

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

PyMOFScreen

Python workflow for high-throughput DFT screening of MOFs using VASP. Relevant details for the code can be found in the following paper:

A.S. Rosen, J.M. Notestein, R.Q. Snurr. “Identifying Promising Metal-Organic Frameworks for Heterogeneous Catalysis via High-Throughput Periodic Density Functional Theory”, J. Comput. Chem. (2019). DOI: 10.1002/jcc.25787 [https://onlinelibrary.wiley.com/doi/10.1002/jcc.25787].

[image: _images/113722940.svg]DOI [https://zenodo.org/badge/latestdoi/113722940]

[image: _images/toc.png]TOC

What is PyMOFScreen?

High-throughput DFT involving MOFs is a tricky business. Their large unit cells, diverse structures, and widely varying compositions make it challenging to achieve both a robust and high-performing workflow with little human interactions. PyMOFScreen solves this problem through multi-stage structural optimizations, a robust selection of optimization algorithms that are chosen on-the-fly, automatic error-handling, and more. In the Snurr group, we have used PyMOFScreen to screen thousands of MOFs using periodic DFT in a fully automated fashion. To automate the adsorbate construction process, refer to our MOF Adsorbate Initializer [https://mai.readthedocs.io/en/latest/] (MAI) code.

Ready-to-Run Examples

Minimal Example

To get started, sample scripts are provided in the mof_screen/examples [https://github.com/arosen93/mof_screen/tree/master/examples] directory. Below is a minimal example for performing a volume relaxation for a set of CIFs stored in the directory mofpath.

from pymofscreen.cif_handler import get_cif_files
from pymofscreen.screen import screener

#Set up paths
mofpath = 'path/to/my/CIFs'
basepath = 'path/to/store/vasp_output'
submit_script = 'path/to/job_submission/script/submit.sh'

#Read in CIF files
cif_files = get_cif_files(mofpath)

#Construct screener object
s = screener(basepath,mofpath,submit_script=submit_script)

#Run volume relaxation for each CIF
for cif_file in cif_files:
	mof = s.run_screen(cif_file,'volume')

Specifying VASP Parameters

Of course, in practice it is essential to specify parameters such as the exchange-correlation functional, convergence criteria, and so on. All of the VASP parameters for each job type are specified in pymofscreen.default_calculators.py [https://github.com/arosen93/mof_screen/blob/master/pymofscreen/default_calculators.py], which we suggest looking at before running PyMOFScreen for the first time. The parameters can be freely changed using any of ASE’s parameters for VASP [https://wiki.fysik.dtu.dk/ase/ase/calculators/vasp.html]. These parameters can be accessed and modified in a Python script like shown below.

from pymofscreen.cif_handler import get_cif_files
from pymofscreen.screen import screener
from pymofscreen.default_calculators import defaults

#Set up paths
mofpath = 'path/to/my/CIFs'
basepath = 'path/to/store/vasp_output'
submit_script = 'path/to/job_submission/script/submit.sh'

#Define defaults
defaults['xc'] = 'BEEF-vdW'
defaults['ivdw'] = 0
defaults['ediffg'] = -0.02 #and so on...

#Read CIF files
cif_files = get_cif_files(mofpath)

#Construct screener object
s = screener(basepath,mofpath,submit_script=submit_script)

#Run volume relaxation for each CIF
for cif_file in cif_files:
	mof = s.run_screen(cif_file,'volume')

Overview of Input Arguments

class screener():
	"""
	This class constructs a high-throughput screening workflow
	"""
	def __init__(self,basepath,mofpath=None,kpts_path='Auto',kppas=None,
		submit_script=None,stdout_file=None):

The main tool to initialize a screening workflow is the pymofscreen.screen.screener [https://github.com/arosen93/mof_screen/blob/master/pymofscreen/screen.py#L12] class, which takes the following arguments and keywords:

	basepath: The base directory where the VASP output files will be stored. The converged results will be stored in basepath/results, and any errors will be stored in basepath/errors.

	mofpath: The path where the starting CIFs are located. Defaults to basepath/mofpath if not specified.

	kpts_path and kppas: If kpts_path is set to Auto (recommended), PyMOFScreen will automatically generate a k-point grid based on the kppas keyword argument. The kppas argument should be a list with two entries consisting of the low- and high-accuracy k-point density to use, in units of k-points per number of atoms (defaults to kppas=[100,1000]). If you want more fine-tuned control, you can instead provide a text file listing the desired k-point grids for each CIF, specifying the path to this file via kpts_path and leaving kppas=None (see here [https://github.com/arosen93/mof_screen/blob/master/examples/example_kpts.txt] for an example k-points file).

	submit_script: The path to the job submission script. An example job submission script can be found here [https://github.com/arosen93/mof_screen/blob/master/examples/volume_relaxation/runner/sub_screen.job]. If not specified, it defaults to sub_screen.job.

	stdout_file: The name of the standard output file created by the job scheduler. This defaults to the basename of Python script with the extension .out if not otherwise specified.

def run_screen(self,cif_file,mode,niggli=True,spin_levels=None,nupdowns=None,acc_levels=None,calculators=calcs):
	"""
	Run high-throughput ionic or volume relaxations
	"""

