 0%
 __main__.Employee 1000 195.38 KB 200 B 13%

Basic Functionality

Instance Tracking

The purpose of instance tracking is to observe the size and lifetime of an
object of interest. Creation and destruction timestamps are recorded and the
size of the object is sampled when taking a snapshot.

To track the size of an individual object:

from pympler.classtracker import ClassTracker
tracker = ClassTracker()
obj = MyClass()
tracker.track_object(obj)

Class Tracking

Most of the time it’s cumbersome to track individual instances
manually. Instead, all instances of a class can automatically be tracked with
track_class:

tracker.track_class(MyClass)

All instances of MyClass (or a class that inherits from MyClass) created
hereafter are tracked.

Tracked Object Snapshot

Tracking alone will not reveal the size of an object. The idea of the
ClassTracker is to sample the sizes of all tracked objects at configurable
instants in time. The create_snapshot function computes the size of all
tracked objects:

tracker.create_snapshot('Before juggling with tracked objects')
...
tracker.create_snapshot('Juggling aftermath')

With this information, the distribution of the allocated memory can be
apportioned to tracked classes and instances.

Print Statistics

The gathered data can be investigated with print_stats. This prints all
available data. To filter and limit the output the more powerful “Off-line
analysis” API can be used instead.

Advanced Functionality

Per-referent Sizing

It may not be enough to know the total memory consumption of an object.
Detailed per-referent statistics can be gathered recursively up to a given
resolution level. Resolution level 1 means that all direct referents of an
object will be sized. Level 2 also include the referents of the direct
referents, and so forth. Note that the member variables of an instance are
typically stored in a dictionary and are therefore second order referents.

tracker.track_object(obj, resolution_level=2)

The resolution level can be changed if the object is already tracked:

tracker.track_change(obj, resolution_level=2)

The new setting will become effective for the next snapshot. This can help to
raise the level of detail for a specific instance of a tracked class without
logging all the class’ instances with a high verbosity level. Nevertheless, the
resolution level can also be set for all instances of a class:

tracker.track_class(MyClass, resolution_level=1)

Warning

Please note the per-referent sizing is very memory and computationally
intensive. The recorded meta-data must be stored for each referent of a tracked
object which might easily quadruplicate the memory footprint of the build.
Handle with care and don’t use too high resolution levels, especially if set
via track_class.

Instantiation traces

Sometimes it is not trivial to observe where an object was instantiated. The
ClassTracker can record the instantiation stack trace for later evaluation.

tracker.track_class(MyClass, trace=1)

This only works with tracked classes, and not with individual objects.

Background Monitoring

The ClassTracker can be configured to take periodic snapshots automatically. The
following example will take 10 snapshots a second (approximately) until the
program has exited or the periodic snapshots are stopped with
stop_periodic_snapshots. Background monitoring also works if no object is
tracked. In this mode, the ClassTracker will only record the total virtual
memory associated with the program. This can be useful in combination with
background monitoring to detect memory usage which is transient or not
associated with any tracked object.

tracker.start_periodic_snapshots(interval=0.1)

Warning

Take care if you use automatic snapshots with tracked objects. The sizing
of individual objects might be inconsistent when memory is allocated or freed
while the snapshot is being taken.

Off-line Analysis

The more data is gathered by the ClassTracker the more noise is produced on the
console. The acquired ClassTracker log data can also be saved to a file for
off-line analysis:

tracker.stats.dump_stats('profile.dat')

The Stats class of the ClassTracker provides means to evaluate the collected
data. The API is inspired by the Stats class [http://docs.python.org/lib/profile-stats.html] of the Python profiler. It is
possible to sort the data based on user preferences, filter by class and limit
the output noise to a manageable magnitude.

The following example reads the dumped data and prints the ten largest Node
objects to the standard output:

from pympler.classtracker_stats import ConsoleStats

stats = ConsoleStats()
stats.load_stats('profile.dat')
stats.sort_stats('size').print_stats(limit=10, clsname='Node')

HTML Statistics

The ClassTracker data can also be emitted in HTML format together with a
number of charts (needs python-matplotlib). HTML statistics can be emitted
using the HtmlStats class:

from pympler.classtracker_stats import HtmlStats
HtmlStats(tracker=tracker).create_html('profile.html')

However, you can also reprocess a previously generated dump:

from pympler.classtracker_stats import HtmlStats

stats = HtmlStats(filename='profile.dat')
stats.create_html('profile.html')

Limitations and Corner Cases

Inheritance

Class tracking allows to observe multiple classes that might have an
inheritance relationship. An object is only tracked once. The tracking
parameters of the most specialized tracked class control the actual tracking of
an instance.

Shared Data

Data shared between multiple tracked objects won’t lead to overestimations.
Shared data will be assigned to the first (evaluated) tracked object it is
referenced from, but is only counted once. Tracked objects are evaluated in the
order they were announced to the ClassTracker. This should make the assignment
deterministic from one run to the next, but has two known problems. If the
ClassTracker is used concurrently from multiple threads, the announcement order
will likely change and may lead to random assignment of shared data to
different objects. Shared data might also be assigned to different objects
during its lifetime, see the following example:

class A():
 pass

from pympler.classtracker import ClassTracker
tracker = ClassTracker()

a = A()
tracker.track_object(a)
b = A()
tracker.track_object(b)
b.content = range(100000)
tracker.create_snapshot('#1')
a.notmine = b.content
tracker.create_snapshot('#2')

In the snapshot #1, b’s size will include the size of the large list. Then
the list is shared with a. The snapshot #2 will assign the list’s footprint
to a because it was registered before b.

If a tracked object A is referenced from another tracked object B,
A’s size is not added to B’s size, regardless of the order in which they
are sized.

Accuracy

ClassTracker uses the sizer module to gather size informations. Asizeof makes
assumptions about the memory footprint of the various data types. As it is
implemented in pure Python, there is no way to know how the actual Python
implementation allocates data and lays it out in memory. Thus, the size numbers
are not really accurate and there will always be a divergence between the
virtual size of the Python process as reported by the OS and the sizes asizeof
estimates.

Most recent C/Python versions contain a facility to report accurate size
informations [http://bugs.python.org/issue2898] of Python objects. If available,
asizeof uses it to improve the accuracy.

Morphing objects

Some programs instate the (anti-)pattern of changing an instance’ class at runtime, for
example to morph abstract objects into specific derivations during runtime. The
pattern looks like the following in the code:

obj.__class__ = OtherClass

If the instance which is morphed is already tracked, the instance will continue
to be tracked by the ClassTracker. If the target class is tracked but the
instance is not, the instance will only be tracked if the constructor of the
target class is called as part of the morphing process. The object will not be
re-registered to the new class in the tracked object index. However, the new
class is stored in the representation of the object as soon as the object is
sized.

Identifying memory leaks

Muppy tries to help developers to identity memory leaks of Python
applications. It enables the tracking of memory usage during runtime and the
identification of objects which are leaking. Additionally, tools are provided
which allow to locate the source of not released objects.

Muppy is (yet another) Memory Usage Profiler for Python. The focus of this
toolset is laid on the identification of memory leaks. Let’s have a look what
you can do with muppy.

The muppy module

Muppy allows you to get hold of all objects,

>>> from pympler import muppy
>>> all_objects = muppy.get_objects()
>>> len(all_objects) # doctest: +SKIP
19700

or filter out certain types of objects.

>>> import types
>>> my_types = muppy.filter(all_objects, Type=types.ClassType)
>>> len(my_types) # doctest: +SKIP
72
>>> for t in my_types:
... print t
... # doctest: +SKIP
UserDict.IterableUserDict
UserDict.UserDict
UserDict.DictMixin
os._Environ
sre_parse.Tokenizer
sre_parse.SubPattern
re.Scanner
string._multimap
distutils.log.Log
encodings.utf_8.StreamWriter
encodings.utf_8.StreamReader
codecs.StreamWriter
codecs.StreamReader
codecs.StreamReaderWriter
codecs.Codec
codecs.StreamRecoder
tokenize.Untokenizer
inspect.BlockFinder
sre_parse.Pattern
. . .

This result, for example, tells us that the number of lists remained the same,
but the memory allocated by lists has increased by 8 bytes. The correct increase
for a LP64 system (see 64-Bit_Programming_Models [http://www.unix.org/version2/whatsnew/lp64_wp.html]).

The summary module

You can create summaries

>>> from pympler import summary
>>> sum1 = summary.summarize(all_objects)
>>> summary.print_(sum1) # doctest: +SKIP
 types | # objects | total size
============================ | =========== | ============
 dict | 546 | 953.30 KB
 str | 8270 | 616.46 KB
 list | 127 | 529.44 KB
 tuple | 5021 | 410.62 KB
 code | 1378 | 161.48 KB
 type | 70 | 61.80 KB
 wrapper_descriptor | 508 | 39.69 KB
 builtin_function_or_method | 515 | 36.21 KB
 int | 900 | 21.09 KB
 method_descriptor | 269 | 18.91 KB
 weakref | 177 | 15.21 KB
 <class 'abc.ABCMeta | 16 | 14.12 KB
 set | 48 | 10.88 KB
 function (__init__) | 81 | 9.49 KB
 member_descriptor | 131 | 9.21 KB

and compare them with other summaries.

>>> sum2 = summary.summarize(muppy.get_objects())
>>> diff = summary.get_diff(sum1, sum2)
>>> summary.print_(diff) # doctest: +SKIP
 types | # objects | total size
=============================== | =========== | ============
 list | 1097 | 1.07 MB
 str | 1105 | 68.21 KB
 dict | 14 | 21.08 KB
 wrapper_descriptor | 215 | 16.80 KB
 int | 121 | 2.84 KB
 tuple | 30 | 2.02 KB
 member_descriptor | 25 | 1.76 KB
 weakref | 14 | 1.20 KB
 getset_descriptor | 15 | 1.05 KB
 method_descriptor | 12 | 864 B
 frame (codename: get_objects) | 1 | 488 B
 builtin_function_or_method | 6 | 432 B
 frame (codename: <module>) | 1 | 424 B
 classmethod_descriptor | 3 | 216 B
 code | 1 | 120 B

The tracker module

Of course we don’t have to do all these steps manually, instead we can use
muppy’s tracker.

>>> from pympler import tracker
>>> tr = tracker.SummaryTracker()
>>> tr.print_diff() # doctest: +SKIP
 types | # objects | total size
====================================== | =========== | ============
 list | 1095 | 160.78 KB
 str | 1093 | 66.33 KB
 int | 120 | 2.81 KB
 dict | 3 | 840 B
 frame (codename: create_summary) | 1 | 560 B
 frame (codename: print_diff) | 1 | 480 B
 frame (codename: diff) | 1 | 464 B
 function (store_info) | 1 | 120 B
 cell | 2 | 112 B

A tracker object creates a summary (that is a summary which it will remember)
on initialization. Now whenever you call tracker.print_diff(), a new summary of
the current state is created, compared to the previous summary and printed to
the console. As you can see here, quite a few objects got in between these two
invocations.
But if you don’t do anything, nothing will change.

