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CHAPTER 1

Introduction

1.1 What is PyMoskito ?

PyMoskito aims to be a useful tool for students and researchers in the field of control theory that performs repetitive
task occurring in modelling as well as controller and observer design.

The toolbox consists of two parts: Part one -the core- is a modular simulation circuit whose parts (Model, Con-
troller and many more) can be easily fitted to one’s personal needs by using one of the “ready to go” variants or
deriving from the more powerful base classes.

To configure this simulation loop and to analyse its results, part two -the frontend- comes into play. The graphical
user interfaces not only allows one to accurately tune the parameters of each part of the simulation but also
allows to automate simulation runs e.g. to simulate different combinations of modules or parameters. This batch-
like interface is feed by human readable yaml files which make it easy to store and reproduce simulated setups.
Furthermore PyMoskito offers possibilities to run postprocessing on the generated results and easily lets you create
plots for step responses.

1.2 What is PyMoskito not ?

Although the simulation loop is quite flexible it is not a complete block oriented simulation environment for model
based-design but ideas for the development in this direction are always appreciated.

3
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CHAPTER 2

Installation

2.1 General Options

At the command line:

$ pip install pymoskito

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv pymoskito
$ pip install pymoskito

From the repository:

$ git clone https://github.com/cklb/pymoskito
$ python setup.py install

2.2 For Windows

PyMoskito depends on Qt5 and VTK .

Qt5 is already included in the most python distributions, to have an easy start we recommend to use Winpython .

The wheel for the VTK package (Version >= 7) can be obtained from http://www.lfd.uci.edu/~gohlke/pythonlibs/
#vtk . It can be installed using the Winpython Control Panel or directly via:

$ pip install VTK-VERSION_NAME_HERE.whl

from your winpython shell.

2.3 Troubleshooting

Missing dependencies (windows)

If the provided packages on your system are to old, pip may feel obligated to update them. Since the majority
of packages now provide ready to use wheels for windows on pypi this should work automatically. If for some

5
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reason this process fails, you will most certainly find an appropriate wheel here . After downloading just navigate
your shell into the directory and call:

$ pip install PACKAGE_NAME.whl

to install it.

Missing vtk libraries (linux)

If importing vtk fails with something similar to:

>>> Import Error: vtkIOAMRPython module not found

then look at the output of:

$ ldd PATH/TO/SITE-PKGS/vtk/vtkIOAMRPython.so

to see which libs are missing.

GUI looks blurry on high-dpi displays

You may add the line:

os.environ["QT_AUTO_SCREEN_SCALE_FACTOR"] = "1"

before you import pymoskito to enable autoscaling in Qt.

6 Chapter 2. Installation
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CHAPTER 3

Tutorials

Below you will find some lessons on different aspects of the toolbox, sorted from basic to expert level.

Beginner:

3.1 Beginners Tutorial

Welcome to the PyMoskito Tutorial! It is intended to introduce new users to the toolbox. For more detailed
descriptions, please see the Users Guide or the Modules Reference.

Within this tutorial, an inverse pendulum on cart will be simulated and stabilized. With the help of PyMoskito, the
model as well as the controller will be tested by simulating the open and closed control loop.

All code is written in Python. If you want to refresh or expand your knowledge about this language, see e.g. the
Python Tutorial.

3.1.1 PyMoskito’s Signal Diagram

PyMoskito simulates the control loop as shown in Fig. 3.1. This tutorial will focus on the part highlighted in blue,
since these modules are essential to run the toolbox.

Every block in this diagram represents a configurable part of the control loop that is implemented as a generic
base class. By deriving from these base classes, it is easy to make sure that implemented classes work well within
the context of the toolbox.

From the highlighted classes, the trajectory generator and the model mixer are considered reusable, therefore
PyMoskito provides these classes ready to go. On the other hand, the model and the controller are determined by
the specific system and have to be implemented to suit your problem. If you would like to implement one of the
nonhighlighted classes, see the Users Guide or other Tutorials for help.

Next up the system, used for implementation is introduced.

3.1.2 A Pendulum on Cart

A pendulum is fixed on a cart, which can move in the horizontal direction. The cart has a mass 𝑀 . The friction
between the cart and the surface causes a frictional force 𝐹𝑅 = 𝐷 · �̇�, in opposite direction to the movement of the
cart. The pendulum has a mass 𝑚, a moment of intertia 𝐽 , a length 𝑙 and an angle of deflection 𝜙. The friction in

7
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Fig. 3.1: The control loop implemented by PyMoskito

the joint where the pendulum is mounted on the cart causes a frictional torque 𝑀𝑅 = 𝑑 · �̇�, in opposite direction
to the rotational speed of the pendululm. The system is illustrated in Fig. 3.2.

The task is to control the position 𝑠 of the cart and to stabilize the pendulum in its downside position. The
possibility of stabilizing the pendulum in its upside position is not implemented in this tutorial. Actuating variable
is the force 𝐹 .

With the state vector

𝑥 =

⎛⎜⎜⎝
𝑥1

𝑥2

𝑥3

𝑥4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝑠
𝜙
�̇�
�̇�

⎞⎟⎟⎠ ,

the model equations are given by

�̇� =

⎛⎜⎜⎝
𝑥1

𝑥2

𝑥3

𝑥4

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝑥3

𝑥4
𝐽𝐹−𝐽𝐷𝑥3−𝑚𝑙𝐽𝑥4

2 sin(𝑥2)+𝑚2𝑙2𝑔 sin(𝑥2) cos(𝑥2)−𝑚𝑙𝑑𝑥4 cos(𝑥2)
(𝑀+𝑚)𝐽−(𝑚𝑙 cos(𝑥2))2

𝑚𝑙 cos(𝑥2)𝐹−𝑚𝑙𝐷𝑥3 cos(𝑥2)−(𝑚𝑙𝑥4)
2 sin(𝑥2) cos(𝑥2)+(𝑀+𝑚)𝑚𝑙𝑔 sin(𝑥2)−(𝑀+𝑚)𝑑𝑥4

(𝑀+𝑚)𝐽−(𝑚𝑙 cos(𝑥2))2

⎞⎟⎟⎟⎠ .

The cart’s position

𝑦 = 𝑥1 = 𝑠

is chosen as output of the system. With this model given, the next step is to implement a class containing these
equations.

8 Chapter 3. Tutorials
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Fig. 3.2: The pendulum on an cart system

3.1.3 Implementing a Model

At first, a new class derived from the abstract class Model is necessary. Its basic functions will be calculating the
state derivatives and the output from the model parameters, the current state and the input values.

Create a folder within a path of your choice. All files created during this tutorial need to be stored here. Create a
file called:

model.py

With the first lines of code, import the library NumPy, the OrderedDictionary class and PyMoskito itself:

1 # -*- coding: utf-8 -*-
2 from collections import OrderedDict
3 import numpy as np
4

5 import pymoskito as pm
6

7

Derive your class from Model. Next, create an OrderedDict called public_settings. All entries in this
dictionary will be accessible in the graphical interface of PyMoskito during runtime. While you have the freedom
to name these entries as you like, the entry initial state is obligatory and must contain the initial state
vector. All values entered will be the initial values for the model parameters:

9 class PendulumModel(pm.Model):
10 public_settings = OrderedDict([("initial state", [0, 180.0, 0, 0]),
11 ("cart mass", 4.3), # [kg]
12 ("cart friction", 10), # [Ns/m]
13 ("pendulum mass", 0.32), # [kg]
14 ("pendulum inertia", 0.07), # [kg*m^2]
15 ("pendulum friction", 0.03), # [Nms]
16 ("pendulum length", 0.35), # [m]

(continues on next page)

3.1. Beginners Tutorial 9
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(continued from previous page)

17 ("gravity", 9.81)]) # [m/s^2]
18

Within the constructor, you must define the number of inputs and states. Do so by storing these values in settings
as seen in lines 24 and 25. Adding output information as seen in line 26 is optional, this will make it easier to
distinguish between several outputs of bigger systems. It is obligatory to call the constructor of the base class
at the end. The constructor’s argument settings is a copy of public_settings with all changes the user
made in the interface:

20 def __init__(self, settings):
21 # conversion from degree to radiant
22 settings["initial state"][1] = np.deg2rad(settings["initial state"][1])
23 settings["initial state"][3] = np.deg2rad(settings["initial state"][3])
24

25 # add specific "private" settings
26 settings.update(state_count=4)
27 settings.update(input_count=1)
28 settings.update({"output_info": {0: {"Name": "cart position",
29 "Unit": "m"}}})
30 pm.Model.__init__(self, settings)
31

