

Online user’s guide for the Python Mie Scattering package (PyMieScatt)

Documentation is always under development, but mostly complete. A manuscript communicating the development of the inverse Mie algorithms was published by the Journal of Quantative Spectroscopy and Radiative Transfer [http://www.sciencedirect.com/science/journal/00224073]. The JQSRT article is available here [https://doi.org/10.1016/j.jqsrt.2017.10.012].

NOTE TO USERS: When using PyMieScatt, pay close attention to the units of the your inputs and outputs. Wavelength and particle diameters are always in nanometers, efficiencies are unitless, cross-sections are in nm2, coefficients are in Mm-1, and size distribution concentration is always in cm-3. If you use other units, your outputs may not make sense.

NOTE TO THOSE WITH MIEPLOT EXPERIENCE: The functions in PyMieScatt take particle diameter. MiePlot’s default is to take the particle radius in micrometers. Make sure all your particle dimensions, whether for a single particle or for a distribution, are for the diamaters, in nanometers.

Install PyMieScatt

NOTE: You must install Shapely [https://shapely.readthedocs.io/] first, preferably from GitHub. Users have reported difficulty installing it with pip. Conda works, too.

The current version is 1.8.0. You can install PyMieScatt from The Python Package Index (PyPI) [https://pypi.python.org/pypi/PyMieScatt] with

$ pip install PyMieScatt

or from GitHub [https://github.com/bsumlin/PyMieScatt]. Clone the repository and then run

$ python setup.py install

Revision Notes - version 1.8.1 (29 December, 2020)

	Tentatively fixed Mie_SD() per discussions with Kyle Gorkowski. Added a new optional parameter SMPS which informs the algorithm how the size distribution is reported. PyMieScatt assumes SMPS is True, that is, that the reported size distribution came from a laboratory measurement and not a mathematically-generated size distribution. Set SMPS to False if you constructed your distribution from an analytical expression.

	Following from that, Mie_Lognormal() is hardwired to use the analytical form and no additional input is needed.

	Also following from the fix to Mie_SD(), the inverse algorithms ContourIntersection_SD() and SurveyIteration_SD() now have the optional parameter SMPS, with the same assumptions as Mie_SD(). See the individual function documentation for more information.

	This fix does not apply to the scattered intensity function SF_SD(), since the scattering intensity function is additive in the way it is formulated here.

	1.8.1 minor update: fixed a bug in cRatio where the result was off by a factor of the physical cross-sectional area (thank you, TalfanBarnie on Github) and added nMedium to the core-shell functions (thank you, willmendil on Github).

Revision History

	1.7.5 (23 February, 2020)

	Fixed AutoMieQ() per discussions with Gerard van Ewijk. In the case of nMedium!=1, AutoMieQ() was calculating effective n and wavelength, and then passing those parameters to the relevant Mie function. Those functions then re-calculated the effective n and wavelength, leading to errors.

	Fixed ContourIntersection_SD() per discussions with Hans Moosmuller. The inputs should now correctly scale for units of Mm-1.

	1.7.4 (6 May, 2019)

	Fixed ScatteringFunction() per discussions with @zcm73400 on GitHub. View the pull request for more info.

	1.7.3 (23 August, 2018) - 1.7.2 was skipped ¯_(ツ)_/¯

	Added CoreShellS1S2() to __init__.py. Also added CoreShellMatrixElements() to the documentation. Thanks Jonathan Taylor for the heads up!

	1.7.1 (12 April, 2018)

	Fixed a bug in MieQ_withWavelengthRange() where the inputs would be affected by in-place math performed within the function. This bug was also present in MieQ_withSizeParameterRange() and has been fixed.

	1.7.0 (5 April, 2018)

	Updated most of the forward homogeneous sphere functions with a new optional parameter nMedium, which allows for Mie calculations in media other than vacuum/air. Please see documentation.

	1.6.0b0 (23 March, 2018)

	Updated ContourIntersection() and ContourIntersection_SD() to take optional constraint parameters of an assumed n or k. Please see the documentation for more information.

	1.5.2 (9 March, 2018)

	Fixed a bug in ContourIntersection() and ContourIntersection_SD() that would occasionally cause a single solution from two optical measurements to not be reported (thanks to Miriam Elser for pointing this bug out).

	1.5.1 (7 March, 2018)

	Added the option to report single-particle Mie efficiencies as optical cross-sections. This affects MieQ(), RayleighMieQ(), AutoMieQ(), LowFrequencyMieQ(), and MieQCoreShell(). The results carry units of nm2.

	1.4.3 (21 February, 2018)

	Fixed a small bug in ContourIntersection() and ContourIntersection_SD() that would produce an error if no intersections were detected. Now it just throws a warning. I’ll update soon to have better reporting.

	1.4.2 (25 January, 2018)

	Very minor adjustment to AutoMieQ(); changed the crossover from Rayleigh to Mie to x=0.01 (previously 0.5). Thanks to John Kendrick [https://github.com/JohnKendrick/PDielec] for the suggestion.

	1.4.1 (25 January, 2018)

	Added Shapely [https://shapely.readthedocs.io/] support! Shapely is a geometric manipulation and analysis package. I wrote it in as a slightly faster, more robust way to look for intersections in n-k space when doing inversions. It also makes the code more readable and makes it clearer how the intersection method works, especially when including backscatter to find a unique solution. There is no change to the user experience, other than slight speedups.

	1.3.7

	Fixed a major bug in ContourIntersection() and ContourIntersection_SD() that prevented them from using the actual input values to derive solutions.

	1.3.6

	Added new normalization options to ScatteringFunction() and SF_SD(). Docs for those functions have details.

	1.3.5

	Fixed a bug that prevented SF_SD from properly scaling with the number of particles.

	1.3.4.1

	Added a new sub-version delimiter. 1.x.y.z will be for minor revisions including some optimizations I’ve been working on that don’t merit a full 1.x.y release.

	Added a new AutoMie_ab() function that uses LowFrequencyMie_ab() for x = πd/λ < 0.5 and Mie_ab() otherwise.

	Sped up the MieS1S2() function by using the new AutoMie_ab() function.

	Sped up the SF_SD() function by about 33% (on average) when the MieS1S2() optimizations are considered.

	Added Mie_cd() to __init__.py.

	1.3.4

	Fixed a really dumb bug introduced in 1.3.3.

	1.3.3

	Fixed a big that caused SF_SD() to throw errors when a custom angle range was specified.

	Added MieS1S2() and MiePiTau() to __init__.py. Dunno why they weren’t always there.

	1.3.2

	Renamed GraphicalInversion() and GraphicalInversion_SD() to ContourIntersection() and ContourIntersection_SD(), respectively.

	1.3.1

	Optimizations to the resolution of the survey-intersection inversion method.

Revisions in Progress

	Would like to re-write the inversion functions to be as general as possible, i.e., if I pass scattering, absorption, particle size, and refractive index, it would solve for the wavelength.

	Ablility to pass array objects directly to all functions (within reason).

	Auto-graphing capabilities for sacttering functions.

Documentation To-Do List

	More example scripts, I guess?

	As a few function names and parameter names get updated, there may be some typos in old examples. I’ll catch those as they crop up.

PyMieScatt To-Do List

	Upload package to Anaconda cloud.

Publications Using PyMieScatt

If you use PyMieScatt in your research, please let me know and I’ll link the publications here.

	Google scholar link with all citations. [https://scholar.google.com/scholar?cites=17069755164099851469&as_sdt=5,36&sciodt=0,36&hl=en]

	My own work using PyMieScatt:

	Sumlin BJ, Pandey A, Walker MJ, Pattison RS, Williams BJ, Chakrabarty RK. Atmospheric Photooxidation Diminishes Light Absorption by Primary Brown Carbon Aerosol from Biomass Burning. Environ Sci Tech Let. 2017 4 (12) 540-545 (Cover article [http://pubs.acs.org/toc/estlcu/4/12]). DOI: 10.1021/acs.estlett.7b00393 [http://doi.org/10.1021/acs.estlett.7b00393]

	Sumlin BJ, Heinson WR, Chakrabarty RK. Retrieving the Aerosol Complex Refractive Index using PyMieScatt: A Mie Computational Package with Visualization Capabilities. J. Quant. Spectros. Rad. Trans. 2018 (205) 127-134. DOI: 10.1016/j.jqsrt.2017.10.012 [https://doi.org/10.1016/j.jqsrt.2017.10.012]

	Sumlin BJ, Heinson YW, Shetty N, Pandey A, Pattison RS, Baker S, Hao WM, Chakrabarty RK. UV-Vis-IR Spectral Complex Refractive Indices and Optical Properties of Brown Carbon Aerosol fro Biomass Burning. J. Quant. Spectros. Rad. Trans. 2018 (206) 392-398 DOI: 10.1016/j.jqsrt.2017.12.009 [https://doi.org/10.1016/j.jqsrt.2017.12.009]

	Sumlin BJ, Oxford C, Seo B, Pattison R, Williams B, Chakrabarty RK. Density and Homogeneous Internal Composition of Primary Brown Carbon Aerosol. Environ. Sci. Tech., In press. DOI: 10.1021/acs.est.8b00093 [https://doi.org/10.1021/acs.est.8b00093]

	Works by others

	Carrico, C. M., Capek, T. J., Gorkowski, K. J., Lam, J. T., Gulick, S., Karacaoglu, J., Lee, J. E., Dungan, C., Aiken, A. C., Onasch, T. B., Freedman, A., Mazzoleni, C., & Dubey, M. K. (2021). Humidified single-scattering albedometer (H-CAPS-PM SSA): Design, data analysis, and validation. Aerosol Science and Technology, 1–20. DOI: 10.1080/02786826.2021.1895430 [https://doi.org/10.1080/02786826.2021.1895430]

	Gorkowski, K., Benedict, K. B., Carrico, C. M., & Dubey, M. K. (2022). Complexities in Modeling Organic Aerosol Light Absorption. The Journal of Physical Chemistry A, 126(29), 4827–4833. DOI: 10.1021/acs.jpca.2c02236 [https://doi.org/10.1021/acs.jpca.2c02236]

Author Contact Information

PyMieScatt was written by Benjamin Sumlin [https://air.eece.wustl.edu/people/ben-sumlin/]. Special thanks to Dr. William Heinson, Dr. Rajan Chakrabarty, Claire Fortenberry, and Apoorva Pandey for their insights and support.

Email: bsumlin@wustl.edu

Table of Contents

	Documentation Home
	Install PyMieScatt

	Revision Notes - version 1.8.1 (29 December, 2020)

	Revision History

	Revisions in Progress

	Documentation To-Do List

	PyMieScatt To-Do List

	Publications Using PyMieScatt

	Author Contact Information

	Forward Functions for Homogeneous Spheres
	Functions for single particles

	Functions for single particles across various ranges

	Functions for polydisperse size distributions of homogeneous spheres

	Angular Functions

	Forward Functions for Coated Spheres

	Inverse Mie Functions for Homogeneous Spheres
	Contour Intersection Inversion Functions

	Survey-iteration Inversion Functions

	General Usage tips and Example Scripts (constantly updating)
	Mie Efficiencies of a Single Homogeneous Particle

	Mie Efficencies of a Weibull Distribution

	Plotting Angular Functions

	Angular Scattering Function of Salt Aerosol

	Modeling Behavior of a Self-Preserving Distribution

	Visualization of the Contour Intersection Inversion Method

Functions for Forward Mie Calculations of Homogeneous Spheres

Functions for single particles

	
MieQ(m, wavelength, diameter[, nMedium=1.0, asDict=False, asCrossSection=False])

	Computes Mie efficencies Q and asymmetry parameter g of a single, homogeneous particle. Uses Mie_ab() to calculate [image: a_n] and [image: b_n], and then calculates Q via:

[image: ${\displaystyle Q_{ext}=\frac{2}{x^2}\sum_{n=1}^{n_{max}}(2n+1)\:\text{Re}\left\{a_n+b_n\right\}}$]

[image: ${\displaystyle Q_{sca}=\frac{2}{x^2}\sum_{n=1}^{n_{max}}(2n+1)(|a_n|^2+|b_n|^2)}$]

[image: ${\displaystyle Q_{abs}=Q_{ext}-Q_{sca}}$]

[image: ${\displaystyle Q_{back}=\frac{1}{x^2} \left| \sum_{n=1}^{n_{max}}(2n+1)(-1)^n(a_n-b_n) \right| ^2}$]

[image: ${\displaystyle Q_{ratio}=\frac{Q_{back}}{Q_{sca}}}$]

[image: ${\displaystyle g=\frac{4}{Q_{sca}x^2}\left[\sum\limits_{n=1}^{n_{max}}\frac{n(n+2)}{n+1}\text{Re}\left\{a_n a_{n+1}^*+b_n b_{n+1}^*\right\}+\sum\limits_{n=1}^{n_{max}}\frac{2n+1}{n(n+1)}\text{Re}\left\{a_n b_n^*\right\}\right]}$]

[image: ${\displaystyle Q_{pr}=Q_{ext}-gQ_{sca}}$]

where asterisks denote the complex conjugates.

Parameters

	mcomplex

	The complex refractive index, with the convention m = n+ik.

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	diameterfloat

	The diameter of the particle, in nanometers.

	nMediumfloat, optional

	The refractive index of the surrounding medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

	asDictbool, optional

	If specified and set to True, returns the results as a dict.

	asCrossSectionbool, optional

	If specified and set to True, returns the results as optical cross-sections with units of nm2.

Returns

	qext, qsca, qabs, g, qpr, qback, qratiofloat

	The Mie efficencies described above.

	cext, csca, cabs, g, cpr, cback, cratiofloat

	If asCrossSection==True, MieQ() returns optical cross-sections with units of nm2.

	qdict

	If asDict==True, MieQ() returns a dict of the above efficiencies with appropriate keys.

	cdict

	If asDict==True and asCrossSection==True, returns a dict of the above cross-sections with appropriate keys.

For example, compute the Mie efficencies of a particle 300 nm in diameter with m = 1.77+0.63i, illuminated by λ = 375 nm:

>>> import PyMieScatt as ps
>>> ps.MieQ(1.77+0.63j,375,300,asDict=True)
{'Qext': 2.8584971991564112,
 'Qsca': 1.3149276685170939,
 'Qabs': 1.5435695306393173,
 'g': 0.7251162362148782,
 'Qpr': 1.9050217972664911,
 'Qback': 0.20145510481352547,
 'Qratio': 0.15320622543498222}

	
Mie_ab(m, x)

	Computes external field coefficients an and bn based on inputs of m and [image: x=\pi\,d_p/\lambda]. Must be explicitly imported via

>>> from PyMieScatt.Mie import Mie_ab

Parameters

	mcomplex

	The complex refractive index with the convention m = n+ik.

	xfloat

	The size parameter [image: x=\pi\,d_p/\lambda].

Returns

	an, bnnumpy.ndarray

	Arrays of size nmax = 2+x+4x1/3

	
Mie_cd(m, x)

	
Computes internal field coefficients cn and dn based on inputs of m and [image: x=\pi\,d_p/\lambda]. Must be explicitly imported via

>>> from PyMieScatt.Mie import Mie_cd

Parameters

	mcomplex

	The complex refractive index with the convention m = n+ik.

	xfloat

	The size parameter [image: x=\pi\,d_p/\lambda].