>>> tr.print_diff() # doctest: +SKIP
 types | # objects | total size
======= | =========== | ============

Now check out this code snippet

>>> i = 1
>>> l = [1,2,3,4]
>>> d = {}
>>> tr.print_diff() # doctest: +SKIP
 types | # objects | total size
======= | =========== | ============
 dict | 1 | 280 B
 list | 1 | 192 B

As you can see both, the new list and the new dict appear in the summary, but
not the 4 integers used. Why is that? Because they existed already before they
were used here, that is some other part in the Python interpreter code makes
already use of them. Thus, they are not new.

The refbrowser module

In case some objects are leaking and you don’t know where they are still
referenced, you can use the referrers browser.
At first let’s create a root object which we then reference from a tuple and a
list.

>>> from pympler import refbrowser
>>> root = "some root object"
>>> root_ref1 = [root]
>>> root_ref2 = (root,)

>>> def output_function(o):
... return str(type(o))
...
>>> cb = refbrowser.ConsoleBrowser(root, maxdepth=2, str_func=output_function)

Then we create a ConsoleBrowser, which will give us a referrers tree starting at
root, printing to a maximum depth of 2, and uses str_func to represent
objects. Now it’s time to see where we are at.

>>> cb.print_tree() # doctest: +SKIP
<type 'str'>-+-<type 'dict'>-+-<type 'list'>
 | +-<type 'list'>
 | +-<type 'list'>
 |
 +-<type 'dict'>-+-<type 'module'>
 | +-<type 'list'>
 | +-<type 'frame'>
 | +-<type 'function'>
 | +-<type 'list'>
 | +-<type 'frame'>
 | +-<type 'list'>
 | +-<type 'function'>
 | +-<type 'frame'>
 |
 +-<type 'list'>--<type 'dict'>
 +-<type 'tuple'>--<type 'dict'>
 +-<type 'dict'>--<class 'muppy.refbrowser.ConsoleBrowser'>

What we see is that the root object is referenced by the tuple and the list, as
well as by three dictionaries. These dictionaries belong to the environment,
e.g. the ConsoleBrowser we just started and the current execution context.

This console browsing is of course kind of inconvenient. Much better would be an
InteractiveBrowser. Let’s see what we got.

>>> from pympler import refbrowser
>>> ib = refbrowser.InteractiveBrowser(root)
>>> ib.main()

[image: _images/muppy_guibrowser.png]
Now you can click through all referrers of the root object.

Tracking memory in Django

Introduction

Pympler includes a memory profile panel for Django that integrates with the
Django Debug Toolbar [https://github.com/jazzband/django-debug-toolbar]. It
shows process memory information and model instances for the current request.

Usage

Pympler adds a memory panel as a third party addon – it’s not included in the
Django Debug Toolbar. It can be added by overriding the DEBUG_TOOLBAR_PANELS
setting in the Django project settings:

DEBUG_TOOLBAR_PANELS = (
 'debug_toolbar.panels.timer.TimerDebugPanel',
 'pympler.panels.MemoryPanel',
)

Pympler also needs to be added to the INSTALLED_APPS in the Django settings:

INSTALLED_APPS = INSTALLED_APPS + ('debug_toolbar', 'pympler')

Known issues

Pympler doesn’t correctly handle tracking calls from concurrent threads. In
order to get accurate instance counts and sizes, it’s recommended to only use
single-threaded web servers for memory profiling, e.g.:

django-admin runserver --nothreading

Expose a memory-profiling panel to the Django Debug toolbar.

Shows process memory information (virtual size, resident set size) and model
instances for the current request.

Requires Django and Django Debug toolbar:

https://github.com/jazzband/django-debug-toolbar

Pympler adds a memory panel as a third party addon (not included in the
django-debug-toolbar). It can be added by overriding the DEBUG_TOOLBAR_PANELS
setting in the Django project settings:

DEBUG_TOOLBAR_PANELS = (
 'debug_toolbar.panels.timer.TimerDebugPanel',
 'pympler.panels.MemoryPanel',
)

Pympler also needs to be added to the INSTALLED_APPS in the Django settings:

INSTALLED_APPS = INSTALLED_APPS + ('debug_toolbar', 'pympler')

Library

Some functions of the library work on the entire object set of your running
Python application. Expect some time-intensive computations.

Modules

	pympler.asizeof

	pympler.classtracker

	pympler.classtracker_stats

	pympler.garbagegraph

	pympler.muppy

	pympler.process

	pympler.refbrowser

	pympler.refgraph

	pympler.summary

	pympler.tracker

	pympler.web

pympler.asizeof

Introduction

This module exposes 9 functions and 2 classes to obtain lengths and
sizes of Python objects (for Python 2.6 or later).

Earlier versions of this module supported Python versions down to
Python 2.2. If you are using Python 2.5 or older, please consider
downgrading Pympler to version 0.3.x.

Public Functions 1

Function asizeof calculates the combined (approximate) size
in bytes of one or several Python objects.

Function asizesof returns a tuple containing the (approximate)
size in bytes for each given Python object separately.

Function asized returns for each object an instance of class
Asized containing all the size information of the object and
a tuple with the referents 2.

Functions basicsize and itemsize return the basic-
respectively itemsize of the given object, both in bytes. For
objects as array.array, numpy.array, numpy.matrix,
etc. where the item size varies depending on the instance-specific
data type, function itemsize returns that item size.

Function flatsize returns the flat size of a Python object
in bytes defined as the basic size plus the item size times
the length of the given object.

Function leng returns the length of an object, like standard
function len but extended for several types. E.g. the leng
of a multi-precision int (or long) is the number of digits
4. The length of most mutable sequence objects includes
an estimate of the over-allocation and therefore, the leng value
may differ from the standard len result. For objects like
array.array, numpy.array, numpy.matrix, etc. function
leng returns the proper number of items.

Function refs returns (a generator for) the referents 2
of the given object.

Certain classes are known to be sub-classes of or to behave as
dict objects. Function adict can be used to register
other class objects to be treated like dict.

Public Classes 1

Class Asizer may be used to accumulate the results of several
asizeof or asizesof calls. After creating an Asizer
instance, use methods asizeof and asizesof as needed to
size any number of additional objects.

Call methods exclude_refs and/or exclude_types to exclude
references to respectively instances or types of certain objects.

Use one of the print_… methods to report the statistics.

An instance of class Asized is returned for each object sized
by the asized function or method.

Duplicate Objects

Any duplicate, given objects are sized only once and the size
is included in the accumulated total only once. But functions
asizesof and asized will return a size value respectively
an Asized instance for each given object, including duplicates.

Definitions 3

The length of an objects like dict, list, set,
str, tuple, etc. is defined as the number of items held
in or allocated by the object. Held items are references to
other objects, called the referents.

The size of an object is defined as the sum of the flat size
of the object plus the sizes of any referents 2. Referents
are visited recursively up to the specified detail level. However,
the size of objects referenced multiple times is included only once
in the total size.

The flat size of an object is defined as the basic size of the
object plus the item size times the number of allocated items,
references to referents. The flat size does include the size
for the references to the referents, but not the size of the
referents themselves.

The flat size returned by function flatsize equals the result
of function asizeof with options code=True, ignored=False,
limit=0 and option align set to the same value.

The accurate flat size for an object is obtained from function
sys.getsizeof() where available. Otherwise, the length and
size of sequence objects as dicts, lists, sets, etc.
is based on an estimate for the number of allocated items. As a
result, the reported length and size may differ substantially
from the actual length and size.

The basic and item size are obtained from the __basicsize__
respectively __itemsize__ attributes of the (type of the)
object. Where necessary (e.g. sequence objects), a zero
__itemsize__ is replaced by the size of a corresponding C type.

The overhead for Python’s garbage collector (GC) is included in
the basic size of (GC managed) objects as well as the space
needed for refcounts (used only in certain Python builds).

Optionally, size values can be aligned to any power-of-2 multiple.

Size of (byte)code

The (byte)code size of objects like classes, functions, methods,
modules, etc. can be included by setting option code=True.

Iterators are handled like sequences: iterated object(s) are sized
like referents 2, but only up to the specified level or
recursion limit (and only if function gc.get_referents()
returns the referent object of iterators).

Generators are sized as (byte)code only, but the generated
objects are never sized.

Old- and New-style Classes

All old- and new-style class, instance and type objects are
handled uniformly such that (a) instance objects are distinguished
from class objects and (b) instances of different old-style classes
can be dealt with separately.

Class and type objects are represented as <class* def>
respectively <type ... def> where the * indicates an old-style
class and the ... def suffix marks the definition object.
Instances of classes are shown as <class module.name*> without
the ... def suffix. The * after the name indicates an
instance of an old-style class.

Ignored Objects

To avoid excessive sizes, several object types are ignored 3
by default, e.g. built-in functions, built-in types and classes
5, function globals and module referents. However, any
instances thereof and module objects will be sized when passed as
given objects. Ignored object types are included unless option
ignored is set accordingly.

In addition, many __...__ attributes of callable objects are
ignored 3, except crucial ones, e.g. class attributes __dict__,
__doc__, __name__ and __slots__. For more details, see
the type-specific _..._refs() and _len_...() functions below.

Footnotes

	1(1,2)

	The functions and classes in this module are not thread-safe.

	2(1,2,3,4)

	The referents of an object are the objects referenced by
that object. For example, the referents of a list are the
objects held in the list, the referents of a dict are
the key and value objects in the dict, etc.

	3(1,2,3)

	These definitions and other assumptions are rather arbitrary
and may need corrections or adjustments.

	4

	See Python source file .../Include/longinterp.h for the
C typedef of digit used in multi-precision int (or long)
objects. The C sizeof(digit) in bytes can be obtained in
Python from the int (or long) __itemsize__ attribute.
Function leng determines the number of digits of an int
(or long) object.

	5

	Type``s and ``class``es are considered built-in if the
``__module__ of the type or class is listed in the private
_builtin_modules.

Asizer

	
class pympler.asizeof.Asized(size, flat, refs=(), name=None)

	Stores the results of an asized object in the following
4 attributes:

size – total size of the object (including referents)

flat – flat size of the object (in bytes)

name – name or repr of the object

refs – tuple containing an Asized instance for each referent

	
class pympler.asizeof.Asizer(**opts)

	Sizer state and options to accumulate sizes.

	
asized(*objs, **opts)

	Size each object and return an Asized instance with
size information and referents up to the given detail
level (and with modified options, see method set).

