
PyMeasure Documentation
Release 0.1.dev577+ga064eef.d20231006

PyMeasure Developers

Oct 06, 2023

LEARNING PYMEASURE

1 Introduction 3
1.1 Instrument ready . 3
1.2 Graphical displays . 3

2 Quick start 5
2.1 Setting up Python . 5
2.2 Installing PyMeasure . 5

3 Tutorials 7
3.1 Connecting to an instrument . 7
3.2 Making a measurement . 9
3.3 Using a graphical interface . 18

4 pymeasure.adapters 47
4.1 Adapter base class . 47
4.2 VISA adapter . 49
4.3 Serial adapter . 53
4.4 Prologix adapter . 56
4.5 VXI-11 adapter . 61
4.6 Telnet adapter . 63
4.7 Test adapters . 66

5 pymeasure.experiment 71
5.1 Experiment class . 71
5.2 Listener class . 72
5.3 Procedure class . 73
5.4 Parameter classes . 74
5.5 Worker class . 79
5.6 Results class . 79

6 pymeasure.display 83
6.1 Browser classes . 83
6.2 Console class . 83
6.3 Curves classes . 84
6.4 Inputs classes . 85
6.5 Listeners classes . 87
6.6 Log classes . 87
6.7 Manager classes . 87
6.8 Plotter class . 89
6.9 Qt classes . 89
6.10 Thread classes . 89

i

6.11 Widget classes . 90
6.12 Windows classes . 98

7 pymeasure.instruments 103
7.1 Instrument classes . 103
7.2 Validator functions . 114
7.3 Comedi data acquisition . 116
7.4 Resource Manager . 116
7.5 Active Technologies . 116
7.6 Advantest . 122
7.7 Agilent . 152
7.8 AJA International . 196
7.9 Ametek . 198
7.10 AMI . 200
7.11 Anaheim Automation . 202
7.12 Anapico . 204
7.13 Andeen Hagerling . 205
7.14 Anritsu . 208
7.15 Attocube . 223
7.16 BK Precision . 226
7.17 Danfysik . 227
7.18 Delta Elektronika . 230
7.19 Edwards . 231
7.20 EURO TEST . 231
7.21 Fluke . 234
7.22 F.W. Bell . 234
7.23 Heidenhain . 237
7.24 HC Photonics . 238
7.25 Hewlett Packard . 239
7.26 IPG Photonics . 286
7.27 Keithley . 287
7.28 Keysight . 339
7.29 Lake Shore Cryogenics . 351
7.30 LeCroy . 360
7.31 MKS Instruments . 375
7.32 Newport . 377
7.33 National Instruments . 378
7.34 Novanta Photonics . 392
7.35 Oxford Instruments . 393
7.36 Parker . 403
7.37 Pendulum . 404
7.38 Razorbill . 405
7.39 Rohde & Schwarz . 406
7.40 Siglent Technologies . 423
7.41 Signal Recovery . 427
7.42 Stanford Research Systems . 440
7.43 T&C Power Conversion . 452
7.44 TDK Lambda . 456
7.45 Tektronix . 464
7.46 Teledyne . 465
7.47 Temptronic . 476
7.48 TEXIO . 484
7.49 Thermotron . 487
7.50 Thorlabs . 489

ii

7.51 Thyracont . 490
7.52 Toptica . 495
7.53 Velleman . 497
7.54 Yokogawa . 499

8 Contributing 503
8.1 Using the development version . 503
8.2 Working on a new feature . 504
8.3 Making a pull request . 504
8.4 Unit testing . 505

9 Reporting an error 507

10 Adding instruments 509
10.1 File structure . 509
10.2 Instrument file . 510
10.3 Your instrument’s user interface . 511
10.4 Defining default connection settings . 513
10.5 Writing properties . 515
10.6 Instruments with similar features . 522
10.7 Instruments with channels . 524
10.8 Advanced communication protocols . 527
10.9 Writing tests . 529
10.10 Solutions for implementation challenges . 533

11 Coding Standards 535
11.1 Python style guides . 535
11.2 Documentation . 535
11.3 Usage of getter and setter functions . 536
11.4 Docstrings . 536

12 Authors 537

13 License 539

14 Changelog 541
14.1 Version 0.13.1 (2023-10-05) . 541
14.2 Version 0.13.0 (2023-09-23) . 541
14.3 Version 0.12.0 (2023-07-05) . 542
14.4 Version 0.11.1 (2022-12-31) . 545
14.5 Version 0.11.0 (2022-11-19) . 546
14.6 Version 0.10.0 (2022-04-09) . 548
14.7 Version 0.9 – released 2/7/21 . 551
14.8 Version 0.8 – released 3/29/19 . 552
14.9 Version 0.7 – released 8/4/19 . 552
14.10 Version 0.6.1 – released 4/21/19 . 553
14.11 Version 0.6 – released 1/14/19 . 553
14.12 Version 0.5.1 – released 4/14/18 . 553
14.13 Version 0.5 – released 10/18/17 . 553
14.14 Version 0.4.6 – released 8/12/17 . 554
14.15 Version 0.4.5 – released 7/4/17 . 554
14.16 Version 0.4.4 – released 6/4/17 . 554
14.17 Version 0.4.3 – released 3/30/17 . 554
14.18 Version 0.4.2 – released 8/23/16 . 555
14.19 Version 0.4.1 – released 7/31/16 . 555

iii

14.20 Version 0.4 – released 7/29/16 . 555
14.21 Version 0.3 – released 4/8/16 . 555
14.22 Version 0.2 – released 12/16/15 . 556
14.23 Version 0.1.6 – released 4/19/15 . 556
14.24 Version 0.1.5 – release 10/22/14 . 556
14.25 Version 0.1.4 – released 8/2/14 . 556
14.26 Version 0.1.3 – released 7/20/14 . 556
14.27 Version 0.1.2 – released 7/18/14 . 557
14.28 Version 0.1.1 – released 7/16/14 . 557
14.29 Version 0.1.0 – released 7/15/14 . 557

Python Module Index 559

Index 561

iv

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

PyMeasure makes scientific measurements easy to set up and run. The package contains a repository of instrument
classes and a system for running experiment procedures, which provides graphical interfaces for graphing live data
and managing queues of experiments. Both parts of the package are independent, and when combined provide all the
necessary requirements for advanced measurements with only limited coding.

Installing Python and PyMeasure are demonstrated in the Quick Start guide. From there, checkout the existing instru-
ments that are available for use.

PyMeasure is currently under active development, so please report any issues you experience on our Issues page.

The main documentation for the site is organized into a couple sections:

• Learning PyMeasure

• API Reference

• About PyMeasure

Information about development is also available:

• Getting involved

LEARNING PYMEASURE 1

https://github.com/pymeasure/pymeasure/issues
https://github.com/pymeasure/pymeasure/actions
http://pymeasure.readthedocs.io/en/latest/?badge=latest
https://doi.org/10.5281/zenodo.3732545
https://anaconda.org/conda-forge/pymeasure
https://anaconda.org/conda-forge/pymeasure

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

2 LEARNING PYMEASURE

CHAPTER

ONE

INTRODUCTION

PyMeasure uses an object-oriented approach for communicating with scientific instruments, which provides an intuitive
interface where the low-level SCPI and GPIB commands are hidden from normal use. Users can focus on solving the
measurement problems at hand, instead of re-inventing how to communicate with instruments.

Instruments with VISA (GPIB, Serial, etc) are supported through the PyVISA package under the hood. Prologix GPIB
adapters are also supported. Communication protocols can be swapped, so that instrument classes can be used with all
supported protocols interchangeably.

In order to keep the corresponding numbers and physical units (e.g. 5 meters) together, pint quantities can be used.
That way it is easy to handle different orders of magnitude (meters and centimeters) or different units (meters and feet).

Before using PyMeasure, you may find it helpful to be acquainted with basic Python programming for the sciences and
understand the concept of objects.

1.1 Instrument ready

The package includes a number of instruments already defined. Their definitions are organized based on the manufac-
turer name of the instrument. For example the class that defines the Keithley 2400 SourceMeter can be imported by
calling:

from pymeasure.instruments.keithley import Keithley2400

The Tutorials section will go into more detail on connecting to an instrument. If you don’t find the instrument you are
looking for, but are interested in contributing, see the documentation on adding an instrument.

1.2 Graphical displays

Graphical user interfaces (GUIs) can be easily generated to manage execution of measurement procedures with PyMea-
sure. This includes live plotting for data, and a queue system for managing large numbers of experiments.

These features are explored in the Using a graphical interface tutorial.

3

https://pyvisa.readthedocs.io/en/latest/
http://prologix.biz/
https://pint.readthedocs.io
https://scipy-lectures.github.io/

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

The GUIs are not restricted to the instruments included in this package. Any python instrument may be used. For
example, this script demonstrates how to use an InstrumentKit instrument.

4 Chapter 1. Introduction

https://github.com/pymeasure/pymeasure/tree/master/examples/Basic/gui_foreign_instrument.py

CHAPTER

TWO

QUICK START

This section provides instructions for getting up and running quickly with PyMeasure.

2.1 Setting up Python

The easiest way to install the necessary Python environment for PyMeasure is through the Anaconda distribution,
which includes 720 scientific packages. The advantage of using this approach over just relying on the pip installer is
that Anaconda correctly installs the required Qt libraries.

Download and install the appropriate Python version of Anaconda for your operating system.

2.2 Installing PyMeasure

2.2.1 Install with conda

If you have the Anaconda distribution you can use the conda package manager to easily install PyMeasure and all
required dependencies.

Open a terminal and type the following commands (on Windows look for the Anaconda Prompt in the Start Menu):

conda config --add channels conda-forge
conda install pymeasure

This will install PyMeasure and all the required dependencies.

2.2.2 Install with pip

PyMeasure can also be installed with pip.

pip install pymeasure

Depending on your operating system, using this method may require additional work to install the required dependen-
cies, which include the Qt libraries.

5

https://www.anaconda.com/
https://www.anaconda.com/products/individual
https://www.anaconda.com/

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

2.2.3 Installing VISA

Typically, communication with your instrument will happen using PyVISA, which is installed automatically. However,
this needs a VISA implementation installed to handle device communication. If you do not already know what this
means, install the pure-Python pyvisa-py package (using the same installation you used above). If you want to know
more, consult the PyVISA documentation.

2.2.4 Checking the version

Now that you have Python and PyMeasure installed, open your python environment (e.g. a REPL or Jupyter notebook)
to test which version you have installed. Execute the following Python code.

import pymeasure
pymeasure.__version__

You should see the version of PyMeasure printed out. At this point you have PyMeasure installed, and you are ready
to start using it! Are you ready to connect to an instrument?

6 Chapter 2. Quick start

https://pyvisa.readthedocs.io/en/latest/introduction/configuring.html

CHAPTER

THREE

TUTORIALS

The following sections provide instructions for getting started with PyMeasure.

3.1 Connecting to an instrument

After following the Quick Start section, you now have a working installation of PyMeasure. This section describes
connecting to an instrument, using a Keithley 2400 SourceMeter as an example. To follow the tutorial, open a command
prompt, IPython terminal, or Jupyter notebook.

First import the instrument of interest.

from pymeasure.instruments.keithley import Keithley2400

Then construct an object by passing the VISA address. For this example we connect to the instrument over GPIB (using
VISA) with an address of 4:

sourcemeter = Keithley2400("GPIB::4")

Note: Passing an appropriate resource string is the default method when creating pymeasure instruments. See the
adapters section below for more details.

If you are not sure about the correct resource string identifying your instrument, you can run the pymeasure.
instruments.list_resources() function to list all available resources:

from pymeasure.instruments import list_resources
list_resources()

For instruments with standard SCPI commands, an id property will return the results of a *IDN? SCPI command,
identifying the instrument.

sourcemeter.id

This is equivalent to manually calling the SCPI command.

sourcemeter.ask("*IDN?")

Here the ask method writes the SCPI command, reads the result, and returns that result. This is further equivalent to
calling the methods below.

7

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

sourcemeter.write("*IDN?")
sourcemeter.read()

This example illustrates that the top-level methods like id are really composed of many lower-level methods. Both can
be called depending on the operation that is desired. PyMeasure hides the complexity of these lower-level operations,
so you can focus on the bigger picture.

Instruments are also equipped to be used in a with statement.

with Keithley2400("GPIB::4") as sourcemeter:
sourcemeter.id

When the with-block is exited, the shutdown method of the instrument will be called, turning the system into a safe
state.

with Keithley2400("GPIB::4") as sourcemeter:
sourcemeter.isShutdown == False

sourcemeter.isShutdown == True

3.1.1 Using adapters

PyMeasure supports a number of adapters, which are responsible for communicating with the underlying hardware.
In the example above, we passed the string “GPIB::4” when constructing the instrument. By default this constructs a
VISAAdapter (our most popular, default adapter) to connect to the instrument using VISA. Passing a string (or integer
in case of GPIB) is by far the most typical way to create pymeasure instruments.

Sometimes, you might need to go beyond the usual setup, which is also possible. Instead of passing a string, you could
equally pass an adapter object.

from pymeasure.adapters import VISAAdapter

adapter = VISAAdapter("GPIB::4")
sourcemeter = Keithely2400(adapter)

To instead use a Prologix GPIB device connected on /dev/ttyUSB0 (proper permissions are needed in Linux, see
PrologixAdapter), the adapter is constructed in a similar way. The Prologix adapter can be shared by many instru-
ments. Therefore, new PrologixAdapter instances with different GPIB addresses can be generated from an already
existing instance.

from pymeasure.adapters import PrologixAdapter

adapter = PrologixAdapter('ASRL/dev/ttyUSB0::INSTR', address=7)
sourcemeter = Keithley2400(adapter) # at GPIB address 7
multimeter = Keithley2000(adapter.gpib(9)) # at GPIB address 9

Some equipment may require the vxi-11 protocol for communication. An example would be a Agilent E5810B ethernet
to GPIB bridge. To use this type equipment the python-vxi11 library has to be installed which is part of the extras
package requirements.

from pymeasure.adapters import VXI11Adapter
from pymeasure.instruments import Instrument

adapter = VXI11Adapter("TCPIP::192.168.0.100::inst0::INSTR")
instr = Instrument(adapter, "my_instrument")

8 Chapter 3. Tutorials

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

3.1.2 Modifying connection settings

Sometimes you want to tweak the connection settings when talking to a device. This might be because you have a
non-standard device or connection, or are troubleshooting why a device does not reply.

When using a string or integer to connect to an instrument, a VISAAdapter is used internally. Additional settings need
to be passed in as keyword arguments. For example, to use a fast baud rate on a quick connection when connecting to
the Keithely2400 as above, do

sourcemeter = Keithley2400("ASRL2", timeout=500, baud_rate=115200)

This overrides any defaults that may be defined for the instrument, either generally valid ones like timeout or interface-
specific ones like baud_rate.

If you use an invalid argument, either misspelled or not valid for the chosen interface, an exception will be raised.

When using a separately-created Adapter instance, you define any custom settings when creating the adapter. Any
keyword arguments passed in are discarded.

The above examples illustrate different methods for communicating with instruments, using adapters to keep instrument
code independent from the communication protocols. Next we present the methods for setting up measurements.

3.2 Making a measurement

This tutorial will walk you through using PyMeasure to acquire a current-voltage (IV) characteristic using a Keithley
2400. Even if you don’t have access to this instrument, this tutorial will explain the method for making measure-
ments with PyMeasure. First we describe using a simple script to make the measurement. From there, we show how
Procedure objects greatly simplify the workflow, which leads to making the measurement with a graphical interface.

3.2.1 Using scripts

Scripts are a quick way to get up and running with a measurement in PyMeasure. For our IV characteristic measurement,
we perform the following steps:

1) Import the necessary packages

2) Set the input parameters to define the measurement

3) Set source_current and measure_voltage parameters

4) Connect to the Keithley 2400

5) Set up the instrument for the IV characteristic

6) Allocate arrays to store the resulting measurements

7) Loop through the current points, measure the voltage, and record

8) Save the final data to a CSV file

9) Shutdown the instrument

These steps are expressed in code as follows.

3.2. Making a measurement 9

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Import necessary packages
from pymeasure.instruments.keithley import Keithley2400
import numpy as np
import pandas as pd
from time import sleep

Set the input parameters
data_points = 50
averages = 10
max_current = 0.001
min_current = -max_current

Set source_current and measure_voltage parameters
current_range = 10e-3 # in Amps
compliance_voltage = 10 # in Volts
measure_nplc = 0.1 # Number of power line cycles
voltage_range = 1 # in VOlts

Connect and configure the instrument
sourcemeter = Keithley2400("GPIB::24")
sourcemeter.reset()
sourcemeter.use_front_terminals()
sourcemeter.apply_current(current_range, compliance_voltage)
sourcemeter.measure_voltage(measure_nplc, voltage_range)
sleep(0.1) # wait here to give the instrument time to react
sourcemeter.stop_buffer()
sourcemeter.disable_buffer()

Allocate arrays to store the measurement results
currents = np.linspace(min_current, max_current, num=data_points)
voltages = np.zeros_like(currents)
voltage_stds = np.zeros_like(currents)

sourcemeter.enable_source()

Loop through each current point, measure and record the voltage
for i in range(data_points):

sourcemeter.config_buffer(averages)
sourcemeter.source_current = currents[i]
sourcemeter.start_buffer()
sourcemeter.wait_for_buffer()
Record the average and standard deviation
voltages[i] = sourcemeter.means[0]
sleep(1.0)
voltage_stds[i] = sourcemeter.standard_devs[0]

Save the data columns in a CSV file
data = pd.DataFrame({

'Current (A)': currents,
'Voltage (V)': voltages,
'Voltage Std (V)': voltage_stds,

})
data.to_csv('example.csv')

(continues on next page)

10 Chapter 3. Tutorials

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

sourcemeter.shutdown()

Running this example script will execute the measurement and save the data to a CSV file. While this may be sufficient
for very basic measurements, this example illustrates a number of issues that PyMeasure solves. The issues with the
script example include:

• The progress of the measurement is not transparent

• Input parameters are not associated with the data that is saved

• Data is not plotted during the execution (nor at all in this case)

• Data is only saved upon successful completion, which is otherwise lost

• Canceling a running measurement causes the system to end in a undetermined state

• Exceptions also end the system in an undetermined state

The Procedure class allows us to solve all of these issues. The next section introduces the Procedure class and shows
how to modify our script example to take advantage of these features.

3.2.2 Using Procedures

The Procedure object bundles the sequence of steps in an experiment with the parameters required for its successful exe-
cution. This simple structure comes with huge benefits, since a number of convenient tools for making the measurement
use this common interface.

Let’s start with a simple example of a procedure which loops over a certain number of iterations. We make the Sim-
pleProcedure object as a sub-class of Procedure, since SimpleProcedure is a Procedure.

from time import sleep
from pymeasure.experiment import Procedure
from pymeasure.experiment import IntegerParameter

class SimpleProcedure(Procedure):

a Parameter that defines the number of loop iterations
iterations = IntegerParameter('Loop Iterations')

a list defining the order and appearance of columns in our data file
DATA_COLUMNS = ['Iteration']

def execute(self):
"""Execute the procedure.

Loops over each iteration and emits the current iteration,
before waiting for 0.01 sec, and then checking if the procedure
should stop.
"""
for i in range(self.iterations):

self.emit('results', {'Iteration': i})
sleep(0.01)
if self.should_stop():

break

3.2. Making a measurement 11

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

At the top of the SimpleProcedure class we define the required Parameters. In this case, iterations is a IntegerPa-
rameter that defines the number of loops to perform. Inside our Procedure class we reference the value in the iterations
Parameter by the class variable where the Parameter is stored (self.iterations). PyMeasure swaps out the Param-
eters with their values behind the scene, which makes accessing the values of parameters very convenient.

We define the data columns that will be recorded in a list stored in DATA_COLUMNS. This sets the order by which columns
are stored in the file. In this example, we will store the Iteration number for each loop iteration.

The executemethods defines the main body of the procedure. Our example method consists of a loop over the number
of iterations, in which we emit the data to be recorded (the Iteration number). The data is broadcast to any number of
listeners by using the emit method, which takes a topic as the first argument. Data with the 'results' topic and the
proper data columns will be recorded to a file. The sleep function in our example provides two very useful features.
The first is to delay the execution of the next lines of code by the time argument in units of seconds. The seconds is that
during this delay time, the CPU is free to perform other code. Successful measurements often require the intelligent
use of sleep to deal with instrument delays and ensure that the CPU is not hogged by a single script. After our delay,
we check to see if the Procedure should stop by calling self.should_stop(). By checking this flag, the Procedure
will react to a user canceling the procedure execution.

This covers the basic requirements of a Procedure object. Now let’s construct our SimpleProcedure object with 100
iterations.

procedure = SimpleProcedure()
procedure.iterations = 100

Next we will show how to run the procedure.

Running Procedures

A Procedure is run by a Worker object. The Worker executes the Procedure in a separate Python thread, which allows
other code to execute in parallel to the procedure (e.g. a graphical user interface). In addition to performing the
measurement, the Worker spawns a Recorder object, which listens for the 'results' topic in data emitted by the
Procedure, and writes those lines to a data file. The Results object provides a convenient abstraction to keep track of
where the data should be stored, the data in an accessible form, and the Procedure that pertains to those results.

We first construct a Results object for our Procedure.

from pymeasure.experiment import Results

data_filename = 'example.csv'
results = Results(procedure, data_filename)

Constructing the Results object for our Procedure creates the file using the data_filename, and stores the Parameters
for the Procedure. This allows the Procedure and Results objects to be reconstructed later simply by loading the file
using Results.load(data_filename). The Parameters in the file are easily readable.

We now construct a Worker with the Results object, since it contains our Procedure.

from pymeasure.experiment import Worker

worker = Worker(results)

The Worker publishes data and other run-time information through specific queues, but can also publish this information
over the local network on a specific TCP port (using the optional port argument. Using TCP communication allows
great flexibility for sharing information with Listener objects. Queues are used as the standard communication method
because they preserve the data order, which is of critical importance to storing data accurately and reacting to the
measurement status in order.

12 Chapter 3. Tutorials

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Now we are ready to start the worker.

worker.start()

This method starts the worker in a separate Python thread, which allows us to perform other tasks while it is running.
When writing a script that should block (wait for the Worker to finish), we need to join the Worker back into the main
thread.

worker.join(timeout=3600) # wait at most 1 hr (3600 sec)

Let’s put all the pieces together. Our SimpleProcedure can be run in a script by the following.

from time import sleep
from pymeasure.experiment import Procedure, Results, Worker
from pymeasure.experiment import IntegerParameter

class SimpleProcedure(Procedure):

a Parameter that defines the number of loop iterations
iterations = IntegerParameter('Loop Iterations')

a list defining the order and appearance of columns in our data file
DATA_COLUMNS = ['Iteration']

def execute(self):
"""Execute the procedure.

Loops over each iteration and emits the current iteration,
before waiting for 0.01 sec, and then checking if the procedure
should stop.
"""
for i in range(self.iterations):

self.emit('results', {'Iteration': i})
sleep(0.01)
if self.should_stop():

break

if __name__ == "__main__":
procedure = SimpleProcedure()
procedure.iterations = 100

data_filename = 'example.csv'
results = Results(procedure, data_filename)

worker = Worker(results)
worker.start()

worker.join(timeout=3600) # wait at most 1 hr (3600 sec)

Here we have included an if statement to only run the script if the __name__ is __main__. This precaution allows us
to import the SimpleProcedure object without running the execution.

3.2. Making a measurement 13

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Using Logs

Logs keep track of important details in the execution of a procedure. We describe the use of the Python logging
module with PyMeasure, which makes it easy to document the execution of a procedure and provides useful insight
when diagnosing issues or bugs.

Let’s extend our SimpleProcedure with logging.

import logging
log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())

from time import sleep
from pymeasure.log import console_log
from pymeasure.experiment import Procedure, Results, Worker
from pymeasure.experiment import IntegerParameter

class SimpleProcedure(Procedure):

iterations = IntegerParameter('Loop Iterations')

DATA_COLUMNS = ['Iteration']

def execute(self):
log.info("Starting the loop of %d iterations" % self.iterations)
for i in range(self.iterations):

data = {'Iteration': i}
self.emit('results', data)
log.debug("Emitting results: %s" % data)
sleep(0.01)
if self.should_stop():

log.warning("Caught the stop flag in the procedure")
break

if __name__ == "__main__":
console_log(log)

log.info("Constructing a SimpleProcedure")
procedure = SimpleProcedure()
procedure.iterations = 100

data_filename = 'example.csv'
log.info("Constructing the Results with a data file: %s" % data_filename)
results = Results(procedure, data_filename)

log.info("Constructing the Worker")
worker = Worker(results)
worker.start()
log.info("Started the Worker")

log.info("Joining with the worker in at most 1 hr")
worker.join(timeout=3600) # wait at most 1 hr (3600 sec)
log.info("Finished the measurement")

First, we have imported the Python logging module and grabbed the logger using the __name__ argument. This gives

14 Chapter 3. Tutorials

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

us logging information specific to the current file. Conversely, we could use the '' argument to get all logs, including
those of pymeasure. We use the console_log function to conveniently output the log to the console. Further details
on how to use the logger are addressed in the Python logging documentation.

Storing metadata

Metadata (pymeasure.experiment.parameters.Metadata) allows storing information (e.g. the actual starting
time, instrument parameters) about the measurement in the header of the datafile. These Metadata objects are evaluated
and stored in the datafile only after the startup method has ran; this way it is possible to e.g. retrieve settings from
an instrument and store them in the file. Using a Metadata is nearly as straightforward as using a Parameter; extending
the example of above to include metadata, looks as follows:

from time import sleep, time
from pymeasure.experiment import Procedure
from pymeasure.experiment import IntegerParameter, Metadata

class SimpleProcedure(Procedure):

a Parameter that defines the number of loop iterations
iterations = IntegerParameter('Loop Iterations')

the Metadata objects store information after the startup has ran
starttime = Metadata('Start time', fget=time)
custom_metadata = Metadata('Custom', default=1)

a list defining the order and appearance of columns in our data file
DATA_COLUMNS = ['Iteration']

def startup(self):
self.custom_metadata = 20

def execute(self):
""" Loops over each iteration and emits the current iteration,
before waiting for 0.01 sec, and then checking if the procedure
should stop
"""
for i in range(self.iterations):

self.emit('results', {'Iteration': i})
sleep(0.01)
if self.should_stop():

break

As with a Parameter, PyMeasure swaps out the Metadata with their values behind the scene, which makes accessing
the values of Metadata very convenient.

The value of a Metadata can be set either using an fget method or manually in the startup method. The fget
method, if provided, is ran after startup method. It can also be provided as a string; in that case it is assumed
that the string contains the name of an attribute (either a callable or not) of the Procedure class which returns the
value that is to be stored. This also allows to retrieve nested attributes (e.g. in order to store a property or method
of an instrument) by separating the attributes with a period: e.g. instrument_name.attribute_name (or even instru-
ment_name.subclass_name.attribute_name); note that here only the final element (i.e. attribute_name in the example)
is allowed to refer to a callable. If neither an fget method is provided or a value manually set, the Metadata will return
to its default value, if set. The formatting of the value of the Metadata-object can be controlled using the fmt argument.

3.2. Making a measurement 15

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Modifying our script

Now that you have a background on how to use the different features of the Procedure class, and how they are run, we
will revisit our IV characteristic measurement using Procedures. Below we present the modified version of our example
script, now as a IVProcedure class.

Import necessary packages
from pymeasure.instruments.keithley import Keithley2400
from pymeasure.experiment import Procedure, Results, Worker
from pymeasure.experiment import IntegerParameter, FloatParameter
from time import sleep
import numpy as np

from pymeasure.log import log, console_log

class IVProcedure(Procedure):

data_points = IntegerParameter('Data points', default=20)
averages = IntegerParameter('Averages', default=8)
max_current = FloatParameter('Maximum Current', units='A', default=0.001)
min_current = FloatParameter('Minimum Current', units='A', default=-0.001)

DATA_COLUMNS = ['Current (A)', 'Voltage (V)', 'Voltage Std (V)']

def startup(self):
log.info("Connecting and configuring the instrument")
self.sourcemeter = Keithley2400("GPIB::24")
self.sourcemeter.reset()
self.sourcemeter.use_front_terminals()
self.sourcemeter.apply_current(100e-3, 10.0) # current_range = 100e-3,␣

→˓compliance_voltage = 10.0
self.sourcemeter.measure_voltage(0.01, 1.0) # nplc = 0.01, voltage_range = 1.0
sleep(0.1) # wait here to give the instrument time to react
self.sourcemeter.stop_buffer()
self.sourcemeter.disable_buffer()

def execute(self):
currents = np.linspace(

self.min_current,
self.max_current,
num=self.data_points

)
self.sourcemeter.enable_source()
Loop through each current point, measure and record the voltage
for current in currents:

self.sourcemeter.config_buffer(IVProcedure.averages.value)
log.info("Setting the current to %g A" % current)
self.sourcemeter.source_current = current
self.sourcemeter.start_buffer()
log.info("Waiting for the buffer to fill with measurements")
self.sourcemeter.wait_for_buffer()
data = {

'Current (A)': current,
(continues on next page)

16 Chapter 3. Tutorials

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

'Voltage (V)': self.sourcemeter.means[0],
'Voltage Std (V)': self.sourcemeter.standard_devs[0]

}
self.emit('results', data)
sleep(0.01)
if self.should_stop():

log.info("User aborted the procedure")
break

def shutdown(self):
self.sourcemeter.shutdown()
log.info("Finished measuring")

if __name__ == "__main__":
console_log(log)

log.info("Constructing an IVProcedure")
procedure = IVProcedure()
procedure.data_points = 20
procedure.averages = 8
procedure.max_current = -0.001
procedure.min_current = 0.001

data_filename = 'example.csv'
log.info("Constructing the Results with a data file: %s" % data_filename)
results = Results(procedure, data_filename)

log.info("Constructing the Worker")
worker = Worker(results)
worker.start()
log.info("Started the Worker")

log.info("Joining with the worker in at most 1 hr")
worker.join(timeout=3600) # wait at most 1 hr (3600 sec)
log.info("Finished the measurement")

The parentheses in the COLUMN entries indicate the physical unit of the data in the corresponding column, e.g. 'Voltage
Std (V)' indicates Volts. If you want to indicate a dimensionless value, e.g. Mach number, you can use (1) instead.
Combined units like (m/s) or the long form (meter/second) are also possible. The class Results ensures, that the data
is stored in the correct unit, here Volts. For example a pint.Quantity of 500 mV will be stored as 0.5 V. A string
will be converted first to a Quantity and a mere number (e.g. float, int, . . .) is assumed to be already in the right unit
(e.g 5 will be stored as 5 V). If the data entry is not compatible, either because it has the wrong unit, e.g. meters which
is not a unit of voltage, or because it is no number at all, a warning is logged and ‘nan’ will be stored in the file. If
you do not specify a unit (i.e. no parentheses), no unit check is performed for this column, unless the data entry is a
Quantity for that column. In this case, this column’s unit is set to the base unit (e.g. meter if unit of the data entry is
kilometers) of the data entry. From this point on, unit checks are enabled for this column. Also use columns without
unit checks (i.e. without parentheses) for strings or booleans.

At this point, you are familiar with how to construct a Procedure sub-class. The next section shows how to put these
procedures to work in a graphical environment, where will have live-plotting of the data and the ability to easily queue
up a number of experiments in sequence. All of these features come from using the Procedure object.

3.2. Making a measurement 17

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

3.3 Using a graphical interface

In the previous tutorial we measured the IV characteristic of a sample to show how we can set up a simple experiment
in PyMeasure. The real power of PyMeasure comes when we also use the graphical tools that are included to turn our
simple example into a full-fledged user interface.

3.3.1 Using the Plotter

While it lacks the nice features of the ManagedWindow, the Plotter object is the simplest way of getting live-plotting.
The Plotter takes a Results object and plots the data at a regular interval, grabbing the latest data each time from the
file.

Warning: The example in this section is known to raise issues when executed: a QApplication was not created in
the main thread / nextEventMatchingMask should only be called from the Main Thread warning is raised. While
the example works without issues on some operating systems and python configurations, users are advised not to
rely on the plotter while this issue is unresolved. Users can hence skip this example and continue with the Using
the ManagedWindow section.

Let’s extend our SimpleProcedure with a RandomProcedure, which generates random numbers during our loop. This
example does not include instruments to provide a simpler example.

import logging
log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())

import random
from time import sleep
from pymeasure.log import console_log
from pymeasure.display import Plotter
from pymeasure.experiment import Procedure, Results, Worker
from pymeasure.experiment import IntegerParameter, FloatParameter, Parameter

class RandomProcedure(Procedure):

iterations = IntegerParameter('Loop Iterations')
delay = FloatParameter('Delay Time', units='s', default=0.2)
seed = Parameter('Random Seed', default='12345')

DATA_COLUMNS = ['Iteration', 'Random Number']

def startup(self):
log.info("Setting the seed of the random number generator")
random.seed(self.seed)

def execute(self):
log.info("Starting the loop of %d iterations" % self.iterations)
for i in range(self.iterations):

data = {
'Iteration': i,
'Random Number': random.random()

(continues on next page)

18 Chapter 3. Tutorials

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

}
self.emit('results', data)
log.debug("Emitting results: %s" % data)
self.emit('progress', 100 * i / self.iterations)
sleep(self.delay)
if self.should_stop():

log.warning("Caught the stop flag in the procedure")
break

if __name__ == "__main__":
console_log(log)

log.info("Constructing a RandomProcedure")
procedure = RandomProcedure()
procedure.iterations = 100

data_filename = 'random.csv'
log.info("Constructing the Results with a data file: %s" % data_filename)
results = Results(procedure, data_filename)

log.info("Constructing the Plotter")
plotter = Plotter(results)
plotter.start()
log.info("Started the Plotter")

log.info("Constructing the Worker")
worker = Worker(results)
worker.start()
log.info("Started the Worker")

log.info("Joining with the worker in at most 1 hr")
worker.join(timeout=3600) # wait at most 1 hr (3600 sec)
log.info("Finished the measurement")

The important addition is the construction of the Plotter from the Results object.

plotter = Plotter(results)
plotter.start()

The Plotter is started in a different process so that it can be run on a separate CPU for higher performance. The Plotter
launches a Qt graphical interface using pyqtgraph which allows the Results data to be viewed based on the columns in
the data.

3.3. Using a graphical interface 19

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

3.3.2 Using the ManagedWindow

The ManagedWindow is the most convenient tool for running measurements with your Procedure. This has the ma-
jor advantage of accepting the input parameters graphically. From the parameters, a graphical form is automatically
generated that allows the inputs to be typed in. With this feature, measurements can be started dynamically, instead of
defined in a script.

Another major feature of the ManagedWindow is its support for running measurements in a sequential queue. This
allows you to set up a number of measurements with different input parameters, and watch them unfold on the live-
plot. This is especially useful for long running measurements. The ManagedWindow achieves this through the Manager
object, which coordinates which Procedure the Worker should run and keeps track of its status as the Worker progresses.

Below we adapt our previous example to use a ManagedWindow.

import logging
log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())

import sys
import tempfile
import random
from time import sleep

(continues on next page)

20 Chapter 3. Tutorials

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

from pymeasure.log import console_log
from pymeasure.display.Qt import QtWidgets
from pymeasure.display.windows import ManagedWindow
from pymeasure.experiment import Procedure, Results
from pymeasure.experiment import IntegerParameter, FloatParameter, Parameter

class RandomProcedure(Procedure):

iterations = IntegerParameter('Loop Iterations', default=100)
delay = FloatParameter('Delay Time', units='s', default=0.2)
seed = Parameter('Random Seed', default='12345')

DATA_COLUMNS = ['Iteration', 'Random Number']

def startup(self):
log.info("Setting the seed of the random number generator")
random.seed(self.seed)

def execute(self):
log.info("Starting the loop of %d iterations" % self.iterations)
for i in range(self.iterations):

data = {
'Iteration': i,
'Random Number': random.random()

}
self.emit('results', data)
log.debug("Emitting results: %s" % data)
self.emit('progress', 100 * i / self.iterations)
sleep(self.delay)
if self.should_stop():

log.warning("Caught the stop flag in the procedure")
break

class MainWindow(ManagedWindow):

def __init__(self):
super().__init__(

procedure_class=RandomProcedure,
inputs=['iterations', 'delay', 'seed'],
displays=['iterations', 'delay', 'seed'],
x_axis='Iteration',
y_axis='Random Number'

)
self.setWindowTitle('GUI Example')

def queue(self):
filename = tempfile.mktemp()

procedure = self.make_procedure()
results = Results(procedure, filename)
experiment = self.new_experiment(results)

(continues on next page)

3.3. Using a graphical interface 21

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

self.manager.queue(experiment)

if __name__ == "__main__":
app = QtWidgets.QApplication(sys.argv)
window = MainWindow()
window.show()
sys.exit(app.exec())

This results in the following graphical display.

In the code, the MainWindow class is a sub-class of the ManagedWindow class. We override the constructor to provide
information about the procedure class and its options. The inputs are a list of Parameters class-variable names,
which the display will generate graphical fields for. When the list of inputs is long, a boolean key-word argument
inputs_in_scrollarea is provided that adds a scrollbar to the input area. The displays is a list similar to the
inputs list, which instead defines the parameters to display in the browser window. This browser keeps track of the
experiments being run in the sequential queue.

The queue method establishes how the Procedure object is constructed. We use the self.make_procedure method
to create a Procedure based on the graphical input fields. Here we are free to modify the procedure before putting it

22 Chapter 3. Tutorials

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

on the queue. In this context, the Manager uses an Experiment object to keep track of the Procedure, Results, and
its associated graphical representations in the browser and live-graph. This is then given to the Manager to queue the
experiment.

By default the Manager starts a measurement when its procedure is queued. The abort button can be pressed to stop
an experiment. In the Procedure, the self.should_stop call will catch the abort event and halt the measurement. It
is important to check this value, or the Procedure will not be responsive to the abort event.

3.3. Using a graphical interface 23

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

If you abort a measurement, the resume button must be pressed to continue the next measurement. This allows you to
adjust anything, which is presumably why the abort was needed.

24 Chapter 3. Tutorials

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Now that you have learned about the ManagedWindow, you have all of the basics to get up and running quickly with a
measurement and produce an easy to use graphical interface with PyMeasure.

Note: For performance reasons, the default linewidth of all the graphs has been set to 1. If performance is not an issue,
the linewidth can be changed to 2 (or any other value) for better visibility by using the linewidth keyword-argument in
the Plotter or the ManagedWindow. Whenever a linewidth of 2 is preferred and a better performance is required, it is
possible to enable using OpenGL in the import section of the file:

import pyqtgraph as pg
pg.setConfigOption("useOpenGL", True)

3.3. Using a graphical interface 25

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

3.3.3 Customising the plot options

For both the PlotterWindow and ManagedWindow, plotting is provided by the pyqtgraph library. This library allows
you to change various plot options, as you might expect: axis ranges (by default auto-ranging), logarithmic and semilog-
arithmic axes, downsampling, grid display, FFT display, etc. There are two main ways you can do this:

1. You can right click on the plot to manually change any available options. This is also a good way of getting an
overview of what options are available in pyqtgraph. Option changes will, of course, not persist across a restart
of your program.

2. You can programmatically set these options using pyqtgraph’s PlotItem API, so that the window will open with
these display options already set, as further explained below.

For Plotter, you can make a sub-class that overrides the setup_plot() method. This method will be called when
the Plotter constructs the window. As an example

class LogPlotter(Plotter):
def setup_plot(self, plot):

use logarithmic x-axis (e.g. for frequency sweeps)
plot.setLogMode(x=True)

For ManagedWindow, the mechanism to customize plots is much more flexible by using specialization via inheritance.
Indeed ManagedWindowBase is the base class for ManagedWindow and ManagedImageWindow which are subclasses
ready to use for GUI.

3.3.4 Using tabular format

In some experiments, data in tabular format may be useful in addition or in alternative to graphical plot.
ManagedWindowBase allows adding a TableWidget to show experiments data, the widget supports also exporting
data in some popular format like CSV, HTML, etc. Below an example on how to customize ManagedWindowBase to
use tabular format, it derived from example above and changed lines are marked.

import logging
log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())

import sys
import tempfile
import random
from time import sleep
from pymeasure.log import console_log
from pymeasure.display.Qt import QtWidgets
from pymeasure.display.windows import ManagedWindowBase
from pymeasure.display.widgets import TableWidget, LogWidget
from pymeasure.experiment import Procedure, Results
from pymeasure.experiment import IntegerParameter, FloatParameter, Parameter

class RandomProcedure(Procedure):

iterations = IntegerParameter('Loop Iterations', default=10)
delay = FloatParameter('Delay Time', units='s', default=0.2)
seed = Parameter('Random Seed', default='12345')

DATA_COLUMNS = ['Iteration', 'Random Number']
(continues on next page)

26 Chapter 3. Tutorials

http://www.pyqtgraph.org/
http://www.pyqtgraph.org/documentation/graphicsItems/plotitem.html

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

def startup(self):
log.info("Setting the seed of the random number generator")
random.seed(self.seed)

def execute(self):
log.info("Starting the loop of %d iterations" % self.iterations)
for i in range(self.iterations):

data = {
'Iteration': i,
'Random Number': random.random()

}
self.emit('results', data)
log.debug("Emitting results: %s" % data)
self.emit('progress', 100 * i / self.iterations)
sleep(self.delay)
if self.should_stop():

log.warning("Caught the stop flag in the procedure")
break

class MainWindow(ManagedWindowBase):

def __init__(self):
widget_list = (TableWidget("Experiment Table",

RandomProcedure.DATA_COLUMNS,
by_column=True,
),

LogWidget("Experiment Log"),
)

super().__init__(
procedure_class=RandomProcedure,
inputs=['iterations', 'delay', 'seed'],
displays=['iterations', 'delay', 'seed'],
widget_list=widget_list,

)
logging.getLogger().addHandler(widget_list[1].handler)
log.setLevel(self.log_level)
log.info("ManagedWindow connected to logging")
self.setWindowTitle('GUI Example')

def queue(self):
filename = tempfile.mktemp()

procedure = self.make_procedure()
results = Results(procedure, filename)
experiment = self.new_experiment(results)

self.manager.queue(experiment)

if __name__ == "__main__":

(continues on next page)

3.3. Using a graphical interface 27

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

app = QtWidgets.QApplication(sys.argv)
window = MainWindow()
window.show()
sys.exit(app.exec())

This results in the following graphical display.

3.3.5 Defining your own ManagedWindow’s widgets

The parameter widget_list in ManagedWindowBase constructor allow to introduce user’s defined widget in the
GUI results display area. The user’s widget should inherit from TabWidget and could reimplement any of the methods
that needs customization. In order to get familiar with the mechanism, users can check the following widgets already
provided:

• LogWidget

• PlotWidget

• ImageWidget

• DockWidget

• TableWidget

3.3.6 Using the sequencer

As an extension to the way of graphically inputting parameters and executing multiple measurements using the
ManagedWindow, SequencerWidget is provided which allows users to queue a series of measurements with vary-
ing one, or more, of the parameters. This sequencer thereby provides a convenient way to scan through the parameter
space of the measurement procedure.

To activate the sequencer, two additional keyword arguments are added to ManagedWindow, namely sequencer and
sequencer_inputs. sequencer accepts a boolean stating whether or not the sequencer has to be included into the
window and sequencer_inputs accepts either None or a list of the parameter names are to be scanned over. If no list
of parameters is given, the parameters displayed in the manager queue are used.

In order to be able to use the sequencer, the ManagedWindow class is required to have a queue method which takes a
keyword (or better keyword-only for safety reasons) argument procedure, where a procedure instance can be passed.
The sequencer will use this method to queue the parameter scan.

28 Chapter 3. Tutorials

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

In order to implement the sequencer into the previous example, only the ManagedWindow has to be modified slightly
(where modified lines are marked):

class MainWindow(ManagedWindow):

def __init__(self):
super().__init__(

procedure_class=TestProcedure,
inputs=['iterations', 'delay', 'seed'],
displays=['iterations', 'delay', 'seed'],
x_axis='Iteration',
y_axis='Random Number',
sequencer=True, # Added line
sequencer_inputs=['iterations', 'delay', 'seed'], # Added line
sequence_file="gui_sequencer_example_sequence.txt", # Added line, optional

)
self.setWindowTitle('GUI Example')

def queue(self, procedure=None): # Modified line
filename = tempfile.mktemp()

if procedure is None: # Added line
procedure = self.make_procedure() # Indented

results = Results(procedure, filename)
experiment = self.new_experiment(results)

self.manager.queue(experiment)

This adds the sequencer underneath the input panel.

3.3. Using a graphical interface 29

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

The widget contains a tree-view where you can build the sequence. It has three columns: level (indicated how deep
an item is nested), parameter (a drop-down menu to select which parameter is being sequenced by that item), and
sequence (the text-box where you can define the sequence). While the two former columns are rather straightforward,
filling in the later requires some explanation.

In order to maintain flexibility, the sequence is defined in a text-box, allowing the user to enter any list-generating
single-line piece of code. To assist in this, a number of functions is supported, either from the main python library
(namely range, sorted, and list) or the numpy library. The supported numpy functions (prepending numpy. or
any abbreviation is not required) are: arange, linspace, arccos, arcsin, arctan, arctan2, ceil, cos, cosh,
degrees, e, exp, fabs, floor, fmod, frexp, hypot, ldexp, log, log10, modf, pi, power, radians, sin, sinh,
sqrt, tan, and tanh.

As an example, arange(0, 10, 1) generates a list increasing with steps of 1, while using exp(arange(0, 10,
1)) generates an exponentially increasing list. This way complex sequences can be entered easily.

The sequences can be extended and shortened using the buttons Add root item, Add item, and Remove item. The
latter two either add an item as a child of the currently selected item or remove the selected item, respectively. To queue
the entered sequence the button Queue sequence can be used. If an error occurs in evaluating the sequence text-boxes,
this is mentioned in the logger, and nothing is queued.

Finally, it is possible to create a sequence file such that the user does not need to write the sequence again each time.
The sequence file can be created by saving current sequence built within the GUI using the Save sequence button or
directly writing a simple text file. Once created, the sequence can be loaded with the Load sequence button.

In the sequence file each line adds one item to the sequence tree, starting with a number of dashes (-) to indicate the

30 Chapter 3. Tutorials

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

level of the item (starting with 1 dash for top level), followed by the name of the parameter and the sequence string,
both as a python string between parentheses.

An example of such a sequence file is given below, resulting in the sequence shown in the figure above.

- "Delay Time", "arange(0.25, 1, 0.25)"
-- "Random Seed", "[1, 4, 8]"
--- "Loop Iterations", "exp(linspace(1, 5, 3))"
-- "Random Seed", "arange(10, 100, 10)"

This file can also be automatically loaded at the start of the program by adding the key-word argument
sequence_file="filename.txt" to the super().__init__ call, as was done in the example.

3.3.7 Using the directory input

It is possible to add a directory input in order to choose where the experiment’s result will be saved. This option is
activated by passing a boolean key-word argument directory_input during the ManagedWindow init. The value of
the directory can be retrieved and set using the property directory. A default directory can be defined by setting the
directory property in the MainWindow init.

Only the MainWindow needs to be modified in order to use this option (modified lines are marked).

class MainWindow(ManagedWindow):

def __init__(self):
super().__init__(

procedure_class=TestProcedure,
inputs=['iterations', 'delay', 'seed'],
displays=['iterations', 'delay', 'seed'],
x_axis='Iteration',
y_axis='Random Number',
directory_input=True, # Added line, enables␣

→˓directory widget
)
self.setWindowTitle('GUI Example')
self.directory = r'C:/Path/to/default/directory' # Added line, sets␣

→˓default directory for GUI load

def queue(self):
directory = self.directory # Added line
filename = unique_filename(directory) # Modified line

results = Results(procedure, filename)
experiment = self.new_experiment(results)

self.manager.queue(experiment)

This adds the input line above the Queue and Abort buttons.

3.3. Using a graphical interface 31

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

A completer is implemented allowing to quickly select an existing folder, and a button on the right side of the input
widget opens a browse dialog.

3.3.8 Using the estimator widget

In order to provide estimates of the measurement procedure, an EstimatorWidget is provided that allows the user to
define and calculate estimates. The widget is automatically activated when the get_estimates method is added in
the Procedure.

The quickest and most simple implementation of the get_estimates function simply returns the estimated duration
of the measurement in seconds (as an int or a float). As an example, in the example provided in the Using the
ManagedWindow section, the Procedure is changed to:

class RandomProcedure(Procedure):

...

def get_estimates(self, sequence_length=None, sequence=None):

return self.iterations * self.delay

This will add the estimator widget at the dock on the left. The duration and finishing-time of a single measurement
is always displayed in this case. Depending on whether the SequencerWidget is also used, the length, duration and
finishing-time of the full sequence is also shown.

For maximum flexibility (e.g. for showing multiple and other types of estimates, such as the duration, filesize, finishing-
time, etc.) it is also possible that the get_estimates returns a list of tuples. Each of these tuple consists of two strings:
the first is the name (label) of the estimate, the second is the estimate itself.

As an example, in the example provided in the Using the ManagedWindow section, the Procedure is changed to:

class RandomProcedure(Procedure):

...

def get_estimates(self, sequence_length=None, sequence=None):

(continues on next page)

32 Chapter 3. Tutorials

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

duration = self.iterations * self.delay

estimates = [
("Duration", "%d s" % int(duration)),
("Number of lines", "%d" % int(self.iterations)),
("Sequence length", str(sequence_length)),
('Measurement finished at', str(datetime.now() +␣

→˓timedelta(seconds=duration))),
]

return estimates

This will add the estimator widget at the dock on the left.

Note that after the initialisation of the widget both the label of the estimate as of course the estimate itself can be
modified, but the amount of estimates is fixed.

The keyword arguments are not required in the implementation of the function, but are passed if asked for (i.e. def
get_estimates(self) does also works). Keyword arguments that are accepted are sequence, which contains the
full sequence of the sequencer (if present), and sequence_length, which gives the length of the sequence as integer
(if present). If the sequencer is not present or the sequence cannot be parsed, both sequence and sequence_length
will contain None.

The estimates are automatically updated every 2 seconds. Changing this update interval is possible using the “Update
continuously”-checkbox, which can be toggled between three states: off (i.e. no updating), auto-update every two
seconds (default) or auto-update every 100 milliseconds. Manually updating the estimates (useful whenever continuous
updating is turned off) is also possible using the “update”-button.

3.3.9 Flexible hiding of inputs

There can be situations when it may be relevant to turn on or off a number of inputs (e.g. when a part of the measurement
script is skipped upon turning of a single BooleanParameter). For these cases, it is possible to assign a Parameter
to a controlling Parameter, which will hide or show the Input of the Parameter depending on the value of the
Parameter. This is done with the group_by key-word argument.

toggle = BooleanParameter("toggle", default=True)
param = FloatParameter('some parameter', group_by='toggle')

When both the toggle and param are visible in the InputsWidget (via inputs=['iterations', 'delay',
'seed'] as demonstrated above) one can control whether the input-field of param is visible by checking and uncheck-
ing the checkbox of toggle. By default, the group will be visible if the value of the group_by Parameter is True

3.3. Using a graphical interface 33

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(which is only relevant for a BooleanParameter), but it is possible to specify other value as conditions using the
group_condition keyword argument.

iterations = IntegerParameter('Loop Iterations', default=100)
param = FloatParameter('some parameter', group_by='iterations', group_condition=99)

Here the input of param is only visible if iterations has a value of 99. This works with any type of Parameter as
group_by parameter.

To allow for even more flexibility, it is also possible to pass a (lambda)function as a condition:

iterations = IntegerParameter('Loop Iterations', default=100)
param = FloatParameter('some parameter', group_by='iterations', group_condition=lambda␣
→˓v: 50 < v < 100)

Now the input of param is only shown if the value of iterations is between 51 and 99.

Using the hide_groups keyword-argument of the ManagedWindow you can choose between hiding the groups
(hide_groups = True) and disabling / graying-out the groups (hide_groups = False).

Finally, it is also possible to provide multiple parameters to the group_by argument, in which case the input will only
be visible if all of the conditions are true. Multiple parameters for grouping can either be passed as a dict of string:
condition pairs, or as a list of strings, in which case the group_condition can be either a single condition or a list of
conditions:

iterations = IntegerParameter('Loop Iterations', default=100)
toggle = BooleanParameter('A checkbox')
param_A = FloatParameter('some parameter', group_by=['iterations', 'toggle'], group_
→˓condition=[lambda v: 50 < v < 100, True])
param_B = FloatParameter('some parameter', group_by={'iterations': lambda v: 50 < v <␣
→˓100, 'toggle': True})

Note that in this example, param_A and param_B are identically grouped: they’re only visible if iterations is
between 51 and 99 and if the toggle checkbox is checked (i.e. True).

3.3.10 Using the ManagedDockWindow

Building off the Using the ManagedWindow section where we used a ManagedWindow, we can also use
ManagedDockWindow to build a graphical interface with multiple graphs that can be docked in the main GUI win-
dow or popped out into their own window.

To start with, let’s make the following highlighted edits to the code example from Using the ManagedWindow:

1. On line 10 we now import ManagedDockWindow

2. On line 20, and lines 32 and 33, we add two new columns of data to be recorded 'Random Number 2' and
'Random Number 3'

3. On line 44 we make MainWindow a subclass of ManagedDockWindow

4. On line 51 we will pass in a list of strings from DATA_COLUMNS to the x_axis argument

5. On line 52 we will pass in a list of strings from DATA_COLUMNS to the y_axis argument

import logging
log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())

(continues on next page)

34 Chapter 3. Tutorials

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

import sys
import tempfile
import random
from time import sleep
from pymeasure.display.Qt import QtWidgets
from pymeasure.display.windows.managed_dock_window import ManagedDockWindow
from pymeasure.experiment import Procedure, Results
from pymeasure.experiment import IntegerParameter, FloatParameter, Parameter

class RandomProcedure(Procedure):

iterations = IntegerParameter('Loop Iterations', default=10)
delay = FloatParameter('Delay Time', units='s', default=0.2)
seed = Parameter('Random Seed', default='12345')

DATA_COLUMNS = ['Iteration', 'Random Number 1', 'Random Number 2', 'Random Number 3']

def startup(self):
log.info("Setting the seed of the random number generator")
random.seed(self.seed)

def execute(self):
log.info("Starting the loop of %d iterations" % self.iterations)
for i in range(self.iterations):

data = {
'Iteration': i,
'Random Number 1': random.random(),
'Random Number 2': random.random(),
'Random Number 3': random.random()

}
self.emit('results', data)
log.debug("Emitting results: %s" % data)
self.emit('progress', 100 * i / self.iterations)
sleep(self.delay)
if self.should_stop():

log.warning("Caught the stop flag in the procedure")
break

class MainWindow(ManagedDockWindow):

def __init__(self):
super().__init__(

procedure_class=RandomProcedure,
inputs=['iterations', 'delay', 'seed'],
displays=['iterations', 'delay', 'seed'],
x_axis=['Iteration', 'Random Number 1'],
y_axis=['Random Number 1','Random Number 2', 'Random Number 3']

)
self.setWindowTitle('GUI Example')

def queue(self):

(continues on next page)

3.3. Using a graphical interface 35

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

filename = tempfile.mktemp()

procedure = self.make_procedure()
results = Results(procedure, filename)
experiment = self.new_experiment(results)

self.manager.queue(experiment)

if __name__ == "__main__":
app = QtWidgets.QApplication(sys.argv)
window = MainWindow()
window.show()
sys.exit(app.exec())

Now we can see our ManagedDockWindow:

As you can see from the above screenshot, our example code created three docks with following “X Axis” and “Y Axis”
labels:

1. X Axis: “Iteration” Y Axis: “Random Number 1”

36 Chapter 3. Tutorials

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

2. X Axis: “Random Number 1” Y Axis: “Random Number 2”

3. X Axis: “Random Number 1” Y Axis: “Random Number 3”

The list of strings for x_axis and y_axis set the default labels for each dockable plot and the longest list determines
how many dockable plots are created. To highlight this point, in our example we define x_axis and y_axis with the
following lists:

x_axis=['Iteration', 'Random Number 1'],
y_axis=['Random Number 1','Random Number 2', 'Random Number 3']

If one list is longer than the last element if the other list is used as the default label for the rest of the dockable plots.
In our example that is why we have two X Axis labels with “Random Number 1”. The longest list between x_axis
and y_axis determines the number of plots. In our example y_axis has the longest list with a length of three so three
plots are created.

You can pop out a dockable plot from the main dock window to its own window by double clicking the blue “Dock #”
title bar, which is to the left of each plot by default:

You can return the popped out window to the main window by clicking the close icon X in the top right.

After positioning your dock windows, you can save the layout by right-clicking a dock widget and select “Save
Dock Layout” from the context menu. This will save the layout of all docks and the settings for each plot to a file.
By default the file path is the current working directory of the python file that started ManagedDockWindow, and
the default file name is ‘procedure class + “_dock_layout.json”’. For our example, that would be “./RandomProce-
dure_dock_layout.json”

When you run the python file that invokes ManagedDockWindow again, it will look for and load the dock layout file if
it exists.

3.3. Using a graphical interface 37

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

You can drag a dockable plot to reposition it in reference to other plots in the main dock window in several ways. You
can drag the blue “Dock #” title bar to the left or right side of another plot to reposition a plot to be side by side with
another plot:

38 Chapter 3. Tutorials

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

3.3. Using a graphical interface 39

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

You can also drag the blue “Dock #” title bar to the top or bottom side of another plot to reposition a plot to rearrange
the vertical order of the plots:

40 Chapter 3. Tutorials

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

You can drag the blue “Dock #” title bar to the middle of another plot to reposition a plot to create a tabbed view of the
two plots:

3.3. Using a graphical interface 41

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

42 Chapter 3. Tutorials

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

3.3.11 Using the ManagedConsole

The ManagedConsole is the most convenient tool for running measurements with your Procedure using a command
line interface. The ManagedConsole allows to run an experiment with the same set of parameters available in the
ManagedWindow, but they are defined using a set of command line switches.

It is also possible to define a test that uses both ManagedConsole or ManagedWindow according to user selection in
the command line.

Enabling console mode is easy and straightforward and the following example demonstrates how to do it.

The following example is a variant of the code example from Using the ManagedWindow where some parts have been
highlighted:

1. On line 8 we now import ManagedConsole

2. On line 73, we add the support for console mode

import sys
import random
import tempfile
from time import sleep

(continues on next page)

3.3. Using a graphical interface 43

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

from pymeasure.experiment import Procedure, IntegerParameter, Parameter, FloatParameter
from pymeasure.experiment import Results
from pymeasure.display.console import ManagedConsole
from pymeasure.display.Qt import QtWidgets
from pymeasure.display.windows import ManagedWindow
import logging

log = logging.getLogger('')
log.addHandler(logging.NullHandler())

class TestProcedure(Procedure):
iterations = IntegerParameter('Loop Iterations', default=100)
delay = FloatParameter('Delay Time', units='s', default=0.2)
seed = Parameter('Random Seed', default='12345')

DATA_COLUMNS = ['Iteration', 'Random Number']

def startup(self):
log.info("Setting up random number generator")
random.seed(self.seed)

def execute(self):
log.info("Starting to generate numbers")
for i in range(self.iterations):

data = {
'Iteration': i,
'Random Number': random.random()

}
log.debug("Produced numbers: %s" % data)
self.emit('results', data)
self.emit('progress', 100 * (i + 1) / self.iterations)
sleep(self.delay)
if self.should_stop():

log.warning("Catch stop command in procedure")
break

def shutdown(self):
log.info("Finished")

class MainWindow(ManagedWindow):

def __init__(self):
super(MainWindow, self).__init__(

procedure_class=TestProcedure,
inputs=['iterations', 'delay', 'seed'],
displays=['iterations', 'delay', 'seed'],
x_axis='Iteration',
y_axis='Random Number'

)

(continues on next page)

44 Chapter 3. Tutorials

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

self.setWindowTitle('GUI Example')

def queue(self):
filename = tempfile.mktemp()

procedure = self.make_procedure()
results = Results(procedure, filename)
experiment = self.new_experiment(results)

self.manager.queue(experiment)

if __name__ == "__main__":
if len(sys.argv) > 1:

If any parameter is passed, the console mode is run
This criteria can be changed at user discretion
app = ManagedConsole(procedure_class=TestProcedure)

else:
app = QtWidgets.QApplication(sys.argv)
window = MainWindow()
window.show()

sys.exit(app.exec())

If we run the script above without any parameter, you will have the graphical user interface example. If you run as
follow, you will use the command line mode:

python console.py --iterations 10 --result-file console_test

Console output is as follow (to show the progress bar, you need to install the optional module progressbar2):

3.3. Using a graphical interface 45

https://pypi.org/project/progressbar2/

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Other useful commands

To show all the command line switches:

python console.py --help

To run an experiment with parameters retrieved from an existing result file.

python console.py --use-result-file console_test2023-08-09_1.csv

46 Chapter 3. Tutorials

CHAPTER

FOUR

PYMEASURE.ADAPTERS

The adapter classes allow the instruments to be independent of the communication method used. The instrument imple-
mentation takes care of any potential quirks in its communication protocol (see Advanced communication protocols),
and the adapter takes care of the details of the over-the-wire communication with the hardware device. In the vast
majority of cases, it will be sufficient to pass a connection string or integer to the instrument (see Connecting to an
instrument), which uses the pymeasure.adapters.VISAAdapter in the background.

4.1 Adapter base class

class pymeasure.adapters.Adapter(preprocess_reply=None, log=None, **kwargs)
Base class for Adapter child classes, which adapt between the Instrument object and the connection, to allow
flexible use of different connection techniques.

This class should only be inherited from.

Parameters

• preprocess_reply – An optional callable used to preprocess strings received from the
instrument. The callable returns the processed string.

Deprecated since version 0.11: Implement it in the instrument’s read method instead.

• log – Parent logger of the ‘Adapter’ logger.

• **kwargs – Keyword arguments just to be cooperative.

ask(command)
Write the command to the instrument and returns the resulting ASCII response.

Deprecated since version 0.11: Call Instrument.ask instead.

Parameters
command – SCPI command string to be sent to the instrument

Returns
String ASCII response of the instrument

binary_values(command, header_bytes=0, dtype=<class 'numpy.float32'>)
Returns a numpy array from a query for binary data

Deprecated since version 0.11: Call Instrument.binary_values instead.

Parameters

• command – SCPI command to be sent to the instrument

• header_bytes – Integer number of bytes to ignore in header

47

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• dtype – The NumPy data type to format the values with

Returns
NumPy array of values

close()

Close the connection.

flush_read_buffer()

Flush and discard the input buffer. Implement in subclass.

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

Do not override in a subclass!

Parameters
**kwargs – Keyword arguments for the connection itself.

Returns str
ASCII response of the instrument (excluding read_termination).

read_binary_values(header_bytes=0, termination_bytes=None, dtype=<class 'numpy.float32'>,
**kwargs)

Returns a numpy array from a query for binary data

Parameters

• header_bytes (int) – Number of bytes to ignore in header.

• termination_bytes (int) – Number of bytes to strip at end of message or None.

• dtype – The NumPy data type to format the values with.

• **kwargs – Further arguments for the NumPy fromstring method.

Returns
NumPy array of values

read_bytes(count=-1, break_on_termchar=False, **kwargs)
Read a certain number of bytes from the instrument.

Do not override in a subclass!

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read from the whole
read buffer.

• break_on_termchar (bool) – Stop reading at a termination character.

• **kwargs – Keyword arguments for the connection itself.

Returns bytes
Bytes response of the instrument (including termination).

values(command, separator=', ', cast=<class 'float'>, preprocess_reply=None)
Write a command to the instrument and returns a list of formatted values from the result.

Deprecated since version 0.11: Call Instrument.values instead.

Parameters

• command – SCPI command to be sent to the instrument

48 Chapter 4. pymeasure.adapters

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• separator – A separator character to split the string into a list

• cast – A type to cast the result

• preprocess_reply – optional callable used to preprocess values received from the in-
strument. The callable returns the processed string. If not specified, the Adapter default is
used if available, otherwise no preprocessing is done.

Returns
A list of the desired type, or strings where the casting fails

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Do not override in a subclass!

Parameters

• command (str) – Command string to be sent to the instrument (without termination).

• **kwargs – Keyword arguments for the connection itself.

write_binary_values(command, values, termination='', **kwargs)
Write binary data to the instrument, e.g. waveform for signal generators

Parameters

• command – command string to be sent to the instrument

• values – iterable representing the binary values

• termination – String added afterwards to terminate the message.

• **kwargs – Key-word arguments to pass onto Adapter._format_binary_values()

Returns
number of bytes written

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

Do not override in a subclass!

Parameters

• content (bytes) – The bytes to write to the instrument.

• **kwargs – Keyword arguments for the connection itself.

4.2 VISA adapter

class pymeasure.adapters.VISAAdapter(resource_name, visa_library='', preprocess_reply=None,
query_delay=0, log=None, **kwargs)

Bases: Adapter

Adapter class for the VISA library, using PyVISA to communicate with instruments.

The workhorse of our library, used by most instruments.

Parameters

• resource_name – A VISA resource string or GPIB address integer that identifies the target
of the connection

4.2. VISA adapter 49

https://pyvisa.readthedocs.io/en/latest/introduction/names.html

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• visa_library – PyVISA VisaLibrary Instance, path of the VISA library or VisaLibrary
spec string (@py or @ivi). If not given, the default for the platform will be used.

• preprocess_reply – An optional callable used to preprocess strings received from the
instrument. The callable returns the processed string.

Deprecated since version 0.11: Implement it in the instrument’s read method instead.

• query_delay (float) – Time in s to wait after writing and before reading.

Deprecated since version 0.11: Implement it in the instrument’s wait_for method instead.

• log – Parent logger of the ‘Adapter’ logger.

• **kwargs – Keyword arguments for configuring the PyVISA connection.

Kwargs
Keyword arguments are used to configure the connection created by PyVISA. This is complicated
by the fact that which arguments are valid depends on the interface (e.g. serial, GPIB, TCPI/IP,
USB) determined by the current resource_name.

A flexible process is used to easily define reasonable default values for different instrument in-
terfaces, but also enable the instrument user to override any setting if their situation demands
it.

A kwarg that names a pyVISA interface type (most commonly asrl, gpib, tcpip, or usb)
is a dictionary with keyword arguments defining defaults specific to that interface. Example:
asrl={'baud_rate': 4200}.

All other kwargs are either generally valid (e.g. timeout=500) or override any default settings
from the interface-specific entries above. For example, passing baud_rate=115200 when con-
necting via a resource name ASRL1 would override a default of 4200 defined as above.

See Modifying connection settings for how to tweak settings when connecting to an instrument.
See Defining default connection settings for how to best define default settings when implement-
ing an instrument.

ask(command)
Writes the command to the instrument and returns the resulting ASCII response

Deprecated since version 0.11: Call Instrument.ask instead.

Parameters
command – SCPI command string to be sent to the instrument

Returns
String ASCII response of the instrument

ask_values(command, **kwargs)
Writes a command to the instrument and returns a list of formatted values from the result. This leverages
the query_ascii_values method in PyVISA.

Deprecated since version 0.11: Call Instrument.values instead.

Parameters

• command – SCPI command to be sent to the instrument

• **kwargs – Key-word arguments to pass onto query_ascii_values

Returns
Formatted response of the instrument.

50 Chapter 4. pymeasure.adapters

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

binary_values(command, header_bytes=0, dtype=<class 'numpy.float32'>)
Returns a numpy array from a query for binary data

Deprecated since version 0.11: Call Instrument.binary_values instead.

Parameters

• command – SCPI command to be sent to the instrument

• header_bytes – Integer number of bytes to ignore in header

• dtype – The NumPy data type to format the values with

Returns
NumPy array of values

close()

Close the connection.

Note: This closes the connection to the resource for all adapters using it currently (e.g. different adapters
using the same GPIB line).

flush_read_buffer()

Flush and discard the input buffer

As detailed by pyvisa, discard the read and receivee buffer contents and if data was present in the read buffer
and no END-indicator was present, read from the device until encountering an END indicator (which causes
loss of data).

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

Do not override in a subclass!

Parameters
**kwargs – Keyword arguments for the connection itself.

Returns str
ASCII response of the instrument (excluding read_termination).

read_binary_values(header_bytes=0, termination_bytes=None, dtype=<class 'numpy.float32'>,
**kwargs)

Returns a numpy array from a query for binary data

Parameters

• header_bytes (int) – Number of bytes to ignore in header.

• termination_bytes (int) – Number of bytes to strip at end of message or None.

• dtype – The NumPy data type to format the values with.

• **kwargs – Further arguments for the NumPy fromstring method.

Returns
NumPy array of values

read_bytes(count=-1, break_on_termchar=False, **kwargs)
Read a certain number of bytes from the instrument.

Do not override in a subclass!

4.2. VISA adapter 51

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read from the whole
read buffer.

• break_on_termchar (bool) – Stop reading at a termination character.

• **kwargs – Keyword arguments for the connection itself.

Returns bytes
Bytes response of the instrument (including termination).

values(command, separator=', ', cast=<class 'float'>, preprocess_reply=None)
Write a command to the instrument and returns a list of formatted values from the result.

Deprecated since version 0.11: Call Instrument.values instead.

Parameters

• command – SCPI command to be sent to the instrument

• separator – A separator character to split the string into a list

• cast – A type to cast the result

• preprocess_reply – optional callable used to preprocess values received from the in-
strument. The callable returns the processed string. If not specified, the Adapter default is
used if available, otherwise no preprocessing is done.

Returns
A list of the desired type, or strings where the casting fails

wait_for_srq(timeout=25, delay=0.1)
Block until a SRQ, and leave the bit high

Parameters

• timeout – Timeout duration in seconds

• delay – Time delay between checking SRQ in seconds

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Do not override in a subclass!

Parameters

• command (str) – Command string to be sent to the instrument (without termination).

• **kwargs – Keyword arguments for the connection itself.

write_binary_values(command, values, termination='', **kwargs)
Write binary data to the instrument, e.g. waveform for signal generators

Parameters

• command – command string to be sent to the instrument

• values – iterable representing the binary values

• termination – String added afterwards to terminate the message.

• **kwargs – Key-word arguments to pass onto Adapter._format_binary_values()

Returns
number of bytes written

52 Chapter 4. pymeasure.adapters

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

Do not override in a subclass!

Parameters

• content (bytes) – The bytes to write to the instrument.

• **kwargs – Keyword arguments for the connection itself.

4.3 Serial adapter

class pymeasure.adapters.SerialAdapter(port, preprocess_reply=None, write_termination='',
read_termination='', **kwargs)

Bases: Adapter

Adapter class for using the Python Serial package to allow serial communication to instrument

Parameters

• port – Serial port

• preprocess_reply – An optional callable used to preprocess strings received from the
instrument. The callable returns the processed string.

Deprecated since version 0.11: Implement it in the instrument’s read method instead.

• write_termination – String appended to messages before writing them.

• read_termination – String expected at end of read message and removed.

• **kwargs – Any valid key-word argument for serial.Serial

_format_binary_values(values, datatype='f', is_big_endian=False, header_fmt='ieee')
Format values in binary format, used internally in Adapter.write_binary_values().

Parameters

• values – data to be written to the device.

• datatype – the format string for a single element. See struct module.

• is_big_endian – boolean indicating endianess.

• header_fmt – Format of the header prefixing the data (“ieee”, “hp”, “empty”).

Returns
binary string.

Return type
bytes

ask(command)
Write the command to the instrument and returns the resulting ASCII response.