The calculation of the state derivatives takes place in a method that returns the results as an array. The method’s
parameters are the current time t, the current state vector x, and the parameter args. The later is free to be
defined as you need it, in this case it will be the force F as the model input. To keep the model equations compact
and readable, it is recommended to store the model values in variables with short names:

33 def state_function(self, t, x, args):
34 # definitional
35 s = x[0]
36 phi = x[1]
37 ds = x[2]
38 dphi = x[3]
39 F = args[0]
40

41 # shortcuts for readability
42 M = self._settings["cart mass"]
43 D = self._settings["cart friction"]
44 m = self._settings["pendulum mass"]
45 J = self._settings["pendulum inertia"]
46 d = self._settings["pendulum friction"]
47 l = self._settings["pendulum length"]
48 g = self._settings["gravity"]
49

50 dx1 = ds
51 dx2 = dphi
52 dx3 = ((J * F
53 - J * D * ds
54 - m * l * J * dphi ** 2 * np.sin(phi)
55 + (m * l) ** 2 * g * np.sin(phi) * np.cos(phi)
56 - m * l * d * dphi * np.cos(phi))
57 / ((M + m) * J - (m * l * np.cos(phi)) ** 2))
58 dx4 = ((m * l * np.cos(phi) * F
59 - m * l * D * ds * np.cos(phi)
60 - (m * l * dphi) ** 2 * np.cos(phi) * np.sin(phi)
61 + (M + m) * m * l * g * np.sin(phi) - (M + m) * d * dphi)
62 / ((M + m) * J - (m * l * np.cos(phi)) ** 2))
63

64 dx = np.array([dx1, dx2, dx3, dx4])
65 return dx
66

10 Chapter 3. Tutorials
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The output of the system is calculated in a method with the current state vector as parameter. Returning the results
as an array as previously would be possible. But in this case, the output is simply the position s of the cart, so
extracting it from the state vector and returning it as a scalar is sufficient :

68 def calc_output(self, input_vector):
69 return input_vector[0]

This now fully implemented model class has a yet unknown behavior. To test it, the next step is to start PyMoskito
for simulation purposes.

3.1.4 Starting the Program

For PyMoskito to start, an application needs to launch the toolbox and execute it. To do so, create a file in the
same directory as the model and name it:

main.py

Copy the following code into your main file:

1 # -*- coding: utf-8 -*-
2 import pymoskito as pm
3

4 # import custom modules
5 import model
6

7

8 if __name__ == '__main__':
9 # register model

10 pm.register_simulation_module(pm.Model, model.PendulumModel)
11

12 # start the program
13 pm.run()

Note the import command in line 5, which includes the earlier implemented model file in the application. The
command in line 10 registers the model to the toolbox. This lets PyMoskito know that this module is available
and adds it to the eligible options in the interface. Line 13 finally starts our application.

Use the command line to navigate to the directory of the main file and the model file and start the toolbox with the
command:

$ python main.py

The upstarting interface of PyMoskito gives you the possibility to test the implemented model in the next step.

3.1.5 Testing the Model

Choose initial states that make the prediction of the system’s reaction easy and compare them with the simulation
results. After successfully starting the program, you will see the interface of the toolbox as shown in Fig. 3.3.

Within the Properties Window (1), double clicking on a value (all None by default) activates a drop down menu.
Clicking again presents all eligible options. One of these options now is PendulumModel, since it was registered
to PyMoskito earlier. Choose it now and press enter to confirm your choice.

By clicking on the arrow that appeared on the left of Model, all model parameters and the initial state are dis-
played. These are taken from the public_settings which have been defined earlier in the model. Double
click on a value to change it manually. Press enter to confirm the input.

Choose the PendulumModel, the ODEInt as Solver and the AdditiveMixer as ModelMixer. Change
the initial state of Model to [0, 100, 0, 0] and the end time of Solver to 20 as shown in Fig. 3.4.

3.1. Beginners Tutorial 11
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Fig. 3.3: The Interface of PyMoskito after start up

Fig. 3.4: The settings for testing the model class

12 Chapter 3. Tutorials
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Click the gearwheel button (2), use the drop-down menu (3) or press F5 to start the simulation. After a succesful
simulation, all created diagrams will be listed in the Data Window (4). Double click on one to display it as shown
in Fig. 3.5.

Fig. 3.5: The Interface of PyMoskito after a successful simulation

Feel free to experiment with the properties and see, if the model reacts the way you would have predicted. After
testing the model class, a controller shall be implemented.

3.1.6 Implementing a Controller

To close the loop a controller has to be added. This can easily be done by deriving from the Controller class.
Its task is to stabilize the pendulum by calculating a suitable input for the model. To keep things simple, the linear
state-feedback controller in this scenario and it is based on the linearized system which is given by

𝐴 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1

0 𝑚2𝑙2𝑔
𝑧 −𝐽𝐷

𝑧
𝑚𝑙𝑑
𝑧

0 − (𝑀+𝑚)𝑚𝑙𝑔
𝑧

𝑚𝑙𝐷
𝑧 − (𝑀+𝑚)𝑑

𝑧

⎞⎟⎟⎠ 𝐵 =

⎛⎜⎜⎝
0
0
𝐽
𝑧

−𝑚𝑙
𝑧

⎞⎟⎟⎠ 𝐶 =
(︀
1 0 0 0

)︀

with

𝑧 = 𝐽(𝑀 +𝑚)−𝑚2𝑙2.

The linear control law is given by

𝑢 = −𝐾𝑥+ 𝑉 𝑦𝑑

with the control gain 𝐾 and the prefilter 𝑉 . One possibility to calculate the control gain is by using the Ackermann
formula.

With all necessary equations, the implementation of the controller class can begin. Start by creating a file called:

controller.py

Import the same classes as in the model class:

3.1. Beginners Tutorial 13
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1 # -*- coding: utf-8 -*-
2 import numpy as np
3 from collections import OrderedDict
4

5 import pymoskito as pm
6

7

Derive your controller from Controller Next, create public_settings as before in the model. Its entries
will be accessable in the graphical interface of PyMoskito during runtime. This time, the only parameters will be
the desired poles of the closed loop, which the controller shall establish:

9 class BasicController(pm.Controller):
10 public_settings = OrderedDict([("poles", [-2, -2, -2, -2])
11 ])
12

Within the constructor, it is obligatory to set the input order and an input type. The input order
determines how many derivatives of the trajectory will be required, sinc eour controller is very simple a 0 will
do here. Valid entries for input type are system_state, system_output, Observer and Sensor. In our case we
will go for system_state. After all necessary updates, call the constructor of the base class as seen in line
20. Store the linearized system matrices and the equilibrium state. To make matrix operations possible, use the
array type provided by NumPy. PyMoskito’s Controltools provide functions to calculate the values of a linear
state feedback and a prefilter, which can be used as seen in lines 49-50. The method place_siso() is an
implementation of the Ackermann formula:

14 def __init__(self, settings):
15 settings.update(input_order=0)
16 settings.update(input_type="system_state")
17

18 pm.Controller.__init__(self, settings)
19

20 # model parameters
21 g = 9.81 # gravity [m/s^2]
22 M = 4.2774 # cart mass [kg]
23 D = 10 # cart friction constant [Ns/m]
24 m = 0.3211 # pendulum mass [kg]
25 d = 0.023 # pendulum friction constant [Nms]
26 l = 0.3533 # pendulum length [m]
27 J = 0.072 # pendulum moment of intertia [kg*m^2]
28

29 # the system matrices after linearization in phi=PI
30 z = (M + m) * J - (m * l) ** 2
31 A = np.array([[0, 0, 1, 0],
32 [0, 0, 0, 1],
33 [0, (m * l) ** 2 * g / z, -J * D / z, m * l * d / z],
34 [0, -(M + m) * m * l * g / z, m * l * D / z,
35 -(M + m) * d / z]
36 ])
37 B = np.array([[0],
38 [0],
39 [J / z],
40 [-l * m / z]
41 ])
42 C = np.array([[1, 0, 0, 0]])
43

44 # the equilibrium state as a vector
45 self._eq_state = np.array([0, np.pi, 0, 0])
46

47 # pole placement of linearized state feedback
48 self._K = pm.controltools.place_siso(A, B, self._settings["poles"])

(continues on next page)

14 Chapter 3. Tutorials
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(continued from previous page)

49 self._V = pm.controltools.calc_prefilter(A, B, C, self._K)
50

That would be all for the constructor. The only other method left to implement contains the actual control law and
will be called by the solver during runtime. Its parameters are the current time, the current values of trajectory,
feedforward and controller input. The parameter **kwargs holds further information, which is explained in
pymoskito.simulation_modules.Controller. For our example, we will just ignore it. Since this
controller will be stabilizing the system in the steady state [0,0,0,0], it has to be subtracted to work on the small
signal scale.