If only one object is given, the return value is the
Asized instance for that object. The Asized size
of duplicate and ignored objects will be zero.

	
asizeof(*objs, **opts)

	Return the combined size of the given objects
(with modified options, see method set).

	
asizesof(*objs, **opts)

	Return the individual sizes of the given objects
(with modified options, see method set).

The size of duplicate and ignored objects will be zero.

	
exclude_refs(*objs)

	Exclude any references to the specified objects from sizing.

While any references to the given objects are excluded, the
objects will be sized if specified as positional arguments
in subsequent calls to methods asizeof and asizesof.

	
exclude_types(*objs)

	Exclude the specified object instances and types from sizing.

All instances and types of the given objects are excluded,
even objects specified as positional arguments in subsequent
calls to methods asizeof and asizesof.

	
print_profiles(w=0, cutoff=0, **print3options)

	Print the profiles above cutoff percentage.

The available options and defaults are:

w=0 – indentation for each line

cutoff=0 – minimum percentage printed

print3options – some keyword arguments, like Python 3+ print

	
print_stats(objs=(), opts={}, sized=(), sizes=(), stats=3, **print3options)

	Prints the statistics.

The available options and defaults are:

w=0 – indentation for each line

objs=() – optional, list of objects

opts={} – optional, dict of options used

sized=() – optional, tuple of Asized instances returned

sizes=() – optional, tuple of sizes returned

stats=3 – print stats, see function asizeof

print3options – some keyword arguments, like Python 3+ print

	
print_summary(w=0, objs=(), **print3options)

	Print the summary statistics.

The available options and defaults are:

w=0 – indentation for each line

objs=() – optional, list of objects

print3options – some keyword arguments, like Python 3+ print

	
print_typedefs(w=0, **print3options)

	Print the types and dict tables.

The available options and defaults are:

w=0 – indentation for each line

print3options – some keyword arguments, like Python 3+ print

	
set(above=None, align=None, code=None, cutoff=None, frames=None, detail=None, limit=None, stats=None)

	Set some sizing options. See also reset.

The available options are:

above – threshold for largest objects stats

align – size alignment

code – incl. (byte)code size

cutoff – limit large objects or profiles stats

detail – Asized refs level

frames – size or ignore frame objects

limit – recursion limit

stats – print statistics, see function asizeof

Any options not set remain unchanged from the previous setting.

	
reset(above=1024, align=8, clip=80, code=False, cutoff=10, derive=False, detail=0, frames=False, ignored=True, infer=False, limit=100, stats=0, stream=None, **extra)

	Reset sizing options, state, etc. to defaults.

The available options and default values are:

above=0 – threshold for largest objects stats

align=8 – size alignment

code=False – incl. (byte)code size

cutoff=10 – limit large objects or profiles stats

derive=False – derive from super type

detail=0 – Asized refs level

frames=False – ignore frame objects

ignored=True – ignore certain types

infer=False – try to infer types

limit=100 – recursion limit

stats=0 – print statistics, see function asizeof

stream=None – output stream for printing

See function asizeof for a description of the options.

Public Functions

	
pympler.asizeof.adict(*classes)

	Install one or more classes to be handled as dict.

	
pympler.asizeof.asized(*objs, **opts)

	Return a tuple containing an Asized instance for each
object passed as positional argument.

The available options and defaults are:

above=0 – threshold for largest objects stats

align=8 – size alignment

code=False – incl. (byte)code size

cutoff=10 – limit large objects or profiles stats

derive=False – derive from super type

detail=0 – Asized refs level

frames=False – ignore stack frame objects

ignored=True – ignore certain types

infer=False – try to infer types

limit=100 – recursion limit

stats=0 – print statistics

If only one object is given, the return value is the Asized
instance for that object. Otherwise, the length of the returned
tuple matches the number of given objects.

The Asized size of duplicate and ignored objects will be zero.

Set detail to the desired referents level and limit to the
maximum recursion depth.

See function asizeof for descriptions of the other options.

	
pympler.asizeof.asizeof(*objs, **opts)

	Return the combined size (in bytes) of all objects passed
as positional arguments.

The available options and defaults are:

above=0 – threshold for largest objects stats

align=8 – size alignment

clip=80 – clip repr() strings

code=False – incl. (byte)code size

cutoff=10 – limit large objects or profiles stats

derive=False – derive from super type

frames=False – ignore stack frame objects

ignored=True – ignore certain types

infer=False – try to infer types

limit=100 – recursion limit

stats=0 – print statistics

Set align to a power of 2 to align sizes. Any value less
than 2 avoids size alignment.

If all is True and if no positional arguments are supplied.
size all current gc objects, including module, global and stack
frame objects.

A positive clip value truncates all repr() strings to at
most clip characters.

The (byte)code size of callable objects like functions,
methods, classes, etc. is included only if code is True.

If derive is True, new types are handled like an existing
(super) type provided there is one and only of those.

By default certain base types like object, super, etc. are
ignored. Set ignored to False to include those.

If infer is True, new types are inferred from attributes
(only implemented for dict types on callable attributes
as get, has_key, items, keys and values).

Set limit to a positive value to accumulate the sizes of
the referents of each object, recursively up to the limit.
Using limit=0 returns the sum of the flat sizes of the
given objects. High limit values may cause runtime errors
and miss objects for sizing.

A positive value for stats prints up to 9 statistics, (1)
a summary of the number of objects sized and seen and a list
of the largests objects with size over above bytes, (2) a
simple profile of the sized objects by type and (3+) up to 6
tables showing the static, dynamic, derived, ignored, inferred
and dict types used, found respectively installed.
The fractional part of the stats value (x 100) is the number
of largest objects shown for (stats*1.+) or the cutoff
percentage for simple profiles for (*stats*=2.+). For example,
*stats=1.10 shows the summary and the 10 largest objects,
also the default.

See this module documentation for the definition of flat size.

	
pympler.asizeof.asizesof(*objs, **opts)

	Return a tuple containing the size (in bytes) of all objects
passed as positional arguments.

The available options and defaults are:

above=1024 – threshold for largest objects stats

align=8 – size alignment

clip=80 – clip repr() strings

code=False – incl. (byte)code size

cutoff=10 – limit large objects or profiles stats

derive=False – derive from super type

frames=False – ignore stack frame objects

ignored=True – ignore certain types

infer=False – try to infer types

limit=100 – recursion limit

stats=0 – print statistics

See function asizeof for a description of the options.

The length of the returned tuple equals the number of given
objects.

The size of duplicate and ignored objects will be zero.

	
pympler.asizeof.basicsize(obj, **opts)

	Return the basic size of an object (in bytes).

The available options and defaults are:

derive=False – derive type from super type

infer=False – try to infer types

save=False – save the object’s type definition if new

See this module documentation for the definition of basic size.

	
pympler.asizeof.flatsize(obj, align=0, **opts)

	Return the flat size of an object (in bytes), optionally aligned
to the given power of 2.

See function basicsize for a description of other available options.

See this module documentation for the definition of flat size.

	
pympler.asizeof.itemsize(obj, **opts)

	Return the item size of an object (in bytes).

See function basicsize for a description of the available options.

See this module documentation for the definition of item size.

	
pympler.asizeof.leng(obj, **opts)

	Return the length of an object (in items).

See function basicsize for a description of the available options.

	
pympler.asizeof.refs(obj, **opts)

	Return (a generator for) specific referents of an object.

See function basicsize for a description of the available options.

pympler.classtracker

The ClassTracker is a facility delivering insight into the memory
distribution of a Python program. It can introspect memory consumption of
certain classes and objects. Facilities are provided to track and size
individual objects or all instances of certain classes. Tracked objects are
sized recursively to provide an overview of memory distribution between the
different tracked objects.

Classes

	
class pympler.classtracker.ClassTracker(stream=None)

	
	
clear()

	Clear all gathered data and detach from all tracked objects/classes.

	
create_snapshot(description='', compute_total=False)

	Collect current per instance statistics and saves total amount of
memory associated with the Python process.

If compute_total is True, the total consumption of all objects
known to asizeof is computed. The latter might be very slow if many
objects are mapped into memory at the time the snapshot is taken.
Therefore, compute_total is set to False by default.

The overhead of the ClassTracker structure is also computed.

Snapshots can be taken asynchronously. The function is protected with a
lock to prevent race conditions.

	
detach_all()

	Detach from all tracked classes and objects.
Restore the original constructors and cleanse the tracking lists.

	
detach_all_classes()

	Detach from all tracked classes.

	
detach_class(cls)

	Stop tracking class ‘cls’. Any new objects of that type are not
tracked anymore. Existing objects are still tracked.

	
start_periodic_snapshots(interval=1.0)

	Start a thread which takes snapshots periodically. The interval
specifies the time in seconds the thread waits between taking
snapshots. The thread is started as a daemon allowing the program to
exit. If periodic snapshots are already active, the interval is
updated.

	
stop_periodic_snapshots()

	Post a stop signal to the thread that takes the periodic snapshots. The
function waits for the thread to terminate which can take some time
depending on the configured interval.

	
track_class(cls, name=None, resolution_level=0, keep=False, trace=False)

	Track all objects of the class cls. Objects of that type that already
exist are not tracked. If track_class is called for a class already
tracked, the tracking parameters are modified. Instantiation traces can
be generated by setting trace to True.
A constructor is injected to begin instance tracking on creation
of the object. The constructor calls track_object internally.

	Parameters

	
	cls – class to be tracked, may be an old-style or a new-style
class

	name – reference the class by a name, default is the
concatenation of module and class name

	resolution_level – The recursion depth up to which referents are
sized individually. Resolution level 0 (default) treats the object
as an opaque entity, 1 sizes all direct referents individually, 2
also sizes the referents of the referents and so forth.

	keep – Prevent the object’s deletion by keeping a (strong)
reference to the object.

	trace – Save instantiation stack trace for each instance

	
track_object(instance, name=None, resolution_level=0, keep=False, trace=False)

	Track object ‘instance’ and sample size and lifetime information. Not
all objects can be tracked; trackable objects are class instances and
other objects that can be weakly referenced. When an object cannot be
tracked, a TypeError is raised.

	Parameters

	
	resolution_level – The recursion depth up to which referents are
sized individually. Resolution level 0 (default) treats the object
as an opaque entity, 1 sizes all direct referents individually, 2
also sizes the referents of the referents and so forth.

	keep – Prevent the object’s deletion by keeping a (strong)
reference to the object.

pympler.classtracker_stats

Provide saving, loading and presenting gathered ClassTracker statistics.