Deprecated since version 0.11: Call Instrument.ask instead.

Parameters
command – SCPI command string to be sent to the instrument

Returns
String ASCII response of the instrument

4.3. Serial adapter 53

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

binary_values(command, header_bytes=0, dtype=<class 'numpy.float32'>)
Returns a numpy array from a query for binary data

Deprecated since version 0.11: Call Instrument.binary_values instead.

Parameters

• command – SCPI command to be sent to the instrument

• header_bytes – Integer number of bytes to ignore in header

• dtype – The NumPy data type to format the values with

Returns
NumPy array of values

close()

Close the connection.

flush_read_buffer()

Flush and discard the input buffer.

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

Do not override in a subclass!

Parameters
**kwargs – Keyword arguments for the connection itself.

Returns str
ASCII response of the instrument (excluding read_termination).

read_binary_values(header_bytes=0, termination_bytes=None, dtype=<class 'numpy.float32'>,
**kwargs)

Returns a numpy array from a query for binary data

Parameters

• header_bytes (int) – Number of bytes to ignore in header.

• termination_bytes (int) – Number of bytes to strip at end of message or None.

• dtype – The NumPy data type to format the values with.

• **kwargs – Further arguments for the NumPy fromstring method.

Returns
NumPy array of values

read_bytes(count=-1, break_on_termchar=False, **kwargs)
Read a certain number of bytes from the instrument.

Do not override in a subclass!

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read from the whole
read buffer.

• break_on_termchar (bool) – Stop reading at a termination character.

• **kwargs – Keyword arguments for the connection itself.

Returns bytes
Bytes response of the instrument (including termination).

54 Chapter 4. pymeasure.adapters

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

values(command, separator=', ', cast=<class 'float'>, preprocess_reply=None)
Write a command to the instrument and returns a list of formatted values from the result.

Deprecated since version 0.11: Call Instrument.values instead.

Parameters

• command – SCPI command to be sent to the instrument

• separator – A separator character to split the string into a list

• cast – A type to cast the result

• preprocess_reply – optional callable used to preprocess values received from the in-
strument. The callable returns the processed string. If not specified, the Adapter default is
used if available, otherwise no preprocessing is done.

Returns
A list of the desired type, or strings where the casting fails

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Do not override in a subclass!

Parameters

• command (str) – Command string to be sent to the instrument (without termination).

• **kwargs – Keyword arguments for the connection itself.

write_binary_values(command, values, termination='', **kwargs)
Write binary data to the instrument, e.g. waveform for signal generators

Parameters

• command – command string to be sent to the instrument

• values – iterable representing the binary values

• termination – String added afterwards to terminate the message.

• **kwargs – Key-word arguments to pass onto Adapter._format_binary_values()

Returns
number of bytes written

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

Do not override in a subclass!

Parameters

• content (bytes) – The bytes to write to the instrument.

• **kwargs – Keyword arguments for the connection itself.

4.3. Serial adapter 55

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

4.4 Prologix adapter

class pymeasure.adapters.PrologixAdapter(resource_name, address=None, rw_delay=0,
serial_timeout=None, preprocess_reply=None, auto=False,
eoi=True, eos='\n', gpib_read_timeout=None, **kwargs)

Bases: VISAAdapter

Encapsulates the additional commands necessary to communicate over a Prologix GPIB-USB Adapter, using the
VISAAdapter.

Each PrologixAdapter is constructed based on a connection to the Prologix device itself and the GPIB address
of the instrument to be communicated to. Connection sharing is achieved by using the gpib()method to spawn
new PrologixAdapters for different GPIB addresses.

Parameters

• resource_name – A VISA resource string that identifies the connection to the Prologix
device itself, for example “ASRL5” for the 5th COM port.

• address – Integer GPIB address of the desired instrument.

• rw_delay – An optional delay to set between a write and read call for slow to respond
instruments.

Deprecated since version 0.11: Implement it in the instrument’s wait_for method instead.

• preprocess_reply – optional callable used to preprocess strings received from the instru-
ment. The callable returns the processed string.

Deprecated since version 0.11: Implement it in the instrument’s read method instead.

• auto – Enable or disable read-after-write and address instrument to listen.

• eoi – Enable or disable EOI assertion.

• eos – Set command termination string (CR+LF, CR, LF, or “”)

• gpib_read_timeout – Set read timeout for GPIB communication in milliseconds from
1..3000

• kwargs – Key-word arguments if constructing a new serial object

Variables
address – Integer GPIB address of the desired instrument.

Usage example:

adapter = PrologixAdapter("ASRL5::INSTR", 7)
sourcemeter = Keithley2400(adapter) # at GPIB address 7
generate another instance with a different GPIB address:
adapter2 = adapter.gpib(9)
multimeter = Keithley2000(adapter2) # at GPIB address 9

To allow user access to the Prologix adapter in Linux, create the file: /etc/udev/rules.d/51-prologix.
rules, with contents:

SUBSYSTEMS=="usb",ATTRS{idVendor}=="0403",ATTRS{idProduct}=="6001",MODE="0666"

Then reload the udev rules with:

56 Chapter 4. pymeasure.adapters

https://pyvisa.readthedocs.io/en/latest/introduction/names.html

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

sudo udevadm control --reload-rules
sudo udevadm trigger

_format_binary_values(values, datatype='f', is_big_endian=False, header_fmt='ieee')
Format values in binary format, used internally in write_binary_values().

Parameters

• values – data to be writen to the device.

• datatype – the format string for a single element. See struct module.

• is_big_endian – boolean indicating endianess.

• header_fmt – Format of the header prefixing the data (“ieee”, “hp”, “empty”).

Returns
binary string.

Return type
bytes

ask(command)
Ask the Prologix controller.

Deprecated since version 0.11: Call Instrument.ask instead.

Parameters
command – SCPI command string to be sent to instrument

ask_values(command, **kwargs)
Writes a command to the instrument and returns a list of formatted values from the result. This leverages
the query_ascii_values method in PyVISA.

Deprecated since version 0.11: Call Instrument.values instead.

Parameters

• command – SCPI command to be sent to the instrument

• **kwargs – Key-word arguments to pass onto query_ascii_values

Returns
Formatted response of the instrument.

property auto

Control whether to address instruments to talk after sending them a command (bool).

Configure Prologix GPIB controller to automatically address instruments to talk after sending them a com-
mand in order to read their response. The feature called, Read-After-Write, saves the user from having to
issue read commands repeatedly. This property enables (True) or disables (False) this feature.

binary_values(command, header_bytes=0, dtype=<class 'numpy.float32'>)
Returns a numpy array from a query for binary data

Deprecated since version 0.11: Call Instrument.binary_values instead.

Parameters

• command – SCPI command to be sent to the instrument

• header_bytes – Integer number of bytes to ignore in header

• dtype – The NumPy data type to format the values with

4.4. Prologix adapter 57

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Returns
NumPy array of values

close()

Close the connection.

Note: This closes the connection to the resource for all adapters using it currently (e.g. different adapters
using the same GPIB line).

property eoi

Control whether to assert the EOI signal with the last character of any command sent over GPIB port (bool).

Some instruments require EOI signal to be asserted in order to properly detect the end of a command.

property eos

Control GPIB termination characters (str).

possible values:

• CR+LF

• CR

• LF

• empty string

When data from host is received, all non-escaped LF, CR and ESC characters are removed and GPIB
terminators, as specified by this command, are appended before sending the data to instruments. This
command does not affect data from instruments received over GPIB port.

flush_read_buffer()

Flush and discard the input buffer

As detailed by pyvisa, discard the read and receivee buffer contents and if data was present in the read buffer
and no END-indicator was present, read from the device until encountering an END indicator (which causes
loss of data).

gpib(address, **kwargs)
Return a PrologixAdapter object that references the GPIB address specified, while sharing the Serial con-
nection with other calls of this function

Parameters

• address – Integer GPIB address of the desired instrument

• kwargs – Arguments for the initialization

Returns
PrologixAdapter for specific GPIB address

property gpib_read_timeout

Control the timeout value for the GPIB communication in milliseconds

possible values: 1 - 3000

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

Do not override in a subclass!

58 Chapter 4. pymeasure.adapters

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Parameters
**kwargs – Keyword arguments for the connection itself.

Returns str
ASCII response of the instrument (excluding read_termination).

read_binary_values(header_bytes=0, termination_bytes=None, dtype=<class 'numpy.float32'>,
**kwargs)

Returns a numpy array from a query for binary data

Parameters

• header_bytes (int) – Number of bytes to ignore in header.

• termination_bytes (int) – Number of bytes to strip at end of message or None.

• dtype – The NumPy data type to format the values with.

• **kwargs – Further arguments for the NumPy fromstring method.

Returns
NumPy array of values

read_bytes(count=-1, break_on_termchar=False, **kwargs)
Read a certain number of bytes from the instrument.

Do not override in a subclass!

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read from the whole
read buffer.

• break_on_termchar (bool) – Stop reading at a termination character.

• **kwargs – Keyword arguments for the connection itself.

Returns bytes
Bytes response of the instrument (including termination).

reset()

Perform a power-on reset of the controller.

The process takes about 5 seconds. All input received during this time is ignored and the connection is
closed.

values(command, separator=', ', cast=<class 'float'>, preprocess_reply=None)
Write a command to the instrument and returns a list of formatted values from the result.

Deprecated since version 0.11: Call Instrument.values instead.

Parameters

• command – SCPI command to be sent to the instrument

• separator – A separator character to split the string into a list

• cast – A type to cast the result

• preprocess_reply – optional callable used to preprocess values received from the in-
strument. The callable returns the processed string. If not specified, the Adapter default is
used if available, otherwise no preprocessing is done.

Returns
A list of the desired type, or strings where the casting fails

4.4. Prologix adapter 59

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property version

Get the version string of the Prologix controller.

wait_for_srq(timeout=25, delay=0.1)
Blocks until a SRQ, and leaves the bit high

Parameters

• timeout – Timeout duration in seconds.

• delay – Time delay between checking SRQ in seconds.

Raises
TimeoutError – “Waiting for SRQ timed out.”

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

If the GPIB address in address is defined, it is sent first.

Parameters

• command (str) – Command string to be sent to the instrument (without termination).

• kwargs – Keyword arguments for the connection itself.

write_binary_values(command, values, **kwargs)
Write binary data to the instrument, e.g. waveform for signal generators.

values are encoded in a binary format according to IEEE 488.2 Definite Length Arbitrary Block Response
Data block.

Parameters

• command – SCPI command to be sent to the instrument

• values – iterable representing the binary values

• kwargs – Key-word arguments to pass onto _format_binary_values()

Returns
number of bytes written

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

Do not override in a subclass!

Parameters

• content (bytes) – The bytes to write to the instrument.

• **kwargs – Keyword arguments for the connection itself.

60 Chapter 4. pymeasure.adapters

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

4.5 VXI-11 adapter

class pymeasure.adapters.VXI11Adapter(host, preprocess_reply=None, **kwargs)
Bases: Adapter

VXI11 Adapter class. Provides a adapter object that
wraps around the read, write and ask functionality of the vxi11 library.

Deprecated since version 0.11: Use VISAAdapter instead.

Parameters

• host – string containing the visa connection information.

• preprocess_reply – (deprecated) optional callable used to preprocess strings received
from the instrument. The callable returns the processed string.

ask(command)
Wrapper function for the ask command using the vx11 interface.

Deprecated since version 0.11: Call Instrument.ask instead.

Parameters
command – string with the command that will be transmitted to the instrument.

:returns string containing a response from the device.

ask_raw(command)
Wrapper function for the ask_raw command using the vx11 interface.

Deprecated since version 0.11: Use Instrument.write_bytes and Instrument.read_bytes instead.

Parameters
command – binary string with the command that will be transmitted to the instrument

:returns binary string containing the response from the device.

binary_values(command, header_bytes=0, dtype=<class 'numpy.float32'>)
Returns a numpy array from a query for binary data

Deprecated since version 0.11: Call Instrument.binary_values instead.

Parameters

• command – SCPI command to be sent to the instrument

• header_bytes – Integer number of bytes to ignore in header

• dtype – The NumPy data type to format the values with

Returns
NumPy array of values

close()

Close the connection.

flush_read_buffer()

Flush and discard the input buffer. Implement in subclass.

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

Do not override in a subclass!

4.5. VXI-11 adapter 61

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Parameters
**kwargs – Keyword arguments for the connection itself.

Returns str
ASCII response of the instrument (excluding read_termination).

read_binary_values(header_bytes=0, termination_bytes=None, dtype=<class 'numpy.float32'>,
**kwargs)

Returns a numpy array from a query for binary data

Parameters

• header_bytes (int) – Number of bytes to ignore in header.

• termination_bytes (int) – Number of bytes to strip at end of message or None.

• dtype – The NumPy data type to format the values with.

• **kwargs – Further arguments for the NumPy fromstring method.

Returns
NumPy array of values

read_bytes(count=-1, break_on_termchar=False, **kwargs)
Read a certain number of bytes from the instrument.

Do not override in a subclass!

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read from the whole
read buffer.

• break_on_termchar (bool) – Stop reading at a termination character.

• **kwargs – Keyword arguments for the connection itself.

Returns bytes
Bytes response of the instrument (including termination).

read_raw()

Read bytes from the device.

Deprecated since version 0.11: Use read_bytes instead.

values(command, separator=', ', cast=<class 'float'>, preprocess_reply=None)
Write a command to the instrument and returns a list of formatted values from the result.

Deprecated since version 0.11: Call Instrument.values instead.

Parameters

• command – SCPI command to be sent to the instrument

• separator – A separator character to split the string into a list

• cast – A type to cast the result

• preprocess_reply – optional callable used to preprocess values received from the in-
strument. The callable returns the processed string. If not specified, the Adapter default is
used if available, otherwise no preprocessing is done.

Returns
A list of the desired type, or strings where the casting fails

62 Chapter 4. pymeasure.adapters

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Do not override in a subclass!

Parameters

• command (str) – Command string to be sent to the instrument (without termination).

• **kwargs – Keyword arguments for the connection itself.

write_binary_values(command, values, termination='', **kwargs)
Write binary data to the instrument, e.g. waveform for signal generators

Parameters

• command – command string to be sent to the instrument

• values – iterable representing the binary values

• termination – String added afterwards to terminate the message.

• **kwargs – Key-word arguments to pass onto Adapter._format_binary_values()

Returns
number of bytes written

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

Do not override in a subclass!

Parameters

• content (bytes) – The bytes to write to the instrument.

• **kwargs – Keyword arguments for the connection itself.

write_raw(command)
Write bytes to the device.

Deprecated since version 0.11: Use write_bytes instead.

4.6 Telnet adapter

class pymeasure.adapters.TelnetAdapter(host, port=0, query_delay=0, preprocess_reply=None,
**kwargs)

Bases: Adapter

Adapter class for using the Python telnetlib package to allow communication to instruments

Deprecated since version 0.11.2: The Python telnetlib module is deprecated since Python 3.11 and will be
removed in Python 3.13 release. As a result, TelnetAdapter is deprecated, use VISAAdapter instead. The
VISAAdapter supports TCPIP socket connections. When using the VISAAdapter, the resource_name argu-
ment should be TCPIP[board]::<host>::<port>::SOCKET. see here, <https://pyvisa.readthedocs.io/en/latest/
introduction/names.html>

Parameters

• host – host address of the instrument

• port – TCPIP port

4.6. Telnet adapter 63

https://pyvisa.readthedocs.io/en/latest/introduction/names.html
https://pyvisa.readthedocs.io/en/latest/introduction/names.html

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• query_delay – delay in seconds between write and read in the ask method

• preprocess_reply – An optional callable used to preprocess strings received from the
instrument. The callable returns the processed string.

Deprecated since version 0.11: Implement it in the instrument’s read method instead.

• kwargs – Valid keyword arguments for telnetlib.Telnet, currently this is only ‘timeout’

ask(command)
Writes a command to the instrument and returns the resulting ASCII response

Deprecated since version 0.11: Call Instrument.ask instead.

Parameters
command – command string to be sent to the instrument

Returns
String ASCII response of the instrument

binary_values(command, header_bytes=0, dtype=<class 'numpy.float32'>)
Returns a numpy array from a query for binary data

Deprecated since version 0.11: Call Instrument.binary_values instead.

Parameters

• command – SCPI command to be sent to the instrument

• header_bytes – Integer number of bytes to ignore in header

• dtype – The NumPy data type to format the values with

Returns
NumPy array of values

close()

Close the connection.

flush_read_buffer()

Flush and discard the input buffer. Implement in subclass.

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

Do not override in a subclass!

Parameters
**kwargs – Keyword arguments for the connection itself.

Returns str
ASCII response of the instrument (excluding read_termination).

read_binary_values(header_bytes=0, termination_bytes=None, dtype=<class 'numpy.float32'>,
**kwargs)

Returns a numpy array from a query for binary data

Parameters

• header_bytes (int) – Number of bytes to ignore in header.

• termination_bytes (int) – Number of bytes to strip at end of message or None.

• dtype – The NumPy data type to format the values with.

64 Chapter 4. pymeasure.adapters

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• **kwargs – Further arguments for the NumPy fromstring method.

Returns
NumPy array of values

read_bytes(count=-1, break_on_termchar=False, **kwargs)
Read a certain number of bytes from the instrument.

Do not override in a subclass!

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read from the whole
read buffer.

• break_on_termchar (bool) – Stop reading at a termination character.

• **kwargs – Keyword arguments for the connection itself.

Returns bytes
Bytes response of the instrument (including termination).

values(command, separator=', ', cast=<class 'float'>, preprocess_reply=None)
Write a command to the instrument and returns a list of formatted values from the result.

Deprecated since version 0.11: Call Instrument.values instead.

Parameters

• command – SCPI command to be sent to the instrument

• separator – A separator character to split the string into a list

• cast – A type to cast the result

• preprocess_reply – optional callable used to preprocess values received from the in-
strument. The callable returns the processed string. If not specified, the Adapter default is
used if available, otherwise no preprocessing is done.

Returns
A list of the desired type, or strings where the casting fails

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Do not override in a subclass!

Parameters

• command (str) – Command string to be sent to the instrument (without termination).

• **kwargs – Keyword arguments for the connection itself.

write_binary_values(command, values, termination='', **kwargs)
Write binary data to the instrument, e.g. waveform for signal generators

Parameters

• command – command string to be sent to the instrument

• values – iterable representing the binary values

• termination – String added afterwards to terminate the message.

• **kwargs – Key-word arguments to pass onto Adapter._format_binary_values()

4.6. Telnet adapter 65

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Returns
number of bytes written

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

Do not override in a subclass!

Parameters

• content (bytes) – The bytes to write to the instrument.

• **kwargs – Keyword arguments for the connection itself.

4.7 Test adapters

These pieces are useful when writing tests.

pymeasure.test.expected_protocol(instrument_cls, comm_pairs, connection_attributes={},
connection_methods={}, **kwargs)

Context manager that checks sent/received instrument commands without a device connected.

Given an instrument class and a list of command-response pairs, this context manager confirms that the code in
the context manager block produces the expected messages.

Terminators are excluded from the protocol definition, as those are typically a detail of the communication method
(i.e. Adapter), and not the protocol itself.

Parameters

• instrument_cls (pymeasure.Instrument) – Instrument subclass to instantiate.

• comm_pairs (list[2-tuples[str]]) – List of command-response pairs, i.e. 2-tuples
like (‘VOLT?’, ‘3.14’). ‘None’ indicates that a pair member (command or response) does not
exist, e.g. (None, ‘RESP1’). Commands and responses are without termination characters.

• connection_attributes – Dictionary of connection attributes and their values.

• connection_methods – Dictionary of method names of the connection and their return
values.

• **kwargs – Keyword arguments for the instantiation of the instrument.

class pymeasure.adapters.ProtocolAdapter(comm_pairs=None, preprocess_reply=None,
connection_attributes=None, connection_methods=None,
**kwargs)

Bases: Adapter

Adapter class for testing the command exchange protocol without instrument hardware.

This adapter is primarily meant for use within pymeasure.test.expected_protocol().

The connection attribute is a unittest.mock.MagicMock such that every call returns. If you want to set
a return value, you can use adapter.connection.some_method.return_value = 7, such that a call to
adapter.connection.some_method() will return 7. Similarly, you can verify that this call to the connection
method happened with assert adapter.connection.some_method.called is True. You can specify
dictionaries with return values of attributes and methods.

Parameters

66 Chapter 4. pymeasure.adapters

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• comm_pairs (list) – List of “reference” message pair tuples. The first element is what
is sent to the instrument, the second one is the returned message. ‘None’ indicates that a
pair member (write or read) does not exist. The messages do not include the termination
characters.

• connection_attributes – Dictionary of connection attributes and their values.

• connection_methods – Dictionary of method names of the connection and their return
values.

flush_read_buffer()

Flush and discard the input buffer

As detailed by pyvisa, discard the read buffer contents and if data was present in the read buffer and no
END-indicator was present, read from the device until encountering an END indicator (which causes loss
of data).

class pymeasure.adapters.FakeAdapter(preprocess_reply=None, log=None, **kwargs)
Bases: Adapter

Provides a fake adapter for debugging purposes, which bounces back the command so that arbitrary values testing
is possible.

a = FakeAdapter()
assert a.read() == ""
a.write("5")
assert a.read() == "5"
assert a.read() == ""
assert a.ask("10") == "10"
assert a.values("10") == [10]

ask(command)
Write the command to the instrument and returns the resulting ASCII response.

Deprecated since version 0.11: Call Instrument.ask instead.

Parameters
command – SCPI command string to be sent to the instrument

Returns
String ASCII response of the instrument

binary_values(command, header_bytes=0, dtype=<class 'numpy.float32'>)
Returns a numpy array from a query for binary data

Deprecated since version 0.11: Call Instrument.binary_values instead.

Parameters

• command – SCPI command to be sent to the instrument

• header_bytes – Integer number of bytes to ignore in header

• dtype – The NumPy data type to format the values with

Returns
NumPy array of values

close()

Close the connection.

4.7. Test adapters 67

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

flush_read_buffer()

Flush and discard the input buffer. Implement in subclass.

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

Do not override in a subclass!

Parameters
**kwargs – Keyword arguments for the connection itself.

Returns str
ASCII response of the instrument (excluding read_termination).

read_binary_values(header_bytes=0, termination_bytes=None, dtype=<class 'numpy.float32'>,
**kwargs)

Returns a numpy array from a query for binary data

Parameters

• header_bytes (int) – Number of bytes to ignore in header.

• termination_bytes (int) – Number of bytes to strip at end of message or None.

• dtype – The NumPy data type to format the values with.

• **kwargs – Further arguments for the NumPy fromstring method.

Returns
NumPy array of values

read_bytes(count=-1, break_on_termchar=False, **kwargs)
Read a certain number of bytes from the instrument.

Do not override in a subclass!

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read from the whole
read buffer.

• break_on_termchar (bool) – Stop reading at a termination character.

• **kwargs – Keyword arguments for the connection itself.

Returns bytes
Bytes response of the instrument (including termination).

values(command, separator=', ', cast=<class 'float'>, preprocess_reply=None)
Write a command to the instrument and returns a list of formatted values from the result.

Deprecated since version 0.11: Call Instrument.values instead.

Parameters

• command – SCPI command to be sent to the instrument

• separator – A separator character to split the string into a list

• cast – A type to cast the result

• preprocess_reply – optional callable used to preprocess values received from the in-
strument. The callable returns the processed string. If not specified, the Adapter default is
used if available, otherwise no preprocessing is done.

68 Chapter 4. pymeasure.adapters

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Returns
A list of the desired type, or strings where the casting fails

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Do not override in a subclass!

Parameters

• command (str) – Command string to be sent to the instrument (without termination).

• **kwargs – Keyword arguments for the connection itself.

write_binary_values(command, values, termination='', **kwargs)
Write binary data to the instrument, e.g. waveform for signal generators

Parameters

• command – command string to be sent to the instrument

• values – iterable representing the binary values

• termination – String added afterwards to terminate the message.

• **kwargs – Key-word arguments to pass onto Adapter._format_binary_values()

Returns
number of bytes written

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

Do not override in a subclass!

Parameters

• content (bytes) – The bytes to write to the instrument.

• **kwargs – Keyword arguments for the connection itself.

class pymeasure.generator.Generator

Generates tests from the communication with an instrument.

Example usage:

g = Generator()
inst = g.instantiate(TC038, "COM5", 'hcp', adapter_kwargs={'baud_rate': 9600})
inst.information # returns the 'information' property and adds it to the tests
inst.setpoint = 20
inst.setpoint == 20 # should be True
g.write_file("test_tc038.py") # write the tests to a file

instantiate(instrument_class, adapter, manufacturer, adapter_kwargs=None, **kwargs)
Instantiate the instrument and store the instantiation communication.

..note:

You have to give all keyword arguments necessary for adapter instantiation in
`adapter_kwargs`, even those, which are defined somewhere in the instrument's
``__init__`` method, be it as a default value, be it directly in the
``Instrument.__init__()`` call.

4.7. Test adapters 69

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Parameters

• instrument_class – Class of the instrument to test.

• adapter – Adapter (instance or str) for the instrument instantiation.

• manufacturer – Module from which to import the instrument, e.g. ‘hcp’ if instru-
ment_class is ‘pymeasure.hcp.tc038’.

• adapter_kwargs – Keyword arguments for the adapter instantiation (see note above).

• **kwargs – Keyword arguments for the instrument instantiation.

Returns
A man-in-the-middle instrument, which can be used like a normal instrument.

parse_stream()

Parse the stream not yet read.

test_method(method_name, *args, **kwargs)
Test calling the method_name of the instruments with args and kwargs.

test_property_getter(property)
Test getting the property of the instrument, adding it to the list.

test_property_setter(property, value)
Test setting the property of the instrument to value, adding it to the list.

test_property_setter_batch(property, values)
Test setting property to each element in values.

write_file(filename='tests.py')
Write the tests into the file.

Parameters
filename – Name to save the tests to, may contain the path, e.g. “/tests/test_abc.py”.

write_getter_test(file, property, parameters)
Write a getter test.

write_init_test(file)
Write the header and init test.

write_method_test(file, method, parameters)
Write a test for a method.

write_method_tests(file)
Write all parametrized method tests in alphabetic order.

write_property_tests(file)
Write tests for properties in alphabetic order.

If getter and setter exist, the setter is the first test.

write_setter_test(file, property, parameters)
Write a setter test.

70 Chapter 4. pymeasure.adapters

CHAPTER

FIVE

PYMEASURE.EXPERIMENT

This section contains specific documentation on the classes and methods of the package.

5.1 Experiment class

The Experiment class is intended for use in the Jupyter notebook environment.

class pymeasure.experiment.experiment.Experiment(title, procedure, analyse=<function
Experiment.<lambda>>)

Bases: object

Class which starts logging and creates/runs the results and worker processes.

procedure = Procedure()
experiment = Experiment(title, procedure)
experiment.start()
experiment.plot_live('x', 'y', style='.-')

for a multi-subplot graph:

import pylab as pl
ax1 = pl.subplot(121)
experiment.plot('x','y',ax=ax1)
ax2 = pl.subplot(122)
experiment.plot('x','z',ax=ax2)
experiment.plot_live()

Variables
value – The value of the parameter

Parameters

• title – The experiment title

• procedure – The procedure object

• analyse – Post-analysis function, which takes a pandas dataframe as input and returns it
with added (analysed) columns. The analysed results are accessible via experiment.data, as
opposed to experiment.results.data for the ‘raw’ data.

• _data_timeout – Time limit for how long live plotting should wait for datapoints.

71

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

clear_plot()

Clear the figures and plot lists.

property data

Data property which returns analysed data, if an analyse function is defined, otherwise returns the raw data.

plot(*args, **kwargs)
Plot the results from the experiment.data pandas dataframe. Store the plots in a plots list attribute.

plot_live(*args, **kwargs)
Live plotting loop for jupyter notebook, which automatically updates (an) in-line matplotlib graph(s). Will
create a new plot as specified by input arguments, or will update (an) existing plot(s).

start()

Start the worker

update_line(ax, hl, xname, yname)
Update a line in a matplotlib graph with new data.

update_plot()

Update the plots in the plots list with new data from the experiment.data pandas dataframe.

wait_for_data()

Wait for the data attribute to fill with datapoints.

pymeasure.experiment.experiment.create_filename(title)
Create a new filename according to the style defined in the config file. If no config is specified, create a temporary
file.

pymeasure.experiment.experiment.get_array(start, stop, step)
Returns a numpy array from start to stop

pymeasure.experiment.experiment.get_array_steps(start, stop, numsteps)
Returns a numpy array from start to stop in numsteps

pymeasure.experiment.experiment.get_array_zero(maxval, step)
Returns a numpy array from 0 to maxval to -maxval to 0

5.2 Listener class

class pymeasure.experiment.listeners.Listener(port, topic='', timeout=0.01)
Bases: StoppableThread

Base class for Threads that need to listen for messages on a ZMQ TCP port and can be stopped by a thread-safe
method call

message_waiting()

Check if we have a message, wait at most until timeout.

receive(flags=0)

class pymeasure.experiment.listeners.Monitor(results, queue)
Bases: QueueListener

72 Chapter 5. pymeasure.experiment

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

class pymeasure.experiment.listeners.Recorder(results, queue, **kwargs)
Bases: QueueListener

Recorder loads the initial Results for a filepath and appends data by listening for it over a queue. The queue
ensures that no data is lost between the Recorder and Worker.

stop()

Stop the listener.

This asks the thread to terminate, and then waits for it to do so. Note that if you don’t call this before your
application exits, there may be some records still left on the queue, which won’t be processed.

5.3 Procedure class

class pymeasure.experiment.procedure.Procedure(**kwargs)
Provides the base class of a procedure to organize the experiment execution. Procedures should be run by Workers
to ensure that asynchronous execution is properly managed.

procedure = Procedure()
results = Results(procedure, data_filename)
worker = Worker(results, port)
worker.start()

Inheriting classes should define the startup, execute, and shutdown methods as needed. The shutdown method is
called even with a software exception or abort event during the execute method.

If keyword arguments are provided, they are added to the object as attributes.

check_parameters()

Raises an exception if any parameter is missing before calling the associated function. Ensures that each
value can be set and got, which should cast it into the right format. Used as a decorator @check_parameters
on the startup method

evaluate_metadata()

Evaluates all Metadata objects, fixing their values to the current value

execute()

Preforms the commands needed for the measurement itself. During execution the shutdown method will
always be run following this method. This includes when Exceptions are raised.

gen_measurement()

Create MEASURE and DATA_COLUMNS variables for get_datapoint method.

get_estimates()

Function that returns estimates that are to be displayed by the EstimatorWidget. Must be reimplemented
by subclasses. Should return an int or float representing the duration in seconds, or a list with a tuple for
each estimate. The tuple should consists of two strings: the first will be used as the label of the estimate,
the second as the displayed estimate.

metadata_objects()

Returns a dictionary of all the Metadata objects

parameter_objects()

Returns a dictionary of all the Parameter objects and grabs any current values that are not in the default
definitions

5.3. Procedure class 73

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

parameter_values()

Returns a dictionary of all the Parameter values and grabs any current values that are not in the default
definitions

parameters_are_set()

Returns True if all parameters are set

static parse_columns(columns)
Get columns with any units in parentheses. For each column, if there are matching parentheses containing
text with no spaces, parse the value between the parentheses as a Pint unit. For example, “Source Voltage
(V)” will be parsed and matched to Unit('volt'). Raises an error if a parsed value is undefined in Pint
unit registry. Return a dictionary of matched columns with their units.

Parameters
columns – List of columns to be parsed.

Returns
Dictionary of columns with Pint units.

refresh_parameters()

Enforces that all the parameters are re-cast and updated in the meta dictionary

set_parameters(parameters, except_missing=True)
Sets a dictionary of parameters and raises an exception if additional parameters are present if except_missing
is True

shutdown()

Executes the commands necessary to shut down the instruments and leave them in a safe state. This method
is always run at the end.

startup()

Executes the commands needed at the start-up of the measurement

class pymeasure.experiment.procedure.UnknownProcedure(parameters)
Handles the case when a Procedure object can not be imported during loading in the Results class

startup()

Executes the commands needed at the start-up of the measurement

5.4 Parameter classes

The parameter classes are used to define input variables for a Procedure. They each inherit from the Parameter base
class.

class pymeasure.experiment.parameters.BooleanParameter(name, default=None, ui_class=None,
group_by=None, group_condition=True)

Parameter sub-class that uses the boolean type to store the value.

Variables
value – The boolean value of the parameter

Parameters

• name – The parameter name

• default – The default boolean value

• ui_class – A Qt class to use for the UI of this parameter

74 Chapter 5. pymeasure.experiment

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

convert(value)
Convert user input to python data format

Subclasses are exptected to customize this method. Default implementation is the identity function

Parameters
value – value to be converted

Returns
converted value

class pymeasure.experiment.parameters.FloatParameter(name, units=None, minimum=-1000000000.0,
maximum=1000000000.0, decimals=15,
step=None, **kwargs)

Parameter sub-class that uses the floating point type to store the value.

Variables
value – The floating point value of the parameter

Parameters

• name – The parameter name

• units – The units of measure for the parameter

• minimum – The minimum allowed value (default: -1e9)

• maximum – The maximum allowed value (default: 1e9)

• decimals – The number of decimals considered (default: 15)

• default – The default floating point value

• ui_class – A Qt class to use for the UI of this parameter

• step – step size for parameter’s UI spinbox. If None, spinbox will have step disabled

convert(value)
Convert user input to python data format

Subclasses are exptected to customize this method. Default implementation is the identity function

Parameters
value – value to be converted

Returns
converted value

class pymeasure.experiment.parameters.IntegerParameter(name, units=None,
minimum=-1000000000.0,
maximum=1000000000.0, step=None,
**kwargs)

Parameter sub-class that uses the integer type to store the value.

Variables
value – The integer value of the parameter

Parameters

• name – The parameter name

• units – The units of measure for the parameter

• minimum – The minimum allowed value (default: -1e9)

5.4. Parameter classes 75

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• maximum – The maximum allowed value (default: 1e9)

• default – The default integer value

• ui_class – A Qt class to use for the UI of this parameter

• step – int step size for parameter’s UI spinbox. If None, spinbox will have step disabled

convert(value)
Convert user input to python data format

Subclasses are exptected to customize this method. Default implementation is the identity function

Parameters
value – value to be converted

Returns
converted value

class pymeasure.experiment.parameters.ListParameter(name, choices=None, units=None, **kwargs)
Parameter sub-class that stores the value as a list. String representation of choices must be unique.

Parameters

• name – The parameter name

• choices – An explicit list of choices, which is disregarded if None

• units – The units of measure for the parameter

• default – The default value

• ui_class – A Qt class to use for the UI of this parameter

property choices

Returns an immutable iterable of choices, or None if not set.

convert(value)
Convert user input to python data format

Subclasses are exptected to customize this method. Default implementation is the identity function

Parameters
value – value to be converted

Returns
converted value

class pymeasure.experiment.parameters.Measurable(name, fget=None, units=None, measure=True,
default=None, **kwargs)

Encapsulates the information for a measurable experiment parameter with information about the name, fget
function and units if supplied. The value property is called when the procedure retrieves a datapoint and calls the
fget function. If no fget function is specified, the value property will return the latest set value of the parameter
(or default if never set).

Variables
value – The value of the parameter

Parameters

• name – The parameter name

• fget – The parameter fget function (e.g. an instrument parameter)

• default – The default value

76 Chapter 5. pymeasure.experiment

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

class pymeasure.experiment.parameters.Metadata(name, fget=None, units=None, default=None,
fmt='%s')

Encapsulates the information for metadata of the experiment with information about the name, the fget function
and the units, if supplied. If no fget function is specified, the value property will return the latest set value of the
parameter (or default if never set).

Variables
value – The value of the parameter. This returns (if a value is set) the value obtained from the
fget (after evaluation) or a manually set value. Returns None if no value has been set

Parameters

• name – The parameter name

• fget – The parameter fget function; can be provided as a callable, or as a string, in which
case it is assumed to be the name of a method or attribute of the Procedure class in which
the Metadata is defined. Passing a string also allows for nested attributes by separating them
with a period (e.g. to access an attribute or method of an instrument) where only the last
attribute can be a method.

• units – The parameter units

• default – The default value, in case no value is assigned or if no fget method is provided

• fmt – A string used to format the value upon writing it to a file. Default is “%s”

is_set()

Returns True if the Parameter value is set

class pymeasure.experiment.parameters.Parameter(name, default=None, ui_class=None,
group_by=None, group_condition=True)

Encapsulates the information for an experiment parameter with information about the name, and units if supplied.

Variables
value – The value of the parameter

Parameters

• name – The parameter name

• default – The default value

• ui_class – A Qt class to use for the UI of this parameter

• group_by – Defines the Parameter(s) that controls the visibility of the associated input; can
be a string containting the Parameter name, a list of strings with multiple Parameter names,
or a dict containing {“Parameter name”: condition} pairs.

• group_condition – The condition for the group_by Parameter that controls the visibility
of this parameter, provided as a value or a (lambda)function. If the group_by argument
is provided as a list of strings, this argument can be either a single condition or a list of
conditions. If the group_by argument is provided as a dict this argument is ignored.

property cli_args

helper for command line interface parsing of parameters

This property returns a list of data to help formatting a command line interface interpreter, the list is com-
posed of the following elements: - index 0: default value - index 1: List of value to format an help string,
that is either, the name of the fields to be documented or a tuple with (helps_string, field) - index 2: type

5.4. Parameter classes 77

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

convert(value)
Convert user input to python data format

Subclasses are exptected to customize this method. Default implementation is the identity function

Parameters
value – value to be converted

Returns
converted value

is_set()

Returns True if the Parameter value is set

class pymeasure.experiment.parameters.PhysicalParameter(name, uncertaintyType='absolute',
**kwargs)

VectorParameter sub-class of 2 dimensions to store a value and its uncertainty.

Variables
value – The value of the parameter as a list of 2 floating point numbers

Parameters

• name – The parameter name

• uncertainty_type – Type of uncertainty, ‘absolute’, ‘relative’ or ‘percentage’

• units – The units of measure for the parameter

• default – The default value

• ui_class – A Qt class to use for the UI of this parameter

convert(value)
Convert user input to python data format

Subclasses are exptected to customize this method. Default implementation is the identity function

Parameters
value – value to be converted

Returns
converted value

class pymeasure.experiment.parameters.VectorParameter(name, length=3, units=None, **kwargs)
Parameter sub-class that stores the value in a vector format.

Variables
value – The value of the parameter as a list of floating point numbers

Parameters

• name – The parameter name

• length – The integer dimensions of the vector

• units – The units of measure for the parameter

• default – The default value

• ui_class – A Qt class to use for the UI of this parameter

78 Chapter 5. pymeasure.experiment

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

convert(value)
Convert user input to python data format

Subclasses are exptected to customize this method. Default implementation is the identity function

Parameters
value – value to be converted

Returns
converted value

5.5 Worker class

class pymeasure.experiment.workers.Worker(results, log_queue=None, log_level=20, port=None)
Bases: StoppableThread

Worker runs the procedure and emits information about the procedure and its status over a ZMQ TCP port. In a
child thread, a Recorder is run to write the results to

emit(topic, record)
Emits data of some topic over TCP

handle_abort()

handle_error()

join(timeout=0)
Joins the current thread and forces it to stop after the timeout if necessary

Parameters
timeout – Timeout duration in seconds

run()

Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken from
the args and kwargs arguments, respectively.

shutdown()

update_status(status)

5.6 Results class

class pymeasure.experiment.results.CSVFormatter(columns, delimiter=',')
Formatter of data results

format(record)
Formats a record as csv.

Parameters
record (dict) – record to format.

Returns
a string

5.5. Worker class 79

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

class pymeasure.experiment.results.Results(procedure, data_filename)
The Results class provides a convenient interface to reading and writing data in connection with a Procedure
object.

Variables

• COMMENT – The character used to identify a comment (default: #)

• DELIMITER – The character used to delimit the data (default: ,)

• LINE_BREAK – The character used for line breaks (default n)

• CHUNK_SIZE – The length of the data chuck that is read

Parameters

• procedure – Procedure object

• data_filename – The data filename where the data is or should be stored

format(data)
Returns a formatted string containing the data to be written to a file

header()

Returns a text header to accompany a datafile so that the procedure can be reconstructed

labels()

Returns the columns labels as a string to be written to the file

static load(data_filename, procedure_class=None)
Returns a Results object with the associated Procedure object and data

metadata()

Returns a text header for the metadata to write into the datafile

parse(line)
Returns a dictionary containing the data from the line

static parse_header(header, procedure_class=None)
Returns a Procedure object with the parameters as defined in the header text.

reload()

Preforms a full reloading of the file data, neglecting any changes in the comments

store_metadata()

Inserts the metadata header (if any) into the datafile

pymeasure.experiment.results.replace_placeholders(string, procedure, date_format='%Y-%m-%d',
time_format='%H:%M:%S')

Replace placeholders in string with values from procedure parameters.

Replaces the placeholders in the provided string with the values of the associated parameters, as provided by
the procedure. This uses the standard python string.format syntax. Apart from the parameter in the procedure
(which should be called by their full names) “date” and “time” are also added as optional placeholders.

Parameters

• string – The string in which the placeholders are to be replaced. Python string.format syn-
tax is used, e.g. “{Parameter Name}” to insert a FloatParameter called “Parameter Name”,
or “{Parameter Name:.2f}” to also specifically format the parameter.

• procedure – The procedure from which to get the parameter values.

80 Chapter 5. pymeasure.experiment

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• date_format – A string to represent how the additional placeholder “date” will be format-
ted.

• time_format – A string to represent how the additional placeholder “time” will be format-
ted.

pymeasure.experiment.results.unique_filename(directory, prefix='DATA', suffix='', ext='csv',
dated_folder=False, index=True,
datetimeformat='%Y-%m-%d', procedure=None)

Returns a unique filename based on the directory and prefix

5.6. Results class 81

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

82 Chapter 5. pymeasure.experiment

CHAPTER

SIX

PYMEASURE.DISPLAY

This section contains specific documentation on the classes and methods of the package.

6.1 Browser classes

class pymeasure.display.browser.BaseBrowserItem

Bases: object

Base class for an experiment’s browser item. BaseBrowerItem outlines core functionality for displaying progress
of an experiment to the user.

class pymeasure.display.browser.Browser(procedure_class, display_parameters, measured_quantities,
sort_by_filename=False, parent=None)

Bases: QTreeWidget

Graphical list view of Experiment objects allowing the user to view the status of queued Experiments as well
as loading and displaying data from previous runs.

In order that different Experiments be displayed within the same Browser, they must have entries in
DATA_COLUMNS corresponding to the measured_quantities of the Browser.

add(experiment)
Add a Experiment object to the Browser. This function checks to make sure that the Experiment measures
the appropriate quantities to warrant its inclusion, and then adds a BrowserItem to the Browser, filling all
relevant columns with Parameter data.

class pymeasure.display.browser.BrowserItem(results, color, parent=None)
Bases: QTreeWidgetItem, BaseBrowserItem

Represent a row in the Browser tree widget

6.2 Console class

class pymeasure.display.console.ConsoleArgumentParser(procedure_class, **kwargs)
Bases: ArgumentParser

setup_parser()

Setup command line arguments parsing from parameters information

class pymeasure.display.console.ConsoleBrowserItem(progress_bar)
Bases: BaseBrowserItem

83

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

class pymeasure.display.console.ManagedConsole(procedure_class, log_channel='', log_level=20)
Bases: QCoreApplication

Base class for console experiment management.

Parameters for __init__ constructor.

Parameters

• procedure_class – procedure class describing the experiment (see Procedure)

• log_channel – logging.Logger instance to use for logging output

• log_level – logging level

abort()

Aborts the currently running Experiment, but raises an exception if there is no running experiment

exec()→ int

get_filename(directory, procedure=None)
Return filename for saving results file

Parameters
directory – directory of the returned filename.

6.3 Curves classes

class pymeasure.display.curves.BufferCurve(**kwargs)
Bases: PlotDataItem

Creates a curve based on a predefined buffer size and allows data to be added dynamically.

append(x, y)
Appends data to the curve with optional errors

prepare(size, dtype=<class 'numpy.float32'>)
Prepares the buffer based on its size, data type

class pymeasure.display.curves.Crosshairs(plot, pen=None)
Bases: QObject

Attaches crosshairs to the a plot and provides a signal with the x and y graph coordinates

mouseMoved(event=None)
Updates the mouse position upon mouse movement

update()

Updates the mouse position based on the data in the plot. For dynamic plots, this is called each time the
data changes to ensure the x and y values correspond to those on the display.

class pymeasure.display.curves.ResultsCurve(results, x, y, force_reload=False, wdg=None, **kwargs)
Bases: PlotDataItem

Creates a curve loaded dynamically from a file through the Results object. The data can be forced to fully reload
on each update, useful for cases when the data is changing across the full file instead of just appending.

update_data()

Updates the data by polling the results

84 Chapter 6. pymeasure.display

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

class pymeasure.display.curves.ResultsImage(results, x, y, z, force_reload=False, wdg=None, **kwargs)
Bases: ImageItem

Creates an image loaded dynamically from a file through the Results object.

colormap(x)
Return mapped color as 0.0-1.0 floats RGBA

find_img_index(x, y)
Finds the integer image indices corresponding to the closest x and y points of the data given some x and y
data.

round_up(x)
Convenience function since numpy rounds to even

6.4 Inputs classes

class pymeasure.display.inputs.BooleanInput(parameter, parent=None, **kwargs)
Bases: Input, QCheckBox

Checkbox for boolean values, connected to a BooleanParameter.

set_parameter(parameter)
Connects a new parameter to the input box, and initializes the box value.

Parameters
parameter – parameter to connect.

class pymeasure.display.inputs.Input(parameter, **kwargs)
Bases: object

Mix-in class that connects a Parameter object to a GUI input box.

Parameters
parameter – The parameter to connect to this input box.

Attr parameter
Read-only property to access the associated parameter.

property parameter

The connected parameter object. Read-only property; see set_parameter().

Note that reading this property will have the side-effect of updating its value from the GUI input box.

set_parameter(parameter)
Connects a new parameter to the input box, and initializes the box value.

Parameters
parameter – parameter to connect.

update_parameter()

Update the parameter value with the Input GUI element’s current value.

class pymeasure.display.inputs.IntegerInput(parameter, parent=None, **kwargs)
Bases: Input, QSpinBox

Spin input box for integer values, connected to a IntegerParameter.

6.4. Inputs classes 85

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

set_parameter(parameter)
Connects a new parameter to the input box, and initializes the box value.

Parameters
parameter – parameter to connect.

stepEnabled(self)→ QAbstractSpinBox.StepEnabled

class pymeasure.display.inputs.ListInput(parameter, parent=None, **kwargs)
Bases: Input, QComboBox

Dropdown for list values, connected to a ListParameter.

set_parameter(parameter)
Connects a new parameter to the input box, and initializes the box value.

Parameters
parameter – parameter to connect.

class pymeasure.display.inputs.ScientificInput(parameter, parent=None, **kwargs)
Bases: Input, QDoubleSpinBox

Spinner input box for floating-point values, connected to a FloatParameter. This box will display and accept
values in scientific notation when appropriate.

See also:

Class FloatInput
For a non-scientific floating-point input box.

set_parameter(parameter)
Connects a new parameter to the input box, and initializes the box value.

Parameters
parameter – parameter to connect.

stepEnabled(self)→ QAbstractSpinBox.StepEnabled

textFromValue(self, v: float)→ str

validate(self, input: str, pos: int)→ Tuple[QValidator.State, str, int]

valueFromText(self, text: str)→ float

class pymeasure.display.inputs.StringInput(parameter, parent=None, **kwargs)
Bases: Input, QLineEdit

String input box connected to a Parameter. Parameter subclasses that are string-based may also use this input,
but non-string parameters should use more specialised input classes.

86 Chapter 6. pymeasure.display

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

6.5 Listeners classes

class pymeasure.display.listeners.Monitor(queue)
Bases: QThread

Monitor listens for status and progress messages from a Worker through a queue to ensure no messages are losts

run(self)

class pymeasure.display.listeners.QListener(port, topic='', timeout=0.01)
Bases: StoppableQThread

Base class for QThreads that need to listen for messages on a ZMQ TCP port and can be stopped by a thread-
and process-safe method call

6.6 Log classes

class pymeasure.display.log.LogHandler

Bases: Handler

class Emitter

Bases: QObject

emit(record)
Do whatever it takes to actually log the specified logging record.

This version is intended to be implemented by subclasses and so raises a NotImplementedError.

6.7 Manager classes

class pymeasure.display.manager.BaseManager(port=5888, log_level=20, parent=None)
Bases: QObject

Controls the execution of Experiment classes by implementing a queue system in which Experiments are added,
removed, executed, or aborted.

abort()

Aborts the currently running Experiment, but raises an exception if there is no running experiment

clear()

Remove all Experiments

is_running()

Returns True if a procedure is currently running

load(experiment)
Load a previously executed Experiment

next()

Initiates the start of the next experiment in the queue as long as no other experiments are currently running
and there is a procedure in the queue.

6.5. Listeners classes 87

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

queue(experiment)
Adds an experiment to the queue.

remove(experiment)
Removes an Experiment

resume()

Resume processing of the queue.

class pymeasure.display.manager.Experiment(results, curve_list=None, browser_item=None,
parent=None)

Bases: QObject

The Experiment class helps group the Procedure, Results, and their display functionality. Its function is only
a convenient container.

Parameters

• results – Results object

• curve_list – ResultsCurve list. List of curves associated with an experiment. They
could represent different views of the same experiment. Not required for .ManagedConsole
displayed experiments.

• browser_item – BaseBrowserItem based object

class pymeasure.display.manager.ExperimentQueue

Bases: QObject

Represents a queue of Experiments and allows queries to be easily preformed.

has_next()

Returns True if another item is on the queue

next()

Returns the next experiment on the queue

class pymeasure.display.manager.Manager(widget_list, browser, port=5888, log_level=20, parent=None)
Bases: BaseManager

Controls the execution of Experiment classes by implementing a queue system in which Experiments are added,
removed, executed, or aborted. When instantiated, the Manager is linked to a Browser and a PyQtGraph PlotItem
within the user interface, which are updated in accordance with the execution status of the Experiments.

load(experiment)
Load a previously executed Experiment

remove(experiment)
Removes an Experiment

88 Chapter 6. pymeasure.display

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

6.8 Plotter class

class pymeasure.display.plotter.Plotter(results, refresh_time=0.1, linewidth=1)
Bases: StoppableThread

Plotter dynamically plots data from a file through the Results object.

See also:

Tutorial Using the Plotter
A tutorial and example on using the Plotter and PlotterWindow.

run()

Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken from
the args and kwargs arguments, respectively.

setup_plot(plot)
This method does nothing by default, but can be overridden by the child class in order to set up custom
options for the plot window, via its PlotItem.

Parameters
plot – This window’s PlotItem instance.

6.9 Qt classes

All Qt imports should reference pymeasure.display.Qt, for consistant importing from either PySide or PyQt4.

Qt.fromUi(**kwargs)
Returns a Qt object constructed using loadUiType based on its arguments. All QWidget objects in the form class
are set in the returned object for easy accessability.

6.10 Thread classes

class pymeasure.display.thread.StoppableQThread(parent=None)
Bases: QThread

Base class for QThreads which require the ability to be stopped by a thread-safe method call

join(timeout=0)
Joins the current thread and forces it to stop after the timeout if necessary

Parameters
timeout – Timeout duration in seconds

6.8. Plotter class 89

https://pyqtgraph.readthedocs.io/en/latest/graphicsItems/plotitem.html
https://pyqtgraph.readthedocs.io/en/latest/graphicsItems/plotitem.html

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

6.11 Widget classes

class pymeasure.display.widgets.browser_widget.BrowserWidget(*args, parent=None)
Bases: QWidget

Widget wrapper for Browser class

class pymeasure.display.widgets.directory_widget.DirectoryLineEdit(parent=None)
Bases: QLineEdit

Widget that allows to choose a directory path. A completer is implemented for quick completion. A browse
button is available.

class pymeasure.display.widgets.estimator_widget.EstimatorThread(get_estimates_callable)
Bases: StoppableQThread

run(self)

class pymeasure.display.widgets.estimator_widget.EstimatorWidget(parent=None)
Bases: QWidget

Widget that allows to display up-front estimates of the measurement procedure.

This widget relies on a get_estimates method of the Procedure class. get_estimates is expected to return a list
of tuples, where each tuple contains two strings: a label and the estimate.

If the SequencerWidget is also used, it is possible to ask for the current sequencer or its length by asking for
two keyword arguments in the Implementation of the get_estimates function: sequence and sequence_length,
respectively.

check_get_estimates_signature()

Method that checks the signature of the get_estimates function. It checks which input arguments are allowed
and, if the output is correct for the EstimatorWidget, stores the number of estimates.

display_estimates(estimates)
Method that updates the shown estimates for the given set of estimates.

Parameters
estimates – The set of estimates to be shown in the form of a list of tuples of (2) strings

get_estimates()

Method that makes a procedure with the currently entered parameters and returns the estimates for these
parameters.

update_estimates()

Method that gets and displays the estimates. Implemented for connecting to the ‘update’-button.

class pymeasure.display.widgets.image_frame.ImageFrame(x_axis, y_axis, z_axis=None,
refresh_time=0.2, check_status=True,
parent=None)

Bases: PlotFrame

Extends PlotFrame to plot also axis Z using colors

ResultsClass

alias of ResultsImage

90 Chapter 6. pymeasure.display

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

class pymeasure.display.widgets.image_widget.ImageWidget(name, columns, x_axis, y_axis,
z_axis=None, refresh_time=0.2,
check_status=True, parent=None)

Bases: TabWidget, QWidget

Extends the ImageFrame to allow different columns of the data to be dynamically chosen

load(curve)
Add curve to widget

new_curve(results, color=<PyQt5.QtGui.QColor object>, **kwargs)
Creates a new image

remove(curve)
Remove curve from widget

sizeHint(self)→ QSize

class pymeasure.display.widgets.inputs_widget.InputsWidget(procedure_class, inputs=(),
parent=None, hide_groups=True)

Bases: QWidget

Widget wrapper for various Inputs classes

get_procedure()

Returns the current procedure

class pymeasure.display.widgets.log_widget.HTMLFormatter(fmt=None, datefmt=None, style='%',
validate=True, *, defaults=None)

Bases: Formatter

format(record)
Format the specified record as text.

The record’s attribute dictionary is used as the operand to a string formatting operation which yields the
returned string. Before formatting the dictionary, a couple of preparatory steps are carried out. The message
attribute of the record is computed using LogRecord.getMessage(). If the formatting string uses the time
(as determined by a call to usesTime(), formatTime() is called to format the event time. If there is exception
information, it is formatted using formatException() and appended to the message.

class pymeasure.display.widgets.log_widget.LogWidget(name, parent=None, fmt=None,
datefmt=None)

Bases: TabWidget, QWidget

Widget to display logging information in GUI

It is recommended to include this widget in all subclasses of ManagedWindowBase

class pymeasure.display.widgets.plot_frame.PlotFrame(x_axis=None, y_axis=None, refresh_time=0.2,
check_status=True, parent=None)

Bases: QFrame

Combines a PyQtGraph Plot with Crosshairs. Refreshes the plot based on the refresh_time, and allows the axes
to be changed on the fly, which updates the plotted data

ResultsClass

alias of ResultsCurve

6.11. Widget classes 91

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

parse_axis(axis)
Returns the units of an axis by searching the string

class pymeasure.display.widgets.plot_widget.PlotWidget(name, columns, x_axis=None, y_axis=None,
refresh_time=0.2, check_status=True,
linewidth=1, parent=None)

Bases: TabWidget, QWidget

Extends PlotFrame to allow different columns of the data to be dynamically chosen

clear_widget()

Clear widget content

Behaviour is widget specific and it is currently used in preview mode

load(curve)
Add curve to widget

new_curve(results, color=<PyQt5.QtGui.QColor object>, **kwargs)
Create a new curve

preview_widget(parent=None)
Return a widget suitable for preview during loading

remove(curve)
Remove curve from widget

set_color(curve, color)
Change the color of the pen of the curve

sizeHint(self)→ QSize

class pymeasure.display.widgets.results_dialog.ResultsDialog(procedure_class, widget_list=(),
parent=None)

Bases: QFileDialog

Widget that displays a dialog box for loading a past experiment run. It shows a preview of curves from the results
file when selected in the dialog box.

This widget used by the open_experiment method in ManagedWindowBase class

class pymeasure.display.widgets.sequencer_widget.ComboBoxDelegate(owner, choices)
Bases: QStyledItemDelegate

createEditor(self, parent: QWidget, option: QStyleOptionViewItem, index: QModelIndex)→ QWidget

setEditorData(self, editor: QWidget, index: QModelIndex)

setModelData(self, editor: QWidget, model: QAbstractItemModel, index: QModelIndex)

updateEditorGeometry(self, editor: QWidget, option: QStyleOptionViewItem, index: QModelIndex)

class pymeasure.display.widgets.sequencer_widget.ExpressionValidator

Bases: QValidator

validate(self, a0: str, a1: int)→ Tuple[QValidator.State, str, int]

class pymeasure.display.widgets.sequencer_widget.LineEditDelegate

Bases: QStyledItemDelegate

92 Chapter 6. pymeasure.display

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

createEditor(self, parent: QWidget, option: QStyleOptionViewItem, index: QModelIndex)→ QWidget

setEditorData(self, editor: QWidget, index: QModelIndex)

setModelData(self, editor: QWidget, model: QAbstractItemModel, index: QModelIndex)

updateEditorGeometry(self, editor: QWidget, option: QStyleOptionViewItem, index: QModelIndex)

class pymeasure.display.widgets.sequencer_widget.SequenceDialog(save=False, parent=None)
Bases: QFileDialog

Widget that displays a dialog box for loading or saving a sequence tree.

It also shows a preview of sequence tree in the dialog box

Parameters
save – True if we are saving a file. Default False.

class pymeasure.display.widgets.sequencer_widget.SequencerTreeModel(data, header=('Level',
'Parameter', 'Sequence'),
parent=None)

Bases: QAbstractItemModel

Model for sequencer data

Parameters

• header – List of string representing header data

• data – data associated with the model

• parent – A QWidget that QT will give ownership of this Widget to.

add_node(parameter, parent=None)
Add a row in the sequencer

columnCount(parent)
Return the number of columns in the model header.

The parent parameter exists only to support the signature of QAbstractItemModel.

data(index, role)
Return the data to display for the given index and the given role.

This method should not be called directly. This method is called implicitly by the QTreeView that is dis-
playing us, as the way of finding out what to display where.

flags(index)
Set the flags for the item at the given QModelIndex.

Here, we just set all indexes to enabled, and selectable.

headerData(section, orientation, role)
Return the header data for the given section, orientation and role.

This method should not be called directly. This method is called implicitly by the QTreeView that is dis-
playing us, as the way of finding out what to display where.

index(row, col, parent)
Return a QModelIndex instance pointing the row and column underneath the parent given. This method
should not be called directly. This method is called implicitly by the QTreeView that is displaying us, as
the way of finding out what to display where.

6.11. Widget classes 93

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

parent(index=None)
Return the index of the parent of a given index. If index is not supplied, return an invalid QModelIndex.

Parameters
index – QModelIndex optional.

Returns

remove_node(index)
Remove a row in the sequencer

rowCount(parent)
Return the number of children of a given parent.

If an invalid QModelIndex is supplied, return the number of children under the root.

Parameters
parent – QModelIndex

setData(self, index: QModelIndex, value: Any, role: int = Qt.ItemDataRole.EditRole)→ bool

visit_tree(parent)
Return a generator to enumerate all the nodes in the tree

class pymeasure.display.widgets.sequencer_widget.SequencerTreeView(parent=None)
Bases: QTreeView

setModel(self, model: QAbstractItemModel)

class pymeasure.display.widgets.sequencer_widget.SequencerWidget(inputs=None,
sequence_file=None,
parent=None)

Bases: QWidget

Widget that allows to generate a sequence of measurements

It allows sweeping parameters and moreover, one can write a simple text file to easily load a sequence. Sequences
can also be saved

Currently requires a queue function of the ManagedWindow to have a “procedure” argument.

Parameters
inputs – List of strings representing the parameters name

load_sequence(*, filename=None)
Load a sequence from a .txt file.

Parameters
filename – Filename (string) of the to-be-loaded file.

queue_sequence()

Obtain a list of parameters from the sequence tree, enter these into procedures, and queue these procedures.

class pymeasure.display.widgets.tab_widget.TabWidget(name, *args, **kwargs)
Bases: object

Utility class to define default implementation for some basic methods.

When defining a widget to be used in subclasses of ManagedWindowBase, users should inherit from this class
and provide an implementation of these methods

94 Chapter 6. pymeasure.display

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

clear_widget()

Clear widget content

Behaviour is widget specific and it is currently used in preview mode

load(curve)
Add curve to widget

new_curve(*args, **kwargs)
Create a new curve

preview_widget(parent=None)
Return a Qt widget suitable for preview during loading

See also ResultsDialog If the object returned is not None, then it should have also an attribute name.

remove(curve)
Remove curve from widget

set_color(curve, color)
Set color for widget

class pymeasure.display.widgets.dock_widget.DockWidget(name, procedure_class,
x_axis_labels=None, y_axis_labels=None,
linewidth=1, layout_path='./',
layout_filename='', parent=None)

Bases: TabWidget, QWidget

Widget that contains a DockArea with a number of Docks as determined by the length of the longest x_axis_labels
or y_axis_labels list.

Parameters

• name – Name for the TabWidget

• procedure_class – procedure class describing the experiment (see Procedure)

• x_axis_labels – List of data column(s) for the x-axis of the plot. If the list is shorter than
y_axis_labels the last item in the list to match y_axis_labels length.

• y_axis_labels – List of data column(s) for the y-axis of the plot. If the list is shorter than
x_axis_labels the last item in the list to match x_axis_labels length.

• linewidth – line width for plots in PlotWidget

• layout_path – Directory path to save dock layout state. Default is ‘./’

• layout_filename – Optional filename for dock layout file. Default: current procedure
class + “_dock_layout.json”

• parent – Passed on to QtWidgets.QWidget. Default is None

contextMenuEvent(self, a0: QContextMenuEvent)

new_curve(results, color=<PyQt5.QtGui.QColor object>, **kwargs)
Create a new curve

save_dock_layout()

Save the current layout of the docks and the plot settings. When running the GUI you can access this
function by right-clicking in the widget area to bring up the context menu and selecting “Save Dock Layout”

6.11. Widget classes 95

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

class pymeasure.display.widgets.table_widget.PandasModelBase(column_index=None, results_list=[],
parent=None)

Bases: QAbstractTableModel

This class provided a model to manage multiple panda dataframes and display them as a single table.

The multiple pandas dataframes are provided as ResultTable class instances and all of them share the same
number of columns.

There are some assumptions: - Series in the dataframe are identical, we call this number k - Series length can be
different, we call this number l(x), where x=1..n

The data can be presented as follow: - By column: each series in a separate column, in this case table shape will
be: (k*n) x (max(l(x) x=1..n) - By row: column fixed to the number of series, in this case table shape will be: k
x (sum of l(x) x=1..n)

columnCount(self, parent: QModelIndex = QModelIndex())→ int

data(self, index: QModelIndex, role: int = Qt.ItemDataRole.DisplayRole)→ Any

headerData(section, orientation, role)
Return header information

Override method from QAbstractTableModel

pandas_column_count()

Return total column count of the panda dataframes

The value depends on the geometry selected to display dataframes

pandas_row_count()

Return total row count of the panda dataframes

The value depends on the geometry selected to display dataframes

rowCount(self, parent: QModelIndex = QModelIndex())→ int

translate_to_global(results, row, col)
Translate from single results coordinates to full table coordinates

translate_to_local(row, col)
Translate from full table coordinate to single results coordinates

class pymeasure.display.widgets.table_widget.PandasModelByColumn(column_index=None,
results_list=[], parent=None)

Bases: PandasModelBase

pandas_column_count()

Return total column count of the panda dataframes

The value depends on the geometry selected to display dataframes

pandas_row_count()

Return total row count of the panda dataframes

The value depends on the geometry selected to display dataframes

translate_to_global(results, row, col)
Translate from single results coordinates to full table coordinates

96 Chapter 6. pymeasure.display

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

translate_to_local(row, col)
Translate from full table coordinate to single results coordinates

class pymeasure.display.widgets.table_widget.PandasModelByRow(column_index=None,
results_list=[], parent=None)

Bases: PandasModelBase

pandas_column_count()

Return total column count of the panda dataframes

The value depends on the geometry selected to display dataframes

pandas_row_count()

Return total row count of the panda dataframes

The value depends on the geometry selected to display dataframes

translate_to_global(results, row, col)
Translate from single results coordinates to full table coordinates

translate_to_local(row, col)
Translate from full table coordinate to single results coordinates

class pymeasure.display.widgets.table_widget.ResultsTable(results, color, column_index=None,
force_reload=False, wdg=None,
**kwargs)

Bases: QObject

Class representing a panda dataframe

class pymeasure.display.widgets.table_widget.Table(refresh_time=0.2, check_status=True,
force_reload=False, layout_class=<class 'pymea-
sure.display.widgets.table_widget.PandasModelByColumn'>,
column_index=None, float_digits=6,
parent=None)

Bases: QTableView

Table format view of Experiment objects

setModel(self, model: QAbstractItemModel)

set_model(model_class)
Replace model with new instance of model_class

class pymeasure.display.widgets.table_widget.TableWidget(name, columns, by_column=True,
column_index=None, refresh_time=0.2,
float_digits=6, check_status=True,
parent=None)

Bases: TabWidget, QWidget

Widget to display experiment data in a tabular format

clear_widget()

Clear widget content

Behaviour is widget specific and it is currently used in preview mode

load(table)
Add curve to widget

6.11. Widget classes 97

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

new_curve(results, color=<PyQt5.QtGui.QColor object>, **kwargs)
Create a new curve

preview_widget(parent=None)
Return a widget suitable for preview during loading

remove(table)
Remove curve from widget

set_color(table, color)
Change the color of the pen of the curve

6.12 Windows classes

class pymeasure.display.windows.managed_image_window.ManagedImageWindow(procedure_class,
x_axis, y_axis,
z_axis=None,
**kwargs)

Bases: ManagedWindow

Display experiment output with an ImageWidget class.

Parameters

• procedure_class – procedure class describing the experiment (see Procedure)

• x_axis – the data-column for the x-axis of the plot, cannot be changed afterwards for the
image-plot

• y_axis – the data-column for the y-axis of the plot, cannot be changed afterwards for the
image-plot

• z_axis – the initial data-column for the z-axis of the plot, can be changed afterwards

• **kwargs – optional keyword arguments that will be passed to ManagedWindow

class pymeasure.display.windows.managed_window.ManagedWindow(procedure_class, x_axis=None,
y_axis=None, linewidth=1,
log_fmt=None, log_datefmt=None,
**kwargs)

Bases: ManagedWindowBase

Display experiment output with an PlotWidget class.

See also:

Tutorial Using the ManagedWindow
A tutorial and example on the basic configuration and usage of ManagedWindow.

Parameters

• procedure_class – procedure class describing the experiment (see Procedure)

• x_axis – the initial data-column for the x-axis of the plot

• y_axis – the initial data-column for the y-axis of the plot

• linewidth – linewidth for the displayed curves, default is 1

• log_fmt – formatting string for the log-widget

98 Chapter 6. pymeasure.display

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• log_datefmt – formatting string for the date in the log-widget

• **kwargs – optional keyword arguments that will be passed to ManagedWindowBase

class pymeasure.display.windows.managed_window.ManagedWindowBase(procedure_class,
widget_list=(), inputs=(),
displays=(), log_channel='',
log_level=20, parent=None,
sequencer=False,
sequencer_inputs=None,
sequence_file=None,
inputs_in_scrollarea=False,
directory_input=False,
hide_groups=True)

Bases: QMainWindow

Base class for GUI experiment management .

The ManagedWindowBase provides an interface for inputting experiment parameters, running several experi-
ments (Procedure), plotting result curves, and listing the experiments conducted during a session.

The ManagedWindowBase uses a Manager to control Workers in a Queue, and provides a simple interface. The
queue() method must be overridden by the child class.

The ManagedWindowBase allow user to define a set of widget that display information about the experiment.
The information displayed may include: plots, tabular view, logging information,. . .

This class is not intended to be used directy, but it should be subclassed to provide some appropriate widget list.
Example of classes usable as element of widget list are:

• LogWidget

• PlotWidget

• ImageWidget

Of course, users can define its own widget making sure that inherits from TabWidget.

Examples of ready to use classes inherited from ManagedWindowBase are:

• ManagedWindow

• ManagedImageWindow

See also:

Tutorial Using the ManagedWindow
A tutorial and example on the basic configuration and usage of ManagedWindow.

Parameters for __init__ constructor.

Parameters

• procedure_class – procedure class describing the experiment (see Procedure)

• widget_list – list of widget to be displayed in the GUI

• inputs – list of Parameter instance variable names, which the display will generate graph-
ical fields for

• displays – list of Parameter instance variable names displayed in the browser window

• log_channel – logging.Logger instance to use for logging output

6.12. Windows classes 99

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• log_level – logging level

• parent – Parent widget or None

• sequencer – a boolean stating whether or not the sequencer has to be included into the
window

• sequencer_inputs – either None or a list of the parameter names to be scanned over. If
no list of parameters is given, the parameters displayed in the manager queue are used.

• sequence_file – simple text file to quickly load a pre-defined sequence with the code:Load
sequence button

• inputs_in_scrollarea – boolean that display or hide a scrollbar to the input area

• directory_input – specify, if present, where the experiment’s result will be saved.

• hide_groups – a boolean controlling whether parameter groups are hidden (True, default)
or disabled/grayed-out (False) when the group conditions are not met.

open_file_externally(filename)
Method to open the datafile using an external editor or viewer. Uses the default application to open a datafile
of this filetype, but can be overridden by the child class in order to open the file in another application of
choice.

queue(procedure=None)
Abstract method, which must be overridden by the child class.

Implementations must call self.manager.queue(experiment) and pass an experiment
(Experiment) object which contains the Results and Procedure to be run.

The optional procedure argument is not required for a basic implementation, but is required when the
SequencerWidget is used.

For example:

def queue(self):
filename = unique_filename('results', prefix="data") # from pymeasure.

→˓experiment

procedure = self.make_procedure() # Procedure class was passed at␣
→˓construction

results = Results(procedure, filename)
experiment = self.new_experiment(results)

self.manager.queue(experiment)

set_parameters(parameters)
This method should be overwritten by the child class. The parameters argument is a dictionary of Parameter
objects. The Parameters should overwrite the GUI values so that a user can click “Queue” to capture the
same parameters.

class pymeasure.display.windows.plotter_window.PlotterWindow(plotter, refresh_time=0.1,
linewidth=1, parent=None)

Bases: QMainWindow

A window for plotting experiment results. Should not be instantiated directly, but only via the Plotter class.

See also:

Tutorial Using the Plotter A tutorial and example code for using the Plotter and PlotterWindow.

100 Chapter 6. pymeasure.display

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

check_stop()

Checks if the Plotter should stop and exits the Qt main loop if so

class pymeasure.display.windows.managed_dock_window.ManagedDockWindow(procedure_class,
x_axis=None,
y_axis=None,
linewidth=1,
log_fmt=None,
log_datefmt=None,
**kwargs)

Bases: ManagedWindowBase

Display experiment output with multiple docking windows with DockWidget class.