52 def _control(self, time, trajectory_values=None, feedforward_values=None,
53 input_values=None, **kwargs):
54 x = input_values - self._eq_state
55 yd = trajectory_values - self._eq_state[0]
56 output = - np.dot(self._K, x) + np.dot(self._V, yd[0])
57

58 return output

Finally, import the controller file and register the controller class to PyMoskito by adding two lines to the main.py
file as done before with the model class. Your main.py should now look like this, with the changed lines high-
lighted:

1 # -*- coding: utf-8 -*-
2 import pymoskito as pm
3

4 # import custom modules
5 import model
6 import controller
7

8

9 if __name__ == '__main__':
10 # register model
11 pm.register_simulation_module(pm.Model, model.PendulumModel)
12

13 # register controller
14 pm.register_simulation_module(pm.Controller, controller.BasicController)
15

16 # start the program
17 pm.run()

Having put all pieces together, we are now ready to run our scenario.

3.1.7 Closing the Control Loop

Firstly, start PyMoskito from the commandline and reapply the previous steps:

• select PendulumModel as Model

• change the initial state of PendulumModel to [0, 100, 0, 0]

• select ODEInt as Solver

• change the end time of Solver to 10

• select AdditiveMixer as ModelMixer

Now, it gets interesting, select:

• the new BasicController as Controller

• change Input A of ModelMixer to Controller and

• select Setpoint as Trajectory

3.1. Beginners Tutorial 15
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to generate desired values for out new setup. The setpoint 0 demands that the cart position (the output defined by
our model) should be kept at zero.

To enter string values, type 'Controller' or "Controller" and remember to press enter to confirm the
input.

The Properties window should now look like Fig. 3.6

Fig. 3.6: The properties window with changes for testing applied

Now, hit F5 to run the simulation. After simulating, you find a few more diagrams in the data section. Fig. 3.7
shows the example of the control error.

Feel free to experiment with the settings and see, if the control loop reacts the way you would have predicted.
Keep in mind that the implemented controller is static. The control law does not adapt to changes of the model
parameters, since the controller gain is calculated from values stored in the controller class. You can use this
effect to simulate the situation, where the controller design was based on model parameters that differ from the
real parameters of the process.

These were all the fundamental functions of PyMoskito considered necessary to work with it. One more important,
but also more advanced feature is the system’s visualization in 2D or 3D. This animation appears in the window
at the top right, which remained grey during this tutorial (see Fig. 3.3, Fig. 3.5, Fig. 3.7). For more information
on this topic, see the lesson on visualization.

3.1.8 Further Reading

After completing the Beginners Tutorial, there are several ways to go on if you did not find an answer to your
problem or simply would like to know more.
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Fig. 3.7: PyMoskito’s interface with the control error diagram displayed

PyMoskito contains a few examples of fully implemented systems. Take a peak into what is possible by running
their simulations or reading their source code.

The Users Guide offers instructions to access the full potential of PyMoskito. Read about animated visualization,
storing simulation settings for future reuse, comparing simulation results and more.

The Modules Reference contains documentations of all classes, that are part of PyMoskito. Read about all abstract
classes being part of the control loop, the modules realizing the simulation or the interface and more.

3.2 Visualization

This tutorial covers the subject of how to visualize your system using pymoskito.

To do this, you can provide a pm.Visualizer to the toolbox which will then be used to show the system. To
accomplish this, pymoskito uses the VisualizationToolkit (vtk) for natty 3d plots. However, if vtk is not available
a fallback method using the matplotlib is also supported.

Before we start visualizing, we need to choose a system. For sake of simplicity, the simple_example system from
the introduction will be used. Visualizers for both toolkits will be explained in the following sections.

3.2.1 Visualization using the Matplotlib

Building the visualizer

The overall plan here is to derive a class that we will call MplPendulumVisualizer from MplVisualizer. In its
constructor, we will lay down all the elements we want to use to visualize the system. In our case these will be
the beam on which the cart is moving, the cart and of course the pendulum. Later on, the method pymoskito.
MplVisualizer.update_scene() will be called repeatedly from the GUI to update the visualization.

We will start off with the following code:

3.2. Visualization 17
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1 # -*- coding: utf-8 -*-
2 import numpy as np
3 import pymoskito as pm
4

5 import matplotlib as mpl
6 import matplotlib.patches
7 import matplotlib.transforms
8

9

10 class MplPendulumVisualizer(pm.MplVisualizer):
11

12 # parameters
13 x_min_plot = -.85
14 x_max_plot = .85
15 y_min_plot = -.6
16 y_max_plot = .6
17

18 cart_height = .1
19 cart_length = .2
20

21 beam_height = .01
22 beam_length = 1
23

24 pendulum_shaft_height = 0.027
25 pendulum_shaft_radius = 0.020
26

27 pendulum_height = 0.5
28 pendulum_radius = 0.005

On top, we import some modules we’ll need later on. Once this is done we derive our MplPendulumVisualizer
from MplVisualizer. What follows below are some parameters for the matplotlib canvas and the objects we
want to draw, fell free to adapt them as you like!

In the first part of the constructor, we set up the canvas:

30

31 def __init__(self, q_widget, q_layout):
32 # setup canvas
33 pm.MplVisualizer.__init__(self, q_widget, q_layout)
34 self.axes.set_xlim(self.x_min_plot, self.x_max_plot)
35 self.axes.set_ylim(self.y_min_plot, self.y_max_plot)
36 self.axes.set_aspect("equal")
37

Afterwards, our “actors” are created:

39 self.beam = mpl.patches.Rectangle(xy=[-self.beam_length/2,
40 -(self.beam_height
41 + self.cart_height/2)],
42 width=self.beam_length,
43 height=self.beam_height,
44 color="lightgrey")
45

46 self.cart = mpl.patches.Rectangle(xy=[-self.cart_length/2,
47 -self.cart_height/2],
48 width=self.cart_length,
49 height=self.cart_height,
50 color="dimgrey")
51

52 self.pendulum_shaft = mpl.patches.Circle(
53 xy=[0, 0],
54 radius=self.pendulum_shaft_radius,

(continues on next page)
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(continued from previous page)

55 color="lightgrey",
56 zorder=3)
57

58 t = mpl.transforms.Affine2D().rotate_deg(180) + self.axes.transData
59 self.pendulum = mpl.patches.Rectangle(
60 xy=[-self.pendulum_radius, 0],
61 width=2*self.pendulum_radius,
62 height=self.pendulum_height,
63 color=pm.colors.HKS07K100,
64 zorder=2,
65 transform=t)
66

Note that a transformation object is used to get the patch in the correct place and orientation. We’ll make more
use of transformations later. For now, all that is left to do for the constructor is to add our actors t the canvas:

68 self.axes.add_patch(self.beam)
69 self.axes.add_patch(self.cart)
70 self.axes.add_patch(self.pendulum_shaft)
71 self.axes.add_patch(self.pendulum)
72

After this step, the GUI knows how our system looks like. Now comes the interesting part: We use the systems
state vector (the first Equation in introduction) which we obtained from the simulation to update our drawing:

74 def update_scene(self, x):
75 cart_pos = x[0]
76 phi = np.rad2deg(x[1])
77

78 # cart and shaft
79 self.cart.set_x(cart_pos - self.cart_length/2)
80 self.pendulum_shaft.center = (cart_pos, 0)
81

82 # pendulum
83 ped_trafo = (mpl.transforms.Affine2D().rotate_deg(phi)
84 + mpl.transforms.Affine2D().translate(cart_pos, 0)
85 + self.axes.transData)
86 self.pendulum.set_transform(ped_trafo)
87

88 # update canvas
89 self.canvas.draw()
90

91

As defined by our model, the first element of the state vector x yields the cart position, while the pendulum de-
flection (in rad) is given by x[1] . Firstly, cart and the pendulum shaft are moved. This can either be done via
set_x() or by directly overwriting the value of the center attribute. For the pendulum however, a transfor-
mation chain is build. It consists of a rotation by the pendulum angle phi followed by a translation to the current
cart position. The last component is used to compensate offsets from the rendered window.