Classes

	
class pympler.classtracker_stats.Stats(tracker=None, filename=None, stream=None)

	Presents the memory statistics gathered by a ClassTracker based on user
preferences.

	
__init__(tracker=None, filename=None, stream=None)

	Initialize the data log structures either from a ClassTracker
instance (argument tracker) or a previously dumped file (argument
filename).

	Parameters

	
	tracker – ClassTracker instance

	filename – filename of previously dumped statistics

	stream – where to print statistics, defaults to sys.stdout

	
dump_stats(fdump, close=True)

	Dump the logged data to a file.
The argument file can be either a filename or an open file object
that requires write access. close controls if the file is closed
before leaving this method (the default behaviour).

	
load_stats(fdump)

	Load the data from a dump file.
The argument fdump can be either a filename or an open file object
that requires read access.

	
reverse_order()

	Reverse the order of the tracked instance index self.sorted.

	
sort_stats(*args)

	Sort the tracked objects according to the supplied criteria. The
argument is a string identifying the basis of a sort (example: ‘size’
or ‘classname’). When more than one key is provided, then additional
keys are used as secondary criteria when there is equality in all keys
selected before them. For example, sort_stats('name', 'size') will
sort all the entries according to their class name, and resolve all
ties (identical class names) by sorting by size. The criteria are
fields in the tracked object instances. Results are stored in the
self.sorted list which is used by Stats.print_stats() and other
methods. The fields available for sorting are:

	‘classname’

	the name with which the class was registered

	‘name’

	the classname

	‘birth’

	creation timestamp

	‘death’

	destruction timestamp

	‘size’

	the maximum measured size of the object

	‘tsize’

	the measured size during the largest snapshot

	‘repr’

	string representation of the object

Note that sorts on size are in descending order (placing most memory
consuming items first), whereas name, repr, and creation time searches
are in ascending order (alphabetical).

The function returns self to allow calling functions on the result:

stats.sort_stats('size').reverse_order().print_stats()

	
class pympler.classtracker_stats.ConsoleStats(tracker=None, filename=None, stream=None)

	Presentation layer for Stats to be used in text-based consoles.

	
__init__(tracker=None, filename=None, stream=None)

	Initialize the data log structures either from a ClassTracker
instance (argument tracker) or a previously dumped file (argument
filename).

	Parameters

	
	tracker – ClassTracker instance

	filename – filename of previously dumped statistics

	stream – where to print statistics, defaults to sys.stdout

	
print_stats(clsname=None, limit=1.0)

	Write tracked objects to stdout. The output can be filtered and
pruned. Only objects are printed whose classname contain the substring
supplied by the clsname argument. The output can be pruned by
passing a limit value.

	Parameters

	
	clsname – Only print objects whose classname contain the given
substring.

	limit – If limit is a float smaller than one, only the supplied
percentage of the total tracked data is printed. If limit is
bigger than one, this number of tracked objects are printed.
Tracked objects are first filtered, and then pruned (if specified).

	
print_summary()

	Print per-class summary for each snapshot.

	
class pympler.classtracker_stats.HtmlStats(tracker=None, filename=None, stream=None)

	Output the ClassTracker statistics as HTML pages and graphs.

	
__init__(tracker=None, filename=None, stream=None)

	Initialize the data log structures either from a ClassTracker
instance (argument tracker) or a previously dumped file (argument
filename).

	Parameters

	
	tracker – ClassTracker instance

	filename – filename of previously dumped statistics

	stream – where to print statistics, defaults to sys.stdout

	
create_html(fname, title='ClassTracker Statistics')

	Create HTML page fname and additional files in a directory derived
from fname.

pympler.garbagegraph

Garbage occurs if objects refer too each other in a circular fashion. Such
reference cycles cannot be freed automatically and must be collected by the
garbage collector. While it is sometimes hard to avoid creating reference
cycles, preventing such cycles saves garbage collection time and limits the
lifetime of objects. Moreover, some objects cannot be collected by the garbage
collector.

Reference cycles can be visualized with the help of
graphviz [http://www.graphviz.org].

Classes

	
class pympler.garbagegraph.GarbageGraph(reduce=False, collectable=True)

	The GarbageGraph is a ReferenceGraph that illustrates the objects
building reference cycles. The garbage collector is switched to debug mode
(all identified garbage is stored in gc.garbage) and the garbage
collector is invoked. The collected objects are then illustrated in a
directed graph.

Large graphs can be reduced to the actual cycles by passing reduce=True
to the constructor.

It is recommended to disable the garbage collector when using the
GarbageGraph.

>>> from pympler.garbagegraph import GarbageGraph, start_debug_garbage
>>> start_debug_garbage()
>>> l = []
>>> l.append(l)
>>> del l
>>> gb = GarbageGraph()
>>> gb.render('garbage.eps')
True

	
__init__(reduce=False, collectable=True)

	Initialize the GarbageGraph with the objects identified by the garbage
collector. If collectable is true, every reference cycle is recorded.
Otherwise only uncollectable objects are reported.

	
render(filename, cmd='dot', format='ps', unflatten=False)

	Render the graph to filename using graphviz. The graphviz invocation
command may be overridden by specifying cmd. The format may be any
specifier recognized by the graph renderer (‘-Txxx’ command). The
graph can be preprocessed by the unflatten tool if the unflatten
parameter is True. If there are no objects to illustrate, the method
does not invoke graphviz and returns False. If the renderer returns
successfully (return code 0), True is returned.

An OSError is raised if the graphviz tool cannot be found.

	
split()

	Split the graph into sub-graphs. Only connected objects belong to the
same graph. split yields copies of the Graph object. Shallow copies
are used that only replicate the meta-information, but share the same
object list self.objects.

>>> from pympler.refgraph import ReferenceGraph
>>> a = 42
>>> b = 'spam'
>>> c = {a: b}
>>> t = (1,2,3)
>>> rg = ReferenceGraph([a,b,c,t])
>>> for subgraph in rg.split():
... print (subgraph.index)
0
1

	
write_graph(filename)

	Write raw graph data which can be post-processed using graphviz.

	
print_stats(stream=None)

	Log annotated garbage objects to console or file.

	Parameters

	stream – open file, uses sys.stdout if not given

Functions

	
pympler.garbagegraph.start_debug_garbage()

	Turn off garbage collector to analyze collectable reference cycles.

	
pympler.garbagegraph.end_debug_garbage()

	Turn garbage collection on and disable debug output.

pympler.muppy

Functions

	
pympler.muppy.get_objects(remove_dups=True, include_frames=False)

	Return a list of all known objects excluding frame objects.

If (outer) frame objects shall be included, pass include_frames=True. In
order to prevent building reference cycles, the current frame object (of
the caller of get_objects) is ignored. This will not prevent creating
reference cycles if the object list is passed up the call-stack. Therefore,
frame objects are not included by default.

Keyword arguments:
remove_dups – if True, all duplicate objects will be removed.
include_frames – if True, includes frame objects.

	
pympler.muppy.get_size(objects)

	Compute the total size of all elements in objects.

	
pympler.muppy.get_diff(left, right)

	Get the difference of both lists.

The result will be a dict with this form {‘+’: [], ‘-‘: []}.
Items listed in ‘+’ exist only in the right list,
items listed in ‘-‘ exist only in the left list.

	
pympler.muppy.sort(objects)

	Sort objects by size in bytes.

	
pympler.muppy.filter(objects, Type=None, min=-1, max=-1)

	Filter objects.

The filter can be by type, minimum size, and/or maximum size.

Keyword arguments:
Type – object type to filter by
min – minimum object size
max – maximum object size

	
pympler.muppy.get_referents(object, level=1)

	Get all referents of an object up to a certain level.

The referents will not be returned in a specific order and
will not contain duplicate objects. Duplicate objects will be removed.

Keyword arguments:
level – level of indirection to which referents considered.

This function is recursive.

pympler.process

This module queries process memory allocation metrics from the operating
system. It provides a platform independent layer to get the amount of virtual
and physical memory allocated to the Python process.

Different mechanisms are implemented: Either the process stat file is read
(Linux), the ps command is executed (BSD/OSX/Solaris) or the resource module
is queried (Unix fallback). On Windows try to use the win32 module if
available. If all fails, return 0 for each attribute.

Windows without the win32 module is not supported.

>>> from pympler.process import ProcessMemoryInfo
>>> pmi = ProcessMemoryInfo()
>>> print ("Virtual size [Byte]: " + str(pmi.vsz)) # doctest: +ELLIPSIS
Virtual size [Byte]: ...

Classes

	
class pympler.process._ProcessMemoryInfo

	Stores information about various process-level memory metrics. The
virtual size is stored in attribute vsz, the physical memory allocated to
the process in rss, and the number of (major) pagefaults in pagefaults.
On Linux, data_segment, code_segment, shared_segment and
stack_segment contain the number of Bytes allocated for the respective
segments. This is an abstract base class which needs to be overridden by
operating system specific implementations. This is done when importing the
module.

	
update()

	Refresh the information using platform instruments. Returns true if
this operation yields useful values on the current platform.

	
pympler.process.is_available()

	Convenience function to check if the current platform is supported by this
module.

pympler.refbrowser

Tree-like exploration of object referrers.

This module provides a base implementation for tree-like referrers browsing.
The two non-interactive classes ConsoleBrowser and FileBrowser output a tree
to the console or a file. One graphical user interface for referrers browsing
is provided as well. Further types can be subclassed.

All types share a similar initialisation. That is, you provide a root object
and may specify further settings such as the initial depth of the tree or an
output function.
Afterwards you can print the tree which will be arranged based on your previous
settings.

The interactive browser is based on a TreeWidget implemented in IDLE. It is
available only if you have Tcl/Tk installed. If you try to instantiate the
interactive browser without having Tkinter installed, an ImportError will be
raised.

Classes

	
class pympler.refbrowser.RefBrowser(rootobject, maxdepth=3, str_func=<function _repr>, repeat=True, stream=None)

	Base class to other RefBrowser implementations.

This base class provides means to extract a tree from a given root object
and holds information on already known objects (to avoid repetition
if requested).

	
get_tree()

	Get a tree of referrers of the root object.

	
class pympler.refbrowser.ConsoleBrowser(*args, **kwargs)

	RefBrowser that prints to the console (stdout).

	
print_tree(tree=None)

	Print referrers tree to console.

keyword arguments
tree – if not None, the passed tree will be printed. Otherwise it is
based on the rootobject.

	
class pympler.refbrowser.FileBrowser(rootobject, maxdepth=3, str_func=<function _repr>, repeat=True, stream=None)

	RefBrowser implementation which prints the tree to a file.

	
print_tree(filename, tree=None)

	Print referrers tree to file (in text format).

keyword arguments
tree – if not None, the passed tree will be printed.

	
class pympler.refbrowser.InteractiveBrowser(rootobject, maxdepth=3, str_func=<function gui_default_str_function>, repeat=True)

	Interactive referrers browser.