Returns

	cn, dnnumpy.ndarray

	Arrays of size nmax = 2+x+4x1/3

	
RayleighMieQ(m, wavelength, diameter[, nMedium=1.0, asDict=False, asCrossSection=False])

	Computes Mie efficencies of a spherical particle in the Rayleigh regime ([image: x=\pi\,d_p/\lambda \ll 1]) given refractive index m, wavelength, and diameter. Optionally returns the parameters as a dict when asDict is specified and set to True. Uses Rayleigh-regime approximations:

[image: ${\displaystyle Q_{sca}=\frac{8x^4}{3}\left|{\frac{m^2-1}{m^2+2}}\right|^2}$]

[image: ${\displaystyle Q_{abs}=4x\:\text{Im}\left\{\frac{m^2-1}{m^2+2}\right\}}$]

[image: ${\displaystyle Q_{ext}=Q_{sca}+Q_{abs}}$]

[image: ${\displaystyle Q_{back}=\frac{3Q_{sca}}{2}}$]

[image: ${\displaystyle Q_{ratio}=1.5}$]

[image: ${\displaystyle Q_{pr}=Q_{ext}}$]

Parameters

	mcomplex

	The complex refractive index, with the convention m = n+ik.

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	diameterfloat

	The diameter of the particle, in nanometers.

	nMediumfloat, optional

	The refractive index of the surrounding medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

	asDictbool, optional

	If specified and set to True, returns the results as a dict.

	asCrossSectionbool, optional

	If specified and set to True, returns the results as optical cross-sections with units of nm2.

Returns

	qext, qsca, qabs, g, qpr, qback, qratiofloat

	The Mie efficencies described above.

	cext, csca, cabs, g, cpr, cback, cratiofloat

	If asCrossSection==True, RayleighMieQ() returns optical cross-sections.

	qdict

	If asDict==True, RayleighMieQ() returns a dict of the above efficiencies with appropriate keys.

	cdict

	If asDict==True and asCrossSection==True, returns a dict of the above cross-sections with appropriate keys.

For example, compute the Mie efficencies of a particle 50 nm in diameter with m = 1.33+0.01i, illuminated by λ = 870 nm:

>>> import PyMieScatt as ps
>>> ps.MieQ(1.33+0.01j,870,50,asDict=True)
{'Qabs': 0.004057286640269908,
 'Qback': 0.00017708468873118297,
 'Qext': 0.0041753430994240295,
 'Qpr': 0.0041753430994240295,
 'Qratio': 1.5,
 'Qsca': 0.00011805645915412197,
 'g': 0}

	
AutoMieQ(m, wavelength, diameter[, nMedium=1.0, crossover=0.01, asDict=False, asCrossSection=False])

	Returns Mie efficencies of a spherical particle according to either MieQ() or RayleighMieQ() depending on the magnitude of the size parameter. Good for studying parameter ranges or size distributions. Thanks to John Kendrick [https://github.com/JohnKendrick/PDielec] for discussions about where to best place the crossover point.

Parameters

	mcomplex

	The complex refractive index, with the convention m = n+ik.

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	diameterfloat

	The diameter of the particle, in nanometers.

	nMediumfloat, optional

	The refractive index of the surrounding medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

	crossoverfloat, optional

	The size parameter that dictates where calculations switch from Rayleigh approximation to actual Mie.

	asDictbool, optional

	If specified and set to True, returns the results as a dict.

	asCrossSectionbool, optional

	If specified and set to True, returns the results as optical cross-sections with units of nm2.

Returns

	qext, qsca, qabs, g, qpr, qback, qratiofloat

	The Mie efficencies described above.

	cext, csca, cabs, g, cpr, cback, cratiofloat

	If asCrossSection==True, AutoMieQ() returns optical cross-sections.

	qdict

	If asDict==True, AutoMieQ() returns a dict of the above efficiencies with appropriate keys.

	cdict

	If asDict==True and asCrossSection==True, returns a dict of the above cross-sections with appropriate keys.

	
LowFrequencyMieQ(m, wavelength, diameter[, nMedium=1.0, asDict=False, asCrossSection=False])

	Returns Mie efficencies of a spherical particle in the low-frequency regime ([image: x=\pi\,d_p/\lambda \ll 1]) given refractive index m, wavelength, and diameter. Optionally returns the parameters as a dict when asDict is specified and set to True. Uses LowFrequencyMie_ab() to calculate an and bn, and follows the same math as MieQ().

Parameters

	mcomplex

	The complex refractive index, with the convention m = n+ik.

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	diameterfloat

	The diameter of the particle, in nanometers.

	nMediumfloat, optional

	The refractive index of the surrounding medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

	asDictbool, optional

	If specified and set to True, returns the results as a dict.

	asCrossSectionbool, optional

	If specified and set to True, returns the results as optical cross-sections with units of nm2.

Returns

	qext, qsca, qabs, g, qpr, qback, qratiofloat

	The Mie efficencies described above.

	cext, csca, cabs, g, cpr, cback, cratiofloat

	If asCrossSection==True, LowFrequencyMieQ() returns optical cross-sections.

	qdict

	If asDict==True, LowFrequencyMieQ() returns a dict of the above efficiencies with appropriate keys.

	cdict

	If asDict==True and asCrossSection==True, returns a dict of the above cross-sections with appropriate keys.

For example, compute the Mie efficencies of a particle 100 nm in diameter with m = 1.33+0.01i, illuminated by λ = 1600 nm:

>>> import PyMieScatt as ps
>>> ps.LowFrequencyMieQ(1.33+0.01j,1600,100,asDict=True)
{'Qabs': 0.0044765816617916582,
 'Qback': 0.00024275862007727458,
 'Qext': 0.0046412326004135135,
 'Qpr': 0.0046400675577583459,
 'Qratio': 1.4743834569616665,
 'Qsca': 0.00016465093862185558,
 'g': 0.0070758336692078412}

	
LowFrequencyMie_ab(m, x)

	Returns external field coefficients an and bn based on inputs of m and [image: x=\pi\,d_p/\lambda] by limiting the expansion of an and bn to second order:

[image: ${\displaystyle a_1=\frac{m^2-1}{m^2+2} \left[-\frac{i2x^3}{3}-\frac{2ix^5}{5}\left(\frac{m^2-2}{m^2+2}\right) +\frac{4x^6}{9}\left(\frac{m^2-1}{m^2+2} \right) \right]}$]

[image: ${\displaystyle a_2=-\frac{ix^5}{15}\frac{(m^2-1)}{2m^2+3}}$]

[image: ${\displaystyle b_1=-\frac{ix^5}{45}(m^2-1)}$]

[image: ${\displaystyle b_2=0}$]

Parameters

	mcomplex

	The complex refractive index with the convention m = n+ik.

	xfloat

	The size parameter [image: x=\pi\,d_p/\lambda].

Returns

	an, bnnumpy.ndarray

	Arrays of size 2.

Functions for single particles across various ranges

	
MieQ_withDiameterRange(m, wavelength[, nMedium=1.0, diameterRange=(10, 1000), nd=1000, logD=False])

	Computes the Mie efficencies of particles across a diameter range using AutoMieQ().

Parameters

	mcomplex

	The complex refractive index with the convention m = n+ik.

	wavelengthfloat

	The wavelength of incident light, in nanomaters

	nMediumfloat, optional

	The refractive index of the surrounding medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

	diameterRangetuple or list, optional

	The diameter range, in nanometers. Convention is (smallest, largest). Defaults to (10, 1000).

	ndint, optional

	The number of diameter bins in the range. Defaults to 1000.

	logDbool, optional

	If True, will use logarithmically-spaced diameter bins. Defaults to False.

Returns

	diametersnumpy.ndarray

	An array of the diameter bins that calculations were performed on. Size is equal to nd.

	qext, qsca, qabs, g, qpr, qback, qrationumpy.ndarray

	The Mie efficencies at each diameter in diameters.

	
MieQ_withWavelengthRange(m, diameter[, nMedium=1.0, wavelengthRange=(100, 1600), nw=1000, logW=False])

	Computes the Mie efficencies of particles across a wavelength range using AutoMieQ(). This function can optionally take a list, tuple, or numpy.ndarray for m. If your particles have a wavelength-dependent refractive index, you can study it by specifying m as list-like. When doing so, m must be the same size as wavelengthRange, which is also specified as list-like in this situation. Otherwise, the function will construct a range from wavelengthRange[0] to wavelengthRange[1] with nw entries.

Parameters

	mcomplex or list-like

	The complex refractive index with the convention m = n+ik. If dealing with a dispersive material, then len(m) must be equal to len(wavelengthRange).

	diameterfloat

	The diameter of the particle, in nanometers.

	nMediumfloat, optional

	The refractive index of the surrounding medium. This must be positive, nonzero, and real. Any imaginary part will be discarded. A future update will allow the entry of a spectral range of refractive indices.

	wavelengthRangetuple or list, optional

	The wavelength range of incident light, in nanomaters. Convention is (smallest, largest). Defaults to (100, 1600). When m is list-like, len(wavelengthRange) must be equal to len(m).

	nwint, optional

	The number of wavelength bins in the range. Defaults to 1000. This parameter is ignored if m is list-like.

	logWbool, optional

	If True, will use logarithmically-spaced wavelength bins. Defaults to False. This parameter is ignored if m is list-like.

Returns

	wavelengthsnumpy.ndarray

	An array of the wavelength bins that calculations were performed on. Size is equal to nw, unless m was list-like. Then wavelengths = wavelengthRange.

	qext, qsca, qabs, g, qpr, qback, qrationumpy.ndarray

	The Mie efficencies at each wavelength in wavelengths.

	
MieQ_withSizeParameterRange(m[, nMedium=1.0, xRange=(1, 10), nx=1000, logX=False])

	Computes the Mie efficencies of particles across a size parameter range ([image: x=\pi\,d_p/\lambda]) using AutoMieQ().

Parameters

	mcomplex

	The complex refractive index with the convention m = n+ik.

	nMediumfloat, optional

	The refractive index of the surrounding medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

	xRangetuple or list, optional

	The size parameter range. Convention is (smallest, largest). Defaults to (1, 10).

	nxint, optional

	The number of size parameter bins in the range. Defaults to 1000.

	logXbool, optional

	If True, will use logarithmically-spaced size parameter bins. Defaults to False.

Returns

	xValuesnumpy.ndarray

	An array of the size parameter bins that calculations were performed on. Size is equal to nx.

	qext, qsca, qabs, g, qpr, qback, qrationumpy.ndarray

	The Mie efficencies at each size parameter in xValues.

Functions for polydisperse size distributions of homogeneous spheres

When an efficiency Q is integrated over a size distribution nd(dp), the result is the coefficient [image: \beta], which carries units of inverse length. The general form is:

[image: ${\displaystyle \beta=10^{-6} \int\limits_{0}^{\infty}\frac{\pi d_p^2}{4}Q(m,\lambda,d_p)n(d_p)dd_p}$]

where dp is the diameter of the particle (in nm), n(dp) is the number of particles of diameter dp (per cubic centimeter), and the factor 10-6 is used to cast the result in units of Mm-1.

The bulk asymmetry parameter G is calculated by:

[image: ${\displaystyle G=\frac{\int g(d_p)\beta_{sca}(d_p)dd_p}{\int \beta_{sca}(d_p)dd_p}}$]

There is an important distinction in how the size distribution is reported from an instrument vs. the way it is computed analytically. From a laboratory instruments such as an SMPS, total N is the sum of the concentrations in each bin. When computed analytically, total N is the integral area. This can cause issues when dealing with laboratory data, and so a new parameter SMPS is introduced as of version 1.8.0. SMPS is assumed True, that is, PyMieScatt assumes laboratory measurements by default. Set this parameter to False when dealing with theoretical data from analytical distribution functions.

	
Mie_SD(m, wavelength, sizeDistributionDiameterBins, sizeDistribution[, nMedium=1.0, SMPS=True, asDict=False])

	Returns Mie coefficients βext, βsca, βabs, G, βpr, βback, βratio. Uses scipy.integrate.trapz [https://docs.scipy.org/doc/scipy-0.10.1/reference/generated/scipy.integrate.trapz.html] to compute the integral, which can introduce errors if your distribution is too sparse. Best used with a continuous, compactly-supported distribution.

Parameters

	mcomplex

	The complex refractive index, with the convention m = n+ik.

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	sizeDistributionDiameterBinslist, tuple, or numpy.ndarray

	The diameter bin midpoints of the size distribution, in nanometers.

	sizeDistributionlist, tuple, or numpy.ndarray

	The number concentrations of the size distribution bins. Must be the same size as sizeDistributionDiameterBins.

	nMediumfloat, optional

	The refractive index of the surrounding medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

	SMPSbool, optional

	The switch determining the source of the size distribution data. Omit or set to True for laboratory measurements, set to False for analytical distributions.

	asDictbool, optional

	If specified and set to True, returns the results as a dict.

Returns

	Bext, Bsca, Babs, G, Bpr, Bback, Bratiofloat

	The Mie coefficients calculated by AutoMieQ(), integrated over the size distribution.

	qdict

	If asDict==True, MieQ_SD() returns a dict of the above values with appropriate keys.

	
Mie_Lognormal(m, wavelength, geoStdDev, geoMean, numberOfParticles[, nMedium=1.0, numberOfBins=1000, lower=1, upper=1000, gamma=[1], returnDistribution=False, decomposeMultimodal=False, asDict=False])

	Returns Mie coefficients [image: \beta_{ext}], [image: \beta_{sca}], [image: \beta_{abs}], [image: G], [image: \beta_{pr}], [image: \beta_{back}], and [image: \beta_{ratio}], integrated over a mathematically-generated k-modal lognormal particle number distribution. Uses scipy.integrate.trapz [https://docs.scipy.org/doc/scipy-0.10.1/reference/generated/scipy.integrate.trapz.html] to compute the integral.

The general form of a k-modal lognormal distribution is given by:

[image: ${\displaystyle n(d_p)=\frac{N_\infty}{\sqrt{2\pi}} \sum_{i}^{k}\frac{\gamma_i}{d_p\ln\sigma_{g_i}}\exp\left\{ \frac{-(\ln d_p-\ln d_{pg_i})^2}{2 \ln^2\sigma_{g_i}}\right\}}$]

where [image: d_{p}] is the diameter of the particle (in nm), [image: n(d_{p})] is the number of particles of diameter [image: d_{p}] (per cubic centimeter), [image: N_\infty] is the total number of particles in the distribution, [image: \sigma_{g_i}] is the geometric standard deviation of mode [image: i], and [image: d_{pg_i}] is the geometric mean diameter (in nm) of the ith moment. [image: \gamma_i] is a porportionality constant that determines the fraction of total particles in the ith moment.

This function is essentially a wrapper for Mie_SD(). A warning will be raised if the distribution is not compactly-supported on the interval specified by lower and upper.

Parameters

	mcomplex

	The complex refractive index, with the convention m = n+ik.