Parameters

• procedure_class – procedure class describing the experiment (see Procedure)

• x_axis – the data column(s) for the x-axis of the plot. This may be a string or a list of strings
from the data columns of the procedure. The list length determines the number of plots

• y_axis – the data column(s) for the y-axis of the plot. This may be a string or a list of strings
from the data columns of the procedure. The list length determines the number of plots

• linewidth – linewidth for the displayed curves, default is 1

• log_fmt – formatting string for the log-widget

• log_datefmt – formatting string for the date in the log-widget

• **kwargs – optional keyword arguments that will be passed to ManagedWindowBase

6.12. Windows classes 101

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

102 Chapter 6. pymeasure.display

CHAPTER

SEVEN

PYMEASURE.INSTRUMENTS

This section contains documentation on the instrument classes.

7.1 Instrument classes

class pymeasure.instruments.common_base.CommonBase(preprocess_reply=None, **kwargs)
Base class for instruments and channels.

This class contains everything needed for pymeasure’s property creator control() and its derivatives
measurement() and setting().

Parameters
preprocess_reply – An optional callable used to preprocess strings received from the instru-
ment. The callable returns the processed string.

Deprecated since version 0.11: Implement it in the instrument’s read method instead.

class BaseChannelCreator(cls, **kwargs)
Base class for ChannelCreator and MultiChannelCreator.

Parameters

• cls – Class for all children or tuple/list of classes, one for each child.

• **kwargs – Keyword arguments for all children.

class ChannelCreator(cls, id=None, **kwargs)
Add a single channel to the parent class.

The child will be added to the parent instance at instantiation with CommonBase.add_child(). The at-
tribute name that ChannelCreator was assigned to in the Instrument class will be the name of the channel
interface.

class Extreme5000(Instrument):
Two output channels, accessible by their property names
and both are accessible through the 'channels' collection
output_A = Instrument.ChannelCreator(Extreme5000Channel, "A")
output_B = Instrument.ChannelCreator(Extreme5000Channel, "B")
A channel without a channel accessible through the 'motor' collection
motor = Instrument.ChannelCreator(MotorControl)

inst = SomeInstrument()
Set the extreme_temp for channel A of Extreme5000 instrument
inst.output_A.extreme_temp = 42

103

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Parameters

• cls – Channel class for channel interface

• id – The id of the channel on the instrument, integer or string.

• **kwargs – Keyword arguments for all children.

class MultiChannelCreator(cls, id=None, prefix='ch_', **kwargs)
Add channels to the parent class.

The children will be added to the parent instance at instantiation with CommonBase.add_child(). The
attribute name (e.g. channels) will be used as the collection of the children. You may define the attribute
prefix. If there are no other pressing reasons, use channels as the attribute name and leave the prefix at
the default "ch_".

class Extreme5000(Instrument):
Three channels of the same type: 'ch_A', 'ch_B', 'ch_C'
and add them to the 'channels' collection
channels = Instrument.MultiChannelCreator(Extreme5000Channel, ["A", "B", "C

→˓"])
Two channel interfaces of different types: 'fn_power', 'fn_voltage'
and add them to the 'functions' collection
functions = Instrument.MultiChannelCreator((PowerChannel, VoltageChannel),

["power", "voltage"], prefix="fn_")

Parameters

• cls – Class for all children or tuple/list of classes, one for each child.

• id – tuple/list of ids of the channels on the instrument.

• prefix – Collection prefix for the attributes, e.g. “ch_” creates attribute self.ch_A. If
prefix evaluates False, the child will be added directly under the variable name. Required
if id is tuple/list.

• **kwargs – Keyword arguments for all children.

add_child(cls, id=None, collection='channels', prefix='ch_', attr_name='', **kwargs)
Add a child to this instance and return its index in the children list.

The newly created child may be accessed either by the id in the children dictionary or by the created attribute,
e.g. the fifth channel of instrument with id “F” has two access options: instrument.channels["F"] ==
instrument.ch_F

Note: Do not change the default collection or prefix parameter, unless you have to distinguish several
collections of different children, e.g. different channel types (analog and digital).

Parameters

• cls – Class of the channel.

• id – Child id how it is used in communication, e.g. “A”.

• collection – Name of the collection of children, used for dictionary access to the channel
interfaces.

104 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• prefix – For creating multiple channel interfaces, the prefix e.g. “ch_” is prepended to
the attribute name of the channel interface self.ch_A. If prefix evaluates False, the child will
be added directly under the collection name.

• attr_name – For creating a single channel interface, the attr_name argument is used when
setting the attribute name of the channel interface.

• **kwargs – Keyword arguments for the channel creator.

Returns
Instance of the created child.

ask(command, query_delay=0)
Write a command to the instrument and return the read response.

Parameters

• command – Command string to be sent to the instrument.

• query_delay – Delay between writing and reading in seconds.

Returns
String returned by the device without read_termination.

binary_values(command, query_delay=0, **kwargs)
Write a command to the instrument and return a numpy array of the binary data.

Parameters

• command – Command to be sent to the instrument.

• query_delay – Delay between writing and reading in seconds.

• kwargs – Arguments for read_binary_values().

Returns
NumPy array of values.

check_errors()

Read all errors from the instrument and log them.

Returns
List of error entries.

check_get_errors()

Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

7.1. Instrument classes 105

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

static control(get_command, set_command, docs, validator=<function CommonBase.<lambda>>,
values=(), map_values=False, get_process=<function CommonBase.<lambda>>,
set_process=<function CommonBase.<lambda>>, command_process=None,
check_set_errors=False, check_get_errors=False, dynamic=False,
preprocess_reply=None, separator=', ', maxsplit=-1, cast=<class 'float'>,
values_kwargs=None, **kwargs)

Return a property for the class based on the supplied commands. This property may be set and read from
the instrument. See also measurement() and setting().

Parameters

• get_command – A string command that asks for the value, set to None if get is not supported
(see also setting()).

• set_command – A string command that writes the value, set to None if set is not supported
(see also measurement()).

• docs – A docstring that will be included in the documentation

• validator – A function that takes both a value and a group of valid values and returns a
valid value, while it otherwise raises an exception

• values – A list, tuple, range, or dictionary of valid values, that can be used as to map
values if map_values is True.

• map_values – A boolean flag that determines if the values should be interpreted as a map

• get_process – A function that take a value and allows processing before value mapping,
returning the processed value

• set_process – A function that takes a value and allows processing before value mapping,
returning the processed value

• command_process – A function that takes a command and allows processing before exe-
cuting the command

Deprecated since version 0.12: Use a dynamic property instead.

• check_set_errors – Toggles checking errors after setting

• check_get_errors – Toggles checking errors after getting

• dynamic – Specify whether the property parameters are meant to be changed in instances
or subclasses.

• preprocess_reply – Optional callable used to preprocess the string received from the
instrument, before splitting it. The callable returns the processed string.

• separator – A separator character to split the string returned by the device into a list.

• maxsplit – The string returned by the device is splitted at most maxsplit times. -1 (default)
indicates no limit.

• cast – A type to cast each element of the splitted string.

• values_kwargs (dict) – Further keyword arguments for values().

• **kwargs – Keyword arguments for values().

Deprecated since version 0.12: Use values_kwargs dictionary parameter instead.

Example of usage of dynamic parameter is as follows:

106 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

class GenericInstrument(Instrument):
center_frequency = Instrument.control(

":SENS:FREQ:CENT?;", ":SENS:FREQ:CENT %e GHz;",
" A floating point property that represents the frequency ... ",
validator=strict_range,
Redefine this in subclasses to reflect actual instrument value:
values=(1, 20),
dynamic=True # enable changing property parameters on-the-fly

)

class SpecificInstrument(GenericInstrument):
Identical to GenericInstrument, except for frequency range
Override the "values" parameter of the "center_frequency" property
center_frequency_values = (1, 10) # Redefined at subclass level

instrument = SpecificInstrument()
instrument.center_frequency_values = (1, 6e9) # Redefined at instance level

Warning: Unexpected side effects when using dynamic properties

Users must pay attention when using dynamic properties, since definition of class and/or instance attributes
matching specific patterns could have unwanted side effect. The attribute name pattern property_param,
where property is the name of the dynamic property (e.g. center_frequency in the example) and param
is any of this method parameters name except dynamic and docs (e.g. values in the example) has to be
considered reserved for dynamic property control.

static get_channel_pairs(cls)
Return a list of all the Instrument’s channel pairs

static get_channels(cls)
Return a list of all the Instrument’s ChannelCreator and MultiChannelCreator instances

static measurement(get_command, docs, values=(), map_values=None, get_process=<function
CommonBase.<lambda>>, command_process=None, check_get_errors=False,
dynamic=False, preprocess_reply=None, separator=', ', maxsplit=-1, cast=<class
'float'>, values_kwargs=None, **kwargs)

Return a property for the class based on the supplied commands. This is a measurement quantity that may
only be read from the instrument, not set.

Parameters

• get_command – A string command that asks for the value

• docs – A docstring that will be included in the documentation

• values – A list, tuple, range, or dictionary of valid values, that can be used as to map
values if map_values is True.

• map_values – A boolean flag that determines if the values should be interpreted as a map

• get_process – A function that take a value and allows processing before value mapping,
returning the processed value

• command_process – A function that take a command and allows processing before exe-
cuting the command, for getting

7.1. Instrument classes 107

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Deprecated since version 0.12: Use a dynamic property instead.

• check_get_errors – Toggles checking errors after getting

• dynamic – Specify whether the property parameters are meant to be changed in instances
or subclasses. See control() for an usage example.

• preprocess_reply – Optional callable used to preprocess the string received from the
instrument, before splitting it. The callable returns the processed string.

• separator – A separator character to split the string returned by the device into a list.

• maxsplit – The string returned by the device is splitted at most maxsplit times. -1 (default)
indicates no limit.

• cast – A type to cast each element of the splitted string.

• values_kwargs (dict) – Further keyword arguments for values().

• **kwargs – Keyword arguments for values().

Deprecated since version 0.12: Use values_kwargs dictionary parameter instead.

remove_child(child)
Remove the child from the instrument and the corresponding collection.

Parameters
child – Instance of the child to delete.

static setting(set_command, docs, validator=<function CommonBase.<lambda>>, values=(),
map_values=False, set_process=<function CommonBase.<lambda>>,
check_set_errors=False, dynamic=False)

Return a property for the class based on the supplied commands. This property may be set, but raises an
exception when being read from the instrument.

Parameters

• set_command – A string command that writes the value

• docs – A docstring that will be included in the documentation

• validator – A function that takes both a value and a group of valid values and returns a
valid value, while it otherwise raises an exception

• values – A list, tuple, range, or dictionary of valid values, that can be used as to map
values if map_values is True.

• map_values – A boolean flag that determines if the values should be interpreted as a map

• set_process – A function that takes a value and allows processing before value mapping,
returning the processed value

• check_set_errors – Toggles checking errors after setting

• dynamic – Specify whether the property parameters are meant to be changed in instances
or subclasses. See control() for an usage example.

values(command, separator=', ', cast=<class 'float'>, preprocess_reply=None, maxsplit=-1, **kwargs)
Write a command to the instrument and return a list of formatted values from the result.

Parameters

• command – SCPI command to be sent to the instrument.

• preprocess_reply – Optional callable used to preprocess the string received from the
instrument, before splitting it. The callable returns the processed string.

108 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• separator – A separator character to split the string returned by the device into a list.

• maxsplit – The string returned by the device is splitted at most maxsplit times. -1 (default)
indicates no limit.

• cast – A type to cast each element of the splitted string.

• **kwargs – Keyword arguments to be passed to the ask() method.

Returns
A list of the desired type, or strings where the casting fails.

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Implement in subclass!

Parameters
query_delay – Delay between writing and reading in seconds.

class pymeasure.instruments.Instrument(adapter, name, includeSCPI=True, preprocess_reply=None,
**kwargs)

The base class for all Instrument definitions.

It makes use of one of the Adapter classes for communication with the connected hardware device. This de-
couples the instrument/command definition from the specific communication interface used.

When adapter is a string, this is taken as an appropriate resource name. Depending on your installed VISA
library, this can be something simple like COM1 or ASRL2, or a more complicated VISA resource name defining
the target of your connection.

When adapter is an integer, a GPIB resource name is created based on that. In either case a VISAAdapter is
constructed based on that resource name. Keyword arguments can be used to further configure the connection.

Otherwise, the passed Adapter object is used and any keyword arguments are discarded.

This class defines basic SCPI commands by default. This can be disabled with includeSCPI for instruments
not compatible with the standard SCPI commands.

Parameters

• adapter – A string, integer, or Adapter subclass object

• name (string) – The name of the instrument. Often the model designation by default.

• includeSCPI – A boolean, which toggles the inclusion of standard SCPI commands

• preprocess_reply – An optional callable used to preprocess strings received from the
instrument. The callable returns the processed string.

Deprecated since version 0.11: Implement it in the instrument’s read method instead.

• **kwargs – In case adapter is a string or integer, additional arguments passed on to
VISAAdapter (check there for details). Discarded otherwise.

check_errors()

Read all errors from the instrument and log them.

Returns
List of error entries.

7.1. Instrument classes 109

https://pyvisa.readthedocs.io/en/latest/introduction/names.html

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

check_get_errors()

Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

clear()

Clears the instrument status byte

property complete

Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation Complete query
places an ASCII character 1 into the device’s Output Queue when all pending selected device operations
have been finished.

property id

Get the identification of the instrument.

property options

Get the device options installed.

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

read_binary_values(**kwargs)
Read binary values from the device.

read_bytes(count, **kwargs)
Read a certain number of bytes from the instrument.

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read the whole read
buffer.

• kwargs – Keyword arguments for the adapter.

Returns bytes
Bytes response of the instrument (including termination).

reset()

Resets the instrument.

shutdown()

Brings the instrument to a safe and stable state

110 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property status

Get the status byte and Master Summary Status bit.

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Parameters
query_delay – Delay between writing and reading in seconds.

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument

• kwargs – Keyword arguments for the adapter.

write_binary_values(command, values, *args, **kwargs)
Write binary values to the device.

Parameters

• command – Command to send.

• values – The values to transmit.

• **kwargs (*args,) – Further arguments to hand to the Adapter.

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

class pymeasure.instruments.Channel(parent, id)
The base class for channel definitions.

This class supports dynamic properties like Instrument, but requires an Instrument instance as a parent for
communication.

insert_id() inserts the channel id into the command string sent to the instrument. The default implementation
replaces the Channel’s placeholder (default “ch”) with the channel id in all command strings (e.g. “CHAN-
nel{ch}:foo”).

Parameters

• parent – The instrument (an instance of Instrument) to which the channel belongs.

• id – Identifier of the channel, as it is used for the communication.

check_errors()

Read all errors from the instrument and log them.

Returns
List of error entries.

check_get_errors()

Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

7.1. Instrument classes 111

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

insert_id(command)
Insert the channel id in a command replacing placeholder.

Subclass this method if you want to do something else, like always prepending the channel id.

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

read_binary_values(**kwargs)
Read binary values from the instrument.

read_bytes(count, **kwargs)
Read a certain number of bytes from the instrument.

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read the whole read
buffer.

• kwargs – Keyword arguments for the adapter.

Returns bytes
Bytes response of the instrument (including termination).

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Parameters
query_delay – Delay between writing and reading in seconds.

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument. ‘{ch}’ is replaced by the channel
id.

• kwargs – Keyword arguments for the adapter.

write_binary_values(command, values, *args, **kwargs)
Write binary values to the instrument.

Parameters

• command – Command to send.

• values – The values to transmit.

• **kwargs (*args,) – Further arguments to hand to the Adapter.

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

112 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

class pymeasure.instruments.fakes.FakeInstrument(adapter=None, name='Fake Instrument',
includeSCPI=False, **kwargs)

Bases: Instrument

Provides a fake implementation of the Instrument class for testing purposes.

static control(get_command, set_command, docs, validator=<function FakeInstrument.<lambda>>,
values=(), map_values=False, get_process=<function FakeInstrument.<lambda>>,
set_process=<function FakeInstrument.<lambda>>, check_set_errors=False,
check_get_errors=False, **kwargs)

Fake Instrument.control.

Strip commands and only store and return values indicated by format strings to mimic many simple com-
mands. This is analogous how the tests in test_instrument are handled.

class pymeasure.instruments.fakes.SwissArmyFake(name='Mock instrument', wait=0.1, **kwargs)
Bases: FakeInstrument

Dummy instrument class useful for testing.

Like a Swiss Army knife, this class provides multi-tool functionality in the form of streams of multiple types of
fake data. Data streams that can currently be generated by this class include ‘voltages’, sinusoidal ‘waveforms’,
and mono channel ‘image data’.

property frame

Get a new image frame.

property frame_format

Control the format for image data returned from the get_frame() method. Allowed values are: mono_8:
single channel 8-bit image. mono_16: single channel 16-bit image.

property frame_height

Control frame height in pixels.

property frame_width

Control frame width in pixels.

property output_voltage

Control the voltage.

property time

Control the elapsed time.

property voltage

Measure the voltage.

property wave

Measure a waveform.

7.1. Instrument classes 113

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.2 Validator functions

Validators are used in conjunction with the Instrument.control or Instrument.setting functions to allow prop-
erties with complex restrictions for valid values. They are described in more detail in the Restricting values with
validators section.

pymeasure.instruments.validators.discreteTruncate(number, discreteSet)
Truncates the number to the closest element in the positive discrete set. Returns False if the number is larger
than the maximum value or negative.

pymeasure.instruments.validators.joined_validators(*validators)
Returns a validator function that represents a list of validators joined together.

A value passed to the validator is returned if it passes any validator (not all of them). Otherwise it raises a
ValueError.

Note: the joined validator expects values to be a sequence of values appropriate for the respective validators
(often sequences themselves).

Example

>>> from pymeasure.instruments.validators import strict_discrete_set, strict_range
>>> from pymeasure.instruments.validators import joined_validators
>>> joined_v = joined_validators(strict_discrete_set, strict_range)
>>> values = [['MAX','MIN'], range(10)]
>>> joined_v(5, values)
5
>>> joined_v('MAX', values)
'MAX'
>>> joined_v('NONSENSE', values)
Traceback (most recent call last):
...
ValueError: Value of NONSENSE does not match any of the joined validators

Parameters
validators – an iterable of other validators

pymeasure.instruments.validators.modular_range(value, values)
Provides a validator function that returns the value if it is in the range. Otherwise it returns the value, modulo
the max of the range.

Parameters

• value – a value to test

• values – A set of values that are valid

pymeasure.instruments.validators.modular_range_bidirectional(value, values)
Provides a validator function that returns the value if it is in the range. Otherwise it returns the value, modulo
the max of the range. Allows negative values.

Parameters

• value – a value to test

• values – A set of values that are valid

114 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

pymeasure.instruments.validators.strict_discrete_range(value, values, step)
Provides a validator function that returns the value if its value is less than the maximum and greater than the
minimum of the range and is a multiple of step. Otherwise it raises a ValueError.

Parameters

• value – A value to test

• values – A range of values (range, list, etc.)

• step – Minimum stepsize (resolution limit)

Raises
ValueError if the value is out of the range

pymeasure.instruments.validators.strict_discrete_set(value, values)
Provides a validator function that returns the value if it is in the discrete set. Otherwise it raises a ValueError.

Parameters

• value – A value to test

• values – A set of values that are valid

Raises
ValueError if the value is not in the set

pymeasure.instruments.validators.strict_range(value, values)
Provides a validator function that returns the value if its value is less than or equal to the maximum and greater
than or equal to the minimum of values. Otherwise it raises a ValueError.

Parameters

• value – A value to test

• values – A range of values (range, list, etc.)

Raises
ValueError if the value is out of the range

pymeasure.instruments.validators.truncated_discrete_set(value, values)
Provides a validator function that returns the value if it is in the discrete set. Otherwise, it returns the smallest
value that is larger than the value.

Parameters

• value – A value to test

• values – A set of values that are valid

pymeasure.instruments.validators.truncated_range(value, values)
Provides a validator function that returns the value if it is in the range. Otherwise it returns the closest range
bound.

Parameters

• value – A value to test

• values – A set of values that are valid

7.2. Validator functions 115

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.3 Comedi data acquisition

The Comedi libraries provide a convenient method for interacting with data acquisition cards, but are restricted to Linux
compatible operating systems.

pymeasure.instruments.comedi.getAI(device, channel, range=None)
Returns the analog input channel as specified for a given device

pymeasure.instruments.comedi.getAO(device, channel, range=None)
Returns the analog output channel as specified for a given device

pymeasure.instruments.comedi.readAI(device, channel, range=None, count=1)
Reads a single measurement (count==1) from the analog input channel of the device specified. Multiple readings
can be preformed with count not equal to one, which are seperated by an arbitrary time

pymeasure.instruments.comedi.writeAO(device, channel, voltage, range=None)
Writes a single voltage to the analog output channel of the device specified

7.4 Resource Manager

The list_resources function provides an interface to check connected instruments interactively.

pymeasure.instruments.list_resources()

Prints the available resources, and returns a list of VISA resource names

resources = list_resources()
#prints (e.g.)

#0 : GPIB0::22::INSTR : Agilent Technologies,34410A,******
#1 : GPIB0::26::INSTR : Keithley Instruments Inc., Model 2612, *****

dmm = Agilent34410(resources[0])

Instruments by manufacturer:

7.5 Active Technologies

This section contains specific documentation on the Active Technologies instruments that are implemented. If you are
interested in an instrument not included, please consider adding the instrument.

7.5.1 Active Technologies AWG-401x 1.2GS/s Arbitrary Waveform Generator

class pymeasure.instruments.activetechnologies.AWG401x_AFG(adapter, **kwargs)
Bases: AWG401x_base

Represents the Active Technologies AWG-401x Arbitrary Waveform Generator in AFG mode.

wfg = AWG401x_AFG("TCPIP::192.168.0.123::INSTR")

wfg.reset() # Reset the instrument at default state

wfg.ch[1].shape = "SINUSOID" # Sets a sine waveform on CH1
(continues on next page)

116 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

wfg.ch[1].frequency = 4.7e3 # Sets the frequency to 4.7 kHz on CH1
wfg.ch[1].amplitude = 1 # Set amplitude of 1 V on CH1
wfg.ch[1].offset = 0 # Set the amplitude to 0 V on CH1
wfg.ch[1].enabled = True # Enables the CH1

wfg.ch[2].shape = "SQUARE" # Sets a square waveform on CH2
wfg.ch[2].frequency = 100e6 # Sets the frequency to 100 MHz on CH2
wfg.ch[2].amplitude = 0.5 # Set amplitude of 0.5 V on CH2
wfg.ch[2].offset = 0 # Set the amplitude to 0 V on CH2
wfg.ch[2].enabled = True # Enables the CH2

wfg.enabled = True # Enable output of waveform generator
wfg.beep() # "beep"

print(wfg.check_errors()) # Get the error queue

ch_1

Channel
ChannelAFG

ch_2

Channel
ChannelAFG

property enabled

A boolean property that enables the generation of signals.

class pymeasure.instruments.activetechnologies.AWG401x_AWG(adapter, **kwargs)
Bases: AWG401x_base

Represents the Active Technologies AWG-401x Arbitrary Waveform Generator in AWG mode.

wfg = AWG401x_AWG("TCPIP::192.168.0.123::INSTR")

wfg.reset() # Reset the instrument at default state

Set a oscillating waveform
wfg.waveforms["MyWaveform"] = [1, 0] * 8

for i in range(1, wfg.num_ch + 1):
wfg.entries[1].ch[i].voltage_high = 1 # Sets high voltage = 1
wfg.entries[1].ch[i].voltage_low = 0 # Sets low voltage = 1
wfg.entries[1].ch[i].waveform = "SQUARE" # Sets a square wave
wfg.setting_ch[i].enabled = True # Enable channel

wfg.entries.resize(2) # Resize the number of entries to 2

wfg.entries[2].ch[1].waveform = "MyWaveform" # Set custom waveform

wfg.enabled = True # Enable output of waveform generator
wfg.beep() # "beep"

print(wfg.check_errors()) # Get the error queue

7.5. Active Technologies 117

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

class DummyEntriesElements(parent, number_of_channel)
Bases: Sequence

Dummy List Class to list every sequencer entry. The content is loaded in real-time.

class WaveformsLazyDict(parent)
Bases: MutableMapping

This class inherit from MutableMapping in order to create a custom dict to lazy load, modify, delete and
create instrument waveform.

reset()

Reset the class reloading the waveforms from instrument

property burst_count

This property sets or queries the burst count parameter.(dynamic)

property burst_count_max

This property queries the maximum burst count parameter.

property burst_count_min

This property queries the minimum burst count parameter.

property enabled

A boolean property that enables the generation of signals.

property entry_level_strategy

This property sets or or returns the Entry Length Strategy. This strategy manages the length of the sequencer
entries in relationship with the length of the channel waveforms defined for each entry. The possible values
are:

• ADAPTL<ONGER>: the length of an entry of the sequencer by default will be equal to the length of
the longer channel waveform, among all analog channels, assigned to the entry.

• ADAPTS<HORTER>: the length of an entry of the sequencer by default will be equal to the length of
the shorter channel waveform, among all analog channels, assigned to the entry.

• DEF<AULT>:the length of an entry of the sequencer by default will be equal to the value specified in
the Sequencer Item Default Length [N] parameter

list_files(path=None)
Return a List of tuples with all file found in a directory. If the path is not specified the current directory
will be used

property num_ch

This property queries the number of analog channels.

property num_dch

This property queries the number of digital channels.

remove_file(file_name, path=None)
Remove a specified file

property run_mode

This property sets or returns the AWG run mode. The possible values are:

• CONT<INUOUS>: each waveform will loop as written in the entry repetition parameter and the entire
sequence is repeated circularly

118 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• BURS<T>: the AWG waits for a trigger event. When the trigger event occurs each waveform will loop
as written in the entry repetition parameter and the entire sequence will be repeated circularly many
times as written in the Burst Count[N] parameter. If you set Burst Count[N]=1 the instrument is in
Single mode and the sequence will be repeated only once.

• TCON<TINUOUS>: the AWG waits for a trigger event. When the trigger event occurs each waveform
will loop as written in the entry repetition parameter and the entire sequence will be repeated circularly.

• STEP<PED>: the AWG, for each entry, waits for a trigger event before the execution of the sequencer
entry. The waveform of the entry will loop as written in the entry repetition parameter. After the
generation of an entry has completed, the last sample of the current entry or the first sample of the
next entry is held until the next trigger is received. At the end of the entire sequence the execution will
restart from the first entry.

• ADVA<NCED>: it enables the “Advanced” mode. In this mode the execution of the sequence can be
changed by using conditional and unconditional jumps (JUMPTO and GOTO commands) and dynamic
jumps (PATTERN JUMP commands).

The *RST command sets this parameter to CONTinuous.

property run_status

This property returns the run state of the AWG. The possible values are: STOPPED, WAITING_TRIGGER,
RUNNING

property sample_decreasing_strategy

This property sets or returns the Sample Decreasing Strategy. The “Sample decreasing strategy” parameter
defines the strategy used to adapt the waveform length to the sequencer entry length in the case where
the original waveform length is longer than the sequencer entry length. Can be set to: DECIM<ATION>,
CUTT<AIL>, CUTH<EAD>

property sample_increasing_strategy

This property sets or or returns the Sample Increasing Strategy. The “Sample increasing strategy” parameter
defines the strategy used to adapt the waveform length to the sequencer entry length in the case where the
original waveform length is shorter than the sequencer entry length. Can be set to: INTER<POLATION>,
RETURN<ZERO>, HOLD<LAST>, SAMPLESM<ULTIPLICATION>

property sampling_rate

This property sets or queries the sample rate for the Sampling Clock.(dynamic)

property sampling_rate_max

This property queries the maximum sample rate for the Sampling Clock.

property sampling_rate_min

This property queries the minimum sample rate for the Sampling Clock.

save_file(file_name, data, path=None, override_existing=False)
Write a string in a file in the instrument

trigger()

Force a trigger event to occour.

property trigger_source

This property sets or returns the instrument trigger source. The possible values are:

• TIM<ER>: the trigger is sent at regular intervals.

• EXT<ERNAL>: the trigger come from the external BNC connector.

• MAN<UAL>: the trigger is sent via software or using the trigger button on front panel.

7.5. Active Technologies 119

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property waveforms

This property returns a dict with all the waveform present in the instrument system (Wave. List). It is
possible to modify the values, delete them or create new waveforms

class pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG(instrument, id)
Bases: ChannelBase

Implementation of a Active Technologies AWG-4000 channel in AFG mode.

property baseline_offset

This property sets or queries the offset level for the specified channel. The offset range setting depends on
the amplitude parameter. (dynamic)

property baseline_offset_max

This property queries the maximum offset voltage level that can be set to the output waveform.

property baseline_offset_min

This property queries the minimum offset voltage level that can be set to the output waveform.

property frequency

This property sets or queries the frequency of the output waveform. This command is available when the
Run Mode is set to any setting other than Sweep. The output frequency range setting depends on the type of
output waveform. If you change the type of output waveform, it may change the output frequency because
changing waveform types affects the setting range of the output frequency. The output frequency range
setting depends also on the amplitude parameter.(dynamic)

property frequency_max

This property queries the maximum frequency that can be set to the output waveform.

property frequency_min

This property queries the minimum frequency that can be set to the output waveform.

property load_impedance

This property sets the output load impedance for the specified channel. The specified value is used for
amplitude, offset, and high/low level settings. You can set the impedance to any value from 1 to 1 M. The
default value is 50 .

property output_impedance

This property sets the instrument output impedance, the possible values are: 5 Ohm or 50 Ohm (default).

property phase

This property sets or queries the phase of the output waveform for the specified channel. The value is in
degrees.(dynamic)

property phase_max

This property queries the maximum phase that can be set to the output waveform.

property phase_min

This property queries the minimum phase that can be set to the output waveform.

property shape

This property sets or queries the shape of the carrier waveform. Allowed choices depends on the
choosen modality, please refer on instrument manual. When you set this property with a different
value, if the instrument is running it will be stopped. Can be set to: SIN<USOID>, SQU<ARE>,
PULS<E>, RAMP, PRN<OISE>, DC, SINC, GAUS<SIAN>, LOR<ENTZ>, ERIS<E>, EDEC<AY>,
HAV<ERSINE>, ARBB, EFIL<E>, DOUBLEPUL<SE>

120 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property voltage_amplitude

This property sets or queries the output amplitude for the specified channel. The measurement unit of
amplitude depends on the selection operated using the voltage_unit property. If the carrier is Noise the
amplitude is Vpk instead of Vpp. If the carrier is DC level this command causes an error. The range
of the amplitude setting could be limited by the frequency and offset parameter of the carrier waveform.
(dynamic)

property voltage_amplitude_max

This property queries the maximum amplitude voltage level that can be set to the output waveform.

property voltage_amplitude_min

This property queries the minimum amplitude voltage level that can be set to the output waveform.

property voltage_high

This property sets or queries the high level of the waveform. The high level could be limited by noise level
to not exceed the maximum amplitude. If the carrier is Noise or DC level, this command and this query
cause an error.(dynamic)

property voltage_high_max

This property queries the maximum high voltage level that can be set to the output waveform.

property voltage_high_min

This property queries the minimum high voltage level that can be set to the output waveform.

property voltage_low

This property sets or queries the low level of the waveform. The low level could be limited by noise level
to not exceed the maximum amplitude. If the carrier is Noise or DC level, this command and this query
cause an error.(dynamic)

property voltage_low_max

This property queries the maximum low voltage level that can be set to the output waveform.

property voltage_low_min

This property queries the minimum low voltage level that can be set to the output waveform.

property voltage_offset

This property sets or queries the offset level for the specified channel. The offset range setting depends on
the amplitude parameter. (dynamic)

property voltage_offset_max

This property queries the maximum offset voltage level that can be set to the output waveform.

property voltage_offset_min

This property queries the minimum offset voltage level that can be set to the output waveform.

property voltage_unit

This property sets or queries the units of output amplitude, the possible choices are: VPP, VRMS, DBM.
This command does not affect the offset, high level, or low level of output.

7.5. Active Technologies 121

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.6 Advantest

This section contains specific documentation on the Advantest instruments that are implemented. If you are interested
in an instrument not included, please consider adding the instrument.

7.6.1 Advantest R3767CG Vector Network Analyzer

class pymeasure.instruments.advantest.advantestR3767CG.AdvantestR3767CG(adapter,
name='Advantest
R3767CG', **kwargs)

Bases: Instrument

Represents the Advantest R3767CG VNA. Implements controls to change the analysis range and to retreve the
data for the trace.

property center_frequency

Center Frequency in Hz

property id

Reads the instrument identification

property span_frequency

Span Frequency in Hz

property start_frequency

Starting frequency in Hz

property stop_frequency

Stoping frequency in Hz

property trace_1

Reads the Data array from trace 1 after formatting

7.6.2 Advantest R6245/R6246 DC Voltage/Current Sources/Monitors

Main Classes

class pymeasure.instruments.advantest.advantestR624X.AdvantestR6245(adapter, name='Advantest
R6245 SourceMeter',
**kwargs)

Bases: AdvantestR624X

Main instrument class for Advantest R6245 DC Voltage/Current Source/Monitor

ch_A

Channel
SMUChannel

ch_B

Channel
SMUChannel

122 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

class pymeasure.instruments.advantest.advantestR624X.AdvantestR6246(adapter, name='Advantest
R6246 SourceMeter',
**kwargs)

Bases: AdvantestR624X

Main instrument class for Advantest R6246 DC Voltage/Current Source/Monitor

ch_A

Channel
SMUChannel

ch_B

Channel
SMUChannel

class pymeasure.instruments.advantest.advantestR624X.AdvantestR624X(adapter, name='R624X
Source meter Base Class',
**kwargs)

Bases: Instrument

Represents the Advantest R624X series (channel A and B) SourceMeter and provides a high-level interface for
interacting with the instrument.

This is the base class for both AdvantestR6245 and AdvantestR6246 devices. It’s not necessary to instantiate
this class directly instead create an instance of the AdvantestR6245 or AdvantestR6246 class as shown in the
following example:

smu = AdvantestR6246("GPIB::1")
smu.reset() # Set default␣
→˓parameters
smu.ch_A.current_source(source_range = CurrentRange.FIXED_60mA,

source_value = 0, # Source current at␣
→˓0 A

voltage_compliance = 10) # Voltage␣
→˓compliance at 10 V
smu.ch_A.enable_source() # Enables the␣
→˓source output
smu.ch_A.measure_voltage()
smu.ch_A.current_change_source = 5e-3 # Change to 5mA
print(smu.read_measurement()) # Read and print␣
→˓the voltage
smu.ch_A.standby() # Put channel A in␣
→˓standby

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument

• kwargs – Keyword arguments for the adapter.

check_errors()

Read all errors from the instrument and log them.

7.6. Advantest 123

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Returns
List of error entries.

enable_source()

Put channel A & B into the operating state (CN).

Note: When the ‘interlock control’ of the ‘SCT’ command is ‘2’ and the clock signal is ‘HI’, it will not
enter the operating state.

standby()

Put channel A & B in standby mode (CL).

clear_status_register()

Clears the Standard Event Status Register (SESR) and related queues (excluding output queues) (*CLS).

property srq_enabled

Set a boolean that controls whether the GPIB SRQ feature is enabled, takes values of True or False (S0/S1).

Type
bool

The SRQ feature of the GPIB bus provides hardware handshaking between the GPIB controller card in the
PC and the instrument. This allows synchronization between moving data to the PC with the state of the
instrument without the need to use time delay functions.

trigger()

Outputs the trigger signal or the start of sweep and search measurement to both A and B channels and the
trigger link (XE).

Note:

• When both A channel and B channel are waiting for a trigger, both channels are triggered.

• When either channel A or B is waiting for a trigger, only the channel that is waiting for a trigger is
triggered.

• When both A channel and B channel are waiting for sweep start, this will apply sweep start to both
channels.

• When either channel A or B is in the sweep start waiting state, only the channel in the sweep start
waiting state is started.

• When either channel A or B is waiting for a trigger and the other is waiting for a sweep start, trigger
and sweep start are applied, respectively.

• When the trigger link is ON and this is the master unit, set the *TRG signal on the trigger link bus to
TRUE.

• When the trigger link is ON and the master unit, the trigger link is activated.

stop()

Stops the sweep when the sweep is started by the XE command or the trigger input signal (SP).

set_digital_output(values)
Outputs a 16-bit signal from the DIGITAL OUT output terminal on the rear panel. You can set up to 9
output data (DIOS). If there are multiple values specified, the data is output at intervals of about 2ms and
fixed as the final data.

124 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Parameters
values (int or list) – Digital out bit values

Note: The output of digital data to the DIGITAL OUT pin is only the bits specified by the DIOE command.
Bits that are not specified will result in alarm output or unused, and no digital data will be output.

property sweep_delay_time

Set the sweep delay time (Ta) or generation / delay time (Ta) of the master channel and slave channel during
delayed sweep operation or synchronous operation between pulse measurements (GDLY).

Type
float

Note: If the sweep delay time does not meet (Ta<Tw and Ta<Td+Tit), an execution error will occur and it
will not be set:

Tw: Pulse width Td: Major delay time Tit: Integration time

init_sequence()

This function starts the redirection of write() to store_sequence_command() to automatically create
a sequence program.

start_sequence(repeat=1)
This function starts the sequence program which is initiated by init_sequence() and ended by
end_sequence().

end_sequence()

This function ends the sequence program which is initiated by init_sequence().

sequence_wait(wait_mode, wait_value)
Waits for program execution and is used only for sequence programs (WAIT).

Parameters

• wait_mode (int) – Whether wait time (1) or trigger input count (2) is specified

• wait_value (float) – Wait time or trigger input count as specified by wait_mode

This command has the following functions:

• Make the execution of the next program wait for the specified time.

• Makes the next program execution wait until the specified number of triggers is input.

Regardless of the wait mode, if the wait data is 0, the wait operation is not performed. When the wait mode
is “2”, the following commands and signals can be used as trigger inputs:

• XE (XE 0, XE 1, XE 2)

• *TRG

• GET command (group execute trigger)

• Trigger input signal on rear panel

start_sequence_program(start, stop, repeat)
Starts from the program number until the stop of the sequence program (RU). Executes sequentially up to
the program number, and repeats for the number of times of specified.

Parameters

7.6. Advantest 125

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• start (int) – Number of the program to start from ranging 1 to 100

• stop (int) – Number of the program to stop at ranging from 1 to 100

• repeat (int) – Number of times repeated from 1 to 100

store_sequence_command(line, command)
Stores the program to be executed in the sequence program (ST). If the program already exists, it is replaced
with the new sequence.

Parameters

• line (int) – Line number specified of memory location

• command (str) – Command(s) specified to be stored delimited by a semicolon (;)

interrupt_sequence_command(action)
Interrupts the sequence program executed by the start_sequence_program() command (SQSP).

Parameters
action (SequenceInterruptionType) – Specifies sequence interruption setup

property sequence_program_number

Measure the amount of program sequences stored in the sequence memory (LNUB?).

sequence_program_listing(line)
This is a query command to know the command list stored in the program number of the sequence program
memory (LST?).

Parameters
action (int) – Specifying the memory location for reading the commands

Returns
Commands stored in sequence memory

Return type
str

trigger_output_signal(trigger_output, alarm_output, scanner_output)
Directly output the trigger output signal, alarm output signal, scanner (start/stop) output signal from GPIB
(OSIG).

Parameters

• trigger_output (int) – Number specifying type of trigger output

• alarm_output (int) – Number specifying type of alaram output

• scanner_output (int) – Number specifying the type of scanner output

Trigger output:

1. Do not output to trigger output.

2. Output a negative pulse to the trigger output.

Alarm output:

1. Finish output GO, LO.HI both set to HI level. (reset)

2. Finish output Set GO to LO level.

3. Set home output LO to LO level.

4. Terminate output HI to LO level.

126 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Scanner - (start/stop) output:

1. Set the scanner scoot output to HI level. Output a negative pulse to the stop output.

2. Make the scanner start output low.

3. Output a HI level for the scanner start output and a negative pulse for the stop output.

set_output_format(delimiter_format, block_delimiter, terminator)
Sets the format and terminator of the output data output by GPIB (FMT).

Parameters

• delimiter_format (int) – Type of delimiter format

• block_delimiter (int) – Type of block delimiter

• terminator (int) – Type of termination character

The output of <EOI> (End or Identify) is output at the following timing: 1,2: Simultaneously with LF 4:
Simultaneously with the last output data

If the output data format is specified as binary format, the terminator is fixed to <EOI> only and the termi-
nator selection is ignored.

delimiter_format:

1. ASCII format with header

2. No header, ASCII format

3. Binary format

block_delimiter:

1. Make it the same as the terminator.

2. Use semicolon ;

3. Use comma ,

terminator:

1. CR, LF<EOI>

2. LF<EOI>

3. LF

4. <EOI>

7.6. Advantest 127

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

1st character header:

A)
Normal measurement data

B)
Measurement data during overrange

C)
Compliance (limiter) is working.

D)
Oscillation detection is working.

E)
[Indicates the generated data]

F)
Measurement data when an error occurs in the
search measurement

26)
Measurement data is not stored in the buffer mem-
ory.

2nd character header:

A)
A-channel data during asynchronous operation
(A-channel generation data)

B)
B-channel data during asynchronous operation (B
channel generation data)

I)
A-channel data for synchronous, sweeping, de-
layed sweep, and double synchronous sweep op-
erations.

J)
B-channel data for synchronous, sweeping, de-
layed sweep, and double synchronous sweep op-
erations.

128 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

3rd character header:

A)
Current generation, voltage measurement (ISVM)
[Current generation]

B)
Voltage generation, current measurement (VSIM)
[Voltage generation]

C)
Current generation, current measurement (ISIM)

D)
Voltage generation, voltage measurement
(VSVM)

E)
Current generation, external voltage measurement
(IS, EXT, VM)

F)
Voltage generation, external current measurement
(VS, EXT, IM)

G)
Current generation, external current measurement
(IS, EXT. IM)

H)
Voltage generation, external voltage measurement
(VS, EXT, VM)

26)
The measurement data is not stored in the buffer
memory.

7.6. Advantest 129

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

4th character header:

A)
No operation (fixed to A)

B)
Null operation result

C)
The result of the comparison operation is GO.

D)
The result of the comparison operation is LO.

E)
The result of the comparison operation is HI.

F)
The result of null operation + comparison opera-
tion is GO.

G)
The result of null operation + comparison opera-
tion is LO.

H)
The result of null operation + comparison opera-
tion is HI.

26)
Measurement data is not stored in the buffer mem-
ory.

property service_request_enable_register

Control the contents of the service request enable register (SRER) in the form of a SRER IntFlag (*SRE).

Note: Bits other than the RQS bit are not cleared by serial polling. When power_on_clear() is set,
status byte enable register, SESER, device operation enable register, channel operation, the enable register
is cleared and no SRQ is issued.

property event_status_enable

Control the standard event status enable. (*ESE)

property power_on_clear

Control the power on clear flag, takes values True or False. (*PSC)

property device_operation_enable_register

Control the device operation output enable register (DOER) (DOE?).

property digital_out_enable_data

Control the contents of digital out enable data set (DIOE).

property status_byte_register

Measure the contents of the status byte register and MSS bits without using a serial poll (*STB?).

The Status Byte Register has a hierarchical structure. ERR, DOP, ESB, and COP bits, except RQS and
MAV, have lower-level status registers. Each register is paired with an enable register that can be selected

130 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

to output to the Status Byte register or not. The status byte register also has an enable register, which allows
you to select whether or not to issue a service request SRQ.

Note: *STB? command can read bit 6 as MSS (logical OR of other bits).

property event_status_register

Measure the contents of the standard event status register (SESR) in the form of a SESR IntFlag (*ESR?).

Note: SESR is cleared after being read.

property device_operation_register

Measure the contents of the device operations register (DOR) in the form of a DOR IntFlag (DOC?).

property error_register

Measure the contents of the error register (ERR?).

property self_test

A query command that runs a self-test and reads the result (*TST?).

property trigger_link_function_enabled

Set a boolean that controls whether the trigger link function is enabled, takes values of True or False. (TLNK)

Type
bool

property display_enabled

Set a boolean that controls whether the display is on or off, takes values of True or False. (DISP)

Type
bool

property line_frequency

Set the used power supply frequency (LF) to 50 or 60hz. With this command, the integration time per PLC
for the measurement will be one cycle of the power supply frequency you are using.

Type
int

property store_config

Set the memory area for the config to be stored at (SAV). There are five memory areas from 0 to 4 for storing.

Type
int

property load_config

Set the memory area for the config to be loaded from (RCL). There are five areas (0~4) where parameters
can be loaded by the RCL command.

Type
int

set_lo_common_connection_relay(enable, lo_relay=None)
Turn the connection relay on/off between the A channel LO (internal analog common) and the LO (internal
analog common) of the B channel (LTL).

Parameters

7.6. Advantest 131

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• enable (bool) – A boolean property that controls whether or not the connection relay is
enabled. Valid values are True and False.

• lo_relay (bool, optional) – A boolean property that controls whether or not the inter-
nal analog common relay is enabled. Valid values are True, False and None (don’t change
lo relay setting).

read_measurement()

Reads the triggered value, for example triggered by the external input.

class pymeasure.instruments.advantest.advantestR624X.SMUChannel(parent, id, voltage_range,
current_range)

Bases: Channel

Instantiated by main instrument class for every SMUChannel

insert_id(command)
Insert the channel id in a command replacing placeholder.

Subclass this method if you want to do something else, like always prepending the channel id.

clear_measurement_buffer()

Clears the measurement data buffer (MBC).

set_output_type(output_type, measurement_type)
Sets the output method and type of the GPIB output (OFM).

Parameters

• output_type (int or OutputType) – A property that controls the type of output

• measurement_type (int or MeasurementType) – A property that controls the measure-
ment type

Note: For the format of the output data, refer to AdvantestR624X.set_output_format(). For DC
and pulse measurements, the output method is fixed to ‘1’ (real-time output). When the output method ‘3’
(buffering output) is specified, the measured data is not stored in memory.

property analog_input

Set the analog input terminal (ANALOG INPUT) on the rear panel ON or OFF (FL).

Type
int

1. Turn off the analog input.

2. Analog input ON, gain x1.

3. Analog input ON, gain x2.5.

property trigger_output_timing

Set the timing of the trigger output signal output from TRIGGER OUT on the rear panel (TOT). the status
in the form of a TriggerOutputSignalTiming IntFlag.

Type
TriggerOutputSignalTiming

set_scanner_control(output, interlock)
Sets the SCANNER CONTROL (START, STOP) output signal and INTERLOCK input signal on the rear
panel (SCT).

132 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Parameters

• output (int) – A property that controls the scanner output

• interlock (int) – A property that controls the scanner interlock type

output:

1. Scanner, Turn off the control signal output.

2. Output to the scanner control signal at the start / stop of the sweep.

3. Operate / Standby Scanner, Output to the control signal.

interlock:

1. Turn off the interlock signal input.

2. Set as a stamper when the interlock signal input is HI.

3. When the interlock signal input is HI, it is on standby, and when it is LO, it is operated.

property trigger_input

Set the type of trigger input (TJM).

Type
TriggerInputType

Trigger input types 1 2 3
*TRG O O X
XE 0 O O X
XE Channel O O O
GET O O X
Trigger input signal O X X

O can be used, X cannot be used

Note: The sweep operation cannot be started by the trigger input signal. Be sure to start it with the ‘XE’
command. Once started, it is possible to advance the sweep with a trigger input signal.

property fast_mode_enabled

Set the channel response mode to fast or slow, takes values of True or False (FL).

Type
bool

property sample_hold_mode

Set the integration time of the measurement (MST).

Type
SampleHold

Note:

• Valid only for pulse measurement and pulse sweep measurement.

• In sample hold mode, the AD transformation is just before the fall of the pulse width.

7.6. Advantest 133

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• The sample hold mode cannot be set during DC measurement and DC sweep measurement. When
set to sample-and-hold mode, the integration time is 100 µs. However, in 2-channel synchronous
operation, if one channel is in pulse generation and the other is in sample-and-hold mode, the DC
measurement side also operates in sample-and-hold mode.

• When performing pulse measurement and pulse sweep measurement, it is necessary to satisfy the
restrictions on the pulse width (Tw), pulse period (Tp), and measure delay time (Td) of the WT com-
mand. If the constraint is not satisfied, the integration time is unchanged. To lengthen the integration
time, first change the pulse width (Tw) and pulse period (Tp). When shortening the pulse width and
pulse cycle, shorten the integration time first.

set_sample_mode(mode, auto_sampling=True)
Sets synchronous, asynchronous, tracking operation and search measurement between channels (JM).

Parameters

• mode (SampleMode) – Sample Mode

• auto_sampling (bool, optional) – Whether or not auto sampling is enabled, defaults
to True

set_timing_parameters(hold_time, measurement_delay, pulsed_width, pulsed_period)
Set the hold time, measuring time, pulse width and the pulse period (WT).

Parameters

• hold_time (float) – total amount of time for the complete pulse, until next pulse comes

• measurement_delay (float) – time between measurements

• pulsed_width (float) – Time specifying the pulse width

• pulsed_period (float) – Time specifying the pulse period

Note: Pulse measurement has the following restrictions depending on the pulse period (Tp) setting. (For
pulse sweep measurements, there are no restrictions.)

• Tp < 2ms : Not measured.

• 2ms <= Tp < 10ms : Measure once every 5 ~ 20ms.

• 10ms <= Tp: Measured at each pulse generation.

select_for_output()

This is a query command to select a channel and to output the measurement data (FCH?). When the output
channel is selected by the FCH command, the measured data of the same channel is returned until the output
channel is changed by the next FCH command.

Note: Reading measurements with the RMM command does not affect channel specification with the FCH
command. In the default state, the measurement data of channel A is output.

trigger()

Measurement trigger command for sweep, start search measurement or sweep step action (XE).

measure_voltage(enable=True, internal_measurement=True, voltage_range=VoltageRange.AUTO)

Sets the voltage measurement ON/OFF, measurement input, and voltage measurement range as parameters
(RV).

134 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Parameters

• enable (bool, optional) – boolean property that enables or disables voltage measure-
ment. Valid values are True (Measure the voltage flowing at the OUTPUT terminal) and
False (Measure the voltage from the rear panel -ANALOG COMMON).

• internal_measurement (bool, optional) – A boolean property that enables or dis-
ables the internal measurement.

• voltage_range (VoltageRange, optional) – Specifying voltage range

voltage_source(source_range, source_value, current_compliance)
Sets the source range, source value and the current compliance for the DC (constant voltage) measurement
(DV).

Parameters

• source_range (VoltageRange) – Specifying source range

• source_value (float) – A number specifying the source voltage value

• current_compliance (float) – A number specifying the current compliance

Note: Regardless of the specified current compliance polarity, both polarities (+ and -) are set. The current
compliance range is automatically set to the minimum range that includes the set value.

voltage_pulsed_source(source_range, pulse_value, base_value, current_compliance)
Sets the source range, pulse value, base value and the current compliance of the pulse (voltage) measurement
(PV).

Note: Regardless of the specified current compliance polarity, both polarities (+ and -) are set. The current
compliance range is automatically set to the minimum range that includes the set value.

property change_source_voltage

Set new target voltage (SPOT).

Type
float

Note: Only the DC action source value and pulse action pulse value are changed using the currently set DC
action and pulse action parameters. Measure after the change and set the channel to output the measured
data to the specified ch. In other words, it’s the same as running the following commands:

1. DV/DI/PV/PI

2. XE xx

3. FCH xx

voltage_fixed_level_sweep(voltage_range, voltage_level, measurement_count, current_compliance,
bias=0)

Sets the fixed level sweep (voltage) generation range, level value, current compliance and the bias value
(FXV).

7.6. Advantest 135

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Note: Regardless of the specified current compliance polarity, both polarities (+ and -) are set. The current
compliance range is automatically set to the minimum range that includes the set value.

voltage_fixed_pulsed_sweep(voltage_range, pulse, base, measurement_count, current_compliance,
bias=0)

Sets the fixed pulse (voltage) sweep generation range, pulse value, base value, number of measurements,
current compliance and the bias value (PXV).

Note: Regardless of the specified current compliance polarity, both polarities (+ and -) are set. The current
compliance range is automatically set to the minimum range that includes the set value.

voltage_sweep(sweep_mode, repeat, voltage_range, start_value, stop_value, steps, current_compliance,
bias=0)

Sets the sweep mode, number of repeats, source range, start value, stop value, number of steps, current
compliance, and the bias value for staircase (linear/log) voltage sweep (WV).

Note:

• Sweep mode, number of repeats, and number of steps are subject to the following restrictions.

– Let N = number of steps, m = l (one-way sweep), m = 2 (round-trip sweep).

∗ When the OFM command sets the output data output method to 1 or 2 m x number of refreshes
x N <= 2048

∗ m x N <= 2048 when the OFM command sets the output data output method to 3.

• Regardless of the specified current compliance polarity, both polarities (+ and -) are set.

• The current compliance range is automatically set to the minimum range that includes the set value.

voltage_pulsed_sweep(sweep_mode, repeat, voltage_range, base, start_value, stop_value, steps,
current_compliance, bias=0)

Sets the sweep mode, repeat count, generation range, base value, start value, stop value, number of steps,
current compliance and the bias value for a pulse wave (linear/log) voltage sweep (PWV).

Note:

• The sweep mode, number of refreshes, and number of steps are subject to the following restrictions:

– Let N = number of steps, m = l (one-way sweep), m = 2 (round-trip sweep).

∗ When the OFM command sets the output data output method to 1 or 2 m x number of refreshes
x N <= 2048

∗ m x N <= 2048 when the OFM command sets the output data output method to 3.

• For the current compliance polarity, regardless of the specified current compliance polarity, the com-
pliance of both polarities (+ and -) is set.

• The current compliance range is automatically set to the minimum range that includes the set value.

136 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

voltage_random_sweep(sweep_mode, repeat, start_address, stop_address, current_compliance, bias=0)
Sets the sweep mode, repeat count, start address, stop address, current compliance and the bias value of
constant voltage random sweep (MDWV).

Note:

• Sweep mode, number of repeats, start address and stop address are subject to the following restrictions:

– Start address < Stop address

– Let N = number of steps, m = l (one-way sweep), m = 2 (round-trip sweep).

∗ When the OFM command sets the output data output method to 1 or 2 m x number of refreshes
x N <= 2048

∗ m x N <= 2048 when the OFM command sets the output data output method to 3.

• Regardless of the specified current compliance polarity, both polarities (+ and -) are set.

• The current compliance range is automatically set to the minimum range that includes the set value.

voltage_random_pulsed_sweep(sweep_mode, repeat, start_address, stop_address, current_compliance,
bias=0)

Sets the sweep mode, repeat count, base value, start address, stop address, current compliance and the bias
value of the constant voltage random pulse sweep (MPWV).

Note:

• Sweep mode, number of repeats, start address and stop address are subject to the following restrictions:

– Start address < Stop address

– Let N = number of steps, m = l (one-way sweep), m = 2 (round-trip sweep).

∗ When the OFM command sets the output data output method to 1 or 2 m x number of refreshes
x N <= 2048

∗ m x N <= 2048 when the OFM command sets the output data output method to 3.

• Regardless of the specified current compliance polarity, both polarities (+ and -) are set.

• The current compliance range is automatically set to the minimum range that includes the set value.

voltage_set_random_memory(address, voltage_range, output, current_compliance)
The command stores the specified value to the randomly generated data memory (RMS).

Stored generated values are swept within the specified memory address range by the MDWV, MDWI,
MPWV, MPWI commands.

current_source(source_range, source_value, voltage_compliance)
Sets the source range, source value, voltage compliance of the DC (constant current) measurement (DI).

Parameters

• source_range (CurrentRange) – Specifying source range

• source_value (float) – A number specifying the source current value

• voltage_compliance (float) – A number specifying the voltage compliance

7.6. Advantest 137

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Note: Regardless of the specified voltage compliance polarity, both polarities (+ and -) are set. The voltage
compliance range is automatically set to the minimum range that includes the set value.

current_pulsed_source(source_range, pulse_value, base_value, voltage_compliance)
Sets the source range, pulse value, base value and the voltage compliance of the pulse (current) measurement
(PI).

Note: Regardless of the specified voltage compliance polarity, both polarities (+ and -) are set. The voltage
compliance range is automatically set to the minimum range that includes the set value.

property change_source_current

Set new target current (SPOT).

Type
float

Note: Only the DC action source value and pulse action pulse value are changed using the currently set DC
action and pulse action parameters. Measure after the change and set the channel to output the measured
data to the specified ch. In other words, it’s the same as running the following commands:

1. DV/DI/PV/PI

2. XE xx

3. FCH xx

current_fixed_level_sweep(current_range, current_level, measurement_count, voltage_compliance,
bias=0)

Sets the fixed level sweep (current) generation range, level value, voltage compliance and the bias value
(FXI).

Note: Regardless of the specified voltage compliance polarity, both polarities (+ and -) are set. The voltage
compliance range is automatically set to the minimum range that includes the set value.

current_fixed_pulsed_sweep(current_range, pulse, base, measurement_count, voltage_compliance,
bias=0)

Sets the fixed pulse (current) sweep generation range, pulse value, base value, number of measurements,
voltage compliance and the bias value (PXI).

Note: Regardless of the specified voltage compliance polarity, both polarities of + and - are set. The
voltage compliance range is automatically set to the minimum range that includes the set value.

current_sweep(sweep_mode, repeat, current_range, start_value, stop_value, steps, voltage_compliance,
bias=0)

Sets the sweep mode, number of repeats, source range, start value, stop value, number of steps, voltage
compliance and bias value for the staircase (linear/log) current sweep (WI).

Note:

138 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• The sweep mode, number of refreshes, and number of steps are subject to the following restrictions:

– Let N = number of steps, m = l (one-way sweep), m = 2 (round-trip sweep).

∗ When the OFM command sets the output data output method to 1 or 2, m x number of repeats
x N <= 2048.

∗ m x N <= 2048 when the OFM command sets the output data output method to 3.

• Regardless of the specified voltage compliance polarity, both polarities (+ and -) are set.

• The voltage compliance range is automatically set to the minimum range that includes the set value.

current_pulsed_sweep(sweep_mode, repeat, current_range, base, start_value, stop_value, steps,
voltage_compliance, bias=0)

Sets the sweep mode, repeat count, generation range, base value, start value, stop value, number of steps,
voltage compliance and the bias value for a pulse wave (linear/log) current sweep (PWI).

Note:

• The sweep mode, number of refreshes, and number of steps are subject to the following restrictions:

– Let N = number of steps, m = l (one-way sweep), m = 2 (round-trip sweep).

∗ When the OFM command sets the output data output method to 1 or 2, m x number of repeats
x N <= 2048.

∗ m x N <= 2048 when the OFM command sets the output data output method to 3.

• Regardless of the specified voltage compliance polarity, both polarities (+ and -) are set.

• The voltage compliance range is automatically set to the minimum range that includes the set value.

measure_current(enable=True, internal_measurement=True, current_range=CurrentRange.AUTO)

Set the current measurement ON/OFF, measurement input, and current measurement range as parameters
(RI).

Parameters

• enable (bool, optional) – boolean property that enables or disables current measure-
ment. Valid values are True (Measure the current flowing at the OUTPUT terminal) and
False (Measure the current from the rear panel -ANALOG COMMON).

• internal_measurement (bool, optional) – A boolean property that enables or dis-
ables the internal measurement.

• current_range (CurrentRange, optional) – Specifying voltage range

current_random_sweep(sweep_mode, repeat, start_address, stop_address, current_compliance, bias=0)
Sets the sweep mode, repeat count, start address, stop address, voltage compliance and the bias value of
constant current random sweep (MDWI).

Note:

• Sweep mode, number of repeats, start address and stop address are subject to the following restrictions:

– Start address < Stop address

– Let N = (stop number 1 - start number + 1), m = 1 (one-way sweep), m = 2 (round-trip sweep).

7.6. Advantest 139

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

∗ When the output data output method is set to 1 or 2 with the OFM command m x number of
repeats x N <= 2048

∗ When the output data output method is set to 3 with the OFM command m x N <= 2048

• For the voltage compliance polarity, regardless of the specified voltage compliance polarity, both po-
larities of + and – are set.

• The voltage compliance range is automatically set to the minimum range that includes the set value.

current_random_pulsed_sweep(sweep_mode, repeat, start_address, stop_address, current_compliance,
bias=0)

Sets the sweep mode, repeat count, base value, start address, stop address, voltage compliance and the bias
value of constant current random pulse sweep (MPWI).

Note:

• Sweep mode, number of repeats, start address and stop address are subject to the following restrictions:

– Start address < Stop address

– Let N = (stop number 1 - start number + 1), m = 1 (one-way sweep), m = 2 (round-trip sweep).

∗ When the output data output method is set to 1 or 2 with the OFM command m x number of
repeats x N <= 2048

∗ When the output data output method is set to 3 with the OFM command m x N <= 2048

• For the voltage compliance polarity, regardless of the specified voltage compliance polarity, both po-
larities of + and – are set.

• The voltage compliance range is automatically set to the minimum range that includes the set value.

current_set_random_memory(address, current_range, output, voltage_compliance)
Store the current parameters to randomly generated data memory (RMS).

Stored generated values are swept within the specified memory address range by the MDWV, MDWI,
MPWV, MPWI commands.

read_random_memory(address)
Return memory specified by address location (RMS?).

Parameters
address (int) – Adress to specify memory location.

Returns
Set values returned by the device from the specified address location.

Return type
str

enable_source()

Put the specified channel into an operating state (CN).

standby()

Put the specified channel into standby state (CL).

stop()

Stops the sweep when the sweep is started by the XE command or the trigger input signal (SP).

140 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

output_all_measurements()

Output all measurements in the measurement data buffer of the specified channel (RMM?).

Note: For the output format, refer to AdvantestR624X.set_output_format(). When a memory ad-
dress where no measurement data is stored is read, 999.999E+99 will be returned.

read_measurement_from_addr(addr)
Output only one measurement at the specified memory address from the measurement data buffer of the
specified channel.

Parameters
addr (int) – Specifies the address to read from.

Returns
float Measurement data

Note: For the output format, refer to AdvantestR624X.set_output_format(). When a memory ad-
dress where no measurement data is stored is read, 999.999E+99 will be returned.

property measurement_count

Measaure the number of measurements contained in the measurement data buffer (NUB?).

property null_operation_enabled

Set a boolean that controls whether the null operation is enabled, takes values of True or False (NUG).

Type
bool

Note:

• Null data is not rewritten even if the null operation is disabled.

• Null data is rewritten only when null operation is changed from OFF to ON or initialized in case of
DC operation or pulse operation.

set_wire_mode(four_wire, lo_guard=True)
Used to switch remote sense and to set the LO-GUARD relay ON/OFF. It operates regardless of operating
state or standby state (OSL).

Parameters

• four_wire (bool) – A boolean property that enables or disables four wire measurements.
Valid values are True (enables 4-wire sensing) and False (enables two-terminal sensing).

• lo_guard (bool) – A boolean property that enables or disables the LO-GUARD relay.

property auto_zero_enabled

Set the auto zero option to ON or OFF. Valid values are True (enabled) and False (disabled) (CM).

Type
bool

This command sets auto zero (automatically calibrate the zero point of the measured value operation.

1. Periodically perform auto zero.

2. Auto zero once, no periodic auto zeros thereafter.

7.6. Advantest 141

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

When the auto zero mode is set to True, the following operations are performed.

• For DC operation and pulse operation:

– At the end of one sweep, if he has exceeded the last autozero by more than 10 seconds, he will do
one autozero.

– If sweep start is specified during auto zero, the sweep will start after auto zero ends.

• Sweep operation

– Auto zero is performed once every 10 seconds.

– If measurement or pulse output is specified during auto zero, it will be executed after auto zero
ends.

set_comparison_limits(comparison, voltage_value, upper_limit, lower_limit)
Sets the channel ON/OFF based on the measurement comparison and the data of the upper and lower limits
to be compared (CMD).

Parameters

• comparison (bool) – A boolean property that controls whether or not the comparison
function is enabled. Valid values are True or False.

• voltage_value (bool) – A boolean property that controls whether or not voltage or cur-
rent values are passed. Valid values are True or False.

• upper_limit (float) – Number specifying the upper comparison limit

• lower_limit (float) – Number specifying the lower comparison limit

property relay_mode

Set the HI/LO relays for standby mode. This command does not operate the Operate Relay (OPM).

Type
int

1. When executing an operation only the HI side turns ON, in standby both HI and LO are turned OFF.

2. When executing an operation only the LO side turns ON, in standby both HI and LO are turned OFF.

3. When executing an operation both HI and LO turn ON, in standby both HI and LO are turned OFF.

4. When executing an operation only the HI side turns ON, in standby only the HI side is turned OFF.

property operation_register

Measure the contents of the Channel Operations Register (COR) in the form of a COR IntFlag (COC?).

property output_enable_register

Control the settings of the channel operation output enable register (COER) in the form of a COR IntFlag
?(COE?).

calibration_init()

Initialize the calibration data (CINI).

calibration_store_factor()

Store the calibration factor in the non-volatile memory (EEPROM) (CSRT).

property calibration_measured_value

Set the measured value measured by an external standard for the generated value of this instrument and
start calibration (STD).

142 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Type
float

property calibration_generation_factor

Set the increment or decrement for the generation calibration factor of the current generation range (CCS).
It is used when the generated value deviates from the true value.

Type
float

property calibration_factor

Set the increment of the measurement calibration factor of the current measurement range (CCM).

Type
float

class pymeasure.instruments.advantest.advantestR624X.SampleHold(value, names=None, *,
module=None, qualname=None,
type=None, start=1,
boundary=None)

Bases: IntEnum

class pymeasure.instruments.advantest.advantestR624X.SampleMode(value, names=None, *,
module=None, qualname=None,
type=None, start=1,
boundary=None)

Bases: IntEnum

class pymeasure.instruments.advantest.advantestR624X.VoltageRange(value, names=None, *,
module=None,
qualname=None, type=None,
start=1, boundary=None)

Bases: IntEnum

class pymeasure.instruments.advantest.advantestR624X.CurrentRange(value, names=None, *,
module=None,
qualname=None, type=None,
start=1, boundary=None)

Bases: IntEnum

class pymeasure.instruments.advantest.advantestR624X.SweepMode(value, names=None, *,
module=None, qualname=None,
type=None, start=1,
boundary=None)

Bases: IntEnum

class pymeasure.instruments.advantest.advantestR624X.OutputType(value, names=None, *,
module=None, qualname=None,
type=None, start=1,
boundary=None)

Bases: IntEnum

class pymeasure.instruments.advantest.advantestR624X.TriggerInputType(value, names=None, *,
module=None,
qualname=None,
type=None, start=1,
boundary=None)

7.6. Advantest 143

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Bases: IntEnum

class pymeasure.instruments.advantest.advantestR624X.MeasurementType(value, names=None, *,
module=None,
qualname=None,
type=None, start=1,
boundary=None)

Bases: IntEnum

class pymeasure.instruments.advantest.advantestR624X.SequenceInterruptionType(value,
names=None,
*,
module=None,
qual-
name=None,
type=None,
start=1,
bound-
ary=None)

Bases: IntEnum

1. Release pause state is a valid command only in the sequence program pause state. otherwise it is ignored.

2. Pause state enters the pause state when the currently executing program ends.

3. Abort sequence program stops the sequence program when the currently executing program ends. If the
currently running program is a sweep operation, interrupt the sweep operation and stop the sequence pro-
gram. The output value will be the bias value.

class pymeasure.instruments.advantest.advantestR624X.DOR(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Bases: IntFlag

bit assigment for the Device Operation Register (DOR):

Bit (dec) Description
13 Indicates that the fast tokens program is running.
12 Error in search measurement
11 End of sequence program/high-speed sequence program execution
10 Sequence program Pause state
9 Fan stop detection
8 Self-test error occurred (logic part)
7 Trigger wait state in trigger link master operation
6 Calibration mode status
5 Trigger link ON state
4 Trigger link bus error
3 Sequence program/high-speed sequence 1 program/add/de) waiting
2 Wait for sequence program wait time
1 Sequence program running
0 Synchronous operation state

class pymeasure.instruments.advantest.advantestR624X.COR(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

144 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Bases: IntFlag

bit assigment for the Channel Operations Register (COR):

Bit (dec) Description
14 The result of the comparison operation is HI
13 The result of the comparison operation is GO
12 The result of the comparison operation is LO
11 Overheat detection
10 Overload detection
9 Oscillation detection
8 Compliance detection
7 Synchronous operation master channel
6 Measurement data output specification
5 There is measurement data
4 Self-test error occurrence (analog part)
3 Measurement data buffer full
2 Waiting for trigger
1 End of sweep
0 Operated state

class pymeasure.instruments.advantest.advantestR624X.SRER(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Bases: IntFlag

bit assigment for the Service Request Enable Register (SRER):

Bit
(dec)

Description

0 none
1 ERR Set when any of QYE, DDE, EXE, or CME in the Standard Event Status Register (SESR) is

set.
2 DOP Set when a bit in the device operation register for which the enable register is set to enabled is

set. Cleared by reading the device operation register.
3 none
4 MAV Set when output data is set in the output queue. Cleared when output data is read.
5 ESB Set when a bit in the Standard Event Status Register (SESR) is set and the enable register is set

to Enabled. Cleared by reading SESR.
6 RQS (MSS) Set when bit O to bit 5 and bit 7 of the Status Byte register are set. (this bit is read-only)
7 COP Set when a bit in the Channel Operations Register is set with the Enable Register set to Enable.

Cleared by reading the Channel Operations Register.

class pymeasure.instruments.advantest.advantestR624X.SESR(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Bases: IntFlag

bit assigment for the Standard Event Status Register (SESR):

7.6. Advantest 145

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Bit
(dec)

Description

0 OPC (Operation Complete) not used
1 RQC unused
2 QYE (Query Error) Set when the output queue overflows when reading without output data.
3 DDE (Device Dependent Error) Set when an error occurs in the self-test.
4 EXE (Execution Error) Set when the input data is outside the range set internally, or when the

command cannot be executed.
5 CME (Command Error) Set when an undefined header or data format is wrong, or when there is a

syntax error in the command.
6 URQ unused
7 PON Set when power is switched from OFF to ON.

class pymeasure.instruments.advantest.advantestR624X.TriggerOutputSignalTiming(value,
names=None,
*, mod-
ule=None,
qual-
name=None,
type=None,
start=1,
bound-
ary=None)

Bases: IntFlag

bit assigment for the timing of the trigger output signal output from TRIGGER OUT on the rear panel:

Bit (dec) Description
5 At the end of the sweep
4 At the end of the pulse width
3 At the end of the pulse cycle
2 At the end of measurement
1 At the start of measurement
0 At the start of occurrence

Contents

• Advantest R6245/R6246 DC Voltage/Current Sources/Monitors

– Main Classes

– General Information

– Examples

∗ Initialization of the Instrument

∗ Simple dual channel measurement example

∗ Program example for DC measurement

∗ Program example for DC measurement (with external trigger)

∗ Program example for pulse measurement

∗ Fixed Level Sweep Program Example

146 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

General Information

The R6245/6246 Series are DC voltage/current sources and monitors having source measurement units (SMUs) with
2 isolated channels. The series covers wide source and measurement ranges. It is ideal for measurement of DC charac-
teristics of items ranging from separate semiconductors such as bipolar transistors, MOSFETs and GaAsFETs, to ICs
and power devices. Further, due to the increased measuring speed and synchronized 2-channel measurement function,
device I/O characteristics can be measured with precise timing at high speed which was previously difficult to accom-
plish. Due to features such as the trigger link function and the sequence programming function which automatically
performs a series of evaluation tests automatically, the R6245/6246 enable much more efficient evaluation tests.