Lastly but important: The canvas is updated vie a call to self.canvas.draw()

The complete class can be found under:

pymoskito/examples/simple_pednulum/visualizer_mpl.py

Registering the visualizer

To get our visualizer actually working, we need to register it. For the simple main.py of our example this would
mean adding the following lines:

3.2. Visualization 19
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1 # -*- coding: utf-8 -*-
2 import pymoskito as pm
3

4 # import custom modules
5 import model
6 import controller
7 import visualizer_mpl
8

9

10 if __name__ == '__main__':
11 # register model
12 pm.register_simulation_module(pm.Model, model.PendulumModel)
13

14 # register controller
15 pm.register_simulation_module(pm.Controller, controller.BasicController)
16

17 # register visualizer
18 pm.register_visualizer(visualizer_mpl.MplPendulumVisualizer)
19

20 # start the program
21 pm.run()

After starting the program, this is what you should see in the top right corner:

Fig. 3.8: Matplotlib visualization of the simple pendulum system

If you are looking for a fancier animation, check out the VTK Tutorial.

3.2.2 Visualization using VTK

Building the visualizer

TODO

Intermediate:
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3.3 Switching Systems

TODO

3.4 Postprocessing

TODO

Expert:

3.5 Metaprocessing

TODO

3.3. Switching Systems 21
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CHAPTER 4

Examples

PyMoskito comes with quite a set of interesting examples from the field of control theory. To run an example just
enter:

$ python -m pymoskito.examples.NAME

where NAME is the name, given in parenthesis behind the example titles.

List of Examples:

4.1 Ball and Beam (ballbeam)

A beam is pivoted on a bearing in its middle. The position of a ball on the beam is controlable by applying a
torque into the bearing.

The ball has a mass 𝑀 , a radius 𝑅 and a moment of inertia 𝐽𝑏. Its distance 𝑟 to the beam center is counted
positively to the right. For the purpose of simplification, the ball can only move in the horizontal direction.

The beam has a length 𝐿, a moment of inertia 𝐽 and its deflection from the horizontal line is the angle 𝜃.

The task is to control the position 𝑟 of the ball with the actuation variable being the torque 𝜏 . The interesting
part in this particular system is that while being nonlinear and intrinsically unstable, it’s relative degree is not
well-defined. This makes it an exciting but yet still clear lab example. The description used here is taken from the
publication [Hauser92] .

With the state vector

𝑥 =

⎛⎜⎜⎝
𝑥1

𝑥2

𝑥3

𝑥4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝑟
�̇�
𝜃

𝜃

⎞⎟⎟⎠ ,

the nonlinear model equations are given by

�̇� =

⎛⎜⎜⎝
�̇�1

�̇�2

�̇�3

�̇�4

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝑥2

𝑀𝑅2

𝐽𝑏+𝑀𝑅2 (𝑥1𝑥
2
4 − 𝑔 sin(𝑥3))

𝑥4
𝜏−𝑀 ·(2𝑥1𝑥2𝑥4+𝑔𝑥1 cos(𝑥3))

𝑀𝑥2
1+𝐽+𝐽𝑏

⎞⎟⎟⎟⎠ .
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Fig. 4.1: The ball and beam system

Violations of the model’s boundary conditions are the ball leaving the beam

|𝑥1| >
𝐿

2

or the beam’s deflection reaching the vertical line

|𝑥3| >
𝜋

2
.

The ball’s position

𝑦 = 𝑥1 = 𝑟

is chosen as output.

The example comes with five controllers. The FController and GController both implemenent a input-
output-linearization of the system and manipulate the second output derivative by ignoring certain parts of the
term. The JController ignores the nonlinear parts of the linearized model equations, also called standard
jacobian approximation. The LSSController linearizes the nonlinear model in a chosen steady state and
applies static state feedback. The PIXController also linearizes the model and additionally integrates the
control error.

LinearFeedforward implements a compensation of the linear system equation parts, with the aim of reducing
the controllers task to the nonlinear terms of the equations and disturbances.

The example comes with four observers. LuenbergerObserver, LuenbergerObserverReduced and
LuenbergerObserverInt are different implementations of the Luenberger observer. The second of these
improves its performance by using a different method of integration and the third uses the solver for integration.
The HighGainObserver tries to implement an observer for nonlinear systems, However, the examination for
observability leads to the presumption that this attempt should fail.

A 3D visualizer is implemented. In case of missing VTK, a 2D visualization can be used instead.

An external settings file contains all parameters. All implemented classes import their initial values from here.

At program start, the main loads two regimes from the file default.sreg. test-nonlinear is a setting
of the nonlinear controller moving the ball from the left to the right side of the beam. test-linear shows the
step response of a linear controller, resulting in the ball moving from the middle to the right side of the beam.
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The example also provides ten different modules for postprocessing. They plot different combinations of results
in two formats, one of them being pdf. The second format of files can be given to a metaprocessor.

The structure of __main__.py allows starting the example without navigating to the directory and using an
__init__.py file to outsource the import commands for additional files.

4.2 Ball in Tube (balltube)

A fan at the bottom of a tube produces an air stream moving upwards. A ball levitates in the air stream.

The task is to control the ball’s position 𝑧. Actuating variable is the motor’s control signal 𝑢𝑝𝑤𝑚.

Fig. 4.2: The ball in tube system

The example comes with two models, which differ in the reaction to the ball falling down. The
BallInTubeModel makes the ball stick to the ground once it falls down. The BallInTubeSpringModel
lets the ball to jump back up again:

4.2.1 Ball in Tube Model

A fan at the bottom of a tube produces an air stream moving upwards. A ball levitates in the air stream.

The fan rotates with the rotational speed 𝜂. It produces an air stream with the velocity 𝑣. The factor 𝑘𝐿 describes
the proportionality between the air’s volume flow rate and the fan’s rotational speed. The motor driving the fan
is modeled as a PT2-element with the amplification 𝑘𝑠, the damping 𝑑 and the time constant 𝑇 . An Arduino Uno
controls the motor, its discrete control signal 𝑢𝑝𝑤𝑚 has a range of 0− 255 and amplifies the supply voltage 𝑉𝑐𝑐.

The ball covers an area 𝐴𝐵 and has a mass 𝑚. Its distance to the tube’s bottom is the position 𝑧. The gap between
the ball and the tube covers an area 𝐴𝑆𝑝. The factor 𝑘𝑉 describes the proportionality between the force of flow
resistance and the velocity of the air streaming through the gap.

4.2. Ball in Tube (balltube) 25
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The tube has a height ℎ.

The task is to control the ball’s position 𝑧. Actuating variable is the motor’s control signal 𝑢𝑝𝑤𝑚.

Fig. 4.3: The ball in tube system in detail

TWith the state vector

𝑥 =

⎛⎜⎜⎝
𝑥1

𝑥2

𝑥3

𝑥4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝜂
�̇�
𝑧
�̇�

⎞⎟⎟⎠ ,

the model equations are given by

�̇� =

⎛⎜⎜⎝
�̇�1

�̇�2

�̇�3

�̇�4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝑥2

− 1
𝑇 2𝑥1 − 2𝑑

𝑇 𝑥2 +
𝑘𝑠

𝑇 2

𝑢𝑝𝑤𝑚

255 𝑉𝑐𝑐

𝑥4
𝑘𝐿

𝑚 (𝑘𝑉 𝑥1−𝐴𝐵𝑥4

𝐴𝑆𝑝
)2 − 𝑔

⎞⎟⎟⎠ .

In case of the ball falling down and reaching a position 𝑥3 < 0 below the fan, the root function of the model
overrides the ball’s position 𝑥3 = 0 and velocity 𝑥4 = 0.

The model’s boundary condition is violated if the ball leaves the tube on the upper end:

𝑥3 > ℎ

The ball’s position

𝑦 = 𝑥3 = 𝑧

is chosen as output.
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4.2.2 Ball in Tube Spring Model

This model contains all equations of the Ball in Tube Model except for one single change: The dynamics of the
ball bouncing back up once it falls to the ground.

Instead of overriding the ball’s position and speed once the ball falls below the fan, the fourth system equation is
overwritten by an extended version

�̇�4 =
𝐾𝑥3

𝑚
− 𝐷𝑥4

𝑚
+

𝑘𝐿
𝑚

(︂
𝑘𝑉 𝑥1 −𝐴𝐵𝑥4

𝐴𝑆𝑝

)︂2

− 𝑔.

This inserts a spring with the stiffness 𝐾 and the damping 𝐷 on the ground of the tube.

The OpenLoop controller ignores the current state and output of the model, as well as trajectory values. Instead
it gives the opportunity to set the actuating variable 𝑢𝑝𝑤𝑚 manually.