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	geoStdDevfloat or list-like

	The geometric standard deviation(s) [image: \sigma_g] or [image: \sigma_{g_i}] if list-like.

	geoMeanfloat or list-like

	The geometric mean diameter(s) [image: d_{pg}] or [image: d_{pg_i}] if list-like, in nanometers.

	numberOfParticlesfloat

	The total number of particles in the distribution.

	nMediumfloat, optional

	The refractive index of the surrounding medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

	numberOfBinsint, optional

	The number of discrete bins in the distribution. Defaults to 1000.

	lowerfloat, optional

	The smallest diameter bin, in nanometers. Defaults to 1 nm.

	upperfloat, optional

	The largest diameter bin, in nanometers. Defaults to 1000 nm.

	gammalist-like, optional

	The porportionality coefficients for dividing total particles among modes.

	returnDistributionbool, optional

	If True, both the size distribution bins and number concentrations will be returned.

	decomposeMultimodal: bool, optional

	If True (and returnDistribution==True), then the function returns an additional parameter containing the individual modes of the distribution.

	asDictbool, optional

	If True, returns the results as a dict.

Returns

	Bext, Bsca, Babs, G, Bpr, Bback, Bratiofloat

	The Mie coefficients calculated by MieQ(), integrated over the size distribution.

	diameters, ndnumpy.ndarray

	The diameter bins and number concentrations per bin, respectively. Only if returnDistribution is True.

	ndilist of numpy.ndarray objects

	A list whose entries are the individual modes that created the multimodal distribution. Only returned if both returnDistribution and decomposeMultimodal are True.

	Bdict

	If asDict==True, MieQ_withLognormalDistribution() returns a dict of the above values with appropriate keys.

For example, compute the Mie coefficients of a lognormal size distribution with 1000000 particles, σg = 1.7, and dpg = 200 nm; with m = 1.60+0.08i and λ = 532 nm:

>>> import PyMieScatt as ps
>>> ps.MieQ_Lognormal(1.60+0.08j,532,1.7,200,1e6,asDict=True)
{'Babs': 33537.324569179938,
'Bback': 10188.473118449627,
'Bext': 123051.1109783932,
'Bpr': 62038.347528346232,
'Bratio': 12701.828124508347,
'Bsca': 89513.786409213266,
'bigG': 0.6816018615403715}

Angular Functions

These functions compute the angle-dependent scattered field intensities and scattering matrix elements. They return arrays that are useful for plotting.

	
ScatteringFunction(m, wavelength, diameter[, nMedium=1.0, minAngle=0, maxAngle=180, angularResolution=0.5, space='theta', angleMeasure='radians', normalization=None])

	Creates arrays for plotting the angular scattering intensity functions in theta-space with parallel, perpendicular, and unpolarized light. Also includes an array of the angles for each step. This angle can be in either degrees, radians, or gradians for some reason. The angles can either be geometrical angle or the qR vector (see Sorensen, M. Q-space analysis of scattering by particles: a review. J. Quant. Spectrosc. Radiat. Transfer 2013, 131, 3-12 [http://www.sciencedirect.com/science/article/pii/S0022407313000083]). Uses MieS1S2() to compute S1 and S2, then computes parallel, perpendicular, and unpolarized intensities by

[image: ${\displaystyle SL(\theta)=|S_1|^2}$]

[image: ${\displaystyle SR(\theta)=|S_2|^2}$]

[image: ${\displaystyle SU(\theta)=\frac{1}{2}(SR+SL)}$]

Parameters

	mcomplex

	The complex refractive index with the convention m = n+ik.

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	diameterfloat

	The diameter of the particle, in nanometers.

	nMediumfloat, optional

	The refractive index of the surrounding medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

	minAnglefloat, optional

	The minimum scattering angle (in degrees) to be calculated. Defaults to 0.

	maxAnglefloat, optional

	The maximum scattering angle (in degrees) to be calculated. Defaults to 180.

	angularResolutionfloat, optional

	The resolution of the output. Defaults to 0.5, meaning a value will be calculated for every 0.5 degrees.

	spacestr, optional

	The measure of scattering angle. Can be ‘theta’ or ‘qspace’. Defaults to ‘theta’.

	angleMeasurestr, optional

	The units for the scattering angle

	normalizationstr or None, optional

	Specifies the normalization method, which is either by total signal or maximum signal.

	normalization = ‘t’ will normalize by the total integrated signal, that is, the total signal will have an integrated value of 1.

	normalization = ‘max’ will normalize by the maximum value of the signal regardless of the angle at which it occurs, that is, the maximum signal at that angle will have a value of 1.

Returns

	thetanumpy.ndarray

	An array of the angles used in calculations. Values will be spaced according to angularResolution, and the size of the array will be (maxAngle-minAngle)/angularResolution.

	SLnumpy.ndarray

	An array of the scattered intensity of left-polarized (perpendicular) light. Same size as the theta array.

	SRnumpy.ndarray

	An array of the scattered intensity of right-polarized (parallel) light. Same size as the theta array.

	SUnumpy.ndarray

	An array of the scattered intensity of unpolarized light, which is the average of SL and SR. Same size as the theta array.

	
SF_SD(m, wavelength, dp, ndp[, nMedium=1.0, minAngle=0, maxAngle=180, angularResolution=0.5, space='theta', angleMeasure='radians', normalization=None])

	Creates arrays for plotting the angular scattering intensity functions in theta-space with parallel, perpendicular, and unpolarized light. Also includes an array of the angles for each step for a distribution nd(dp). Uses ScatteringFunction() to compute scattering for each particle size, then sums the contributions from each bin.

Parameters

	mcomplex

	The complex refractive index with the convention m = n+ik.

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	dplist-like

	The diameter bins of the distribution, in nanometers.

	ndplist-like

	The number of particles in each diameter bin in dp.

	nMediumfloat, optional

	The refractive index of the surrounding medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

	minAnglefloat, optional

	The minimum scattering angle (in degrees) to be calculated. Defaults to 0.

	maxAnglefloat, optional

	The maximum scattering angle (in degrees) to be calculated. Defaults to 180.

	angularResolutionfloat, optional

	The resolution of the output. Defaults to 0.5, meaning a value will be calculated for every 0.5 degrees.

	spacestr, optional

	The measure of scattering angle. Can be ‘theta’ or ‘qspace’. Defaults to ‘theta’.

	angleMeasurestr, optional

	The units for the scattering angle

	normalizationstr or None, optional

	Specifies the normalization method, which is either by total particle number, total signal or maximum signal.

	normalization = ‘n’ will normalize by the total number of particles (the integral of the size distribution). Can lead to weird interpretations, so use caution.

	normalization = ‘t’ will normalize by the total integrated signal, that is, the total signal will have an integrated value of 1.

	normalization = ‘max’ will normalize by the maximum value of the signal regardless of the angle at which it occurs, that is, the maximum signal at that angle will have a value of 1.

Returns

	thetanumpy.ndarray

	An array of the angles used in calculations. Values will be spaced according to angularResolution, and the size of the array will be (maxAngle-minAngle)/angularResolution.

	SLnumpy.ndarray

	An array of the scattered intensity of left-polarized (perpendicular) light. Same size as the theta array.

	SRnumpy.ndarray

	An array of the scattered intensity of right-polarized (parallel) light. Same size as the theta array.

	SUnumpy.ndarray

	An array of the scattered intensity of unpolarized light, which is the average of SL and SR. Same size as the theta array.

	
MatrixElements(m, wavelength, diameter, mu[, nMedium=1.0])

	Calculates the four nonzero scattering matrix elements S11, S12, S33, and S34 as functions of μ=cos(θ), where θ is the scattering angle:

[image: ${\displaystyle S_{11}=\frac{1}{2}\left(|S_2|^2+|S_1|^2\right)}$]

[image: ${\displaystyle S_{12}=\frac{1}{2}\left(|S_2|^2-|S_1|^2\right)}$]

[image: ${\displaystyle S_{33}=\frac{1}{2}(S_2^*S_1+S_2S_1^*)}$]

[image: ${\displaystyle S_{34}=\frac{i}{2}(S_1S_2^*-S_2S_1^*)}$]

Parameters

	mcomplex

	The complex refractive index with the convention m = n+ik.

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	diameterfloat

	The diameter of the particle, in nanometers.

	mufloat

	The cosine of the scattering angle.

	nMediumfloat, optional

	The refractive index of the surrounding medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

Returns

	S11, S12, S33, S34float

	The matrix elements described above.

	
MieS1S2(m, x, mu)

	Calculates S1 and S2 at μ=cos(θ), where θ is the scattering angle.

Uses Mie_ab() to calculate an and bn, and MiePiTau() to calculate πn and τn. S1 and S2 are calculated by:

[image: ${\displaystyle S_1=\sum\limits_{n=1}^{n_{max}}\frac{2n+1}{n(n+1)}(a_n\pi_n+b_n\tau_n)}$]

[image: ${\displaystyle S_2=\sum\limits_{n=1}^{n_{max}}\frac{2n+1}{n(n+1)}(a_n\tau_n+b_n\pi_n)}$]

Parameters

	mcomplex

	The complex refractive index with the convention m = n+ik.

	xfloat

	The size parameter [image: x=\pi\,d_p/\lambda].

	mufloat

	The cosine of the scattering angle.

Returns

	S1, S2complex

	The S1 and S2 values.

	
MiePiTau(mu, nmax)

	Calculates πn and τn.

This function uses recurrence relations to calculate πn and τn, beginning with π0 = 1, π1 = 3μ (where μ is the cosine of the scattering angle), τ0 = μ, and τ1 = 3cos(2cos-1 (μ)):

[image: ${\displaystyle \pi_n=\frac{2n-1}{n-1}\mu\pi_{n-1}-\frac{n}{n-1}\pi_{n-2}}$]

[image: ${\displaystyle \tau_n=n\mu\pi_n-(n+1)\pi_{n-1}}$]

Parameters

	mufloat

	The cosine of the scattering angle.

	nmaxint

	The number of elements to compute. Typically, nmax = floor(2+x+4x1/3), but can be given any integer.

Returns

	p, tnumpy.ndarray

	The πn and τn arrays, of length nmax.

Functions for Coated Spheres (Core-Shell Particles)

	
MieQCoreShell(mCore, mShell, wavelength, dCore, dShell[, nMedium=1.0, asDict=False, asCrossSection=False])

	Compute Mie efficencies Q and asymmetry parameter g of a single, coated particle. Uses CoreShell_ab() to calculate an and bn , and then calculates Qi following closely from the original BHMIE.

The code will return a warning if a non-unity nMedium is specified, since it was added naively. The mathematics to compute the effective index is the same as in the homogeneous particle functions.

Parameters

	mCorecomplex

	The complex refractive index of the core region, with the convention [image: m=n+ik].

	mShellcomplex

	The complex refractive index of the shell region, with the convention [image: m=n+ik].

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	dCorefloat

	The diameter of the core, in nanometers.

	dShellfloat

	The diameter of the shell, in nanomaters. This is equal to the total diameter of the particle.

	nMediumfloat, optional

	The refractive index of the medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

	asDictbool, optional

	If True, returns the results as a dict.

	asCrossSectionbool, optional

	If specified and set to True, returns the results as optical cross-sections with units of nm2.

Returns

	qext, qsca, qabs, g, qpr, qback, qratiofloat

	The Mie efficencies described above.

	cext, csca, cabs, g, cpr, cback, cratiofloat

	If asCrossSection==True, MieQCoreShell() returns optical cross-sections.

	qdict

	If asDict==True, MieQCoreShell() returns a dict of the above efficiencies with appropriate keys.

	cdict

	If asDict==True and asCrossSection==True, returns a dict of the above cross-sections with appropriate keys.

Considerations

When using this function in a script, there are three simplifying clauses that can speed up computation when considering both coated and homogeneous particles. Upon determining the size parameters of the core and the shell:

	if xcore == xshell, then MieQCoreShell() returns Mie efficencies calculated by MieQ(mCore,wavelength,dShell).

	If xcore == 0, then MieQCoreShell() returns efficencies calculated by MieQ(mShell,wavelength,dShell).

	If mcore == mshell, then MieQCoreShell() returns efficencies calculated by MieQ(mCore,wavelength,dShell).

	
CoreShellScatteringFunction(mCore, mShell, wavelength, dCore, dShell[, nMedium=1.0, minAngle=0, maxAngle=180, angularResolution=0.5, normed=False])

	Computes the angle-dependent scattering intensity of a coated sphere.

Parameters

	mCorecomplex

	The complex refractive index of the core region, with the convention [image: m=n+ik].

	mShellcomplex

	The complex refractive index of the shell region, with the convention [image: m=n+ik].

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	dCorefloat

	The diameter of the core, in nanometers.

	dShellfloat

	The diameter of the shell, in nanomaters. This is equal to the total diameter of the particle.

	nMediumfloat, optional

	The refractive index of the medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

	minAngleint, optional

	The minimum scattering angle returned by the calculations.

	maxAngleint, optional

	The maximum scattering angle returned by the calculations.

	angularResolutionfloat, optional

	The angular resolution returned by the calculations.

	normedbool, optional

	Set to True to return normalized results.

Returns

	thetanumpy.ndarray

	An array of the angles used in calculations. Values will be spaced according to angularResolution, and the size of the array will be (maxAngle-minAngle)/angularResolution.

	SLnumpy.ndarray

	An array of the scattered intensity of left-polarized (parallel) light. Same size as the theta array.

	SRnumpy.ndarray

	An array of the scattered intensity of right-polarized (perpendicular) light. Same size as the theta array.

	SUnumpy.ndarray

	An array of the scattered intensity of unpolarized light, which is the average of SL and SR. Same size as the theta array.

	
CoreShellS1S2(mCore, mShell, xCore, xShell, mu)

	Computes S1 and S2 of a coated sphere as a function of mu, the cosine of the scattering angle.

Parameters

	mCorecomplex

	The complex refractive index of the core region, with the convention [image: m=n+ik].

	mShellcomplex

	The complex refractive index of the shell region, with the convention [image: m=n+ik].

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	dCorefloat

	The diameter of the core, in nanometers.

	dShellfloat

	The diameter of the shell, in nanomaters. This is equal to the total diameter of the particle.

	mufloat

	The cosine of the scattering angle.

Returns

	S1, S2complex

	The S1 and S2 values.

	
CoreShellMatrixElements(mCore, mShell, xCore, xShell, mu)

	Calculates the four nonzero scattering matrix elements S11, S12, S33, and S34 as functions of μ=cos(θ), where θ is the scattering angle:

[image: S_{11}=\frac{1}{2}\left(|S_2|^2+|S_1|^2\right)]

[image: S_{12}=\frac{1}{2}\left(|S_2|^2-|S_1|^2\right)]

[image: S_{33}=\frac{1}{2}(S_2^*S_1^*+S_2S_1^*)]

[image: S_{34}=\frac{i}{2}(S_1S_2^*-S_2S_1^*)]

Parameters

	mCorecomplex

	The complex refractive index of the core region, with the convention [image: m=n+ik].

	mShellcomplex

	The complex refractive index of the shell region, with the convention [image: m=n+ik].

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	dCorefloat

	The diameter of the core, in nanometers.

	dShellfloat

	The diameter of the shell, in nanomaters. This is equal to the total diameter of the particle.

	mufloat

	The cosine of the scattering angle.

Returns

	S11, S12, S33, S34float

	The matrix elements described above.