There is a total of 99 commands, the majority of commands have been implemented. Device documentation is in
Japanese, and the device options are enormous. The implementation is based on 6245S-GPIB-B-FHJ-8335160E01.pdf,
which can be downloaded from the ADCMT website.

Examples

Initialization of the Instrument

from pymeasure.instruments.advantest import AdvantestR6246
from pymeasure.instruments.advantest.advantestR624X import *

smu = AdvantestR6246("GPIB::1")

Simple dual channel measurement example

Measurement characteristics:
Channel A: Vce = 20V Channel B: Ib = 10uA - 60uA

smu = AdvantestR6246("GPIB::1")
smu.reset() # Set default parameters
smu.ch_A.set_sample_mode(SampleMode.PULSED_SYNC) # Pulsed synchronized
smu.ch_A.voltage_source(source_range = VoltageRange.AUTO,

source_value = 20,
current_compliance = 0.06)

smu.ch_A.measure_current()
smu.ch_B.current_source(source_range = CurrentRange.AUTO,

source_value = 1E-5, # Source current at 10 uA
voltage_compliance = 5) # Voltage compliance at 5 V

smu.ch_B.measure_voltage()
smu.enable_source() # Enables source A & B

for i in range(10, 60):
k = i * 0.000001
smu.ch_B.current_change_source = k # Set current from 10 uA to 60␣

→˓uA

smu.trigger() # Trigger measurement
smu.ch_A.select_for_output()
Ic = smu.read_measurement() # Read channel A measurement
smu.ch_B.select_for_output()
Vbe = smu.read_measurement() # Read channel B measurement

(continues on next page)

7.6. Advantest 147

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

print(f'Ic={Ic}, Vbe={Vbe}') # Print measurements

smu.standby() # Put channel A & B in standby

Program example for DC measurement

Measurement characteristics:
Function: VSIM - Source voltage and measure current Trigger voltage: 10V Current compliance: 0.5A Mea-
surement delay time: 1ms Integration time: 1 PLC Response: Fast

After operating, the measurement is repeated 10 times with a trigger command and he prints out the results.

smu = AdvantestR6246("GPIB::1")
smu.reset() # Set default parameters
smu.ch_A.set_sample_mode(SampleMode.ASYNC, False) # Asynchronous␣
→˓operation and single shot sampling by trigger and command
smu.ch_A.voltage_source(source_range = VoltageRange.FIXED_BEST,

source_value = 10,
current_compliance = 0.5) # compliance of 0.5A

smu.ch_A.measure_current() # Measure current
smu.ch_A.set_timing_parameters(hold_time = 0, # 0 sec hold time

measurement_delay = 1E-3, # 1ms delay between␣
→˓measurements

pulsed_width = 5E-3, # 5ms pulse width
pulsed_period = 10E-3) # 10ms pulse period

smu.ch_A.sample_hold_mode = SampleHold.MODE_1PLC # Sample at 1 power␣
→˓line cycle
smu.ch_A.fast_mode_enabled = True # Set channel response␣
→˓to fast
smu.ch_A.enable_source() # Set channel in␣
→˓operating state
smu.ch_A.select_for_output() # Select channel for␣
→˓measurement output

for i in range(1, 10):
smu.ch_A.trigger() # Trigger a measurement
measurement = smu.read_measurement()
print(f"NO {i} {measurement}")

smu.ch_A.standby() # Put channel A in␣
→˓standby mode

148 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Program example for DC measurement (with external trigger)

Measurement characteristics:
Function: VSIM - Source voltage and measure current Source voltage: 10 V Base voltage 1 V Current com-
pliance: 0.5 A Pulse width: 5 ms Pulse period: 10 ms Measurement delay time: 1 ms Integration time: 1 ms
Response: Fast

After operating, an external trigger input signal is pulsed to measure the channel operation register. Reads the fixed
end bit, captures the measurement data, and prints out the measurement result.

smu = AdvantestR6246("GPIB::1")
smu.reset() # Set default parameters

smu.ch_A.auto_zero_enabled = False
smu.ch_A.set_sample_mode(SampleMode.ASYNC, False) # Asynchronous␣
→˓operation and single shot sampling by trigger and command
smu.ch_A.voltage_pulsed_source(

source_range = VoltageRange.FIXED_BEST,
pulse_value = 10,
base_value = 1,
current_compliance = 0.5)

smu.ch_A.measure_current() # Measure current
smu.ch_A.fast_mode_enabled = True # Set channel response␣
→˓to fast
smu.ch_A.sample_hold_mode = SampleHold.MODE_1mS # Sample at 1mS
smu.ch_A.set_timing_parameters(hold_time = 0, # 0 sec hold time

measurement_delay = 1E-3, # 1ms delay between␣
→˓measurements

pulsed_width = 5E-3, # 5ms pulse width
pulsed_period = 10E-3) # 10ms pulse period

smu.ch_A.trigger_input = TriggerInputType.ALL # Mode 1 enables the␣
→˓trigger input signal
smu.ch_A.output_enable_register = COR.HAS_MEASUREMENT_DATA # Measurement data␣
→˓available
smu.service_request_enable_register = SRER.COP # COP Set when a bit in␣
→˓the Channel Operations Register is set with the Enable Register set to Enable.
smu.ch_A.enable_source() # Set channel in␣
→˓operating state
smu.ch_A.select_for_output() # Select channel for␣
→˓measurement output

for i in range(1, 10):
while not smu.ch_A.operation_register & COR.HAS_MEASUREMENT_DATA:

pass

measurement = smu.read_measurement()
print(f"NO {i} {measurement}")

while not smu.ch_A.operation_register & COR.WAITING_FOR_TRIGGER:
pass

smu.ch_A.standby() # Put channel A in␣
→˓standby mode

7.6. Advantest 149

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Program example for pulse measurement

Measurement characteristics:
Function: ISVM - Source current and measure voltage Pulse generation current: 100mA Base current: 1mA
Voltage compliance: 5V Pulse width: 0 Pulse period : 0 Measurement delay time: 0 Integration time: 1ms
Response: Fast

After the operation, repeat the measurement 10 times with the trigger command and print out the measurement results.

smu = AdvantestR6246("GPIB::1")
smu.reset() # Set default␣
→˓parameters
smu.ch_A.set_sample_mode(SampleMode.ASYNC, auto_sampling = False)
smu.ch_A.current_pulsed_source(

source_range = CurrentRange.FIXED_600mA,
pulse_value = 0.1, # 100mA
base_value = 1E-3, # 1mA
voltage_compliance = 5) # 5V

smu.ch_A.measure_voltage(voltage_range = VoltageRange.FIXED_BEST)
smu.ch_A.fast_mode_enabled = True # Set channel␣
→˓response to fast
smu.ch_A.sample_hold_mode = SampleHold.MODE_1mS # Sample at 1mS
smu.ch_A.set_timing_parameters(hold_time = 0, # 0 sec hold time

measurement_delay = 0, # 0 sec delay␣
→˓between measurements

pulsed_width = 0, # 0 sec pulse width
pulsed_period = 0) # 0 sec pulse period

smu.ch_A.enable_source() # Set channel in␣
→˓operating state
smu.ch_A.select_for_output() # Select channel for␣
→˓measurement output

for i in range(1, 10):
smu.ch_A.trigger() # Trigger measurement

measurement = smu.read_measurement()
print(f"NO {i} {measurement}")

while not smu.ch_A.operation_register & COR.WAITING_FOR_TRIGGER:
pass

smu.ch_A.standby() # Put channel A in␣
→˓standby mode

150 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Fixed Level Sweep Program Example

Measurement characteristics:
function: VSVM - Voltage source and voltage measurement Level value: 15V Bias value: 0V Number of mea-
surements: 20 times Compliance: 6mA Measuring range: Best fixed range (=60V range) Integration time: 100us
Measurement delay time: 0 Hold time: 1ms Sampling mode: automatic sweep Measurement data output method:
Buffering output (output of specified data)

After operating, make 20 measurements in fixed sweep. Detect the end of sweep by looking at the Channel Operation
Register (COR). After the sweep is finished, read the measured data from 1 to 2 using the RMM command.

smu = AdvantestR6246("GPIB::1")

First we setup our main parameters
smu.reset() # Set default parameters

smu.ch_A.set_output_type(output_type = OutputType.BUFFERING_OUTPUT_SPECIFIED,
measurement_type = MeasurementType.MEASURE_DATA)

smu.set_output_format(delimiter_format = 2, # No header, ASCII␣
→˓format

block_delimiter = 1, # Make it the same as␣
→˓the terminator

terminator = 1) # CR, LF<EOI>

smu.ch_A.analog_input = 1 # Turn off the analog␣
→˓input.

smu.set_lo_common_connection_relay(enable = True) # Turns the connection␣
→˓relay on

smu.ch_A.set_wire_mode(four_wire = False, # disable four wire␣
→˓measurements

lo_guard = True) # enable the LO-GUARD␣
→˓relay.

smu.ch_A.auto_zero_enabled = False
smu.ch_A.trigger_input = TriggerInputType.ALL # Mode 1 enables the␣
→˓trigger input signal

Now we set measurement specific variables
smu.ch_A.clear_measurement_buffer()
smu.ch_A.set_sample_mode(SampleMode.ASYNC, auto_sampling = True)
smu.ch_A.voltage_fixed_level_sweep(voltage_range = VoltageRange.FIXED_60V,

voltage_level = 15,
measurement_count = 20, # 20 measurements
current_compliance = 6E-3, # compliance at 6mA
bias = 0)

smu.ch_A.measure_voltage(voltage_range = VoltageRange.FIXED_BEST)
smu.ch_A.sample_hold_mode = SampleHold.MODE_100uS
smu.ch_A.set_timing_parameters(hold_time = 1E-3, # 1ms sec hold time

measurement_delay = 0, # 0 sec delay between␣
→˓measurements

(continues on next page)

7.6. Advantest 151

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

pulsed_width = 0, # 0 sec pulse width
pulsed_period = 0) # 0 sec pulse period

smu.ch_A.enable_source() # Set channel in␣
→˓operating state
smu.ch_A.trigger() # Start the sweep

while not smu.ch_A.operation_register & COR.END_OF_SWEEP: # Wait until the sweep␣
→˓is done
pass

Read measurements
for i in range(1, 20):

measurement = smu.ch_A.read_measurement_from_addr(i)
print(i, measurement)

smu.ch_A.standby() # Put channel A in␣
→˓standby mode

7.7 Agilent

This section contains specific documentation on the Agilent instruments that are implemented. If you are interested in
an instrument not included, please consider adding the instrument.

7.7.1 Agilent 8257D Signal Generator

class pymeasure.instruments.agilent.Agilent8257D(adapter, name='Agilent 8257D RF Signal
Generator', **kwargs)

Bases: Instrument

Represents the Agilent 8257D Signal Generator and provides a high-level interface for interacting with the in-
strument.

generator = Agilent8257D("GPIB::1")

generator.power = 0 # Sets the output power to 0 dBm
generator.frequency = 5 # Sets the output frequency to 5 GHz
generator.enable() # Enables the output

property amplitude_depth

A floating point property that controls the amplitude modulation in precent, which can take values from 0
to 100 %.

property amplitude_source

A string property that controls the source of the amplitude modulation signal, which can take the values:
‘internal’, ‘internal 2’, ‘external’, and ‘external 2’.

property center_frequency

A floating point property that represents the center frequency in Hz. This property can be set.

152 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

config_amplitude_modulation(frequency=1000.0, depth=100.0, shape='sine')
Configures the amplitude modulation of the output signal.

Parameters

• frequency – A modulation frequency for the internal oscillator

• depth – A linear depth precentage

• shape – A string that describes the shape for the internal oscillator

config_low_freq_out(source='internal', amplitude=3)
Configures the low-frequency output signal.

Parameters

• source – The source for the low-frequency output signal.

• amplitude – Amplitude of the low-frequency output

config_pulse_modulation(frequency=1000.0, input='square')
Configures the pulse modulation of the output signal.

Parameters

• frequency – A pulse rate frequency in Hertz

• input – A string that describes the internal pulse input

config_step_sweep()

Configures a step sweep through frequency

disable()

Disables the output of the signal.

disable_amplitude_modulation()

Disables amplitude modulation of the output signal.

disable_low_freq_out()

Disables low frequency output

disable_modulation()

Disables the signal modulation.

disable_pulse_modulation()

Disables pulse modulation of the output signal.

property dwell_time

A floating point property that represents the settling time in seconds at the current frequency or power
setting. This property can be set.

enable()

Enables the output of the signal.

enable_amplitude_modulation()

Enables amplitude modulation of the output signal.

enable_low_freq_out()

Enables low frequency output

enable_pulse_modulation()

Enables pulse modulation of the output signal.

7.7. Agilent 153

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property frequency

A floating point property that represents the output frequency in Hz. This property can be set.

property has_amplitude_modulation

Reads a boolean value that is True if the amplitude modulation is enabled.

property has_modulation

Reads a boolean value that is True if the modulation is enabled.

property has_pulse_modulation

Reads a boolean value that is True if the pulse modulation is enabled.

property internal_frequency

A floating point property that controls the frequency of the internal oscillator in Hertz, which can take
values from 0.5 Hz to 1 MHz.

property internal_shape

A string property that controls the shape of the internal oscillations, which can take the values: ‘sine’,
‘triangle’, ‘square’, ‘ramp’, ‘noise’, ‘dual-sine’, and ‘swept-sine’.

property is_enabled

Reads a boolean value that is True if the output is on.

property low_freq_out_amplitude

A floating point property that controls the peak voltage (amplitude) of the low frequency output in volts,
which can take values from 0-3.5V

property low_freq_out_source

A string property which controls the source of the low frequency output, which can take the values ‘internal
[2]’ for the inernal source, or ‘function [2]’ for an internal function generator which can be configured.

property power

A floating point property that represents the output power in dBm. This property can be set.

property pulse_frequency

A floating point property that controls the pulse rate frequency in Hertz, which can take values from 0.1
Hz to 10 MHz.

property pulse_input

A string property that controls the internally generated modulation input for the pulse modulation, which
can take the values: ‘square’, ‘free-run’, ‘triggered’, ‘doublet’, and ‘gated’.

property pulse_source

A string property that controls the source of the pulse modulation signal, which can take the values: ‘inter-
nal’, ‘external’, and ‘scalar’.

shutdown()

Shuts down the instrument by disabling any modulation and the output signal.

property start_frequency

A floating point property that represents the start frequency in Hz. This property can be set.

property start_power

A floating point property that represents the start power in dBm. This property can be set.

start_step_sweep()

Starts a step sweep.

154 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property step_points

An integer number of points in a step sweep. This property can be set.

property stop_frequency

A floating point property that represents the stop frequency in Hz. This property can be set.

property stop_power

A floating point property that represents the stop power in dBm. This property can be set.

stop_step_sweep()

Stops a step sweep.

7.7.2 Agilent 8722ES Vector Network Analyzer

class pymeasure.instruments.agilent.Agilent8722ES(adapter, name='Agilent 8722ES Vector Network
Analyzer', **kwargs)

Bases: Instrument

Represents the Agilent8722ES Vector Network Analyzer and provides a high-level interface for taking scans of
the scattering parameters.

property averages

An integer representing the number of averages to take. Note that averaging must be enabled for this to take
effect. This property can be set.

property averaging_enabled

A bool that indicates whether or not averaging is enabled. This property can be set.

property data

Returns the real and imaginary data from the last scan

property data_complex

Returns the complex power from the last scan

property data_log_magnitude

Returns the absolute magnitude values in dB from the last scan

property data_magnitude

Returns the absolute magnitude values from the last scan

property data_phase

Returns the phase in degrees from the last scan

disable_averaging()

Disables averaging

enable_averaging()

Enables averaging

property frequencies

Returns a list of frequencies from the last scan

is_averaging()

Returns True if averaging is enabled

log_magnitude(real, imaginary)
Returns the magnitude in dB from a real and imaginary number or numpy arrays

7.7. Agilent 155

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

magnitude(real, imaginary)
Returns the magnitude from a real and imaginary number or numpy arrays

phase(real, imaginary)
Returns the phase in degrees from a real and imaginary number or numpy arrays

scan(averages=None, blocking=None, timeout=None, delay=None)
Initiates a scan with the number of averages specified and blocks until the operation is complete.

scan_continuous()

Initiates a continuous scan

property scan_points

Gets the number of scan points

scan_single()

Initiates a single scan

set_IF_bandwidth(bandwidth)
Sets the resolution bandwidth (IF bandwidth)

set_averaging(averages)
Sets the number of averages and enables/disables averaging. Should be between 1 and 999

set_fixed_frequency(frequency)
Sets the scan to be of only one frequency in Hz

property start_frequency

A floating point property that represents the start frequency in Hz. This property can be set.

property stop_frequency

A floating point property that represents the stop frequency in Hz. This property can be set.

property sweep_time

A floating point property that represents the sweep time in seconds. This property can be set.

7.7.3 Agilent E4408B Spectrum Analyzer

class pymeasure.instruments.agilent.AgilentE4408B(adapter, name='Agilent E4408B Spectrum
Analyzer', **kwargs)

Bases: Instrument

Represents the AgilentE4408B Spectrum Analyzer and provides a high-level interface for taking scans of high-
frequency spectrums

property center_frequency

A floating point property that represents the center frequency in Hz. This property can be set.

property frequencies

Returns a numpy array of frequencies in Hz that correspond to the current settings of the instrument.

property frequency_points

An integer property that represents the number of frequency points in the sweep. This property can take
values from 101 to 8192.

property frequency_step

A floating point property that represents the frequency step in Hz. This property can be set.

156 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property start_frequency

A floating point property that represents the start frequency in Hz. This property can be set.

property stop_frequency

A floating point property that represents the stop frequency in Hz. This property can be set.

property sweep_time

A floating point property that represents the sweep time in seconds. This property can be set.

trace(number=1)
Returns a numpy array of the data for a particular trace based on the trace number (1, 2, or 3).

trace_df(number=1)
Returns a pandas DataFrame containing the frequency and peak data for a particular trace, based on the
trace number (1, 2, or 3).

7.7.4 Agilent E4980 LCR Meter

class pymeasure.instruments.agilent.AgilentE4980(adapter, name='Agilent E4980A/AL LCR meter',
**kwargs)

Bases: Instrument

Represents LCR meter E4980A/AL

property ac_current

AC current level, in Amps

property ac_voltage

AC voltage level, in Volts

aperture(time=None, averages=1)
Set and get aperture.

Parameters

• time – integration time as string: SHORT, MED, LONG (case insensitive); if None, get
values

• averages – number of averages, numeric

freq_sweep(freq_list, return_freq=False)
Run frequency list sweep using sequential trigger.

Parameters

• freq_list – list of frequencies

• return_freq – if True, returns the frequencies read from the instrument

Returns values as configured with mode

property frequency

AC frequency (range depending on model), in Hertz

property impedance

Measured data A and B, according to mode

7.7. Agilent 157

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property mode

Select quantities to be measured:

• CPD: Parallel capacitance [F] and dissipation factor [number]

• CPQ: Parallel capacitance [F] and quality factor [number]

• CPG: Parallel capacitance [F] and parallel conductance [S]

• CPRP: Parallel capacitance [F] and parallel resistance [Ohm]

• CSD: Series capacitance [F] and dissipation factor [number]

• CSQ: Series capacitance [F] and quality factor [number]

• CSRS: Series capacitance [F] and series resistance [Ohm]

• LPD: Parallel inductance [H] and dissipation factor [number]

• LPQ: Parallel inductance [H] and quality factor [number]

• LPG: Parallel inductance [H] and parallel conductance [S]

• LPRP: Parallel inductance [H] and parallel resistance [Ohm]

• LSD: Series inductance [H] and dissipation factor [number]

• LSQ: Seriesinductance [H] and quality factor [number]

• LSRS: Series inductance [H] and series resistance [Ohm]

• RX: Resitance [Ohm] and reactance [Ohm]

• ZTD: Impedance, magnitude [Ohm] and phase [deg]

• ZTR: Impedance, magnitude [Ohm] and phase [rad]

• GB: Conductance [S] and susceptance [S]

• YTD: Admittance, magnitude [Ohm] and phase [deg]

• YTR: Admittance magnitude [Ohm] and phase [rad]

property trigger_source

Select trigger source; accept the values:

• HOLD: manual

• INT: internal

• BUS: external bus (GPIB/LAN/USB)

• EXT: external connector

158 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.7.5 Agilent 34410A Multimeter

class pymeasure.instruments.agilent.Agilent34410A(adapter, name='HP/Agilent/Keysight 34410A
Multimeter', **kwargs)

Bases: Instrument

Represent the HP/Agilent/Keysight 34410A and related multimeters.

Implemented measurements: voltage_dc, voltage_ac, current_dc, current_ac, resistance, resistance_4w

property current_ac

AC current, in Amps

property current_dc

DC current, in Amps

property resistance

Resistance, in Ohms

property resistance_4w

Four-wires (remote sensing) resistance, in Ohms

property voltage_ac

AC voltage, in Volts

property voltage_dc

DC voltage, in Volts

7.7.6 HP/Agilent/Keysight 34450A Digital Multimeter

class pymeasure.instruments.agilent.Agilent34450A(adapter, name='HP/Agilent/Keysight 34450A
Multimeter', **kwargs)

Bases: Instrument

Represent the HP/Agilent/Keysight 34450A and related multimeters.

dmm = Agilent34450A("USB0::...")
dmm.reset()
dmm.configure_voltage()
print(dmm.voltage)
dmm.shutdown()

beep()

Sounds a system beep.

property capacitance

Reads a capacitance measurement in Farads, based on the active mode.

property capacitance_auto_range

A boolean property that toggles auto ranging for capacitance.

property capacitance_range

A property that controls the capacitance range in Farads, which can take values 1E-9, 10E-9, 100E-9, 1E-6,
10E-6, 100E-6, 1E-3, 10E-3, as well as “MIN”, “MAX”, or “DEF” (1E-6). Auto-range is disabled when
this property is set.

7.7. Agilent 159

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

configure_capacitance(capacitance_range='AUTO')
Configures the instrument to measure capacitance.

Parameters
capacitance_range – A capacitance in Farads to set the capacitance range, can be 1E-9,
10E-9, 100E-9, 1E-6, 10E-6, 100E-6, 1E-3, 10E-3, as well as “MIN”, “MAX”, “DEF” (1E-6),
or “AUTO”.

configure_continuity()

Configures the instrument to measure continuity.

configure_current(current_range='AUTO', ac=False, resolution='DEF')
Configures the instrument to measure current.

Parameters

• current_range – A current in Amps to set the current range. DC values can be 100E-6,
1E-3, 10E-3, 100E-3, 1, 10, as well as “MIN”, “MAX”, “DEF” (100 mA), or “AUTO”.
AC values can be 10E-3, 100E-3, 1, 10, as well as “MIN”, “MAX”, “DEF” (100 mA), or
“AUTO”.

• ac – False for DC current, and True for AC current

• resolution – Desired resolution, can be 3.00E-5, 2.00E-5, 1.50E-6 (5 1/2 digits), as well
as “MIN”, “MAX”, or “DEF” (1.50E-6).

configure_diode()

Configures the instrument to measure diode voltage.

configure_frequency(measured_from='voltage_ac', measured_from_range='AUTO', aperture='DEF')
Configures the instrument to measure frequency.

Parameters

• measured_from – “voltage_ac” or “current_ac”

• measured_from_range – range of measured_from. AC voltage can have ranges 100E-
3, 1, 10, 100, 750, as well as “MIN”, “MAX”, “DEF” (10 V), or “AUTO”. AC current
can have ranges 10E-3, 100E-3, 1, 10, as well as “MIN”, “MAX”, “DEF” (100 mA), or
“AUTO”.

• aperture – Aperture time in Seconds, can be 100 ms, 1 s, as well as “MIN”, “MAX”, or
“DEF” (1 s).

configure_resistance(resistance_range='AUTO', wires=2, resolution='DEF')
Configures the instrument to measure resistance.

Parameters

• resistance_range – A resistance in Ohms to set the resistance range, can be 100, 1E3,
10E3, 100E3, 1E6, 10E6, 100E6, as well as “MIN”, “MAX”, “DEF” (1E3), or “AUTO”.

• wires – Number of wires used for measurement, can be 2 or 4.

• resolution – Desired resolution, can be 3.00E-5, 2.00E-5, 1.50E-6 (5 1/2 digits), as well
as “MIN”, “MAX”, or “DEF” (1.50E-6).

configure_temperature()

Configures the instrument to measure temperature.

160 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

configure_voltage(voltage_range='AUTO', ac=False, resolution='DEF')
Configures the instrument to measure voltage.

Parameters

• voltage_range – A voltage in Volts to set the voltage range. DC values can be 100E-3,
1, 10, 100, 1000, as well as “MIN”, “MAX”, “DEF” (10 V), or “AUTO”. AC values can
be 100E-3, 1, 10, 100, 750, as well as “MIN”, “MAX”, “DEF” (10 V), or “AUTO”.

• ac – False for DC voltage, True for AC voltage

• resolution – Desired resolution, can be 3.00E-5, 2.00E-5, 1.50E-6 (5 1/2 digits), as well
as “MIN”, “MAX”, or “DEF” (1.50E-6).

property continuity

Reads a continuity measurement in Ohms, based on the active mode.

property current

Reads a DC current measurement in Amps, based on the active mode.

property current_ac

Reads an AC current measurement in Amps, based on the active mode.

property current_ac_auto_range

A boolean property that toggles auto ranging for AC current.

property current_ac_range

A property that controls the AC current range in Amps, which can take values 10E-3, 100E-3, 1, 10, as
well as “MIN”, “MAX”, or “DEF” (100 mA). Auto-range is disabled when this property is set.

property current_ac_resolution

An property that controls the resolution in the AC current readings, which can take values 3.00E-5, 2.00E-5,
1.50E-6 (5 1/2 digits), as well as “MIN”, “MAX”, or “DEF” (1.50E-6).

property current_auto_range

A boolean property that toggles auto ranging for DC current.

property current_range

A property that controls the DC current range in Amps, which can take values 100E-6, 1E-3, 10E-3, 100E-
3, 1, 10, as well as “MIN”, “MAX”, or “DEF” (100 mA). Auto-range is disabled when this property is
set.

property current_resolution

A property that controls the resolution in the DC current readings, which can take values 3.00E-5, 2.00E-5,
1.50E-6 (5 1/2 digits), as well as “MIN”, “MAX”, and “DEF” (3.00E-5).

property diode

Reads a diode measurement in Volts, based on the active mode.

property frequency

Reads a frequency measurement in Hz, based on the active mode.

property frequency_aperture

A property that controls the frequency aperture in seconds, which sets the integration period and measure-
ment speed. Takes values 100 ms, 1 s, as well as “MIN”, “MAX”, or “DEF” (1 s).

property frequency_current_auto_range

Boolean property that toggles auto ranging for AC current in frequency measurements.

7.7. Agilent 161

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property frequency_current_range

A property that controls the current range in Amps for frequency on AC current measurements, which can
take values 10E-3, 100E-3, 1, 10, as well as “MIN”, “MAX”, or “DEF” (100 mA). Auto-range is disabled
when this property is set.

property frequency_voltage_auto_range

Boolean property that toggles auto ranging for AC voltage in frequency measurements.

property frequency_voltage_range

A property that controls the voltage range in Volts for frequency on AC voltage measurements, which can
take values 100E-3, 1, 10, 100, 750, as well as “MIN”, “MAX”, or “DEF” (10 V). Auto-range is disabled
when this property is set.

property resistance

Reads a resistance measurement in Ohms for 2-wire configuration, based on the active mode.

property resistance_4w

Reads a resistance measurement in Ohms for 4-wire configuration, based on the active mode.

property resistance_4w_auto_range

A boolean property that toggles auto ranging for 4-wire resistance.

property resistance_4w_range

A property that controls the 4-wire resistance range in Ohms, which can take values 100, 1E3, 10E3, 100E3,
1E6, 10E6, 100E6, as well as “MIN”, “MAX”, or “DEF” (1E3). Auto-range is disabled when this property
is set.

property resistance_4w_resolution

A property that controls the resolution in the 4-wire resistance readings, which can take values 3.00E-5,
2.00E-5, 1.50E-6 (5 1/2 digits), as well as “MIN”, “MAX”, or “DEF” (1.50E-6).

property resistance_auto_range

A boolean property that toggles auto ranging for 2-wire resistance.

property resistance_range

A property that controls the 2-wire resistance range in Ohms, which can take values 100, 1E3, 10E3, 100E3,
1E6, 10E6, 100E6, as well as “MIN”, “MAX”, or “DEF” (1E3). Auto-range is disabled when this property
is set.

property resistance_resolution

A property that controls the resolution in the 2-wire resistance readings, which can take values 3.00E-5,
2.00E-5, 1.50E-6 (5 1/2 digits), as well as “MIN”, “MAX”, or “DEF” (1.50E-6).

property temperature

Reads a temperature measurement in Celsius, based on the active mode.

property voltage

Reads a DC voltage measurement in Volts, based on the active mode.

property voltage_ac

Reads an AC voltage measurement in Volts, based on the active mode.

property voltage_ac_auto_range

A boolean property that toggles auto ranging for AC voltage.

property voltage_ac_range

A property that controls the AC voltage range in Volts, which can take values 100E-3, 1, 10, 100, 750, as
well as “MIN”, “MAX”, or “DEF” (10 V). Auto-range is disabled when this property is set.

162 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property voltage_ac_resolution

A property that controls the resolution in the AC voltage readings, which can take values 3.00E-5, 2.00E-5,
1.50E-6 (5 1/2 digits), as well as “MIN”, “MAX”, or “DEF” (1.50E-6).

property voltage_auto_range

A boolean property that toggles auto ranging for DC voltage.

property voltage_range

A property that controls the DC voltage range in Volts, which can take values 100E-3, 1, 10, 100, 1000, as
well as “MIN”, “MAX”, or “DEF” (10 V). Auto-range is disabled when this property is set.

property voltage_resolution

A property that controls the resolution in the DC voltage readings, which can take values 3.00E-5, 2.00E-5,
1.50E-6 (5 1/2 digits), as well as “MIN”, “MAX”, or “DEF” (1.50E-6).

7.7.7 Agilent 4155/4156 Semiconductor Parameter Analyzer

class pymeasure.instruments.agilent.agilent4156.Agilent4156(adapter, name='Agilent 4155/4156
Semiconductor Parameter Analyzer',
**kwargs)

Bases: Instrument

Represents the Agilent 4155/4156 Semiconductor Parameter Analyzer and provides a high-level interface for
taking current-voltage (I-V) measurements.

from pymeasure.instruments.agilent import Agilent4156

explicitly define r/w terminations; set sufficiently large timeout or None.
smu = Agilent4156("GPIB0::25", read_termination = '\n', write_termination = '\n',

timeout=None)

reset the instrument
smu.reset()

define configuration file for instrument and load config
smu.configure("configuration_file.json")

save data variables, some or all of which are defined in the json config file.
smu.save(['VC', 'IC', 'VB', 'IB'])

take measurements
status = smu.measure()

measured data is a pandas dataframe and can be exported to csv.
data = smu.get_data(path='./t1.csv')

The JSON file is an ascii text configuration file that defines the settings of each channel on the instrument. The
JSON file is used to configure the instrument using the convenience function configure() as shown in the
example above. For example, the instrument setup for a bipolar transistor measurement is shown below.

{
"SMU1": {

"voltage_name" : "VC",
(continues on next page)

7.7. Agilent 163

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

"current_name" : "IC",
"channel_function" : "VAR1",
"channel_mode" : "V",
"series_resistance" : "0OHM"

},

"SMU2": {
"voltage_name" : "VB",
"current_name" : "IB",
"channel_function" : "VAR2",
"channel_mode" : "I",
"series_resistance" : "0OHM"

},

"SMU3": {
"voltage_name" : "VE",
"current_name" : "IE",
"channel_function" : "CONS",
"channel_mode" : "V",
"constant_value" : 0,
"compliance" : 0.1

},

"SMU4": {
"voltage_name" : "VS",
"current_name" : "IS",
"channel_function" : "CONS",
"channel_mode" : "V",
"constant_value" : 0,
"compliance" : 0.1

},

"VAR1": {
"start" : 1,
"stop" : 2,
"step" : 0.1,
"spacing" : "LINEAR",
"compliance" : 0.1

},

"VAR2": {
"start" : 0,
"step" : 10e-6,
"points" : 3,
"compliance" : 2

}
}

property analyzer_mode

A string property that controls the instrument operating mode.

• Values: SWEEP, SAMPLING

164 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

smu.analyzer_mode = "SWEEP"

configure(config_file)
Configure the channel setup and sweep using a JSON configuration file.

(JSON is the JavaScript Object Notation)

Parameters
config_file – JSON file to configure instrument channels.

instr.configure('config.json')

property data_variables

Get a string list of data variables for which measured data is available.

This looks for all the variables saved by the save() and save_var()methods and returns it. This is useful
for creation of dataframe headers.

Returns
List

header = instr.data_variables

property delay_time

A floating point property that measurement delay time in seconds, which can take the values from 0 to 65s
in 0.1s steps.

instr.delay_time = 1 # delay time of 1-sec

disable_all()

Disables all channels in the instrument.

instr.disable_all()

get_data(path=None)
Get the measurement data from the instrument after completion.

If the measurement period is set to INF in the measure() method, then the measurement must be stopped
using stop() before getting valid data.

Parameters
path – Path for optional data export to CSV.

Returns
Pandas Dataframe

df = instr.get_data(path='./datafolder/data1.csv')

property hold_time

A floating point property that measurement hold time in seconds, which can take the values from 0 to 655s
in 1s steps.

instr.hold_time = 2 # hold time of 2-secs.

property integration_time

A string property that controls the integration time.

7.7. Agilent 165

https://www.json.org/

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• Values: SHORT, MEDIUM, LONG

instr.integration_time = "MEDIUM"

measure(period='INF', points=100)
Performs a single measurement and waits for completion in sweep mode. In sampling mode, the measure-
ment period and number of points can be specified.

Parameters

• period – Period of sampling measurement from 6E-6 to 1E11 seconds. Default setting is
INF.

• points – Number of samples to be measured, from 1 to 10001. Default setting is 100.

save(trace_list)
Save the voltage or current in the instrument display list

Parameters
trace_list – A list of channel variables whose measured data should be saved. A maximum
of 8 variables are allowed. If only one variable is being saved, a string can be specified.

instr.save(['IC', 'IB', 'VC', 'VB']) #for list of variables
instr.save('IC') #for single variable

save_var(trace_list)
Save the voltage or current in the instrument variable list.

This is useful if one or two more variables need to be saved in addition to the 8 variables allowed by save().

Parameters
trace_list – A list of channel variables whose measured data should be saved. A maximum
of 2 variables are allowed. If only one variable is being saved, a string can be specified.

instr.save_var(['VA', 'VB'])

stop()

Stops the ongoing measurement

instr.stop()

class pymeasure.instruments.agilent.agilent4156.SMU(adapter, channel, **kwargs)
Bases: Instrument

property channel_function

A string property that controls the SMU<n> channel function.

• Values: VAR1, VAR2, VARD or CONS.

instr.smu1.channel_function = "VAR1"

property channel_mode

A string property that controls the SMU<n> channel mode.

• Values: V, I or COMM

VPULSE AND IPULSE are not yet supported.

166 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

instr.smu1.channel_mode = "V"

property compliance

Sets the constant compliance value of SMU<n>.

If the SMU channel is setup as a variable (VAR1, VAR2, VARD) then compliance limits are set by the
variable definition.

• Value: Voltage in (-200V, 200V) and current in (-1A, 1A) based on channel_mode().

instr.smu1.compliance = 0.1

property constant_value

Set the constant source value of SMU<n>.

You use this command only if channel_function() is CONS and also channel_mode() should not be
COMM.

Parameters
const_value – Voltage in (-200V, 200V) and current in (-1A, 1A). Voltage or current de-
pends on if channel_mode() is set to V or I.

instr.smu1.constant_value = 1

property current_name

Define the current name of the channel.

If input is greater than 6 characters long or starts with a number, the name is autocorrected and prepended
with ‘a’. Event is logged.

instr.smu1.current_name = "Ibase"

property disable

Deletes the settings of SMU<n>.

instr.smu1.disable()

property series_resistance

Controls the series resistance of SMU<n>.

• Values: 0OHM, 10KOHM, 100KOHM, or 1MOHM

instr.smu1.series_resistance = "10KOHM"

property voltage_name

Define the voltage name of the channel.

If input is greater than 6 characters long or starts with a number, the name is autocorrected and prepended
with ‘a’. Event is logged.

instr.smu1.voltage_name = "Vbase"

class pymeasure.instruments.agilent.agilent4156.VAR1(adapter, **kwargs)
Bases: VARX

Class to handle all the specific definitions needed for VAR1. Most common methods are inherited from base
class.

7.7. Agilent 167

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property spacing

Selects the sweep type of VAR1.

• Values: LINEAR, LOG10, LOG25, LOG50.

class pymeasure.instruments.agilent.agilent4156.VAR2(adapter, **kwargs)
Bases: VARX

Class to handle all the specific definitions needed for VAR2. Common methods are imported from base class.

property points

Sets the number of sweep steps of VAR2. You use this command only if there is an SMU or VSU whose
function (FCTN) is VAR2.

instr.var2.points = 10

class pymeasure.instruments.agilent.agilent4156.VARD(adapter, **kwargs)
Bases: Instrument

Class to handle all the definitions needed for VARD. VARD is always defined in relation to VAR1.

property compliance

Sets the sweep COMPLIANCE value of VARD.

instr.vard.compliance = 0.1

property offset

Sets the OFFSET value of VARD. For each step of sweep, the output values of VAR1’ are determined by
the following equation: VARD = VAR1 X RATio + OFFSet You use this command only if there is an SMU
or VSU whose function is VARD.

instr.vard.offset = 1

property ratio

Sets the RATIO of VAR1’. For each step of sweep, the output values of VAR1’ are determined by the
following equation: VAR1’ = VAR1 * RATio + OFFSet You use this command only if there is an SMU or
VSU whose function (FCTN) is VAR1’.

instr.vard.ratio = 1

class pymeasure.instruments.agilent.agilent4156.VARX(adapter, var_name, **kwargs)
Bases: Instrument

Base class to define sweep variable settings

property compliance

Sets the sweep COMPLIANCE value.

instr.var1.compliance = 0.1

property start

Sets the sweep START value.

instr.var1.start = 0

168 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property step

Sets the sweep STEP value.

instr.var1.step = 0.1

property stop

Sets the sweep STOP value.

instr.var1.stop = 3

class pymeasure.instruments.agilent.agilent4156.VMU(adapter, channel, **kwargs)
Bases: Instrument

property channel_mode

A string property that controls the VMU<n> channel mode.

• Values: V, DVOL

property disable

Disables the settings of VMU<n>.

instr.vmu1.disable()

property voltage_name

Define the voltage name of the VMU channel.

If input is greater than 6 characters long or starts with a number, the name is autocorrected and prepended
with ‘a’. Event is logged.

instr.vmu1.voltage_name = "Vanode"

class pymeasure.instruments.agilent.agilent4156.VSU(adapter, channel, **kwargs)
Bases: Instrument

property channel_function

A string property that controls the VSU channel function.

• Value: VAR1, VAR2, VARD or CONS.

property channel_mode

Get channel mode of VSU<n>.

property constant_value

Sets the constant source value of VSU<n>.

instr.vsu1.constant_value = 0

property disable

Deletes the settings of VSU<n>.

instr.vsu1.disable()

property voltage_name

Define the voltage name of the VSU channel

If input is greater than 6 characters long or starts with a number, the name is autocorrected and prepended
with ‘a’. Event is logged.

7.7. Agilent 169

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

instr.vsu1.voltage_name = "Ve"

7.7.8 Agilent 33220A Arbitrary Waveform Generator

class pymeasure.instruments.agilent.Agilent33220A(adapter, name='Agilent 33220A Arbitrary
Waveform generator', **kwargs)

Bases: Instrument

Represents the Agilent 33220A Arbitrary Waveform Generator.

Default channel for the Agilent 33220A
wfg = Agilent33220A("GPIB::10")

wfg.shape = "SINUSOID" # Sets a sine waveform
wfg.frequency = 4.7e3 # Sets the frequency to 4.7 kHz
wfg.amplitude = 1 # Set amplitude of 1 V
wfg.offset = 0 # Set the amplitude to 0 V

wfg.burst_state = True # Enable burst mode
wfg.burst_ncycles = 10 # A burst will consist of 10 cycles
wfg.burst_mode = "TRIGGERED" # A burst will be applied on a trigger
wfg.trigger_source = "BUS" # A burst will be triggered on TRG*

wfg.output = True # Enable output of waveform generator
wfg.trigger() # Trigger a burst
wfg.wait_for_trigger() # Wait until the triggering is finished
wfg.beep() # "beep"

print(wfg.check_errors()) # Get the error queue

property amplitude

A floating point property that controls the voltage amplitude of the output waveform in V, from 10e-3 V to
10 V. Can be set.

property amplitude_unit

A string property that controls the units of the amplitude. Valid values are Vpp (default), Vrms, and dBm.
Can be set.

beep()

Causes a system beep.

property beeper_state

A boolean property that controls the state of the beeper. Can be set.

property burst_mode

A string property that controls the burst mode. Valid values are: TRIG<GERED>, GAT<ED>. This setting
can be set.

property burst_ncycles

An integer property that sets the number of cycles to be output when a burst is triggered. Valid values are
1 to 50000. This can be set.

170 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property burst_state

A boolean property that controls whether the burst mode is on (True) or off (False). Can be set.

property frequency

A floating point property that controls the frequency of the output waveform in Hz, from 1e-6 (1 uHz) to
20e+6 (20 MHz), depending on the specified function. Can be set.

property offset

A floating point property that controls the voltage offset of the output waveform in V, from 0 V to 4.995 V,
depending on the set voltage amplitude (maximum offset = (10 - voltage) / 2). Can be set.

property output

A boolean property that turns on (True) or off (False) the output of the function generator. Can be set.

property pulse_dutycycle

A floating point property that controls the duty cycle of a pulse waveform function in percent. Can be set.

property pulse_hold

A string property that controls if either the pulse width or the duty cycle is retained when changing the
period or frequency of the waveform. Can be set to: WIDT<H> or DCYC<LE>.

property pulse_period

A floating point property that controls the period of a pulse waveform function in seconds, ranging from
200 ns to 2000 s. Can be set and overwrites the frequency for all waveforms. If the period is shorter than
the pulse width + the edge time, the edge time and pulse width will be adjusted accordingly.

property pulse_transition

A floating point property that controls the the edge time in seconds for both the rising and falling edges. It
is defined as the time between 0.1 and 0.9 of the threshold. Valid values are between 5 ns to 100 ns. The
transition time has to be smaller than 0.625 * the pulse width. Can be set.

property pulse_width

A floating point property that controls the width of a pulse waveform function in seconds, ranging from 20
ns to 2000 s, within a set of restrictions depending on the period. Can be set.

property ramp_symmetry

A floating point property that controls the symmetry percentage for the ramp waveform. Can be set.

property remote_local_state

A string property that controls the remote/local state of the function generator. Valid values are: LOC<AL>,
REM<OTE>, RWL<OCK>. This setting can only be set.

property shape

A string property that controls the output waveform. Can be set to: SIN<USOID>, SQU<ARE>, RAMP,
PULS<E>, NOIS<E>, DC, USER.

property square_dutycycle

A floating point property that controls the duty cycle of a square waveform function in percent. Can be set.

trigger()

Send a trigger signal to the function generator.

property trigger_source

A string property that controls the trigger source. Valid values are: IMM<EDIATE> (internal),
EXT<ERNAL> (rear input), BUS (via trigger command). This setting can be set.

7.7. Agilent 171

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property trigger_state

A boolean property that controls whether the output is triggered (True) or not (False). Can be set.

property voltage_high

A floating point property that controls the upper voltage of the output waveform in V, from -4.990 V to 5
V (must be higher than low voltage). Can be set.

property voltage_low

A floating point property that controls the lower voltage of the output waveform in V, from -5 V to 4.990
V (must be lower than high voltage). Can be set.

wait_for_trigger(timeout=3600, should_stop=<function Agilent33220A.<lambda>>)
Wait until the triggering has finished or timeout is reached.

Parameters

• timeout – The maximum time the waiting is allowed to take. If timeout is exceeded, a
TimeoutError is raised. If timeout is set to zero, no timeout will be used.

• should_stop – Optional function (returning a bool) to allow the waiting to be stopped
before its end.

7.7.9 Agilent 33500 Function/Arbitrary Waveform Generator Family

class pymeasure.instruments.agilent.Agilent33500(adapter, name='Agilent 33500 Function/Arbitrary
Waveform generator family', **kwargs)

Bases: Instrument

Represents the Agilent 33500 Function/Arbitrary Waveform Generator family.

Individual devices are represented by subclasses. User can specify a channel to control, if no channel specified,
a default channel is picked based on the device e.g. For Agilent33500B the default channel is channel 1. See
reference manual for your device

generator = Agilent33500("GPIB::1")

generator.shape = 'SIN' # Sets default channel output signal shape␣
→˓to sine
generator.ch_1.shape = 'SIN' # Sets channel 1 output signal shape to sine
generator.frequency = 1e3 # Sets default channel output frequency to␣
→˓1 kHz
generator.ch_1.frequency = 1e3 # Sets channel 1 output frequency to 1 kHz
generator.ch_2.amplitude = 5 # Sets channel 2 output amplitude to 5 Vpp
generator.ch_2.output = 'on' # Enables channel 2 output

generator.ch_1.shape = 'ARB' # Set channel 1 shape to arbitrary
generator.ch_1.arb_srate = 1e6 # Set channel 1 sample rate to 1MSa/s

generator.ch_1.data_volatile_clear() # Clear channel 1 volatile internal memory
generator.ch_1.data_arb(# Send data of arbitrary waveform to channel␣
→˓1
'test',
range(-10000, 10000, +20), # In this case a simple ramp
data_format='DAC' # Data format is set to 'DAC'

)
generator.ch_1.arb_file = 'test' # Select the transmitted waveform 'test'

172 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

ch_1

Channel
Agilent33500Channel

ch_2

Channel
Agilent33500Channel

property amplitude

A floating point property that controls the voltage amplitude of the output waveform in V, from 10e-3 V to
10 V. Depends on the output impedance.

property amplitude_unit

A string property that controls the units of the amplitude. Valid values are VPP (default), VRMS, and
DBM.

property arb_advance

A string property that selects how the device advances from data point to data point. Can be set to
‘TRIG<GER>’ or ‘SRAT<E>’ (default).

property arb_file

A string property that selects the arbitrary signal from the volatile memory of the device. String has to
match an existing arb signal in volatile memory (set by data_arb()).

property arb_filter

A string property that selects the filter setting for arbitrary signals. Can be set to ‘NORM<AL>’, ‘STEP’
and ‘OFF’.

property arb_srate

An floating point property that sets the sample rate of the currently selected arbitrary signal. Valid values
are 1 µSa/s to 250 MSa/s (maximum range, can be lower depending on your device).

beep()

Causes a system beep.

property burst_mode

A string property that controls the burst mode. Valid values are: TRIG<GERED>, GAT<ED>.

property burst_ncycles

An integer property that sets the number of cycles to be output when a burst is triggered. Valid values are
1 to 100000. This can be set.

property burst_period

A floating point property that controls the period of subsequent bursts. Has to follow the equation
burst_period > (burst_ncycles / frequency) + 1 µs. Valid values are 1 µs to 8000 s.

property burst_state

A boolean property that controls whether the burst mode is on (True) or off (False).

clear_display()

Removes a text message from the display.

data_arb(arb_name, data_points, data_format='DAC')
Uploads an arbitrary trace into the volatile memory of the device.

The data_points can be given as: comma separated 16 bit DAC values (ranging from -32767 to +32767),
as comma separated floating point values (ranging from -1.0 to +1.0) or as a binary data stream. Check

7.7. Agilent 173

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

the manual for more information. The storage depends on the device type and ranges from 8 Sa to 16 MSa
(maximum).

Parameters

• arb_name – The name of the trace in the volatile memory. This is used to access the trace.

• data_points – Individual points of the trace. The format depends on the format pa-
rameter. format = ‘DAC’ (default): Accepts list of integer values ranging from -32767 to
+32767. Minimum of 8 a maximum of 65536 points. format = ‘float’: Accepts list of float-
ing point values ranging from -1.0 to +1.0. Minimum of 8 a maximum of 65536 points.
format = ‘binary’: Accepts a binary stream of 8 bit data.

• data_format – Defines the format of data_points. Can be ‘DAC’ (default), ‘float’ or
‘binary’. See documentation on parameter data_points above.

data_volatile_clear()

Clear all arbitrary signals from volatile memory.

This should be done if the same name is used continuously to load different arbitrary signals into the
memory, since an error will occur if a trace is loaded which already exists in the memory.

property display

A string property which is displayed on the front panel of the device.

property ext_trig_out

A boolean property that controls whether the trigger out signal is active (True) or not (False). This signal
is output from the Ext Trig connector on the rear panel in Burst and Wobbel mode.

property frequency

A floating point property that controls the frequency of the output waveform in Hz, from 1 uHz to 120 MHz
(maximum range, can be lower depending on your device), depending on the specified function.

property offset

A floating point property that controls the voltage offset of the output waveform in V, from 0 V to 4.995 V,
depending on the set voltage amplitude (maximum offset = (Vmax - voltage) / 2).

property output

A boolean property that turns on (True, ‘on’) or off (False, ‘off’) the output of the function generator.

property output_load

Sets the expected load resistance (should be the load impedance connected to the output. The output
impedance is always 50 Ohm, this setting can be used to correct the displayed voltage for loads unmatched
to 50 Ohm. Valid values are between 1 and 10 kOhm or INF for high impedance. No validator is used since
both numeric and string inputs are accepted, thus a value outside the range will not return an error.

property phase

A floating point property that controls the phase of the output waveform in degrees, from -360 degrees to
360 degrees. Not available for arbitrary waveforms or noise.

phase_sync()

Synchronize the phase of all channels.

property pulse_dutycycle

A floating point property that controls the duty cycle of a pulse waveform function in percent, from 0% to
100%.

174 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property pulse_hold

A string property that controls if either the pulse width or the duty cycle is retained when changing the
period or frequency of the waveform. Can be set to: WIDT<H> or DCYC<LE>.

property pulse_period

A floating point property that controls the period of a pulse waveform function in seconds, ranging from
33 ns to 1e6 s. Can be set and overwrites the frequency for all waveforms. If the period is shorter than the
pulse width + the edge time, the edge time and pulse width will be adjusted accordingly.

property pulse_transition

A floating point property that controls the edge time in seconds for both the rising and falling edges. It is
defined as the time between the 10% and 90% thresholds of the edge. Valid values are between 8.4 ns to 1
µs.

property pulse_width

A floating point property that controls the width of a pulse waveform function in seconds, ranging from 16
ns to 1 Ms, within a set of restrictions depending on the period.

property ramp_symmetry

A floating point property that controls the symmetry percentage for the ramp waveform, from 0.0% to
100.0%.

property shape

A string property that controls the output waveform. Can be set to: SIN<USOID>, SQU<ARE>,
TRI<ANGLE>, RAMP, PULS<E>, PRBS, NOIS<E>, ARB, DC.

property square_dutycycle

A floating point property that controls the duty cycle of a square waveform function in percent, from 0.01%
to 99.98%. The duty cycle is limited by the frequency and the minimal pulse width of 16 ns. See manual
for more details.

trigger()

Send a trigger signal to the function generator.

property trigger_source

A string property that controls the trigger source. Valid values are: IMM<EDIATE> (internal),
EXT<ERNAL> (rear input), BUS (via trigger command).

property voltage_high

A floating point property that controls the upper voltage of the output waveform in V, from -4.999 V to 5
V (must be higher than low voltage by at least 1 mV).

property voltage_low

A floating point property that controls the lower voltage of the output waveform in V, from -5 V to 4.999
V (must be lower than high voltage by at least 1 mV).

wait_for_trigger(timeout=3600, should_stop=<function Agilent33500.<lambda>>)
Wait until the triggering has finished or timeout is reached.

Parameters

• timeout – The maximum time the waiting is allowed to take. If timeout is exceeded, a
TimeoutError is raised. If timeout is set to zero, no timeout will be used.

• should_stop – Optional function (returning a bool) to allow the waiting to be stopped
before its end.

7.7. Agilent 175

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.7.10 Agilent 33521A Function/Arbitrary Waveform Generator

class pymeasure.instruments.agilent.Agilent33521A(adapter, **kwargs)
Bases: Agilent33500

Represents the Agilent 33521A Function/Arbitrary Waveform Generator.

This documentation page shows only methods different from the parent class Agilent33500.

ch_1

Channel
Agilent33500Channel

ch_2

Channel
Agilent33500Channel

property arb_srate

An floating point property that sets the sample rate of the currently selected arbitrary signal. Valid values
are 1 µSa/s to 250 MSa/s. This can be set.

property frequency

A floating point property that controls the frequency of the output waveform in Hz, from 1 uHz to 30 MHz,
depending on the specified function. Can be set.

class pymeasure.instruments.agilent.agilent33500.Agilent33500Channel(parent, id)
Bases: Channel

Implementation of a base Agilent 33500 channel

property amplitude

A floating point property that controls the voltage amplitude of the output waveform in V, from 10e-3 V to
10 V. Depends on the output impedance.

property amplitude_unit

A string property that controls the units of the amplitude. Valid values are VPP (default), VRMS, and
DBM.

property arb_advance

A string property that selects how the device advances from data point to data point. Can be set to
‘TRIG<GER>’ or ‘SRAT<E>’ (default).

property arb_file

A string property that selects the arbitrary signal from the volatile memory of the device. String has to
match an existing arb signal in volatile memory (set by data_arb()).

property arb_filter

A string property that selects the filter setting for arbitrary signals. Can be set to ‘NORM<AL>’, ‘STEP’
and ‘OFF’.

property arb_srate

An floating point property that sets the sample rate of the currently selected arbitrary signal. Valid values
are 1 µSa/s to 250 MSa/s (maximum range, can be lower depending on your device).

property burst_mode

A string property that controls the burst mode. Valid values are: TRIG<GERED>, GAT<ED>.

176 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property burst_ncycles

An integer property that sets the number of cycles to be output when a burst is triggered. Valid values are
1 to 100000. This can be set.

property burst_period

A floating point property that controls the period of subsequent bursts. Has to follow the equation
burst_period > (burst_ncycles / frequency) + 1 µs. Valid values are 1 µs to 8000 s.

property burst_state

A boolean property that controls whether the burst mode is on (True) or off (False).

data_arb(arb_name, data_points, data_format='DAC')
Uploads an arbitrary trace into the volatile memory of the device for a given channel.

The data_points can be given as: comma separated 16 bit DAC values (ranging from -32767 to +32767),
as comma separated floating point values (ranging from -1.0 to +1.0), or as a binary data stream. Check
the manual for more information. The storage depends on the device type and ranges from 8 Sa to 16 MSa
(maximum).

Parameters

• arb_name – The name of the trace in the volatile memory. This is used to access the trace.

• data_points – Individual points of the trace. The format depends on the format param-
eter.

format = ‘DAC’ (default): Accepts list of integer values ranging from -32767 to +32767.
Minimum of 8 a maximum of 65536 points.

format = ‘float’: Accepts list of floating point values ranging from -1.0 to +1.0. Minimum
of 8 a maximum of 65536 points.

format = ‘binary’: Accepts a binary stream of 8 bit data.

• data_format – Defines the format of data_points. Can be ‘DAC’ (default), ‘float’ or
‘binary’. See documentation on parameter data_points above.

data_volatile_clear()

Clear all arbitrary signals from volatile memory for a given channel.

This should be done if the same name is used continuously to load different arbitrary signals into the
memory, since an error will occur if a trace is loaded which already exists in memory.

property frequency

A floating point property that controls the frequency of the output waveform in Hz, from 1 uHz to 120 MHz
(maximum range, can be lower depending on your device), depending on the specified function.

property offset

A floating point property that controls the voltage offset of the output waveform in V, from 0 V to 4.995 V,
depending on the set voltage amplitude (maximum offset = (Vmax - voltage) / 2).

property output

A boolean property that turns on (True, ‘on’) or off (False, ‘off’) the output of the function generator.

property output_load

Sets the expected load resistance (should be the load impedance connected to the output. The output
impedance is always 50 Ohm, this setting can be used to correct the displayed voltage for loads unmatched
to 50 Ohm. Valid values are between 1 and 10 kOhm or INF for high impedance. No validator is used since
both numeric and string inputs are accepted, thus a value outside the range will not return an error.

7.7. Agilent 177

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property phase

A floating point property that controls the phase of the output waveform in degrees, from -360 degrees to
360 degrees. Not available for arbitrary waveforms or noise.

property pulse_dutycycle

A floating point property that controls the duty cycle of a pulse waveform function in percent, from 0% to
100%.

property pulse_hold

A string property that controls if either the pulse width or the duty cycle is retained when changing the
period or frequency of the waveform. Can be set to: WIDT<H> or DCYC<LE>.

property pulse_period

A floating point property that controls the period of a pulse waveform function in seconds, ranging from
33 ns to 1 Ms. Can be set and overwrites the frequency for all waveforms. If the period is shorter than the
pulse width + the edge time, the edge time and pulse width will be adjusted accordingly.

property pulse_transition

A floating point property that controls the edge time in seconds for both the rising and falling edges. It is
defined as the time between the 10% and 90% thresholds of the edge. Valid values are between 8.4 ns to 1
µs.

property pulse_width

A floating point property that controls the width of a pulse waveform function in seconds, ranging from 16
ns to 1e6 s, within a set of restrictions depending on the period.

property ramp_symmetry

A floating point property that controls the symmetry percentage for the ramp waveform, from 0.0% to
100.0%.

property shape

A string property that controls the output waveform. Can be set to: SIN<USOID>, SQU<ARE>,
TRI<ANGLE>, RAMP, PULS<E>, PRBS, NOIS<E>, ARB, DC.

property square_dutycycle

A floating point property that controls the duty cycle of a square waveform function in percent, from 0.01%
to 99.98%. The duty cycle is limited by the frequency and the minimal pulse width of 16 ns. See manual
for more details.

property voltage_high

A floating point property that controls the upper voltage of the output waveform in V, from -4.999 V to 5
V (must be higher than low voltage by at least 1 mV).

property voltage_low

A floating point property that controls the lower voltage of the output waveform in V, from -5 V to 4.999
V (must be lower than high voltage by at least 1 mV).

178 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.7.11 Agilent B1500 Semiconductor Parameter Analyzer

Contents

• Agilent B1500 Semiconductor Parameter Analyzer

– General Information

∗ Command Translation

– Examples

∗ Initialization of the Instrument

∗ IV measurement with 4 SMUs

∗ Sampling measurement with 4 SMUs

– Main Classes

– Supporting Classes

∗ Enumerations

General Information

This instrument driver does not support all configuration options of the B1500 mainframe yet. So far, it is possible
to interface multiple SMU modules and source/measure currents and voltages, perform sampling and staircase sweep
measurements. The implementation of further measurement functionalities is highly encouraged. Meanwhile the model
is managed by Keysight, see the corresponding “Programming Guide” for details on the control methods and their
parameters

Command Translation

Alphabetical list of implemented B1500 commands and their corresponding method/attribute names in this instrument
driver.

Command Property/Method
AAD SMU.adc_type()
AB abort()
AIT adc_setup()
AV adc_averaging()
AZ adc_auto_zero
BC clear_buffer()
CL SMU.disable()
CM auto_calibration
CMM SMU.meas_op_mode()
CN SMU.enable()
DI SMU.force() mode: 'CURRENT'
DV SMU.force() mode: 'VOLTAGE'
DZ force_gnd(), SMU.force_gnd()
ERRX? check_errors()
FL SMU.filter

continues on next page

7.7. Agilent 179

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Table 1 – continued from previous page
Command Property/Method
FMT data_format()
*IDN? id()
*LRN? query_learn(), multiple methods to read/format settings directly
MI SMU.sampling_source() mode: 'CURRENT'
ML sampling_mode
MM meas_mode()
MSC sampling_auto_abort()
MT sampling_timing()
MV SMU.sampling_source() mode: 'VOLTAGE'
*OPC? check_idle()
PA pause()
PAD parallel_meas
RI meas_range_current
RM SMU.meas_range_current_auto()
*RST reset()
RV meas_range_voltage
SSR series_resistor
TSC time_stamp
TSR clear_timer()
UNT? query_modules()
WAT wait_time()
WI SMU.staircase_sweep_source() mode: 'CURRENT'
WM sweep_auto_abort()
WSI SMU.synchronous_sweep_source() mode: 'CURRENT'
WSV SMU.synchronous_sweep_source() mode: 'VOLTAGE'
WT sweep_timing()
WV SMU.staircase_sweep_source() mode: 'VOLTAGE'
XE send_trigger()

Examples

Initialization of the Instrument

from pymeasure.instruments.agilent import AgilentB1500

explicitly define r/w terminations; set sufficiently large timeout in milliseconds or␣
→˓None.
b1500=AgilentB1500("GPIB0::17::INSTR", read_termination='\r\n', write_termination='\r\n',
→˓ timeout=600000)
query SMU config from instrument and initialize all SMU instances
b1500.initialize_all_smus()
set data output format (required!)
b1500.data_format(21, mode=1) #call after SMUs are initialized to get names for the␣
→˓channels

180 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

IV measurement with 4 SMUs

choose measurement mode
b1500.meas_mode('STAIRCASE_SWEEP', *b1500.smu_references) #order in smu_references␣
→˓determines order of measurement

settings for individual SMUs
for smu in b1500.smu_references:

smu.enable() #enable SMU
smu.adc_type = 'HRADC' #set ADC to high-resoultion ADC
smu.meas_range_current = '1 nA'
smu.meas_op_mode = 'COMPLIANCE_SIDE' # other choices: Current, Voltage, FORCE_SIDE,␣

→˓COMPLIANCE_AND_FORCE_SIDE

General Instrument Settings
b1500.adc_averaging = 1
b1500.adc_auto_zero = True
b1500.adc_setup('HRADC','AUTO',6)
#b1500.adc_setup('HRADC','PLC',1)

#Sweep Settings
b1500.sweep_timing(0,5,step_delay=0.1) #hold,delay
b1500.sweep_auto_abort(False,post='STOP') #disable auto abort, set post measurement␣
→˓output condition to stop value of sweep
Sweep Source
nop = 11
b1500.smu1.staircase_sweep_source('VOLTAGE','LINEAR_DOUBLE','Auto Ranging',0,1,nop,0.
→˓001) #type, mode, range, start, stop, steps, compliance
Synchronous Sweep Source
b1500.smu2.synchronous_sweep_source('VOLTAGE','Auto Ranging',0,1,0.001) #type, range,␣
→˓start, stop, comp
Constant Output (could also be done using synchronous sweep source with start=stop,␣
→˓but then the output is not ramped up)
b1500.smu3.ramp_source('VOLTAGE','Auto Ranging',-1,stepsize=0.1,pause=20e-3) #output␣
→˓starts immediately! (compared to sweeps)
b1500.smu4.ramp_source('VOLTAGE','Auto Ranging',0,stepsize=0.1,pause=20e-3)

#Start Measurement
b1500.check_errors()
b1500.clear_buffer()
b1500.clear_timer()
b1500.send_trigger()

read measurement data all at once
b1500.check_idle() #wait until measurement is finished
data = b1500.read_data(2*nop) #Factor 2 beacuse of double sweep

#alternatively: read measurement data live
meas = []
for i in range(nop*2):

read_data = b1500.read_channels(4+1) # 4 measurement channels, 1 sweep source␣
→˓(returned due to mode=1 of data_format)

(continues on next page)

7.7. Agilent 181

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

process live data for plotting etc.
data format for every channel (status code, channel name e.g. 'SMU1', data name e.g

→˓'Current Measurement (A)', value)
meas.append(read_data)

#sweep constant sources back to 0V
b1500.smu3.ramp_source('VOLTAGE','Auto Ranging',0,stepsize=0.1,pause=20e-3)
b1500.smu4.ramp_source('VOLTAGE','Auto Ranging',0,stepsize=0.1,pause=20e-3)

Sampling measurement with 4 SMUs

choose measurement mode
b1500.meas_mode('SAMPLING', *b1500.smu_references) #order in smu_references determines␣
→˓order of measurement
number_of_channels = len(b1500.smu_references)

settings for individual SMUs
for smu in b1500.smu_references:

smu.enable() #enable SMU
smu.adc_type = 'HSADC' #set ADC to high-speed ADC
smu.meas_range_current = '1 nA'
smu.meas_op_mode = 'COMPLIANCE_SIDE' # other choices: Current, Voltage, FORCE_SIDE,␣

→˓COMPLIANCE_AND_FORCE_SIDE

b1500.sampling_mode = 'LINEAR'
b1500.adc_averaging = 1
b1500.adc_auto_zero = True
b1500.adc_setup('HSADC','AUTO',1)
#b1500.adc_setup('HSADC','PLC',1)
nop=11
b1500.sampling_timing(2,0.005,nop) #MT: bias hold time, sampling interval, number of␣
→˓points
b1500.sampling_auto_abort(False,post='BIAS') #MSC: BASE/BIAS
b1500.time_stamp = True

Sources
b1500.smu1.sampling_source('VOLTAGE','Auto Ranging',0,1,0.001) #MV/MI: type, range, base,
→˓ bias, compliance
b1500.smu2.sampling_source('VOLTAGE','Auto Ranging',0,1,0.001)
b1500.smu3.ramp_source('VOLTAGE','Auto Ranging',-1,stepsize=0.1,pause=20e-3) #output␣
→˓starts immediately! (compared to sweeps)
b1500.smu4.ramp_source('VOLTAGE','Auto Ranging',-1,stepsize=0.1,pause=20e-3)

#Start Measurement
b1500.check_errors()
b1500.clear_buffer()
b1500.clear_timer()
b1500.send_trigger()

meas=[]
(continues on next page)

182 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

for i in range(nop):
read_data = b1500.read_channels(1+2*number_of_channels) #Sampling Index + (time␣

→˓stamp + measurement value) * number of channels
process live data for plotting etc.
data format for every channel (status code, channel name e.g. 'SMU1', data name e.g

→˓'Current Measurement (A)', value)
meas.append(read_data)

#sweep constant sources back to 0V
b1500.smu3.ramp_source('VOLTAGE','Auto Ranging',0,stepsize=0.1,pause=20e-3)
b1500.smu4.ramp_source('VOLTAGE','Auto Ranging',0,stepsize=0.1,pause=20e-3)

Main Classes

Classes to communicate with the instrument:

• AgilentB1500: Main instrument class

• SMU : Instantiated by main instrument class for every SMU

All query commands return a human readable dict of settings. These are intended for debugging/logging/file headers,
not for passing to the accompanying setting commands.

class pymeasure.instruments.agilent.agilentB1500.AgilentB1500(adapter, name='Agilent B1500
Semiconductor Parameter
Analyzer', **kwargs)

Bases: Instrument

Represents the Agilent B1500 Semiconductor Parameter Analyzer and provides a high-level interface for taking
different kinds of measurements.

property smu_references

Returns all SMU instances.

property smu_names

Returns all SMU names.

query_learn(query_type)
Queries settings from the instrument (*LRN?). Returns dict of settings.

Parameters
query_type (int or str) – Query type (number according to manual)

query_learn_header(query_type, **kwargs)
Queries settings from the instrument (*LRN?). Returns dict of settings in human readable format for
debugging or file headers. For optional arguments check the underlying definition of QueryLearn.
query_learn_header().

Parameters
query_type (int or str) – Query type (number according to manual)

reset()

Resets the instrument to default settings (*RST)

7.7. Agilent 183

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

query_modules()

Queries module models from the instrument. Returns dictionary of channel and module type.

Returns
Channel:Module Type

Return type
dict

initialize_smu(channel, smu_type, name)
Initializes SMU instance by calling SMU .

Parameters

• channel (int) – SMU channel

• smu_type (str) – SMU type, e.g. 'HRSMU'

• name (str) – SMU name for pymeasure (data output etc.)

Returns
SMU instance

Return type
SMU

initialize_all_smus()

Initialize all SMUs by querying available modules and creating a SMU class instance for each. SMUs are
accessible via attributes .smu1 etc.

pause(pause_seconds)
Pauses Command Excecution for given time in seconds (PA)

Parameters
pause_seconds (int) – Seconds to pause

abort()

Aborts the present operation but channels may still output current/voltage (AB)

force_gnd()

Force 0V on all channels immediately. Current Settings can be restored with RZ. (DZ)

check_errors()

Check for errors (ERRX?)

check_idle()

Check if instrument is idle (*OPC?)

clear_buffer()

Clear output data buffer (BC)

clear_timer()

Clear timer count (TSR)

send_trigger()

Send trigger to start measurement (except High Speed Spot) (XE)

property auto_calibration

Enable/Disable SMU auto-calibration every 30 minutes. (CM)

Type
bool

184 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

data_format(output_format, mode=0)
Specifies data output format. Check Documentation for parameters. Should be called once per session to
set the data format for interpreting the measurement values read from the instrument. (FMT)

Currently implemented are format 1, 11, and 21.

Parameters

• output_format (str) – Output format string, e.g. FMT21

• mode (int, optional) – Data output mode, defaults to 0 (only measurement data is re-
turned)

property parallel_meas

Enable/Disable parallel measurements.
Effective for SMUs using HSADC and measurement modes 1,2,10,18. (PAD)

Type
bool

query_meas_settings()

Read settings for TM, AV, CM, FMT and MM commands (31) from the instrument.

query_meas_mode()

Read settings for MM command (part of 31) from the instrument.

meas_mode(mode, *args)
Set Measurement mode of channels. Measurements will be taken in the same order as the SMU references
are passed. (MM)

Parameters

• mode (MeasMode) – Measurement mode

– Spot

– Staircase Sweep

– Sampling

• args (SMU) – SMU references

query_adc_setup()

Read ADC settings (55, 56) from the intrument.

adc_setup(adc_type, mode, N='')
Set up operation mode and parameters of ADC for each ADC type. (AIT) Defaults:

• HSADC: Auto N=1, Manual N=1, PLC N=1, Time N=0.000002(s)

• HRADC: Auto N=6, Manual N=3, PLC N=1

Parameters

• adc_type (ADCType) – ADC type

• mode (ADCMode) – ADC mode

• N (str, optional) – additional parameter, check documentation, defaults to ''

7.7. Agilent 185

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

adc_averaging(number, mode='Auto')
Set number of averaging samples of the HSADC. (AV)

Defaults: N=1, Auto

Parameters

• number (int) – Number of averages

• mode (AutoManual, optional) – Mode ('Auto','Manual'), defaults to ‘Auto’

property adc_auto_zero

Enable/Disable ADC zero function. Halfs the integration time, if off. (AZ)

Type
bool

property time_stamp

Enable/Disable Time Stamp function. (TSC)

Type
bool

query_time_stamp_setting()

Read time stamp settings (60) from the instrument.

wait_time(wait_type, N, offset=0)
Configure wait time. (WAT)

Parameters

• wait_type (WaitTimeType) – Wait time type

• N (float) – Coefficient for initial wait time, default: 1

• offset (int, optional) – Offset for wait time, defaults to 0

query_staircase_sweep_settings()

Reads Staircase Sweep Measurement settings (33) from the instrument.

sweep_timing(hold, delay, step_delay=0, step_trigger_delay=0, measurement_trigger_delay=0)
Sets Hold Time, Delay Time and Step Delay Time for staircase or multi channel sweep measurement. (WT)
If not set, all parameters are 0.