The ball’s position is used as a flat output in this flatness based feedforward module:

4.2.3 Ball in Tube Feedforward

Analyzing the system for flatness leads to finding the ball’s position as the flat output of the system, meaning
that all other system variables can be calculated from it. This can be retraced easily with the following chain of
equations:

𝑥3 = 𝑦

= 𝑓3(𝑦)

𝑥4 = �̇�

= 𝑓4(�̇�)

𝑥1 =
𝐴𝑆𝑝

𝑘𝑉

√︂
𝑚

𝑘𝐿
(𝑦 + 𝑔) +

𝐴𝐵

𝑘𝑉
�̇�

= 𝑓1(𝑦, �̇�, 𝑦)

𝑥2 =
𝑚𝐴2

𝑆𝑝𝑦
(3)

2𝑘𝑉 𝑘𝐿(𝑘𝑉 𝑥1 −𝐴𝐵 �̇�)
+

𝐴𝐵

𝑘𝑉
𝑦

= 𝑓2(𝑦, �̇�, 𝑦, 𝑦
(3))

𝑢 =
𝑚𝑇 2𝐴2

𝑆𝑝𝑦
(4) − 2𝑘𝐿𝑇

2(𝑘𝑉 𝑥2 −𝐴𝐵𝑦)
2

2𝑘𝑠𝑘𝑉 𝑘𝐿(𝑘𝑉 𝑥1 −𝐴𝐵 �̇�)
+

𝐴𝐵𝑇
2

𝑘𝑠𝑘𝑉
𝑦(3) +

2𝑑𝑇

𝑘𝑠
𝑥2 +

1

𝑘𝑠
𝑥1

= 𝑓𝑢(𝑦, �̇�, 𝑦, 𝑦
(3), 𝑦(4))

The last equation 𝑢 = 𝑓𝑢(𝑦, �̇�, 𝑦, 𝑦
(3), 𝑦(4)) is implented in this feedforward module. The highest order of deriva-

tives is 𝑦(4), so the trajectory generator needs to provide a trajectory that is differentiable at least four times.

A 3D visualizer is implemented. In case of missing VTK, a 2D visualization can be used instead.

An external settings file contains all parameters. All implemented classes import their initial values from here.

Regimes are stored in two files. At program start, the main function loads six regimes from the file default.
sreg. In addition, nine regimes can be loaded manually from the file experiments.sreg.

The structure of __main__.py allows starting the example without navigating to the directory and using an
__init__.py file to outsource the import commands for additional files.

The example also provides a package for symbolic calculation.

4.3 Tandem Pendulum (pendulum)

Two pendulums are fixed on a cart, which can move in the horizontal direction.
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The cart has a mass 𝑚0. The friction between the cart and the surface causes a frictional force 𝐹𝑟 = 𝑑0 · �̇�, in
opposite direction as the velocity �̇� of the cart.

Each pendulum has a mass 𝑚𝑖, a moment of intertia 𝐽𝑖, a length 𝑙𝑖 and an angle of deflection 𝜙𝑖. The friction
in the joint where the pendulums are mounted on the cart causes a frictional torque 𝑀𝑖𝑟 = 𝑑𝑖 · �̇�𝑖, in opposite
direction as the speed of rotation �̇�𝑖. The system is shown in Fig. 4.4 .

The task is to control the position 𝑠 of the cart and to stabilize the pendulums in either the upward or downward
position. Actuating variable is the force F.

Fig. 4.4: The pendulum system

The example comes with three models. A point mass model, a rigid body model and a partially linearized model.

The state vector 𝑥 is chosen in all three models as:

𝑥 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑠
�̇�
𝜙1

�̇�1

𝜙2

�̇�2

⎞⎟⎟⎟⎟⎟⎟⎠
The class TwoPendulumModel is the implementation of a point mass model. The mass of each pendulum
is considered concentrated at the end of its rod. The model resulting model equations are relatively simple and
moments of inertia do not appear:

�̇� =

⎛⎜⎜⎜⎜⎜⎜⎝
�̇�1

�̇�2

�̇�3

�̇�4

�̇�5

�̇�6

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥2

1
𝑀

(︁
𝐹1 + 𝐹2 + 𝐹 − 𝑑0𝑥2 − 𝑑1𝑥4

𝑙1
cos(𝑥3)− 𝑑2𝑥6

𝑙2
cos(𝑥5)

)︁
𝑥4

𝑔
𝑙1
sin(𝑥3)− 𝑑1𝑥4

𝑚1𝑙21
+ cos(𝑥3)

𝑙1𝑀

(︁
𝐹1 + 𝐹2 + 𝐹 − 𝑑0𝑥2 − 𝑑1𝑥4

𝑙1
cos(𝑥3)− 𝑑2𝑥6

𝑙2
cos(𝑥5)

)︁
𝑥6

𝑔
𝑙2
sin(𝑥5)− 𝑑2𝑥6

𝑚2𝑙22
+ cos(𝑥5)

𝑙2𝑀

(︁
𝐹1 + 𝐹2 + 𝐹 − 𝑑0𝑥2 − 𝑑1𝑥4

𝑙1
cos(𝑥3)− 𝑑2𝑥6

𝑙2
cos(𝑥5)

)︁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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𝑀 = 𝑚0 +𝑚1 sin
2(𝑥3) +𝑚2 sin

2(𝑥5)

𝐹1 = 𝑚1 sin(𝑥3)(𝑔 cos(𝑥3)− 𝑙1𝑥
2
4)

𝐹2 = 𝑚2 sin(𝑥5)(𝑔 cos(𝑥5)− 𝑙2𝑥
2
6)

The class TwoPendulumRigidBodyModel is the implementation of a rigid body model. The rods are consid-
ered to have a mass and can not be ignored, each pendulum has a moment of inertia 𝐽𝐷𝑃𝑖:

�̇� =

⎛⎜⎜⎜⎜⎜⎜⎝
�̇�1

�̇�2

�̇�3

�̇�4

�̇�5

�̇�6

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

𝑥2
𝑡𝑒𝑟𝑚2 + 𝑡𝑒𝑟𝑚3 + 𝑡𝑒𝑟𝑚4

𝑡𝑒𝑟𝑚1
𝑥4

1
𝐽𝐷𝑃1

(𝑚*
1𝑙

*
1 cos(𝑥3)�̇�2 +𝑀1 − 𝑑1𝑥4 +𝑚*

1𝑙
*
1𝑔 sin(𝑥3))

𝑥6
1

𝐽𝐷𝑃2
(𝑚*

2𝑙
*
2 cos(𝑥5)�̇�2 +𝑀2 − 𝑑2𝑥6 +𝑚*

2𝑙
*
2𝑔 sin(𝑥5))

⎞⎟⎟⎟⎟⎟⎟⎠
𝑡𝑒𝑟𝑚1 = 𝑚*

0 +𝑚*
1 +𝑚*

2 −
𝑚*2

1 𝑙*21 cos2(𝑥3)

𝐽𝐷𝑃1
− 𝑚*2

2 𝑙*22 cos2(𝑥5)

𝐽𝐷𝑃2

𝑡𝑒𝑟𝑚2 =
𝑚*

1𝑙
*
1 cos(𝑥3)

𝐽𝐷𝑃1
(𝑀1 − 𝑑1𝑥4 +𝑚*

1𝑙
*
1𝑔 sin(𝑥3))

𝑡𝑒𝑟𝑚3 =
𝑚*

2𝑙
*
2 cos(𝑥5)

𝐽𝐷𝑃2
(𝑀2 − 𝑑2𝑥6 +𝑚*

2𝑙
*
2𝑔 sin(𝑥5))

𝑡𝑒𝑟𝑚4 = 𝐹 − 𝑑0𝑥2 −𝑚*
1𝑙

*
1𝑥

2
4 sin(𝑥3)−𝑚*

2𝑙
*
2𝑥

2
6 sin(𝑥5)

The class TwoPendulumModelParLin is the implementation of a the partially linearized point mass model.
The input is chosen as

𝑢𝑡𝑟 =
1

𝑀

(︂
𝐹1 + 𝐹2 + 𝐹 − 𝑑0𝑥2 −

𝑑1𝑥4

𝑙1
cos(𝑥3)−

𝑑2𝑥6

𝑙2
cos(𝑥5)

)︂
,

with 𝑀 , 𝐹1 and 𝐹2 as before in TwoPendulumModel. This transforms the model equations into the input afine
form

�̇� =

⎛⎜⎜⎜⎜⎜⎜⎝
�̇�1

�̇�2

�̇�3

�̇�4

�̇�5

�̇�6

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑥2

0
𝑥4

𝑔
𝑙1
sin(𝑥3)− 𝑑1𝑥4

𝑚1𝑙21
𝑥6

𝑔
𝑙2
sin(𝑥5)− 𝑑2𝑥6

𝑚2𝑙22

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0

cos(𝑥3)
𝑙1
0

cos(𝑥5)
𝑙2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
𝑢𝑡𝑟

All three models define the cart’s position

𝑦 = 𝑥1 = 𝑠

as the output of the system.