Inverse Mie Theory Functions

Contour Intersection Inversion Functions

For more details on the contour intersection inversion method, please see Sumlin BJ, Heinson WR, Chakrabarty RK. Retrieving the Aerosol Complex Refractive Index using PyMieScatt: A Mie Computational Package with Visualization Capabilities. J. Quant. Spectros. Rad. Trans. 2017. DOI: 10.1016/j.jqsrt.2017.10.012 [https://doi.org/10.1016/j.jqsrt.2017.10.012] There’s also a good example here [http://pymiescatt.readthedocs.io/en/latest/examples.html#visualization-of-the-contour-intersection-inversion-method].

	
ContourIntersection(Qsca, Qabs, wavelength, diameter[, n=None, k=None, nMin=1, nMax=3, kMin=0.00001, kMax=1, Qback=None, gridPoints=100, interpolationFactor=2, maxError=0.005, fig=None, ax=None, axisOption=0])

	Computes complex m = n+ik from a particle diameter (in nm), incident wavelength (in nm), and scattering and absorption efficiencies. Optionally, backscatter efficiency may be specified to constrain the problem to produce a unique solution.

Parameters

	Qscafloat or list-like

	The scattering efficiency, or optionally, a list, tuple, or numpy.ndarray of scattering efficiency and its associated error.

	Qabsfloat or list-like

	The absorption efficiency, or optionally, a list, tuple, or numpy.ndarray of absorption efficiency and its associated error..

	wavelengthfloat

	The wavelength of incident light, in nm.

	diameterfloat

	The diameter of the particle, in nm.

	nfloat or list-like, optional

	An assumed real refractive index. Can be used in case scattering data is not available. If specified as a list, it must have only two elements. The first is the assumed n and the second is an uncertainty, such as a standard deviation.

	kfloat or list-like, optional

	An assumed imaginary refractive index. Useful if only considering nonabsorbing aerosols, so you can set k=0. If specified as a list, it must have only two elements. The first is the assumed k and the second is an uncertainty, such as a standard deviation. **Note: when specifying this in the function call, input it as a real number. Omit the imaginary unit.

	nMinfloat, optional

	The minimum value of n to search.

	nMaxfloat, optional

	The maximum value of n to search.

	kMinfloat, optional

	The minimum value of k to search.

	kMaxfloat, optional

	The maximum value of k to search.

	Qbackfloat or list-like, optional

	The backscatter efficiency, or optionally, a list, tuple, or numpy.ndarray of backscatter efficiency and its associated error.

	gridPointsint, optional

	The number of gridpoints for the search mesh. Defaults to 200. Increase for better resolution but longer run times.

	interpolationFactorint, optional

	The interpolation to apply to the search fields, artificially increasing their resolutions. This is applied after calculations, so some features may be lost if interpolationFactor is too high and gridPoints is too low.

	maxErrorfloat, optional

	The allowed error in forward calculations of the retrived m.

	figmatplotlib.figure object, optional (but recommended)

	The figure object to send to the geometric inversion routine. If unspecified, one will be created.

	axmatplotlib.axes object, optional (but recommended)

	The axes object to send to the geometric inversion routine. If unspecified, one will be created.

	axisOptionint, optional

	Dictates the axis scales. Kind of useless since version 1.3.0. It’s still around until I get rid of it. Acceptable parameters are:

	‘0’ for automatic detection of best axis scaling

	‘1’ for linear axes

	‘2’ for linear x and logarithmic y

	‘3’ for logarithmic x and linear y

	‘4’ for log-log

Returns

	solutionSetlist

	A list of all valid solutions

	ForwardCalculationslist

	A list of scattering and absorption efficencies produced by forward Mie calculations using the derived refractive indices

	solutionErrorslist

	The relative errors of the efficencies in ForwardCalculations.

	figmatplotlib.figure object

	The figure object now associated with the inversion calculations.

	axmatplotlib.axes object

	The axes object now associated with the inversion calculations.

	graphElementsdict

	A dict of all artists necessary to fully manipulate the appearance of the output. The keys will depend on the options passed to the inversion function itself (i.e., errors specified, backscatter specified). Maximally, it will contain:

	‘Qsca’, ‘Qabs’, ‘Qback’ - the major contours;

	‘QscaErrFill’, ‘QscaErrOutline1’, ‘QscaErrOutline2’ - the error bound contours;

	‘QabsErrFill’, ‘QabsErrOutline1’, ‘QabsErrOutline2’ - the error bound fills;

	‘SolMark’, ‘SolFill’ - the circle thingies at each solution;

	‘CrosshairsH’, ‘CrosshairsV’ - solution crosshairs;

	‘LeftSpine’, ‘RightSpine’, ‘BottomSpine’, ‘TopSpine’ - graph spines;

	‘XAxis’, ‘YAxis’ - the individual matplotlib axis objects.

	
ContourIntersection_SD(Bsca, Babs, wavelength, dp, ndp[, n=None, k=None, nMin=1, nMax=3, kMin=0.00001, kMax=1, SMPS=True, Bback=None, gridPoints=100, interpolationFactor=2, maxError=0.005, fig=None, ax=None, axisOption=0])

	Computes effective complex m = n+ik from a measured or constructed size distribution (in cm-3), incident wavelength (in nm), and scattering and absorption coefficients (in Mm-1). Optionally, backscatter coefficient may be specified to constrain the problem to produce a unique solution.

Parameters

	Bscafloat or list-like

	The scattering coefficient, or optionally, a list, tuple, or numpy.ndarray of scattering coefficient and its associated error.

	Babsfloat or list-like

	The absorption coefficient, or optionally, a list, tuple, or numpy.ndarray of absorption coefficient and its associated error..

	wavelengthfloat

	The wavelength of incident light, in nm.

	dplist-like

	The diameter bins of the size distribution, in nm.

	ndplist-like

	The number of particles per diameter bin corresponding to dp, in cm-3. Must be same length as dp.

	nfloat or list-like, optional

	An assumed real refractive index. Can be used in case scattering data is not available. If specified as a list, it must have only two elements. The first is the assumed n and the second is an uncertainty, such as a standard deviation.

	kfloat or list-like, optional

	An assumed imaginary refractive index. Useful if only considering nonabsorbing aerosols, so you can set k=0. If specified as a list, it must have only two elements. The first is the assumed k and the second is an uncertainty, such as a standard deviation. **Note: when specifying this in the function call, input it as a real number. Omit the imaginary unit.

	nMinfloat, optional

	The minimum value of n to search.

	nMaxfloat, optional

	The maximum value of n to search.

	kMinfloat, optional

	The minimum value of k to search.

	kMaxfloat, optional

	The maximum value of k to search.

	SMPSbool, optional

	The switch determining the source of the size distribution data. Omit or set to True for laboratory measurements, set to False for analytical distributions.

	Bbackfloat or list-like, optional

	The backscatter coefficient, or optionally, a list, tuple, or numpy.ndarray of backscatter coefficient and its associated error.

	gridPointsint, optional

	The number of gridpoints for the search mesh. Defaults to 200. Increase for better resolution but longer run times.

	interpolationFactorint, optional

	The interpolation to apply to the search fields, artificially increasing their resolutions. This is applied after calculations, so some features may be lost if interpolationFactor is too high and gridPoints is too low.

	maxErrorfloat, optional

	The allowed error in forward calculations of the retrived m.

	figmatplotlib.figure object, optional (but recommended)

	The figure object to send to the geometric inversion routine. If unspecified, one will be created.

	axmatplotlib.axes object, optional (but recommended)

	The axes object to send to the geometric inversion routine. If unspecified, one will be created.

	axisOptionint, optional

	Dictates the axis scales. Kind of useless since version 1.3.0. It’s still around until I get rid of it. Acceptable parameters are:

	‘0’ for automatic detection of best axis scaling

	‘1’ for linear axes

	‘2’ for linear x and logarithmic y

	‘3’ for logarithmic x and linear y

	‘4’ for log-log

Returns

	solutionSetlist

	A list of all valid solutions

	ForwardCalculationslist

	A list of scattering and absorption coefficients produced by forward Mie calculations using the derived effective refractive indices

	solutionErrorslist

	The relative errors of the coefficients in ForwardCalculations.

	figmatplotlib.figure object

	The figure object now associated with the inversion calculations.

	axmatplotlib.axes object

	The axes object now associated with the inversion calculations.

	graphElementsdict

	A dict of all artists necessary to fully manipulate the appearance of the output. The keys will depend on the options passed to the inversion function itself (i.e., errors specified, backscatter specified). Maximally, it will contain:

	‘Bsca’, ‘Babs’, ‘Bback’ - the major contours;

	‘BscaErrFill’, ‘BscaErrOutline1’, ‘BscaErrOutline2’ - the error bound contours;

	‘BabsErrFill’, ‘BabsErrOutline1’, ‘BabsErrOutline2’ - the error bound fills;

	‘SolMark’, ‘SolFill’ - the circle thingies at each solution;

	‘CrosshairsH’, ‘CrosshairsV’ - solution crosshairs;

	‘LeftSpine’, ‘RightSpine’, ‘BottomSpine’, ‘TopSpine’ - graph spines;

	‘XAxis’, ‘YAxis’ - the individual matplotlib axis objects.

Survey-iteration Inversion Functions

The survey-iteration inversion algorithm is discussed in detail in the Supplementary Material of the JQSRT paper. It is a strictly numerical two phase algorithm. First, a low-resolution survey of n-k space is conducted and values of efficiencies or coefficients close to the inputs are located. From this survey, candidate m values are determined. The iteration phase is best described by this flowchart:

[image: _images/Flowchart.png]

	
SurveyIteration(Qsca, Qabs, wavelength, diameter[, tolerance=0.0005])

	Computes complex m=n+ik for given scattering and absorption efficencies, incident wavelength, and particle diameter.

Parameters

	Qscafloat

	Measured scattering efficiency.

	Qabsfloat

	Measured absorption efficiency.

	wavelengthfloat

	The incident wavelength of light, in nm.

	diameterfloat

	The particle diameter in nm.

	tolerancefloat, optional

	The maximum error allowed in forward Mie calculations of retrieved indices.

Returns

	resultMlist-like

	The retrieved refractive indices. Be sure and scrutinize this list for repeat entries.

	resultScaErrlist-like

	The relative error in scattering efficiency for each retrieved m.

	resultAbsErrlist-like

	The relative error in absorption efficiency for each retrieved m.

	
SurveyIteration_SD(Bsca, Babs, wavelength, dp, ndp[, tolerance=0.0005, SMPS=True])

	Computes complex m=n+ik for given scattering and absorption coefficients, incident wavelength, and particle diameter.

Parameters

	Qscafloat

	Measured scattering coefficient.

	Qabsfloat

	Measured absorption coefficient.

	wavelengthfloat

	The incident wavelength of light, in nm.

	dplist-like

	The particle diameter bins in nm.

	ndplist-like

	The particle concentrations (in cm-3) corresponding to each of the bins in dp.

	tolerancefloat, optional

	The maximum error allowed in forward Mie calculations of retrieved indices.

	SMPSbool, optional

	The switch determining the source of the size distribution data. Omit or set to True for laboratory measurements, set to False for analytical distributions.

Returns

	resultMlist-like

	The retrieved refractive indices. Be sure and scrutinize this list for repeat entries.

	resultScaErrlist-like

	The relative error in scattering coefficient for each retrieved m.

	resultAbsErrlist-like

	The relative error in absorption coefficient for each retrieved m.

General Usage tips and Example Scripts

Examples are now more or less up-to-date with PyMieScatt’s modern syntax.

PyMieScatt’s functions are designed to work as a standalone calculator or as part of larger, more customized scripts. This page has a few selected examples which will expand as more innovative use cases appear. If you use PyMieScatt in your research in an unexpected or novel way, please contact the author to post an example here.

Mie Efficiencies of a Single Homogeneous Particle

To calculate the efficencies of a single homogeneous particle, use the MieQ() function.

>>> import PyMieScatt as ps
>>> ps.MieQ(1.5+0.5j,532,200,asDict=True)
{'Qabs': 1.2206932456722366,
 'Qback': 0.2557593071989655,
 'Qext': 1.6932375984850729,
 'Qpr': 1.5442174328606282,
 'Qratio': 0.5412387338385265,
 'Qsca': 0.47254435281283641,
 'g': 0.3153569918620277}

Mie Efficencies of a Weibull Distribution

Consider the 405 nm Mie coefficients of 105 particles/cm3, with m = 1.5+0.5i, in a Weibull distribution [https://en.wikipedia.org/wiki/Weibull_distribution] with shape parameter sh = 5 and scale parameter sc = 200:

>>> import PyMieScatt as ps
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> dp = np.linspace(10,1000,1000)
>>> N,sh,sc = 1e5,5,200
>>> w=[N*((sh/sc)*(d/sc)**(sh-1))*np.exp(-(d/sc)**sh) for d in dp]
>>> ps.Mie_SD(1.5+0.5j,405,dp,w,asDict=True,SMPS=False)
{'Babs': 3762.0479602613427,
 'Bback': 286.65698999981691,
 'Bext': 5747.4466502095638,
 'Bpr': 4662.181554274106,
 'Bratio': 550.87163111634698,
 'Bsca': 1985.3986899482211,
 'G': 0.54662325578736115}

Plotting Angular Functions

The angular functions [http://pymiescatt.readthedocs.io/en/latest/forward.html#angular-functions] return arrays that are suitable for plotting with MatPlotLib [https://matplotlib.org/]. For example, plot the angular scattering functions of a 5 μm particle with m=1.7+0.5i, illuminated by 532 nm light. Note that the Mie calculations themselves only need two lines, the rest is making the plot look nice:

import PyMieScatt as ps
import numpy as np
import matplotlib.pyplot as plt

m=1.7+0.5j
w=532
d=5000

theta,SL,SR,SU = ps.ScatteringFunction(m,w,d)
qR,SLQ,SRQ,SUQ = ps.ScatteringFunction(m,w,d,space='qspace')

plt.close('all')

fig1 = plt.figure(figsize=(10,6))
ax1 = fig1.add_subplot(1,2,1)
ax2 = fig1.add_subplot(1,2,2)

ax1.semilogy(theta,SL,'b',ls='dashdot',lw=1,label="Parallel Polarization")
ax1.semilogy(theta,SR,'r',ls='dashed',lw=1,label="Perpendicular Polarization")
ax1.semilogy(theta,SU,'k',lw=1,label="Unpolarized")

x_label = ["0", r"$\mathregular{\frac{\pi}{4}}$", r"$\mathregular{\frac{\pi}{2}}$",r"$\mathregular{\frac{3\pi}{4}}$",r"$\mathregular{\pi}$"]
x_tick = [0,np.pi/4,np.pi/2,3*np.pi/4,np.pi]
ax1.set_xticks(x_tick)
ax1.set_xticklabels(x_label,fontsize=14)
ax1.tick_params(which='both',direction='in')
ax1.set_xlabel("ϴ",fontsize=16)
ax1.set_ylabel(r"Intensity ($\mathregular{|S|^2}$)",fontsize=16,labelpad=10)

ax2.loglog(qR,SLQ,'b',ls='dashdot',lw=1,label="Parallel Polarization")
ax2.loglog(qR,SRQ,'r',ls='dashed',lw=1,label="Perpendicular Polarization")
ax2.loglog(qR,SUQ,'k',lw=1,label="Unpolarized")

ax2.tick_params(which='both',direction='in')
ax2.set_xlabel("qR",fontsize=14)
handles, labels = ax1.get_legend_handles_labels()
fig1.legend(handles,labels,fontsize=14,ncol=3,loc=8)

fig1.suptitle("Scattering Intensity Functions",fontsize=18)
fig1.show()
plt.tight_layout(rect=[0.01,0.05,0.915,0.95])

This produces the following image:

[image: _images/sif.png]
We can do better, though! Suppose we wanted to, for educational purposes, demonstrate how the “Mie ripples” develop as we increase size parameter. This script considers a weakly absorbing particle of m=1.536+0.0015i. Its size parameter increases from 0.08 to 500 nm, the scattering function is plotted and a figure file is saved. The final few lines gather the figures into an mp4 video. Note that the Mie mathematics need only one line per loop, and the rest is generating images and movies.