The interactive browser is based on a TreeWidget implemented in IDLE. It is
available only if you have Tcl/Tk installed. If you try to instantiate the
interactive browser without having Tkinter installed, an ImportError will
be raised.

	
main(standalone=False)

	Create interactive browser window.

keyword arguments
standalone – Set to true, if the browser is not attached to other
windows

pympler.refgraph

This module exposes utilities to illustrate objects and their references as
(directed) graphs. The current implementation requires ‘graphviz’ to be
installed.

Classes

	
class pympler.refgraph.ReferenceGraph(objects, reduce=False)

	The ReferenceGraph illustrates the references between a collection of
objects by rendering a directed graph. That requires that ‘graphviz’ is
installed.

>>> from pympler.refgraph import ReferenceGraph
>>> a = 42
>>> b = 'spam'
>>> c = {a: b}
>>> gb = ReferenceGraph([a,b,c])
>>> gb.render('spam.eps')
True

	
__init__(objects, reduce=False)

	Initialize the ReferenceGraph with a collection of objects.

	
render(filename, cmd='dot', format='ps', unflatten=False)

	Render the graph to filename using graphviz. The graphviz invocation
command may be overridden by specifying cmd. The format may be any
specifier recognized by the graph renderer (‘-Txxx’ command). The
graph can be preprocessed by the unflatten tool if the unflatten
parameter is True. If there are no objects to illustrate, the method
does not invoke graphviz and returns False. If the renderer returns
successfully (return code 0), True is returned.

An OSError is raised if the graphviz tool cannot be found.

	
split()

	Split the graph into sub-graphs. Only connected objects belong to the
same graph. split yields copies of the Graph object. Shallow copies
are used that only replicate the meta-information, but share the same
object list self.objects.

>>> from pympler.refgraph import ReferenceGraph
>>> a = 42
>>> b = 'spam'
>>> c = {a: b}
>>> t = (1,2,3)
>>> rg = ReferenceGraph([a,b,c,t])
>>> for subgraph in rg.split():
... print (subgraph.index)
0
1

	
write_graph(filename)

	Write raw graph data which can be post-processed using graphviz.

pympler.summary

A collection of functions to summarize object information.

This module provides several function which will help you to analyze object
information which was gathered. Often it is sufficient to work with aggregated
data instead of handling the entire set of existing objects. For example can a
memory leak identified simple based on the number and size of existing objects.

A summary contains information about objects in a table-like manner.
Technically, it is a list of lists. Each of these lists represents a row,
whereas the first column reflects the object type, the second column the number
of objects, and the third column the size of all these objects. This allows a
simple table-like output like the following:

	types

	# objects

	total size

	<type ‘dict’>

	2

	560

	<type ‘str’>

	3

	126

	<type ‘int’>

	4

	96

	<type ‘long’>

	2

	66

	<type ‘list’>

	1

	40

Another advantage of summaries is that they influence the system you analyze
only to a minimum. Working with references to existing objects will keep these
objects alive. Most of the times this is no desired behavior (as it will have
an impact on the observations). Using summaries reduces this effect greatly.

output representation

The output representation of types is defined in summary.representations.
Every type defined in this dictionary will be represented as specified. Each
definition has a list of different representations. The later a representation
appears in this list, the higher its verbosity level. From types which are not
defined in summary.representations the default str() representation will be
used.

Per default, summaries will use the verbosity level 1 for any encountered type.
The reason is that several computations are done with summaries and rows have
to remain comparable. Therefore information which reflect an objects state,
e.g. the current line number of a frame, should not be included. You may add
more detailed information at higher verbosity levels than 1.

functions

	
pympler.summary.summarize(objects)

	Summarize an objects list.

	Return a list of lists, whereas each row consists of::

	[str(type), number of objects of this type, total size of these objects].

No guarantee regarding the order is given.

	
pympler.summary.get_diff(left, right)

	Get the difference of two summaries.

Subtracts the values of the right summary from the values of the left
summary.
If similar rows appear on both sides, the are included in the summary with
0 for number of elements and total size.
If the number of elements of a row of the diff is 0, but the total size is
not, it means that objects likely have changed, but not there number, thus
resulting in a changed size.

	
pympler.summary.print_(rows, limit=15, sort='size', order='descending')

	Print the rows as a summary.

Keyword arguments:
limit – the maximum number of elements to be listed
sort – sort elements by ‘size’, ‘type’, or ‘#’
order – sort ‘ascending’ or ‘descending’

pympler.tracker

The tracker module allows you to track changes in the memory usage over
time.

Using the SummaryTracker, you can create summaries and compare them
with each other. Stored summaries can be ignored during comparison,
avoiding the observer effect.

The ObjectTracker allows to monitor object creation. You create objects from
one time and compare with objects from an earlier time.

Classes

	
class pympler.tracker.SummaryTracker(ignore_self=True)

	Helper class to track changes between two summaries taken.

Detailed information on single objects will be lost, e.g. object size or
object id. But often summaries are sufficient to monitor the memory usage
over the lifetime of an application.

On initialisation, a first summary is taken. Every time diff is called,
a new summary will be created. Thus, a diff between the new and the last
summary can be extracted.

Be aware that filtering out previous summaries is time-intensive. You
should therefore restrict yourself to the number of summaries you really
need.

	
diff(summary1=None, summary2=None)

	Compute diff between to summaries.

If no summary is provided, the diff from the last to the current
summary is used. If summary1 is provided the diff from summary1
to the current summary is used. If summary1 and summary2 are
provided, the diff between these two is used.

	
print_diff(summary1=None, summary2=None)

	Compute diff between to summaries and print it.

If no summary is provided, the diff from the last to the current
summary is used. If summary1 is provided the diff from summary1
to the current summary is used. If summary1 and summary2 are
provided, the diff between these two is used.

	
store_summary(key)

	Store a current summary in self.summaries.

	
class pympler.tracker.ObjectTracker

	Helper class to track changes in the set of existing objects.

Each time you invoke a diff with this tracker, the objects which existed
during the last invocation are compared with the objects which exist during
the current invocation.

Please note that in order to do so, strong references to all objects will
be stored. This means that none of these objects can be garbage collected.
A use case for the ObjectTracker is the monitoring of a state which should
be stable, but you see new objects being created nevertheless. With the
ObjectTracker you can identify these new objects.

	
get_diff(ignore=())

	Get the diff to the last time the state of objects was measured.

keyword arguments
ignore – list of objects to ignore

	
print_diff(ignore=())

	Print the diff to the last time the state of objects was measured.

keyword arguments
ignore – list of objects to ignore

pympler.web

This module provides a web-based memory profiling interface. The Pympler web
frontend exposes process information, tracker statistics, and garbage graphs.
The web frontend uses Bottle [http://bottlepy.org], a lightweight Python
web framework. Bottle is packaged with Pympler.

The web server can be invoked almost as easily as setting a breakpoint using
pdb:

from pympler.web import start_profiler
start_profiler()

Calling start_profiler suspends the current thread and executes the Pympler
web server, exposing profiling data and various facilities of the Pympler
library via a graphic interface.

Functions

	
pympler.web.start_profiler(host='localhost', port=8090, tracker=None, stats=None, debug=False, **kwargs)

	Start the web server to show profiling data. The function suspends the
Python application (the current thread) until the web server is stopped.

The only way to stop the server is to signal the running thread, e.g. press
Ctrl+C in the console. If this isn’t feasible for your application use
start_in_background instead.

During the execution of the web server, profiling data is (lazily) cached
to improve performance. For example, garbage graphs are rendered when the
garbage profiling data is requested and are simply retransmitted upon later
requests.

The web server can display profiling data from previously taken snapshots
when tracker or stats is specified. The former is useful for profiling
a running application, the latter for off-line analysis. Requires existing
snapshots taken with
create_snapshot() or
start_periodic_snapshots().

	Parameters

	
	host – the host where the server shall run, default is localhost

	port – server listens on the specified port, default is 8090 to allow
coexistance with common web applications

	tracker – ClassTracker instance, browse profiling data (on-line
analysis)

	stats – Stats instance, analyze ClassTracker profiling dumps
(useful for off-line analysis)

	
pympler.web.start_in_background(**kwargs)

	Start the web server in the background. A new thread is created which
serves the profiling interface without suspending the current application.

For the documentation of the parameters see start_profiler.

Returns the created thread object.

Pympler Tutorials

	Tutorial - Track Down Memory Leaks - This tutorial shows you ways in which muppy can be used to track down memory leaks.

	Tutorial - Tracking Class Instances in SCons - A tutorial illustrating how to use the ClassTracker facility.

Table of Content

	Tutorial - Track Down Memory Leaks
	IDLE
	Preparations

	Task 1: Is there a leak?

	Task 2: What objects leak?

	Task 3: Where is the leak?

	Tutorial - Tracking Class Instances in SCons
	Installing hooks into SCons

	Test run

	Making sense of the data

	Optimization attempt

	Summary

Tutorial - Track Down Memory Leaks

This tutorial shows you ways in which muppy can be used to track down
memory leaks. From my experience, this can be done in 3 steps, each answering
a different question.

	Is there a leak?

	What objects leak?

	Where does it leak?

IDLE

My first real-life test for muppy was IDLE [http://docs.python.org/lib/idle.html], which is “the Python
IDE built with the Tkinter GUI toolkit.” It offers the following features:

	coded in 100% pure Python, using the Tkinter GUI toolkit

	cross-platform: works on Windows and Unix (on Mac OS, there are currently
problems with Tcl/Tk)

	multi-window text editor with multiple undo, Python colorizing and many other
features, e.g. smart indent and call tips

	Python shell window (a.k.a. interactive interpreter)

	debugger (not complete, but you can set breakpoints, view and step)

Because it is integrated in every Python distribution, runs locally and provides
easy interactive feedback, it was a nice first candidate to test the tools of muppy.

The task was to check if IDLE leaks memory, if so, what objects are leaking, and
finally, why are they leaking.

Preparations

IDLE is part of every Python distribution and can be found at
Lib/idlelib. The modified version which makes use of muppy can be found
at http://code.google.com/p/muppy/source/browse/trunk#trunk/playground/idlelib.

With IDLE having a GUI, I also wanted to be able to interact with muppy through
the GUI. This can be done in Lib/idlelib/Bindings.py and
Lib/idlelib/PyShell.py. For details, please refer to the modified
version mentioned above.