The example comes with five controllers. Two of them, LinearStateFeedback and
LinearStateFeedbackParLin, implement linear state feedback, both using the package
symbolic_calculation to calculate their gain and prefilter. The LinearQuadraticRegulator calcu-
lates its gain and prefilter by solving the continuous algebraic Riccati equation. The LjapunovController
is designed with the method of Ljapunov to stabilize the pendulums in the upward position. And finally the
SwingUpController, especially designed to swing up the pendulums using linear state feedback and to
stabilize the system by switching to a Ljapunov controller once the pendulums point upwards.

A 3D visualizer is implemented. In case of missing VTK, a 2D visualization can be used instead.

An external settings file contains all parameters. All implemented classes import their initial values from here.

At program start, the main loads eleven regimes from the file default.sreg. The provided regimes not only
show the stabilization of the system in different steady-states (e.g. both pendulums pointing downwards or both
pointing upwards) but also ways to transition them between those states (e.g. swinging them up).

The example also provides two modules for postprocessing. They plot different combinations of results in two
formats, one of them being pdf. The second format of files can be passed to a metaprocessor.

The structure of __main__.py allows starting the example without navigating to the directory and using an
__init__.py file to outsource the import commands for additional files.
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4.4 Car with Trailers (car)

A car pulls multiple trailers. All parts of the vehicle have one axis for simplification.

The car moves forward with a velocity 𝑣 and turns with a ratotional speed 𝜔. The coordinates 𝑥 and 𝑦 describe
the car’s distance to the origin of a stationary coordinate system.

The car’s and the trailer’s deflections regarding the horizontal line are 𝜙1, 𝜙2 and 𝜙3.

The distances between the axles and the couplings from front to back are 𝑑1, 𝑙2, 𝑑2 and 𝑙3

Fig. 4.5: The car system

With the state vector

𝑥 =

⎛⎜⎜⎜⎜⎝
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
𝑥
𝑦
𝜙1

𝜙2

𝜙3

⎞⎟⎟⎟⎟⎠ ,

the model equations are given by

�̇� =
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�̇�1

�̇�2

�̇�3

�̇�4

�̇�5
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𝑣 sin(𝑥3)

𝜔
1
𝑙2
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𝑙2
cos(𝑥3 − 𝑥4)𝜔

�̇�5

⎞⎟⎟⎟⎟⎠ ,

with

�̇�5 =

(︂
1

𝑙3
sin(𝑥3 − 𝑥5)−

𝑙2 + 𝑑2
𝑙2𝑙3

sin(𝑥3 − 𝑥4) cos(𝑥4 − 𝑥5)

)︂
𝑣 + . . .

· · ·+
(︂
−𝑑1

𝑙3
cos(𝑥3 − 𝑥5) +

𝑑1(𝑙2 + 𝑑2)

𝑙2𝑙3
cos(𝑥3 − 𝑥4) cos(𝑥4 − 𝑥5)

)︂
𝜔.
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The driving speed 𝑣 and the turning speed 𝜔 are set to constant values in the state function of the model. They are
potential actuating variables to control the system.

There is no output defined.

The example comes with no controller, with a 2D visualization, an external settings file containing all initial
values for the parameters and one regime loaded from the file default.sreg by the main at program start.

The structure of __main__.py allows starting the example without navigating to the directory and using an
__init__.py file to outsource the import commands for additional files.
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CHAPTER 6

PyMoskito Modules Reference

Because every feature of PyMoskito must have a test case, when you are not sure how to use something, just look
into the tests/ directories, find that feature and read the tests for it, that will tell you everything you need to
know.

Most of the things are already documented though in this document, that is automatically generated using Py-
Moskito’s docstrings.

Click the “modules” (modindex) link in the top right corner to easily access any PyInduct module, or use this
contents:

6.1 Simulation GUI

class pymoskito.simulation_gui.SimulationGui
class for the graphical user interface

apply_regime_by_name(regime_name)
Apply the regime given by regime_name und update the regime index.

Returns True if successful, False if errors occurred.

Return type bool

closeEvent(self, QCloseEvent)

export_simulation_data(ok)
Query the user for a custom name and export the current simulation results.

Parameters ok – unused parameter from QAction.triggered() Signal

increment_playback_time()
go one time step forward in playback

load_regimes_from_file(file_name)
load simulation regime from file :param file_name:

new_simulation_data(status, data)
Slot to be called when the simulation interface has completed the current job and new data is available.

Parameters
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• status (str) – Status of the simulation, either - finished : Simulation has been
finished successfully or - failed : Simulation has failed.

• data (dict) – Dictionary, holding the simulation data.

pause_animation()
pause the animation

play_animation()
play the animation

plot_data_vector(item)
Creates a plot widget based on the given item.

If a plot for this item is already open no new plot is created but the existing one is raised up again.

Parameters item (Qt.ListItem) – Item to plot.

postprocessing_clicked()
starts the post- and metaprocessing application

regime_dclicked(item)
Apply the selected regime to the current target.

reset_camera_clicked()
reset camera in vtk window

run_next_regime()
Execute the next regime in the regime batch.

start_regime_execution()
Simulate all regimes in the regime list.

start_simulation()
start the simulation and disable start button

stop_animation()
Stop the animation if it is running and reset the playback time.

stop_regime_execution()
Stop the batch process.

update_gui()
Updates the graphical user interface to reflect changes of the current display time.

This includes:

• timestamp

• visualisation window

• time cursors in diagrams

update_playback_speed(val)
adjust playback time to slider value

Parameters val –

update_playback_time()
adjust playback time to slider value

pymoskito.simulation_gui.run(regimes=None)
Helper function to launch the PyMoskito GUI

6.2 Simulation Modules

class pymoskito.simulation_modules.SimulationModule(settings)
Smallest unit pof the simulation framework.
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This class provides necessary functions like output calculation and holds all settings that can be accessed
by the user. The public_settings are read by the SimulationInterface and the rendered by
the GUI. All entries stated in this dictionary will be available as changeable settings for the module. On
initialization, a possibly modified (in terms of its values) version of this dict will be passed back to this class
and is thenceforward available via the settings property.

The most important method is calc_output() which is called by the Simulator to retrieve this
modules output.

Parameters settings (OrderedDict) – Settings for this simulation module. These entries
will be shown in the properties view and can be changed by the user. The important entries
for this base class are:

output info: Dict holding an information dictionaries with keys Name and Unit for each
element in the output data. If available, these information are used to display reasonable
names in the result view and to display the corresponding units for the result plots.

Warn: Do NOT use ‘.’ in the output_info name field.

exception pymoskito.simulation_modules.SimulationException

class pymoskito.simulation_modules.Trajectory(settings)
Base class for all trajectory generators

_desired_values(t)
Placeholder for calculations of desired values.

Parameters t (float) – Time.

Returns Trajectory output. This should always be a two-dimensional array holding the
components in to 0th and their derivatives in the 1th axis.

Return type Array

class pymoskito.simulation_modules.Feedforward(settings)
Base class for all feedforward implementations

_feedforward(time, trajectory_values)
Placeholder for feedforward calculations.

Parameters

• time (float) – Current time.

• trajectory_values (array-like) – Desired values from the trajectory gen-
erator.

Returns Feedforward output. This signal can be added to the controllers output via the
ModelMixer and is also directly passed to the controller.

Return type Array

class pymoskito.simulation_modules.Controller(settings)
Base class for controllers.

Parameters settings (dict) – Dictionary holding the config options for this module. It
must contain the following keys:

input_order The order of required derivatives from the trajectory generator.

input_type Source for the feedback calculation and one of the following: sys-
tem_state , system_output , Observer or Sensor .

_control(time, trajectory_values=None, feedforward_values=None, input_values=None,
**kwargs)

Placeholder for control law calculations.

For more sophisticated implementations overload calc_output() .
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Parameters

• time (float) – Current time.

• trajectory_values (array-like) – Desired values from the trajectory gen-
erator.

• feedforward_values (array-like) – Output of feedforward block.

• input_values (array-like) – The input values selected by input_type .

• **kwargs – Placeholder for custom parameters.