Within the screener class is a function named run_screen [https://github.com/arosen93/mof_screen/blob/master/pymofscreen/screen.py#L58]. It informs the screener what type of job should be run and on what CIF file. This function takes the following arguments and keywords:

	cif_file: The name of the CIF file to study with VASP.

	mode: The type of job to run, which can be either 'volume' or 'ionic' for a volume or ionic relaxaxtion, respectively.

	niggli: By default, it is set to niggli=True and tells PyMOFScreen to make a Niggli-reduced cell of your input file before running. This can be disabled with niggli=False.

	spin_levels: This argument is used to set the desired spin states. By default, it is set to spin_levels=['high','low'], which tells PyMOFScreen to run a high-spin job and then a a low-spin job. If you want greater control, a list of initial magnetic moments can be provided for each spin initialization you’d like run. For instance, spin_levels=[[0.0,0.0,1.0],[0.0,0.0,5.0]] would tell PyMOFScreen to run two different spin state calculations, where the first job has initialized magnetic moments of [0,0,1] and the second has [0,0,5].

	nupdowns: This argument is used if the user wishes to force a given spin state. It defaults to nupdowns=None, which disables the keyword. If desired, nupdowns can be used in an analagous way to spin_levels, such that nupdowns=[1,5] would ensure that NUPDOWN flag is set to 1 and 5 for the two spin state calculations, respectively.

	acc_levels: This is a list of strings representing each job type to perform and in what order. Generally, this does not need to be changed and defaults to acc_levels=['scf_test','isif2_lowacc','isif3_lowacc','isif3_highacc','final_spe] for volume relaxations and acc_levels=['scf_test','isif2_lowacc','isif2_medacc','isif2_highacc','final_spe'] for ionic relaxations.

	calculators: This is function containing the ASE calculators [https://wiki.fysik.dtu.dk/ase/ase/calculators/calculators.html] that are used to define the VASP parameters for each entry in acc_levels. By default, it will automatically pull the calculators from pymofscreen.default_calculators.calcs [https://github.com/arosen93/mof_screen/blob/master/pymofscreen/default_calculators.py#L28]. This variable does not typically need to be modified.

Setup

Installing PyMOFScreen

	PyMOFScreen requires Python [https://www.python.org/] 3.6 or newer. If you do not already have Python installed, the easiest option is to download the Anaconda [https://www.anaconda.com/download/] distribution.

	Download or clone the PyMOFScreen repository and run pip install -r requirements.txt followed by pip install . from the PyMOFScreen base directory. This will install PyMOFScreen and the required dependencies.

	Since PyMOFscreen is built on ASE [https://wiki.fysik.dtu.dk/ase/], you must make sure that your VASP_PP_PATH is set appropriately, as described here [https://wiki.fysik.dtu.dk/ase/ase/calculators/vasp.html].

	PyMOFScreen requires that VASP be installed on your compute cluster. The VASP build must be compiled with VTSTools [http://theory.cm.utexas.edu/vtsttools/index.html] and must include both gamma-point only and standard builds.

Python Dependencies

PyMOFScreen will automatically install all the dependencies for you with the pip install -r requirements.txt command, but if you wish to do this manually or encounter issues, the required dependencies are as follows:

	A slightly modified build of ASE [https://wiki.fysik.dtu.dk/ase/] 3.16.2 or newer. The required modification adds support for checking if a VASP job has failed due to SCF convergence issues (via atoms.calc.scf_converged) and if it has reached the maximum number of geometry optimization steps (via atoms.calc.nsw_converged). The customized ASE build, denoted rASE, can be found at this link [https://github.com/arosen93/rASE]. Alternatively, if you already have ASE installed, you can directly patch your vasp.py located in ase/ase/calculators/vasp/vasp.py by using the modified vasp.py script found here [https://github.com/arosen93/rASE/blob/master/ase/calculators/vasp/vasp.py].

	Pymatgen [http://pymatgen.org/] 2018.5.22 or newer. This is required for making primitive unit cells and generating automatic k-point grids but is optional if neither feature is desired.

Compute Environments

Every compute environment is unique, with different ways to run VASP and different job submission systems. To address this, the pymofscreen/compute_environ.py [https://github.com/arosen93/mof_screen/blob/master/pymofscreen/compute_environ.py] file must be modified before installing PyMOFScreen.

	Select or make your job submission system template in pymofscreen/compute_environ.py [https://github.com/arosen93/mof_screen/blob/master/pymofscreen/compute_environ.py] to ensure that the variable nprocs [https://github.com/arosen93/mof_screen/blob/master/pymofscreen/compute_environ.py#L42] refers to the total number of requested processors.

	Specify the commands to launch the gamma-point and standard VASP executables in the choose_vasp_version function [https://github.com/arosen93/mof_screen/blob/master/pymofscreen/compute_environ.py#L44]. This tells PyMOFScreen how to construct ASE’s required run_vasp.py file, as described here [https://wiki.fysik.dtu.dk/ase/ase/calculators/vasp.html].

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/toc.png
@ Promising Candidates

B~

High-Throughput
Periodic DFT

£ Automated Adsorbate

& Initialization j L<u1

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