Parameters

• hold (float) – Hold time

• delay (float) – Delay time

• step_delay (float, optional) – Step delay time, defaults to 0

• step_trigger_delay (float, optional) – Trigger delay time, defaults to 0

• measurement_trigger_delay (float, optional) – Measurement trigger delay time,
defaults to 0

sweep_auto_abort(abort, post='START')
Enables/Disables the automatic abort function. Also sets the post measurement condition. (WM)

Parameters

• abort (bool) – Enable/Disable automatic abort

186 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• post (StaircaseSweepPostOutput, optional) – Output after measurement, defaults to
‘Start’

query_sampling_settings()

Reads Sampling Measurement settings (47) from the instrument.

property sampling_mode

Set linear or logarithmic sampling mode. (ML)

Type
SamplingMode

sampling_timing(hold_bias, interval, number, hold_base=0)
Sets Timing Parameters for the Sampling Measurement (MT)

Parameters

• hold_bias (float) – Bias hold time

• interval (float) – Sampling interval

• number (int) – Number of Samples

• hold_base (float, optional) – Base hold time, defaults to 0

sampling_auto_abort(abort, post='Bias')
Enables/Disables the automatic abort function. Also sets the post measurement condition. (MSC)

Parameters

• abort (bool) – Enable/Disable automatic abort

• post (SamplingPostOutput, optional) – Output after measurement, defaults to ‘Bias’

read_data(number_of_points)
Reads all data from buffer and returns Pandas DataFrame. Specify number of measurement points for
correct splitting of the data list.

Parameters
number_of_points (int) – Number of measurement points

Returns
Measurement Data

Return type
pd.DataFrame

read_channels(nchannels)
Reads data for 1 measurement point from the buffer. Specify number of measurement channels + sweep
sources (depending on data output setting).

Parameters
nchannels (int) – Number of channels which return data

Returns
Measurement data

Return type
tuple

query_series_resistor()

Read series resistor status (53) for all SMUs.

7.7. Agilent 187

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

query_meas_range_current_auto()

Read auto ranging mode status (54) for all SMUs.

query_meas_op_mode()

Read SMU measurement operation mode (46) for all SMUs.

query_meas_ranges()

Read measruement ranging status (32) for all SMUs.

class pymeasure.instruments.agilent.agilentB1500.SMU(parent, channel, smu_type, name, **kwargs)
Bases: object

Provides specific methods for the SMUs of the Agilent B1500 mainframe

Parameters

• parent (AgilentB1500) – Instance of the B1500 mainframe class

• channel (int) – Channel number of the SMU

• smu_type (str) – Type of the SMU

• name (str) – Name of the SMU

write(string)
Wraps Instrument.write() method of B1500.

ask(string)
Wraps ask() method of B1500.

query_learn(query_type, command)
Wraps query_learn() method of B1500.

check_errors()

Wraps check_errors() method of B1500.

property status

Query status of the SMU.

enable()

Enable Source/Measurement Channel (CN)

disable()

Disable Source/Measurement Channel (CL)

force_gnd()

Force 0V immediately. Current Settings can be restored with RZ (not implemented). (DZ)

property filter

Enables/Disables SMU Filter. (FL)

Type
bool

property series_resistor

Enables/Disables 1MOhm series resistor. (SSR)

Type
bool

188 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property meas_op_mode

Set SMU measurement operation mode. (CMM)

Type
MeasOpMode

property adc_type

ADC type of individual measurement channel. (AAD)

Type
ADCType

force(source_type, source_range, output, comp='', comp_polarity='', comp_range='')
Applies DC Current or Voltage from SMU immediately. (DI, DV)

Parameters

• source_type (str) – Source type ('Voltage','Current')

• source_range (int or str) – Output range index or name

• output – Source output value in A or V

• comp (float, optional) – Compliance value, defaults to previous setting

• comp_polarity (CompliancePolarity) – Compliance polairty, defaults to auto

• comp_range (int or str, optional) – Compliance ranging type, defaults to auto

ramp_source(source_type, source_range, target_output, comp='', comp_polarity='', comp_range='',
stepsize=0.001, pause=0.02)

Ramps to a target output from the set value with a given step size, each separated by a pause.

Parameters

• source_type (str) – Source type ('Voltage' or 'Current')

• target_output – Target output voltage or current

• irange (int) – Output range index

• comp (float, optional) – Compliance, defaults to previous setting

• comp_polarity (CompliancePolarity) – Compliance polairty, defaults to auto

• comp_range (int or str, optional) – Compliance ranging type, defaults to auto

• stepsize – Maximum size of steps

• pause – Duration in seconds to wait between steps

Type
target_output: float

property meas_range_current

Current measurement range index. (RI)

Possible settings depend on SMU type, e.g. 0 for Auto Ranging: SMUCurrentRanging

property meas_range_voltage

Voltage measurement range index. (RV)

Possible settings depend on SMU type, e.g. 0 for Auto Ranging: SMUVoltageRanging

7.7. Agilent 189

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

meas_range_current_auto(mode, rate=50)
Specifies the auto range operation. Check Documentation. (RM)

Parameters

• mode (int) – Range changing operation mode

• rate (int, optional) – Parameter used to calculate the current value, defaults to 50

staircase_sweep_source(source_type, mode, source_range, start, stop, steps, comp, Pcomp='')
Specifies Staircase Sweep Source (Current or Voltage) and its parameters. (WV or WI)

Parameters

• source_type (str) – Source type ('Voltage','Current')

• mode (SweepMode) – Sweep mode

• source_range (int) – Source range index

• start (float) – Sweep start value

• stop (float) – Sweep stop value

• steps (int) – Number of sweep steps

• comp (float) – Compliance value

• Pcomp (float, optional) – Power compliance, defaults to not set

synchronous_sweep_source(source_type, source_range, start, stop, comp, Pcomp='')
Specifies Synchronous Staircase Sweep Source (Current or Voltage) and its parameters. (WSV or WSI)

Parameters

• source_type (str) – Source type ('Voltage','Current')

• source_range (int) – Source range index

• start (float) – Sweep start value

• stop (float) – Sweep stop value

• comp (float) – Compliance value

• Pcomp (float, optional) – Power compliance, defaults to not set

sampling_source(source_type, source_range, base, bias, comp)
Sets DC Source (Current or Voltage) for sampling measurement. DV/DI commands on the same channel
overwrite this setting. (MV or MI)

Parameters

• source_type (str) – Source type ('Voltage','Current')

• source_range (int) – Source range index

• base (float) – Base voltage/current

• bias (float) – Bias voltage/current

• comp (float) – Compliance value

190 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Supporting Classes

Classes that provide additional functionalities:

• QueryLearn: Process read out of instrument settings

• SMUCurrentRanging, SMUVoltageRanging: Allowed ranges for different SMU types and transformation of
range names to indices (base: Ranging)

class pymeasure.instruments.agilent.agilentB1500.QueryLearn

Bases: object

Methods to issue and process *LRN? (learn) command and response.

static query_learn(ask, query_type)
Issues *LRN? (learn) command to the instrument to read configuration. Returns dictionary of commands
and set values.

Parameters
query_type (int) – Query type according to the programming guide

Returns
Dictionary of command and set values

Return type
dict

classmethod query_learn_header(ask, query_type, smu_references, single_command=False)
Issues *LRN? (learn) command to the instrument to read configuration. Processes information to human
readable values for debugging purposes or file headers.

Parameters

• ask (Instrument.ask) – ask method of the instrument

• query_type (int or str) – Number according to Programming Guide

• smu_references (dict) – SMU references by channel

• single_command (str) – if only a single command should be returned, defaults to False

Returns
Read configuration

Return type
dict

static to_dict(parameters, names, *args)
Takes parameters returned by query_learn() and ordered list of corresponding parameter names (op-
tional function) and returns dict of parameters including names.

Parameters

• parameters (dict) – Parameters for one command returned by query_learn()

• names (list) – list of names or (name, function) tuples, ordered

Returns
Parameter name and (processed) parameter

Return type
dict

7.7. Agilent 191

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

class pymeasure.instruments.agilent.agilentB1500.Ranging(supported_ranges, ranges,
fixed_ranges=False)

Bases: object

Possible Settings for SMU Current/Voltage Output/Measurement ranges. Transformation of available Volt-
age/Current Range Names to Index and back.

Parameters

• supported_ranges (list) – Ranges which are supported (list of range indizes)

• ranges (dict) – All range names {Name: Indizes}

• fixed_ranges – add fixed ranges (negative indizes); defaults to False

__call__(input_value)
Gives named tuple (name/index) of given Range. Throws error if range is not supported by this SMU.

Parameters
input (str or int) – Range name or index

Returns
named tuple (name/index) of range

Return type
namedtuple

class pymeasure.instruments.agilent.agilentB1500.SMUCurrentRanging(smu_type)
Bases: object

Provides Range Name/Index transformation for current measurement/sourcing. Validity of ranges is checked
against the type of the SMU.

Omitting the ‘limited auto ranging’/’range fixed’ specification in the range string for current measurement de-
faults to ‘limited auto ranging’.

Full specification: ‘1 nA range fixed’ or ‘1 nA limited auto ranging’

‘1 nA’ defaults to ‘1 nA limited auto ranging’

class pymeasure.instruments.agilent.agilentB1500.SMUVoltageRanging(smu_type)
Bases: object

Provides Range Name/Index transformation for voltage measurement/sourcing. Validity of ranges is checked
against the type of the SMU.

Omitting the ‘limited auto ranging’/’range fixed’ specification in the range string for voltage measurement de-
faults to ‘limited auto ranging’.

Full specification: ‘2 V range fixed’ or ‘2 V limited auto ranging’

‘2 V’ defaults to ‘2 V limited auto ranging’

192 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Enumerations

Enumerations are used for easy selection of the available parameters (where it is applicable). Methods accept member
name or number as input, but name is recommended for readability reasons. The member number is passed to the in-
strument. Converting an enumeration member into a string gives a title case, whitespace separated string (__str__())
which cannot be used to select an enumeration member again. It’s purpose is only logging or documentation.

class pymeasure.instruments.agilent.agilentB1500.CustomIntEnum(value, names=None, *,
module=None, qualname=None,
type=None, start=1,
boundary=None)

Bases: IntEnum

Provides additional methods to IntEnum:

• Conversion to string automatically replaces ‘_’ with ‘ ‘ in names and converts to title case

• get classmethod to get enum reference with name or integer

__str__()

Gives title case string of enum value

classmethod get(input_value)
Gives Enum member by specifying name or value.

Parameters
input_value (str or int) – Enum name or value

Returns
Enum member

class pymeasure.instruments.agilent.agilentB1500.ADCType(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Bases: CustomIntEnum

ADC Type

HSADC = 0

High-speed ADC

HRADC = 1

High-resolution ADC

HSADC_PULSED = 2

High-resolution ADC for pulsed measurements

class pymeasure.instruments.agilent.agilentB1500.ADCMode(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Bases: CustomIntEnum

ADC Mode

AUTO = 0

MANUAL = 1

PLC = 2

7.7. Agilent 193

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

TIME = 3

class pymeasure.instruments.agilent.agilentB1500.AutoManual(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Bases: CustomIntEnum

Auto/Manual selection

AUTO = 0

MANUAL = 1

class pymeasure.instruments.agilent.agilentB1500.MeasMode(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Bases: CustomIntEnum

Measurement Mode

SPOT = 1

STAIRCASE_SWEEP = 2

SAMPLING = 10

class pymeasure.instruments.agilent.agilentB1500.MeasOpMode(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Bases: CustomIntEnum

Measurement Operation Mode

COMPLIANCE_SIDE = 0

CURRENT = 1

VOLTAGE = 2

FORCE_SIDE = 3

COMPLIANCE_AND_FORCE_SIDE = 4

class pymeasure.instruments.agilent.agilentB1500.SweepMode(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Bases: CustomIntEnum

Sweep Mode

LINEAR_SINGLE = 1

LOG_SINGLE = 2

LINEAR_DOUBLE = 3

LOG_DOUBLE = 4

194 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

class pymeasure.instruments.agilent.agilentB1500.SamplingMode(value, names=None, *,
module=None, qualname=None,
type=None, start=1,
boundary=None)

Bases: CustomIntEnum

Sampling Mode

LINEAR = 1

LOG_10 = 2

Logarithmic 10 data points/decade

LOG_25 = 3

Logarithmic 25 data points/decade

LOG_50 = 4

Logarithmic 50 data points/decade

LOG_100 = 5

Logarithmic 100 data points/decade

LOG_250 = 6

Logarithmic 250 data points/decade

LOG_5000 = 7

Logarithmic 5000 data points/decade

class pymeasure.instruments.agilent.agilentB1500.SamplingPostOutput(value, names=None, *,
module=None,
qualname=None,
type=None, start=1,
boundary=None)

Bases: CustomIntEnum

Output after sampling

BASE = 1

BIAS = 2

class pymeasure.instruments.agilent.agilentB1500.StaircaseSweepPostOutput(value,
names=None, *,
module=None,
qualname=None,
type=None,
start=1,
boundary=None)

Bases: CustomIntEnum

Output after staircase sweep

START = 1

STOP = 2

7.7. Agilent 195

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

class pymeasure.instruments.agilent.agilentB1500.CompliancePolarity(value, names=None, *,
module=None,
qualname=None,
type=None, start=1,
boundary=None)

Bases: CustomIntEnum

Compliance polarity

AUTO = 0

MANUAL = 1

class pymeasure.instruments.agilent.agilentB1500.WaitTimeType(value, names=None, *,
module=None, qualname=None,
type=None, start=1,
boundary=None)

Bases: CustomIntEnum

Wait time type

SMU_SOURCE = 1

SMU_MEASUREMENT = 2

CMU_MEASUREMENT = 3

7.8 AJA International

This section contains specific documentation on the AJA International instruments that are implemented. If you are
interested in an instrument not included, please consider adding the instrument.

7.8.1 AJA DCXS-750 or 1500 DC magnetron sputtering power supply

class pymeasure.instruments.aja.DCXS(adapter, name='AJA DCXS sputtering power supply', **kwargs)
Bases: Instrument

AJA DCXS-750 or 1500 DC magnetron sputtering power supply with multiple outputs

Connection to the device is made through an RS232 serial connection. The communication settings are fixed
in the device at 38400, one stopbit, no parity. The communication protocol of the device uses single character
commands and fixed length replys, both without any terminator.

Parameters

• adapter – pyvisa resource name of the instrument or adapter instance

• name (string) – The name of the instrument.

• kwargs – Any valid key-word argument for Instrument

property active_gun

Control the active gun number.

196 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

ask(command, query_delay=0, **kwargs)
Write a command to the instrument and return the read response.

Parameters

• command – Command string to be sent to the instrument.

• query_delay – Delay between writing and reading in seconds.

• **kwargs – Keyword arguments passed to the read method.

Returns
String returned by the device without read_termination.

property current

Measure the output current in mA.

property deposition_time_min

Control the minutes part of deposition time. Can be set only when ‘enabled’ is False.

property deposition_time_sec

Control the seconds part of deposition time. Can be set only when ‘enabled’ is False.

property enabled

Control the on/off state of the power supply

property fault_code

Get the error code from the power supply.

property id

Get the power supply type identifier.

property material

Control the material name of the sputter target.

property power

Measure the actual output power in W.

property ramp_time

Control the ramp time in seconds. Can be set only when ‘enabled’ is False.

read(reply_length=-1, **kwargs)
Read up to (excluding) read_termination or the whole read buffer.

property regulation_mode

Control the regulation mode of the power supply.

property remaining_deposition_time_min

Get the minutes part of remaining deposition time.

property remaining_deposition_time_sec

Get the seconds part of remaining deposition time.

property setpoint

Control the setpoint value. Units are determined by regulation mode (power -> W, voltage -> V, current ->
mA).

property shutter_delay

Control the shutter delay in seconds. Can be set only when ‘enabled’ is False.

7.8. AJA International 197

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property shutter_state

Get the status of the gun shutters. 0 for closed and 1 for open shutters.

property software_version

Get the software revision of the power supply firmware.

property voltage

Measure the output voltage in V.

7.9 Ametek

This section contains specific documentation on the Ametek instruments that are implemented. If you are interested in
an instrument not included, please consider adding the instrument.

7.9.1 Ametek 7270 DSP Lockin Amplifier

class pymeasure.instruments.ametek.Ametek7270(adapter, name='Ametek DSP 7270',
read_termination='\x00', write_termination='\x00',
**kwargs)

Bases: Instrument

This is the class for the Ametek DSP 7270 lockin amplifier

In this instrument, some measurements are defined only for specific modes, called Reference modes, see
set_reference_mode() and will raise errors if called incorrectly

property adc1

Reads the input value of ADC1 in Volts

property adc2

Reads the input value of ADC2 in Volts

property adc3

Reads the input value of ADC3 in Volts

property adc4

Reads the input value of ADC4 in Volts

ask(command, query_delay=0)
Send a command and read the response, stripping white spaces.

Usually the properties use the values()method that adds a strip call, however several methods use directly
the result from ask to be cast into some other types. It should therefore also add the strip here, as all
responses end with a newline character.

check_set_errors()

mandatory to be used for property setter

The Ametek protocol expect the default null character to be read to check the property has been correctly
set. With default termination character set as Null character, this turns out as an empty string to be read.

property dac1

A floating point property that represents the output value on DAC1 in Volts. This property can be set.

198 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property dac2

A floating point property that represents the output value on DAC2 in Volts. This property can be set.

property dac3

A floating point property that represents the output value on DAC3 in Volts. This property can be set.

property dac4

A floating point property that represents the output value on DAC4 in Volts. This property can be set.

property frequency

A floating point property that represents the lock-in frequency in Hz. This property can be set.

property harmonic

An integer property that represents the reference harmonic mode control, taking values from 1 to 127. This
property can be set.

property id

Get the instrument ID and firmware version

property mag

Reads the magnitude in Volts

property phase

A floating point property that represents the reference harmonic phase in degrees. This property can be set.

property sensitivity

A floating point property that controls the sensitivity range in Volts, which can take discrete values from 2
nV to 1 V. This property can be set. (dynamic)

set_channel_A_mode()

Sets instrument to channel A mode – assuming it is in voltage mode

set_current_mode(low_noise=False)
Sets instrument to current control mode with either low noise or high bandwidth

set_differential_mode(lineFiltering=True)
Sets instrument to differential mode – assuming it is in voltage mode

set_reference_mode(mode: int = 0)
Set the instrument in Single, Dual or harmonic mode.

Parameters
mode – the integer specifying the mode: 0 for Single, 1 for Dual harmonic, and 2 for Dual
reference.

set_voltage_mode()

Sets instrument to voltage control mode

shutdown()

Ensures the instrument in a safe state

property slope

A integer property that controls the filter slope in dB/octave, which can take the values 6, 12, 18, or 24
dB/octave. This property can be set.

property theta

Reads the signal phase in degrees

7.9. Ametek 199

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property time_constant

A floating point property that controls the time constant in seconds, which takes values from 10 microsec-
onds to 100,000 seconds. This property can be set.

property voltage

A floating point property that represents the voltage in Volts. This property can be set.

property x

Reads the X value in Volts

property x1

Reads the first harmonic X value in Volts

property x2

Reads the second harmonic X value in Volts

property xy

Reads both the X and Y values in Volts

property y

Reads the Y value in Volts

property y1

Reads the first harmonic Y value in Volts

property y2

Reads the second harmonic Y value in Volts

7.10 AMI

This section contains specific documentation on the AMI instruments that are implemented. If you are interested in an
instrument not included, please consider adding the instrument.

7.10.1 AMI 430 Power Supply

class pymeasure.instruments.ami.AMI430(adapter, name='AMI superconducting magnet power supply.',
**kwargs)

Bases: Instrument

Represents the AMI 430 Power supply and provides a high-level for interacting with the instrument.

magnet = AMI430("TCPIP::web.address.com::7180::SOCKET")

magnet.coilconst = 1.182 # kGauss/A
magnet.voltage_limit = 2.2 # Sets the voltage limit in V

magnet.target_current = 10 # Sets the target current to 10 A
magnet.target_field = 1 # Sets target field to 1 kGauss

magnet.ramp_rate_current = 0.0357 # Sets the ramp rate in A/s
magnet.ramp_rate_field = 0.0422 # Sets the ramp rate in kGauss/s
magnet.ramp # Initiates the ramping

(continues on next page)

200 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

magnet.pause # Pauses the ramping
magnet.status # Returns the status of the magnet

magnet.ramp_to_current(5) # Ramps the current to 5 A

magnet.shutdown() # Ramps the current to zero and disables␣
→˓output

property coilconst

A floating point property that sets the coil contant in kGauss/A.

disable_persistent_switch()

Disables the persistent switch.

enable_persistent_switch()

Enables the persistent switch.

property field

Reads the field in kGauss of the magnet.

has_persistent_switch_enabled()

Returns a boolean if the persistent switch is enabled.

property magnet_current

Reads the current in Amps of the magnet.

pause()

Pauses the ramping of the magnetic field.

ramp()

Initiates the ramping of the magnetic field to set current/field with ramping rate previously set.

property ramp_rate_current

A floating point property that sets the current ramping rate in A/s.

property ramp_rate_field

A floating point property that sets the field ramping rate in kGauss/s.

ramp_to_current(current, rate)
Heats up the persistent switch and ramps the current with set ramp rate.

ramp_to_field(field, rate)
Heats up the persistent switch and ramps the current with set ramp rate.

shutdown(ramp_rate=0.0357)
Turns on the persistent switch, ramps down the current to zero, and turns off the persistent switch.

property state

Reads the field in kGauss of the magnet.

property supply_current

Reads the current in Amps of the power supply.

property target_current

A floating point property that sets the target current in A for the magnet.

7.10. AMI 201

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property target_field

A floating point property that sets the target field in kGauss for the magnet.

property voltage_limit

A floating point property that sets the voltage limit for charging/discharging the magnet.

wait_for_holding(should_stop=<function AMI430.<lambda>>, timeout=800, interval=0.1)

zero()

Initiates the ramping of the magnetic field to zero current/field with ramping rate previously set.

7.11 Anaheim Automation

This section contains specific documentation on the Anaheim Automation instruments that are implemented. If you
are interested in an instrument not included, please consider adding the instrument.

7.11.1 DP-Series Step Motor Controller

The DPSeriesMotorController class implements a base driver class for Anaheim-Automation DP Series stepper motor
controllers. There are many controllers sold in this series, all of which implement the same core command set. Some
controllers, like the DPY50601, implement additional functionality that is not included in this driver. If these additional
features are desired, they should be implemented in a subclass.

class pymeasure.instruments.anaheimautomation.DPSeriesMotorController(adapter, name='Anaheim
Automation Stepper
Motor Controller',
address=0,
encoder_enabled=False,
**kwargs)

Bases: Instrument

Base class to interface with Anaheim Automation DP series stepper motor controllers.

This driver has been tested with the DPY50601 and DPE25601 motor controllers.

property absolute_position

Float property representing the value of the motor position measured in absolute units. Note that in
DP series motor controller instrument manuals, ‘absolute position’ refers to the step_position prop-
erty rather than this property. Also note that use of this property relies on steps_to_absolute() and
absolute_to_steps() being implemented in a subclass. In this way, the user can define the conversion
from a motor step position into any desired absolute unit. Absolute units could be the position in meters of
a linear stage or the angular position of a gimbal mount, etc. This property can be set.

absolute_to_steps(pos)
Convert an absolute position to a number of steps to move. This must be implemented in subclasses.

Parameters
pos – Absolute position in the units determined by the subclassed absolute_to_steps()
method.

property address

Integer property representing the address that the motor controller uses for serial communications.

202 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property basespeed

Integer property that represents the motor controller’s starting/homing speed. This property can be set.

property busy

Query to see if the controller is currently moving a motor.

check_errors()

Method to read the error codes register and log when an error is detected.

Return error_code
one byte with the error codes register contents

property direction

A string property that represents the direction in which the stepper motor will rotate upon subsequent step
commands. This property can be set. ‘CW’ corresponds to clockwise rotation and ‘CCW’ corresponds to
counter-clockwise rotation.

property encoder_autocorrect

A boolean property to enable or disable the encoder auto correct function. This property can be set.

property encoder_delay

An integer property that represents the wait time in ms. after a move is finished before the encoder is read
for a potential encoder auto-correct action to take place. This property can be set.

property encoder_enabled

A boolean property to represent whether an external encoder is connected and should be used to set the
step_position property.

property encoder_motor_ratio

An integer property that represents the ratio of the number of encoder pulses per motor step. This property
can be set.

property encoder_retries

An integer property that represents the number of times the motor controller will try the encoder auto
correct function before setting an error flag. This property can be set.

property encoder_window

An integer property that represents the allowable error in encoder pulses from the desired position before
the encoder auto-correct function runs. This property can be set.

property error_reg

Reads the current value of the error codes register.

home(home_mode)
Send command to the motor controller to ‘home’ the motor.

Parameters
home_mode – 0 or 1 specifying which homing mode to run.

0 will perform a homing operation where the controller moves the motor until a soft limit is
reached, then will ramp down to base speed and continue motion until a home limit is reached.

In mode 1, the controller will move the motor until a limit is reached, then will ramp down to
base speed, change direction, and run until the limit is released.

property maxspeed

Integer property that represents the motor controller’s maximum (running) speed. This property can be set.

7.11. Anaheim Automation 203

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

move(direction)
Move the stepper motor continuously in the given direction until a stop command is sent or a limit switch
is reached. This method corresponds to the ‘slew’ command in the DP series instrument manuals.

Parameters
direction – value to set on the direction property before moving the motor.

reset_position()

Reset position as counted by the motor controller and an externally connected encoder to 0.

property step_position

Integer property representing the value of the motor position measured in steps counted by the motor con-
troller or, if encoder_enabled is set, the steps counted by an externally connected encoder. Note that in the
DP series motor controller instrument manuals, this property would be referred to as the ‘absolute position’
while this driver implements a conversion between steps and absolute units for the absolute_position
property. This property can be set.

steps_to_absolute(steps)
Convert a position measured in steps to an absolute position.

Parameters
steps – Position in steps to be converted to an absolute position.

stop()

Method that stops all motion on the motor controller.

wait_for_completion(interval=0.5)
Block until the controller is not “busy” (i.e. block until the motor is no longer moving.)

Parameters
interval – (float) seconds between queries to the “busy” flag.

Returns
None

write(command)
Override the instrument base write method to add the motor controller’s address to the command string.

Parameters
command – command string to be sent to the motor controller.

7.12 Anapico

This section contains specific documentation on the Anapico instruments that are implemented. If you are interested
in an instrument not included, please consider adding the instrument.

204 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.12.1 Anapico APSIN12G Signal Generator

class pymeasure.instruments.anapico.APSIN12G(adapter, name='Anapico APSIN12G Signal Generator',
**kwargs)

Bases: Instrument

Represents the Anapico APSIN12G Signal Generator with option 9K, HP and GPIB.

property blanking

A string property that represents the blanking of output power when frequency is changed. ON makes the
output to be blanked (off) while changing frequency. This property can be set.

disable_rf()

Disables the RF output.

enable_rf()

Enables the RF output.

property frequency

A floating point property that represents the output frequency in Hz. This property can be set.

property power

A floating point property that represents the output power in dBm. This property can be set.

property reference_output

A string property that represents the 10MHz reference output from the synth. This property can be set.

7.13 Andeen Hagerling

This section contains specific documentation on the Andeen Hagerling instruments that are implemented. If you are
interested in an instrument not included, please consider adding the instrument.

7.13.1 Andeen Hagerling AH2500A capacitance bridge

class pymeasure.instruments.andeenhagerling.AH2500A(adapter, name=None, timeout=3000,
write_termination='\n', read_termination='\n',
**kwargs)

Bases: Instrument

Andeen Hagerling 2500A Precision Capacitance Bridge implementation

property caplossvolt

Perform a single capacitance, loss measurement and return the values in units of pF and nS. The used
measurement voltage is returned as third value.

property config

Read out configuration

trigger()

Triggers a new measurement without blocking and waiting for the return value.

triggered_caplossvolt()

reads the measurement value after the device was triggered by the trigger function.

7.13. Andeen Hagerling 205

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property vhighest

maximum RMS value of the used measurement voltage. Values of up to 15 V are allowed. The device will
select the best suiting range below the given value.

7.13.2 Andeen Hagerling AH2700A capacitance bridge

class pymeasure.instruments.andeenhagerling.AH2700A(adapter, name='Andeen Hagerling 2700A
Precision Capacitance Bridge', timeout=5000,
**kwargs)

Bases: AH2500A

Andeen Hagerling 2700A Precision Capacitance Bridge implementation

property caplossvolt

Perform a single capacitance, loss measurement and return the values in units of pF and nS. The used
measurement voltage is returned as third value.

check_errors()

Read all errors from the instrument and log them.

Returns
List of error entries.

check_get_errors()

Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

clear()

Clears the instrument status byte

property complete

Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation Complete query
places an ASCII character 1 into the device’s Output Queue when all pending selected device operations
have been finished.

property config

Read out configuration

property frequency

test frequency used for the measurements. Allowed are values between 50 and 20000 Hz. The device
selects the closest possible frequency to the given value.

206 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property id

Reads the instrument identification

property options

Get the device options installed.

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

read_binary_values(**kwargs)
Read binary values from the device.

read_bytes(count, **kwargs)
Read a certain number of bytes from the instrument.

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read the whole read
buffer.

• kwargs – Keyword arguments for the adapter.

Returns bytes
Bytes response of the instrument (including termination).

reset()

Resets the instrument.

shutdown()

Brings the instrument to a safe and stable state

property status

Get the status byte and Master Summary Status bit.

trigger()

Triggers a new measurement without blocking and waiting for the return value.

triggered_caplossvolt()

reads the measurement value after the device was triggered by the trigger function.

property vhighest

maximum RMS value of the used measurement voltage. Values of up to 15 V are allowed. The device will
select the best suiting range below the given value.

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Parameters
query_delay – Delay between writing and reading in seconds.

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument

• kwargs – Keyword arguments for the adapter.

7.13. Andeen Hagerling 207

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

write_binary_values(command, values, *args, **kwargs)
Write binary values to the device.

Parameters

• command – Command to send.

• values – The values to transmit.

• **kwargs (*args,) – Further arguments to hand to the Adapter.

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

7.14 Anritsu

This section contains specific documentation on the Anritsu instruments that are implemented. If you are interested in
an instrument not included, please consider adding the instrument.

7.14.1 Anritsu MG3692C Signal Generator

class pymeasure.instruments.anritsu.AnritsuMG3692C(adapter, name='Anritsu MG3692C Signal
Generator', **kwargs)

Bases: Instrument

Represents the Anritsu MG3692C Signal Generator

disable()

Disables the signal output.

enable()

Enables the signal output.

property frequency

A floating point property that represents the output frequency in Hz. This property can be set.

property output

A boolean property that represents the signal output state. This property can be set to control the output.

property power

A floating point property that represents the output power in dBm. This property can be set.

shutdown()

Shuts down the instrument, putting it in a safe state.

7.14.2 Anritsu MS9710C Optical Spectrum Analyzer

class pymeasure.instruments.anritsu.AnritsuMS9710C(adapter, name='Anritsu MS9710C Optical
Spectrum Analyzer', **kwargs)

Bases: Instrument

Anritsu MS9710C Optical Spectrum Analyzer.

208 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property analysis

Analysis Control

property analysis_result

Read back anaysis result from current scan.

property average_point

Number of averages to take on each point (2-1000), or OFF

property average_sweep

Number of averages to make on a sweep (2-1000) or OFF

center_at_peak(**kwargs)
Center the spectrum at the measured peak.

property data_memory_a_condition

Returns the data condition of data memory register A. Starting wavelength, and a sampling point (l1, l2, n).

property data_memory_a_size

Returns the number of points sampled in data memory register A.

property data_memory_a_values

Reads the binary data from memory register A.

property data_memory_b_condition

Returns the data condition of data memory register B. Starting wavelength, and a sampling point (l1, l2, n).

property data_memory_b_size

Returns the number of points sampled in data memory register B.

property data_memory_b_values

Reads the binary data from memory register B.

property data_memory_select

Memory Data Select.

property dip_search

Dip Search Mode

property ese2

Extended Event Status Enable Register 2

property esr2

Extended Event Status Register 2

property level_lin

Level Linear Scale (/div)

property level_log

Level Log Scale (/div)

property level_opt_attn

Optical Attenuation Status (ON/OFF)

property level_scale

Current Level Scale

property measure_mode

Returns the current Measure Mode the OSA is in.

7.14. Anritsu 209

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

measure_peak()

Measure the peak and return the trace marker.

property peak_search

Peak Search Mode

read_memory(slot='A')
Read the scan saved in a memory slot.

property resolution

Resolution (nm)

property resolution_actual

Resolution Actual (ON/OFF)

property resolution_vbw

Video Bandwidth Resolution

property sampling_points

Number of sampling points

single_sweep(**kwargs)
Perform a single sweep and wait for completion.

property trace_marker

Sets the trace marker with a wavelength. Returns the trace wavelength and power.

property trace_marker_center

Trace Marker at Center. Set to 1 or True to initiate command

wait(n=3, delay=1)
Query OPC Command and waits for appropriate response.

wait_for_sweep(n=20, delay=0.5)
Wait for a sweep to stop.

This is performed by checking bit 1 of the ESR2.

property wavelength_center

Center Wavelength of Spectrum Scan in nm.

property wavelength_marker_value

Wavelength Marker Value (wavelength or freq.?)

property wavelength_span

Wavelength Span of Spectrum Scan in nm.

property wavelength_start

Wavelength Start of Spectrum Scan in nm.

property wavelength_stop

Wavelength Stop of Spectrum Scan in nm.

property wavelength_value_in

Wavelength value in Vacuum or Air

property wavelengths

Return a numpy array of the current wavelengths of scans.

210 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.14.3 Anritsu MS9740A Optical Spectrum Analyzer

class pymeasure.instruments.anritsu.AnritsuMS9740A(adapter, name='Anritsu MS9740A Optical
Spectrum Analyzer', **kwargs)

Bases: AnritsuMS9710C

Anritsu MS9740A Optical Spectrum Analyzer.

property average_sweep

Nr. of averages to make on a sweep (1-1000), with 1 being a single (non-averaged) sweep

property data_memory_select

Memory Data Select.

repeat_sweep(n=20, delay=0.5)
Perform a single sweep and wait for completion.

property resolution

Resolution (nm)

property resolution_vbw

Video Bandwidth Resolution

property sampling_points

Number of sampling points

7.14.4 Anritsu MS2090A Handheld Spectrum Analyzer

class pymeasure.instruments.anritsu.AnritsuMS2090A(adapter, name='Anritsu MS2090A Handheld
Spectrum Analyzer', **kwargs)

Bases: Instrument

Anritsu MS2090A Handheld Spectrum Analyzer.

abort()

Initiate a sweep/measurement.

property active_state

The “set” state indicates that the instrument is used by someone.

property external_current

This command queries the actual bias current in A

property fetch_control

Returns the Control Channel measurement in json format.

property fetch_density

Returns the most recent channel density measurement

property fetch_eirpower

Returns the current EIRP, Max EIRP, Horizontal EIRP, Vertical and Sum EIRP results in dBm.

property fetch_eirpower_data

This command returns the current EIRP measurement result in dBm.

property fetch_eirpower_max

This command returns the Max EIRP measurement result in dBm.

7.14. Anritsu 211

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property fetch_emf

Return the current EMF measurement data. JSON format.

property fetch_emf_meter

Return the live EMF measurement data. JSON format.

property fetch_emf_meter_sample

Return the EMF measurement data for a specified sample number. JSON format.

property fetch_interference_power

Fetch Interference Finder Integrated Power.

property fetch_mimo_antenas

Returns the sync power measurement in json format.

property fetch_ocupied_bw

Returns the different set of measurement information depending on the suffix.

property fetch_ota_mapping

Returns the most recent Coverage Mapping measurement result.

property fetch_pan

Return the current Pulse Analyzer measurement data. JSON format

property fetch_pbch_constellation

Get the latest Physical Broadcast Channel constellation hitmap

property fetch_pci

Returns PCI measurements

property fetch_pdsch

Returns the Data Channel Measurements in JSON format.

property fetch_pdsch_constellation

Get the latest Physical Downlink Shared Channel constellation

property fetch_peak

Returns a pair of peak amplitude in current sweep.

property fetch_power

Returns the most recent channel power measurement.

property fetch_rrm

Returns the Radio Resource Management in JSON format.

property fetch_scan

Returns the cell scanner measurements in JSON format

property fetch_semask

This command returns the current Spectral Emission Mask measurement result.

property fetch_ssb

Returns the SSB measurement

property fetch_sync_evm

Returns the Sync EVM measurement in JSON format.

212 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property fetch_sync_power

Returns the sync power measurements in JSON format

property fetch_tae

Returns the Time Alignment Error in JSON format.

property frequency_center

Sets the center frequency in Hz

property frequency_offset

Sets the frequency offset in Hz

property frequency_span

Sets the frequency span in Hz

property frequency_span_full

Sets the frequency span to full span

property frequency_span_last

Sets the frequency span to the previous span value.

property frequency_start

Sets the start frequency in Hz

property frequency_step

Set or query the step size to gradually increase or decrease frequency values in Hz

property frequency_stop

Sets the start frequency in Hz

property gps

Returns the timestamp, latitude, and longitude of the device.

property gps_all

Returns the fix timestamp, latitude, longitude, altitude and information on the sat used.

property gps_full

Returns the timestamp, latitude, longitude, altitude, and satellite count of the device.

property gps_last

Returns the timestamp, latitude, longitude, and altitude of the last fixed GPS result.

init_all_sweep()

Initiate all sweep/measurement.

property init_continuous

Specified whether the sweep/measurement is triggered continuously

property init_spa_self

Perform a self-test and return the results.

init_sweep()

Initiate a sweep/measurement.

property meas_acpower

Sets the active measurement to adjacent channel power ratio, sets the default measurement parameters,
triggers a new measurement and returns the main channel power, lower adjacent, upper adjacent, lower
alternate and upper alternate channel power results.

7.14. Anritsu 213

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property meas_emf_meter_clear_all

Clear the EMF measurement data of all samples. Sampling state will be turned off if it was on.

property meas_emf_meter_clear_sample

Clear the EMF measurement data for a specified sample number. Sampling state will be turned off if the
specified sample is currently active.

property meas_emf_meter_sample

Start or Stop applying the measurement results to the currently selected sample

property meas_int_power

Sets the active measurement to interference finder, sets the default measurement parameters, triggers a new
measurement and returns integrated power as the result. It is a combination of the commands :CONFig-
ure:INTerference; :READ:INTerference:POWer?

property meas_iq_capture

This set command is used to start the IQ capture measurement.

property meas_iq_capture_fail

Sets or queries whether the instrument will automatically save an IQ capture when losing sync

property meas_ota_mapp

Sets the active measurement to OTA Coverage Mapping, sets the default measurement parameters, triggers
a new measurement, and returns the measured values.

property meas_ota_run

Turn on/off OTA Coverage Mapping Data Collection. The instrument must be in Coverage Mapping mea-
surement for the command to be effective

property meas_power

Sets the active measurement to channel power, sets the default measurement parameters, triggers a new
measurement and returns channel power as the result. It is a combination of the commands :CONFig-
ure:CHPower; :READ:CHPower:CHPower?

property meas_power_all

Sets the active measurement to channel power, sets the default measurement parameters, triggers a new
measurement and returns the channel power and channel power density results. It is a combination of the
commands :CONFigure:CHPower; :READ:CHPower?

property power_density

Sets the active measurement to channel power, sets the default measurement parameters, triggers a new
measurement and returns channel power density as the result. It is a combination of the commands :CON-
Figure:CHPower; :READ:CHPower:DENSity?

property preamp

Sets the state of the preamp. Note that this may cause a change in the reference level and/or attenuation.

property sense_mode

Set the operational mode of the Spa app.

property view_sense_modes

Returns a list of available modes for the Spa application. The response is a comma-separated list of mode
names. See command [:SENSe]:MODE for the mode name specification.

214 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.14.5 Anritsu MS464xB Vector Network Analyzer

class pymeasure.instruments.anritsu.AnritsuMS4642B(adapter, name='Anritsu MS464xB Vector Network
Analyzer', active_channels=16,
installed_ports=4, traces_per_channel=None,
**kwargs)

Bases: AnritsuMS464xB

A class representing the Anritsu MS4642B Vector Network Analyzer (VNA).

This VNA has a frequency range from 10 MHz to 20 GHz and is part of the AnritsuMS464xB family of instru-
ments; for documentation, for documentation refer to this base class.

class pymeasure.instruments.anritsu.AnritsuMS4644B(adapter, name='Anritsu MS464xB Vector Network
Analyzer', active_channels=16,
installed_ports=4, traces_per_channel=None,
**kwargs)

Bases: AnritsuMS464xB

A class representing the Anritsu MS4644B Vector Network Analyzer (VNA).

This VNA has a frequency range from 10 MHz to 40 GHz and is part of the AnritsuMS464xB family of instru-
ments; for documentation, for documentation refer to this base class.

class pymeasure.instruments.anritsu.AnritsuMS4645B(adapter, name='Anritsu MS464xB Vector Network
Analyzer', active_channels=16,
installed_ports=4, traces_per_channel=None,
**kwargs)

Bases: AnritsuMS464xB

A class representing the Anritsu MS4645B Vector Network Analyzer (VNA).

This VNA has a frequency range from 10 MHz to 50 GHz and is part of the AnritsuMS464xB family of instru-
ments; for documentation, for documentation refer to this base class.

class pymeasure.instruments.anritsu.AnritsuMS4647B(adapter, name='Anritsu MS464xB Vector Network
Analyzer', active_channels=16,
installed_ports=4, traces_per_channel=None,
**kwargs)

Bases: AnritsuMS464xB

A class representing the Anritsu MS4647B Vector Network Analyzer (VNA).

This VNA has a frequency range from 10 MHz to 70 GHz and is part of the AnritsuMS464xB family of instru-
ments; for documentation, for documentation refer to this base class.

class pymeasure.instruments.anritsu.AnritsuMS464xB(adapter, name='Anritsu MS464xB Vector Network
Analyzer', active_channels=16,
installed_ports=4, traces_per_channel=None,
**kwargs)

Bases: Instrument

A class representing the Anritsu MS464xB Vector Network Analyzer (VNA) series.

This familly consists of the MS4642B, MS4644B, MS4645B, and MS4647B, which are represented in their re-
spective classes (AnritsuMS4642B, AnritsuMS4644B, AnritsuMS4645B, AnritsuMS4647B), that only differ
in the available frequency range.

They can contain up to 16 instances of MeasurementChannel (depending on the configuration of the instru-
ment), that are accessible via the channels dict or directly via ch_ + the channel number.

7.14. Anritsu 215

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Parameters

• active_channels (int (1-16) or str ("auto")) – defines the number of active
channels (default=16); if active_channels is “auto”, the instrument will be queried for the
number of active channels.

• installed_ports (int (1-4) or str ("auto")) – defines the number of installed
ports (default=4); if “auto” is provided, the instrument will be queried for the number of
ports

• traces_per_channel (int (1-16) or str ("auto") or None) – defines the num-
ber of traces that is assumed for each channel (between 1 and 16); if not provided, the maxi-
mum number is assumed; “auto” is provided, the instrument will be queried for the number
of traces of each channel.

property active_channel

Control the active channel.

property bandwidth_enhancer_enabled

Control the state of the IF bandwidth enhancer.

property binary_data_byte_order

Control the binary numeric I/O data byte order.

valid values are:

value description
NORM The most significant byte (MSB) is first
SWAP The least significant byte (LSB) is first

check_errors()

Read all errors from the instrument.

Returns
list of error entries

copy_data_file(from_filename, to_filename)
Copy a file on the VNA HDD.

Parameters

• from_filename (str) – full filename including pat

• to_filename (str) – full filename including path

create_directory(dir_name)
Create a directory on the VNA HDD.

Parameters
dir_name (str) – directory name

property data_drawing_enabled

Control whether data drawing is enabled (True) or not (False).

property datablock_header_format

Control the way the arbitrary block header for output data is formed.

Valid values are:

216 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

value description
0 A block header with arbitrary length will be sent.
1 The block header will have a fixed length of 11 characters.
2 No block header will be sent. Not IEEE 488.2 compliant.

property datablock_numeric_format

Control format for numeric I/O data representation.

Valid values are:

value description
ASCII An ASCII number of 20 or 21 characters long with floating point notation.
8byte 8 bytes of binary floating point number representation limited to 64 bits.
4byte 4 bytes of floating point number representation.

property datafile_frequency_unit

Control the frequency unit displayed in a SNP data file.

Valid values are HZ, KHZ, MHZ, GHZ.

property datafile_include_heading

Control whether a heading is included in the data files.

property datafile_parameter_format

Control the parameter format displayed in an SNP data file.

Valid values are:

value description
LINPH Linear and Phase.
LOGPH Log and Phase.
REIM Real and Imaginary Numbers.

delete_data_file(filename)
Delete a file on the VNA HDD.

Parameters
filename (str) – full filename including path

delete_directory(dir_name)
Delete a directory on the VNA HDD.

Parameters
dir_name (str) – directory name

property display_layout

Control the channel display layout in a Row-by-Column format.

Valid values are: R1C1, R1C2, R2C1, R1C3, R3C1, R2C2C1, R2C1C2, C2R2R1, C2R1R2, R1C4, R4C1,
R2C2, R2C3, R3C2, R2C4, R4C2, R3C3, R5C2, R2C5, R4C3, R3C4, R4C4. The number following the R
indicates the number of rows, following the C the number of columns; e.g. R2C2 results in a 2-by-2 layout.
The options that contain two C’s or R’s result in asymmetric layouts; e.g. R2C1C2 results in a layout with
1 channel on top and two channels side-by-side on the bottom row.

7.14. Anritsu 217

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property event_status_enable_bits

Control the Standard Event Status Enable Register bits.

The register can be queried using the query_event_status_register() method. Valid values are be-
tween 0 and 255. Refer to the instrument manual for an explanation of the bits.

property external_trigger_delay

Control the delay time of the external trigger in seconds.

Valid values are between 0 [s] and 10 [s] in steps of 1e-9 [s] (i.e. 1 ns).

property external_trigger_edge

Control the edge type of the external trigger.

Valid values are POS (for positive or leading edge) or NEG (for negative or trailing edge).

property external_trigger_handshake

Control status of the external trigger handshake.

property external_trigger_type

Control the type of trigger that will be associated with the external trigger.

Valid values are POIN (for point), SWE (for sweep), CHAN (for channel), and ALL.

property hold_function_all_channels

Control the hold function of all channels.

Valid values are:

value description
CONT Perform continuous sweeps on all channels
HOLD Hold the sweep on all channels
SING Perform a single sweep and then hold all channels

load_data_file(filename)
Load a data file from the VNA HDD into the VNA memory.

Parameters
filename (str) – full filename including path

load_data_file_to_memory(filename)
Load a data file to a memory trace.

Parameters
filename (str) – full filename including path

property manual_trigger_type

Control the type of trigger that will be associated with the manual trigger.

Valid values are POIN (for point), SWE (for sweep), CHAN (for channel), and ALL.

property max_number_of_points

Control the maximum number of points the instrument can measure in a sweep.

Note that when this value is changed, the instrument will be rebooted. Valid values are 25000 and 100000.
When 25000 points is selected, the instrument supports 16 channels with 16 traces each; when 100000 is
selected, the instrument supports 1 channel with 16 traces.

218 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property number_of_channels

Control the number of displayed (and therefore accessible) channels.

When the system is in 25000 points mode, the number of channels can be 1, 2, 3, 4, 6, 8, 9, 10, 12, or 16;
when the system is in 100000 points mode, the system only supports 1 channel. If a value is provided that
is not valid in the present mode, the instrument is set to the next higher channel number.

property number_of_ports

Get the number of instrument test ports.

query_event_status_register()

Query the value of the Standard Event Status Register.

Note that querying this value, clears the register. Refer to the instrument manual for an explanation of the
returned value.

read_datafile(channel, sweep_points, datafile_freq, datafile_par, filename)
Read a data file from the VNA.

Parameters

• channel (int) – Channel Index

• sweep_points (int) – number of sweep point as an integer

• datafile_freq (DataFileFrequencyUnits) – Data file frequency unit

• datafile_par (DataFileParameter) – Data file parameter format

• filename (str) – full path of the file to be saved

property remote_trigger_type

Control the type of trigger that will be associated with the remote trigger.

Valid values are POIN (for point), SWE (for sweep), CHAN (for channel), and ALL.

return_to_local()

Returns the instrument to local operation.

property service_request_enable_bits

Control the Service Request Enable Register bits.

Valid values are between 0 and 255; setting 0 performs a register reset. Refer to the instrument manual for
an explanation of the bits.

store_image(filename)
Capture a screenshot to the file specified.

Parameters
filename (str) – full filename including path

trigger()

Trigger a continuous sweep from the remote interface.

trigger_continuous()

Trigger a continuous sweep from the remote interface.

trigger_single()

Trigger a single sweep with synchronization from the remote interface.

7.14. Anritsu 219

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property trigger_source

Control the source of the sweep/measurement triggering.

Valid values are:

value description
AUTO Automatic triggering
MAN Manual triggering
EXTT Triggering from rear panel BNC via the GPIB parser
EXT External triggering port
REM Remote triggering

update_channels(number_of_channels=None, **kwargs)
Create or remove channels to be correct with the actual number of channels.

Parameters
number_of_channels (int) – optional, if given, defines the desired number of channels.

class pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel(*args,
frequency_range=None,
traces=None, **kwargs)

Bases: Channel

Represents a channel of Anritsu MS464xB VNA.

Contains 4 instances of Port (accessible via the ports dict or directly pt_ + the port number) and up to 16
instances of Trace (accessible via the traces dict or directly tr_ + the trace number).

Parameters

• frequency_range (list of floats) – defines the number of installed ports (default=4).

• traces (int (1-16) or str ("auto") or None) – defines the number of traces that
is assumed for the channel (between 1 and 16); if not provided, the maximum number is
assumed; “auto” is provided, the instrument will be queried for the number of traces.

activate()

Set the indicated channel as the active channel.

property active_trace

Set the active trace on the indicated channel.

property application_type

Control the application type of the specified channel.

Valid values are TRAN (for transmission/reflection), NFIG (for noise figure measurement), PULS (for
PulseView).

property average_count

Control the averaging count for the indicated channel.

The channel must be turned on. Valid values are between 1 and 1024.

property average_sweep_count

Get the averaging sweep count for the indicated channel.

property average_type

Control the averaging type to for the indicated channel.

Valid values are POIN (point-by-point) or SWE (sweep-by-sweep)

220 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property averaging_enabled

Control whether the averaging is turned on for the indicated channel.

property bandwidth

Control the IF bandwidth for the indicated channel.

Valid values are between 1 [Hz] and 1E6 [Hz] (i.e. 1 MHz). The system will automatically select the closest
IF bandwidth from the available options (1, 3, 10 . . . 1E5, 3E5, 1E6).

property calibration_enabled

Control whether the RF correction (calibration) is enabled for indicated channel.

check_errors()

Read all errors from the instrument and log them.

Returns
List of error entries.

clear_average_count()

Clear and restart the averaging sweep count of the indicated channel.

property cw_mode_enabled

Control the state of the CW sweep mode of the indicated channel.

property cw_number_of_points

Control the CW sweep mode number of points of the indicated channel.

Valid values are between 1 and 25000 or 100000 depending on the maximum points setting.

property display_layout

Control the trace display layout in a Row-by-Column format for the indicated channel.

Valid values are: R1C1, R1C2, R2C1, R1C3, R3C1, R2C2C1, R2C1C2, C2R2R1, C2R1R2, R1C4, R4C1,
R2C2, R2C3, R3C2, R2C4, R4C2, R3C3, R5C2, R2C5, R4C3, R3C4, R4C4. The number following the R
indicates the number of rows, following the C the number of columns; e.g. R2C2 results in a 2-by-2 layout.
The options that contain two C’s or R’s result in asymmetric layouts; e.g. R2C1C2 results in a layout with
1 trace on top and two traces side-by-side on the bottom row.

property frequency_CW

Control the CW frequency of the indicated channel in hertz.

Valid values are between 1E7 [Hz] (i.e. 10 MHz) and 4E10 [Hz] (i.e. 40 GHz). (dynamic)

property frequency_center

Control the center value of the sweep range of the indicated channel in hertz.

Valid values are between 1E7 [Hz] (i.e. 10 MHz) and 4E10 [Hz] (i.e. 40 GHz). (dynamic)

property frequency_span

Control the span value of the sweep range of the indicated channel in hertz.

Valid values are between 2 [Hz] and 4E10 [Hz] (i.e. 40 GHz). (dynamic)

property frequency_start

Control the start value of the sweep range of the indicated channel in hertz.

Valid values are between 1E7 [Hz] (i.e. 10 MHz) and 4E10 [Hz] (i.e. 40 GHz). (dynamic)

7.14. Anritsu 221

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property frequency_stop

Control the stop value of the sweep range of the indicated channel in hertz.

Valid values are between 1E7 [Hz] (i.e. 10 MHz) and 4E10 [Hz] (i.e. 40 GHz). (dynamic)

property hold_function

Control the hold function of the specified channel.

valid values are:

value description
CONT Perform continuous sweeps on all channels
HOLD Hold the sweep on all channels
SING Perform a single sweep and then hold all channels

property number_of_points

Control the number of measurement points in a frequency sweep of the indicated channel.

Valid values are between 1 and 25000 or 100000 depending on the maximum points setting.

property number_of_traces

Control the number of traces on the specified channel

Valid values are between 1 and 16.

property sweep_mode

Control the sweep mode for Spectrum Analysis on the indicated channel.

Valid options are VNA (for a VNA-like mode where the instrument will only measure at points in the
frequency list) or CLAS (for a classical mode, where the instrument will scan all frequencies in the range).

property sweep_time

Control the sweep time of the indicated channel.

Valid values are between 2 and 100000.

property sweep_type

Control the sweep type of the indicated channel.

Valid options are:

value description
LIN Frequency-based linear sweep
LOG Frequency-based logarithmic sweep
FSEGM Segment-based sweep with frequency-based segments
ISEGM Index-based sweep with frequency-based segments
POW Power-based sweep with either a CW frequency or swept-frequency
MFGC Multiple frequency gain compression

update_frequency_range(frequency_range)
Update the values-attribute of the frequency-related dynamic properties.

Parameters
frequency_range (list) – the frequency range that the instrument is capable of.

222 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

update_traces(number_of_traces=None)
Create or remove traces to be correct with the actual number of traces.

Parameters
number_of_traces (int) – optional, if given defines the desired number of traces.

class pymeasure.instruments.anritsu.anritsuMS464xB.Trace(parent, id)
Bases: Channel

Represents a trace within a MeasurementChannel of the Anritsu MS464xB VNA.

activate()

Set the indicated trace as the active one.

property measurement_parameter

Control the measurement parameter of the indicated trace.

Valid values are any S-parameter (e.g. S11, S12, S41) for 4 ports, or one of the following:

value description
Sxx S-parameters (1-4 for both x)
MIX Response Mixed Mode
NFIG Noise Figure trace response (only with option 41 or 48)
NPOW Noise Power trace response (only with option 41 or 48)
NTEMP Noise Temperature trace response (only with option 41 or 48)
AGA Noise Figure Available Gain trace response (only with option 48)
IGA Noise Figure Insertion Gain trace response (only with option 48)

class pymeasure.instruments.anritsu.anritsuMS464xB.Port(parent, id)
Bases: Channel

Represents a port within a MeasurementChannel of the Anritsu MS464xB VNA.

property power_level

Control the power level (in dBm) of the indicated port on the indicated channel.

7.15 Attocube

This section contains specific documentation on the Attocube instruments that are implemented. If you are interested
in an instrument not included, please consider adding the instrument.

7.15.1 Attocube ANC300 Motion Controller

class pymeasure.instruments.attocube.anc300.ANC300Controller(adapter=None, name='attocube
ANC300 Piezo Controller',
axisnames='', passwd='',
query_delay=0.05, **kwargs)

Bases: Instrument

Attocube ANC300 Piezo stage controller with several axes

Parameters

7.15. Attocube 223

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• adapter – The VISA resource name of the controller (e.g.
“TCPIP::<address>::<port>::SOCKET”) or a created Adapter. The instruments default
communication port is 7230.

• axisnames – a list of axis names which will be used to create properties with these names

• passwd – password for the attocube standard console

• query_delay – delay between sending and reading (default 0.05 sec)

• host – host address of the instrument (e.g. 169.254.0.1)

Deprecated since version 0.11.2: The ‘host’ argument is deprecated. Use ‘adapter’ argument
instead.

• kwargs – Any valid key-word argument for VISAAdapter

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

Returns
List of error entries.

property controllerBoardVersion

Get the serial number of the controller board.

ground_all()

Grounds all axis of the controller.

handle_deprecated_host_arg(adapter, kwargs)
This function formats user input to the __init__ function to be compatible with the current definition of
the __init__ function. This is used to support outdated (deprecated) code. and separated out to make it
easier to remove in the future. To whoever removes this: This function should be removed and the adapter
argument in the __init__ method should be made non-optional.

Parameters
kwargs (dict) – keyword arguments passed to the __init__ function, including the depre-
cated host argument.

Return str
resource string for the VISAAdapter

read()

Read after setting a value.

stop_all()

Stop all movements of the axis.

property version

Get the version number and instrument identification.

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Parameters
query_delay – Delay between writing and reading in seconds.

224 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

class pymeasure.instruments.attocube.anc300.Axis(parent, id)
Bases: Channel

Represents a single open loop axis of the Attocube ANC350

Parameters

• axis – axis identifier, integer from 1 to 7

• controller – ANC300Controller instance used for the communication

property capacity

Measure the saved capacity value in nF of the axis.

property frequency

Control the frequency of the stepping motion in Hertz from 1 to 10000 Hz.

insert_id(command)
Insert the channel id in a command replacing placeholder.

Add axis id to a command string at the correct position after the initial command, but before a potential
value.

measure_capacity()

Obtains a new measurement of the capacity. The mode of the axis returns to ‘gnd’ after the measurement.

Returns capacity
the freshly measured capacity in nF.

property mode

Control axis mode. This can be ‘gnd’, ‘inp’, ‘cap’, ‘stp’, ‘off’, ‘stp+’, ‘stp-’. Available modes depend on the
actual axis model.

move(steps, gnd=True)
Move ‘steps’ steps in the direction given by the sign of the argument. This method will change the mode of
the axis automatically and ground the axis on the end if ‘gnd’ is True. The method is blocking and returns
only when the movement is finished.

Parameters

• steps – finite integer value of steps to be performed. A positive sign corresponds to up-
wards steps, a negative sign to downwards steps.

• gnd – bool, flag to decide if the axis should be grounded after completion of the movement

move_raw(steps)
Move ‘steps’ steps in the direction given by the sign of the argument. This method assumes the mode of
the axis is set to ‘stp’ and it is non-blocking, i.e. it will return immediately after sending the command.

Parameters
steps – integer value of steps to be performed. A positive sign corresponds to upwards steps,
a negative sign to downwards steps. The values of +/-inf trigger a continuous movement. The
axis can be halted by the stop method.

property offset_voltage

Control offset voltage in Volts from 0 to 150 V.

property output_voltage

Measure the output voltage in volts.

7.15. Attocube 225

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property pattern_down

Control step down pattern of the piezo drive. 256 values ranging from 0 to 255 representing the the sequence
of output voltages within one step of the piezo drive. This property can be set, the set value needs to be an
array with 256 integer values.

property pattern_up

Control step up pattern of the piezo drive. 256 values ranging from 0 to 255 representing the the sequence
of output voltages within one step of the piezo drive. This property can be set, the set value needs to be an
array with 256 integer values.

property serial_nr

Get the serial number of the axis.

property stepd

Set the steps downwards for N steps. Mode must be ‘stp’ and N must be positive. 0 causes a continous
movement until stop is called.

Deprecated since version 0.13.0: Use meth:move_raw instead.

property stepu

Set the steps upwards for N steps. Mode must be ‘stp’ and N must be positive. 0 causes a continous
movement until stop is called.

Deprecated since version 0.13.0: Use meth:move_raw instead.

stop()

Stop any motion of the axis

property voltage

Control the amplitude of the stepping voltage in volts from 0 to 150 V.

7.16 BK Precision

This section contains specific documentation on the BK Precision instruments that are implemented. If you are inter-
ested in an instrument not included, please consider adding the instrument.

7.16.1 BK Precision 9130B DC Power Supply

class pymeasure.instruments.bkprecision.BKPrecision9130B(adapter, name='BK Precision 9130B
Source', **kwargs)

Bases: Instrument

Represents the BK Precision 9130B DC Power Supply interface for interacting with the instrument.

property channel

Control which channel is selected. Can only take values [1, 2, 3]. (int)

property current

Control the current of the selected channel. (float)

property source_enabled

Control whether the source is enabled. (bool)

property voltage

Control voltage of the selected channel. (float)

226 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.17 Danfysik

This section contains specific documentation on the Danfysik instruments that are implemented. If you are interested
in an instrument not included, please consider adding the instrument.

7.17.1 Danfysik 8500 Power Supply

class pymeasure.instruments.danfysik.Danfysik8500(adapter, name='Danfysik 8500 Current Supply',
**kwargs)

Bases: Instrument

Represents the Danfysik 8500 Electromanget Current Supply and provides a high-level interface for interacting
with the instrument

To allow user access to the Prolific Technology PL2303 Serial port adapter in Linux, create the file: /etc/udev/
rules.d/50-danfysik.rules, with contents:

SUBSYSTEMS=="usb",ATTRS{idVendor}=="067b",ATTRS{idProduct}=="2303",MODE="0666",
→˓SYMLINK+="danfysik"

Then reload the udev rules with:

sudo udevadm control --reload-rules
sudo udevadm trigger

The device will be accessible through the port /dev/danfysik.

add_ramp_step(current)
Adds a current step to the ramp set.

Parameters
current – A current in Amps

clear_ramp_set()

Clears the ramp set.

clear_sequence(stack)
Clears the sequence by the stack number.

Parameters
stack – A stack number between 0-15

property current

The actual current in Amps. This property can be set through current_ppm .

property current_ppm

The current in parts per million. This property can be set.

property current_setpoint

The setpoint for the current, which can deviate from the actual current (current) while the supply is in
the process of setting the value.

disable()

Disables the flow of current.

7.17. Danfysik 227

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

enable()

Enables the flow of current.

property id

Reads the idenfitication information.

is_current_stable()

Returns True if the current is within 0.02 A of the setpoint value.

is_enabled()

Returns True if the current supply is enabled.

is_ready()

Returns True if the instrument is in the ready state.

is_sequence_running(stack)
Returns True if a sequence is running with a given stack number

Parameters
stack – A stack number between 0-15

local()

Sets the instrument in local mode, where the front panel can be used.

property polarity

The polarity of the current supply, being either -1 or 1. This property can be set by suppling one of these
values.

ramp_to_current(current, points, delay_time=1)
Executes set_ramp_to_current() and starts the ramp.

read()

Read the device and raise exceptions if errors are reported by the instrument.

Returns
String ASCII response of the instrument

Raises
An Exception if the Danfysik raises an error

remote()

Sets the instrument in remote mode, where the the front panel is disabled.

reset_interlocks()

Resets the instrument interlocks.

set_ramp_delay(time)
Sets the ramp delay time in seconds.

Parameters
time – The time delay time in seconds

set_ramp_to_current(current, points, delay_time=1)
Sets up a linear ramp from the initial current to a different current, with a number of points, and delay time.

Parameters

• current – The final current in Amps

• points – The number of linear points to traverse

228 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• delay_time – A delay time in seconds

set_sequence(stack, currents, times, multiplier=999999)
Sets up an arbitrary ramp profile with a list of currents (Amps) and a list of interval times (seconds) on the
specified stack number (0-15)

property slew_rate

The slew rate of the current sweep.

start_ramp()

Starts the current ramp.

start_sequence(stack)
Starts a sequence by the stack number.

Parameters
stack – A stack number between 0-15

property status

A list of human-readable strings that contain the instrument status information, based on status_hex.

property status_hex

The status in hexadecimal. This value is parsed in status into a human-readable list.

stop_ramp()

Stops the current ramp.

stop_sequence()

Stops the currently running sequence.

sync_sequence(stack, delay=0)
Arms the ramp sequence to be triggered by a hardware input to pin P33 1&2 (10 to 24 V) or a TS command.
If a delay is provided, the sequence will start after the delay.

Parameters

• stack – A stack number between 0-15

• delay – A delay time in seconds

wait_for_current(has_aborted=<function Danfysik8500.<lambda>>, delay=0.01)
Blocks the process until the current has stabilized. A provided function has_aborted can be supplied,
which is checked after each delay time (in seconds) in addition to the stability check. This allows an abort
feature to be integrated.

Parameters

• has_aborted – A function that returns True if the process should stop waiting

• delay – The delay time in seconds between each check for stability

wait_for_ready(has_aborted=<function Danfysik8500.<lambda>>, delay=0.01)
Blocks the process until the instrument is ready. A provided function has_aborted can be supplied, which
is checked after each delay time (in seconds) in addition to the readiness check. This allows an abort feature
to be integrated.

Parameters

• has_aborted – A function that returns True if the process should stop waiting

• delay – The delay time in seconds between each check for readiness

7.17. Danfysik 229

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.18 Delta Elektronika

This section contains specific documentation on the Delta Elektronika instruments that are implemented. If you are
interested in an instrument not included, please consider adding the instrument.

7.18.1 Delta Elektronica SM7045D Power source

class pymeasure.instruments.deltaelektronika.SM7045D(adapter, name='Delta Elektronika SM 70-45
D', **kwargs)

Bases: Instrument

This is the class for the SM 70-45 D power supply.

source = SM7045D("GPIB::8")

source.ramp_to_zero(1) # Set output to 0 before enabling
source.enable() # Enables the output
source.current = 1 # Sets a current of 1 Amps

property current

A floating point property that represents the output current of the power supply in Amps. This property can
be set.

disable()

Enables remote shutdown, hence input will be disabled.

enable()

Disable remote shutdown, hence output will be enabled.

property max_current

A floating point property that represents the maximum output current of the power supply in Amps. This
property can be set.

property max_voltage

A floating point property that represents the maximum output voltage of the power supply in Volts. This
property can be set.

property measure_current

Measures the actual output current of the power supply in Amps.

property measure_voltage

Measures the actual output voltage of the power supply in Volts.

ramp_to_current(target_current, current_step=0.1)
Gradually increase/decrease current to target current.

Parameters

• target_current – Float that sets the target current (in A)

• current_step – Optional float that sets the current steps / ramp rate (in A/s)

ramp_to_zero(current_step=0.1)
Gradually decrease the current to zero.

Parameters
current_step – Optional float that sets the current steps / ramp rate (in A/s)

230 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property rsd

Check whether remote shutdown is enabled/disabled and thus if the output of the power supply is dis-
abled/enabled.

shutdown()

Set the current to 0 A and disable the output of the power source.

property voltage

A floating point property that represents the output voltage setting of the power supply in Volts. This
property can be set.

7.19 Edwards

This section contains specific documentation on the Edwards instruments that are implemented. If you are interested
in an instrument not included, please consider adding the instrument.

7.19.1 Edwards nxds vacuum pump

class pymeasure.instruments.edwards.Nxds(adapter, name='Edwards NXDS Vacuum Pump', **kwargs)
Bases: Instrument

Represents the Edwards nXDS (10i) Vacuum Pump and provides a low-level interaction with the instrument.
This could potentially work with Edwards pump that has a RS232 interface. This instrument is constructed to
only start and stop pump.

property enable

Set the pump enabled state with default settings.

7.20 EURO TEST

This section contains specific documentation on the EURO TEST instruments that are implemented. If you are inter-
ested in an instrument not included, please consider adding the instrument.

7.20.1 Euro Test HPP120256 High Voltage Power Supply

class pymeasure.instruments.eurotest.EurotestHPP120256(adapter, name='Euro Test High Voltage DC
Source model HPP-120-256',
query_delay=0.1, write_delay=0.4,
timeout=5000, **kwargs)

Bases: Instrument

Represents the Euro Test High Voltage DC Source model HPP-120-256 and provides a high-level interface for
interacting with the instrument using the Euro Test command set (Not SCPI command set).

hpp120256 = EurotestHPP120256("GPIB0::20::INSTR")

print(hpp120256.id)
print(hpp120256.lam_status)
print(hpp120256.status)

(continues on next page)

7.19. Edwards 231

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

hpp120256.ramp_to_zero(100.0)

hpp120256.voltage_ramp = 50.0 # V/s
hpp120256.current_limit = 2.0 # mA
inst.kill_enabled = True # Enable over-current protection
time.sleep(1.0) # Give time to enable kill
inst.output_enabled = True
time.sleep(1.0) # Give time to output on

abs_output_voltage_error = 0.02 # kV

hpp120256.wait_for_output_voltage_reached(abs_output_voltage_error, 1.0, 40.0)

Here voltage HV output should be at 0.0 kV

print("Setting the output voltage to 1.0kV...")
hpp120256.voltage_setpoint = 1.0 # kV

Now HV output should be rising to reach the 1.0kV at 50.0 V/s

hpp120256.wait_for_output_voltage_reached(abs_output_voltage_error, 1.0, 40.0)

Here voltage HV output should be at 1.0 kV

hpp120256.shutdown()

hpp120256.wait_for_output_voltage_reached(abs_output_voltage_error, 1.0, 60.0)

Here voltage HV output should be at 0.0 kV

inst.output_enabled = False

Now the HV voltage source is in safe state

class EurotestHPP120256Status(value, names=None, *, module=None, qualname=None, type=None,
start=1, boundary=None)

Bases: IntFlag

Auxiliary class create for translating the instrument 16bits_status_string into an Enum_IntFlag that will
help to the user to understand such status.

ask(command)
Overrides Instrument ask method for including query_delay time on parent call. :param command: Com-
mand string to be sent to the instrument. :returns: String returned by the device without read_termination.

property current

Measure the actual output current in mAmps (float).

property current_limit

Control the current limit in mAmps (float strictly from 0 to 25).

property current_range

Measure the actual output current range in mAmps (float).

232 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

emergency_off()

The output of the HV source will be switched OFF permanently and the values of the voltage and current
settings set to zero

property id

Get the identification of the instrument (string)

property kill_enabled

Control the instrument kill enable (boolean).

property lam_status

Get the instrument lam status (string).

property output_enabled

Control the instrument output enable (boolean).

ramp_to_zero(voltage_rate=200.0)
Sets the voltage output setting to zero and the ramp setting to a value determined by the voltage_rate pa-
rameter. In summary, the method conducts (ramps) the voltage output to zero at a determinated voltage
changing rate (ramp in V/s). :param voltage_rate: Is the changing rate (ramp in V/s) for the ramp setting

shutdown(voltage_rate=200.0)
Change the output voltage setting (V) to zero and the ramp speed - voltage_rate (V/s) of the output voltage.
After calling shutdown, if the HV voltage output > 0 it should drop to zero at a certain rate given by the
voltage_rate parameter. :param voltage_rate: indicates the changing rate (V/s) of the voltage output

property status

Get the instrument status (EurotestHPP120256Status).

property voltage

Measure the actual output voltage in kVolts (float).

property voltage_ramp

Control the voltage ramp in Volts/second (int strictly from 10 to 3000).

property voltage_range

Measure the actual output voltage range in kVolts (float).

property voltage_setpoint

Control the voltage set-point in kVolts (float strictly from 0 to 12).

wait_for_output_voltage_reached(voltage_setpoint, abs_output_voltage_error=0.03,
check_period=1.0, timeout=60.0)

Wait until HV voltage output reaches the voltage setpoint.