First, install ffmpeg exe using conda:
.. code-block:

$ conda install ffmpeg -c conda-forge

import PyMieScatt as ps
import numpy as np
import matplotlib.pyplot as plt
import imageio
import os

wavelength=450.0
m=1.536+0.0015j
drange = np.logspace(1,np.log10(500*405/np.pi),250)
for i,d in enumerate(drange):
 if 250%(i+1)==0:
 print("Working on image " + str(i) + "...",flush=True)
 theta,SL,SR,SU = ps.ScatteringFunction(m,wavelength,d,space='theta',normalization='t')

 plt.close('all')

 fig1 = plt.figure(figsize=(10.08,6.08))
 ax1 = fig1.add_subplot(1,1,1)
 #ax2 = fig1.add_subplot(1,2,2)

 ax1.semilogy(theta,SL,'b',ls='dashdot',lw=1,label="Parallel Polarization")
 ax1.semilogy(theta,SR,'r',ls='dashed',lw=1,label="Perpendicular Polarization")
 ax1.semilogy(theta,SU,'k',lw=1,label="Unpolarized")

 x_label = ["0", r"$\mathregular{\frac{\pi}{4}}$", r"$\mathregular{\frac{\pi}{2}}$",r"$\mathregular{\frac{3\pi}{4}}$",r"$\mathregular{\pi}$"]
 x_tick = [0,np.pi/4,np.pi/2,3*np.pi/4,np.pi]
 ax1.set_xticks(x_tick)
 ax1.set_xticklabels(x_label,fontsize=14)
 ax1.tick_params(which='both',direction='in')
 ax1.set_xlabel("ϴ",fontsize=16)
 ax1.set_ylabel(r"Intensity ($\mathregular{|S|^2}$)",fontsize=16,labelpad=10)
 ax1.set_ylim([1e-9,1])
 ax1.set_xlim([1e-3,theta[-1]])
 ax1.annotate("x = πd/λ = {dd:1.2f}".format(dd=np.round(np.pi*d/405,2)), xy=(3, 1e-6), xycoords='data',
 xytext=(0.05, 0.1), textcoords='axes fraction',
 horizontalalignment='left', verticalalignment='top',
 fontsize=18
)
 handles, labels = ax1.get_legend_handles_labels()
 fig1.legend(handles,labels,fontsize=14,ncol=3,loc=8)

 fig1.suptitle("Scattering Intensity Functions",fontsize=18)
 fig1.show()
 plt.tight_layout(rect=[0.01,0.05,0.915,0.95])

 plt.savefig('output\\' + str(i).rjust(3,'0') + '.png')

filenames = os.listdir('output\\')
dur = [0.1 for x in range(250)]
dur[249]=10
with imageio.get_writer('mie_ripples.mp4', mode='I', fps=10) as writer:
 for filename in filenames:
 image = imageio.imread('output\\' + filename)
 writer.append_data(image)

This produces a nice video, which I’ll embed here just as soon as ReadTheDocs supports Github content embedding. For now, you can download it here [https://github.com/bsumlin/PyMieScatt/blob/master/docs/images/mie_ripples.mp4?raw=true].

 Functions for Forward Mie Calculations of Homogeneous Spheres

Functions for Forward Mie Calculations of Homogeneous Spheres

Functions for single particles

	
MieQ(m, wavelength, diameter[, nMedium=1.0, asDict=False, asCrossSection=False])

	Computes Mie efficencies Q and asymmetry parameter g of a single, homogeneous particle. Uses Mie_ab() to calculate [image: a_n] and [image: b_n], and then calculates Q via:

[image: ${\displaystyle Q_{ext}=\frac{2}{x^2}\sum_{n=1}^{n_{max}}(2n+1)\:\text{Re}\left\{a_n+b_n\right\}}$]

[image: ${\displaystyle Q_{sca}=\frac{2}{x^2}\sum_{n=1}^{n_{max}}(2n+1)(|a_n|^2+|b_n|^2)}$]

[image: ${\displaystyle Q_{abs}=Q_{ext}-Q_{sca}}$]

[image: ${\displaystyle Q_{back}=\frac{1}{x^2} \left| \sum_{n=1}^{n_{max}}(2n+1)(-1)^n(a_n-b_n) \right| ^2}$]

[image: ${\displaystyle Q_{ratio}=\frac{Q_{back}}{Q_{sca}}}$]

[image: ${\displaystyle g=\frac{4}{Q_{sca}x^2}\left[\sum\limits_{n=1}^{n_{max}}\frac{n(n+2)}{n+1}\text{Re}\left\{a_n a_{n+1}^*+b_n b_{n+1}^*\right\}+\sum\limits_{n=1}^{n_{max}}\frac{2n+1}{n(n+1)}\text{Re}\left\{a_n b_n^*\right\}\right]}$]

[image: ${\displaystyle Q_{pr}=Q_{ext}-gQ_{sca}}$]

where asterisks denote the complex conjugates.

Parameters

	mcomplex

	The complex refractive index, with the convention m = n+ik.

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	diameterfloat

	The diameter of the particle, in nanometers.

	nMediumfloat, optional

	The refractive index of the surrounding medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

	asDictbool, optional

	If specified and set to True, returns the results as a dict.

	asCrossSectionbool, optional

	If specified and set to True, returns the results as optical cross-sections with units of nm2.

Returns

	qext, qsca, qabs, g, qpr, qback, qratiofloat

	The Mie efficencies described above.

	cext, csca, cabs, g, cpr, cback, cratiofloat

	If asCrossSection==True, MieQ() returns optical cross-sections with units of nm2.

	qdict

	If asDict==True, MieQ() returns a dict of the above efficiencies with appropriate keys.

	cdict

	If asDict==True and asCrossSection==True, returns a dict of the above cross-sections with appropriate keys.

For example, compute the Mie efficencies of a particle 300 nm in diameter with m = 1.77+0.63i, illuminated by λ = 375 nm:

>>> import PyMieScatt as ps
>>> ps.MieQ(1.77+0.63j,375,300,asDict=True)
{'Qext': 2.8584971991564112,
 'Qsca': 1.3149276685170939,
 'Qabs': 1.5435695306393173,
 'g': 0.7251162362148782,
 'Qpr': 1.9050217972664911,
 'Qback': 0.20145510481352547,
 'Qratio': 0.15320622543498222}

	
Mie_ab(m, x)

	Computes external field coefficients an and bn based on inputs of m and [image: x=\pi\,d_p/\lambda]. Must be explicitly imported via

>>> from PyMieScatt.Mie import Mie_ab

Parameters

	mcomplex

	The complex refractive index with the convention m = n+ik.

	xfloat

	The size parameter [image: x=\pi\,d_p/\lambda].

Returns

	an, bnnumpy.ndarray

	Arrays of size nmax = 2+x+4x1/3

	
Mie_cd(m, x)

	
Computes internal field coefficients cn and dn based on inputs of m and [image: x=\pi\,d_p/\lambda]. Must be explicitly imported via

>>> from PyMieScatt.Mie import Mie_cd

Parameters

	mcomplex

	The complex refractive index with the convention m = n+ik.

	xfloat

	The size parameter [image: x=\pi\,d_p/\lambda].

Returns

	cn, dnnumpy.ndarray

	Arrays of size nmax = 2+x+4x1/3

	
RayleighMieQ(m, wavelength, diameter[, nMedium=1.0, asDict=False, asCrossSection=False])

	Computes Mie efficencies of a spherical particle in the Rayleigh regime ([image: x=\pi\,d_p/\lambda \ll 1]) given refractive index m, wavelength, and diameter. Optionally returns the parameters as a dict when asDict is specified and set to True. Uses Rayleigh-regime approximations:

[image: ${\displaystyle Q_{sca}=\frac{8x^4}{3}\left|{\frac{m^2-1}{m^2+2}}\right|^2}$]

[image: ${\displaystyle Q_{abs}=4x\:\text{Im}\left\{\frac{m^2-1}{m^2+2}\right\}}$]

[image: ${\displaystyle Q_{ext}=Q_{sca}+Q_{abs}}$]

[image: ${\displaystyle Q_{back}=\frac{3Q_{sca}}{2}}$]

[image: ${\displaystyle Q_{ratio}=1.5}$]

[image: ${\displaystyle Q_{pr}=Q_{ext}}$]

Parameters

	mcomplex

	The complex refractive index, with the convention m = n+ik.

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	diameterfloat

	The diameter of the particle, in nanometers.

	nMediumfloat, optional

	The refractive index of the surrounding medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

	asDictbool, optional

	If specified and set to True, returns the results as a dict.

	asCrossSectionbool, optional

	If specified and set to True, returns the results as optical cross-sections with units of nm2.

Returns

	qext, qsca, qabs, g, qpr, qback, qratiofloat

	The Mie efficencies described above.

	cext, csca, cabs, g, cpr, cback, cratiofloat

	If asCrossSection==True, RayleighMieQ() returns optical cross-sections.

	qdict

	If asDict==True, RayleighMieQ() returns a dict of the above efficiencies with appropriate keys.

	cdict

	If asDict==True and asCrossSection==True, returns a dict of the above cross-sections with appropriate keys.

For example, compute the Mie efficencies of a particle 50 nm in diameter with m = 1.33+0.01i, illuminated by λ = 870 nm:

>>> import PyMieScatt as ps
>>> ps.MieQ(1.33+0.01j,870,50,asDict=True)
{'Qabs': 0.004057286640269908,
 'Qback': 0.00017708468873118297,
 'Qext': 0.0041753430994240295,
 'Qpr': 0.0041753430994240295,
 'Qratio': 1.5,
 'Qsca': 0.00011805645915412197,
 'g': 0}

	
AutoMieQ(m, wavelength, diameter[, nMedium=1.0, crossover=0.01, asDict=False, asCrossSection=False])

	Returns Mie efficencies of a spherical particle according to either MieQ() or RayleighMieQ() depending on the magnitude of the size parameter. Good for studying parameter ranges or size distributions. Thanks to John Kendrick [https://github.com/JohnKendrick/PDielec] for discussions about where to best place the crossover point.

Parameters

	mcomplex

	The complex refractive index, with the convention m = n+ik.

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	diameterfloat

	The diameter of the particle, in nanometers.

	nMediumfloat, optional

	The refractive index of the surrounding medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

	crossoverfloat, optional

	The size parameter that dictates where calculations switch from Rayleigh approximation to actual Mie.

	asDictbool, optional

	If specified and set to True, returns the results as a dict.

	asCrossSectionbool, optional

	If specified and set to True, returns the results as optical cross-sections with units of nm2.

Returns

	qext, qsca, qabs, g, qpr, qback, qratiofloat

	The Mie efficencies described above.

	cext, csca, cabs, g, cpr, cback, cratiofloat

	If asCrossSection==True, AutoMieQ() returns optical cross-sections.

	qdict

	If asDict==True, AutoMieQ() returns a dict of the above efficiencies with appropriate keys.

	cdict

	If asDict==True and asCrossSection==True, returns a dict of the above cross-sections with appropriate keys.

	
LowFrequencyMieQ(m, wavelength, diameter[, nMedium=1.0, asDict=False, asCrossSection=False])

	Returns Mie efficencies of a spherical particle in the low-frequency regime ([image: x=\pi\,d_p/\lambda \ll 1]) given refractive index m, wavelength, and diameter. Optionally returns the parameters as a dict when asDict is specified and set to True. Uses LowFrequencyMie_ab() to calculate an and bn, and follows the same math as MieQ().

Parameters

	mcomplex

	The complex refractive index, with the convention m = n+ik.

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	diameterfloat

	The diameter of the particle, in nanometers.

	nMediumfloat, optional

	The refractive index of the surrounding medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

	asDictbool, optional

	If specified and set to True, returns the results as a dict.

	asCrossSectionbool, optional

	If specified and set to True, returns the results as optical cross-sections with units of nm2.

Returns

	qext, qsca, qabs, g, qpr, qback, qratiofloat

	The Mie efficencies described above.

	cext, csca, cabs, g, cpr, cback, cratiofloat

	If asCrossSection==True, LowFrequencyMieQ() returns optical cross-sections.

	qdict

	If asDict==True, LowFrequencyMieQ() returns a dict of the above efficiencies with appropriate keys.

	cdict

	If asDict==True and asCrossSection==True, returns a dict of the above cross-sections with appropriate keys.

For example, compute the Mie efficencies of a particle 100 nm in diameter with m = 1.33+0.01i, illuminated by λ = 1600 nm:

>>> import PyMieScatt as ps
>>> ps.LowFrequencyMieQ(1.33+0.01j,1600,100,asDict=True)
{'Qabs': 0.0044765816617916582,
 'Qback': 0.00024275862007727458,
 'Qext': 0.0046412326004135135,
 'Qpr': 0.0046400675577583459,
 'Qratio': 1.4743834569616665,
 'Qsca': 0.00016465093862185558,
 'g': 0.0070758336692078412}

	
LowFrequencyMie_ab(m, x)

	Returns external field coefficients an and bn based on inputs of m and [image: x=\pi\,d_p/\lambda] by limiting the expansion of an and bn to second order:

[image: ${\displaystyle a_1=\frac{m^2-1}{m^2+2} \left[-\frac{i2x^3}{3}-\frac{2ix^5}{5}\left(\frac{m^2-2}{m^2+2}\right) +\frac{4x^6}{9}\left(\frac{m^2-1}{m^2+2} \right) \right]}$]

[image: ${\displaystyle a_2=-\frac{ix^5}{15}\frac{(m^2-1)}{2m^2+3}}$]

[image: ${\displaystyle b_1=-\frac{ix^5}{45}(m^2-1)}$]

[image: ${\displaystyle b_2=0}$]

Parameters

	mcomplex

	The complex refractive index with the convention m = n+ik.

	xfloat

	The size parameter [image: x=\pi\,d_p/\lambda].

Returns

	an, bnnumpy.ndarray

	Arrays of size 2.

Functions for single particles across various ranges

	
MieQ_withDiameterRange(m, wavelength[, nMedium=1.0, diameterRange=(10, 1000), nd=1000, logD=False])

	Computes the Mie efficencies of particles across a diameter range using AutoMieQ().

Parameters

	mcomplex

	The complex refractive index with the convention m = n+ik.

	wavelengthfloat

	The wavelength of incident light, in nanomaters

	nMediumfloat, optional

	The refractive index of the surrounding medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

	diameterRangetuple or list, optional

	The diameter range, in nanometers. Convention is (smallest, largest). Defaults to (10, 1000).

	ndint, optional

	The number of diameter bins in the range. Defaults to 1000.

	logDbool, optional

	If True, will use logarithmically-spaced diameter bins. Defaults to False.