Returns Control output.

Return type Array

class pymoskito.simulation_modules.Limiter(settings)
Base class for all limiter variants

_limit(values)
Placeholder for actual limit calculations.

Parameters values (array-like) – Values to limit.

Returns Limited output.

Return type Array

class pymoskito.simulation_modules.ModelMixer(settings)

class pymoskito.simulation_modules.Model(settings)
Base class for all user defined system models in state-space form.

Parameters settings (dict) – Dictionary holding the config options for this module. It
must contain the following keys:

input_count The length of the input vector for this model.

state_count The length of the state vector for this model.

initial state The initial state vector for this model.

check_consistency(x)
Check whether the assumptions, made in the modelling process are violated.

Parameters x – Current system state

Raises ModelException – If a violation is detected. This will stop the simulation pro-
cess.

initial_state
Return the initial state of the system.

root_function(x)
Check whether a reinitialisation of the integrator should be performed.

This can be the case if there are discontinuities in the system dynamics such as switching.

Parameters x (array-like) – Current system state.

Returns

• bool: True if reset is advised.

• array-like: State to continue with.

Return type tuple

state_function(t, x, args)
Calculate the state derivatives of a system with state x at time t.

Parameters
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• x (Array-like) – System state.

• t (float) – System time.

Returns Temporal derivative of the system state at time t.

exception pymoskito.simulation_modules.ModelException
Exception to be raised if the current system state violates modelling assumptions.

class pymoskito.simulation_modules.Solver(settings)
Base Class for solver implementations

class pymoskito.simulation_modules.Disturbance(settings)
Base class for all disturbance variants

_disturb(value)
Placeholder for disturbance calculations.

If the noise is to be dependent on the measured signal use its value to create the noise.

Parameters value (array-like float) – Values from the source selected by the
input_signal property.

Returns Noise that will be mixed with a signal later on.

Return type array-like float

class pymoskito.simulation_modules.Sensor(settings)
Base class for all sensor variants

_measure(value)
Placeholder for measurement calculations.

One may reorder or remove state elements or introduce measurement delays here.

Parameters value (array-like float) – Values from the source selected by the
input_signal property.

Returns ‘Measured’ values.

Return type array-like float

class pymoskito.simulation_modules.ObserverMixer(settings)

class pymoskito.simulation_modules.Observer(settings)
Base class for observers

_observe(time, system_input, system_output)
Placeholder for observer law.

Parameters

• time – Current time.

• system_input – Current system input.

• system_output – Current system output.

Returns Estimated system state

6.3 Generic Simulation Modules

class pymoskito.generic_simulation_modules.LinearStateSpaceModel(settings)
The state space model of a linear system.

The parameters of this model can be provided in form of a file whose path is given by the setting config
file . This path should point to a pickled dict holding the following keys:

system: An Instance of scipy.signal.StateSpace (from scipy) representing the system,
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op_inputs: An array-like object holding the operational point’s inputs,

op_outputs: An array-like object holding the operational point’s outputs.

state_function(t, x, args)
Calculate the state derivatives of a system with state x at time t.

Parameters

• x (Array-like) – System state.

• t (float) – System time.

Returns Temporal derivative of the system state at time t.

class pymoskito.generic_simulation_modules.ODEInt(settings)
Wrapper for ode_int from Scipy project

integrate(t)
Integrate until target step is reached.

Parameters t – target time

Returns system state at target time

set_input(*args)
propagate input changes to ode_int

class pymoskito.generic_simulation_modules.ModelInputLimiter(settings)
ModelInputLimiter that limits the model input values.

Settings: Limits: (List of) list(s) that hold (min, max) pairs for the corresponding input.

class pymoskito.generic_simulation_modules.Setpoint(settings)
Provides setpoints for every output component.

If the output is not scalar, just add more entries to the list. By querying the differential order from the
controller (if available) the required derivatives are given.

Note: Keep in mind that while this class provides zeros for all derivatives of the desired value, they actually
strive to infinity for 𝑡 = 0 .

class pymoskito.generic_simulation_modules.HarmonicTrajectory(settings)
This generator provides a scalar harmonic sinus signal with derivatives up to order n

class pymoskito.generic_simulation_modules.SmoothTransition(settings)
provides (differential) smooth transition between two scalar states

class pymoskito.generic_simulation_modules.PIDController(settings)
PID Controller

class pymoskito.generic_simulation_modules.LinearStateSpaceController(settings)
A controller that is based on a state space model of a linear system.

This controller needs a linear statespace model, just as the LinearStateSpaceModel . The file pro-
vided in config file should therefore contain a dict holding the entries: model, op_inputs and
op_outputs .

If poles is given (differing from None ) the state-feedback will be computed using pymoskito.
place_siso() . Furthermore an appropriate prefilter is calculated, which establishes stationary attain-
ment of the desired output values.

Note: If a SIMO or MIMO system is given, the control package as well as the slycot package are needed
the perform the pole placement.
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class pymoskito.generic_simulation_modules.DeadTimeSensor(settings)
Sensor that adds a measurement delay on chosen states

class pymoskito.generic_simulation_modules.GaussianNoise(settings)
Noise generator for gaussian noise

class pymoskito.generic_simulation_modules.AdditiveMixer(settings)
Signal Mixer that accumulates all input signals.

Processing is done according to rules of numpy broadcasting.

6.4 Simulation Core

class pymoskito.simulation_core.SimulationStateChange(**kwargs)
Object that is emitted when Simulator changes its state.

Keyword Arguments

• type – Keyword describing the state change, can be one of the following

– init Initialisation

– start : Start of Simulation

– time : Accomplishment of new progress step

– finish : Finish of Simulation

– abort : Abortion of Simulation

• data – Data that is emitted on state change.

• info – Further information.

class pymoskito.simulation_core.Simulator(settings, modules)
This Class executes the time-step integration.

It forms the Core of the physical simulation and interacts with the GUI via the
:py:class:’‘SimulationInterface‘

Calculated values will be stored every 1 / measure rate seconds.

run()
Start the simulation.

stop()
Stop the simulation.

6.5 Processing GUI

class pymoskito.processing_gui.PostProcessor(parent=None)

closeEvent(self, QCloseEvent)

6.6 Processing Core

class pymoskito.processing_core.PostProcessingModule
Base Class for Postprocessing Modules

static calc_l1_norm_abs(meas_values, desired_values, step_width)
Calculate the L1-Norm of the absolute error.
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Parameters

• step_width (float) – Time difference between measurements.

• desired_values (array-like) – Desired values.

• meas_values (array-like) – Measured values.

static calc_l1_norm_itae(meas_values, desired_values, step_width)
Calculate the L1-Norm of the ITAE (Integral of Time-multiplied Absolute value of Error).

Parameters

• step_width (float) – Time difference between measurements.

• desired_values (array-like) – Desired values.

• meas_values (array-like) – Measured values.

process(files)
worker-wrapper function that processes an array of result files This is an convenience wrapper for
simple processor implementation. Overload for more sophisticated implementations :param files:

run(data)
Run this postprocessor.

This function will be called from process() with the simulation results from one simulation result
file.

Overwrite this function to implement your own PostProcessor.

Args; param data: simulation results from a pymoskito simulation result file.

Returns With a figure Canvas an a name.

Return type Dict

class pymoskito.processing_core.MetaProcessingModule
Base Class for Meta-Processing Modules

plot_family(family, x_path, y_path, mode, x_index=-1, y_index=-1)
plots y over x for all members that can be found in family sources :param family: :param x_path:
:param y_path: :param mode: :param x_index: :param y_index: :return:

set_plot_labeling(title=”, grid=True, x_label=”, y_label=”, line_type=’line’)
helper to quickly set axis labeling with the good font sizes :param title: :param grid: :param x_label:
:param y_label: :param line_type: :return:

6.7 Controltools

This file contains some functions that are quite helpful when designing feedback laws. This collection is not
complete and does not aim to be so. For a more sophisticated collection have a look at the symbtools (https://
github.com/TUD-RST/symbtools) or control package which are not used in this package to keep a small footprint.

pymoskito.controltools.char_coefficients(poles)
Calculate the coefficients of a characteristic polynomial.

Parameters poles (list or numpy.ndarray) – pol configuration

Returns coefficients

Return type numpy.ndarray

pymoskito.controltools.place_siso(a_mat, b_mat, poles)
Place poles for single input single output (SISO) systems:

• pol placement for state feedback: 𝐴 and 𝑏
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• pol placement for observer: 𝐴𝑇 and 𝑐

Parameters

• a_mat (numpy.ndarray) – System matrix.:math:A

• b_mat (numpy.ndarray) – Input vector 𝑏 or Output matrix 𝑐 .