Task 1: Is there a leak?

At first, we need to find out if there are any objects leaking at all. We will
have a look at the objects, invoke an action, and look at the objects again.

from pympler import tracker

self.memory_tracker = tracker.SummaryTracker()
self.memory_tracker.print_diff()

The last step is repeated after each invocation. Let’s start with something
simple which should not leak. We will check the Windows resize. You can invoke
it in the menu at Windows->Zoom Height.

At first call print_diff till it has calibrated. That is, the first one or two
times, you will get some output because there is still something going on in the
background. But then you should get this:

types | # objects | total size
====== | =========== | ============

Which means nothing has changed since the last invocation of print_diff. Now
let’s call Windows->Zoom Height and invoke print_diff again.:

 types | # objects | total size
================== | =========== | ============
 dict | 1 | 280 B
 list | 1 | 176 B
 _sre.SRE_Pattern | 1 | 88 B
 tuple | 1 | 80 B
 str | 0 | 7 B

Seems as this requires some of the above mentioned objects. Let’s repeat it.:

 types | # objects | total size
====== | =========== | ============

Okay, nothing changed, so nothing is leaking. But we see that often, the first
call to a function creates some objects, which then exist on a second
invocation.

Next, we try something different. We will open a new window. Let’s have a look
at the Path Browser at File->Path Browser.:

 types | # objects | total size
=== | =========== | ============
 dict | 18 | 14.26 KB
 tuple | 146 | 13.17 KB
 list | 2 | 11.67 KB
 str | 97 | 7.85 KB
 code | 46 | 5.52 KB
 function | 45 | 5.40 KB
 classobj | 9 | 864 B
 instancemethod (<function wakeup>) | 3 | 240 B
 instancemethod (<function __call__>) | 3 | 240 B
 instance(<class Tkinter.CallWrapper>) | 3 | 216 B
 module | 3 | 168 B
 instance(<class idlelib.WindowList.ListedToplevel>) | 1 | 72 B

Let’s repeat it.:

 types | # objects | total size
=== | =========== | ============
 dict | 5 | 2.17 KB
 list | 0 | 384 B
 str | 5 | 259 B
 instancemethod (<function wakeup>) | 3 | 240 B
 instancemethod (<function __call__>) | 3 | 240 B
 instance(<class Tkinter.CallWrapper>) | 3 | 216 B
 instance(<class idlelib.WindowList.ListedToplevel>) | 1 | 72 B

Mh, still some new objects. Repeating this procedure several times will reveal
that here indeed we have a leak.

Task 2: What objects leak?

So let’s have a closer look at the diff. We see 5 new dicts and strings, a
bit more memory usage by lists, 3 wakeup and __call__ instance methods, 3
CallWrapper and 1 ListedToplevel. We know the standard types, but the last
couple of objects seem to be from IDLE.

We ignore the standard type objects for now. It is more likely that these are
only children of some other instances which are causing the leak.

We start with the ListedTopLevel object. One invocation of File->Path
Browser and one more of this type looks like this object is not garbage
collected, although it should have been. Searching for ListedTopLevel in
idlelib/ reveals that is the base class to all window objects of IDLE. We can
assume that opening the Path Browser, a new window object is created, but
closing the window does not remove the reference.

Next, we take a look at the wakeup instance method of which we have three more
on each invocation. Searching the code, we find it to be defined in
idlelib/WindowList.py. This piece of code is used to give users of IDLE a list
of currently open windows. Every time a new window is created, it will be added
to the Windows menu, from where the user can select any open window. wakeup
is the method which will bring the selected window up front. Adding a window
calls menu.add_command, linking menu and the wakeup command together.

menu.add_command(label=title, command=window.wakeup)

So we are getting closer. Only __call__ and Tkinter.CallWrapper are left. As
the name indicates, the latter is located in the Tkinter module, which is part
of the standard library of Python. So let’s dive into it. The CallWrapper
docstring states:

Internal class. Stores function to call when some user defined Tcl function is
called e.g. after an event occurred.

Also, CallWrapper contains a method called __call__, which is used to invoke
the stored function call. A CallWrapper is created by the method _register
which then creates a command (Tk speak) and adds it’s name to a list called
self._tclCommands.

So what do we know so far? Every time a Path Browser is opened, a window is
created, but not deleted when closed again. It has something to do with the
wakeup method of the window. This method is wrapped as a Tcl command and then
linked to the window list menu. Also, we have traced this wrapping back to
Tkinter library, where names of the function wrappers are stored in an attribute
called _tclCommands.

This brings us to the third question.

Task 3: Where is the leak?

_tclCommands stores the names of all commands linked to a widget. The base
class for interior widgets (of which the menu is one), has a method called
destroy which:

Delete all Tcl commands created for this widget in the Tcl
interpreter.

as well as a method deletecommand which deletes a single Tcl command. Both
remove commands as by there name. Among them, we find our CallWrappers’
__call__ used to wrap the wakeup of the Path Browser window.

So we should expect at least either one to be invoked when a window is closed
(best would be the invocation of only deletecommand). This would also go in line
with menu.add_command we identified above. And
indeed, in idlelib/EditorWindow.py, menu.delete is called. So where is the
problem?

We return to Tkinter.py and have a closer look at delete method:

def delete(self, index1, index2=None):
 """Delete menu items between INDEX1 and INDEX2 (not included)."""
 self.tk.call(self._w, 'delete', index1, index2)

Mh, it looks like the menu item is deleted, but what about the attached
command? Let’s ask the Web for “tkinter deletecommand”. Turns out that somebody
some years ago filed a bug (see bugreport [http://bugs.python.org/issue1342811]) which states:

Tkinter.Menu.delete does not delete the commands
defined for the entries it deletes. Those objects
will be retained until the menu itself is deleted.
[..]
the command function will still be referenced and
kept in memory - until the menu object itself is
destroyed.

Well, this seems to be the root of our memory leak. Let’s adapt the delete
method a bit, so that the associated commands are deleted as well:

def delete(self, index1, index2=None):
 """Delete menu items between INDEX1 and INDEX2 (not included)."""
 if index2 is None:
 index2 = index1
 cmds = []
 (num_index1, num_index2) = (self.index(index1), self.index(index2))
 if (num_index1 is not None) and (num_index2 is not None):
 for i in range(num_index1, num_index2 + 1):
 if 'command' in self.entryconfig(i):
 c = str(self.entrycget(i, 'command'))
 if c in self._tclCommands:
 cmds.append(c)
 self.tk.call(self._w, 'delete', index1, index2)
 for c in cmds:
 self.deletecommand(c)

Now we restart IDLE, calibrate our tracker and do another round of print_diff.
After the first time the Path Browser is opened we get this:

 types | # objects | total size
========== | =========== | ============
 tuple | 146 | 13.17 KB
 dict | 13 | 12.01 KB
 list | 2 | 11.26 KB
 str | 92 | 7.59 KB
 code | 46 | 5.52 KB
 function | 45 | 5.40 KB
 classobj | 9 | 864 B
 module | 3 | 168 B

Okay, still some objects created, but no more instances and instance
methods. Let’s do it again.:

 types | # objects | total size
======= | =========== | ============

Yes, this looks definitely better. The memory leak is gone.

The problem is fixed for Python versions 2.5 and higher so updated
installations will not face this leak.

Tutorial - Tracking Class Instances in SCons

This tutorial demonstrates the class tracking facility to profile and optimize a
non-trivial program. SCons [http://www.scons.org] is a next-generation build system with a quite
elaborate architecture and thus an interesting candidate for profiling attempts.

Before we begin, it should be identified what shall be tracked, i.e. what
classes we want to connect to and whose instances are to be sized and profiled.
In this tutorial, the effect of a patch [http://scons.tigris.org/issues/show_bug.cgi?id=2198] is analyzed that tries to size-optimize the very
heart of SCons - the Node class. Naturally, we will connect to the Node base
class and its sub-classes. It makes sense to put the profiling data
in context and track additional classes that are believed to contribute
significantly to the total memory consumption.

Installing hooks into SCons

The first step is to find the proper spots for connecting to the classes that
shall be tracked, taking snapshots, and printing the gathered profile data.
SCons has a simple memory profiling tool that we will override. The SCons
MemStats class provides all we need:

from pympler.classtracker import ClassTracker

class MemStats(Stats):
 def __init__(self):
 Stats.__init__(self)
 classes = [SCons.Node.Node, SCons.Node.FS.Base, SCons.Node.FS.File,
 SCons.Node.FS.Dir, SCons.Executor.Executor]
 self.tracker = ClassTracker()
 for c in classes:
 self.tracker.track_class(c)
 def do_append(self, label):
 self.tracker.create_snapshot(label)
 def do_print(self):
 stats = self.tracker.stats
 stats.print_summary()
 stats.dump_stats('pympler.stats')

When SCons starts, MemStats is instantiated and the ClassTracker is
connected to a number of classes. SCons has predefined spots where it invokes
its statistics facilities with do_append being called. This is where
snapshosts will be taken of all objects tracked so far.

Because of the large number of instances, only a summary is printed to the
console via stats.print_summary() and the profile data is dumped to a file
in case per-instance profile information is needed later.

Test run

Time for a test. In the following examples, SCons builds a non-trivial program
with a fair number of nodes. Running SCons via scons --debug=memory will
print the gathered data to the console:

scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
scons: `.' is up to date.
scons: done building targets.
---- SUMMARY --
before reading SConscript files: active 4.17 MB average pct
 SCons.Executor.Executor 7 7.53 KB 1.08 KB 0%
 SCons.Node.FS.Base 1 9.30 KB 9.30 KB 0%
 SCons.Node.FS.Dir 6 17.77 KB 2.96 KB 0%
 SCons.Node.FS.File 1 2.91 KB 2.91 KB 0%
 SCons.Node.Node 0 0 B 0 B 0%
after reading SConscript files: active 13.06 MB average pct
 [...]
before building targets: active 13.41 MB average pct
 [...]
after building targets: active 34.77 MB average pct
 SCons.Executor.Executor 1311 3.57 MB 2.79 KB 10%
 SCons.Node.FS.Base 1102 4.84 MB 4.50 KB 13%
 SCons.Node.FS.Dir 108 5.67 MB 53.72 KB 16%
 SCons.Node.FS.File 2302 10.45 MB 4.65 KB 30%
 SCons.Node.Node 1 84.93 KB 84.93 KB 0%

Making sense of the data

The console output may give a brief overview how much memory is allocated by
instances of the individual tracked classes. A more appealing and well arranged
representation of the data can be generated with the HtmlStats class. The
dump generated previously can be loaded and a set of HTML pages can be emitted:

from pympler.classtracker_stats import HtmlStats

stats = HtmlStats()
stats.load_stats('pympler.stats')
stats.create_html('pympler.html')

If matplotlib is installed, charts will be embedded in the HTML output:

[image: ../_images/classtracker_timespace.png]
At first sight it might seem suspicious that the tracked classes appear to be
the sole contributors to the total memory footprint of the application. Because
the tracked objects are sized recursively, referenced objects which are not
tracked themselves are added to the referrers account. Thus, a root object’s
size will include the size of every leaf unless the leaf is also tracked by the
ClassTracker.