Checks the voltage output every check_period seconds and raises an exception if the voltage output doesn’t
reach the voltage setting until the timeout time. :param voltage_setpoint: the voltage in kVolts setted in
the HV power supply which should be present at the output after some time (depends on the ramp setting).
:param abs_output_voltage_error: absolute error in kVolts for being considered an output voltage reached.
:param check_period: voltage output will be measured every check_period (seconds) time. :param timeout:
time (seconds) give to the voltage output to reach the voltage setting. :return: None :raises: Exception if
the voltage output can’t reach the voltage setting before the timeout completes (seconds).

write(command, **kwargs)
Overrides Instrument write method for including write_delay time after the parent call.

Parameters
command – command string to be sent to the instrument

7.20. EURO TEST 233

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.21 Fluke

This section contains specific documentation on the Fluke instruments that are implemented. If you are interested in
an instrument not included, please consider adding the instrument.

7.21.1 Fluke 7341 Temperature bath

class pymeasure.instruments.fluke.Fluke7341(adapter, name='Fluke 7341', **kwargs)
Bases: Instrument

Represents the compact constant temperature bath from Fluke.

property id

Get the instrument model.

read()

Read up to (excluding) read_termination or the whole read buffer.

Extract the value from the response string.

Responses are in the format “type: value optional information”. Optional information is for example the
unit (degree centigrade or Fahrenheit).

property set_point

Control the temperature setpoint (float from -40 to 150 °C) The unit is as defined in property unit.

property temperature

Measure the current bath temperature. The unit is as defined in property unit.

property unit

Control the temperature unit: c for Celsius and f for Fahrenheit`.

7.22 F.W. Bell

This section contains specific documentation on the F.W. Bell instruments that are implemented. If you are interested
in an instrument not included, please consider adding the instrument.

7.22.1 F.W. Bell 5080 Handheld Gaussmeter

class pymeasure.instruments.fwbell.FWBell5080(adapter, name='F.W. Bell 5080 Handheld Gaussmeter',
**kwargs)

Bases: Instrument

Represents the F.W. Bell 5080 Handheld Gaussmeter and provides a high-level interface for interacting with the
instrument

Parameters
port – The serial port of the instrument

meter = FWBell5080('/dev/ttyUSB0') # Connects over serial port /dev/ttyUSB0 (Linux)

meter.units = 'gauss' # Sets the measurement units to Gauss
(continues on next page)

234 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

meter.range = 1 # Sets the range to 3 kG
print(meter.field) # Reads and prints a field measurement in G

fields = meter.fields(100) # Samples 100 field measurements
print(fields.mean(), fields.std()) # Prints the mean and standard deviation of the␣
→˓samples

auto_range()

Enables the auto range functionality.

check_errors()

Read all errors from the instrument and log them.

Returns
List of error entries.

check_get_errors()

Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

clear()

Clears the instrument status byte

property complete

Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation Complete query
places an ASCII character 1 into the device’s Output Queue when all pending selected device operations
have been finished.

property field

Measure the field in the appropriate units (float).

fields(samples=1)
Returns a numpy array of field samples for a given sample number.

Parameters
samples – The number of samples to preform

property id

Get the identification of the instrument.

7.22. F.W. Bell 235

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property options

Get the device options installed.

property range

Control the maximum field range in the active units (int). The range unit is dependent on the current units
mode (gauss, tesla, amp-meter). Value sets an equivalent range across units that increases in magnitude (1,
10, 100).

Value gauss tesla amp-meter
0 300 G 30 mT 23.88 kAm
1 3 kG 300 mT 238.8 kAm
2 30 kG 3 T 2388 kAm

read()

Overwrites the Instrument.read method to remove semicolons and replace spaces with colons.

read_binary_values(**kwargs)
Read binary values from the device.

read_bytes(count, **kwargs)
Read a certain number of bytes from the instrument.

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read the whole read
buffer.

• kwargs – Keyword arguments for the adapter.

Returns bytes
Bytes response of the instrument (including termination).

reset()

Resets the instrument.

shutdown()

Brings the instrument to a safe and stable state

property status

Get the status byte and Master Summary Status bit.

property units

Get the field units (str), which can take the values: ‘gauss’, ‘gauss ac’, ‘tesla’, ‘tesla ac’, ‘amp-meter’, and
‘amp-meter ac’. The AC versions configure the instrument to measure AC.

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Parameters
query_delay – Delay between writing and reading in seconds.

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument

• kwargs – Keyword arguments for the adapter.

236 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

write_binary_values(command, values, *args, **kwargs)
Write binary values to the device.

Parameters

• command – Command to send.

• values – The values to transmit.

• **kwargs (*args,) – Further arguments to hand to the Adapter.

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

7.23 Heidenhain

This section contains specific documentation on the Heidenhain instruments that are implemented. If you are interested
in an instrument not included, please consider adding the instrument.

7.23.1 Heidenhain ND287 Position Display Unit

class pymeasure.instruments.heidenhain.ND287(adapter, name='Heidenhain ND287', units='mm',
**kwargs)

Bases: Instrument

Represents the Heidenhain ND287 position display unit used to readout and display absolute position measured
by Heidenhain encoders.

check_errors()

Method to read an error status message and log when an error is detected.

Returns
String with the error message as its contents.

property id

Get the string identification property for the device.

property position

Measure the encoder’s current position (float). Note that the get_process performs a mapping from the
returned value to a float measured in the units specified by ND287.units. The get_process is modified
dynamically as this mapping changes slightly between different units.(dynamic)

property status

Get the encoder’s status bar

property units

Control the unit of measure set on the device. Valid values are ‘mm’ and ‘inch’ Note that this parameter
can only be set manually on the device. So this argument only ensures that the instance units and physical
device settings match. I.e., this property does not change any physical device setting.

7.23. Heidenhain 237

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.24 HC Photonics

This section contains specific documentation on the HC Photonics instruments that are implemented. If you are inter-
ested in an instrument not included, please consider adding the instrument.

7.24.1 HCP TC038 crystal oven

class pymeasure.instruments.hcp.TC038(adapter, name='TC038', address=1, timeout=1000,
includeSCPI=False, **kwargs)

Bases: Instrument

Communication with the HCP TC038 oven.

This is the older version with an AC power supply and AC heater.

It has parity or framing errors from time to time. Handle them in your application.

The oven always responds with an “OK” to all valid requests or commands.

Parameters

• adapter (str) – Name of the COM-Port.

• address (int) – Address of the device. Should be between 1 and 99.

• timeout (int) – Timeout in ms.

check_set_errors()

Check for errors after having set a property.

Called if check_set_errors=True is set for that property.

property information

Get the information about the device and its capabilites.

property monitored_value

Measure the currently monitored value. For default it is the current temperature in °C.

read()

Do error checking on reading.

set_monitored_quantity(quantity='temperature')
Configure the oven to monitor a certain quantity.

quantity may be any key of registers. Default is the current temperature in °C.

property setpoint

Control the setpoint of the temperature controller in °C.

property temperature

Measure the current temperature in °C.

write(command)
Send a command in its own protocol.

238 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.24.2 HCP TC038D crystal oven

class pymeasure.instruments.hcp.TC038D(adapter, name='TC038D', address=1, timeout=1000, **kwargs)
Bases: Instrument

Communication with the HCP TC038D oven.

This is the newer version with DC heating.

The oven expects raw bytes written, no ascii code, and sends raw bytes. For the variables are two or four-byte
modes available. We use the four-byte mode addresses. In that case element count has to be double the variables
read.

check_set_errors()

Check for errors after having set a property.

Called if check_set_errors=True is set for that property.

ping(test_data=0)
Test the connection sending an integer up to 65535, checks the response.

read()

Read response and interpret the number, returning it as a string.

property setpoint

Control the setpoint of the oven in °C.

property temperature

Measure the current oven temperature in °C.

write(command)
Write a command to the device.

Parameters
command (str) – comma separated string of: - the function: read (‘R’) or write (‘W’) or
‘echo’, - the address to write to (e.g. ‘0x106’ or ‘262’), - the values (comma separated) to
write - or the number of elements to read (defaults to 1).

7.25 Hewlett Packard

This section contains specific documentation on the Hewlett Packard instruments that are implemented. If you are
interested in an instrument not included, please consider adding the instrument.

7.25.1 HP 33120A Arbitrary Waveform Generator

class pymeasure.instruments.hp.HP33120A(adapter, name='Hewlett Packard 33120A Function Generator',
**kwargs)

Bases: Instrument

Represents the Hewlett Packard 33120A Arbitrary Waveform Generator and provides a high-level interface for
interacting with the instrument.

property amplitude

A floating point property that controls the voltage amplitude of the output signal. The default units are
in peak-to-peak Volts, but can be controlled by amplitude_units. The allowed range depends on the
waveform shape and can be queried with max_amplitude and min_amplitude.

7.25. Hewlett Packard 239

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property amplitude_units

A string property that controls the units of the amplitude, which can take the values Vpp, Vrms, dBm, and
default.

beep()

Causes a system beep.

property frequency

A floating point property that controls the frequency of the output in Hz. The allowed range depends on
the waveform shape and can be queried with max_frequency and min_frequency.

property max_amplitude

Reads the maximum amplitude in Volts for the given shape

property max_frequency

Reads the maximum frequency in Hz for the given shape

property max_offset

Reads the maximum offset in Volts for the given shape

property min_amplitude

Reads the minimum amplitude in Volts for the given shape

property min_frequency

Reads the minimum frequency in Hz for the given shape

property min_offset

Reads the minimum offset in Volts for the given shape

property offset

A floating point property that controls the amplitude voltage offset in Volts. The allowed range depends on
the waveform shape and can be queried with max_offset and min_offset.

property shape

A string property that controls the shape of the wave, which can take the values: sinusoid, square, triangle,
ramp, noise, dc, and user.

7.25.2 HP 34401A Multimeter

class pymeasure.instruments.hp.HP34401A(adapter, name='HP 34401A', **kwargs)
Bases: Instrument

Represents the HP / Agilent / Keysight 34401A Multimeter and provides a high-level interface for interacting
with the instrument.

dmm = HP34401A("GPIB::1")
dmm.function_ = "DCV"
print(dmm.reading) # -> Single float reading

dmm.nplc = 0.02
dmm.autozero_enabled = False
dmm.trigger_count = 100
dmm.trigger_delay = "MIN"
print(dmm.reading) # -> Array of 100 very fast readings

240 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property auto_input_impedance_enabled

Control if automatic input resistance mode is enabled.

Only valid for dc voltage measurements. When disabled (default), the input resistance is fixed at 10 MOhms
for all ranges. With AUTO ON, the input resistance is set to >10 GOhms for the 100 mV, 1 V, and 10 V
ranges.

property autorange

Control the autorange state for the currently active function.

property autozero_enabled

Control the autozero state.

beep()

This command causes the multimeter to beep once.

property beeper_enabled

Control whether the beeper is enabled.

property current_ac

AC current, in Amps

Deprecated since version 0.12: Use the function_ and reading properties instead.

property current_dc

DC current, in Amps

Deprecated since version 0.12: Use the function_ and reading properties instead.

property detector_bandwidth

Control the lowest frequency expected in the input signal in Hertz.

Valid values: 3, 20, 200, “MIN”, “MAX”.

property display_enabled

Control the display state.

property displayed_text

Control the text displayed on the multimeter’s display.

The text can be up to 12 characters long; any additional characters are truncated my the multimeter.

property function_

Control the measurement function.

Allowed values: “DCV”, “DCV_RATIO”, “ACV”, “DCI”, “ACI”, “R2W”, “R4W”, “FREQ”, “PERIOD”,
“CONTINUITY”, “DIODE”.

property gate_time

Control the gate time (or aperture time) for frequency or period measurements.

Valid values: 0.01, 0.1, 1, “MIN”, “MAX”. Specifically: 10 ms (4.5 digits), 100 ms (default; 5.5 digits),
or 1 second (6.5 digits).

init_trigger()

Set the state of the triggering system to “wait-for-trigger”.

Measurements will begin when the specified trigger conditions are satisfied after this command is received.

7.25. Hewlett Packard 241

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property nplc

Control the integration time in number of power line cycles (NPLC).

Valid values: 0.02, 0.2, 1, 10, 100, “MIN”, “MAX”. This command is valid only for dc volts, ratio, dc
current, 2-wire ohms, and 4-wire ohms.

property range_

Control the range for the currently active function.

For frequency and period measurements, ranging applies to the signal’s input voltage, not its frequency

property reading

Take a measurement of the currently selected function.

Reading this property is equivalent to calling init_trigger(), waiting for completion and fetching the read-
ing(s).

property resistance

Resistance, in Ohms

Deprecated since version 0.12: Use the function_ and reading properties instead.

property resistance_4w

Four-wires (remote sensing) resistance, in Ohms

Deprecated since version 0.12: Use the function_ and reading properties instead.

property resolution

Control the resolution of the measurements.

Not valid for frequency, period, or ratio. Specify the resolution in the same units as the measurement
function, not in number of digits. Results in a “Settings Conflict” error if autorange is enabled. MIN selects
the smallest value accepted, which gives the most resolution. MAX selects the largest value accepted which
gives the least resolution.

property sample_count

Controls the number of samples per trigger event.

Valid values: 1 to 50000, “MIN”, “MAX”.

property scpi_version

The SCPI version of the multimeter.

property self_test_result

Initiate a self-test of the multimeter and return the result.

Be sure to set an appropriate connection timeout, otherwise the command will fail.

property stored_reading

Measure the reading(s) currently stored in the multimeter’s internal memory.

Reading this property will NOT initialize a trigger. If you need that, use the reading property instead.

property stored_readings_count

The number of readings currently stored in the internal memory.

property terminals_used

Query the multimeter to determine if the front or rear input terminals are selected.

Returns “FRONT” or “REAR”.

242 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property trigger_auto_delay_enabled

Control the automatic trigger delay state.

If enabled, the delay is determined by function, range, integration time, and ac filter setting. Selecting a
specific trigger delay value automatically turns off the automatic trigger delay.

property trigger_count

Control the number of triggers accepted before returning to the “idle” state.

Valid values: 1 to 50000, “MIN”, “MAX”, “INF”. The INFinite parameter instructs the multimeter to
continuously accept triggers (you must send a device clear to return to the “idle” state).

property trigger_delay

Control the trigger delay in seconds.

Valid values (incl. floats): 0 to 3600 seconds, “MIN”, “MAX”.

trigger_single_autozero()

Trigger an autozero measurement.

Consequent autozero measurements are disabled.

property trigger_source

Control the trigger source.

Valid values: “IMM”, “BUS”, “EXT” The multimeter will accept a software (bus) trigger, an immediate
internal trigger (this is the default source), or a hardware trigger from the rear-panel Ext Trig (external
trigger) terminal.

property voltage_ac

AC voltage, in Volts

Deprecated since version 0.12: Use the function_ and reading properties instead.

write(command)
Write a command to the instrument.

7.25.3 HP 3437A System-Voltmeter

class pymeasure.instruments.hp.HP3437A(adapter, name='Hewlett-Packard HP3437A', **kwargs)
Bases: HPLegacyInstrument

Represents the Hewlett Packard 3737A system voltmeter and provides a high-level interface for interacting with
the instrument.

class SRQ(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)
Bases: IntFlag

Enum element for SRQ mask bit decoding

property SRQ_mask

Return current SRQ mask, this property can be set,

bit assigment for SRQ:

Bit (dec) Description
1 SRQ when invalid program
2 SRQ when trigger is ignored
4 SRQ when data ready

7.25. Hewlett Packard 243

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

check_errors()

As this instrument does not have a error indication bit, this function alwyas returns an empty list.

property delay

Return the value (float) for the delay between two measurements, this property can be set,

valid range: 100ns - 0.999999s

property number_readings

Return value (int) for the number of consecutive measurements, this property can be set, valid range: 0 -
9999

pb_desc

alias of PackedBits

property range

Return the current measurement voltage range.

This property can be set, valid values: 0.1, 1, 10 (V).

Note: This instrument does not have autorange capability.

Overrange will be in indicated as 0.99,9.99 or 99.9

read_data()

Reads measured data from instrument, returns a np.array.

(This function also takes care of unpacking the data if required)

Return data
np.array containing the data

status_desc

alias of Status

property talk_ascii

A boolean property, True if the instrument is set to ASCII-based communication. This property can be set.

property trigger

Return current selected trigger mode, this property can be set,

Possibe values are:

Value Explanation
internal automatic trigger (internal)
external external trigger (connector on back or GET)
hold/manual holds the measurement/issues a manual trigger

244 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.25.4 HP 3478A Multimeter

class pymeasure.instruments.hp.HP3478A(adapter, name='Hewlett-Packard HP3478A', **kwargs)
Bases: HPLegacyInstrument

Represents the Hewlett Packard 3478A 5 1/2 digit multimeter and provides a high-level interface for interacting
with the instrument.

class ERRORS(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

Bases: IntFlag

Enum element for errror bit decoding

property SRQ_mask

Return current SRQ mask, this property can be set,

bit assigment for SRQ:

Bit (dec) Description
1 SRQ when Data ready
4 SRQ when Syntax error
8 SRQ when internal error
16 front panel SQR button
32 SRQ by invalid calibration

property active_connectors

Return selected connectors (“front”/”back”), based on front-panel selector switch

property auto_range_enabled

Property describing the auto-ranging status

Value Status
True auto-range function activated
False manual range selection / auto-range disabled

The range can be set with the range property

property auto_zero_enabled

Return auto-zero status, this property can be set

Value Status
True auto-zero active
False auto-zero disabled

property calibration_data

Read or write the calibration data as an array of 256 values between 0 and 15.

The calibration data of an HP 3478A is stored in a 256x4 SRAM that is permanently powered by a 3v
Lithium battery. When the battery runs out, the calibration data is lost, and recalibration is required.

When read, this property fetches and returns the calibration data so that it can be backed up.

When assigned a value, it similarly expects an array of 256 values between 0 and 15, and writes the values
back to the instrument.

7.25. Hewlett Packard 245

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

When writing, exceptions are raised for the following conditions:

• The CAL ENABLE switch at the front of the instrument is not set to ON.

• The array with values does not contain exactly 256 elements.

• The array with values does not pass a verification check.

IMPORTANT: changing the calibration data results in permanent loss of the previous data. Use with care!

property calibration_enabled

Return calibration enable switch setting, based on front-panel selector switch

Value Status
True calbration possible
False calibration locked

check_errors()

Method to read the error status register

Return error_status
one byte with the error status register content

Rtype error_status
int

display_reset()

Reset the display of the instrument.

property display_text

Displays up to 12 upper-case ASCII characters on the display.

property display_text_no_symbol

Displays up to 12 upper-case ASCII characters on the display and disables all symbols on the display.

property error_status

Checks the error status register

property measure_ACI

Returns the measured value for AC current as a float in A.

property measure_ACV

Returns the measured value for AC Voltage as a float in V.

property measure_DCI

Returns the measured value for DC current as a float in A.

property measure_DCV

Returns the measured value for DC Voltage as a float in V.

property measure_R2W

Returns the measured value for 2-wire resistance as a float in Ohm.

property measure_R4W

Returns the measured value for 4-wire resistance as a float in Ohm.

property measure_Rext

Returns the measured value for extended resistance mode (>30M, 2-wire) resistance as a float in Ohm.

246 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property mode

Return current selected measurement mode, this propery can be set. Allowed values are

Mode Function
ACI AC current
ACV AC voltage
DCI DC current
DCV DC voltage
R2W 2-wire resistance
R4W 4-wire resistance
Rext extended resistance method (requires additional 10 M resistor)

property range

Returns the current measurement range, this property can be set.

Valid values are :

Mode Range
ACI 0.3, 3, auto
ACV 0.3, 3, 30, 300, auto
DCI 0.3, 3, auto
DCV 0.03, 0.3, 3, 30, 300, auto
R2W 30, 300, 3000, 3E4, 3E5, 3E6, 3E7, auto
R4W 30, 300, 3000, 3E4, 3E5, 3E6, 3E7, auto
Rext 3E7, auto

property resolution

Returns current selected resolution, this property can be set.

Possible values are 3,4 or 5 (for 3 1/2, 4 1/2 or 5 1/2 digits of resolution)

status_desc

alias of Status

property trigger

Return current selected trigger mode, this property can be set

Possibe values are:

Value Meaning
auto automatic trigger (internal)
internal automatic trigger (internal)
external external trigger (connector on back or GET)
hold holds the measurement
fast fast trigger for AC measurements

verify_calibration_data(cal_data)
Verify the checksums of all calibration entries.

Expects an array of 256 values with calibration data.

Return calibration_correct
True when all checksums are correct.

7.25. Hewlett Packard 247

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Rtype calibration_correct
boolean

verify_calibration_entry(cal_data, entry_nr)
Verify the checksum of one calibration entry.

Expects an array of 256 values with calibration data, and an entry number from 0 to 18.

Returns True when the checksum of the specified calibration entry is correct.

write_calibration_data(cal_data, verify_calibration_data=True)
Method to write calibration data.

The cal_data parameter format is the same as the calibration_data property.

Verification of the cal_data array can be bypassed by setting verify_calibration_data to False.

7.25.5 HP 8116A 50 MHz Pulse/Function Generator

class pymeasure.instruments.hp.HP8116A(adapter, name='Hewlett-Packard 8116A', **kwargs)
Bases: Instrument

Represents the Hewlett-Packard 8116A 50 MHz Pulse/Function Generator and provides a high-level interface
for interacting with the instrument. The resolution for all floating point instrument parameters is 3 digits.

class Digit(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

Bases: Enum

Enum of the digits used with the autovernier (see HP8116A.start_autovernier()).

class Direction(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

Bases: Enum

Enum of the directions used with the autovernier (see HP8116A.start_autovernier()).

GPIB_trigger()

Initate trigger via low-level GPIB-command (aka GET - group execute trigger).

property amplitude

A floating point value that controls the amplitude of the output in V. The allowed amplitude range generally
is 10 mV to 16 V, but it is also limited by the current offset.

ask(command, num_bytes=None)
Write a command to the instrument, read the response, and return the response as ASCII text.

Parameters

• command – The command to send to the instrument.

• num_bytes – The number of bytes to read from the instrument. If not specified, the number
of bytes is automatically determined by the command.

property autovernier_enabled

A boolean property that controls whether the autovernier is enabled.

property burst_number

An integer value that controls the number of periods generated in a burst. The allowed range is 1 to 1999.
It is only valid for units with Option 001 in one of the burst modes.

248 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

check_errors()

Check for errors in the 8116A.

Returns
list of error entries or empty list if no error occurred.

property complement_enabled

A boolean property that controls whether the complement of the signal is generated.

property complete

Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation Complete query
places an ASCII character 1 into the device’s Output Queue when all pending selected device operations
have been finished.

property control_mode

A string property that controls the control mode of the instrument. Possible values are ‘off’, ‘FM’, ‘AM’,
‘PWM’, ‘VCO’.

property duty_cycle

An integer value that controls the duty cycle of the output in percent. The allowed range generally is 10
% to 90 %, but it also depends on the current frequency. It is valid for all shapes except ‘pulse’, where
pulse_width is used instead.

property frequency

A floating point value that controls the frequency of the output in Hz. The allowed frequency range is 1
mHz to 52.5 MHz.

property haversine_enabled

A boolean property that controls whether a haversine/havertriangle signal is generated when in ‘triggered’,
‘internal_burst’ or ‘external_burst’ operating mode.

property high_level

A floating point value that controls the high level of the output in V. The allowed high level range generally
is -7.9 V to 8 V, but it must be at least 10 mV greater than the low level.

property limit_enabled

A boolean property that controls whether parameter limiting is enabled.

property low_level

A floating point value that controls the low level of the output in V. The allowed low level range generally
is -8 V to 7.9 V, but it must be at least 10 mV less than the high level.

property offset

A floating point value that controls the offset of the output in V. The allowed offset range generally is -7.95
V to 7.95 V, but it is also limited by the amplitude.

property operating_mode

A string property that controls the operating mode of the instrument. Possible values (without Option 001)
are: ‘normal’, ‘triggered’, ‘gate’, ‘external_width’. With Option 001, ‘internal_sweep’, ‘external_sweep’,
‘external_width’, ‘external_pulse’ are also available.

property options

Return the device options installed. The only possible option is 001.

property output_enabled

A boolean property that controls whether the output is enabled.

7.25. Hewlett Packard 249

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property pulse_width

A floating point value that controls the pulse width. The allowed pulse width range is 8 ns to 999 ms. The
pulse width may not be larger than the period.

property repetition_rate

A floating point value that controls the repetition rate (= the time between bursts) in ‘internal_burst’ mode.
The allowed range is 20 ns to 999 ms.

reset()

Initatiate a reset (like a power-on reset) of the 8116A.

property shape

A string property that controls the shape of the output waveform. Possible values are: ‘dc’, ‘sine’, ‘triangle’,
‘square’, ‘pulse’.

shutdown()

Gracefully close the connection to the 8116A.

start_autovernier(control, digit, direction, start_value=None)
Start the autovernier on the specified control.

Parameters

• control – The control to change, pass as HP8116A.some_control. Allowed controls are
frequency, amplitude, offset, duty_cycle, and pulse_width

• digit – The digit to change, type: HP8116A.Digit.

• direction – The direction in which to change the control, type: HP8116A.Direction.

• start_value – An optional value to start the autovernier at. If not specified, the current
value of the control is used.

property status

Returns the status byte of the 8116A as an IntFlag-type enum.

property sweep_marker_frequency

A floating point value that controls the frequency marker in both sweep modes. At this frequency, the
marker output switches from low to high. The allowed range is 1 mHz to 52.5 MHz.

property sweep_start

A floating point value that controls the start frequency in both sweep modes. The allowed range is 1 mHz
to 52.5 MHz.

property sweep_stop

A floating point value that controls the stop frequency in both sweep modes. The allowed range is 1 mHz
to 52.5 MHz.

property sweep_time

A floating point value that controls the sweep time per decade in both sweep modes. The sweep time is
selectable in a 1-2-5 sequence between 10 ms and 500 s.

property trigger_slope

A string property that controls the slope the trigger triggers on. Possible values are: ‘off’, ‘positive’, ‘neg-
ative’.

write(command)
Write a command to the instrument and wait until the 8116A has interpreted it.

250 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.25.6 HP 8560A / 8561B Spectrum Analyzer

Every unit is used in the base unit, so for time it is s (Seconds), frequency in Hz (Hertz) etc. . .

Generic Specific Attributes & Methods

Content

• General

• Demodulation

• Frequency

• Resolution Bandwidth

• Video

• FFT & Measurements

• Trace

• Marker

• Diagnostic Values

• Sweep

• Normalization

• Open/Short Calibration (Reflection)

• Thru Calibration

General

HP856Xx.preset()

Set the spectrum analyzer to a known, predefined state.

‘preset’ does not affect the contents of any data or trace registers or stored preselector data. ‘preset’ does not
clear the input or output data buffers;

HP856Xx.attenuation

Control the input attenuation in decade steps from 10 to 70 db (type ‘int’) or set to ‘AUTO’ and ‘MAN’(ual)

Type: str, int

instr.attenuation = 'AUTO'
instr.attenuation = 60

HP856Xx.amplitude_unit

Control the amplitude unit with a selection of the following parameters: string ‘DBM’, ‘DBMV’, ‘DBUV’, ‘V’,
‘W’, ‘AUTO’, ‘MAN’ or use the enum AmplitudeUnits

Type: str

instr.amplitude_unit = 'dBmV'
instr.amplitude_unit = AmplitudeUnits.dBmV

7.25. Hewlett Packard 251

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

HP856Xx.trigger_mode

Control the trigger mode. Selected trigger conditions must be met in order for a sweep to occur. For the available
modes refer to TriggerMode. When any trigger mode other than free run is selected, a “T” appears on the left
edge of the display.

HP856Xx.detector_mode

Control the IF detector used for acquiring measurement data. This is normally a coupled function, in which the
spectrum analyzer selects the appropriate detector mode. Four modes are available: normal, positive, negative,
and sample.

Type: str

Takes a representation of the detector mode, either from DetectionModes or use ‘NEG’, ‘NRM’, ‘POS’, ‘SMP’

instr.detector_mode = DetectionModes.SMP
instr.detector_mode = 'NEG'

if instr.detector_mode == DetectionModes.SMP:
pass

HP856Xx.coupling

Control the input coupling of the spectrum analyzer. AC coupling protects the input of the analyzer from dam-
aging dc signals, while limiting the lower frequency-range to 100 kHz (although the analyzer will tune down to
0 Hz with signal attenuation).

Type: str

Takes a representation of the coupling mode, either from CouplingMode or use ‘AC’ / ‘DC’

instr.coupling = 'AC'
instr.coupling = CouplingMode.DC

if instr.coupling == CouplingMode.DC:
pass

HP856Xx.set_auto_couple()

Set the video bandwidth, resolution bandwidth, input attenuation, sweep time, and center frequency step-size to
coupled mode.

These functions can be recoupled individually or all at once. The spectrum analyzer chooses appropriate values
for these functions. The video bandwidth and resolution bandwidth are set according to the coupled ratios stored
under resolution_bandwidth_to_span_ratio and video_bandwidth_to_resolution_bandwidth . If
no ratios are chosen, default ratios (1.0 and 0.011, respectively) are used instead.

HP856Xx.set_linear_scale()

Set the spectrum analyzers display to linear amplitude scale.

Measurements made on a linear scale can be read out in any units.

HP856Xx.logarithmic_scale

Control the logarithmic amplitude scale. When in linear mode, querying ‘logarithmic_scale’ returns a “0”.
Allowed values are 0, 1, 2, 5, 10

Type: int

if instr.logarithmic_scale:
pass

(continues on next page)

252 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

set the scale to 10 db per division
instr.logarithmic_scale = 10

HP856Xx.threshold

Control the minimum amplitude level and clips data at this value. Default value is -90 dBm. See also -
marker_threshold does not clip data below its threshold

Type: str, float range -200 to 30

Note: When a trace is in max-hold mode, if the threshold is raised above any of the trace data, the data below
the threshold will be permanently lost.

HP856Xx.set_title(string)
Sets character data in the title area of the display, which is in the upper-right corner.

A title can be up to two rows of sixteen characters each, Carriage return and line feed characters are not allowed.

HP856Xx.status

Get the decimal equivalent of the bits set in the status byte (see the RQS and SRQ commands). STB is equivalent
to a serial poll command. The RQS and associated bits are cleared in the same way that a serial poll command
would clear them.

HP856Xx.check_done()

Return when all commands in a command string entered before :meth:’check_done’ has been completed. Sending
a trigger_sweep() command before ‘check_done’ ensures that the spectrum analyzer will complete a full
sweep before continuing on in a program. Depending on the timeout a timeout error from the adapter will raise
before the spectrum analyzer can finish due to an extreme long sweep time.

instr.trigger_sweep()

wait for a full sweep and than 'do_something'
instr.check_done()
do_something()

HP856Xx.request_service(input)
Triggers a service request. This command allows you to force a service request and test a program designed
to handle service requests. However, the service request can be triggered only if it is first masked using the
request_service_conditions command.

Parameters
input (StatusRegister) – Bits to emulate a service request

HP856Xx.errors

Get a list of errors present (of type ErrorCode). An empty list means there are no errors. Reading ‘errors’ clears
all HP-IB errors. For best results, enter error data immediately after querying for errors.

Type: ErrorCode

errors = instr.errors
if len(errors) > 0:

print(errors[0].code)

(continues on next page)

7.25. Hewlett Packard 253

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

for error in errors:
print(error)

if ErrorCode(112) in errors:
print("yeah")

Example result of this python snippet:

112
ErrorCode("??CMD?? - Unrecognized command")
ErrorCode("NOP NUM - Command cannot have numeric units")
yeah

HP856Xx.save_state(inp)
Saves the currently displayed instrument state in the specified state register.

Parameters

• inp – State to be recalled: either storage slot 0 . . . 9 or ‘LAST’ or ‘PWRON’

• inp – str, int

instr.preset()
instr.center_frequency = 300e6
instr.span = 20e6
instr.save_state("PWRON")

HP856Xx.recall_state(inp)
Set to the display a previously saved instrument state. See save_state().

Parameters

• inp – State to be recalled: either storage slot 0 . . . 9 or ‘LAST’ or ‘PWRON’

• inp – str, int

instr.save_state(7)
instr.preset()
instr.recall_state(7)

HP856Xx.request_service_conditions

Control a bit mask that specifies which service requests can interrupt a program sequence.

instr.request_service_conditions = StatusRegister.ERROR_PRESENT | StatusRegister.
→˓TRIGGER

print(instr.request_service_conditions)
StatusRegister.ERROR_PRESENT|TRIGGER

HP856Xx.set_maximum_hold = <function HP856Xx.set_maximum_hold>

HP856Xx.set_minimum_hold = <function HP856Xx.set_minimum_hold>

HP856Xx.reference_level_calibration

Control the calibration of the reference level remotely and retuns the current calibration. To calibrate the reference
level, connect the 300 MHz calibration signal to the RF input. Set the center frequency to 300 MHz, the frequency

254 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

span to 20 MHz, and the reference level to -10 dBm. Use the RLCAL command to move the input signal to the
reference level. When the signal peak falls directly on the reference-level line, the reference level is calibrated.
Storing this value in the analyzer in EEROM can be done only from the front panel. The RLCAL command,
when queried, returns the current value.

Type: float

connect cal signal to rf input
instr.preset()
instr.amplitude_unit = AmplitudeUnits.DBM
instr.center_frequency = 300e6
instr.span = 100e3
instr.reference_level = 0
instr.trigger_sweep()

instr.peak_search(PeakSearchMode.High)
level = instr.marker_amplitude
rlcal = instr.reference_level_calibration - int((level + 10) / 0.17)
instr.reference_level_calibration = rlcal

HP856Xx.reference_offset

Control an offset applied to all amplitude readouts (for example, the reference level and marker amplitude). The
offset is in dB, regardless of the selected scale and units. The offset can be useful to account for gains of losses
in accessories connected to the input of the analyzer. When this function is active, an “R” appears on the left
edge of the display.

Type: int

HP856Xx.reference_level

Control the reference level, or range level when in normalized mode. (Range level functions the same as ref-
erence level.) The reference level is the top horizontal line on the graticule. For best measurement accuracy,
place the peak of a signal of interest on the reference-level line. The spectrum analyzer input attenuator is cou-
pled to the reference level and automatically adjusts to avoid compression of the input signal. Refer also to
amplitude_unit. Minimum reference level is -120.0 dBm or 2.2 uV

Type: float

HP856Xx.display_line

Control the horizontal display line for use as a visual aid or for computational purposes. The default value is 0
dBm.

Type: float, str

Takes a value with the unit of amplitude_unit or ‘ON’ / ‘OFF’

instr.display_line = 'ON'
instr.display_line = -10

if instr.detector_mode == 0:
pass

HP856Xx.protect_state_enabled

Control the storing of any new data in the state or trace registers. If set to ‘True’, the registers are “locked”; the
data in them cannot be erased or overwritten, although the data can be recalled. To “unlock” the registers, and
store new data, set ‘protect_state_enabled’ to off by selecting ‘False’ as the parameter.

Type: bool

7.25. Hewlett Packard 255

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

HP856Xx.mixer_level

Control the maximum signal level that is at the input mixer. The attenuator automatically adjusts to ensure that
this level is not exceeded for signals less than the reference level. From -80 to -10 DB.

Type: int

HP856Xx.frequency_counter_mode_enabled

Set the device into a frequency counter mode that counts the frequency of the active marker or the difference
in frequency between two markers. If no marker is active, ‘frequency_counter_mode_enabled’ places a marker
at the center of the trace and counts that marker frequency. The frequency counter provides a more accurate
frequency reading; it pauses at the marker, counts the value, then continues the sweep. To adjust the fre-
quency counter resolution, use the ‘frequency_counter_resolution’ command. To return the counter value, use
the ‘marker_frequency’ command.

instr.frequency_counter_mode_enabled = True

HP856Xx.frequency_counter_resolution

Control the resolution of the frequency counter. Refer to the ‘frequency_counter_mode’ command. The default
value is 10 kHz.

Type int

activate frequency counter mode
instr.frequency_counter_mode = True

adjust resolution to 1 Hz
instr.frequency_counter_resolution = 1

if instr.frequency_counter_resolution:
pass

HP856Xx.adjust_all()

Activate the local oscillator (LO) and intermediate frequency (IF) alignment routines. These are the same routines
that occur when is switched on. Commands following ‘adjust_all’ are not executed until after the analyzer has
finished the alignment routines.

HP856Xx.adjust_if

Control the automatic IF adjustment. This function is normally on. Because the IF is continuously adjusting,
executing the IF alignment routine is seldom necessary. When the IF adjustment is not active, an “A” appears on
the left side of the display.

• “FULL” IF adjustment is done for all IF settings.

• “CURR” IF adjustment is done only for the IF settings currently displayed.

• False turns the continuous IF adjustment off.

• True reactivates the continuous IF adjustment.

Type: bool, str

HP856Xx.hold()

Freeze the active function at its current value.

If no function is active, no operation takes place.

HP856Xx.annotation_enabled

Set the display annotation off or on.

Type: bool

256 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

HP856Xx.set_crt_adjustment_pattern()

Activate a CRT adjustment pattern, shown in Figure 5-3. Use the X POSN, Y POSN, and TRACE ALIGN
adjustments (available from the rear panel) to align the display. Use X POSN and Y POSN to move the display
horizontally and vertically, respectively. Use TRACE ALIGN to straighten a tilted display. To remove the pattern
from the screen, execute the preset() command.

HP856Xx.display_parameters

Get the location of the lower left (P1) and upper right (P2) vertices as a tuple of the display window.

Type: tuple

repr(instr.display_parameters)
(72, 16, 712, 766)

HP856Xx.firmware_revision

Get the revision date code of the spectrum analyzer firmware.

Type: datetime.date

HP856Xx.graticule_enabled

Control the display graticule. Switch it either on or off.

Type: bool

instr.graticule = True

if instr.graticule:
pass

HP856Xx.serial_number

Get the spectrum analyzer serial number.

HP856Xx.id

Get the identification of the device with software and hardware revision (e.g. HP8560A,002, H03)

Type: str

print(instr.id)
HP8560A,002,H02

HP856Xx.elapsed_time

Get the elapsed time (in hours) of analyzer operation. This value can be reset only by Hewlett-Packard.

Type: int

print(elapsed_time)
1998

7.25. Hewlett Packard 257

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Demodulation

HP856Xx.demodulation_mode

Control the demodulation mode of the spectrum analyzer. Either AM or FM demodulation, or turns the demodu-
lation — off. Place a marker on a desired signal and then set demodulation_mode; demodulation takes place on
this signal. If no marker is on, demodulation_mode automatically places a marker at the center of the trace and
demodulates the frequency at that marker position. Use the volume and squelch controls to adjust the speaker
and listen.

Type: str

Takes a representation of the demodulation mode, either from DemodulationMode or use ‘OFF’, ‘AM’, ‘FM’

instr.demodulation_mode = 'AC'
instr.demodulation_mode = DemodulationMode.AM

if instr.demodulation_mode == DemodulationMode.FM:
instr.demodulation_mode = Demodulation.OFF

HP856Xx.demodulation_agc_enabled

Control the demodulation automatic gain control (AGC). The AGC keeps the volume of the speaker relatively
constant during AM demodulation. AGC is available only during AM demodulation and when the frequency
span is greater than 0 Hz.

Type: bool

instr.demodulation_agc = True

if instr.demodulation_agc:
instr.demodulation_agc = False

HP856Xx.demodulation_time

Control the amount of time that the sweep pauses at the marker to demodulate a signal. The default value is 1
second. When the frequency span equals 0 Hz, demodulation is continuous, except when between sweeps. For
truly continuous demodulation, set the frequency span to 0 Hz and the trigger mode to single sweep (see TM).
Minimum 100 ms to maximum 60 s

Type: float

set the demodulation time to 1.2 seconds
instr.demodulation_time = 1.2

if instr.demodulation_time == 10:
pass

HP856Xx.squelch

Control the squelch level for demodulation. When this function is on, a dashed line indicating the squelch level
appears on the display. A marker must be active and above the squelch line for demodulation to occur. Refer to
the demodulation_mode command. The default value is -120 dBm.

Type: str,int

instr.preset()
instr.start_frequency = 88e6
instr.stop_frequency = 108e6

(continues on next page)

258 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

instr.peak_search(PeakSearchMode.High)
instr.demodulation_time = 10

instr.squelch = -60
instr.demodulation_mode = DemodulationMode.FM

Frequency

HP856Xx.start_frequency

Control the start frequency and set the spectrum analyzer to start-frequency/ stop-frequency mode. If the start
frequency exceeds the stop frequency, the stop frequency increases to equal the start frequency plus 100 Hz. The
center frequency and span change with changes in the start frequency.

Type: float

instr.start_frequency = 300.5e6
if instr.start_frequency == 200e3:

print("Correct frequency")

(dynamic)

HP856Xx.stop_frequency

Control the stop frequency and set the spectrum analyzer to start-frequency/ stop-frequency mode. If the stop
frequency is less than the start frequency, the start frequency decreases to equal the stop frequency minus 100
Hz. The center frequency and span change with changes in the stop frequency.

Type: float

instr.stop_frequency = 300.5e6
if instr.stop_frequency == 200e3:

print("Correct frequency")

(dynamic)

HP856Xx.center_frequency

Control the center frequency in hertz and sets the spectrum analyzer to center frequency / span mode.

The span remains constant; the start and stop frequencies change as the center frequency changes.

Type: float

instr.center_frequency = 300.5e6
if instr.center_frequency == 200e3:

print("Correct frequency")

(dynamic)

HP856Xx.frequency_offset

Control an offset added to the displayed absolute-frequency values, including marker-frequency values.

It does not affect the frequency range of the sweep, nor does it affect relative frequency readouts. When this
function is active, an “F” appears on the left side of the display. Changes all the following frequency measure-
ments.

Type: float

7.25. Hewlett Packard 259

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

instr.frequency_offset = 2e6
if instr.frequency_offset == 2e6:

print("Correct frequency")

(dynamic)

HP856Xx.frequency_reference_source

Control the frequency reference source. Select either the internal frequency reference (INT) or supply your own
external reference (EXT). An external reference must be 10 MHz (+100 Hz) at a minimum amplitude of 0 dBm.
Connect the external reference to J9 (10 MHz REF IN/OUT) on the rear panel. When the external mode is
selected, an “X” appears on the left edge of the display.

Type: str

Takes element of FrequencyReference or use ‘INT’, ‘EXT’

instr.frequency_reference_source = 'INT'
instr.frequency_reference_source = FrequencyReference.EXT

if instr.frequency_reference_source == FrequencyReference.INT:
instr.frequency_reference_source = FrequencyReference.EXT

HP856Xx.span

Control the frequency span. The center frequency does not change with changes in the frequency span; start
and stop frequencies do change. Setting the frequency span to 0 Hz effectively allows an amplitude-versus-time
mode in which to view signals. This is especially useful for viewing modulation. Querying SP will leave the
analyzer in center frequency /span mode.

HP856Xx.set_full_span()

Set the spectrum analyzer to the full frequency span as defined by the instrument.

The full span is 2.9 GHz for the HP 8560A. For the HP 8561B, the full span is 6.5 GHz.

HP856Xx.frequency_display_enabled

Get the state of all annotations that describes the spectrum analyzer frequency. returns ‘False’ if no annotations
are shown and vice versa ‘True’. This includes the start and stop frequencies, the center frequency, the frequency
span, marker readouts, the center frequency step-size, and signal identification to center frequency. To retrieve
the frequency data, query the spectrum analyzer.

Type: bool

if instr.frequency_display:
print("Frequencies get displayed")

Resolution Bandwidth

HP856Xx.resolution_bandwidth

Control the resolution bandwidth. This is normally a coupled function that is selected according to the ratio
selected by the RBR command. If no ratio is selected, a default ratio (0.011) is used. The bandwidth, which
ranges from 10 Hz to 2 MHz, may also be selected manually.

Type: str, dec

260 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

HP856Xx.resolution_bandwidth_to_span_ratio

Control the coupling ratio between the resolution bandwidth and the frequency span. When the frequency span
is changed, the resolution bandwidth is changed to satisfy the selected ratio. The ratio ranges from 0.002 to 0.10.
The “UP” and “DN” parameters adjust the ratio in a 1, 2, 5 sequence. The default ratio is 0.011.

Video

HP856Xx.video_trigger_level

Control the video trigger level when the trigger mode is set to VIDEO (refer to the trigger_mode command).
A dashed line appears on the display to indicate the level. The default value is 0 dBm. Range -220 to 30.

Type: float

HP856Xx.video_bandwidth_to_resolution_bandwidth

Control the coupling ratio between the video bandwidth and the resolution bandwidth. Thus, when the resolution
bandwidth is changed, the video bandwidth changes to satisfy the ratio. The ratio ranges from 0.003 to 3 in a 1,
3, 10 sequence. The default ratio is 1. When a new ratio is selected, the video bandwidth changes to satisfy the
new ratio—the resolution bandwidth does not change value.

HP856Xx.video_bandwidth

Control the video bandwidth. This is normally a coupled function that is selected according to the ratio selected
by the VBR command. (If no ratio is selected, a default ratio, 1.0, is used instead.) Video bandwidth filters
(or smooths) post-detected video information. The bandwidth, which ranges from 1 Hz to 3 MHz, may also be
selected manually. If the specified video bandwidth is less than 300 Hz and the resolution bandwidth is greater
than or equal to 300 Hz, the IF detector is set to sample mode. Reducing the video bandwidth or increasing
the number of video averages will usually smooth the trace by about as much for the same total measurement
time. Reducing the video bandwidth to one-third or less of the resolution bandwidth is desirable when the
number of video averages is above 25. For the case where the number of video averages is very large, and
the video bandwidth is equal to the resolution bandwidth, internal mathematical limitations allow about 0.4 dB
overresponse to noise on the logarithmic scale. The overresponse is negligible (less than 0.1 dB) for narrower
video bandwidths.

Type: int

HP856Xx.video_average

Control the video averaging function. Video averaging smooths the displayed trace without using a narrow
bandwidth. ‘video_average’ sets the IF detector to sample mode (see the DET command) and smooths the trace by
averaging successive traces with each other. If desired, you can change the detector mode during video averaging.
Video averaging is available only for trace A, and trace A must be in clear-write mode for ‘video_average’ to
operate. After ‘video_average’ is executed, the number of sweeps that have been averaged appears at the top of
the analyzer screen. Using video averaging allows you to view changes to the entire trace much faster than using
narrow video filters. Narrow video filters require long sweep times, which may not be desired. Video averaging,
though requiring more sweeps, uses faster sweep times; in some cases, it can produce a smooth trace as fast as a
video filter.

Type: str, int

7.25. Hewlett Packard 261

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

FFT & Measurements

HP856Xx.create_fft_trace_window(trace, window_mode)
Creates a window trace array for the fast Fourier transform (FFT) function.

The trace-window function creates a trace array according to three built-in algorithms: UNIFORM, HANNING,
and FLATTOP. When used with the FFT command, the three algorithms give resultant passband shapes that
represent a compromise among amplitude uncertainty, sensitivity, and frequency resolution. Refer to the FFT
command description for more information.

Parameters

• trace (str) – A representation of the trace, either from Trace or use ‘TRA’ for Trace A or
‘TRB’ for Trace B

• window_mode (str) – A representation of the window mode, either from WindowType or
use ‘HANNING’, ‘FLATTOP’ or ‘UNIFORM’

HP856Xx.get_power_bandwidth(trace, percent)
Measure the combined power of all signal responses contained in a trace array. The command then computes
the bandwidth equal to a percentage of the total power. For example, if 100% is specified, the power bandwidth
equals the current frequency span. If 50% is specified, trace elements are eliminated from either end of the array,
until the combined power of the remaining trace elements equals half of the total power computed. The frequency
span of these remaining trace elements is the power bandwidth output to the controller.

Parameters

• trace (str) – A representation of the trace, either from Trace or use ‘TRA’ for Trace A or
‘TRB’ for Trace B

• percent (float) – Percentage of total power 0 . . . 100 %

reset spectrum analyzer
instr.preset()

set to single sweep mode
instr.sweep_single()

instr.center_frequency = 300e6
instr.span = 1e6

instr.maximum_hold()

instr.trigger_sweep()

if instr.done:
pbw = instr.power_bandwidth(Trace.A, 99.0)
print("The power bandwidth at 99 percent is %f kHz" % (pbw / 1e3))

HP856Xx.do_fft(source, destination, window)
Calculate and show a discrete Fourier transform.

The FFT command performs a discrete Fourier transform on the source trace array and stores the logarithms of
the magnitudes of the results in the destination array. The maximum length of any of the traces is 601 points. FFT
is designed to be used in transforming zero-span amplitude-modulation information into the frequency domain.
Performing an FFT on a frequency sweep will not provide time-domain results. The FFT results are displayed
on the spectrum analyzer in a logarithmic amplitude scale. For the horizontal dimension, the frequency at the
left side of the graph is 0 Hz, and at the right side is Finax- Fmax is equal to 300 divided by sweep time. As an

262 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

example, if the sweep time of the analyzer is 60 ms, Fmax equals 5 kHz. The FFT algorithm assumes that the
sampled signal is periodic with an integral number of periods within the time-record length (that is, the sweep
time of the analyzer). Given this assumption, the transform computed is that of a time waveform of infinite
duration, formed of concatenated time records. In actual measurements, the number of periods of the sampled
signal within the time record may not be integral. In this case, there is a step discontinuity at the intersections of
the concatenated time records in the assumed time waveform of infinite duration. This step discontinuity causes
measurement errors, both amplitude uncertainty (where the signal level appears to vary with small changes in
frequency) and frequency resolution (due to filter shape factor and sidelobes). Windows are weighting functions
that are applied to the input data to force the ends of that data smoothly to zero, thus reducing the step discontinuity
and reducing measuremen errors.

Parameters

• source (str) – A representation of the trace, either from Trace or use ‘TRA’ for Trace A
or ‘TRB’ for Trace B

• destination (str) – A representation of the trace, either from Trace or use ‘TRA’ for
Trace A or ‘TRB’ for Trace B

• window (str) – A representation of the trace, either from Trace or use ‘TRA’ for Trace A
or ‘TRB’ for Trace B

Trace

HP856Xx.view_trace(trace)
Display the current contents of the selected trace, but does not update the contents. View mode may be executed
before a sweep is complete when sweep_single() and trigger_sweep() are not used.

Parameters
trace (str) – A representation of the trace, either from Trace or use ‘TRA’ for Trace A or
‘TRB’ for Trace B

Raises

• TypeError – Type isn’t ‘string’

• ValueError – Value is ‘TRA’ nor ‘TRB’

HP856Xx.get_trace_data_a()

Get the data of trace A as a list.

The function returns the 601 data points as a list in the amplitude format. Right now it doesn’t support the linear
scaling due to the manual just being wrong.

HP856Xx.get_trace_data_b()

Get the data of trace B as a list.

The function returns the 601 data points as a list in the amplitude format. Right now it doesn’t support the linear
scaling due to the manual just being wrong.

HP856Xx.set_trace_data_a

Set the trace data of trace A.

Warning: The string based method this attribute is using takes its time. Something around 5000ms timeout
at the adapter seems to work well.

7.25. Hewlett Packard 263

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

HP856Xx.set_trace_data_b

Set the trace data of trace B also allows to write the data.

Warning: The string based method this attribute is using takes its time. Something around 5000ms timeout
at the adapter seems to work well.

HP856Xx.trace_data_format

Control the format used to input and output trace data (see the TRA/TRB command, You must specify the desired
format when transferring data from the spectrum analyzer to a computer; this is optional when transferring data
to the analyzer.

Type: str or TraceDataFormat

Warning: Only needed for manual read out of trace data. Don’t use this if you don’t know what You are
doing.

HP856Xx.save_trace(trace, number)
Saves the selected trace in the specified trace register.

Parameters

• trace (str) – A representation of the trace, either from Trace or use ‘TRA’ for Trace A or
‘TRB’ for Trace B

• number (int) – Storage location from 0 . . . 7 where to store the trace

instr.preset()
instr.center_frequency = 300e6
instr.span = 20e6

instr.save_trace(Trace.A, 7)
instr.preset()

reload - at 7 stored trace - to Trace B
instr.recall_trace(Trace.B, 7)

HP856Xx.recall_trace(trace, number)
Recalls previously saved trace data to the display. See save_trace(). Either as Trace A or Trace B.

Parameters

• trace (str) – A representation of the trace, either from Trace or use ‘TRA’ for Trace A or
‘TRB’ for Trace B

• number (int) – Storage location from 0 . . . 7 where to store the trace

instr.preset()
instr.center_frequency = 300e6
instr.span = 20e6

instr.save_trace(Trace.A, 7)
instr.preset()

(continues on next page)

264 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

reload - at 7 stored trace - to Trace B
instr.recall_trace(Trace.B, 7)

HP856Xx.clear_write_trace(trace)
Set the chosen trace to clear-write mode. This mode sets each element of the chosen trace to the bottom-screen
value; then new data from the detector is put in the trace with each sweep.

instr.clear_write_trace('TRA')
instr.clear_write_trace(Trace.A)

Parameters
trace (str) – A representation of the trace, either from Trace or use ‘TRA’ for Trace A or
‘TRB’ for Trace B

Raises

• TypeError – Type isn’t ‘string’

• ValueError – Value is ‘TRA’ nor ‘TRB’

HP856Xx.subtract_display_line_from_trace_b()

Subtract the display line from trace B and places the result in dBm (when in log mode) in trace B, which is then
set to view mode.

In linear mode, the results are in volts.

HP856Xx.exchange_traces()

Exchange the contents of trace A with those of trace B.

If the traces are in clear-write or max-hold mode, the mode is changed to view. Otherwise, the traces remain in
their initial mode.

HP856Xx.blank_trace(trace)
Blank the chosen trace from the display. The current contents of the trace remain in the trace but are not updated.

instr.blank_trace('TRA')
instr.blank_trace(Trace.A)

Parameters
trace (str) – A representation of the trace, either from Trace or use ‘TRA’ for Trace A or
‘TRB’ for Trace B

Raises

• TypeError – Type isn’t ‘string’

• ValueError – Value is ‘TRA’ nor ‘TRB’

HP856Xx.trace_a_minus_b_plus_dl_enabled

Control subtraction of trace B from trace A and addition to the display line, and stores the result in dBm (when
in log mode) in trace A. When in linear mode, the result is in volts. If trace A is in clear-write or max-hold mode,
this function is continuous. When this function is active, an “M” appears on the left side of the display.

Type: bool

7.25. Hewlett Packard 265

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Warning: The displayed amplitude of each trace element falls in one of 600 data points. There are 10 points
of overrange, which corresponds to one-sixth of a division Kg of overrange. When adding or subtracting trace
data, any results exceeding this limit are clipped at the limit.

HP856Xx.trace_a_minus_b_enabled

Control subtraction of the contents of trace B from trace A. It places the result, in dBm (when in log mode), in
trace A. When in linear mode, the result is in volts. If trace A is in clear-write or max-hold mode, this function is
continuous. When AMB is active, an “M” appears on the left side of the display. trace_a_minus_b_plus_dl
overrides AMB.

Type: bool

Warning: The displayed amplitude of each trace element falls in one of 600 data points. There are 10 points
of overrange, which corresponds to one-sixth of a division Kg of overrange. When adding or subtracting trace
data, any results exceeding this limit are clipped at the limit.

Marker

HP856Xx.search_peak(mode)
Place a marker on the highest point on a trace, the next-highest point, the next-left peak, or the next-right peak.
The default is ‘HI’ (highest point). The trace peaks must meet the criteria of the marker threshold and peak
excursion functions in order for a peak to be found. See also the peak_threshold and peak_excursion
commands.

Parameters
mode (str) – Takes ‘HI’, ‘NH’, ‘NR’, ‘NL’ or the enumeration PeakSearchMode

instr.search_peak('NL')
instr.search_peak(PeakSearchMode.NextHigh)

HP856Xx.marker_amplitude

Get the amplitude of the active marker. If no marker is active, MKA places a marker at the center of the trace
and returns that amplitude value. In the amplitude_unit() unit.

Type: float

level = instr.marker_amplitude
unit = instr.amplitude_unit
print("Level: %f %s" % (level, unit))

HP856Xx.set_marker_to_center_frequency()

Set the center frequency to the frequency value of an active marker.

HP856Xx.marker_delta

Control a second marker on the trace. The parameter value specifies the distance in frequency or time (when in
zero span) between the two markers. If queried - returns the frequency or time of the second marker.

Type: float

place second marker 1 MHz apart from the first marker
instr.marker_delta = 1e6

(continues on next page)

266 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

print frequency of second marker in case it got moved automatically
print(instr.marker_delta)

HP856Xx.marker_frequency

Control the frequency of the active marker. Default units are in Hertz.

Type: float

place marker no. 1 at 100 MHz
instr.marker_frequency = 100e6

print frequency of the marker in case it got moved automatically
print(instr.marker_frequency)

(dynamic)

HP856Xx.set_marker_minimum()

Place an active marker on the minimum signal detected on a trace.

HP856Xx.marker_noise_mode_enabled

Control the detector mode to sample and compute the average of 32 data points (16 points on one side of the
marker, the marker itself, and 15 points on the other side of the marker). This average is corrected for effects of
the log or linear amplifier, bandwidth shape factor, IF detector, and resolution bandwidth. If two markers are on
(whether in ‘marker_delta’ mode or 1/marker delta mode), ‘marker_noise_mode_enabled’ works on the active
marker and not on the anchor marker. This allows you to measure signal-to-noise density directly. To query the
value, use the ‘marker_amplitude’ command.

Type: bool

activate signal-to-noise density mode
instr.marker_noise_mode_enabled = True

get noise density by `marker_amplitude`
print("Signal-to-noise density: %d dbm / Hz" % instr.marker_amplitude)

HP856Xx.deactivate_marker(all_markers=False)
Turn off the active marker or, if specified, turn off all markers.

Parameters
all_markers (bool) – If True the call deactivates all markers, if false only the currently active
marker (optional)

place first marker at 300 MHz
instr.marker_frequency = 300e6

place second marker 2 MHz apart from first
instr.marker_delta = 2e6

deactivate active marker (delta marker)
instr.deactivate_marker()

deactivate all markers
instr.deactivate_marker(all_markers=True)

7.25. Hewlett Packard 267

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

HP856Xx.marker_threshold

Control the minimum amplitude level from which a peak on the trace can be detected. The default value is -130
dBm. See also the peak_excursion command. Any portion of a peak that falls below the peak threshold is
used to satisfy the peak excursion criteria. For example, a peak that is equal to 3 dB above the threshold when the
peak excursion is equal to 6 dB will be found if the peak extends an additional 3 dB or more below the threshold
level. Maximum 30 db to minimum -200 db.

Type: signed int

instr.marker_threshold = -70
if instr.marker_threshold > -80:

pass

HP856Xx.peak_excursion

Control what constitutes a peak on a trace. The chosen value specifies the amount that a trace must increase
monotonically, then decrease monotonically, in order to be a peak. For example, if the peak excursion is 10 dB,
the amplitude of the sides of a candidate peak must descend at least 10 dB in order to be considered a peak (see
Figure 5-4) The default value is 6 dB. In linear mode, enter the marker peak excursion as a unit-less number.
Any portion of a peak that falls below the peak threshold is also used to satisfy the peak excursion criteria. For
example, a peak that is equal to 3 dB above the threshold when the peak excursion is equal to 6 dB will be found
if the peak extends an additional 3 dB or more below the threshold level.

Type: float

instr.peak_excursion = 2
if instr.peak_excursion == 2:

pass

HP856Xx.set_marker_to_reference_level()

Set the reference level to the amplitude of an active marker.

If no marker is active, ‘marker_to_reference_level’ places a marker at the center of the trace and uses that marker
amplitude to set the reference level.

HP856Xx.set_marker_delta_to_span()

Set the frequency span equal to the frequency difference between two markers on a trace.

The start frequency is set equal to the frequency of the left- most marker and the stop frequency is set equal to
the frequency of the right-most marker.

HP856Xx.set_marker_to_center_frequency_step_size()

Set the center frequency step-size equal to the frequency value of the active marker.

HP856Xx.marker_time

Control the marker’s time value. Default units are seconds.

Type: float

set marker at sweep time corresponding second two
instr.marker_time = 2

if instr.marker_time == 2:
pass

HP856Xx.marker_signal_tracking_enabled

Control whether the center frequency follows the active marker.

268 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

This is done after every sweep, thus maintaining the marker value at the center frequency. This allows you
to “zoom in” quickly from a wide span to a narrow one, without losing the signal from the screen. Or, use
‘marker_signal_tracking_enabled’ to keep a slowly drifting signal centered on the display. When this function
is active, a “K” appears on the left edge of the display.

Type: bool

Diagnostic Values

HP856Xx.sampling_frequency

Get the sampling oscillator frequency corresponding to the current start frequency. Diagnostic Attribute

Type: float

HP856Xx.lo_frequency

Get the first local oscillator frequency corresponding to the current start frequency. Diagnostic Attribute

Type: float

HP856Xx.mroll_frequency

Get the main roller oscillator frequency corresponding to the current start frequency, except then the resolution
bandwidth is less than or equal to 100 Hz.

Diagnostic Attribute

Type: float

HP856Xx.oroll_frequency

Get the offset roller oscillator frequency corresponding to the current start frequency, except when the resolution
bandwidth is less than or equal to 100 Hz.

Diagnostic Attribute

Type: float

HP856Xx.xroll_frequency

Get the transfer roller oscillator frequency corresponding to the current start frequency, except when the resolu-
tion bandwidth is less than or equal to 100 Hz.

Diagnostic Attribute

Type: float

HP856Xx.sampler_harmonic_number

Get the sampler harmonic number corresponding to the current start frequency.

Diagnostic Attribute

Type: int

7.25. Hewlett Packard 269

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Sweep

HP856Xx.sweep_single = <function HP856Xx.sweep_single>

HP856Xx.sweep_time

Control the sweep time. This is normally a coupled function which is automatically set to the optimum value
allowed by the current instrument settings. Alternatively, you may specify the sweep time. Note that when the
specified sweep time is too fast for the current instrument settings, the instrument is no longer calibrated and
the message ‘MEAS UNCAL’ appears on the display. The sweep time cannot be adjusted when the resolution
bandwidth is set to 10 Hz, 30 Hz, or 100 Hz.

Type: str, float

Real from 50E—3 to 100 when the span is greater than 0 Hz; 50E—6 to 60 when the span equals 0 Hz. When
the resolution bandwidth is <100 Hz, the sweep time cannot be adjusted.

HP856Xx.sweep_couple

Control the sweep couple mode which is either a stimulus-response or spectrum-analyzer auto-coupled sweep
time. In stimulus-response mode, auto-coupled sweep times are usually much faster for swept-response mea-
surements. Stimulus-response auto-coupled sweep times are typicallly valid in stimulus-response measurements
when the system’s frequency span is less than 20 times the bandwidth of the device under test.

Type: str or SweepCoupleMode

HP856Xx.sweep_output

Control the sweep-related signal that is available from J8 on the rear panel. FAV provides a dc ramp of 0.5V/GHz.
RAMP provides a 0—10 V ramp corresponding to the sweep ramp that tunes the first local oscillator (LO). For
the HP 8561B, in multiband sweeps one ramp is provided for each frequency band.

Type: str or SweepOut

HP856Xx.set_continuous_sweep = <function HP856Xx.set_continuous_sweep>

HP856Xx.trigger_sweep()

Command the spectrum analyzer to take one full sweep across the trace display. Commands following TS are not
executed until after the analyzer has finished the trace sweep. This ensures that the instrument is set to a known
condition before subsequent commands are executed.

Normalization

HP856Xx.normalize_trace_data_enabled

Control the normalization routine for stimulus-response measurements. This function subtracts trace B from
trace A, offsets the result by the value of the normalized reference position (normalized_reference_level),
and displays the result in trace A. ‘normalize_trace_data_enabled’ is intended for use with the store_open()
and store_short() or store_thru() commands. These functions are used to store a reference trace into trace
B. Refer to the respective command descriptions for more information. Accurate normalization occurs only if
the reference trace and the measured trace are on-screen. If any of these traces are off-screen, an error message
will be displayed. If the error message ERR 903 A > DLMT is displayed, the range level (RL) can be adjusted to
move the measured response within the displayed measurement range of the analyzer. If ERR 904 B > DLMT is
displayed, the calibration is invalid and a thru or open/short calibration must be performed. If active (ON), the
‘normalize_trace_data’ command is automatically turned off with an instrument preset (IP) or at power on.

Type: bool

270 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

HP856Xx.normalized_reference_level

Control the normalized reference level. It is intended to be used with the normalize_trace_data command.
When using ‘normalized_reference_level’, the input attenuator and IF step gains are not affected. This function
is a trace-offset function enabling the user to offset the displayed trace without introducing hardware-switching
errors into the stimulus-response measurement. The unit of measure for ‘normalized_reference_level’ is dB. In
absolute power mode (dBm), reference level (reference_level) affects the gain and RF attenuation settings
of the instrument, which affects the measurement or dynamic range. In normalized mode (relative power or dB-
measurement mode), NRL offsets the trace data on-screen and does not affect the instrument gain or attenuation
settings. This allows the displayed normalized trace to be moved without decreasing the measurement accuracy
due to changes in gain or RF attenuation. If the measurement range must be changed to bring trace data on-
screen, then the range level should be adjusted. Adjusting the range-level normalized mode has the same effect
on the instrument settings as does reference level in absolute power mode (normalize off).

Type: int

reference level in case of normalization to -30 DB
instr.normalized_reference_level = -30

if instr.normalized_reference_level == -30:
pass

HP856Xx.normalized_reference_position

Control the normalized reference-position that corresponds to the position on the graticule where the difference
between the measured and calibrated traces resides. The dB value of the normalized reference-position is equal
to the normalized reference level. The normalized reference-position may be adjusted between 0.0 and 10.0,
corresponding to the bottom and top graticule lines, respectively.

Type: float

instr.normalized_reference_position = 5.5

if instr.normalized_reference_position == 5.5:
pass

Open/Short Calibration (Reflection)

HP856Xx.recall_open_short_average()

Set the internally stored open/short average reference trace into trace B. The instrument state is also set to the
stored open/short reference state.

instr.preset()
instr.sweep_single()
instr.start_frequency = 300e3
instr.stop_frequency = 1e9

instr.source_power = "ON"
instr.sweep_couple = SweepCoupleMode.StimulusResponse
instr.source_peak_tracking()

input("CONNECT OPEN. PRESS CONTINUE WHEN READY TO STORE.")
instr.trigger_sweep()
instr.done()
instr.store_open()

(continues on next page)

7.25. Hewlett Packard 271

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

input("CONNECT SHORT. PRESS CONTINUE WHEN READY TO STORE AND AVERAGE.")
instr.trigger_sweep()
instr.done()
instr.store_short()

input("RECONNECT DUT. PRESS CONTINUE WHEN READY.")
instr.trigger_sweep()
instr.done()

instr.normalize = True

instr.trigger_sweep()
instr.done()

instr.normalized_reference_position = 8
instr.trigger_sweep()

instr.preset()
demonstrate recall of open/short average trace
instr.recall_open_short_average()
instr.trigger_sweep()

HP856Xx.store_open()

Save the current instrument state and trace A into nonvolatile memory.

This command must be used in conjunction with the store_short() command and must precede the
store_short() command. The data obtained during the store open procedure is averaged with the data ob-
tained during the store_short() procedure to provide an open/short calibration. The instrument state (that is,
instrument settings) must not change between the store_open() and store_short() operations in order for
the open/short calibration to be valid. Refer to the store_short() command description for more information.

HP856Xx.store_short()

Take currently displayed trace A data and averages this data with previously stored open data, and stores it in
trace B.

This command is used in conjunction with the store_open() command and must be preceded by it for proper
operation. Refer to the store_open() command description for more information. The state of the open/short
average trace is stored in state register #8.

Thru Calibration

HP856Xx.store_thru()

Store a thru-calibration trace into trace B and into the nonvolatile memory of the spectrum analyzer.

The state of the thru information is stored in state register #9.

HP856Xx.recall_thru()

Recalls the internally stored thru-reference trace into trace B.

The instrument state is also set to the stored thru-reference state.

272 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

HP8560A Specific Attributes & Methods

class pymeasure.instruments.hp.HP8560A(adapter, name='Hewlett-Packard HP8560A', **kwargs)
Bases: HP856Xx

Represents the HP 8560A Spectrum Analyzer and provides a high-level interface for interacting with the instru-
ment.

from pymeasure.instruments.hp import HP8560A
from pymeasure.instruments.hp.hp856Xx import AmplitudeUnits

sa = HP8560A("GPIB::1")

sa.amplitude_unit = AmplitudeUnits.DBUV
sa.start_frequency = 299.5e6
sa.stop_frequency = 300.5e6

print(sa.marker_amplitude)

activate_source_peak_tracking()

Activate a routine which automatically adjusts both the coarse and fine-tracking adjustments to obtain the
peak response of the tracking generator on the spectrum-analyzer display. Tracking peak is not necessary
for resolution bandwidths greater than or equal to 300 kHz. A thru connection should be made prior to
peaking in order to ensure accuracy.

Note: Only available with an HP 8560A Option 002.

property source_leveling_control

Control if internal or external leveling is used with the built-in tracking generator. Takes either ‘INT’,
‘EXT’ or members of enumeration SourceLevelingControlMode

Type: str

instr.preset()
instr.sweep_single()
instr.center_frequency = 300e6
instr.span = 1e6

instr.source_power = -5

instr.trigger_sweep()
instr.source_leveling_control = SourceLevelingControlMode.External

if ErrorCode(900) in instr.errors:
print("UNLEVELED CONDITION. CHECK LEVELING LOOP.")

Note: Only available with an HP 8560A Option 002.

property source_power

Control the built-in tracking generator on and off and adjusts the output power.

Type: str, float

7.25. Hewlett Packard 273

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Note: Only available with an HP 8560A Option 002.

property source_power_offset

Control the offset of the displayed power of the built-in tracking generator so that it is equal to the measured
power at the input of the spectrum analyzer. This function may be used to take into account system losses
(for example, cable loss) or gains (for example, preamplifier gain) reflecting the actual power delivered to
the device under test.

Type: int

Note: Only available with an HP 8560A Option 002.

property source_power_step

Control the step size of the source power level, source power offset, and power-sweep range functions.
Range: 0.1 . . . 12.75 DB with 0.05 steps.

Type: float

Note: Only available with an HP 8560A Option 002.

property source_power_sweep

Control the power-sweep function, where the output power of the tracking generator is swept over the power-
sweep range chosen. The starting source power level is set using the source_power command. The output
power of the tracking generator is swept according to the sweep rate of the spectrum analyzer.

Type: str, float

Note: Only available with an HP 8560A Option 002.

property tracking_adjust_coarse

Control the coarse adjustment to the frequency of the built-in tracking-generator oscillator. Once enabled,
this adjustment is made in digital-to-analogconverter (DAC) values from 0 to 255. For fine adjustment,
refer to the tracking_adjust_fine command description.

Type: int

Note: Only available with an HP 8560A Option 002.

property tracking_adjust_fine

Control the fine adjustment of the frequency of the built-in tracking-generator oscillator. Once enabled,
this adjustment is made in digital-to-analogconverter (DAC) values from 0 to 255. For coarse adjustment,
refer to the tracking_adjust_coarse command description.