Returns

	diametersnumpy.ndarray

	An array of the diameter bins that calculations were performed on. Size is equal to nd.

	qext, qsca, qabs, g, qpr, qback, qrationumpy.ndarray

	The Mie efficencies at each diameter in diameters.

	
MieQ_withWavelengthRange(m, diameter[, nMedium=1.0, wavelengthRange=(100, 1600), nw=1000, logW=False])

	Computes the Mie efficencies of particles across a wavelength range using AutoMieQ(). This function can optionally take a list, tuple, or numpy.ndarray for m. If your particles have a wavelength-dependent refractive index, you can study it by specifying m as list-like. When doing so, m must be the same size as wavelengthRange, which is also specified as list-like in this situation. Otherwise, the function will construct a range from wavelengthRange[0] to wavelengthRange[1] with nw entries.

Parameters

	mcomplex or list-like

	The complex refractive index with the convention m = n+ik. If dealing with a dispersive material, then len(m) must be equal to len(wavelengthRange).

	diameterfloat

	The diameter of the particle, in nanometers.

	nMediumfloat, optional

	The refractive index of the surrounding medium. This must be positive, nonzero, and real. Any imaginary part will be discarded. A future update will allow the entry of a spectral range of refractive indices.

	wavelengthRangetuple or list, optional

	The wavelength range of incident light, in nanomaters. Convention is (smallest, largest). Defaults to (100, 1600). When m is list-like, len(wavelengthRange) must be equal to len(m).

	nwint, optional

	The number of wavelength bins in the range. Defaults to 1000. This parameter is ignored if m is list-like.

	logWbool, optional

	If True, will use logarithmically-spaced wavelength bins. Defaults to False. This parameter is ignored if m is list-like.

Returns

	wavelengthsnumpy.ndarray

	An array of the wavelength bins that calculations were performed on. Size is equal to nw, unless m was list-like. Then wavelengths = wavelengthRange.

	qext, qsca, qabs, g, qpr, qback, qrationumpy.ndarray

	The Mie efficencies at each wavelength in wavelengths.

	
MieQ_withSizeParameterRange(m[, nMedium=1.0, xRange=(1, 10), nx=1000, logX=False])

	Computes the Mie efficencies of particles across a size parameter range ([image: x=\pi\,d_p/\lambda]) using AutoMieQ().

Parameters

	mcomplex

	The complex refractive index with the convention m = n+ik.

	nMediumfloat, optional

	The refractive index of the surrounding medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

	xRangetuple or list, optional

	The size parameter range. Convention is (smallest, largest). Defaults to (1, 10).

	nxint, optional

	The number of size parameter bins in the range. Defaults to 1000.

	logXbool, optional

	If True, will use logarithmically-spaced size parameter bins. Defaults to False.

Returns

	xValuesnumpy.ndarray

	An array of the size parameter bins that calculations were performed on. Size is equal to nx.

	qext, qsca, qabs, g, qpr, qback, qrationumpy.ndarray

	The Mie efficencies at each size parameter in xValues.

Functions for polydisperse size distributions of homogeneous spheres

When an efficiency Q is integrated over a size distribution nd(dp), the result is the coefficient [image: \beta], which carries units of inverse length. The general form is:

[image: ${\displaystyle \beta=10^{-6} \int\limits_{0}^{\infty}\frac{\pi d_p^2}{4}Q(m,\lambda,d_p)n(d_p)dd_p}$]

where dp is the diameter of the particle (in nm), n(dp) is the number of particles of diameter dp (per cubic centimeter), and the factor 10-6 is used to cast the result in units of Mm-1.

The bulk asymmetry parameter G is calculated by:

[image: ${\displaystyle G=\frac{\int g(d_p)\beta_{sca}(d_p)dd_p}{\int \beta_{sca}(d_p)dd_p}}$]

There is an important distinction in how the size distribution is reported from an instrument vs. the way it is computed analytically. From a laboratory instruments such as an SMPS, total N is the sum of the concentrations in each bin. When computed analytically, total N is the integral area. This can cause issues when dealing with laboratory data, and so a new parameter SMPS is introduced as of version 1.8.0. SMPS is assumed True, that is, PyMieScatt assumes laboratory measurements by default. Set this parameter to False when dealing with theoretical data from analytical distribution functions.

	
Mie_SD(m, wavelength, sizeDistributionDiameterBins, sizeDistribution[, nMedium=1.0, SMPS=True, asDict=False])

	Returns Mie coefficients βext, βsca, βabs, G, βpr, βback, βratio. Uses scipy.integrate.trapz [https://docs.scipy.org/doc/scipy-0.10.1/reference/generated/scipy.integrate.trapz.html] to compute the integral, which can introduce errors if your distribution is too sparse. Best used with a continuous, compactly-supported distribution.

Parameters

	mcomplex

	The complex refractive index, with the convention m = n+ik.

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	sizeDistributionDiameterBinslist, tuple, or numpy.ndarray

	The diameter bin midpoints of the size distribution, in nanometers.

	sizeDistributionlist, tuple, or numpy.ndarray

	The number concentrations of the size distribution bins. Must be the same size as sizeDistributionDiameterBins.

	nMediumfloat, optional

	The refractive index of the surrounding medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

	SMPSbool, optional

	The switch determining the source of the size distribution data. Omit or set to True for laboratory measurements, set to False for analytical distributions.

	asDictbool, optional

	If specified and set to True, returns the results as a dict.

Returns

	Bext, Bsca, Babs, G, Bpr, Bback, Bratiofloat

	The Mie coefficients calculated by AutoMieQ(), integrated over the size distribution.

	qdict

	If asDict==True, MieQ_SD() returns a dict of the above values with appropriate keys.

	
Mie_Lognormal(m, wavelength, geoStdDev, geoMean, numberOfParticles[, nMedium=1.0, numberOfBins=1000, lower=1, upper=1000, gamma=[1], returnDistribution=False, decomposeMultimodal=False, asDict=False])

	Returns Mie coefficients [image: \beta_{ext}], [image: \beta_{sca}], [image: \beta_{abs}], [image: G], [image: \beta_{pr}], [image: \beta_{back}], and [image: \beta_{ratio}], integrated over a mathematically-generated k-modal lognormal particle number distribution. Uses scipy.integrate.trapz [https://docs.scipy.org/doc/scipy-0.10.1/reference/generated/scipy.integrate.trapz.html] to compute the integral.

The general form of a k-modal lognormal distribution is given by:

[image: ${\displaystyle n(d_p)=\frac{N_\infty}{\sqrt{2\pi}} \sum_{i}^{k}\frac{\gamma_i}{d_p\ln\sigma_{g_i}}\exp\left\{ \frac{-(\ln d_p-\ln d_{pg_i})^2}{2 \ln^2\sigma_{g_i}}\right\}}$]

where [image: d_{p}] is the diameter of the particle (in nm), [image: n(d_{p})] is the number of particles of diameter [image: d_{p}] (per cubic centimeter), [image: N_\infty] is the total number of particles in the distribution, [image: \sigma_{g_i}] is the geometric standard deviation of mode [image: i], and [image: d_{pg_i}] is the geometric mean diameter (in nm) of the ith moment. [image: \gamma_i] is a porportionality constant that determines the fraction of total particles in the ith moment.

This function is essentially a wrapper for Mie_SD(). A warning will be raised if the distribution is not compactly-supported on the interval specified by lower and upper.

Parameters

	mcomplex

	The complex refractive index, with the convention m = n+ik.

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	geoStdDevfloat or list-like

	The geometric standard deviation(s) [image: \sigma_g] or [image: \sigma_{g_i}] if list-like.

	geoMeanfloat or list-like

	The geometric mean diameter(s) [image: d_{pg}] or [image: d_{pg_i}] if list-like, in nanometers.

	numberOfParticlesfloat

	The total number of particles in the distribution.

	nMediumfloat, optional

	The refractive index of the surrounding medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

	numberOfBinsint, optional

	The number of discrete bins in the distribution. Defaults to 1000.

	lowerfloat, optional

	The smallest diameter bin, in nanometers. Defaults to 1 nm.

	upperfloat, optional

	The largest diameter bin, in nanometers. Defaults to 1000 nm.

	gammalist-like, optional

	The porportionality coefficients for dividing total particles among modes.

	returnDistributionbool, optional

	If True, both the size distribution bins and number concentrations will be returned.

	decomposeMultimodal: bool, optional

	If True (and returnDistribution==True), then the function returns an additional parameter containing the individual modes of the distribution.

	asDictbool, optional

	If True, returns the results as a dict.

Returns

	Bext, Bsca, Babs, G, Bpr, Bback, Bratiofloat

	The Mie coefficients calculated by MieQ(), integrated over the size distribution.

	diameters, ndnumpy.ndarray

	The diameter bins and number concentrations per bin, respectively. Only if returnDistribution is True.

	ndilist of numpy.ndarray objects

	A list whose entries are the individual modes that created the multimodal distribution. Only returned if both returnDistribution and decomposeMultimodal are True.

	Bdict

	If asDict==True, MieQ_withLognormalDistribution() returns a dict of the above values with appropriate keys.

For example, compute the Mie coefficients of a lognormal size distribution with 1000000 particles, σg = 1.7, and dpg = 200 nm; with m = 1.60+0.08i and λ = 532 nm:

>>> import PyMieScatt as ps
>>> ps.MieQ_Lognormal(1.60+0.08j,532,1.7,200,1e6,asDict=True)
{'Babs': 33537.324569179938,
'Bback': 10188.473118449627,
'Bext': 123051.1109783932,
'Bpr': 62038.347528346232,
'Bratio': 12701.828124508347,
'Bsca': 89513.786409213266,
'bigG': 0.6816018615403715}

Angular Functions

These functions compute the angle-dependent scattered field intensities and scattering matrix elements. They return arrays that are useful for plotting.

	
ScatteringFunction(m, wavelength, diameter[, nMedium=1.0, minAngle=0, maxAngle=180, angularResolution=0.5, space='theta', angleMeasure='radians', normalization=None])

	Creates arrays for plotting the angular scattering intensity functions in theta-space with parallel, perpendicular, and unpolarized light. Also includes an array of the angles for each step. This angle can be in either degrees, radians, or gradians for some reason. The angles can either be geometrical angle or the qR vector (see Sorensen, M. Q-space analysis of scattering by particles: a review. J. Quant. Spectrosc. Radiat. Transfer 2013, 131, 3-12 [http://www.sciencedirect.com/science/article/pii/S0022407313000083]). Uses MieS1S2() to compute S1 and S2, then computes parallel, perpendicular, and unpolarized intensities by

[image: ${\displaystyle SL(\theta)=|S_1|^2}$]

[image: ${\displaystyle SR(\theta)=|S_2|^2}$]

[image: ${\displaystyle SU(\theta)=\frac{1}{2}(SR+SL)}$]

Parameters

	mcomplex

	The complex refractive index with the convention m = n+ik.

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	diameterfloat

	The diameter of the particle, in nanometers.

	nMediumfloat, optional

	The refractive index of the surrounding medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

	minAnglefloat, optional

	The minimum scattering angle (in degrees) to be calculated. Defaults to 0.

	maxAnglefloat, optional

	The maximum scattering angle (in degrees) to be calculated. Defaults to 180.

	angularResolutionfloat, optional

	The resolution of the output. Defaults to 0.5, meaning a value will be calculated for every 0.5 degrees.

	spacestr, optional

	The measure of scattering angle. Can be ‘theta’ or ‘qspace’. Defaults to ‘theta’.

	angleMeasurestr, optional

	The units for the scattering angle

	normalizationstr or None, optional

	Specifies the normalization method, which is either by total signal or maximum signal.

	normalization = ‘t’ will normalize by the total integrated signal, that is, the total signal will have an integrated value of 1.

	normalization = ‘max’ will normalize by the maximum value of the signal regardless of the angle at which it occurs, that is, the maximum signal at that angle will have a value of 1.

Returns

	thetanumpy.ndarray

	An array of the angles used in calculations. Values will be spaced according to angularResolution, and the size of the array will be (maxAngle-minAngle)/angularResolution.

	SLnumpy.ndarray

	An array of the scattered intensity of left-polarized (perpendicular) light. Same size as the theta array.

	SRnumpy.ndarray

	An array of the scattered intensity of right-polarized (parallel) light. Same size as the theta array.

	SUnumpy.ndarray

	An array of the scattered intensity of unpolarized light, which is the average of SL and SR. Same size as the theta array.

	
SF_SD(m, wavelength, dp, ndp[, nMedium=1.0, minAngle=0, maxAngle=180, angularResolution=0.5, space='theta', angleMeasure='radians', normalization=None])

	Creates arrays for plotting the angular scattering intensity functions in theta-space with parallel, perpendicular, and unpolarized light. Also includes an array of the angles for each step for a distribution nd(dp). Uses ScatteringFunction() to compute scattering for each particle size, then sums the contributions from each bin.

Parameters

	mcomplex

	The complex refractive index with the convention m = n+ik.

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	dplist-like

	The diameter bins of the distribution, in nanometers.

	ndplist-like

	The number of particles in each diameter bin in dp.

	nMediumfloat, optional

	The refractive index of the surrounding medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

	minAnglefloat, optional

	The minimum scattering angle (in degrees) to be calculated. Defaults to 0.

	maxAnglefloat, optional

	The maximum scattering angle (in degrees) to be calculated. Defaults to 180.

	angularResolutionfloat, optional

	The resolution of the output. Defaults to 0.5, meaning a value will be calculated for every 0.5 degrees.

	spacestr, optional

	The measure of scattering angle. Can be ‘theta’ or ‘qspace’. Defaults to ‘theta’.

	angleMeasurestr, optional

	The units for the scattering angle

	normalizationstr or None, optional

	Specifies the normalization method, which is either by total particle number, total signal or maximum signal.

	normalization = ‘n’ will normalize by the total number of particles (the integral of the size distribution). Can lead to weird interpretations, so use caution.

	normalization = ‘t’ will normalize by the total integrated signal, that is, the total signal will have an integrated value of 1.

	normalization = ‘max’ will normalize by the maximum value of the signal regardless of the angle at which it occurs, that is, the maximum signal at that angle will have a value of 1.

Returns

	thetanumpy.ndarray

	An array of the angles used in calculations. Values will be spaced according to angularResolution, and the size of the array will be (maxAngle-minAngle)/angularResolution.

	SLnumpy.ndarray

	An array of the scattered intensity of left-polarized (perpendicular) light. Same size as the theta array.

	SRnumpy.ndarray

	An array of the scattered intensity of right-polarized (parallel) light. Same size as the theta array.

	SUnumpy.ndarray

	An array of the scattered intensity of unpolarized light, which is the average of SL and SR. Same size as the theta array.

	
MatrixElements(m, wavelength, diameter, mu[, nMedium=1.0])

	Calculates the four nonzero scattering matrix elements S11, S12, S33, and S34 as functions of μ=cos(θ), where θ is the scattering angle:

[image: ${\displaystyle S_{11}=\frac{1}{2}\left(|S_2|^2+|S_1|^2\right)}$]

[image: ${\displaystyle S_{12}=\frac{1}{2}\left(|S_2|^2-|S_1|^2\right)}$]

[image: ${\displaystyle S_{33}=\frac{1}{2}(S_2^*S_1+S_2S_1^*)}$]

[image: ${\displaystyle S_{34}=\frac{i}{2}(S_1S_2^*-S_2S_1^*)}$]

Parameters

	mcomplex

	The complex refractive index with the convention m = n+ik.