Optimization attempt

After applying the patch [http://scons.tigris.org/issues/show_bug.cgi?id=2198] by Jean Brouwers, SCons is rerun under the supervision
of the ClassTracker. The differences in the last snapshot show that the
changes indeed reduce the memory footprint of Node instances:

$ scons --debug=memory
scons: Reading SConscript files ...
scons: done reading SConscript files.
scons: Building targets ...
scons: `.' is up to date.
scons: done building targets.
---- SUMMARY --
[...]
after building targets: active 32.41 MB average pct
 SCons.Executor.Executor 1311 3.50 MB 2.73 KB 10%
 SCons.Node.FS.Base 1102 4.29 MB 3.98 KB 13%
 SCons.Node.FS.Dir 108 5.52 MB 52.30 KB 17%
 SCons.Node.FS.File 2302 8.82 MB 3.92 KB 27%
 SCons.Node.Node 1 84.32 KB 84.32 KB 0%

The total measured memory footprint dropped from 34.8MB to 32.4MB, File
nodes’ average size from 4.6KB to 3.9KB.

Summary

This tutorial illustrated how applications can be profiled with the
ClassTracker facility. It has been shown how the memory impact of changes
can be quantified.

Related Work

Pympler is a merger of several approaches toward memory profiling of Python
applications. This page lists other known tools. If you know yet another one or
find the description is not correct you can create a new issue at
http://code.google.com/p/pympler/issues.

asizeof

Asizeof is a pure-Python module to estimate the size of objects by Jean
Brouwers. This implementation has been published previously on
aspn.activestate.com. It is possible to determine the size of an
object and its referents recursively up to a specified level. asizeof is also
distributed with muppy and allows the usage of muppy with Python versions prior
to Python 2.6.

asizeof has become a part of Pympler.

URL: http://code.activestate.com/recipes/546530/

Heapmonitor

“The Heapmonitor is a facility delivering insight into the memory distribution
of SCons. It provides facilities to size individual objects and can track all
objects of certain classes.” It was developed in 2008 by Ludwig Haehne.

URL: http://www.scons.org/wiki/LudwigHaehne/HeapMonitor

Heapmonitor has become a part of Pympler.

Heapy

Heapy was part of the Master thesis by Sverker Nilsson done in 2006. It is part
of the umbrella project guppy. Heapy has a very mathematical approach as it
works in terms of sets, partitions, and equivalence relations. It allows to
gather information about objects at any given time, but only objects starting
from a specific root object. Type information for standard objects is supported
by default and type information for non-standard object types can be
added through an interface.

URL: http://guppy-pe.sourceforge.net

Meliae

“This project is similar to heapy (in the ‘guppy’ project), in its attempt to
understand how memory has been allocated.

Currently, its main difference is that it splits the task of computing summary
statistics, etc of memory consumption from the actual scanning of memory
consumption. It does this, because I often want to figure out what is going on
in my process, while my process is consuming huge amounts of memory (1GB, etc).
It also allows dramatically simplifying the scanner, as I don’t allocate python
objects while trying to analyze python object memory consumption.”

Meliae is being developed by John A Meinel since 2009. It is well suited for
offline analysis of full memory dumps.

URL: https://launchpad.net/meliae

muppy

“Muppy [..] enables the tracking of memory usage during runtime and the
identification of objects which are leaking. Additionally, tools are provided
which allow to locate the source of not released objects.” It was developed in
2008 by Robert Schuppenies.

muppy has become a part of Pympler.

Python Memory Validator

A commercial Python memory validator which uses the Python Reflection
API.

URL: http://www.softwareverify.com/python/memory/index.html

PySizer

PySizer was a Google Summer of Code 2005 project by Nick Smallbone. It relies on
the garbage collector to gather information about existing objects. The
developer can create a summary of the current set of objects and then analyze the
extracted data. It is possible to group objects by criteria like object type and
apply filtering mechanisms to the sets of objects. Using a patched CPython
version it is also possible to find out where in the code a certain object was
created. Nick points out that “the interface is quite sparse, and some things
are clunky”. The project is deprecated and the last supported Python version is
2.4.

URL: http://pysizer.8325.org/

Support Tracking Low-Level Memory Usage in CPython

This is an experimental implementation of CPython-level memory tracking by Brett
Cannon. Done in 2006, it tackles the problem at the core,
the CPython interpreter itself. To trace the memory usage he suggests to tag
every memory allocation and de-allocation. All actions involving memory take a
const char * argument that specifies what the memory is meant
for. Thus every allocation and freeing of memory is
explicitly registered. On the Python level the total memory usage as well as “a
dict with keys as the string names of the types being tracked and values of the
amount of memory being used by the type” are available.

URL: http://svn.python.org/projects/python/branches/bcannon-sandboxing/PEP.txt

Glossary

	asizeof

	Name of a formerly separate package. Now integrated into Pympler.

	HeapMonitor

	Name of a formerly separate package. Now integrated into Pympler.

	muppy

	Name of a formerly separate package. Now integrated into Pympler.

	pymple, to

	Obtain detailed insight in the size and the lifetime of Python
objects.

	pymple, a

	Undesirable or unexpected runtime behavior like memory bloat.

	summary

	A summary contains information about objects in a summarized format.
Instead of having data of every object, information are grouped by
object type. Each object type is represented by a row, whereas the first
column reflects the object type, the second column the number of
objects of this type, and the third column the size of all of these
objects. The output looks like the following:

	types

	# objects

	total size

	<type ‘dict’>

	2

	560

	<type ‘str’>

	3

	126

	<type ‘int’>

	4

	96

	<type ‘long’>

	2

	66

	<type ‘list’>

	1

	40

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [http://keepachangelog.com/en/1.0.0/]
and this project adheres to Semantic Versioning [http://semver.org/spec/v2.0.0.html].

0.9 - 2020-10-14

Added

	Python 3.9 support – By tirkarthi (#105)

	Compatibility with Django 3.x – By Lance Moore (#108)

Removed

	Python 3.4 support

Fixed

	Include size of data when sizing Numpy slices – Rported by sinorga (#111),
fixed by Jean Brouwers

	Fix KeyError when sizing dicts in certain scenarios – Reported by MrSanZhi
(#114), fixed by Jean Brouwers

0.8 - 2019-11-12

Added

	Python 3.8 support

	Compatibility with Django Debug Toolbar 2.x – Reported by John Carter (#96)

Removed

	Python 3.3 support

	Compatibility with Django Debug Toolbar 1.x

Fixed

	Include dicts which aren’t tracked by garbage collector in summary diff –
Reported by Dave Johansen (#97)

	Fix formatting of Python 3 class names in summary diff – Reported by laundmo
(#98)

0.7 - 2019-04-05

Added

	Added asizeof options above and cutoff to specify minimal size and the
number of large objects to be printed

	The Asizer class has a new property ranked returning the number of ranked
objects.

	New Asizer method exclude_objs can be used to exclude objects from being
sized, profiled and ranked.

Changed

	The asizeof option stats has been enhanced to include the list of the 100
largest objects, ranked by total size.

Fixed

	Fix TypeError raised in certain scenarios – Reported by James Hirschorn
(#72), fixed by Jean Brouwers

	Fix TypeError when creating snapshots with classtracker in certain scenarios
– Reported by rtadewald (#79), fixed by Jean Brouwers

0.6 - 2018-09-01

Added

	Python 3.7 support

Changed

	Update asizeof module to version 18.07.08. Includes more accurate sizing of
objects with slots. – By Jean Brouwers

Removed

	Python 2.6 and 3.2 support

Fixed

	Fix KeyError when using Django memory panel in certain scenarios – Reported
by Mark Davidoff (#55), fixed by Pedro Tacla Yamada

	Fix Debug Toolbar - Remove all jQuery variables from the global scope – By
the5fire (#66)

	Fix process import error when empty lines found in /proc/self/status –
Reported by dnlsng (#67)

	Return more accurate size of objects with slots – Reported by Ivo Anjo
(#69), fixed by Jean Brouwers

0.5 - 2017-03-23

Added

	Add support for Python 3.5 and Python 3.6

Changed

	Improved runtime performance of summary differ – By Matt Perpick (#42)

	Include values when sizing named tuples – Reported by Paul Ellenbogen (#35),
fixed by Chris Klaiber

	Update bottle.py to 0.12.13

Removed

	Drop Python 2.5 and Python 3.1 support

0.4.3 - 2016-03-31

Added

	Add Django 1.9 support for DDT panel – By Benjy (#30)

Fixed

	Handle untracked classes in tracker statistics – By gbtami (#33)

	Handle colons in process names gracefully – By Dariusz Suchojad (#26)

	Support types without __flags__ attribute in muppy (#24)

	Fix documentation errors (#32, #28, #25) – By gbtami, Matt, Lawrence Hudson

0.4.2 - 2015-07-26

Fixed

	Include private variables within slots when sizing recursively – GitHub
issue #20 report and fix by ddodt

	Fix NameError in memory panel – GitHub issue #21 reported by relekang

0.4.1 - 2015-04-15

Changed

	Replace Highcharts with Flot (#17)

0.4 - 2015-02-03

Added

	Added memory panel for django-debug-toolbar

	Format tracker statistics without printing – GitHub issue #2 reported and
implemented by Andrei Sosnin

	Added close method to ClassTracker

	Support for Python 3.4

Changed

	Track instance counts of tracked classes without snapshots

	Upgrade to Highcharts 3 and jQuery 1.10

Removed

	Dropped support for Python 2.4

Fixed

	Include size of closure variables – GitHub issue #8 reported and implemented
by Craig Silverstein

	Fix tkinter import on Python 3 – GitHub issue #4 reported by pedru-de-huere

	Fix StreamBrowser.print_tree when called without arguments – GitHub issue
#5 reported by pedru-de-huere

	Fix sizing of named tuples – GitHub issue #10 reported by ceridwen

0.3.1 - 2013-02-16

	Fix class tracker graph data formatting – Issue 48 reported by Berwyn Hoyt

	Improve web class tracker documentation – Issue 49 reported by Berwyn Hoyt

	Update links to GitHub and PyPi

0.3.0 - 2012-12-29

	Support for Python 3.3

0.2.2 - 2012-11-24

	Work around array sizing bug in Python 2.6-3.2 – Issue 46 reported by Matt

	Fix import when python is run with optimization -OO – Issue 47 reported by
Kunal Parmar

0.2.1 - 2011-11-13

	Fix static file retrieval when installed via easy_install

	Show class tracker instantiation traces and referent trees in web interface

	New style for web interface

0.2

The second release is one of several steps to better integrate the different
sub-systems of Pympler. All modules now directly reside in the pympler namespace
which simplifies the import of Pympler modules. Pympler 0.2 introduces a web
interface to facilitate memory profiling. Pympler now fully supports Python
3.x. This release also adds several modules replacing the Heapmonitor module
with the new class tracker facility.