• poles (list or numpy.ndarray) – Desired poles.

Returns Feedback vector or 𝑘 or observer gain 𝑙𝑇 .

Return type numpy.ndarray

pymoskito.controltools.calc_prefilter(a_mat, b_mat, c_mat, k_mat=None)
Calculate the prefilter matrix

𝑉 = −
[︁
𝐶 (𝐴−𝐵𝐾)

−1
𝐵
]︁−1

Parameters

• a_mat (numpy.ndarray) – system matrix

• b_mat (numpy.ndarray) – input matrix

• c_mat (numpy.ndarray) – output matrix

• k_mat (numpy.ndarray) – control matrix

Returns Prefilter matrix

Return type numpy.ndarray

pymoskito.controltools.controllability_matrix(a_mat, b_mat)
Calculate controllability matrix and check controllability of the system.

𝑄𝑐 =
(︀
𝐵 𝐴𝐵 𝐴2𝐵 · · · 𝐴𝑛−1𝐵

)︀
Parameters

• a_mat (numpy.ndarray) – system matrix

• b_mat (numpy.ndarray) – manipulating matrix

Returns controllability matrix 𝑄𝑐

Return type numpy.ndarray

pymoskito.controltools.observability_matrix(a_mat, c_mat)
Calculate observability matrix and check observability of the system.

𝑄𝑜 =

⎛⎜⎜⎜⎜⎜⎝
𝐶
𝐶𝐴

𝐶𝐴2

...
𝐶𝐴𝑛−1

⎞⎟⎟⎟⎟⎟⎠
Parameters

• a_mat (numpy.ndarray) – system matrix

• c_mat (numpy.ndarray) – output matrix

Returns observability matrix 𝑄𝑜

Return type numpy.ndarray

pymoskito.controltools.lie_derivatives(h, f, x, order=1)
Calculates the Lie-Derivative from a scalar field ℎ(𝑥) along a vector field 𝑓(𝑥).
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Parameters

• h (sympy.matrix) – scalar field

• f (sympy.matrix) – vector field

• x (sympy.matrix) – symbolic representation of the states

• order (int) – order

Returns lie derivatives in ascending order

Return type list of sympy.matrix

6.8 Tools

Tools, functions and other funny things

pymoskito.tools.rotation_matrix_xyz(axis, angle, angle_dim)
Calculate the rotation matrix for a rotation around a given axis with the angle 𝜙.

Parameters

• axis (str) – choose rotation axis “x”, “y” or “z”

• angle (int or float) – rotation angle 𝜙

• angle_dim (str) – choose “deg” for degree or “rad” for radiant

Returns rotation matrix

Return type numpy.ndarray

pymoskito.tools.get_resource(res_name, res_type=’icons’)
Build absolute path to specified resource within the package

Parameters

• res_name (str) – name of the resource

• res_type (str) – subdir

Returns path to resource

Return type str

6.9 Contributions to docs

All contributions are welcome. If you’d like to improve something, look into the sources if they contain the
information you need (if not, please fix them), otherwise the documentation generation needs to be improved
(look in the doc/ directory).
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CHAPTER 7

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be
given.

You can contribute in many ways:

7.1 Types of Contributions

7.1.1 Report Bugs

Report bugs at https://github.com/cklb/pymoskito/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

7.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

7.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to imple-
ment it.

7.1.4 Write Documentation

PyMoskito could always use more documentation, whether as part of the official PyMoskito docs, in docstrings,
or even on the web in blog posts, articles, and such.
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7.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/cklb/pymoskito/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

7.2 Get Started!

Ready to contribute? Here’s how to set up pymoskito for local development.

1. Fork the pymoskito repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/pymoskito.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you
set up your fork for local development:

$ mkvirtualenv pymoskito
$ cd pymoskito/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing
other Python versions with tox:

$ python setup.py test

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

7.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 3.4+ and for PyPy. Check https://travis-ci.org/cklb/pymoskito/
pull_requests and make sure that the tests pass for all supported Python versions.
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7.4 Tips

To run a subset of tests:

$ python -m unittest pymoskito/tests/test_gui.py
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CHAPTER 8

Credits

8.1 Development Lead

• Stefan Ecklebe <stefan.ecklebe@tu-dresden.de>

8.2 Contributors

• Christoph Burggraf

• Marcus Riesmeier

• Jonas Hoffmann

• Jens Wurm
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CHAPTER 9

History

9.1 0.3.0 (2018-10-01)

• Added a new plot system

• Added a last simulation list

• Added more log messages

• Removed latex as an requirement for the main GUI, only required for the Postprocessor

9.2 0.2.3 (2018-05-14)

• Added sensible examples for Post- and Meta processors in the Ball and Beam example

• Fixed Issue regarding the Disturbance Block

• Removed error-prone pseudo post processing

• Fixed problems due to changes in trajectory generators

9.3 0.2.2 (2018-03-28)

• Added extensive beginners guide (thanks to Jonas) and tutorial section

• Added extended documentation for examples (again, thanks to Jonas)

9.4 0.2.1 (2017-09-07)

• Fixed issue when installing via pip

• Fixed issue with metaprocessors and added example metaprocessor for ballbeam

• Downgraded requirements
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9.5 0.2.0 (2017-08-18)

• Second minor release with lots of new features.

• Completely overhauled graphical user interface with menus and shortcuts.

• PyMoskito now comes with three full-fledged examples from the world of control theory, featuring the Ball
and Beam- and a Tandem-Pendulum system.

• The main application now has a logger window which makes it easier to see what is going on in the simu-
lation circuit.

• Several bugs concerning encoding issues have been fixed

• Unittest have been added and the development now uses travis-ci

• Version change from PyQt4 to Pyt5

• Version change form Python 2.7 to 3.5+

• Changed version to GPLv3 and added appropriate references for the used images.

• Improved the export of simulation results

• Introduced persistent settings that make opening files less painful.

• Made vtk an optional dependency and added matplotlib based visualizers.

• Large improvements concerning the sphinx-build documentation

• Fixed issue concerning possible data types for simulation module properties

• Introduced new generic modules that directly work on scipy StateSpace objects.

9.6 0.1.0 (2015-01-11)

• First release on PyPI.
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CHAPTER 10

Indices and tables

• genindex

• modindex

• search
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moskito.simulation_gui.SimulationGui
method), 35

M
MetaProcessingModule (class in py-

moskito.processing_core), 42
Model (class in pymoskito.simulation_modules), 38
ModelException, 39
ModelInputLimiter (class in py-

moskito.generic_simulation_modules),
40

ModelMixer (class in pymoskito.simulation_modules),
38

N
new_simulation_data() (py-

moskito.simulation_gui.SimulationGui
method), 35

O
observability_matrix() (in module py-

moskito.controltools), 43
Observer (class in pymoskito.simulation_modules), 39
ObserverMixer (class in py-

moskito.simulation_modules), 39
ODEInt (class in py-

moskito.generic_simulation_modules),
40

P
pause_animation() (py-

moskito.simulation_gui.SimulationGui
method), 36

PIDController (class in py-
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play_animation() (py-

moskito.simulation_gui.SimulationGui
method), 36

plot_data_vector() (py-
moskito.simulation_gui.SimulationGui
method), 36

plot_family() (pymoskito.processing_core.MetaProcessingModule
method), 42

postprocessing_clicked() (py-
moskito.simulation_gui.SimulationGui
method), 36

PostProcessingModule (class in py-
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PostProcessor (class in pymoskito.processing_gui), 41
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method), 42
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R
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run() (pymoskito.processing_core.PostProcessingModule
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41
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set_input() (pymoskito.generic_simulation_modules.ODEInt

method), 40
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method), 42
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40

SimulationException, 37
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SimulationModule (class in py-
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state_function() (pymoskito.generic_simulation_modules.LinearStateSpaceModel
method), 40

state_function() (pymoskito.simulation_modules.Model
method), 38

stop() (pymoskito.simulation_core.Simulator method),
41

stop_animation() (py-
moskito.simulation_gui.SimulationGui
method), 36

stop_regime_execution() (py-
moskito.simulation_gui.SimulationGui
method), 36

T
Trajectory (class in pymoskito.simulation_modules), 37

U
update_gui() (pymoskito.simulation_gui.SimulationGui

method), 36
update_playback_speed() (py-

moskito.simulation_gui.SimulationGui
method), 36

update_playback_time() (py-
moskito.simulation_gui.SimulationGui
method), 36
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