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	diameterfloat

	The diameter of the particle, in nanometers.

	mufloat

	The cosine of the scattering angle.

	nMediumfloat, optional

	The refractive index of the surrounding medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

Returns

	S11, S12, S33, S34float

	The matrix elements described above.

	
MieS1S2(m, x, mu)

	Calculates S1 and S2 at μ=cos(θ), where θ is the scattering angle.

Uses Mie_ab() to calculate an and bn, and MiePiTau() to calculate πn and τn. S1 and S2 are calculated by:

[image: ${\displaystyle S_1=\sum\limits_{n=1}^{n_{max}}\frac{2n+1}{n(n+1)}(a_n\pi_n+b_n\tau_n)}$]

[image: ${\displaystyle S_2=\sum\limits_{n=1}^{n_{max}}\frac{2n+1}{n(n+1)}(a_n\tau_n+b_n\pi_n)}$]

Parameters

	mcomplex

	The complex refractive index with the convention m = n+ik.

	xfloat

	The size parameter [image: x=\pi\,d_p/\lambda].

	mufloat

	The cosine of the scattering angle.

Returns

	S1, S2complex

	The S1 and S2 values.

	
MiePiTau(mu, nmax)

	Calculates πn and τn.

This function uses recurrence relations to calculate πn and τn, beginning with π0 = 1, π1 = 3μ (where μ is the cosine of the scattering angle), τ0 = μ, and τ1 = 3cos(2cos-1 (μ)):

[image: ${\displaystyle \pi_n=\frac{2n-1}{n-1}\mu\pi_{n-1}-\frac{n}{n-1}\pi_{n-2}}$]

[image: ${\displaystyle \tau_n=n\mu\pi_n-(n+1)\pi_{n-1}}$]

Parameters

	mufloat

	The cosine of the scattering angle.

	nmaxint

	The number of elements to compute. Typically, nmax = floor(2+x+4x1/3), but can be given any integer.

Returns

	p, tnumpy.ndarray

	The πn and τn arrays, of length nmax.

 Functions for Coated Spheres (Core-Shell Particles)

Functions for Coated Spheres (Core-Shell Particles)

	
MieQCoreShell(mCore, mShell, wavelength, dCore, dShell[, nMedium=1.0, asDict=False, asCrossSection=False])

	Compute Mie efficencies Q and asymmetry parameter g of a single, coated particle. Uses CoreShell_ab() to calculate an and bn , and then calculates Qi following closely from the original BHMIE.

The code will return a warning if a non-unity nMedium is specified, since it was added naively. The mathematics to compute the effective index is the same as in the homogeneous particle functions.

Parameters

	mCorecomplex

	The complex refractive index of the core region, with the convention [image: m=n+ik].

	mShellcomplex

	The complex refractive index of the shell region, with the convention [image: m=n+ik].

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	dCorefloat

	The diameter of the core, in nanometers.

	dShellfloat

	The diameter of the shell, in nanomaters. This is equal to the total diameter of the particle.

	nMediumfloat, optional

	The refractive index of the medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

	asDictbool, optional

	If True, returns the results as a dict.

	asCrossSectionbool, optional

	If specified and set to True, returns the results as optical cross-sections with units of nm2.

Returns

	qext, qsca, qabs, g, qpr, qback, qratiofloat

	The Mie efficencies described above.

	cext, csca, cabs, g, cpr, cback, cratiofloat

	If asCrossSection==True, MieQCoreShell() returns optical cross-sections.

	qdict

	If asDict==True, MieQCoreShell() returns a dict of the above efficiencies with appropriate keys.

	cdict

	If asDict==True and asCrossSection==True, returns a dict of the above cross-sections with appropriate keys.

Considerations

When using this function in a script, there are three simplifying clauses that can speed up computation when considering both coated and homogeneous particles. Upon determining the size parameters of the core and the shell:

	if xcore == xshell, then MieQCoreShell() returns Mie efficencies calculated by MieQ(mCore,wavelength,dShell).

	If xcore == 0, then MieQCoreShell() returns efficencies calculated by MieQ(mShell,wavelength,dShell).

	If mcore == mshell, then MieQCoreShell() returns efficencies calculated by MieQ(mCore,wavelength,dShell).

	
CoreShellScatteringFunction(mCore, mShell, wavelength, dCore, dShell[, nMedium=1.0, minAngle=0, maxAngle=180, angularResolution=0.5, normed=False])

	Computes the angle-dependent scattering intensity of a coated sphere.

Parameters

	mCorecomplex

	The complex refractive index of the core region, with the convention [image: m=n+ik].

	mShellcomplex

	The complex refractive index of the shell region, with the convention [image: m=n+ik].

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	dCorefloat

	The diameter of the core, in nanometers.

	dShellfloat

	The diameter of the shell, in nanomaters. This is equal to the total diameter of the particle.

	nMediumfloat, optional

	The refractive index of the medium. This must be positive, nonzero, and real. Any imaginary part will be discarded.

	minAngleint, optional

	The minimum scattering angle returned by the calculations.

	maxAngleint, optional

	The maximum scattering angle returned by the calculations.

	angularResolutionfloat, optional

	The angular resolution returned by the calculations.

	normedbool, optional

	Set to True to return normalized results.

Returns

	thetanumpy.ndarray

	An array of the angles used in calculations. Values will be spaced according to angularResolution, and the size of the array will be (maxAngle-minAngle)/angularResolution.

	SLnumpy.ndarray

	An array of the scattered intensity of left-polarized (parallel) light. Same size as the theta array.

	SRnumpy.ndarray

	An array of the scattered intensity of right-polarized (perpendicular) light. Same size as the theta array.

	SUnumpy.ndarray

	An array of the scattered intensity of unpolarized light, which is the average of SL and SR. Same size as the theta array.

	
CoreShellS1S2(mCore, mShell, xCore, xShell, mu)

	Computes S1 and S2 of a coated sphere as a function of mu, the cosine of the scattering angle.

Parameters

	mCorecomplex

	The complex refractive index of the core region, with the convention [image: m=n+ik].

	mShellcomplex

	The complex refractive index of the shell region, with the convention [image: m=n+ik].

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	dCorefloat

	The diameter of the core, in nanometers.

	dShellfloat

	The diameter of the shell, in nanomaters. This is equal to the total diameter of the particle.

	mufloat

	The cosine of the scattering angle.

Returns

	S1, S2complex

	The S1 and S2 values.

	
CoreShellMatrixElements(mCore, mShell, xCore, xShell, mu)

	Calculates the four nonzero scattering matrix elements S11, S12, S33, and S34 as functions of μ=cos(θ), where θ is the scattering angle:

[image: S_{11}=\frac{1}{2}\left(|S_2|^2+|S_1|^2\right)]

[image: S_{12}=\frac{1}{2}\left(|S_2|^2-|S_1|^2\right)]

[image: S_{33}=\frac{1}{2}(S_2^*S_1^*+S_2S_1^*)]

[image: S_{34}=\frac{i}{2}(S_1S_2^*-S_2S_1^*)]

Parameters

	mCorecomplex

	The complex refractive index of the core region, with the convention [image: m=n+ik].

	mShellcomplex

	The complex refractive index of the shell region, with the convention [image: m=n+ik].

	wavelengthfloat

	The wavelength of incident light, in nanometers.

	dCorefloat

	The diameter of the core, in nanometers.

	dShellfloat

	The diameter of the shell, in nanomaters. This is equal to the total diameter of the particle.

	mufloat

	The cosine of the scattering angle.

Returns

	S11, S12, S33, S34float

	The matrix elements described above.

 Inverse Mie Theory Functions

Inverse Mie Theory Functions

Contour Intersection Inversion Functions

For more details on the contour intersection inversion method, please see Sumlin BJ, Heinson WR, Chakrabarty RK. Retrieving the Aerosol Complex Refractive Index using PyMieScatt: A Mie Computational Package with Visualization Capabilities. J. Quant. Spectros. Rad. Trans. 2017. DOI: 10.1016/j.jqsrt.2017.10.012 [https://doi.org/10.1016/j.jqsrt.2017.10.012] There’s also a good example here [http://pymiescatt.readthedocs.io/en/latest/examples.html#visualization-of-the-contour-intersection-inversion-method].

	
ContourIntersection(Qsca, Qabs, wavelength, diameter[, n=None, k=None, nMin=1, nMax=3, kMin=0.00001, kMax=1, Qback=None, gridPoints=100, interpolationFactor=2, maxError=0.005, fig=None, ax=None, axisOption=0])

	Computes complex m = n+ik from a particle diameter (in nm), incident wavelength (in nm), and scattering and absorption efficiencies. Optionally, backscatter efficiency may be specified to constrain the problem to produce a unique solution.

Parameters

	Qscafloat or list-like

	The scattering efficiency, or optionally, a list, tuple, or numpy.ndarray of scattering efficiency and its associated error.

	Qabsfloat or list-like

	The absorption efficiency, or optionally, a list, tuple, or numpy.ndarray of absorption efficiency and its associated error..

	wavelengthfloat

	The wavelength of incident light, in nm.

	diameterfloat

	The diameter of the particle, in nm.

	nfloat or list-like, optional

	An assumed real refractive index. Can be used in case scattering data is not available. If specified as a list, it must have only two elements. The first is the assumed n and the second is an uncertainty, such as a standard deviation.

	kfloat or list-like, optional

	An assumed imaginary refractive index. Useful if only considering nonabsorbing aerosols, so you can set k=0. If specified as a list, it must have only two elements. The first is the assumed k and the second is an uncertainty, such as a standard deviation. **Note: when specifying this in the function call, input it as a real number. Omit the imaginary unit.

	nMinfloat, optional

	The minimum value of n to search.

	nMaxfloat, optional

	The maximum value of n to search.

	kMinfloat, optional

	The minimum value of k to search.

	kMaxfloat, optional

	The maximum value of k to search.

	Qbackfloat or list-like, optional

	The backscatter efficiency, or optionally, a list, tuple, or numpy.ndarray of backscatter efficiency and its associated error.

	gridPointsint, optional

	The number of gridpoints for the search mesh. Defaults to 200. Increase for better resolution but longer run times.

	interpolationFactorint, optional

	The interpolation to apply to the search fields, artificially increasing their resolutions. This is applied after calculations, so some features may be lost if interpolationFactor is too high and gridPoints is too low.

	maxErrorfloat, optional

	The allowed error in forward calculations of the retrived m.

	figmatplotlib.figure object, optional (but recommended)

	The figure object to send to the geometric inversion routine. If unspecified, one will be created.

	axmatplotlib.axes object, optional (but recommended)

	The axes object to send to the geometric inversion routine. If unspecified, one will be created.

	axisOptionint, optional

	Dictates the axis scales. Kind of useless since version 1.3.0. It’s still around until I get rid of it. Acceptable parameters are:

	‘0’ for automatic detection of best axis scaling

	‘1’ for linear axes

	‘2’ for linear x and logarithmic y

	‘3’ for logarithmic x and linear y

	‘4’ for log-log

Returns

	solutionSetlist

	A list of all valid solutions

	ForwardCalculationslist

	A list of scattering and absorption efficencies produced by forward Mie calculations using the derived refractive indices

	solutionErrorslist

	The relative errors of the efficencies in ForwardCalculations.

	figmatplotlib.figure object

	The figure object now associated with the inversion calculations.

	axmatplotlib.axes object

	The axes object now associated with the inversion calculations.

	graphElementsdict

	A dict of all artists necessary to fully manipulate the appearance of the output. The keys will depend on the options passed to the inversion function itself (i.e., errors specified, backscatter specified). Maximally, it will contain:

	‘Qsca’, ‘Qabs’, ‘Qback’ - the major contours;

	‘QscaErrFill’, ‘QscaErrOutline1’, ‘QscaErrOutline2’ - the error bound contours;

	‘QabsErrFill’, ‘QabsErrOutline1’, ‘QabsErrOutline2’ - the error bound fills;

	‘SolMark’, ‘SolFill’ - the circle thingies at each solution;

	‘CrosshairsH’, ‘CrosshairsV’ - solution crosshairs;

	‘LeftSpine’, ‘RightSpine’, ‘BottomSpine’, ‘TopSpine’ - graph spines;

	‘XAxis’, ‘YAxis’ - the individual matplotlib axis objects.

	
ContourIntersection_SD(Bsca, Babs, wavelength, dp, ndp[, n=None, k=None, nMin=1, nMax=3, kMin=0.00001, kMax=1, SMPS=True, Bback=None, gridPoints=100, interpolationFactor=2, maxError=0.005, fig=None, ax=None, axisOption=0])

	Computes effective complex m = n+ik from a measured or constructed size distribution (in cm-3), incident wavelength (in nm), and scattering and absorption coefficients (in Mm-1). Optionally, backscatter coefficient may be specified to constrain the problem to produce a unique solution.

Parameters

	Bscafloat or list-like

	The scattering coefficient, or optionally, a list, tuple, or numpy.ndarray of scattering coefficient and its associated error.

	Babsfloat or list-like

	The absorption coefficient, or optionally, a list, tuple, or numpy.ndarray of absorption coefficient and its associated error..

	wavelengthfloat

	The wavelength of incident light, in nm.

	dplist-like

	The diameter bins of the size distribution, in nm.

	ndplist-like

	The number of particles per diameter bin corresponding to dp, in cm-3. Must be same length as dp.

	nfloat or list-like, optional

	An assumed real refractive index. Can be used in case scattering data is not available. If specified as a list, it must have only two elements. The first is the assumed n and the second is an uncertainty, such as a standard deviation.

	kfloat or list-like, optional

	An assumed imaginary refractive index. Useful if only considering nonabsorbing aerosols, so you can set k=0. If specified as a list, it must have only two elements. The first is the assumed k and the second is an uncertainty, such as a standard deviation. **Note: when specifying this in the function call, input it as a real number. Omit the imaginary unit.

	nMinfloat, optional

	The minimum value of n to search.

	nMaxfloat, optional

	The maximum value of n to search.

	kMinfloat, optional

	The minimum value of k to search.

	kMaxfloat, optional

	The maximum value of k to search.

	SMPSbool, optional

	The switch determining the source of the size distribution data. Omit or set to True for laboratory measurements, set to False for analytical distributions.