	Introduce web frontend

	Split Heapmonitor into several new modules

	New process module to obtain memory statistics of the Python process

	Improved garbage illustration which can directly render directed graphs using
graphviz

0.1

This initial release is the first step to unify three separate Python memory
profiling tools. We aim to create a place-to-go for Python developers who want
to monitor and analyze the memory usage of their applications. It is just the
first step towards a further integration. There is still lots of work that
needs to be done and we stress that the API is subject to change. Any feedback
you want to give us, wishes, bug reports, or feature requests please send them
to pympler-dev@googlegroups.com.

Copyright

The Pympler software and sample code is licensed under the Apache License,
Version 2.0. The asizeof module is licensed under a different license (see
asizeof license):

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

asizeof license

The asizeof module is licensed under the BSD license.

 Copyright (c) 2002-2008 -- ProphICy Semiconductor, Inc.
 All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

- Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.

- Neither the name of ProphICy Semiconductor, Inc. nor the names
 of its contributors may be used to endorse or promote products
 derived from this software without specific prior written
 permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pympler	

 	
 	
 pympler.asizeof	

 	
 	
 pympler.classtracker	

 	
 	
 pympler.classtracker_stats	

 	
 	
 pympler.garbagegraph	

 	
 	
 pympler.muppy	

 	
 	
 pympler.panels	

 	
 	
 pympler.process	

 	
 	
 pympler.refbrowser	

 	
 	
 pympler.refgraph	

 	
 	
 pympler.summary	

 	
 	
 pympler.tracker	

 	
 	
 pympler.web	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | W

_

 	
 	__init__() (pympler.classtracker_stats.ConsoleStats method)

 	(pympler.classtracker_stats.HtmlStats method)

 	(pympler.classtracker_stats.Stats method)

 	(pympler.garbagegraph.GarbageGraph method)

 	(pympler.refgraph.ReferenceGraph method)

 	
 	_ProcessMemoryInfo (class in pympler.process)

A

 	
 	adict() (in module pympler.asizeof)

 	Asized (class in pympler.asizeof)

 	asized() (in module pympler.asizeof)

 	(pympler.asizeof.Asizer method)

 	asizeof

 	
 	asizeof() (in module pympler.asizeof)

 	(pympler.asizeof.Asizer method)

 	Asizer (class in pympler.asizeof)

 	asizesof() (in module pympler.asizeof)

 	(pympler.asizeof.Asizer method)

B

 	
 	basicsize() (in module pympler.asizeof)

C

 	
 	ClassTracker (class in pympler.classtracker)

 	clear() (pympler.classtracker.ClassTracker method)

 	ConsoleBrowser (class in pympler.refbrowser)

 	
 	ConsoleStats (class in pympler.classtracker_stats)

 	create_html() (pympler.classtracker_stats.HtmlStats method)

 	create_snapshot() (pympler.classtracker.ClassTracker method)

D

 	
 	detach_all() (pympler.classtracker.ClassTracker method)

 	detach_all_classes() (pympler.classtracker.ClassTracker method)

 	
 	detach_class() (pympler.classtracker.ClassTracker method)

 	diff() (pympler.tracker.SummaryTracker method)

 	dump_stats() (pympler.classtracker_stats.Stats method)

E

 	
 	end_debug_garbage() (in module pympler.garbagegraph)

 	
 	exclude_refs() (pympler.asizeof.Asizer method)

 	exclude_types() (pympler.asizeof.Asizer method)

F

 	
 	FileBrowser (class in pympler.refbrowser)

 	
 	filter() (in module pympler.muppy)

 	flatsize() (in module pympler.asizeof)

G

 	
 	GarbageGraph (class in pympler.garbagegraph)

 	get_diff() (in module pympler.muppy)

 	(in module pympler.summary)

 	(pympler.tracker.ObjectTracker method)

 	
 	get_objects() (in module pympler.muppy)

 	get_referents() (in module pympler.muppy)

 	get_size() (in module pympler.muppy)

 	get_tree() (pympler.refbrowser.RefBrowser method)

H

 	
 	HeapMonitor

 	
 	HtmlStats (class in pympler.classtracker_stats)

I

 	
 	InteractiveBrowser (class in pympler.refbrowser)

 	
 	is_available() (in module pympler.process)

 	itemsize() (in module pympler.asizeof)

L

 	
 	leng() (in module pympler.asizeof)

 	
 	load_stats() (pympler.classtracker_stats.Stats method)

M

 	
 	main() (pympler.refbrowser.InteractiveBrowser method)

 	
 	muppy

O

 	
 	ObjectTracker (class in pympler.tracker)

P

 	
 	print_() (in module pympler.summary)

 	print_diff() (pympler.tracker.ObjectTracker method)

 	(pympler.tracker.SummaryTracker method)

 	print_profiles() (pympler.asizeof.Asizer method)

 	print_stats() (pympler.asizeof.Asizer method)

 	(pympler.classtracker_stats.ConsoleStats method)

 	(pympler.garbagegraph.GarbageGraph method)

 	print_summary() (pympler.asizeof.Asizer method)

 	(pympler.classtracker_stats.ConsoleStats method)

 	print_tree() (pympler.refbrowser.ConsoleBrowser method)

 	(pympler.refbrowser.FileBrowser method)

 	print_typedefs() (pympler.asizeof.Asizer method)

 	pymple, a

 	
 	pymple, to

 	pympler.asizeof (module)

 	pympler.classtracker (module), [1]

 	pympler.classtracker_stats (module)

 	pympler.garbagegraph (module)

 	pympler.muppy (module)

 	pympler.panels (module)

 	pympler.process (module)

 	pympler.refbrowser (module)

 	pympler.refgraph (module)

 	pympler.summary (module)

 	pympler.tracker (module)

 	pympler.web (module)

R

 	
 	RefBrowser (class in pympler.refbrowser)

 	ReferenceGraph (class in pympler.refgraph)

 	refs() (in module pympler.asizeof)

 	
 	render() (pympler.garbagegraph.GarbageGraph method)

 	(pympler.refgraph.ReferenceGraph method)

 	reset() (pympler.asizeof.Asizer method)

 	reverse_order() (pympler.classtracker_stats.Stats method)

S

 	
 	set() (pympler.asizeof.Asizer method)

 	sort() (in module pympler.muppy)

 	sort_stats() (pympler.classtracker_stats.Stats method)

 	split() (pympler.garbagegraph.GarbageGraph method)

 	(pympler.refgraph.ReferenceGraph method)

 	start_debug_garbage() (in module pympler.garbagegraph)

 	start_in_background() (in module pympler.web)

 	
 	start_periodic_snapshots() (pympler.classtracker.ClassTracker method)

 	start_profiler() (in module pympler.web)

 	Stats (class in pympler.classtracker_stats)

 	stop_periodic_snapshots() (pympler.classtracker.ClassTracker method)

 	store_summary() (pympler.tracker.SummaryTracker method)

 	summarize() (in module pympler.summary)

 	summary

 	SummaryTracker (class in pympler.tracker)

T

 	
 	track_class() (pympler.classtracker.ClassTracker method)

 	
 	track_object() (pympler.classtracker.ClassTracker method)

U

 	
 	update() (pympler.process._ProcessMemoryInfo method)

W

 	
 	write_graph() (pympler.garbagegraph.GarbageGraph method)

 	(pympler.refgraph.ReferenceGraph method)

 _images/classtracker_timespace.png
Virtual Memory [Mi8]

35

30

2

Snapshot Memory

-~ Total

- - Tracked total

SCons. Executor. Executor
SCons.Node.FS.Base

= SCons.Node.FS.Dir

B SCons.Node. S File

10

15
Execution Time [s]

20

_static/comment-bright.png

_images/muppy_guibrowser.png
list(id-d5415024)
frame (codename: main)(id-46229364)

O list(id-46422704)
list(id-46437440)

£ frame (codename: _get_tree)(d-45000272)
list(id-46421200) (already included, id 46421200)
list(id-46412576) (already included, id 46412576)

£ frame (codename: main)((d-46759134)

instancemethod (<function wakeup>)(id=45505584)

45815136)
45415024) (already included, id 45415024)

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Sitemap

 		
 Requirements

 		
 Download

 		
 Target Audience

 		
 Usage Examples

 		
 History

 		
 Sizing individual objects

 		
 Introduction

 		
 Asizer

 		
 Public Functions

 		
 Tracking class instances

 		
 Introduction

 		
 Usage

 		
 Basic Functionality

 		
 Advanced Functionality

 		
 Limitations and Corner Cases

 		
 Identifying memory leaks

 		
 The muppy module

 		
 The summary module

 		
 The tracker module

 		
 The refbrowser module

 		
 Tracking memory in Django

 		
 Introduction

 		
 Usage

 		
 Known issues

 		
 Library

 		
 Modules

 		
 Pympler Tutorials

 		
 Table of Content

 		
 Related Work

 		
 asizeof

 		
 Heapmonitor

 		
 Heapy

 		
 Meliae

 		
 muppy

 		
 Python Memory Validator

 		
 PySizer

 		
 Support Tracking Low-Level Memory Usage in CPython

 		
 Glossary

 		
 Changelog

 		
 0.9 - 2020-10-14

 		
 0.8 - 2019-11-12

 		
 0.7 - 2019-04-05

 		
 0.6 - 2018-09-01

 		
 0.5 - 2017-03-23

 		
 0.4.3 - 2016-03-31

 		
 0.4.2 - 2015-07-26

 		
 0.4.1 - 2015-04-15

 		
 0.4 - 2015-02-03

 		
 0.3.1 - 2013-02-16

 		
 0.3.0 - 2012-12-29

 		
 0.2.2 - 2012-11-24

 		
 0.2.1 - 2011-11-13

 		
 0.2

 		
 0.1

 		
 Copyright

 		
 asizeof license

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