Type: int

Note: Only available with an HP 8560A Option 002.

274 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

HP8561B Specific Attributes & Methods

class pymeasure.instruments.hp.HP8561B(adapter, name='Hewlett-Packard HP8561B', **kwargs)
Bases: HP856Xx

Represents the HP 8561B Spectrum Analyzer and provides a high-level interface for interacting with the instru-
ment.

from pymeasure.instruments.hp import 8561B
from pymeasure.instruments.hp.hp856Xx import AmplitudeUnits

sa = HP8560A("GPIB::1")

sa.amplitude_unit = AmplitudeUnits.DBUV
sa.start_frequency = 6.4e9
sa.stop_frequency = 6.5e9

print(sa.marker_amplitude)

property conversion_loss

Control the compensation for losses outside the instrument when in external mixer mode (such as losses
within connector cables, external mixers, etc.). ‘conversion_loss’ specifies the mean conversion loss for the
current harmonic band. In a full frequency band (such as band K), the mean conversion loss is defined as the
minimum loss plus the maximum loss for that band divided by two. Adjusting for conversion loss allows the
system to remain calibrated (that is, the displayed amplitude values have the conversion loss incorporated
into them). The default value for any band is 30 dB. The spectrum analyzer must be in external-mixer mode
in order for this command to work. When in internal-mixer mode, querying ‘conversion_loss’ returns a zero.

property harmonic_number_lock

Control the lock to a chosen harmonic so only that harmonic is used to sweep an external frequency band.
To select a frequency band, use the ‘fullband’ command; it selects an appropriate harmonic for the desired
band. To change the harmonic number, use ‘harmonic_number_lock’. Note that ‘harmonic_number_lock’
also works in internal-mixing modes. Once ‘fullband’ or ‘harmonic_number_lock’ are set, only center
frequencies and spans that fall within the frequency band of the current harmonic may be entered. When
the ‘set_full_span’ command is activated, the span is limited to the frequency band of the selected harmonic.

property mixer_bias

Set the bias for an external mixer that requires diode bias for efficient mixer operation. The bias, which
is provided on the center conductor of the IF input, is activated when MBIAS is executed. A “+” or “—”
appears on the left edge of the spectrum analyzer display, indicating that positive or negative bias is on.
When the bias is turned off, MBIAS is set to 0. Default units are in milliamps.

property mixer_mode

Control the mixer mode. Select either the internal mixer or supply an external mixer. Takes enum ‘Mixer-
Mode’ or string ‘INT’, ‘EXT’

peak_preselector()

Peaks the preselector in the HP 8561B Spectrum Analyzer.

Make sure the entire frequency span is in high band, set the desired trace to clear-write mode, place a
marker on a desired signal, then execute PP. The peaking routine zooms to zero span, peaks the preselector
tracking, then returns to the original position. To read the new preselector peaking number, use the PSDAC
command. Commands following PP are not executed until after the analyzer has finished peaking the
preselector.

7.25. Hewlett Packard 275

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property preselector_dac_number

Control the preselector peak DAC number. For use with an HP 8561B Spectrum Analyzer.

Type: int

set_fullband(band)
Select a commonly-used, external-mixer frequency band, as shown in the table. The harmonic lock func-
tion harmonic_number_lock is also set; this locks the harmonic of the chosen band. External-mixing
functions are not available with an HP 8560A Option 002. Takes frequency band letter as string.

Table 2: Title
Frequency Band Frequency Range

(GHz)
Mixing Harmonic Conversion Loss

K 18.0 — 26.5 6 30 dB
A 26.5 — 40.0 8 30 dB
Q 33.0—50.0 10 30 dB
U 40.0—60.0 10 30 dB
V 50.0—75.0 14 30 dB
E 60.0—-90.0 16 30 dB
W 75.0—110.0 18 30 dB
F 90.0—140.0 24 30 dB
D 110.0—170.0 30 30 dB
G 140.0—220.0 36 30 dB
Y 170.0—260.0 44 30 dB
J 220.0—325.0 54 30 dB

set_signal_identification_to_center_frequency()

Set the center frequency to the frequency obtained from the command SIGID.

SIGID must be in AUTO mode and have found a valid result for this command to execute properly. Use
SIGID on signals greater than 18 GHz {i.e., in external mixing mode). SIGID and IDCF may also be used
on signals less than 6.5 GHz in an HP 8561B.

property signal_identification

Control the signal identification for identifying signals for the external mixing frequency bands. Two sig-
nal identification methods are available. AUTO employs the image response method for locating correct
mixer responses. Place a marker on the desired signal, then activate signal_identification = ‘AUTO’. The
frequency of a correct response appears in the active function block. Use this mode before executing the
signal_identification_to_center_frequency() command. The second method of signal identifi-
cation, ‘MAN’, shifts responses both horizontally and vertically. A correct response is shifted horizontally
by less than 80 kHz. To ensure accuracy in MAN mode, limit the frequency span to less than 20 MHz.
Where True = manual mode is active and False = auto mode is active or ‘signal_identification’ is off.

property signal_identification_frequency

Measure the frequency of the last identified signal. After an instrument preset or an invalid signal identifi-
cation, IDFREQ returns a “0”.

unlock_harmonic_number()

Unlock the harmonic number, allowing you to select frequencies and spans outside the range of the locked
harmonic number.

Also, when HNUNLK is executed, more than one harmonic can then be used to sweep across a desired
span. For example, sweep a span from 18 GHz to 40 GHz. In this case, the analyzer will automatically
sweep first using 6—, then using 8—.

276 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Enumerations

class pymeasure.instruments.hp.hp856Xx.AmplitudeUnits(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Bases: StrEnum

Enumeration to represent the amplitude units.

AUTO = 'AUTO'

Automatic Unit (Usually derives to ‘DBM’)

DBM = 'DBM'

DB over millit Watt

DBMV = 'DBMV'

DB over milli Volt

DBUV = 'DBUV'

DB over micro Volt

MANUAL = 'MAN'

Manual Mode

V = 'V'

Volts

W = 'W'

Watt

class pymeasure.instruments.hp.hp856Xx.MixerMode(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Bases: StrEnum

Enumeration to represent the Mixer Mode of the HP8561B.

External = 'EXT'

Mixer Mode External

Internal = 'INT'

Mixer Mode Internal

class pymeasure.instruments.hp.hp856Xx.Trace(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

Bases: StrEnum

Enumeration to represent either Trace A or Trace B.

A = 'TRA'

Trace A

B = 'TRB'

Trace B

class pymeasure.instruments.hp.hp856Xx.CouplingMode(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

7.25. Hewlett Packard 277

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Bases: StrEnum

Enumeration to represent the Coupling Mode.

AC = 'AC'

AC

DC = 'DC'

DC

class pymeasure.instruments.hp.hp856Xx.DemodulationMode(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Bases: StrEnum

Enumeration to represent the Demodulation Mode.

Amplitude = 'AM'

Amplitude Modulation

Frequency = 'FM'

Frequency Modulation

Off = 'OFF'

Demodulation Off

class pymeasure.instruments.hp.hp856Xx.DetectionModes(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Bases: StrEnum

Enumeration to represent the Detection Modes.

NegativePeak = 'NEG'

Negative Peak Detection

Normal = 'NRM'

Normal Peak Detection

PositivePeak = 'POS'

Positive Peak Detection

Sample = 'SMP'

Sampl Mode Detection

class pymeasure.instruments.hp.hp856Xx.ErrorCode(code)
Bases: object

Class to decode error codes from the spectrum analyzer.

class pymeasure.instruments.hp.hp856Xx.FrequencyReference(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Bases: StrEnum

Enumeration to represent the frequency reference source.

External = 'EXT'

External Frequency Standard

278 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Internal = 'INT'

Internal Frequency Reference

class pymeasure.instruments.hp.hp856Xx.PeakSearchMode(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Bases: StrEnum

Enumeration to represent the Marker Peak Search Mode.

High = 'HI'

Place marker to the highest value on the trace

NextHigh = 'NH'

Place marker to the next highest value on the trace

NextLeft = 'NL'

Place marker to the next peak to the left

NextRight = 'NR'

Place marker to the next peak to the right

class pymeasure.instruments.hp.hp856Xx.SourceLevelingControlMode(value, names=None, *,
module=None,
qualname=None, type=None,
start=1, boundary=None)

Bases: StrEnum

Enumeration to represent the Source Leveling Control Mode of the HP8560A.

External = 'EXT'

Source Leveling Control Mode External

Internal = 'INT'

Source Leveling Control Mode Internal

class pymeasure.instruments.hp.hp856Xx.StatusRegister(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Bases: IntFlag

Enumeration to represent the Status Register.

COMMAND_COMPLETE = 16

Any command is completed

END_OF_SWEEP = 4

Set when any sweep is completed

ERROR_PRESENT = 32

Set when error present

MESSAGE = 2

Set when display message appears

NA = 8

Unused but sometimes set

7.25. Hewlett Packard 279

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

NONE = 0

No Interrupts can interrupt the program sequence

RQS = 64

Request Service

TRIGGER = 1

Trigger is activated

class pymeasure.instruments.hp.hp856Xx.SweepCoupleMode(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Bases: StrEnum

Enumeration.

SpectrumAnalyzer = 'SA'

Stimulus Response

StimulusResponse = 'SR'

Spectrum Analyeze

class pymeasure.instruments.hp.hp856Xx.SweepOut(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Bases: StrEnum

Enumeration.

Fav = 'FAV'

DC Ramp 0.5V / GHz

Ramp = 'RAMP'

0 - 10V Ramp

class pymeasure.instruments.hp.hp856Xx.TriggerMode(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Bases: StrEnum

Enumeration to represent the different trigger modes

External = 'EXT'

External Mode

Free = 'FREE'

Free Running

Line = 'LINE'

Line Mode

Video = 'VID'

Video Mode

class pymeasure.instruments.hp.hp856Xx.WindowType(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Bases: StrEnum

Enumeration to represent the different window mode for FFT functions

280 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Flattop = 'FLATTOP'

Flattop provides optimum amplitude accuracy

Hanning = 'HANNING'

Hanning provides an amplitude accuracy/frequency resolution compromise

Uniform = 'UNIFORM'

Uniform provides equal weighting of the time record for measuring transients.

7.25.7 HP Signal generator HP8657B

Note:

• This instrument does not support reading back values, as it is a listen-only GPIB device.

• Other instruments of this family could be implemented using the dynamic ranges feature.

• Optional pulse modulation feature is not supported yet.

Glossary:

Abbreviation Explanation
AM Amplitude Modulation
FM Frequency Modulation
dBm power level in dB referenced to 1mW

class pymeasure.instruments.hp.HP8657B(adapter, name='Hewlett-Packard HP8657B', **kwargs)
Bases: Instrument

Represents the Hewlett Packard 8657B signal generator and provides a high-level interface for interacting with
the instrument.

class Modulation(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

Bases: IntEnum

IntEnum for the different modulation sources

property am_depth

Set the modulation depth for AM, usable range 0-99.9%

property am_source

Set the source for the AM function with Modulation enumeration.

Value Meaning
OFF no modulation active
INT_400HZ internal 400 Hz modulation source
INT_1000HZ internal 1000 Hz modulation source
EXTERNAL External source, AC coupling

Note:

• AM & FM can be active at the same time

• only one internal source can be active at the time

• use “OFF” to deactivate AM

7.25. Hewlett Packard 281

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

usage example:

sig_gen = HP8657B("GPIB::7")
...
sig_gen.am_source = sig_gen.Modulation.INT_400HZ # Enable int. 400 Hz␣
→˓source for AM
sig_gen.am_depth = 50 # Set AM modulation depth␣
→˓to 50%
...
sig_gen.am_source = sig_gen.Modulation.OFF # Turn AM off

check_errors()

Method to read the error status register as the 8657B does not support any readout of values, this will return
0 and log a warning

clear()

Reset the instrument to power-on default settings

property fm_deviation

Set the peak deviation in kHz for the FM function, useable range 0.1 - 400 kHz

NOTE:
the maximum usable deviation is depending on the output frequency, refer to the instrument documen-
tation for further detail.

property fm_source

Set the source for the FM function with Modulation enumeration.

Value Meaning
OFF no modulation active
INT_400HZ internal 400 Hz modulation source
INT_1000HZ internal 1000 Hz modulation source
EXTERNAL External source, AC coupling
DC_FM External source, DC coupling (FM only)

Note:

• AM & FM can be active at the same time

• only one internal source can be active at the time

• use “OFF” to deactivate FM

• refer to the documentation rearding details on use of DC FM mode

usage example:

sig_gen = HP8657B("GPIB::7")
...
sig_gen.fm_source = sig_gen.Modulation.EXTERNAL # Enable external source␣
→˓for FM
sig_gen.fm_deviation = 15 # Set FM peak deviation to␣
→˓15 kHz
...
sig_gen.fm_source = sig_gen.Modulation.OFF # Turn FM off

282 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property frequency

Set the output frequency of the instrument in Hz.

For the 8567B the valid range is 100 kHz to 2060 MHz.

id = 'HP,8657B,N/A,N/A'

Manual ID entry

property level

Set the output level in dBm.

For the 8657B the range is -143.5 to +17 dBm/

property level_offset

Set the output offset in dB, usable range -199 to +199 dB.

property output_enabled

Control whether the output is enabled.

reset()

Resets the instrument.

shutdown()

Brings the instrument to a safe and stable state

7.25.8 Support class for HP legacy devices

Currently this implementation is used for the following instruments which do not support SCPI:

• HP3437A System-Voltmeter

• HP3478A Digital Multimeter

• HP6632/33/34A System power supply

class pymeasure.instruments.hp.HPLegacyInstrument(adapter, name='HP legacy instrument', **kwargs)
Bases: Instrument

Class for legacy HP instruments from the era before SPCI, based on pymeasure.Instrument

GPIB_trigger()

Initate trigger via low-level GPIB-command (aka GET - group execute trigger)

reset()

Initatiates a reset (like a power-on reset) of the HP3478A

shutdown()

provides a way to gracefully close the connection to the HP3478A

property status

Get an object representing the current status of the unit.

status_desc

alias of StatusBitsBase

values(command, **kwargs)
Write a command to the instrument and return a list of formatted values from the result.

Parameters

7.25. Hewlett Packard 283

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• command – SCPI command to be sent to the instrument.

• preprocess_reply – Optional callable used to preprocess the string received from the
instrument, before splitting it. The callable returns the processed string.

• separator – A separator character to split the string returned by the device into a list.

• maxsplit – The string returned by the device is splitted at most maxsplit times. -1 (default)
indicates no limit.

• cast – A type to cast each element of the splitted string.

• **kwargs – Keyword arguments to be passed to the ask() method.

Returns
A list of the desired type, or strings where the casting fails.

write(command)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument

• kwargs – Keyword arguments for the adapter.

7.25.9 HP System Power Supplies HP663XA

Currently supported models are:

Model Voltage Current Power
6632A 0..20 V 0..5.0 A 100 W
6633A 0..50 V 0..2.5 A 100 W
6634A 0..100 V 0..1.0 A 100 W

Note:

• The multi-channel system power supplies HP 6621A, 6622A, 6623A, 6624A, 6625A, 6626A, 6627A &
6628A share some of the command syntax and could probably be incorporated in this implementation

• The B-version of these models (6632B, 6633B & 6634B) are SPCI-compliant and could be implemented
in a similiar manner

class pymeasure.instruments.hp.HP6632A(adapter, name='Hewlett-Packard HP6632A', **kwargs)
Bases: HPLegacyInstrument

Represents the Hewlett Packard 6632A system power supply and provides a high-level interface for interacting
with the instrument.

class ERRORS(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

Bases: Enum

Enum class for error messages

property OCP_enabled

A bool property which controls if the OCP (OverCurrent Protection) is enabled

property SRQ_enabled

A bool property which controls if the SRQ (ServiceReQuest) is enabled

284 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

class ST_ERRORS(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

Bases: Enum

Enum class for selftest errors

check_errors()

Method to read the error status register

Return error_status
one byte with the error status register content

Rtype error_status
int

check_selftest_errors()

Method to read the error status register

Return error_status
one byte with the error status register content

Rtype error_status
int

clear()

Resets the instrument to power-on default settings

property current

A floating point property that controls the output current of the device.

(dynamic)

property delay

A float propery that changes the reprogamming delay Default values: 8 ms in FAST mode 80 ms in NORM
mode

Values will be rounded to the next 4 ms by the instrument

property display_active

A boot property which controls if the display is enabled

property id

Reads the ID of the instrument and returns this value for now

property output_enabled

A bool property which controls if the output is enabled

property over_voltage_limit

A floationg point property that sets the OVP threshold.

(dynamic)

reset_OVP_OCP()

Resets Overvoltage and Overcurrent protections

property rom_version

Reads the ROM id (software version) of the instrument and returns this value for now

property status

Returns an object representing the current status of the unit.

7.25. Hewlett Packard 285

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

status_desc

alias of Status

property voltage

A floating point proptery that controls the output voltage of the device.

(dynamic)

class pymeasure.instruments.hp.HP6633A(adapter, name='Hewlett Packard HP6633A', **kwargs)
Bases: HP6632A

Represents the Hewlett Packard 6633A system power supply and provides a high-level interface for interacting
with the instrument.

class pymeasure.instruments.hp.HP6634A(adapter, name='Hewlett Packard HP6634A', **kwargs)
Bases: HP6632A

Represents the Hewlett Packard 6634A system power supply and provides a high-level interface for interacting
with the instrument.

7.26 IPG Photonics

This section contains specific documentation on the IPG Photonics instruments that are implemented. If you are inter-
ested in an instrument not included, please consider adding the instrument.

7.26.1 YAR fiber amplifier series

class pymeasure.instruments.ipgphotonics.yar.YAR(adapter, name='YAR fiber amplifier', **kwargs)
Bases: Instrument

Communication with the YAR fiber amplifier series by IPG Photonics.

This is the RS232 command set. GPIB has different commands.

class Status(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

Bases: IntFlag

check_set_errors()

Check for errors after having set a property.

Called if check_set_errors=True is set for that property.

clear()

Reset all errors.

property current

Measure the diode current in A.

property emission_enabled

Control emission of the amplifier (bool).

property firmware

Get firmware version

286 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property id

Get the model number.

property maximum_case_temperature

Measure the maximum temperature for the optical module in °C.

property minimum_display_power

Measure the minimum displayable output power in W.

property power

Measure current output power in W.(dynamic)

property power_range

Get the power limits in W.

property power_setpoint

Control output power setpoint in W.(dynamic)

read()

Read an instrument answer and check whether it is an error.

property status

Get the current status.

property temperature

Measure case temperature in °C.

property temperature_seed

Measure current seed temperature in °C

property wavelength_temperature

Control temperature in °C for seed wavelength control.

7.27 Keithley

This section contains specific documentation on the Keithley instruments that are implemented. If you are interested
in an instrument not included, please consider adding the instrument.

7.27.1 Keithley 2000 Multimeter

class pymeasure.instruments.keithley.Keithley2000(adapter, name='Keithley 2000 Multimeter',
**kwargs)

Bases: KeithleyBuffer, Instrument

Represents the Keithley 2000 Multimeter and provides a high-level interface for interacting with the instrument.

meter = Keithley2000("GPIB::1")
meter.measure_voltage()
print(meter.voltage)

acquire_reference(mode=None)
Sets the active value as the reference for the active mode, or can set another mode by its name.

Parameters
mode – A valid mode name, or None for the active mode

7.27. Keithley 287

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

auto_range(mode=None)
Sets the active mode to use auto-range, or can set another mode by its name.

Parameters
mode – A valid mode name, or None for the active mode

beep(frequency, duration)
Sounds a system beep.

Parameters

• frequency – A frequency in Hz between 65 Hz and 2 MHz

• duration – A time in seconds between 0 and 7.9 seconds

property beep_state

A string property that enables or disables the system status beeper, which can take the values: enabled
and disabled.

property buffer_data

Returns a numpy array of values from the buffer.

property buffer_points

An integer property that controls the number of buffer points. This does not represent actual points in the
buffer, but the configuration value instead.

check_errors()

Read all errors from the instrument and log them.

Returns
List of error entries.

check_get_errors()

Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

clear()

Clears the instrument status byte

property complete

Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation Complete query
places an ASCII character 1 into the device’s Output Queue when all pending selected device operations
have been finished.

288 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

config_buffer(points=64, delay=0)
Configures the measurement buffer for a number of points, to be taken with a specified delay.

Parameters

• points – The number of points in the buffer.

• delay – The delay time in seconds.

property current

Reads a DC or AC current measurement in Amps, based on the active mode.

property current_ac_bandwidth

A floating point property that sets the AC current detector bandwidth in Hz, which can take the values 3,
30, and 300 Hz.

property current_ac_digits

An integer property that controls the number of digits in the AC current readings, which can take values
from 4 to 7.

property current_ac_nplc

A floating point property that controls the number of power line cycles (NPLC) for the AC current mea-
surements, which sets the integration period and measurement speed. Takes values from 0.01 to 10, where
0.1, 1, and 10 are Fast, Medium, and Slow respectively.

property current_ac_range

A floating point property that controls the AC current range in Amps, which can take values from 0 to 3.1
A. Auto-range is disabled when this property is set.

property current_ac_reference

A floating point property that controls the AC current reference value in Amps, which can take values from
-3.1 to 3.1 A.

property current_digits

An integer property that controls the number of digits in the DC current readings, which can take values
from 4 to 7.

property current_nplc

A floating point property that controls the number of power line cycles (NPLC) for the DC current mea-
surements, which sets the integration period and measurement speed. Takes values from 0.01 to 10, where
0.1, 1, and 10 are Fast, Medium, and Slow respectively.

property current_range

A floating point property that controls the DC current range in Amps, which can take values from 0 to 3.1
A. Auto-range is disabled when this property is set.

property current_reference

A floating point property that controls the DC current reference value in Amps, which can take values from
-3.1 to 3.1 A.

disable_buffer()

Disables the connection between measurements and the buffer, but does not abort the measurement process.

disable_filter(mode=None)
Disables the averaging filter for the active mode, or can set another mode by its name.

Parameters
mode – A valid mode name, or None for the active mode

7.27. Keithley 289

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

disable_reference(mode=None)
Disables the reference for the active mode, or can set another mode by its name.

Parameters
mode – A valid mode name, or None for the active mode

enable_filter(mode=None, type='repeat', count=1)
Enables the averaging filter for the active mode, or can set another mode by its name.

Parameters

• mode – A valid mode name, or None for the active mode

• type – The type of averaging filter, either ‘repeat’ or ‘moving’.

• count – A number of averages, which can take take values from 1 to 100

enable_reference(mode=None)
Enables the reference for the active mode, or can set another mode by its name.

Parameters
mode – A valid mode name, or None for the active mode

property frequency

Reads a frequency measurement in Hz, based on the active mode.

property frequency_aperature

A floating point property that controls the frequency aperature in seconds, which sets the integration period
and measurement speed. Takes values from 0.01 to 1.0 s.

property frequency_digits

An integer property that controls the number of digits in the frequency readings, which can take values
from 4 to 7.

property frequency_reference

A floating point property that controls the frequency reference value in Hz, which can take values from 0
to 15 MHz.

property frequency_threshold

A floating point property that controls the voltage signal threshold level in Volts for the frequency measure-
ment, which can take values from 0 to 1010 V.

property id

Get the identification of the instrument.

is_buffer_full()

Returns True if the buffer is full of measurements.

local()

Returns control to the instrument panel, and enables the panel if disabled.

measure_continuity()

Configures the instrument to perform continuity testing.

measure_current(max_current=0.01, ac=False)
Configures the instrument to measure current, based on a maximum current to set the range, and a boolean
flag to determine if DC or AC is required.

Parameters

• max_current – A current in Volts to set the current range

290 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• ac – False for DC current, and True for AC current

measure_diode()

Configures the instrument to perform diode testing.

measure_frequency()

Configures the instrument to measure the frequency.

measure_period()

Configures the instrument to measure the period.

measure_resistance(max_resistance=10000000.0, wires=2)
Configures the instrument to measure voltage, based on a maximum voltage to set the range, and a boolean
flag to determine if DC or AC is required.

Parameters

• max_voltage – A voltage in Volts to set the voltage range

• ac – False for DC voltage, and True for AC voltage

measure_temperature()

Configures the instrument to measure the temperature.

measure_voltage(max_voltage=1, ac=False)
Configures the instrument to measure voltage, based on a maximum voltage to set the range, and a boolean
flag to determine if DC or AC is required.

Parameters

• max_voltage – A voltage in Volts to set the voltage range

• ac – False for DC voltage, and True for AC voltage

property mode

A string property that controls the configuration mode for measurements, which can take the values:
current (DC), current ac, voltage (DC), voltage ac, resistance (2-wire), resistance 4W (4-
wire), period, temperature, diode, and frequency.

property options

Get the device options installed.

property period

Reads a period measurement in seconds, based on the active mode.

property period_aperature

A floating point property that controls the period aperature in seconds, which sets the integration period
and measurement speed. Takes values from 0.01 to 1.0 s.

property period_digits

An integer property that controls the number of digits in the period readings, which can take values from 4
to 7.

property period_reference

A floating point property that controls the period reference value in seconds, which can take values from 0
to 1 s.

property period_threshold

A floating point property that controls the voltage signal threshold level in Volts for the period measurement,
which can take values from 0 to 1010 V.

7.27. Keithley 291

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

read_binary_values(**kwargs)
Read binary values from the device.

read_bytes(count, **kwargs)
Read a certain number of bytes from the instrument.

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read the whole read
buffer.

• kwargs – Keyword arguments for the adapter.

Returns bytes
Bytes response of the instrument (including termination).

remote()

Places the instrument in the remote state, which is does not need to be explicity called in general.

remote_lock()

Disables and locks the front panel controls to prevent changes during remote operations. This is disabled
by calling local().

reset()

Resets the instrument state.

reset_buffer()

Resets the buffer.

property resistance

Reads a resistance measurement in Ohms for both 2-wire and 4-wire configurations, based on the active
mode.

property resistance_4W_digits

An integer property that controls the number of digits in the 4-wire resistance readings, which can take
values from 4 to 7.

property resistance_4W_nplc

A floating point property that controls the number of power line cycles (NPLC) for the 4-wire resistance
measurements, which sets the integration period and measurement speed. Takes values from 0.01 to 10,
where 0.1, 1, and 10 are Fast, Medium, and Slow respectively.

property resistance_4W_range

A floating point property that controls the 4-wire resistance range in Ohms, which can take values from 0
to 120 MOhms. Auto-range is disabled when this property is set.

property resistance_4W_reference

A floating point property that controls the 4-wire resistance reference value in Ohms, which can take values
from 0 to 120 MOhms.

property resistance_digits

An integer property that controls the number of digits in the 2-wire resistance readings, which can take
values from 4 to 7.

292 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property resistance_nplc

A floating point property that controls the number of power line cycles (NPLC) for the 2-wire resistance
measurements, which sets the integration period and measurement speed. Takes values from 0.01 to 10,
where 0.1, 1, and 10 are Fast, Medium, and Slow respectively.

property resistance_range

A floating point property that controls the 2-wire resistance range in Ohms, which can take values from 0
to 120 MOhms. Auto-range is disabled when this property is set.

property resistance_reference

A floating point property that controls the 2-wire resistance reference value in Ohms, which can take values
from 0 to 120 MOhms.

shutdown()

Brings the instrument to a safe and stable state

start_buffer()

Starts the buffer.

property status

Get the status byte and Master Summary Status bit.

stop_buffer()

Aborts the buffering measurement, by stopping the measurement arming and triggering sequence. If pos-
sible, a Selected Device Clear (SDC) is used.

property temperature

Reads a temperature measurement in Celsius, based on the active mode.

property temperature_digits

An integer property that controls the number of digits in the temperature readings, which can take values
from 4 to 7.

property temperature_nplc

A floating point property that controls the number of power line cycles (NPLC) for the temperature mea-
surements, which sets the integration period and measurement speed. Takes values from 0.01 to 10, where
0.1, 1, and 10 are Fast, Medium, and Slow respectively.

property temperature_reference

A floating point property that controls the temperature reference value in Celsius, which can take values
from -200 to 1372 C.

property trigger_count

An integer property that controls the trigger count, which can take values from 1 to 9,999.

property trigger_delay

A floating point property that controls the trigger delay in seconds, which can take values from 1 to
9,999,999.999 s.

property voltage

Reads a DC or AC voltage measurement in Volts, based on the active mode.

property voltage_ac_bandwidth

A floating point property that sets the AC voltage detector bandwidth in Hz, which can take the values 3,
30, and 300 Hz.

7.27. Keithley 293

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property voltage_ac_digits

An integer property that controls the number of digits in the AC voltage readings, which can take values
from 4 to 7.

property voltage_ac_nplc

A floating point property that controls the number of power line cycles (NPLC) for the AC voltage mea-
surements, which sets the integration period and measurement speed. Takes values from 0.01 to 10, where
0.1, 1, and 10 are Fast, Medium, and Slow respectively.

property voltage_ac_range

A floating point property that controls the AC voltage range in Volts, which can take values from 0 to 757.5
V. Auto-range is disabled when this property is set.

property voltage_ac_reference

A floating point property that controls the AC voltage reference value in Volts, which can take values from
-757.5 to 757.5 Volts.

property voltage_digits

An integer property that controls the number of digits in the DC voltage readings, which can take values
from 4 to 7.

property voltage_nplc

A floating point property that controls the number of power line cycles (NPLC) for the DC voltage mea-
surements, which sets the integration period and measurement speed. Takes values from 0.01 to 10, where
0.1, 1, and 10 are Fast, Medium, and Slow respectively.

property voltage_range

A floating point property that controls the DC voltage range in Volts, which can take values from 0 to 1010
V. Auto-range is disabled when this property is set.

property voltage_reference

A floating point property that controls the DC voltage reference value in Volts, which can take values from
-1010 to 1010 V.

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Parameters
query_delay – Delay between writing and reading in seconds.

wait_for_buffer(should_stop=<function KeithleyBuffer.<lambda>>, timeout=60, interval=0.1)
Blocks the program, waiting for a full buffer. This function returns early if the should_stop function
returns True or the timeout is reached before the buffer is full.

Parameters

• should_stop – A function that returns True when this function should return early

• timeout – A time in seconds after which this function should return early

• interval – A time in seconds for how often to check if the buffer is full

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument

• kwargs – Keyword arguments for the adapter.

294 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

write_binary_values(command, values, *args, **kwargs)
Write binary values to the device.

Parameters

• command – Command to send.

• values – The values to transmit.

• **kwargs (*args,) – Further arguments to hand to the Adapter.

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

7.27.2 Keithley 2260B DC Power Supply

class pymeasure.instruments.keithley.Keithley2260B(adapter, name='Keithley 2260B DC Power
Supply', read_termination='\n', **kwargs)

Bases: Instrument

Represents the Keithley 2260B Power Supply (minimal implementation) and provides a high-level interface for
interacting with the instrument.

For a connection through tcpip, the device only accepts connections at port 2268, which cannot be configured
otherwise. example connection string: ‘TCPIP::xxx.xxx.xxx.xxx::2268::SOCKET’ the read termination for this
interface is

source = Keithley2260B("GPIB::1")
source.voltage = 1
print(source.voltage)
print(source.current)
print(source.power)
print(source.applied)

property applied

Simultaneous control of voltage (volts) and current (amps). Values need to be supplied as tuple of (voltage,
current). Depending on whether the instrument is in constant current or constant voltage mode, the values
achieved by the instrument will differ from the ones set.

check_errors()

Logs any system errors reported by the instrument.

check_get_errors()

Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

7.27. Keithley 295

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Returns
List of error entries.

clear()

Clears the instrument status byte

property complete

Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation Complete query
places an ASCII character 1 into the device’s Output Queue when all pending selected device operations
have been finished.

property current

Reads the current (in Ampere) the dc power supply is putting out.

property current_limit

A floating point property that controls the source current in amps. This is not checked against the allowed
range. Depending on whether the instrument is in constant current or constant voltage mode, this might
differ from the actual current achieved.

property error

Returns a tuple of an error code and message from a single error.

property id

Get the identification of the instrument.

property options

Get the device options installed.

property output_enabled

A boolean property that controls whether the source is enabled, takes values True or False.

property power

Reads the power (in Watt) the dc power supply is putting out.

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

read_binary_values(**kwargs)
Read binary values from the device.

read_bytes(count, **kwargs)
Read a certain number of bytes from the instrument.

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read the whole read
buffer.

• kwargs – Keyword arguments for the adapter.

Returns bytes
Bytes response of the instrument (including termination).

reset()

Resets the instrument.

shutdown()

Disable output, call parent function

296 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property status

Get the status byte and Master Summary Status bit.

property voltage

Reads the voltage (in Volt) the dc power supply is putting out.

property voltage_setpoint

A floating point property that controls the source voltage in volts. This is not checked against the allowed
range. Depending on whether the instrument is in constant current or constant voltage mode, this might
differ from the actual voltage achieved.

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Parameters
query_delay – Delay between writing and reading in seconds.

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument

• kwargs – Keyword arguments for the adapter.

write_binary_values(command, values, *args, **kwargs)
Write binary values to the device.

Parameters

• command – Command to send.

• values – The values to transmit.

• **kwargs (*args,) – Further arguments to hand to the Adapter.

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

7.27.3 Keithley 2306 Dual Channel Battery/Charger Simulator

class pymeasure.instruments.keithley.Keithley2306(adapter, name='Keithley 2306', **kwargs)
Bases: Instrument

Represents the Keithley 2306 Dual Channel Battery/Charger Simulator.

property both_channels_enabled

A boolean setting that controls whether both channel outputs are enabled, takes values of True or False.

ch(channel_number)
Get a channel from this instrument.

Param
channel_number: int: the number of the channel to be selected

Type
Keithley2306Channel

7.27. Keithley 297

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

check_errors()

Read all errors from the instrument and log them.

Returns
List of error entries.

check_get_errors()

Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

clear()

Clears the instrument status byte

property complete

Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation Complete query
places an ASCII character 1 into the device’s Output Queue when all pending selected device operations
have been finished.

property display_brightness

A floating point property that controls the display brightness, takes values beteween 0.0 and 1.0. A blank
display is 0.0, 1/4 brightness is for values less or equal to 0.25, otherwise 1/2 brightness for values less than
or equal to 0.5, otherwise 3/4 brightness for values less than or equal to 0.75, otherwise full brightness.

property display_channel

An integer property that controls the display channel, takes values 1 or 2.

property display_enabled

A boolean property that controls whether the display is enabled, takes values True or False.

property display_text_data

A string property that control text to be displayed, takes strings up to 32 characters.

property display_text_enabled

A boolean property that controls whether display text is enabled, takes values True or False.

property id

Get the identification of the instrument.

property options

Get the device options installed.

298 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

read_binary_values(**kwargs)
Read binary values from the device.

read_bytes(count, **kwargs)
Read a certain number of bytes from the instrument.

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read the whole read
buffer.

• kwargs – Keyword arguments for the adapter.

Returns bytes
Bytes response of the instrument (including termination).

relay(relay_number)
Get a relay channel from this instrument.

Param
relay_number: int: the number of the relay to be selected

Type
Relay

reset()

Resets the instrument.

shutdown()

Brings the instrument to a safe and stable state

property status

Get the status byte and Master Summary Status bit.

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Parameters
query_delay – Delay between writing and reading in seconds.

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument

• kwargs – Keyword arguments for the adapter.

write_binary_values(command, values, *args, **kwargs)
Write binary values to the device.

Parameters

• command – Command to send.

• values – The values to transmit.

• **kwargs (*args,) – Further arguments to hand to the Adapter.

7.27. Keithley 299

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

7.27.4 Keithley 2400 SourceMeter

class pymeasure.instruments.keithley.Keithley2400(adapter, name='Keithley 2400 SourceMeter',
**kwargs)

Bases: KeithleyBuffer, Instrument

Represents the Keithley 2400 SourceMeter and provides a high-level interface for interacting with the instrument.

keithley = Keithley2400("GPIB::1")

keithley.apply_current() # Sets up to source current
keithley.source_current_range = 10e-3 # Sets the source current range to 10 mA
keithley.compliance_voltage = 10 # Sets the compliance voltage to 10 V
keithley.source_current = 0 # Sets the source current to 0 mA
keithley.enable_source() # Enables the source output

keithley.measure_voltage() # Sets up to measure voltage

keithley.ramp_to_current(5e-3) # Ramps the current to 5 mA
print(keithley.voltage) # Prints the voltage in Volts

keithley.shutdown() # Ramps the current to 0 mA and disables␣
→˓output

apply_current(current_range=None, compliance_voltage=0.1)
Configures the instrument to apply a source current, and uses an auto range unless a current range is spec-
ified. The compliance voltage is also set.

Parameters

• compliance_voltage – A float in the correct range for a compliance_voltage

• current_range – A current_range value or None

apply_voltage(voltage_range=None, compliance_current=0.1)
Configures the instrument to apply a source voltage, and uses an auto range unless a voltage range is spec-
ified. The compliance current is also set.

Parameters

• compliance_current – A float in the correct range for a compliance_current

• voltage_range – A voltage_range value or None

property auto_output_off

A boolean property that enables or disables the auto output-off. Valid values are True (output off after
measurement) and False (output stays on after measurement).

auto_range_source()

Configures the source to use an automatic range.

property auto_zero

A property that controls the auto zero option. Valid values are True (enabled) and False (disabled) and
‘ONCE’ (force immediate).

300 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

beep(frequency, duration)
Sounds a system beep.

Parameters

• frequency – A frequency in Hz between 65 Hz and 2 MHz

• duration – A time in seconds between 0 and 7.9 seconds

property buffer_data

Returns a numpy array of values from the buffer.

property buffer_points

An integer property that controls the number of buffer points. This does not represent actual points in the
buffer, but the configuration value instead.

check_errors()

Logs any system errors reported by the instrument.

check_get_errors()

Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

clear()

Clears the instrument status byte

property complete

Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation Complete query
places an ASCII character 1 into the device’s Output Queue when all pending selected device operations
have been finished.

property compliance_current

A floating point property that controls the compliance current in Amps.

property compliance_voltage

A floating point property that controls the compliance voltage in Volts.

config_buffer(points=64, delay=0)
Configures the measurement buffer for a number of points, to be taken with a specified delay.

Parameters

• points – The number of points in the buffer.

• delay – The delay time in seconds.

7.27. Keithley 301

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property current

Reads the current in Amps, if configured for this reading.

property current_nplc

A floating point property that controls the number of power line cycles (NPLC) for the DC current mea-
surements, which sets the integration period and measurement speed. Takes values from 0.01 to 10, where
0.1, 1, and 10 are Fast, Medium, and Slow respectively.

property current_range

A floating point property that controls the measurement current range in Amps, which can take values
between -1.05 and +1.05 A. Auto-range is disabled when this property is set.

disable_buffer()

Disables the connection between measurements and the buffer, but does not abort the measurement process.

disable_output_trigger()

Disables the output trigger for the Trigger layer

disable_source()

Disables the source of current or voltage depending on the configuration of the instrument.

property display_enabled

A boolean property that controls whether or not the display of the sourcemeter is enabled. Valid values are
True and False.

enable_source()

Enables the source of current or voltage depending on the configuration of the instrument.

property error

Returns a tuple of an error code and message from a single error.

property filter_count

A integer property that controls the number of readings that are acquired and stored in the filter buffer for
the averaging

property filter_state

A string property that controls if the filter is active.

property filter_type

A String property that controls the filter’s type. REP : Repeating filter MOV : Moving filter

property id

Get the identification of the instrument.

is_buffer_full()

Returns True if the buffer is full of measurements.

property line_frequency

An integer property that controls the line frequency in Hertz. Valid values are 50 and 60.

property line_frequency_auto

A boolean property that enables or disables auto line frequency. Valid values are True and False.

property max_current

Returns the maximum current from the buffer

property max_resistance

Returns the maximum resistance from the buffer

302 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property max_voltage

Returns the maximum voltage from the buffer

property maximums

Returns the calculated maximums for voltage, current, and resistance from the buffer data as a list.

property mean_current

Returns the mean current from the buffer

property mean_resistance

Returns the mean resistance from the buffer

property mean_voltage

Returns the mean voltage from the buffer

property means

Reads the calculated means (averages) for voltage, current, and resistance from the buffer data as a list.

property measure_concurent_functions

A boolean property that enables or disables the ability to measure more than one function simultaneously.
When disabled, volts function is enabled. Valid values are True and False.

measure_current(nplc=1, current=0.000105, auto_range=True)
Configures the measurement of current.

Parameters

• nplc – Number of power line cycles (NPLC) from 0.01 to 10

• current – Upper limit of current in Amps, from -1.05 A to 1.05 A

• auto_range – Enables auto_range if True, else uses the set current

measure_resistance(nplc=1, resistance=210000.0, auto_range=True)
Configures the measurement of resistance.

Parameters

• nplc – Number of power line cycles (NPLC) from 0.01 to 10

• resistance – Upper limit of resistance in Ohms, from -210 MOhms to 210 MOhms

• auto_range – Enables auto_range if True, else uses the set resistance

measure_voltage(nplc=1, voltage=21.0, auto_range=True)
Configures the measurement of voltage.

Parameters

• nplc – Number of power line cycles (NPLC) from 0.01 to 10

• voltage – Upper limit of voltage in Volts, from -210 V to 210 V

• auto_range – Enables auto_range if True, else uses the set voltage

property min_current

Returns the minimum current from the buffer

property min_resistance

Returns the minimum resistance from the buffer

7.27. Keithley 303

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property min_voltage

Returns the minimum voltage from the buffer

property minimums

Returns the calculated minimums for voltage, current, and resistance from the buffer data as a list.

property options

Get the device options installed.

property output_off_state

Select the output-off state of the SourceMeter. HIMP : output relay is open, disconnects external circuitry.
NORM : V-Source is selected and set to 0V, Compliance is set to 0.5% full scale of the present current
range. ZERO : V-Source is selected and set to 0V, compliance is set to the programmed Source I value or
to 0.5% full scale of the present current range, whichever is greater. GUAR : I-Source is selected and set
to 0A

output_trigger_on_external(line=1, after='DEL')
Configures the output trigger on the specified trigger link line number, with the option of supplying the part
of the measurement after which the trigger should be generated (default to delay, which is right before the
measurement)

Parameters

• line – A trigger line from 1 to 4

• after – An event string that determines when to trigger

ramp_to_current(target_current, steps=30, pause=0.02)
Ramps to a target current from the set current value over a certain number of linear steps, each separated
by a pause duration.

Parameters

• target_current – A current in Amps

• steps – An integer number of steps

• pause – A pause duration in seconds to wait between steps

ramp_to_voltage(target_voltage, steps=30, pause=0.02)
Ramps to a target voltage from the set voltage value over a certain number of linear steps, each separated
by a pause duration.

Parameters

• target_voltage – A voltage in Amps

• steps – An integer number of steps

• pause – A pause duration in seconds to wait between steps

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

read_binary_values(**kwargs)
Read binary values from the device.

read_bytes(count, **kwargs)
Read a certain number of bytes from the instrument.

Parameters

304 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• count (int) – Number of bytes to read. A value of -1 indicates to read the whole read
buffer.

• kwargs – Keyword arguments for the adapter.

Returns bytes
Bytes response of the instrument (including termination).

reset()

Resets the instrument and clears the queue.

reset_buffer()

Resets the buffer.

property resistance

Reads the resistance in Ohms, if configured for this reading.

property resistance_nplc

A floating point property that controls the number of power line cycles (NPLC) for the 2-wire resistance
measurements, which sets the integration period and measurement speed. Takes values from 0.01 to 10,
where 0.1, 1, and 10 are Fast, Medium, and Slow respectively.

property resistance_range

A floating point property that controls the resistance range in Ohms, which can take values from 0 to 210
MOhms. Auto-range is disabled when this property is set.

sample_continuously()

Causes the instrument to continuously read samples and turns off any buffer or output triggering

set_timed_arm(interval)
Sets up the measurement to be taken with the internal trigger at a variable sampling rate defined by the
interval in seconds between sampling points

set_trigger_counts(arm, trigger)
Sets the number of counts for both the sweeps (arm) and the points in those sweeps (trigger), where the
total number of points can not exceed 2500

shutdown()

Ensures that the current or voltage is turned to zero and disables the output.

property source_current

A floating point property that controls the source current in Amps.

property source_current_range

A floating point property that controls the source current range in Amps, which can take values between
-1.05 and +1.05 A. Auto-range is disabled when this property is set.

property source_delay

A floating point property that sets a manual delay for the source after the output is turned on before a
measurement is taken. When this property is set, the auto delay is turned off. Valid values are between 0
[seconds] and 999.9999 [seconds].

property source_delay_auto

A boolean property that enables or disables auto delay. Valid values are True and False.

property source_enabled

A boolean property that controls whether the source is enabled, takes values True or False. The convenience
methods enable_source() and disable_source() can also be used.

7.27. Keithley 305

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property source_mode

A string property that controls the source mode, which can take the values ‘current’ or ‘voltage’. The
convenience methods apply_current() and apply_voltage() can also be used.

property source_voltage

A floating point property that controls the source voltage in Volts.

property source_voltage_range

A floating point property that controls the source voltage range in Volts, which can take values from -210
to 210 V. Auto-range is disabled when this property is set.

property standard_devs

Returns the calculated standard deviations for voltage, current, and resistance from the buffer data as a list.

start_buffer()

Starts the buffer.

status()

Get the status byte and Master Summary Status bit.

property std_current

Returns the current standard deviation from the buffer

property std_resistance

Returns the resistance standard deviation from the buffer

property std_voltage

Returns the voltage standard deviation from the buffer

stop_buffer()

Aborts the buffering measurement, by stopping the measurement arming and triggering sequence. If pos-
sible, a Selected Device Clear (SDC) is used.

triad(base_frequency, duration)
Sounds a musical triad using the system beep.

Parameters

• base_frequency – A frequency in Hz between 65 Hz and 1.3 MHz

• duration – A time in seconds between 0 and 7.9 seconds

trigger()

Executes a bus trigger, which can be used when trigger_on_bus() is configured.

property trigger_count

An integer property that controls the trigger count, which can take values from 1 to 9,999.

property trigger_delay

A floating point property that controls the trigger delay in seconds, which can take values from 0 to 999.9999
s.

trigger_immediately()

Configures measurements to be taken with the internal trigger at the maximum sampling rate.

trigger_on_bus()

Configures the trigger to detect events based on the bus trigger, which can be activated by trigger().

306 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

trigger_on_external(line=1)
Configures the measurement trigger to be taken from a specific line of an external trigger

Parameters
line – A trigger line from 1 to 4

use_front_terminals()

Enables the front terminals for measurement, and disables the rear terminals.

use_rear_terminals()

Enables the rear terminals for measurement, and disables the front terminals.

property voltage

Reads the voltage in Volts, if configured for this reading.

property voltage_nplc

A floating point property that controls the number of power line cycles (NPLC) for the DC voltage mea-
surements, which sets the integration period and measurement speed. Takes values from 0.01 to 10, where
0.1, 1, and 10 are Fast, Medium, and Slow respectively.

property voltage_range

A floating point property that controls the measurement voltage range in Volts, which can take values from
-210 to 210 V. Auto-range is disabled when this property is set.

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Parameters
query_delay – Delay between writing and reading in seconds.

wait_for_buffer(should_stop=<function KeithleyBuffer.<lambda>>, timeout=60, interval=0.1)
Blocks the program, waiting for a full buffer. This function returns early if the should_stop function
returns True or the timeout is reached before the buffer is full.

Parameters

• should_stop – A function that returns True when this function should return early

• timeout – A time in seconds after which this function should return early

• interval – A time in seconds for how often to check if the buffer is full

property wires

An integer property that controls the number of wires in use for resistance measurements, which can take
the value of 2 or 4.

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument

• kwargs – Keyword arguments for the adapter.

write_binary_values(command, values, *args, **kwargs)
Write binary values to the device.

Parameters

• command – Command to send.

7.27. Keithley 307

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• values – The values to transmit.

• **kwargs (*args,) – Further arguments to hand to the Adapter.

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

7.27.5 Keithley 2450 SourceMeter

class pymeasure.instruments.keithley.Keithley2450(adapter, name='Keithley 2450 SourceMeter',
**kwargs)

Bases: KeithleyBuffer, Instrument

Represents the Keithley 2450 SourceMeter and provides a high-level interface for interacting with the instrument.

keithley = Keithley2450("GPIB::1")

keithley.apply_current() # Sets up to source current
keithley.source_current_range = 10e-3 # Sets the source current range to 10 mA
keithley.compliance_voltage = 10 # Sets the compliance voltage to 10 V
keithley.source_current = 0 # Sets the source current to 0 mA
keithley.enable_source() # Enables the source output

keithley.measure_voltage() # Sets up to measure voltage

keithley.ramp_to_current(5e-3) # Ramps the current to 5 mA
print(keithley.voltage) # Prints the voltage in Volts

keithley.shutdown() # Ramps the current to 0 mA and disables␣
→˓output

apply_current(current_range=None, compliance_voltage=0.1)
Configures the instrument to apply a source current, and uses an auto range unless a current range is spec-
ified. The compliance voltage is also set.

Parameters

• compliance_voltage – A float in the correct range for a compliance_voltage

• current_range – A current_range value or None

apply_voltage(voltage_range=None, compliance_current=0.1)
Configures the instrument to apply a source voltage, and uses an auto range unless a voltage range is spec-
ified. The compliance current is also set.

Parameters

• compliance_current – A float in the correct range for a compliance_current

• voltage_range – A voltage_range value or None

auto_range_source()

Configures the source to use an automatic range.

beep(frequency, duration)
Sounds a system beep.

Parameters

308 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• frequency – A frequency in Hz between 65 Hz and 2 MHz

• duration – A time in seconds between 0 and 7.9 seconds

property buffer_data

Returns a numpy array of values from the buffer.

property buffer_points

An integer property that controls the number of buffer points. This does not represent actual points in the
buffer, but the configuration value instead.

check_errors()

Logs any system errors reported by the instrument.

check_get_errors()

Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

clear()

Clears the instrument status byte

property complete

Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation Complete query
places an ASCII character 1 into the device’s Output Queue when all pending selected device operations
have been finished.

property compliance_current

A floating point property that controls the compliance current in Amps.

property compliance_voltage

A floating point property that controls the compliance voltage in Volts.

config_buffer(points=64, delay=0)
Configures the measurement buffer for a number of points, to be taken with a specified delay.

Parameters

• points – The number of points in the buffer.

• delay – The delay time in seconds.

property current

Reads the current in Amps, if configured for this reading.

7.27. Keithley 309

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property current_filter_count

A integer property that controls the number of readings that are acquired and stored in the filter buffer for
the averaging

property current_filter_state

A string property that controls if the filter is active.

property current_filter_type

A String property that controls the filter’s type for the current. REP : Repeating filter MOV : Moving filter

property current_nplc

A floating point property that controls the number of power line cycles (NPLC) for the DC current mea-
surements, which sets the integration period and measurement speed. Takes values from 0.01 to 10, where
0.1, 1, and 10 are Fast, Medium, and Slow respectively.

property current_output_off_state

Select the output-off state of the SourceMeter. HIMP : output relay is open, disconnects external circuitry.
NORM : V-Source is selected and set to 0V, Compliance is set to 0.5% full scale of the present current
range. ZERO : V-Source is selected and set to 0V, compliance is set to the programmed Source I value or
to 0.5% full scale of the present current range, whichever is greater. GUAR : I-Source is selected and set
to 0A

property current_range

A floating point property that controls the measurement current range in Amps, which can take values
between -1.05 and +1.05 A. Auto-range is disabled when this property is set.

disable_buffer()

Disables the connection between measurements and the buffer, but does not abort the measurement process.

disable_source()

Disables the source of current or voltage depending on the configuration of the instrument.

enable_source()

Enables the source of current or voltage depending on the configuration of the instrument.

property error

Returns a tuple of an error code and message from a single error.

property id

Get the identification of the instrument.

is_buffer_full()

Returns True if the buffer is full of measurements.

property max_current

Returns the maximum current from the buffer

property max_resistance

Returns the maximum resistance from the buffer

property max_voltage

Returns the maximum voltage from the buffer

property maximums

Returns the calculated maximums for voltage, current, and resistance from the buffer data as a list.

property mean_current

Returns the mean current from the buffer

310 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property mean_resistance

Returns the mean resistance from the buffer

property mean_voltage

Returns the mean voltage from the buffer

property means

Reads the calculated means (averages) for voltage, current, and resistance from the buffer data as a list.

measure_current(nplc=1, current=0.000105, auto_range=True)
Configures the measurement of current.

Parameters

• nplc – Number of power line cycles (NPLC) from 0.01 to 10

• current – Upper limit of current in Amps, from -1.05 A to 1.05 A

• auto_range – Enables auto_range if True, else uses the set current

measure_resistance(nplc=1, resistance=210000.0, auto_range=True)
Configures the measurement of resistance.

Parameters

• nplc – Number of power line cycles (NPLC) from 0.01 to 10

• resistance – Upper limit of resistance in Ohms, from -210 MOhms to 210 MOhms

• auto_range – Enables auto_range if True, else uses the set resistance

measure_voltage(nplc=1, voltage=21.0, auto_range=True)
Configures the measurement of voltage.

Parameters

• nplc – Number of power line cycles (NPLC) from 0.01 to 10

• voltage – Upper limit of voltage in Volts, from -210 V to 210 V

• auto_range – Enables auto_range if True, else uses the set voltage

property min_current

Returns the minimum current from the buffer

property min_resistance

Returns the minimum resistance from the buffer

property min_voltage

Returns the minimum voltage from the buffer

property minimums

Returns the calculated minimums for voltage, current, and resistance from the buffer data as a list.

property options

Get the device options installed.

ramp_to_current(target_current, steps=30, pause=0.02)
Ramps to a target current from the set current value over a certain number of linear steps, each separated
by a pause duration.

Parameters

• target_current – A current in Amps

7.27. Keithley 311

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• steps – An integer number of steps

• pause – A pause duration in seconds to wait between steps

ramp_to_voltage(target_voltage, steps=30, pause=0.02)
Ramps to a target voltage from the set voltage value over a certain number of linear steps, each separated
by a pause duration.

Parameters

• target_voltage – A voltage in Amps

• steps – An integer number of steps

• pause – A pause duration in seconds to wait between steps

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

read_binary_values(**kwargs)
Read binary values from the device.

read_bytes(count, **kwargs)
Read a certain number of bytes from the instrument.

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read the whole read
buffer.

• kwargs – Keyword arguments for the adapter.

Returns bytes
Bytes response of the instrument (including termination).

reset()

Resets the instrument and clears the queue.

reset_buffer()

Resets the buffer.

property resistance

Reads the resistance in Ohms, if configured for this reading.

property resistance_nplc

A floating point property that controls the number of power line cycles (NPLC) for the 2-wire resistance
measurements, which sets the integration period and measurement speed. Takes values from 0.01 to 10,
where 0.1, 1, and 10 are Fast, Medium, and Slow respectively.

property resistance_range

A floating point property that controls the resistance range in Ohms, which can take values from 0 to 210
MOhms. Auto-range is disabled when this property is set.

shutdown()

Ensures that the current or voltage is turned to zero and disables the output.

property source_current

A floating point property that controls the source current in Amps.

312 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property source_current_delay

A floating point property that sets a manual delay for the source after the output is turned on before a
measurement is taken. When this property is set, the auto delay is turned off. Valid values are between 0
[seconds] and 999.9999 [seconds].

property source_current_delay_auto

A boolean property that enables or disables auto delay. Valid values are True and False.

property source_current_range

A floating point property that controls the source current range in Amps, which can take values between
-1.05 and +1.05 A. Auto-range is disabled when this property is set.

property source_enabled

Reads a boolean value that is True if the source is enabled.

property source_mode

A string property that controls the source mode, which can take the values ‘current’ or ‘voltage’. The
convenience methods apply_current() and apply_voltage() can also be used.

property source_voltage

A floating point property that controls the source voltage in Volts.

property source_voltage_delay

A floating point property that sets a manual delay for the source after the output is turned on before a
measurement is taken. When this property is set, the auto delay is turned off. Valid values are between 0
[seconds] and 999.9999 [seconds].

property source_voltage_delay_auto

A boolean property that enables or disables auto delay. Valid values are True and False.

property source_voltage_range

A floating point property that controls the source voltage range in Volts, which can take values from -210
to 210 V. Auto-range is disabled when this property is set.

property standard_devs

Returns the calculated standard deviations for voltage, current, and resistance from the buffer data as a list.

start_buffer()

Starts the buffer.

property status

Get the status byte and Master Summary Status bit.

property std_current

Returns the current standard deviation from the buffer

property std_resistance

Returns the resistance standard deviation from the buffer

property std_voltage

Returns the voltage standard deviation from the buffer

stop_buffer()

Aborts the buffering measurement, by stopping the measurement arming and triggering sequence. If pos-
sible, a Selected Device Clear (SDC) is used.

7.27. Keithley 313

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

triad(base_frequency, duration)
Sounds a musical triad using the system beep.

Parameters

• base_frequency – A frequency in Hz between 65 Hz and 1.3 MHz

• duration – A time in seconds between 0 and 7.9 seconds

trigger()

Executes a bus trigger.

use_front_terminals()

Enables the front terminals for measurement, and disables the rear terminals.

use_rear_terminals()

Enables the rear terminals for measurement, and disables the front terminals.

property voltage

Reads the voltage in Volts, if configured for this reading.

property voltage_filter_count

A integer property that controls the number of readings that are acquired and stored in the filter buffer for
the averaging

property voltage_filter_type

A String property that controls the filter’s type for the current. REP : Repeating filter MOV : Moving filter

property voltage_nplc

A floating point property that controls the number of power line cycles (NPLC) for the DC voltage mea-
surements, which sets the integration period and measurement speed. Takes values from 0.01 to 10, where
0.1, 1, and 10 are Fast, Medium, and Slow respectively.

property voltage_output_off_state

Select the output-off state of the SourceMeter. HIMP : output relay is open, disconnects external circuitry.
NORM : V-Source is selected and set to 0V, Compliance is set to 0.5% full scale of the present current
range. ZERO : V-Source is selected and set to 0V, compliance is set to the programmed Source I value or
to 0.5% full scale of the present current range, whichever is greater. GUAR : I-Source is selected and set
to 0A

property voltage_range

A floating point property that controls the measurement voltage range in Volts, which can take values from
-210 to 210 V. Auto-range is disabled when this property is set.

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Parameters
query_delay – Delay between writing and reading in seconds.

wait_for_buffer(should_stop=<function KeithleyBuffer.<lambda>>, timeout=60, interval=0.1)
Blocks the program, waiting for a full buffer. This function returns early if the should_stop function
returns True or the timeout is reached before the buffer is full.

Parameters

• should_stop – A function that returns True when this function should return early

• timeout – A time in seconds after which this function should return early

• interval – A time in seconds for how often to check if the buffer is full

314 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property wires

An integer property that controls the number of wires in use for resistance measurements, which can take
the value of 2 or 4.

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument

• kwargs – Keyword arguments for the adapter.

write_binary_values(command, values, *args, **kwargs)
Write binary values to the device.

Parameters

• command – Command to send.

• values – The values to transmit.

• **kwargs (*args,) – Further arguments to hand to the Adapter.

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

7.27.6 Keithley 2700 MultiMeter/Switch System

class pymeasure.instruments.keithley.Keithley2700(adapter, name='Keithley 2700 MultiMeter/Switch
System', **kwargs)

Bases: KeithleyBuffer, Instrument

Represents the Keithley 2700 Multimeter/Switch System and provides a high-level interface for interacting with
the instrument.

keithley = Keithley2700("GPIB::1")

beep(frequency, duration)
Sounds a system beep.

Parameters

• frequency – A frequency in Hz between 65 Hz and 2 MHz

• duration – A time in seconds between 0 and 7.9 seconds

property buffer_data

Returns a numpy array of values from the buffer.

property buffer_points

An integer property that controls the number of buffer points. This does not represent actual points in the
buffer, but the configuration value instead.

channels_from_rows_columns(rows, columns, slot=None)
Determine the channel numbers between column(s) and row(s) of the 7709 connection matrix. Returns a
list of channel numbers. Only one of the parameters ‘rows’ or ‘columns’ can be “all”

Parameters

7.27. Keithley 315

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• rows – row number or list of numbers; can also be “all”

• columns – column number or list of numbers; can also be “all”

• slot – slot number (1 or 2) of the 7709 card to be used

check_errors()

Logs any system errors reported by the instrument.

check_get_errors()

Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

clear()

Clears the instrument status byte

close_rows_to_columns(rows, columns, slot=None)
Closes (connects) the channels between column(s) and row(s) of the 7709 connection matrix. Only one of
the parameters ‘rows’ or ‘columns’ can be “all”

Parameters

• rows – row number or list of numbers; can also be “all”

• columns – column number or list of numbers; can also be “all”

• slot – slot number (1 or 2) of the 7709 card to be used

property closed_channels

Parameter that controls the opened and closed channels. All mentioned channels are closed, other channels
will be opened.

property complete

Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation Complete query
places an ASCII character 1 into the device’s Output Queue when all pending selected device operations
have been finished.

config_buffer(points=64, delay=0)
Configures the measurement buffer for a number of points, to be taken with a specified delay.

Parameters

• points – The number of points in the buffer.

• delay – The delay time in seconds.

316 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

determine_valid_channels()

Determine what cards are installed into the Keithley 2700 and from that determine what channels are valid.

disable_buffer()

Disables the connection between measurements and the buffer, but does not abort the measurement process.

display_closed_channels()

Show the presently closed channels on the display of the Keithley 2700.

property display_text

A string property that controls the text shown on the display of the Keithley 2700. Text can be up to 12
ASCII characters and must be enabled to show.

property error

Returns a tuple of an error code and message from a single error.

get_state_of_channels(channels)
Get the open or closed state of the specified channels

Parameters
channels – a list of channel numbers, or single channel number

property id

Get the identification of the instrument.

is_buffer_full()

Returns True if the buffer is full of measurements.

open_all_channels()

Open all channels of the Keithley 2700.

property open_channels

A parameter that opens the specified list of channels. Can only be set.

open_rows_to_columns(rows, columns, slot=None)
Opens (disconnects) the channels between column(s) and row(s) of the 7709 connection matrix. Only one
of the parameters ‘rows’ or ‘columns’ can be “all”

Parameters

• rows – row number or list of numbers; can also be “all”

• columns – column number or list of numbers; can also be “all”

• slot – slot number (1 or 2) of the 7709 card to be used

property options

Property that lists the installed cards in the Keithley 2700. Returns a dict with the integer card numbers on
the position.

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

read_binary_values(**kwargs)
Read binary values from the device.

read_bytes(count, **kwargs)
Read a certain number of bytes from the instrument.

Parameters

7.27. Keithley 317

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• count (int) – Number of bytes to read. A value of -1 indicates to read the whole read
buffer.

• kwargs – Keyword arguments for the adapter.

Returns bytes
Bytes response of the instrument (including termination).

reset()

Resets the instrument and clears the queue.

reset_buffer()

Resets the buffer.

shutdown()

Brings the instrument to a safe and stable state

start_buffer()

Starts the buffer.

property status

Get the status byte and Master Summary Status bit.

stop_buffer()

Aborts the buffering measurement, by stopping the measurement arming and triggering sequence. If pos-
sible, a Selected Device Clear (SDC) is used.

property text_enabled

A boolean property that controls whether a text message can be shown on the display of the Keithley 2700.

triad(base_frequency, duration)
Sounds a musical triad using the system beep.

Parameters

• base_frequency – A frequency in Hz between 65 Hz and 1.3 MHz

• duration – A time in seconds between 0 and 7.9 seconds

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Parameters
query_delay – Delay between writing and reading in seconds.

wait_for_buffer(should_stop=<function KeithleyBuffer.<lambda>>, timeout=60, interval=0.1)
Blocks the program, waiting for a full buffer. This function returns early if the should_stop function
returns True or the timeout is reached before the buffer is full.

Parameters

• should_stop – A function that returns True when this function should return early

• timeout – A time in seconds after which this function should return early

• interval – A time in seconds for how often to check if the buffer is full

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument

318 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• kwargs – Keyword arguments for the adapter.

write_binary_values(command, values, *args, **kwargs)
Write binary values to the device.

Parameters

• command – Command to send.

• values – The values to transmit.

• **kwargs (*args,) – Further arguments to hand to the Adapter.

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

7.27.7 Keithley 6221 AC and DC Current Source

class pymeasure.instruments.keithley.Keithley6221(adapter, name='Keithley 6221 SourceMeter',
**kwargs)

Bases: KeithleyBuffer, Instrument

Represents the Keithley 6221 AC and DC current source and provides a high-level interface for interacting with
the instrument.

keithley = Keithley6221("GPIB::1")
keithley.clear()

Use the keithley as an AC source
keithley.waveform_function = "square" # Set a square waveform
keithley.waveform_amplitude = 0.05 # Set the amplitude in Amps
keithley.waveform_offset = 0 # Set zero offset
keithley.source_compliance = 10 # Set compliance (limit) in V
keithley.waveform_dutycycle = 50 # Set duty cycle of wave in %
keithley.waveform_frequency = 347 # Set the frequency in Hz
keithley.waveform_ranging = "best" # Set optimal output ranging
keithley.waveform_duration_cycles = 100 # Set duration of the waveform

Link end of waveform to Service Request status bit
keithley.operation_event_enabled = 128 # OSB listens to end of wave
keithley.srq_event_enabled = 128 # SRQ listens to OSB

keithley.waveform_arm() # Arm (load) the waveform

keithley.waveform_start() # Start the waveform

keithley.adapter.wait_for_srq() # Wait for the pulse to finish

keithley.waveform_abort() # Disarm (unload) the waveform

keithley.shutdown() # Disables output

beep(frequency, duration)
Sounds a system beep.

Parameters

7.27. Keithley 319

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• frequency – A frequency in Hz between 65 Hz and 2 MHz

• duration – A time in seconds between 0 and 7.9 seconds

property buffer_data

Returns a numpy array of values from the buffer.

property buffer_points

An integer property that controls the number of buffer points. This does not represent actual points in the
buffer, but the configuration value instead.

check_errors()

Logs any system errors reported by the instrument.

check_get_errors()

Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

clear()

Clears the instrument status byte

property complete

Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation Complete query
places an ASCII character 1 into the device’s Output Queue when all pending selected device operations
have been finished.

config_buffer(points=64, delay=0)
Configures the measurement buffer for a number of points, to be taken with a specified delay.

Parameters

• points – The number of points in the buffer.

• delay – The delay time in seconds.

define_arbitary_waveform(datapoints, location=1)
Define the data points for the arbitrary waveform and copy the defined waveform into the given storage
location.

Parameters

• datapoints – a list (or numpy array) of the data points; all values have to be between -1
and 1; 100 points maximum.

320 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• location – integer storage location to store the waveform in. Value must be in range 1 to
4.

disable_buffer()

Disables the connection between measurements and the buffer, but does not abort the measurement process.

disable_output_trigger()

Disables the output trigger for the Trigger layer

disable_source()

Disables the source of current or voltage depending on the configuration of the instrument.

property display_enabled

A boolean property that controls whether or not the display of the sourcemeter is enabled. Valid values are
True and False.

enable_source()

Enables the source of current or voltage depending on the configuration of the instrument.

property error

Returns a tuple of an error code and message from a single error.

property id

Get the identification of the instrument.

is_buffer_full()

Returns True if the buffer is full of measurements.

property measurement_event_enabled

An integer value that controls which measurement events are registered in the Measurement Summary Bit
(MSB) status bit. Refer to the Model 6220/6221 Reference Manual for more information about program-
ming the status bits.

property measurement_events

An integer value that reads which measurement events have been registered in the Measurement event
registers. Refer to the Model 6220/6221 Reference Manual for more information about programming the
status bits. Reading this value clears the register.

property operation_event_enabled

An integer value that controls which operation events are registered in the Operation Summary Bit (OSB)
status bit. Refer to the Model 6220/6221 Reference Manual for more information about programming the
status bits.

property operation_events

An integer value that reads which operation events have been registered in the Operation event registers.
Refer to the Model 6220/6221 Reference Manual for more information about programming the status bits.
Reading this value clears the register.

property options

Get the device options installed.

property output_low_grounded

A boolean property that controls whether the low output of the triax connection is connected to earth ground
(True) or is floating (False).

7.27. Keithley 321

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

output_trigger_on_external(line=1, after='DEL')
Configures the output trigger on the specified trigger link line number, with the option of supplying the part
of the measurement after which the trigger should be generated (default to delay, which is right before the
measurement)

Parameters

• line – A trigger line from 1 to 4

• after – An event string that determines when to trigger

property questionable_event_enabled

An integer value that controls which questionable events are registered in the Questionable Summary Bit
(QSB) status bit. Refer to the Model 6220/6221 Reference Manual for more information about program-
ming the status bits.

property questionable_events

An integer value that reads which questionable events have been registered in the Questionable event regis-
ters. Refer to the Model 6220/6221 Reference Manual for more information about programming the status
bits. Reading this value clears the register.

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

read_binary_values(**kwargs)
Read binary values from the device.

read_bytes(count, **kwargs)
Read a certain number of bytes from the instrument.

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read the whole read
buffer.

• kwargs – Keyword arguments for the adapter.

Returns bytes
Bytes response of the instrument (including termination).

reset()

Resets the instrument and clears the queue.

reset_buffer()

Resets the buffer.

set_timed_arm(interval)
Sets up the measurement to be taken with the internal trigger at a variable sampling rate defined by the
interval in seconds between sampling points

shutdown()

Disables the output.

property source_auto_range

A boolean property that controls the auto range of the current source. Valid values are True or False.

property source_compliance

A floating point property that controls the compliance of the current source in Volts. valid values are in
range 0.1 [V] to 105 [V].

322 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property source_current

A floating point property that controls the source current in Amps.

property source_delay

A floating point property that sets a manual delay for the source after the output is turned on before a
measurement is taken. When this property is set, the auto delay is turned off. Valid values are between
1e-3 [seconds] and 999999.999 [seconds].

property source_enabled

A boolean property that controls whether the source is enabled, takes values True or False. The convenience
methods enable_source() and disable_source() can also be used.

property source_range

A floating point property that controls the source current range in Amps, which can take values between
-0.105 A and +0.105 A. Auto-range is disabled when this property is set.

property srq_event_enabled

An integer value that controls which event registers trigger the Service Request (SRQ) status bit. Refer to
the Model 6220/6221 Reference Manual for more information about programming the status bits.

property standard_event_enabled

An integer value that controls which standard events are registered in the Event Summary Bit (ESB) status
bit. Refer to the Model 6220/6221 Reference Manual for more information about programming the status
bits.

property standard_events

An integer value that reads which standard events have been registered in the Standard event registers.
Refer to the Model 6220/6221 Reference Manual for more information about programming the status bits.
Reading this value clears the register.

start_buffer()

Starts the buffer.

property status

Get the status byte and Master Summary Status bit.

stop_buffer()

Aborts the buffering measurement, by stopping the measurement arming and triggering sequence. If pos-
sible, a Selected Device Clear (SDC) is used.

triad(base_frequency, duration)
Sounds a musical triad using the system beep.

Parameters

• base_frequency – A frequency in Hz between 65 Hz and 1.3 MHz

• duration – A time in seconds between 0 and 7.9 seconds

trigger()

Executes a bus trigger, which can be used when trigger_on_bus() is configured.

trigger_immediately()

Configures measurements to be taken with the internal trigger at the maximum sampling rate.

trigger_on_bus()

Configures the trigger to detect events based on the bus trigger, which can be activated by trigger().