	Bbackfloat or list-like, optional

	The backscatter coefficient, or optionally, a list, tuple, or numpy.ndarray of backscatter coefficient and its associated error.

	gridPointsint, optional

	The number of gridpoints for the search mesh. Defaults to 200. Increase for better resolution but longer run times.

	interpolationFactorint, optional

	The interpolation to apply to the search fields, artificially increasing their resolutions. This is applied after calculations, so some features may be lost if interpolationFactor is too high and gridPoints is too low.

	maxErrorfloat, optional

	The allowed error in forward calculations of the retrived m.

	figmatplotlib.figure object, optional (but recommended)

	The figure object to send to the geometric inversion routine. If unspecified, one will be created.

	axmatplotlib.axes object, optional (but recommended)

	The axes object to send to the geometric inversion routine. If unspecified, one will be created.

	axisOptionint, optional

	Dictates the axis scales. Kind of useless since version 1.3.0. It’s still around until I get rid of it. Acceptable parameters are:

	‘0’ for automatic detection of best axis scaling

	‘1’ for linear axes

	‘2’ for linear x and logarithmic y

	‘3’ for logarithmic x and linear y

	‘4’ for log-log

Returns

	solutionSetlist

	A list of all valid solutions

	ForwardCalculationslist

	A list of scattering and absorption coefficients produced by forward Mie calculations using the derived effective refractive indices

	solutionErrorslist

	The relative errors of the coefficients in ForwardCalculations.

	figmatplotlib.figure object

	The figure object now associated with the inversion calculations.

	axmatplotlib.axes object

	The axes object now associated with the inversion calculations.

	graphElementsdict

	A dict of all artists necessary to fully manipulate the appearance of the output. The keys will depend on the options passed to the inversion function itself (i.e., errors specified, backscatter specified). Maximally, it will contain:

	‘Bsca’, ‘Babs’, ‘Bback’ - the major contours;

	‘BscaErrFill’, ‘BscaErrOutline1’, ‘BscaErrOutline2’ - the error bound contours;

	‘BabsErrFill’, ‘BabsErrOutline1’, ‘BabsErrOutline2’ - the error bound fills;

	‘SolMark’, ‘SolFill’ - the circle thingies at each solution;

	‘CrosshairsH’, ‘CrosshairsV’ - solution crosshairs;

	‘LeftSpine’, ‘RightSpine’, ‘BottomSpine’, ‘TopSpine’ - graph spines;

	‘XAxis’, ‘YAxis’ - the individual matplotlib axis objects.

Survey-iteration Inversion Functions

The survey-iteration inversion algorithm is discussed in detail in the Supplementary Material of the JQSRT paper. It is a strictly numerical two phase algorithm. First, a low-resolution survey of n-k space is conducted and values of efficiencies or coefficients close to the inputs are located. From this survey, candidate m values are determined. The iteration phase is best described by this flowchart:

[image: _images/Flowchart.png]

	
SurveyIteration(Qsca, Qabs, wavelength, diameter[, tolerance=0.0005])

	Computes complex m=n+ik for given scattering and absorption efficencies, incident wavelength, and particle diameter.

Parameters

	Qscafloat

	Measured scattering efficiency.

	Qabsfloat

	Measured absorption efficiency.

	wavelengthfloat

	The incident wavelength of light, in nm.

	diameterfloat

	The particle diameter in nm.

	tolerancefloat, optional

	The maximum error allowed in forward Mie calculations of retrieved indices.

Returns

	resultMlist-like

	The retrieved refractive indices. Be sure and scrutinize this list for repeat entries.

	resultScaErrlist-like

	The relative error in scattering efficiency for each retrieved m.

	resultAbsErrlist-like

	The relative error in absorption efficiency for each retrieved m.

	
SurveyIteration_SD(Bsca, Babs, wavelength, dp, ndp[, tolerance=0.0005, SMPS=True])

	Computes complex m=n+ik for given scattering and absorption coefficients, incident wavelength, and particle diameter.

Parameters

	Qscafloat

	Measured scattering coefficient.

	Qabsfloat

	Measured absorption coefficient.

	wavelengthfloat

	The incident wavelength of light, in nm.

	dplist-like

	The particle diameter bins in nm.

	ndplist-like

	The particle concentrations (in cm-3) corresponding to each of the bins in dp.

	tolerancefloat, optional

	The maximum error allowed in forward Mie calculations of retrieved indices.

	SMPSbool, optional

	The switch determining the source of the size distribution data. Omit or set to True for laboratory measurements, set to False for analytical distributions.

Returns

	resultMlist-like

	The retrieved refractive indices. Be sure and scrutinize this list for repeat entries.

	resultScaErrlist-like

	The relative error in scattering coefficient for each retrieved m.

	resultAbsErrlist-like

	The relative error in absorption coefficient for each retrieved m.

 General Usage tips and Example Scripts

General Usage tips and Example Scripts

Examples are now more or less up-to-date with PyMieScatt’s modern syntax.

PyMieScatt’s functions are designed to work as a standalone calculator or as part of larger, more customized scripts. This page has a few selected examples which will expand as more innovative use cases appear. If you use PyMieScatt in your research in an unexpected or novel way, please contact the author to post an example here.

Mie Efficiencies of a Single Homogeneous Particle

To calculate the efficencies of a single homogeneous particle, use the MieQ() function.

>>> import PyMieScatt as ps
>>> ps.MieQ(1.5+0.5j,532,200,asDict=True)
{'Qabs': 1.2206932456722366,
 'Qback': 0.2557593071989655,
 'Qext': 1.6932375984850729,
 'Qpr': 1.5442174328606282,
 'Qratio': 0.5412387338385265,
 'Qsca': 0.47254435281283641,
 'g': 0.3153569918620277}

Mie Efficencies of a Weibull Distribution

Consider the 405 nm Mie coefficients of 105 particles/cm3, with m = 1.5+0.5i, in a Weibull distribution [https://en.wikipedia.org/wiki/Weibull_distribution] with shape parameter sh = 5 and scale parameter sc = 200:

>>> import PyMieScatt as ps
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> dp = np.linspace(10,1000,1000)
>>> N,sh,sc = 1e5,5,200
>>> w=[N*((sh/sc)*(d/sc)**(sh-1))*np.exp(-(d/sc)**sh) for d in dp]
>>> ps.Mie_SD(1.5+0.5j,405,dp,w,asDict=True,SMPS=False)
{'Babs': 3762.0479602613427,
 'Bback': 286.65698999981691,
 'Bext': 5747.4466502095638,
 'Bpr': 4662.181554274106,
 'Bratio': 550.87163111634698,
 'Bsca': 1985.3986899482211,
 'G': 0.54662325578736115}

Plotting Angular Functions

The angular functions [http://pymiescatt.readthedocs.io/en/latest/forward.html#angular-functions] return arrays that are suitable for plotting with MatPlotLib [https://matplotlib.org/]. For example, plot the angular scattering functions of a 5 μm particle with m=1.7+0.5i, illuminated by 532 nm light. Note that the Mie calculations themselves only need two lines, the rest is making the plot look nice:

import PyMieScatt as ps
import numpy as np
import matplotlib.pyplot as plt

m=1.7+0.5j
w=532
d=5000

theta,SL,SR,SU = ps.ScatteringFunction(m,w,d)
qR,SLQ,SRQ,SUQ = ps.ScatteringFunction(m,w,d,space='qspace')

plt.close('all')

fig1 = plt.figure(figsize=(10,6))
ax1 = fig1.add_subplot(1,2,1)
ax2 = fig1.add_subplot(1,2,2)

ax1.semilogy(theta,SL,'b',ls='dashdot',lw=1,label="Parallel Polarization")
ax1.semilogy(theta,SR,'r',ls='dashed',lw=1,label="Perpendicular Polarization")
ax1.semilogy(theta,SU,'k',lw=1,label="Unpolarized")

x_label = ["0", r"$\mathregular{\frac{\pi}{4}}$", r"$\mathregular{\frac{\pi}{2}}$",r"$\mathregular{\frac{3\pi}{4}}$",r"$\mathregular{\pi}$"]
x_tick = [0,np.pi/4,np.pi/2,3*np.pi/4,np.pi]
ax1.set_xticks(x_tick)
ax1.set_xticklabels(x_label,fontsize=14)
ax1.tick_params(which='both',direction='in')
ax1.set_xlabel("ϴ",fontsize=16)
ax1.set_ylabel(r"Intensity ($\mathregular{|S|^2}$)",fontsize=16,labelpad=10)

ax2.loglog(qR,SLQ,'b',ls='dashdot',lw=1,label="Parallel Polarization")
ax2.loglog(qR,SRQ,'r',ls='dashed',lw=1,label="Perpendicular Polarization")
ax2.loglog(qR,SUQ,'k',lw=1,label="Unpolarized")

ax2.tick_params(which='both',direction='in')
ax2.set_xlabel("qR",fontsize=14)
handles, labels = ax1.get_legend_handles_labels()
fig1.legend(handles,labels,fontsize=14,ncol=3,loc=8)

fig1.suptitle("Scattering Intensity Functions",fontsize=18)
fig1.show()
plt.tight_layout(rect=[0.01,0.05,0.915,0.95])

This produces the following image:

[image: _images/sif.png]
We can do better, though! Suppose we wanted to, for educational purposes, demonstrate how the “Mie ripples” develop as we increase size parameter. This script considers a weakly absorbing particle of m=1.536+0.0015i. Its size parameter increases from 0.08 to 500 nm, the scattering function is plotted and a figure file is saved. The final few lines gather the figures into an mp4 video. Note that the Mie mathematics need only one line per loop, and the rest is generating images and movies.

First, install ffmpeg exe using conda:
.. code-block:

$ conda install ffmpeg -c conda-forge

import PyMieScatt as ps
import numpy as np
import matplotlib.pyplot as plt
import imageio
import os

wavelength=450.0
m=1.536+0.0015j
drange = np.logspace(1,np.log10(500*405/np.pi),250)
for i,d in enumerate(drange):
 if 250%(i+1)==0:
 print("Working on image " + str(i) + "...",flush=True)
 theta,SL,SR,SU = ps.ScatteringFunction(m,wavelength,d,space='theta',normalization='t')

 plt.close('all')

 fig1 = plt.figure(figsize=(10.08,6.08))
 ax1 = fig1.add_subplot(1,1,1)
 #ax2 = fig1.add_subplot(1,2,2)

 ax1.semilogy(theta,SL,'b',ls='dashdot',lw=1,label="Parallel Polarization")
 ax1.semilogy(theta,SR,'r',ls='dashed',lw=1,label="Perpendicular Polarization")
 ax1.semilogy(theta,SU,'k',lw=1,label="Unpolarized")

 x_label = ["0", r"$\mathregular{\frac{\pi}{4}}$", r"$\mathregular{\frac{\pi}{2}}$",r"$\mathregular{\frac{3\pi}{4}}$",r"$\mathregular{\pi}$"]
 x_tick = [0,np.pi/4,np.pi/2,3*np.pi/4,np.pi]
 ax1.set_xticks(x_tick)
 ax1.set_xticklabels(x_label,fontsize=14)
 ax1.tick_params(which='both',direction='in')
 ax1.set_xlabel("ϴ",fontsize=16)
 ax1.set_ylabel(r"Intensity ($\mathregular{|S|^2}$)",fontsize=16,labelpad=10)
 ax1.set_ylim([1e-9,1])
 ax1.set_xlim([1e-3,theta[-1]])
 ax1.annotate("x = πd/λ = {dd:1.2f}".format(dd=np.round(np.pi*d/405,2)), xy=(3, 1e-6), xycoords='data',
 xytext=(0.05, 0.1), textcoords='axes fraction',
 horizontalalignment='left', verticalalignment='top',
 fontsize=18
)
 handles, labels = ax1.get_legend_handles_labels()
 fig1.legend(handles,labels,fontsize=14,ncol=3,loc=8)

 fig1.suptitle("Scattering Intensity Functions",fontsize=18)
 fig1.show()
 plt.tight_layout(rect=[0.01,0.05,0.915,0.95])

 plt.savefig('output\\' + str(i).rjust(3,'0') + '.png')

filenames = os.listdir('output\\')
dur = [0.1 for x in range(250)]
dur[249]=10
with imageio.get_writer('mie_ripples.mp4', mode='I', fps=10) as writer:
 for filename in filenames:
 image = imageio.imread('output\\' + filename)
 writer.append_data(image)

This produces a nice video, which I’ll embed here just as soon as ReadTheDocs supports Github content embedding. For now, you can download it here [https://github.com/bsumlin/PyMieScatt/blob/master/docs/images/mie_ripples.mp4?raw=true].

 Index

Index

 A
 | C
 | L
 | M
 | R
 | S

A

 	
 	AutoMieQ() (built-in function)

C

 	
 	ContourIntersection() (built-in function)

 	ContourIntersection_SD() (built-in function)

 	
 	CoreShellMatrixElements() (built-in function)

 	CoreShellS1S2() (built-in function)

 	CoreShellScatteringFunction() (built-in function)

L

 	
 	LowFrequencyMie_ab() (built-in function)

 	
 	LowFrequencyMieQ() (built-in function)

M

 	
 	MatrixElements() (built-in function)

 	Mie_ab() (built-in function)

 	Mie_cd() (built-in function)

 	Mie_Lognormal() (built-in function)

 	Mie_SD() (built-in function)

 	MiePiTau() (built-in function)

 	
 	MieQ() (built-in function)

 	MieQ_withDiameterRange() (built-in function)

 	MieQ_withSizeParameterRange() (built-in function)

 	MieQ_withWavelengthRange() (built-in function)

 	MieQCoreShell() (built-in function)

 	MieS1S2() (built-in function)

R

 	
 	RayleighMieQ() (built-in function)

S

 	
 	ScatteringFunction() (built-in function)

 	SF_SD() (built-in function)

 	
 	SurveyIteration() (built-in function)

 	SurveyIteration_SD() (built-in function)

 Coming Soon

Coming Soon

Probably some discussion of Maxwell’s equations, then the concept of a homogeneous sphere, then boundary matching Max’s equations at the surface of a sphere, etc.

_images/math/c3d29f85b7541a38f0185d1be782feef2e91245f.png

_images/math/d265150362d14b99ef065d7a971183e266e964fb.png
Su = 5 (|S2|* + |51]%)

_images/math/b5821dc154ef07a7e9919a197b0a1fe392819a59.png

_images/math/c020862cb3bc51eeba8dc0a67d65f6a85bb0c576.png
SU(6) = %(sa +5I)

_images/math/09720e0b86d99387c1e4b78fb571026cbf305edb.png
n +1k

_images/math/dd9764a948a0b1708283e39b5ae7f18be247ddd0.png
S3y = 5(5155 — S257)

_images/math/0f4940ef35bccebe55f5c36989412735f5ad3e07.png
Su = 5 (152° + [S1[)

o1

_images/math/deb4b9653292ffbbc08b6874087de4f749973276.png

_images/surfaces.png
m=1.770+0.630i

_images/math/da5da4b76aec79c4e2d894f5e5a75263c7b030d5.png
S12 = 5 (|S2|* — |S1]?)

_images/math/04a284ab5493a11b87c42567a8fac42903f61687.png
Sz = 5 (152° = 1)

o1

_images/math/dbc2062e35e20c8d7e36405301c1b41dc041fb7d.png

_images/math/186df583fa1348a2fe08140642b67695be08055a.png
z * "
Su = 2(515; — $57)

_images/math/2a6f2a0c901ff79e52b32769336c2f53cf724e8a.png

_images/math/14761e40258c78767246eb9b3543d13933d72db7.png

_images/math/dee63237674afc3154c2e33b7b68d67f85f2ee0a.png

_images/math/17c28c6431096ec63bd56d24caef3a6055c4d88f.png

_images/math/df0deb143e5ac127f00bd248ee8001ecae572adc.png

_images/math/2adb0799726a6d11132127b46fa01fffbf4c16c0.png
S33 = 5(5557 +