7.27. Keithley 323

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

trigger_on_external(line=1)
Configures the measurement trigger to be taken from a specific line of an external trigger

Parameters
line – A trigger line from 1 to 4

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Parameters
query_delay – Delay between writing and reading in seconds.

wait_for_buffer(should_stop=<function KeithleyBuffer.<lambda>>, timeout=60, interval=0.1)
Blocks the program, waiting for a full buffer. This function returns early if the should_stop function
returns True or the timeout is reached before the buffer is full.

Parameters

• should_stop – A function that returns True when this function should return early

• timeout – A time in seconds after which this function should return early

• interval – A time in seconds for how often to check if the buffer is full

waveform_abort()

Abort the waveform output and disarm the waveform function.

property waveform_amplitude

A floating point property that controls the (peak) amplitude of the waveform in Amps. Valid values are in
range 2e-12 to 0.105.

waveform_arm()

Arm the current waveform function.

property waveform_duration_cycles

A floating point property that controls the duration of the waveform in cycles. Valid values are in range
1e-3 to 99999999900.

waveform_duration_set_infinity()

Set the waveform duration to infinity.

property waveform_duration_time

A floating point property that controls the duration of the waveform in seconds. Valid values are in range
100e-9 to 999999.999.

property waveform_dutycycle

A floating point property that controls the duty-cycle of the waveform in percent for the square and ramp
waves. Valid values are in range 0 to 100.

property waveform_frequency

A floating point property that controls the frequency of the waveform in Hertz. Valid values are in range
1e-3 to 1e5.

property waveform_function

A string property that controls the selected wave function. Valid values are “sine”, “ramp”, “square”,
“arbitrary1”, “arbitrary2”, “arbitrary3” and “arbitrary4”.

property waveform_offset

A floating point property that controls the offset of the waveform in Amps. Valid values are in range -0.105
to 0.105.

324 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property waveform_phasemarker_line

A numerical property that controls the line of the phase marker.

property waveform_phasemarker_phase

A numerical property that controls the phase of the phase marker.

property waveform_ranging

A string property that controls the source ranging of the waveform. Valid values are “best” and “fixed”.

waveform_start()

Start the waveform output. Must already be armed

property waveform_use_phasemarker

A boolean property that controls whether the phase marker option is turned on or of. Valid values True
(on) or False (off). Other settings for the phase marker have not yet been implemented.

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument

• kwargs – Keyword arguments for the adapter.

write_binary_values(command, values, *args, **kwargs)
Write binary values to the device.

Parameters

• command – Command to send.

• values – The values to transmit.

• **kwargs (*args,) – Further arguments to hand to the Adapter.

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

7.27.8 Keithley 6517B Electrometer

class pymeasure.instruments.keithley.Keithley6517B(adapter, name='Keithley 6517B
Electrometer/High Resistance Meter', **kwargs)

Bases: KeithleyBuffer, Instrument

Represents the Keithley 6517B ElectroMeter and provides a high-level interface for interacting with the instru-
ment.

keithley = Keithley6517B("GPIB::1")

keithley.apply_voltage() # Sets up to source current
keithley.source_voltage_range = 200 # Sets the source voltage

range to 200 V
keithley.source_voltage = 20 # Sets the source voltage to 20 V
keithley.enable_source() # Enables the source output

keithley.measure_resistance() # Sets up to measure resistance

(continues on next page)

7.27. Keithley 325

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

keithley.ramp_to_voltage(50) # Ramps the voltage to 50 V
print(keithley.resistance) # Prints the resistance in Ohms

keithley.shutdown() # Ramps the voltage to 0 V
and disables output

apply_voltage(voltage_range=None)
Configures the instrument to apply a source voltage, and uses an auto range unless a voltage range is spec-
ified.

Parameters
voltage_range – A voltage_range value or None (activates auto range)

auto_range_source()

Configures the source to use an automatic range.

property buffer_data

Returns a numpy array of values from the buffer.

property buffer_points

An integer property that controls the number of buffer points. This does not represent actual points in the
buffer, but the configuration value instead.

check_errors()

Logs any system errors reported by the instrument.

check_get_errors()

Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

clear()

Clears the instrument status byte

property complete

Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation Complete query
places an ASCII character 1 into the device’s Output Queue when all pending selected device operations
have been finished.

config_buffer(points=64, delay=0)
Configures the measurement buffer for a number of points, to be taken with a specified delay.

326 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Parameters

• points – The number of points in the buffer.

• delay – The delay time in seconds.

property current

Reads the current in Amps, if configured for this reading.

property current_nplc

A floating point property that controls the number of power line cycles (NPLC) for the DC current mea-
surements, which sets the integration period and measurement speed. Takes values from 0.01 to 10, where
0.1, 1, and 10 are Fast, Medium, and Slow respectively.

property current_range

A floating point property that controls the measurement current range in Amps, which can take values
between -20 and +20 mA. Auto-range is disabled when this property is set.

disable_buffer()

Disables the connection between measurements and the buffer, but does not abort the measurement process.

disable_source()

Disables the source of current or voltage depending on the configuration of the instrument.

enable_source()

Enables the source of current or voltage depending on the configuration of the instrument.

property error

Returns a tuple of an error code and message from a single error.

static extract_value(result)
extracts the physical value from a result object returned by the instrument

property id

Get the identification of the instrument.

is_buffer_full()

Returns True if the buffer is full of measurements.

measure_current(nplc=1, current=0.000105, auto_range=True)
Configures the measurement of current.

Parameters

• nplc – Number of power line cycles (NPLC) from 0.01 to 10

• current – Upper limit of current in Amps, from -21 mA to 21 mA

• auto_range – Enables auto_range if True, else uses the current_range attribut

measure_resistance(nplc=1, resistance=210000.0, auto_range=True)
Configures the measurement of resistance.

Parameters

• nplc – Number of power line cycles (NPLC) from 0.01 to 10

• resistance – Upper limit of resistance in Ohms, from -210 POhms to 210 POhms

• auto_range – Enables auto_range if True, else uses the resistance_range attribut

7.27. Keithley 327

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

measure_voltage(nplc=1, voltage=21.0, auto_range=True)
Configures the measurement of voltage.

Parameters

• nplc – Number of power line cycles (NPLC) from 0.01 to 10

• voltage – Upper limit of voltage in Volts, from -1000 V to 1000 V

• auto_range – Enables auto_range if True, else uses the voltage_range attribut

property options

Get the device options installed.

ramp_to_voltage(target_voltage, steps=30, pause=0.02)
Ramps to a target voltage from the set voltage value over a certain number of linear steps, each separated
by a pause duration.

Parameters

• target_voltage – A voltage in Volts

• steps – An integer number of steps

• pause – A pause duration in seconds to wait between steps

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

read_binary_values(**kwargs)
Read binary values from the device.

read_bytes(count, **kwargs)
Read a certain number of bytes from the instrument.

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read the whole read
buffer.

• kwargs – Keyword arguments for the adapter.

Returns bytes
Bytes response of the instrument (including termination).

reset()

Resets the instrument and clears the queue.

reset_buffer()

Resets the buffer.

property resistance

Reads the resistance in Ohms, if configured for this reading.

property resistance_nplc

A floating point property that controls the number of power line cycles (NPLC) for the 2-wire resistance
measurements, which sets the integration period and measurement speed. Takes values from 0.01 to 10,
where 0.1, 1, and 10 are Fast, Medium, and Slow respectively.

property resistance_range

A floating point property that controls the resistance range in Ohms, which can take values from 0 to 100e18
Ohms. Auto-range is disabled when this property is set.

328 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

shutdown()

Ensures that the current or voltage is turned to zero and disables the output.

property source_current_resistance_limit

Boolean property which enables or disables resistance current limit

property source_enabled

Reads a boolean value that is True if the source is enabled.

property source_voltage

A floating point property that controls the source voltage in Volts.

property source_voltage_range

A floating point property that controls the source voltage range in Volts, which can take values from -1000
to 1000 V. Auto-range is disabled when this property is set.

start_buffer()

Starts the buffer.

property status

Get the status byte and Master Summary Status bit.

stop_buffer()

Aborts the buffering measurement, by stopping the measurement arming and triggering sequence. If pos-
sible, a Selected Device Clear (SDC) is used.

trigger()

Executes a bus trigger, which can be used when trigger_on_bus() is configured.

trigger_immediately()

Configures measurements to be taken with the internal trigger at the maximum sampling rate.

trigger_on_bus()

Configures the trigger to detect events based on the bus trigger, which can be activated by trigger().

property voltage

Reads the voltage in Volts, if configured for this reading.

property voltage_nplc

A floating point property that controls the number of power line cycles (NPLC) for the DC voltage mea-
surements, which sets the integration period and measurement speed. Takes values from 0.01 to 10, where
0.1, 1, and 10 are Fast, Medium, and Slow respectively.

property voltage_range

A floating point property that controls the measurement voltage range in Volts, which can take values from
-1000 to 1000 V. Auto-range is disabled when this property is set.

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Parameters
query_delay – Delay between writing and reading in seconds.

wait_for_buffer(should_stop=<function KeithleyBuffer.<lambda>>, timeout=60, interval=0.1)
Blocks the program, waiting for a full buffer. This function returns early if the should_stop function
returns True or the timeout is reached before the buffer is full.

Parameters

7.27. Keithley 329

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• should_stop – A function that returns True when this function should return early

• timeout – A time in seconds after which this function should return early

• interval – A time in seconds for how often to check if the buffer is full

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument

• kwargs – Keyword arguments for the adapter.

write_binary_values(command, values, *args, **kwargs)
Write binary values to the device.

Parameters

• command – Command to send.

• values – The values to transmit.

• **kwargs (*args,) – Further arguments to hand to the Adapter.

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

7.27.9 Keithley 2750 Multimeter/Switch System

class pymeasure.instruments.keithley.Keithley2750(adapter, name='Keithley 2750 Multimeter/Switch
System', **kwargs)

Bases: Instrument

Represents the Keithley2750 multimeter/switch system and provides a high-level interface for interacting with
the instrument.

check_errors()

Read all errors from the instrument and log them.

Returns
List of error entries.

check_get_errors()

Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

330 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

clear()

Clears the instrument status byte

close(channel)
Closes (connects) the specified channel.

Parameters
channel (int) – 3-digit number for the channel

Returns
None

property closed_channels

Reads the list of closed channels

property complete

Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation Complete query
places an ASCII character 1 into the device’s Output Queue when all pending selected device operations
have been finished.

property id

Get the identification of the instrument.

open(channel)
Opens (disconnects) the specified channel.

Parameters
channel (int) – 3-digit number for the channel

Returns
None

open_all()

Opens (disconnects) all the channels on the switch matrix.

Returns
None

property options

Get the device options installed.

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

read_binary_values(**kwargs)
Read binary values from the device.

read_bytes(count, **kwargs)
Read a certain number of bytes from the instrument.

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read the whole read
buffer.

• kwargs – Keyword arguments for the adapter.

Returns bytes
Bytes response of the instrument (including termination).

7.27. Keithley 331

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

reset()

Resets the instrument.

shutdown()

Brings the instrument to a safe and stable state

property status

Get the status byte and Master Summary Status bit.

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Parameters
query_delay – Delay between writing and reading in seconds.

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument

• kwargs – Keyword arguments for the adapter.

write_binary_values(command, values, *args, **kwargs)
Write binary values to the device.

Parameters

• command – Command to send.

• values – The values to transmit.

• **kwargs (*args,) – Further arguments to hand to the Adapter.

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

7.27.10 Keithley 2600 SourceMeter

class pymeasure.instruments.keithley.Keithley2600(adapter, name='Keithley 2600 SourceMeter',
**kwargs)

Bases: Instrument

Represents the Keithley 2600 series (channel A and B) SourceMeter

check_errors()

Logs any system errors reported by the instrument.

check_get_errors()

Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

332 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

clear()

Clears the instrument status byte

property complete

Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation Complete query
places an ASCII character 1 into the device’s Output Queue when all pending selected device operations
have been finished.

property error

Returns a tuple of an error code and message from a single error.

property id

Get the identification of the instrument.

property options

Get the device options installed.

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

read_binary_values(**kwargs)
Read binary values from the device.

read_bytes(count, **kwargs)
Read a certain number of bytes from the instrument.

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read the whole read
buffer.

• kwargs – Keyword arguments for the adapter.

Returns bytes
Bytes response of the instrument (including termination).

reset()

Resets the instrument.

shutdown()

Brings the instrument to a safe and stable state

property status

Get the status byte and Master Summary Status bit.

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Parameters
query_delay – Delay between writing and reading in seconds.

7.27. Keithley 333

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument

• kwargs – Keyword arguments for the adapter.

write_binary_values(command, values, *args, **kwargs)
Write binary values to the device.

Parameters

• command – Command to send.

• values – The values to transmit.

• **kwargs (*args,) – Further arguments to hand to the Adapter.

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

7.27.11 Keithley 2200 Series Power Supplies

class pymeasure.instruments.keithley.Keithley2200(adapter, name='Keithley2200', **kwargs)
Bases: Instrument

Represents the Keithley 2200 Power Supply.

ch_1

Channel
PSChannel

ch_2

Channel
PSChannel

ch_3

Channel
PSChannel

class BaseChannelCreator(cls, **kwargs)
Bases: object

Base class for ChannelCreator and MultiChannelCreator.

Parameters

• cls – Class for all children or tuple/list of classes, one for each child.

• **kwargs – Keyword arguments for all children.

class ChannelCreator(cls, id=None, **kwargs)
Bases: BaseChannelCreator

Add a single channel to the parent class.

334 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

The child will be added to the parent instance at instantiation with CommonBase.add_child(). The at-
tribute name that ChannelCreator was assigned to in the Instrument class will be the name of the channel
interface.

class Extreme5000(Instrument):
Two output channels, accessible by their property names
and both are accessible through the 'channels' collection
output_A = Instrument.ChannelCreator(Extreme5000Channel, "A")
output_B = Instrument.ChannelCreator(Extreme5000Channel, "B")
A channel without a channel accessible through the 'motor' collection
motor = Instrument.ChannelCreator(MotorControl)

inst = SomeInstrument()
Set the extreme_temp for channel A of Extreme5000 instrument
inst.output_A.extreme_temp = 42

Parameters

• cls – Channel class for channel interface

• id – The id of the channel on the instrument, integer or string.

• **kwargs – Keyword arguments for all children.

class MultiChannelCreator(cls, id=None, prefix='ch_', **kwargs)
Bases: BaseChannelCreator

Add channels to the parent class.

The children will be added to the parent instance at instantiation with CommonBase.add_child(). The
attribute name (e.g. channels) will be used as the collection of the children. You may define the attribute
prefix. If there are no other pressing reasons, use channels as the attribute name and leave the prefix at
the default "ch_".

class Extreme5000(Instrument):
Three channels of the same type: 'ch_A', 'ch_B', 'ch_C'
and add them to the 'channels' collection
channels = Instrument.MultiChannelCreator(Extreme5000Channel, ["A", "B", "C

→˓"])
Two channel interfaces of different types: 'fn_power', 'fn_voltage'
and add them to the 'functions' collection
functions = Instrument.MultiChannelCreator((PowerChannel, VoltageChannel),

["power", "voltage"], prefix="fn_")

Parameters

• cls – Class for all children or tuple/list of classes, one for each child.

• id – tuple/list of ids of the channels on the instrument.

• prefix – Collection prefix for the attributes, e.g. “ch_” creates attribute self.ch_A. If
prefix evaluates False, the child will be added directly under the variable name. Required
if id is tuple/list.

• **kwargs – Keyword arguments for all children.

7.27. Keithley 335

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

add_child(cls, id=None, collection='channels', prefix='ch_', attr_name='', **kwargs)
Add a child to this instance and return its index in the children list.

The newly created child may be accessed either by the id in the children dictionary or by the created attribute,
e.g. the fifth channel of instrument with id “F” has two access options: instrument.channels["F"] ==
instrument.ch_F

Note: Do not change the default collection or prefix parameter, unless you have to distinguish several
collections of different children, e.g. different channel types (analog and digital).

Parameters

• cls – Class of the channel.

• id – Child id how it is used in communication, e.g. “A”.

• collection – Name of the collection of children, used for dictionary access to the channel
interfaces.

• prefix – For creating multiple channel interfaces, the prefix e.g. “ch_” is prepended to
the attribute name of the channel interface self.ch_A. If prefix evaluates False, the child will
be added directly under the collection name.

• attr_name – For creating a single channel interface, the attr_name argument is used when
setting the attribute name of the channel interface.

• **kwargs – Keyword arguments for the channel creator.

Returns
Instance of the created child.

binary_values(command, query_delay=0, **kwargs)
Write a command to the instrument and return a numpy array of the binary data.

Parameters

• command – Command to be sent to the instrument.

• query_delay – Delay between writing and reading in seconds.

• kwargs – Arguments for read_binary_values().

Returns
NumPy array of values.

check_errors()

Read all errors from the instrument and log them.

Returns
List of error entries.

check_get_errors()

Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

336 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

property complete

Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation Complete query
places an ASCII character 1 into the device’s Output Queue when all pending selected device operations
have been finished.

property display_enabled

Control whether the display is enabled.

property display_text_data

Control text to be displayed(32 characters).

static get_channel_pairs(cls)
Return a list of all the Instrument’s channel pairs

static get_channels(cls)
Return a list of all the Instrument’s ChannelCreator and MultiChannelCreator instances

property id

Get the identification of the instrument.

property options

Get the device options installed.

read_binary_values(**kwargs)
Read binary values from the device.

read_bytes(count, **kwargs)
Read a certain number of bytes from the instrument.

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read the whole read
buffer.

• kwargs – Keyword arguments for the adapter.

Returns bytes
Bytes response of the instrument (including termination).

remove_child(child)
Remove the child from the instrument and the corresponding collection.

Parameters
child – Instance of the child to delete.

reset()

Resets the instrument.

7.27. Keithley 337

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

shutdown()

Brings the instrument to a safe and stable state

property status

Get the status byte and Master Summary Status bit.

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Parameters
query_delay – Delay between writing and reading in seconds.

write_binary_values(command, values, *args, **kwargs)
Write binary values to the device.

Parameters

• command – Command to send.

• values – The values to transmit.

• **kwargs (*args,) – Further arguments to hand to the Adapter.

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

class pymeasure.instruments.keithley.keithley2200.PSChannel(parent, id)
Bases: Channel

Implementation of a Keithley 2200 channel.

property current

Measure the current in Amps.

property current_limit

Control output current in Amps.

insert_id(command)
Insert the channel id in a command replacing placeholder.

Subclass this method if you want to do something else, like always prepending the channel id.

property output_enabled

Control the output state.

property power

Measure the power in watts.

property voltage

Measure the voltage in Volts.

property voltage_limit

Control the maximum voltage that can be set.

property voltage_limit_enabled

Control whether the maximum voltage limit is enabled.

property voltage_setpoint

Control output voltage in Volts.

338 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.28 Keysight

This section contains specific documentation on the keysight instruments that are implemented. If you are interested
in an instrument not included, please consider adding the instrument.

7.28.1 Keysight DSOX1102G Oscilloscope

class pymeasure.instruments.keysight.KeysightDSOX1102G(adapter, name='Keysight DSOX1102G
Oscilloscope', **kwargs)

Bases: Instrument

Represents the Keysight DSOX1102G Oscilloscope interface for interacting with the instrument.

Refer to the Keysight DSOX1102G Oscilloscope Programmer’s Guide for further details about using the lower-
level methods to interact directly with the scope.

scope = KeysightDSOX1102G(resource)
scope.autoscale()
ch1_data_array, ch1_preamble = scope.download_data(source="channel1", points=2000)
...
scope.shutdown()

Known issues:

• The digitize command will be completed before the operation is. May lead to VI_ERROR_TMO (timeout)
occuring when sending commands immediately after digitize. Current fix: if deemed necessary, add delay
between digitize and follow-up command to scope.

property acquisition_mode

A string parameter that sets the acquisition mode. Can be “realtime” or “segmented”.

property acquisition_type

A string parameter that sets the type of data acquisition. Can be “normal”, “average”, “hresolution”, or
“peak”.

autoscale()

Autoscale displayed channels.

clear_status()

Clear device status.

default_setup()

Default setup, some user settings (like preferences) remain unchanged.

digitize(source: str)
Acquire waveforms according to the settings of the :ACQuire commands. Ensure a delay between the
digitize operation and further commands, as timeout may be reached before digitize has completed. :param
source: “channel1”, “channel2”, “function”, “math”, “fft”, “abus”, or “ext”.

download_data(source, points=62500)
Get data from specified source of oscilloscope. Returned objects are a np.ndarray of data values (no tem-
poral axis) and a dict of the waveform preamble, which can be used to build the corresponding time values
for all data points.

Multimeter will be stopped for proper acquisition.

Parameters

7.28. Keysight 339

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• source – measurement source, can be “channel1”, “channel2”, “function”, “fft”, “wmem-
ory1”, “wmemory2”, or “ext”.

• points – integer number of points to acquire. Note that oscilloscope may return fewer
points than specified, this is not an issue of this library. Can be 100, 250, 500, 1000, 2000,
5000, 10000, 20000, 50000, or 62500.

Return data_ndarray, waveform_preamble_dict
see waveform_preamble property for dict format.

download_image(format_='png', color_palette='color')
Get image of oscilloscope screen in bytearray of specified file format.

Parameters

• format – “bmp”, “bmp8bit”, or “png”

• color_palette – “color” or “grayscale”

factory_reset()

Factory default setup, no user settings remain unchanged.

run()

Starts repetitive acquisitions.

This is the same as pressing the Run key on the front panel.

single()

Causes the instrument to acquire a single trigger of data. This is the same as pressing the Single key on the
front panel.

stop()

Stops the acquisition. This is the same as pressing the Stop key on the front panel.

property system_setup

A string parameter that sets up the oscilloscope. Must be in IEEE 488.2 format. It is recommended to only
set a string previously obtained from this command.

property timebase

Read timebase setup as a dict containing the following keys: - “REF”: position on screen of timebase
reference (str) - “MAIN:RANG”: full-scale timebase range (float) - “POS”: interval between trigger and
reference point (float) - “MODE”: mode (str)

property timebase_mode

A string parameter that sets the current time base. Can be “main”, “window”, “xy”, or “roll”.

property timebase_offset

A float parameter that sets the time interval in seconds between the trigger event and the reference position
(at center of screen by default).

property timebase_range

A float parameter that sets the full-scale horizontal time in seconds for the main window.

property timebase_scale

A float parameter that sets the horizontal scale (units per division) in seconds for the main window.

timebase_setup(mode=None, offset=None, horizontal_range=None, scale=None)
Set up timebase. Unspecified parameters are not modified. Modifying a single parameter might impact
other parameters. Refer to oscilloscope documentation and make multiple consecutive calls to chan-
nel_setup if needed.

340 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Parameters

• mode – Timebase mode, can be “main”, “window”, “xy”, or “roll”.

• offset – Offset in seconds between trigger and center of screen.

• horizontal_range – Full-scale range in seconds.

• scale – Units-per-division in seconds.

property waveform_data

Get the binary block of sampled data points transmitted using the IEEE 488.2 arbitrary block data format.

property waveform_format

A string parameter that controls how the data is formatted when sent from the oscilloscope. Can be “ascii”,
“word” or “byte”. Words are transmitted in big endian by default.

property waveform_points

An integer parameter that sets the number of waveform points to be transferred with the waveform_data
method. Can be any of the following values: 100, 250, 500, 1000, 2 000, 5 000, 10 000, 20 000, 50 000,
62 500.

Note that the oscilloscope may provide less than the specified nb of points.

property waveform_points_mode

A string parameter that sets the data record to be transferred with the waveform_data method. Can be
“normal”, “maximum”, or “raw”.

property waveform_preamble

Get preamble information for the selected waveform source as a dict with the following keys: - “format”:
byte, word, or ascii (str) - “type”: normal, peak detect, or average (str) - “points”: nb of data points trans-
ferred (int) - “count”: always 1 (int) - “xincrement”: time difference between data points (float) - “xorigin”:
first data point in memory (float) - “xreference”: data point associated with xorigin (int) - “yincrement”:
voltage difference between data points (float) - “yorigin”: voltage at center of screen (float) - “yreference”:
data point associated with yorigin (int)

property waveform_source

A string parameter that selects the analog channel, function, or reference waveform to be used as the source
for the waveform methods. Can be “channel1”, “channel2”, “function”, “fft”, “wmemory1”, “wmemory2”,
or “ext”.

7.28.2 Keysight N5767A Power Supply

class pymeasure.instruments.keysight.KeysightN5767A(adapter, name='Keysight N5767A power supply',
**kwargs)

Bases: Instrument

Represents the Keysight N5767A Power supply interface for interacting with the instrument.

property current

Reads a setting current in Amps.

property current_range

A floating point property that controls the DC current range in Amps, which can take values from 0 to 25
A. Auto-range is disabled when this property is set.

disable()

Disables the flow of current.

7.28. Keysight 341

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

enable()

Enables the flow of current.

is_enabled()

Returns True if the current supply is enabled.

property voltage

Reads a DC voltage measurement in Volts.

property voltage_range

A floating point property that controls the DC voltage range in Volts, which can take values from 0 to 60
V. Auto-range is disabled when this property is set.

7.28.3 Keysight N5776C Power Supply

class pymeasure.instruments.keysight.KeysightN7776C(adapter, name='N7776C Tunable Laser Source',
**kwargs)

Bases: Instrument

This represents the Keysight N7776C Tunable Laser Source interface.

laser = N7776C(address)
laser.sweep_wl_start = 1550
laser.sweep_wl_stop = 1560
laser.sweep_speed = 1
laser.sweep_mode = 'CONT'
laser.output_enabled = 1
while laser.sweep_state == 1:

log.info('Sweep in progress.')
laser.output_enabled = 0

close()

Fully closes the connection to the instrument through the adapter connection.

get_wl_data()

Function returning the wavelength data logged in the internal memory of the laser

property locked

Boolean property controlling the lock state (True/False) of the laser source

next_step()

Performs the next sweep step in stepped sweep if it is paused or in manual mode.

property output_enabled

Boolean Property that controls the state (on/off) of the laser source

previous_step()

Performs one sweep step backwards in stepped sweep if its paused or in manual mode.

property sweep_mode

Sweep mode of the swept laser source

property sweep_points

Returns the number of datapoints that the :READout:DATA? command will return.

342 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property sweep_speed

Speed of the sweep (in nanometers per second).

property sweep_state

State of the wavelength sweep. Stops, starts, pauses or continues a wavelength sweep. Possible state values
are 0 (not running), 1 (running) and 2 (paused). Refer to the N7776C user manual for exact usage of the
paused option.

property sweep_step

Step width of the sweep (in nanometers).

property sweep_twoway

Sets the repeat mode. Applies in stepped,continuous and manual sweep mode.

property sweep_wl_start

Start Wavelength (in nanometers) for a sweep.

property sweep_wl_stop

End Wavelength (in nanometers) for a sweep.

property trigger_in

Sets the incoming trigger response and arms the module.

property trigger_out

Specifies if and at which point in a sweep cycle an output trigger is generated and arms the module.

property wavelength

Absolute wavelength of the output light (in nanometers)

property wl_logging

State (on/off) of the lambda logging feature of the laser source.

7.28.4 Keysight E36312A Triple Output Power Supply

class pymeasure.instruments.keysight.KeysightE36312A(adapter, name='Keysight E36312A', **kwargs)
Bases: Instrument

Represents the Keysight E36312A Power supply interface for interacting with the instrument.

supply = KeysightE36312A(resource)
supply.ch_1.voltage_setpoint=10
supply.ch_1.current_setpoint=0.1
supply.ch_1.output_enabled=True
print(supply.ch_1.voltage)

ch_1

Channel
VoltageChannel

ch_2

Channel
VoltageChannel

7.28. Keysight 343

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

ch_3

Channel
VoltageChannel

class BaseChannelCreator(cls, **kwargs)
Bases: object

Base class for ChannelCreator and MultiChannelCreator.

Parameters

• cls – Class for all children or tuple/list of classes, one for each child.

• **kwargs – Keyword arguments for all children.

class ChannelCreator(cls, id=None, **kwargs)
Bases: BaseChannelCreator

Add a single channel to the parent class.

The child will be added to the parent instance at instantiation with CommonBase.add_child(). The at-
tribute name that ChannelCreator was assigned to in the Instrument class will be the name of the channel
interface.

class Extreme5000(Instrument):
Two output channels, accessible by their property names
and both are accessible through the 'channels' collection
output_A = Instrument.ChannelCreator(Extreme5000Channel, "A")
output_B = Instrument.ChannelCreator(Extreme5000Channel, "B")
A channel without a channel accessible through the 'motor' collection
motor = Instrument.ChannelCreator(MotorControl)

inst = SomeInstrument()
Set the extreme_temp for channel A of Extreme5000 instrument
inst.output_A.extreme_temp = 42

Parameters

• cls – Channel class for channel interface

• id – The id of the channel on the instrument, integer or string.

• **kwargs – Keyword arguments for all children.

class MultiChannelCreator(cls, id=None, prefix='ch_', **kwargs)
Bases: BaseChannelCreator

Add channels to the parent class.

The children will be added to the parent instance at instantiation with CommonBase.add_child(). The
attribute name (e.g. channels) will be used as the collection of the children. You may define the attribute
prefix. If there are no other pressing reasons, use channels as the attribute name and leave the prefix at
the default "ch_".

class Extreme5000(Instrument):
Three channels of the same type: 'ch_A', 'ch_B', 'ch_C'
and add them to the 'channels' collection
channels = Instrument.MultiChannelCreator(Extreme5000Channel, ["A", "B", "C

(continues on next page)

344 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

→˓"])
Two channel interfaces of different types: 'fn_power', 'fn_voltage'
and add them to the 'functions' collection
functions = Instrument.MultiChannelCreator((PowerChannel, VoltageChannel),

["power", "voltage"], prefix="fn_")

Parameters

• cls – Class for all children or tuple/list of classes, one for each child.

• id – tuple/list of ids of the channels on the instrument.

• prefix – Collection prefix for the attributes, e.g. “ch_” creates attribute self.ch_A. If
prefix evaluates False, the child will be added directly under the variable name. Required
if id is tuple/list.

• **kwargs – Keyword arguments for all children.

add_child(cls, id=None, collection='channels', prefix='ch_', attr_name='', **kwargs)
Add a child to this instance and return its index in the children list.

The newly created child may be accessed either by the id in the children dictionary or by the created attribute,
e.g. the fifth channel of instrument with id “F” has two access options: instrument.channels["F"] ==
instrument.ch_F

Note: Do not change the default collection or prefix parameter, unless you have to distinguish several
collections of different children, e.g. different channel types (analog and digital).

Parameters

• cls – Class of the channel.

• id – Child id how it is used in communication, e.g. “A”.

• collection – Name of the collection of children, used for dictionary access to the channel
interfaces.

• prefix – For creating multiple channel interfaces, the prefix e.g. “ch_” is prepended to
the attribute name of the channel interface self.ch_A. If prefix evaluates False, the child will
be added directly under the collection name.

• attr_name – For creating a single channel interface, the attr_name argument is used when
setting the attribute name of the channel interface.

• **kwargs – Keyword arguments for the channel creator.

Returns
Instance of the created child.

ask(command, query_delay=0)
Write a command to the instrument and return the read response.

Parameters

• command – Command string to be sent to the instrument.

• query_delay – Delay between writing and reading in seconds.

7.28. Keysight 345

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Returns
String returned by the device without read_termination.

binary_values(command, query_delay=0, **kwargs)
Write a command to the instrument and return a numpy array of the binary data.

Parameters

• command – Command to be sent to the instrument.

• query_delay – Delay between writing and reading in seconds.

• kwargs – Arguments for read_binary_values().

Returns
NumPy array of values.

check_errors()

Read all errors from the instrument and log them.

Returns
List of error entries.

check_get_errors()

Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

clear()

Clears the instrument status byte

property complete

Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation Complete query
places an ASCII character 1 into the device’s Output Queue when all pending selected device operations
have been finished.

static control(get_command, set_command, docs, validator=<function CommonBase.<lambda>>,
values=(), map_values=False, get_process=<function CommonBase.<lambda>>,
set_process=<function CommonBase.<lambda>>, command_process=None,
check_set_errors=False, check_get_errors=False, dynamic=False,
preprocess_reply=None, separator=', ', maxsplit=-1, cast=<class 'float'>,
values_kwargs=None, **kwargs)

Return a property for the class based on the supplied commands. This property may be set and read from
the instrument. See also measurement() and setting().

Parameters

346 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• get_command – A string command that asks for the value, set to None if get is not supported
(see also setting()).

• set_command – A string command that writes the value, set to None if set is not supported
(see also measurement()).

• docs – A docstring that will be included in the documentation

• validator – A function that takes both a value and a group of valid values and returns a
valid value, while it otherwise raises an exception

• values – A list, tuple, range, or dictionary of valid values, that can be used as to map
values if map_values is True.

• map_values – A boolean flag that determines if the values should be interpreted as a map

• get_process – A function that take a value and allows processing before value mapping,
returning the processed value

• set_process – A function that takes a value and allows processing before value mapping,
returning the processed value

• command_process – A function that takes a command and allows processing before exe-
cuting the command

Deprecated since version 0.12: Use a dynamic property instead.

• check_set_errors – Toggles checking errors after setting

• check_get_errors – Toggles checking errors after getting

• dynamic – Specify whether the property parameters are meant to be changed in instances
or subclasses.

• preprocess_reply – Optional callable used to preprocess the string received from the
instrument, before splitting it. The callable returns the processed string.

• separator – A separator character to split the string returned by the device into a list.

• maxsplit – The string returned by the device is splitted at most maxsplit times. -1 (default)
indicates no limit.

• cast – A type to cast each element of the splitted string.

• values_kwargs (dict) – Further keyword arguments for values().

• **kwargs – Keyword arguments for values().

Deprecated since version 0.12: Use values_kwargs dictionary parameter instead.

Example of usage of dynamic parameter is as follows:

class GenericInstrument(Instrument):
center_frequency = Instrument.control(

":SENS:FREQ:CENT?;", ":SENS:FREQ:CENT %e GHz;",
" A floating point property that represents the frequency ... ",
validator=strict_range,
Redefine this in subclasses to reflect actual instrument value:
values=(1, 20),
dynamic=True # enable changing property parameters on-the-fly

)

class SpecificInstrument(GenericInstrument):
(continues on next page)

7.28. Keysight 347

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

Identical to GenericInstrument, except for frequency range
Override the "values" parameter of the "center_frequency" property
center_frequency_values = (1, 10) # Redefined at subclass level

instrument = SpecificInstrument()
instrument.center_frequency_values = (1, 6e9) # Redefined at instance level

Warning: Unexpected side effects when using dynamic properties

Users must pay attention when using dynamic properties, since definition of class and/or instance attributes
matching specific patterns could have unwanted side effect. The attribute name pattern property_param,
where property is the name of the dynamic property (e.g. center_frequency in the example) and param
is any of this method parameters name except dynamic and docs (e.g. values in the example) has to be
considered reserved for dynamic property control.

static get_channel_pairs(cls)
Return a list of all the Instrument’s channel pairs

static get_channels(cls)
Return a list of all the Instrument’s ChannelCreator and MultiChannelCreator instances

property id

Get the identification of the instrument.

static measurement(get_command, docs, values=(), map_values=None, get_process=<function
CommonBase.<lambda>>, command_process=None, check_get_errors=False,
dynamic=False, preprocess_reply=None, separator=', ', maxsplit=-1, cast=<class
'float'>, values_kwargs=None, **kwargs)

Return a property for the class based on the supplied commands. This is a measurement quantity that may
only be read from the instrument, not set.

Parameters

• get_command – A string command that asks for the value

• docs – A docstring that will be included in the documentation

• values – A list, tuple, range, or dictionary of valid values, that can be used as to map
values if map_values is True.

• map_values – A boolean flag that determines if the values should be interpreted as a map

• get_process – A function that take a value and allows processing before value mapping,
returning the processed value

• command_process – A function that take a command and allows processing before exe-
cuting the command, for getting

Deprecated since version 0.12: Use a dynamic property instead.

• check_get_errors – Toggles checking errors after getting

• dynamic – Specify whether the property parameters are meant to be changed in instances
or subclasses. See control() for an usage example.

• preprocess_reply – Optional callable used to preprocess the string received from the
instrument, before splitting it. The callable returns the processed string.

348 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• separator – A separator character to split the string returned by the device into a list.

• maxsplit – The string returned by the device is splitted at most maxsplit times. -1 (default)
indicates no limit.

• cast – A type to cast each element of the splitted string.

• values_kwargs (dict) – Further keyword arguments for values().

• **kwargs – Keyword arguments for values().

Deprecated since version 0.12: Use values_kwargs dictionary parameter instead.

property options

Get the device options installed.

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

read_binary_values(**kwargs)
Read binary values from the device.

read_bytes(count, **kwargs)
Read a certain number of bytes from the instrument.

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read the whole read
buffer.

• kwargs – Keyword arguments for the adapter.

Returns bytes
Bytes response of the instrument (including termination).

remove_child(child)
Remove the child from the instrument and the corresponding collection.

Parameters
child – Instance of the child to delete.

reset()

Resets the instrument.

static setting(set_command, docs, validator=<function CommonBase.<lambda>>, values=(),
map_values=False, set_process=<function CommonBase.<lambda>>,
check_set_errors=False, dynamic=False)

Return a property for the class based on the supplied commands. This property may be set, but raises an
exception when being read from the instrument.

Parameters

• set_command – A string command that writes the value

• docs – A docstring that will be included in the documentation

• validator – A function that takes both a value and a group of valid values and returns a
valid value, while it otherwise raises an exception

• values – A list, tuple, range, or dictionary of valid values, that can be used as to map
values if map_values is True.

• map_values – A boolean flag that determines if the values should be interpreted as a map

7.28. Keysight 349

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• set_process – A function that takes a value and allows processing before value mapping,
returning the processed value

• check_set_errors – Toggles checking errors after setting

• dynamic – Specify whether the property parameters are meant to be changed in instances
or subclasses. See control() for an usage example.

shutdown()

Brings the instrument to a safe and stable state

property status

Get the status byte and Master Summary Status bit.

values(command, separator=', ', cast=<class 'float'>, preprocess_reply=None, maxsplit=-1, **kwargs)
Write a command to the instrument and return a list of formatted values from the result.

Parameters

• command – SCPI command to be sent to the instrument.

• preprocess_reply – Optional callable used to preprocess the string received from the
instrument, before splitting it. The callable returns the processed string.

• separator – A separator character to split the string returned by the device into a list.

• maxsplit – The string returned by the device is splitted at most maxsplit times. -1 (default)
indicates no limit.

• cast – A type to cast each element of the splitted string.

• **kwargs – Keyword arguments to be passed to the ask() method.

Returns
A list of the desired type, or strings where the casting fails.

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Parameters
query_delay – Delay between writing and reading in seconds.

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument

• kwargs – Keyword arguments for the adapter.

write_binary_values(command, values, *args, **kwargs)
Write binary values to the device.

Parameters

• command – Command to send.

• values – The values to transmit.

• **kwargs (*args,) – Further arguments to hand to the Adapter.

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

350 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

class pymeasure.instruments.keysight.keysightE36312A.VoltageChannel(parent, id)
Bases: Channel

property current

Measure the actual current of this channel.

property current_limit

Control the current limit of this channel, range depends on channel.(dynamic)

property output_enabled

Control whether the channel output is enabled (boolean).

property voltage

Measure actual voltage of this channel.

property voltage_setpoint

Control the output voltage of this channel, range depends on channel.(dynamic)

7.29 Lake Shore Cryogenics

This section contains specific documentation on the Lake Shore Cryogenics instruments that are implemented. If you
are interested in an instrument not included, please consider adding the instrument.

7.29.1 Lake Shore 211 Temperature Monitor

class pymeasure.instruments.lakeshore.LakeShore211(adapter, name='Lake Shore 211 Temperature
Monitor', **kwargs)

Bases: Instrument

Represents the Lake Shore 211 Temperature Monitor and provides a high-level interface for interacting with the
instrument.

Untested properties and methods will be noted in their docstrings.

controller = LakeShore211("GPIB::1")

print(controller.temperature_celsius) # Print the sensor temperature in celsius

class AnalogMode(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

Bases: IntEnum

class AnalogRange(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

Bases: IntEnum

class RelayMode(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

Bases: IntEnum

class RelayNumber(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

Bases: IntEnum

7.29. Lake Shore Cryogenics 351

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property analog_configuration

Control the analog mode and analog range. Values need to be supplied as a tuple of (analog mode, analog
range) Analog mode can be 0 or 1

setting mode
0 voltage
1 current

Analog range can be 0 through 5

setting range
0 0 – 20 K
1 0 – 100 K
2 0 – 200 K
3 0 – 325 K
4 0 – 475 K
5 0 – 1000 K

property analog_out

Measure the percentage of output of the analog output.

configure_alarm(on=True, high_value=270.0, low_value=0.0, deadband=0, latch=False)
Configures the alarm parameters for the input.

Parameters

• on – Boolean setting of alarm, default True

• high_value – High value the temperature is checked against to activate the alarm

• low_value – Low value the temperature is checked against to activate the alarm

• deadband – Value that the temperature must change outside of an alarm condition

• latch – Specifies if the alarm should latch or not

configure_relay(relay, mode)
Configure the relay mode of a relay

Property is UNTESTED

Parameters

• relay (RelayNumber) – Specify which relay to configure

• mode (RelayMode) – Specify which mode to assign

property display_units

Control the input data to display. Valid entries:

setting units
‘kelvin’ Kelvin
‘celsius’ Celsius
‘sensor’ Sensor Units
‘fahrenheit’ Fahrenheit

352 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

get_alarm_status()

Query the current alarm status

Returns
Dictionary of current status [on, high_value, low_value, deadband, latch]

get_relay_mode(relay)
Get the status of a relay

Property is UNTESTED

Parameters
relay (RelayNumber) – Specify which relay to query

Returns
Current RelayMode of queried relay

reset_alarm()

Resets the alarm of the Lakeshore 211

property temperature_celsius

Measure the temperature of the sensor in celsius

property temperature_fahrenheit

Measure the temperature of the sensor in fahrenheit

property temperature_kelvin

Measure the temperature of the sensor in kelvin

property temperature_sensor

Measure the temperature of the sensor in sensor units

7.29.2 Lake Shore 224 Temperature Monitor

class pymeasure.instruments.lakeshore.LakeShore224(adapter, name='Lakeshore Model 224
Temperature Controller', **kwargs)

Bases: Instrument

Represents the Lakeshore 224 Temperature monitor and provides a high-level interface for interacting with the
instrument. Note that the 224 provides 12 temperature input channels (A, B, C1-5, D1-5). This driver makes use
of the LakeShore Channel Classes

monitor = LakeShore224('GPIB::1')

print(monitor.input_A.kelvin) # Print the temperature in kelvin on sensor␣
→˓A
monitor.input_A.wait_for_temperature() # Wait for the temperature on sensor A to␣
→˓stabilize.

input_0

Channel
LakeShoreTemperatureChannel

input_A

Channel
LakeShoreTemperatureChannel

7.29. Lake Shore Cryogenics 353

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

input_B

Channel
LakeShoreTemperatureChannel

input_C1

Channel
LakeShoreTemperatureChannel

input_C2

Channel
LakeShoreTemperatureChannel

input_C3

Channel
LakeShoreTemperatureChannel

input_C4

Channel
LakeShoreTemperatureChannel

input_C5

Channel
LakeShoreTemperatureChannel

input_D1

Channel
LakeShoreTemperatureChannel

input_D2

Channel
LakeShoreTemperatureChannel

input_D3

Channel
LakeShoreTemperatureChannel

input_D4

Channel
LakeShoreTemperatureChannel

input_D5

Channel
LakeShoreTemperatureChannel

354 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.29.3 Lake Shore 331 Temperature Controller

class pymeasure.instruments.lakeshore.LakeShore331(adapter, name='Lakeshore Model 336
Temperature Controller', **kwargs)

Bases: Instrument

Represents the Lake Shore 331 Temperature Controller and provides a high-level interface for interacting with
the instrument. Note that the 331 provides two input channels (A and B) and two output channels (1 and 2). This
driver makes use of the LakeShore Channel Classes.

controller = LakeShore331("GPIB::1")

print(controller.output_1.setpoint) # Print the current setpoint for loop 1
controller.output_1.setpoint = 50 # Change the loop 1 setpoint to 50 K
controller.output_1.heater_range = 'low' # Change the heater range to low.
controller.input_A.wait_for_temperature() # Wait for the temperature to stabilize.
print(controller.input_A.temperature) # Print the temperature at sensor A.

input_A

Channel
LakeShoreTemperatureChannel

input_B

Channel
LakeShoreTemperatureChannel

output_1

Channel
LakeShoreHeaterChannel

output_2

Channel
LakeShoreHeaterChannel

7.29.4 Lake Shore 421 Gaussmeter

class pymeasure.instruments.lakeshore.LakeShore421(adapter, name='Lake Shore 421 Gaussmeter',
baud_rate=9600, **kwargs)

Bases: Instrument

Represents the Lake Shore 421 Gaussmeter and provides a high-level interface for interacting with the instrument.

gaussmeter = LakeShore421("COM1")
gaussmeter.unit = "T" # Set units to Tesla
gaussmeter.auto_range = True # Turn on auto-range
gaussmeter.fast_mode = True # Turn on fast-mode

A delay of 50 ms is ensured between subsequent writes, as the instrument cannot correctly handle writes any
faster.

property alarm_active

A boolean property that returns whether the alarm is triggered.

7.29. Lake Shore Cryogenics 355

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property alarm_audible

A boolean property that enables or disables the audible alarm beeper.

property alarm_high

Property that controls the upper setpoint for the alarm mode in the current units. This takes into account
the field multiplier.

property alarm_high_multiplier

Returns the multiplier for the upper alarm setpoint field.

property alarm_high_raw

ALMH %g

property alarm_in_out

A string property that controls whether an active alarm is caused when the field reading is inside (“Inside”)
or outside (“Outside”) of the high and low setpoint values.

property alarm_low

Property that controls the lower setpoint for the alarm mode in the current units. This takes into account
the field multiplier.

property alarm_low_multiplier

Returns the multiplier for the lower alarm setpoint field.

property alarm_low_raw

ALML %g

property alarm_mode_enabled

A boolean property that enables or disables the alarm mode.

property alarm_sort_enabled

A boolean property that enables or disables the alarm Sort Pass/Fail function.

property auto_range

A boolean property that controls the auto-range option of the meter. Valid values are True and False. Note
that the auto-range is relatively slow and might not suffice for rapid measurements.

property display_filter_enabled

A boolean property that controls the display filter to make it more readable when the probe is exposed to a
noisy field. The filter function makes a linear average of 8 readings and settles in approximately 2 seconds.

property fast_mode

A boolean property that controls the fast-mode option of the meter. Valid values are True and False. When
enabled, the relative mode, Max Hold mode, alarms, and autorange are disabled.

property field

Returns the field in the current units. This property takes into account the field multiplier. Returns np.nan
if field is out of range.

property field_mode

A string property that controls whether the gaussmeter measures AC or DC magnetic fields. Valid values
are “AC” and “DC”.

property field_multiplier

Returns the field multiplier for the returned magnetic field.

356 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property field_range

A floating point property that controls the field range of the meter in the current unit (G or T). Valid values
are 30e3, 3e3, 300, 30 (when in Gauss), or 0.003, 0.03, 0.3, and 3 (when in Tesla).

property field_range_raw

A integer property that controls the field range of the meter. Valid values are 0 (highest) to 3 (lowest).

property field_raw

Returns the field in the current units and multiplier

property front_panel_brightness

An integer property that controls the brightness of the from panel display. Valid values are 0 (dimmest) to
7 (brightest).

property front_panel_locked

A boolean property that locks or unlocks all front panel entries except pressing the Alarm key to silence
alarms.

property max_hold_enabled

A boolean property that enables or disables the Max Hold function to store the largest field since the last
reset (with max_hold_reset).

property max_hold_field

Returns the largest field since the last reset in the current units. This property takes into account the field
multiplier. Returns np.nan if field is out of range.

property max_hold_field_raw

Returns the largest field since the last reset in the current units and multiplier.

property max_hold_multiplier

Returns the multiplier for the returned max hold field.

max_hold_reset()

Clears the stored Max Hold value.

property probe_type

Returns type of field-probe used with the gaussmeter. Possible values are High Sensitivity, High Stability,
or Ultra-High Sensitivity.

property relative_field

Returns the relative field in the current units. This property takes into account the field multiplier. Returns
np.nan if field is out of range.

property relative_field_raw

Returns the relative field in the current units and the current multiplier.

property relative_mode_enabled

A boolean property that enables or disables the relative mode to see small variations with respect to a given
setpoint.

property relative_multiplier

Returns the relative field multiplier for the returned magnetic field.

property relative_setpoint

Property that controls the setpoint for the relative field mode in the current units. This takes into account
the field multiplier.

7.29. Lake Shore Cryogenics 357

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property relative_setpoint_multiplier

Returns the multiplier for the setpoint field.

property relative_setpoint_raw

Property that controls the setpoint for the relative field mode in the current units and multiplier.

property serial_number

Returns the serial number of the probe.

shutdown()

Closes the serial connection to the system.

property unit

A string property that controls the units used by the gaussmeter. Valid values are G (Gauss), T (Tesla).

write(command)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument

• kwargs – Keyword arguments for the adapter.

zero_probe(wait=True)
Reset the probe value to 0. It is normally used with a zero gauss chamber, but may also be used with an
open probe to cancel the Earth magnetic field. To cancel larger magnetic fields, the relative mode should
be used.

Parameters
wait (bool) – Wait for 20 seconds after issuing the command to allow the resetting to finish.

7.29.5 Lake Shore 425 Gaussmeter

class pymeasure.instruments.lakeshore.LakeShore425(adapter, name='LakeShore 425 Gaussmeter',
**kwargs)

Bases: Instrument

Represents the LakeShore 425 Gaussmeter and provides a high-level interface for interacting with the instrument

To allow user access to the LakeShore 425 Gaussmeter in Linux, create the file: /etc/udev/rules.d/
52-lakeshore425.rules, with contents:

SUBSYSTEMS=="usb",ATTRS{idVendor}=="1fb9",ATTRS{idProduct}=="0401",MODE="0666",
→˓SYMLINK+="lakeshore425"

Then reload the udev rules with:

sudo udevadm control --reload-rules
sudo udevadm trigger

The device will be accessible through /dev/lakeshore425.

ac_mode(wideband=True)
Sets up a measurement of an oscillating (AC) field

auto_range()

Sets the field range to automatically adjust

358 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

dc_mode(wideband=True)
Sets up a steady-state (DC) measurement of the field

property field

Returns the field in the current units

measure(points, has_aborted=<function LakeShore425.<lambda>>, delay=0.001)
Returns the mean and standard deviation of a given number of points while blocking

property range

A floating point property that controls the field range in units of Gauss, which can take the values 35, 350,
3500, and 35,000 G.

property unit

A string property that controls the units of the instrument, which can take the values of G, T, Oe, or A/m.

zero_probe()

Initiates the zero field sequence to calibrate the probe

7.29.6 LakeShore Channel Classes

Several Lakeshore instruments are channel based and make use of the Channel Interface. For temperature monitoring
and controller instruments the following common Channel Classes are utilized:

class pymeasure.instruments.lakeshore.lakeshore_base.LakeShoreTemperatureChannel(parent, id)
Bases: Channel

Temperature input channel on a lakeshore temperature monitor. Reads the temperature in kelvin, celcius, or
sensor units. Also provides a method to block the program until a given stable temperature is reached.

property celcius

Read the temperature in celcius from a channel.

property kelvin

Read the temperature in kelvin from a channel.

property sensor

Read the temperature in sensor units from a channel.

wait_for_temperature(target, unit='kelvin', accuracy=0.1, interval=1, timeout=360,
should_stop=<function LakeShoreTemperatureChannel.<lambda>>)

Blocks the program, waiting for the temperature to reach the target within the accuracy (%), checking this
each interval time in seconds.

Parameters

• target – Target temperature in kelvin, celcius, or sensor units.

• unit – ‘kelvin’, ‘celcius’, or ‘sensor’ specifying the unit for queried temperature values.

• accuracy – An acceptable percentage deviation between the target and temperature.

• interval – Interval time in seconds between queries.

• timeout – A timeout in seconds after which an exception is raised

• should_stop – A function that returns True if waiting should stop, by default this always
returns False

7.29. Lake Shore Cryogenics 359

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

class pymeasure.instruments.lakeshore.lakeshore_base.LakeShoreHeaterChannel(parent, id)
Bases: Channel

Heater output channel on a lakeshore temperature controller. Provides properties to query the output power in
percent of the max, set the manual output power, heater range, and PID temperature setpoint.

property mout

Manual heater output in percent.

property output

Query the heater output in percent of the max.

property range

String property controlling heater range, which can take the values: off, low, medium, and high.

property setpoint

A floating point property that control the setpoint temperature in the preferred units of the control loop
sensor.

7.30 LeCroy

This section contains specific documentation on the LeCroy instruments that are implemented. If you are interested in
an instrument not included, please consider adding the instrument.

If the instrument you are looking for is not here, also check Teledyne for newer instruments.

7.30.1 LeCroy T3DSO1204 Oscilloscope

class pymeasure.instruments.lecroy.LeCroyT3DSO1204(adapter, name='LeCroy T3DSO1204
Oscilloscope', **kwargs)

Bases: TeledyneOscilloscope

Represents the LeCroy T3DSO1204 Oscilloscope interface for interacting with the instrument.

Refer to the LeCroy T3DSO1204 Oscilloscope Programmer’s Guide for further details about using the lower-level
methods to interact directly with the scope.

This implementation is based on the shared base class TeledyneOscilloscope.

Attributes:

WRITE_INTERVAL_S: minimum time between two commands. If a command is received less than
WRITE_INTERVAL_S after the previous one, the code blocks until at least WRITE_INTERVAL_S
seconds have passed. Because the oscilloscope takes a non-negligible time to perform some
operations, it might be needed for the user to tweak the sleep time between commands. The
WRITE_INTERVAL_S is set to 10ms as default however its optimal value heavily depends on the
actual commands and on the connection type, so it is impossible to give a unique value to fit all cases.
An interval between 10ms and 500ms second proved to be good, depending on the commands and
connection latency.

scope = LeCroyT3DSO1204(resource)
scope.autoscale()
ch1_data_array, ch1_preamble = scope.download_waveform(source="C1", points=2000)
...
scope.shutdown()

360 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

ch_1

Channel
LeCroyT3DSO1204Channel

ch_2

Channel
LeCroyT3DSO1204Channel

ch_3

Channel
LeCroyT3DSO1204Channel

ch_4

Channel
LeCroyT3DSO1204Channel

class BaseChannelCreator(cls, **kwargs)
Bases: object

Base class for ChannelCreator and MultiChannelCreator.

Parameters

• cls – Class for all children or tuple/list of classes, one for each child.

• **kwargs – Keyword arguments for all children.

class ChannelCreator(cls, id=None, **kwargs)
Bases: BaseChannelCreator

Add a single channel to the parent class.

The child will be added to the parent instance at instantiation with CommonBase.add_child(). The at-
tribute name that ChannelCreator was assigned to in the Instrument class will be the name of the channel
interface.

class Extreme5000(Instrument):
Two output channels, accessible by their property names
and both are accessible through the 'channels' collection
output_A = Instrument.ChannelCreator(Extreme5000Channel, "A")
output_B = Instrument.ChannelCreator(Extreme5000Channel, "B")
A channel without a channel accessible through the 'motor' collection
motor = Instrument.ChannelCreator(MotorControl)

inst = SomeInstrument()
Set the extreme_temp for channel A of Extreme5000 instrument
inst.output_A.extreme_temp = 42

Parameters

• cls – Channel class for channel interface

• id – The id of the channel on the instrument, integer or string.

• **kwargs – Keyword arguments for all children.

7.30. LeCroy 361

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

class MultiChannelCreator(cls, id=None, prefix='ch_', **kwargs)
Bases: BaseChannelCreator

Add channels to the parent class.

The children will be added to the parent instance at instantiation with CommonBase.add_child(). The
attribute name (e.g. channels) will be used as the collection of the children. You may define the attribute
prefix. If there are no other pressing reasons, use channels as the attribute name and leave the prefix at
the default "ch_".

class Extreme5000(Instrument):
Three channels of the same type: 'ch_A', 'ch_B', 'ch_C'
and add them to the 'channels' collection
channels = Instrument.MultiChannelCreator(Extreme5000Channel, ["A", "B", "C

→˓"])
Two channel interfaces of different types: 'fn_power', 'fn_voltage'
and add them to the 'functions' collection
functions = Instrument.MultiChannelCreator((PowerChannel, VoltageChannel),

["power", "voltage"], prefix="fn_")

Parameters

• cls – Class for all children or tuple/list of classes, one for each child.

• id – tuple/list of ids of the channels on the instrument.

• prefix – Collection prefix for the attributes, e.g. “ch_” creates attribute self.ch_A. If
prefix evaluates False, the child will be added directly under the variable name. Required
if id is tuple/list.

• **kwargs – Keyword arguments for all children.

property acquisition_average

Control the averaging times of average acquisition.

acquisition_sample_size(source)
Get acquisition sample size for a certain channel. Used mainly for waveform acquisition. If the source is
MATH, the SANU? MATH query does not seem to work, so I return the memory size instead.

Parameters
source – channel number of channel name.

Returns
acquisition sample size of that channel.

property acquisition_sample_size_c1

Get the number of data points that the hardware will acquire from the input signal of channel 1. Note.
Channel 2 and channel 1 share the same ADC, so the sample is the same too.

property acquisition_sample_size_c2

Get the number of data points that the hardware will acquire from the input signal of channel 2. Note.
Channel 2 and channel 1 share the same ADC, so the sample is the same too.

property acquisition_sample_size_c3

Get the number of data points that the hardware will acquire from the input signal of channel 3. Note.
Channel 3 and channel 4 share the same ADC, so the sample is the same too.

362 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property acquisition_sample_size_c4

Get the number of data points that the hardware will acquire from the input signal of channel 4. Note.
Channel 3 and channel 4 share the same ADC, so the sample is the same too.

property acquisition_sampling_rate

Get the sample rate of the scope.

property acquisition_status

Get the acquisition status of the scope.

property acquisition_type

Control the type of data acquisition.

Can be ‘normal’, ‘peak’, ‘average’, ‘highres’.

add_child(cls, id=None, collection='channels', prefix='ch_', attr_name='', **kwargs)
Add a child to this instance and return its index in the children list.

The newly created child may be accessed either by the id in the children dictionary or by the created attribute,
e.g. the fifth channel of instrument with id “F” has two access options: instrument.channels["F"] ==
instrument.ch_F

Note: Do not change the default collection or prefix parameter, unless you have to distinguish several
collections of different children, e.g. different channel types (analog and digital).

Parameters

• cls – Class of the channel.

• id – Child id how it is used in communication, e.g. “A”.

• collection – Name of the collection of children, used for dictionary access to the channel
interfaces.

• prefix – For creating multiple channel interfaces, the prefix e.g. “ch_” is prepended to
the attribute name of the channel interface self.ch_A. If prefix evaluates False, the child will
be added directly under the collection name.

• attr_name – For creating a single channel interface, the attr_name argument is used when
setting the attribute name of the channel interface.

• **kwargs – Keyword arguments for the channel creator.

Returns
Instance of the created child.

ask(command, query_delay=0)
Write a command to the instrument and return the read response.

Parameters

• command – Command string to be sent to the instrument.

• query_delay – Delay between writing and reading in seconds.

Returns
String returned by the device without read_termination.

7.30. LeCroy 363

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

autoscale()

Autoscale displayed channels.

binary_values(command, query_delay=0, **kwargs)
Write a command to the instrument and return a numpy array of the binary data.

Parameters

• command – Command to be sent to the instrument.

• query_delay – Delay between writing and reading in seconds.

• kwargs – Arguments for read_binary_values().

Returns
NumPy array of values.

property bwlimit

Set the internal low-pass filter for all channels.(dynamic)

center_trigger()

Set the trigger levels to center of the trigger source waveform.

ch(source)
Get channel object from its index or its name. Or if source is “math”, just return the scope object.

Parameters
source – can be 1, 2, 3, 4 or C1, C2, C3, C4, MATH

Returns
handle to the selected source.

check_errors()

Read all errors from the instrument and log them.

Returns
List of error entries.

check_get_errors()

Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

clear()

Clears the instrument status byte

364 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property complete

Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation Complete query
places an ASCII character 1 into the device’s Output Queue when all pending selected device operations
have been finished.

static control(get_command, set_command, docs, validator=<function CommonBase.<lambda>>,
values=(), map_values=False, get_process=<function CommonBase.<lambda>>,
set_process=<function CommonBase.<lambda>>, command_process=None,
check_set_errors=False, check_get_errors=False, dynamic=False,
preprocess_reply=None, separator=', ', maxsplit=-1, cast=<class 'float'>,
values_kwargs=None, **kwargs)

Return a property for the class based on the supplied commands. This property may be set and read from
the instrument. See also measurement() and setting().

Parameters

• get_command – A string command that asks for the value, set to None if get is not supported
(see also setting()).

• set_command – A string command that writes the value, set to None if set is not supported
(see also measurement()).

• docs – A docstring that will be included in the documentation

• validator – A function that takes both a value and a group of valid values and returns a
valid value, while it otherwise raises an exception

• values – A list, tuple, range, or dictionary of valid values, that can be used as to map
values if map_values is True.

• map_values – A boolean flag that determines if the values should be interpreted as a map

• get_process – A function that take a value and allows processing before value mapping,
returning the processed value

• set_process – A function that takes a value and allows processing before value mapping,
returning the processed value

• command_process – A function that takes a command and allows processing before exe-
cuting the command

Deprecated since version 0.12: Use a dynamic property instead.

• check_set_errors – Toggles checking errors after setting

• check_get_errors – Toggles checking errors after getting

• dynamic – Specify whether the property parameters are meant to be changed in instances
or subclasses.

• preprocess_reply – Optional callable used to preprocess the string received from the
instrument, before splitting it. The callable returns the processed string.

• separator – A separator character to split the string returned by the device into a list.

• maxsplit – The string returned by the device is splitted at most maxsplit times. -1 (default)
indicates no limit.

• cast – A type to cast each element of the splitted string.

• values_kwargs (dict) – Further keyword arguments for values().

7.30. LeCroy 365

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• **kwargs – Keyword arguments for values().

Deprecated since version 0.12: Use values_kwargs dictionary parameter instead.

Example of usage of dynamic parameter is as follows:

class GenericInstrument(Instrument):
center_frequency = Instrument.control(

":SENS:FREQ:CENT?;", ":SENS:FREQ:CENT %e GHz;",
" A floating point property that represents the frequency ... ",
validator=strict_range,
Redefine this in subclasses to reflect actual instrument value:
values=(1, 20),
dynamic=True # enable changing property parameters on-the-fly

)

class SpecificInstrument(GenericInstrument):
Identical to GenericInstrument, except for frequency range
Override the "values" parameter of the "center_frequency" property
center_frequency_values = (1, 10) # Redefined at subclass level

instrument = SpecificInstrument()
instrument.center_frequency_values = (1, 6e9) # Redefined at instance level

Warning: Unexpected side effects when using dynamic properties

Users must pay attention when using dynamic properties, since definition of class and/or instance attributes
matching specific patterns could have unwanted side effect. The attribute name pattern property_param,
where property is the name of the dynamic property (e.g. center_frequency in the example) and param
is any of this method parameters name except dynamic and docs (e.g. values in the example) has to be
considered reserved for dynamic property control.

default_setup()

Set up the oscilloscope for remote operation.

The COMM_HEADER command controls the way the oscilloscope formats response to queries. This
command does not affect the interpretation of messages sent to the oscilloscope. Headers can be sent in
their long or short form regardless of the CHDR setting. By setting the COMM_HEADER to OFF, the
instrument is going to reply with minimal information, and this makes the response message much easier
to parse. The user should not be fiddling with the COMM_HEADER during operation, because if the
communication header is anything other than OFF, the whole driver breaks down.

display_parameter(parameter, channel)
Same as the display_parameter method in the Channel subclass.

download_image()

Get a BMP image of oscilloscope screen in bytearray of specified file format.

download_waveform(source, requested_points=None, sparsing=None)
Get data points from the specified source of the oscilloscope.

The returned objects are two np.ndarray of data and time points and a dict with the waveform preamble,
that contains metadata about the waveform.

Parameters

366 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• source – measurement source. It can be “C1”, “C2”, “C3”, “C4”, “MATH”.

• requested_points – number of points to acquire. If None the number of points requested
in the previous call will be assumed, i.e. the value of the number of points stored in the
oscilloscope memory. If 0 the maximum number of points will be returned.

• sparsing – interval between data points. For example if sparsing = 4, only one point every
4 points is read. If 0 or None the sparsing of the previous call is assumed, i.e. the value of
the sparsing stored in the oscilloscope memory.

Returns
data_ndarray, time_ndarray, waveform_preamble_dict: see waveform_preamble property for
dict format.

static get_channel_pairs(cls)
Return a list of all the Instrument’s channel pairs

static get_channels(cls)
Return a list of all the Instrument’s ChannelCreator and MultiChannelCreator instances

property grid_display

Control the type of the grid which is used to display (FULL, HALF, OFF).

property id

Get the identification of the instrument.

property intensity

Set the intensity level of the grid or the trace in percent

property math_define

Control the desired waveform math operation between two channels.

Three parameters must be passed as a tuple:

1. source1 : source channel on the left

2. operation : operator must be “*”, “/”, “+”, “-”

3. source2 : source channel on the right

property math_vdiv

Control the vertical scale of the selected math operation.

This command is only valid in add, subtract, multiply and divide operation. Note: legal values for the scale
depend on the selected operation.

property math_vpos

Control the vertical position of the math waveform with specified source.

Note: the point represents the screen pixels and is related to the screen center. For example, if the point is
50. The math waveform will be displayed 1 grid above the vertical center of the screen. Namely one grid
is 50.

property measure_delay

Control measurement delay.

The MEASURE_DELY command places the instrument in the continuous measurement mode and starts a
type of delay measurement. The MEASURE_DELY? query returns the measured value of delay type. The
command accepts three arguments with the following syntax:

7.30. LeCroy 367

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

measure_delay = (<type>,<sourceA>,<sourceB>)

<type> := {PHA,FRR,FRF,FFR,FFF,LRR,LRF,LFR,LFF,SKEW}

<sourceA>,<sourceB> := {C1,C2,C3,C4} where if sourceA=CX and sourceB=CY, then X < Y

Type Description
PHA The phase difference between two channels. (rising edge - rising edge)
FRR Delay between two channels. (first rising edge - first rising edge)
FRF Delay between two channels. (first rising edge - first falling edge)
FFR Delay between two channels. (first falling edge - first rising edge)
FFF Delay between two channels. (first falling edge - first falling edge)
LRR Delay between two channels. (first rising edge - last rising edge)
LRF Delay between two channels. (first rising edge - last falling edge)
LFR Delay between two channels. (first falling edge - last rising edge)
LFF Delay between two channels. (first falling edge - last falling edge)
Skew Delay between two channels. (edge – edge of the same type)

measure_parameter(parameter, channel)
Same as the measure_parameter method in the Channel subclass

static measurement(get_command, docs, values=(), map_values=None, get_process=<function
CommonBase.<lambda>>, command_process=None, check_get_errors=False,
dynamic=False, preprocess_reply=None, separator=', ', maxsplit=-1, cast=<class
'float'>, values_kwargs=None, **kwargs)

Return a property for the class based on the supplied commands. This is a measurement quantity that may
only be read from the instrument, not set.

Parameters

• get_command – A string command that asks for the value

• docs – A docstring that will be included in the documentation

• values – A list, tuple, range, or dictionary of valid values, that can be used as to map
values if map_values is True.

• map_values – A boolean flag that determines if the values should be interpreted as a map

• get_process – A function that take a value and allows processing before value mapping,
returning the processed value

• command_process – A function that take a command and allows processing before exe-
cuting the command, for getting

Deprecated since version 0.12: Use a dynamic property instead.

• check_get_errors – Toggles checking errors after getting

• dynamic – Specify whether the property parameters are meant to be changed in instances
or subclasses. See control() for an usage example.

• preprocess_reply – Optional callable used to preprocess the string received from the
instrument, before splitting it. The callable returns the processed string.

• separator – A separator character to split the string returned by the device into a list.

• maxsplit – The string returned by the device is splitted at most maxsplit times. -1 (default)
indicates no limit.

• cast – A type to cast each element of the splitted string.

368 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• values_kwargs (dict) – Further keyword arguments for values().

• **kwargs – Keyword arguments for values().

Deprecated since version 0.12: Use values_kwargs dictionary parameter instead.

property memory_size

Control the maximum depth of memory.

<size>:={7K,70K,700K,7M} for non-interleaved mode. Non-interleaved means a single channel is active
per A/D converter. Most oscilloscopes feature two channels per A/D converter.

<size>:={14K,140K,1.4M,14M} for interleave mode. Interleave mode means multiple active channels per
A/D converter.

property menu

Control the bottom menu enabled state (strict bool).

property options

Get the device options installed.

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

read_binary_values(**kwargs)
Read binary values from the device.

read_bytes(count, **kwargs)
Read a certain number of bytes from the instrument.

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read the whole read
buffer.

• kwargs – Keyword arguments for the adapter.

Returns bytes
Bytes response of the instrument (including termination).

remove_child(child)
Remove the child from the instrument and the corresponding collection.

Parameters
child – Instance of the child to delete.

reset()

Resets the instrument.

run()

Starts repetitive acquisitions.

This is the same as pressing the Run key on the front panel.

static setting(set_command, docs, validator=<function CommonBase.<lambda>>, values=(),
map_values=False, set_process=<function CommonBase.<lambda>>,
check_set_errors=False, dynamic=False)

Return a property for the class based on the supplied commands. This property may be set, but raises an
exception when being read from the instrument.

Parameters

• set_command – A string command that writes the value

7.30. LeCroy 369

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• docs – A docstring that will be included in the documentation

• validator – A function that takes both a value and a group of valid values and returns a
valid value, while it otherwise raises an exception

• values – A list, tuple, range, or dictionary of valid values, that can be used as to map
values if map_values is True.

• map_values – A boolean flag that determines if the values should be interpreted as a map

• set_process – A function that takes a value and allows processing before value mapping,
returning the processed value

• check_set_errors – Toggles checking errors after setting

• dynamic – Specify whether the property parameters are meant to be changed in instances
or subclasses. See control() for an usage example.

shutdown()

Brings the instrument to a safe and stable state

single()

Causes the instrument to acquire a single trigger of data.

This is the same as pressing the Single key on the front panel.

property status

Get the status byte and Master Summary Status bit.

stop()

Stops the acquisition. This is the same as pressing the Stop key on the front panel.

property timebase

Get timebase setup as a dict containing the following keys:

• “timebase_scale”: horizontal scale in seconds/div (float)

• “timebase_offset”: interval in seconds between the trigger and the reference position (float)

• “timebase_hor_magnify”: horizontal scale in the zoomed window in seconds/div (float)

• “timebase_hor_position”: horizontal position in the zoomed window in seconds (float)

property timebase_hor_magnify

Control the zoomed (delayed) window horizontal scale (seconds/div).

The main sweep scale determines the range for this command.

property timebase_hor_position

Control the horizontal position in the zoomed (delayed) view of the main sweep.

The main sweep range and the main sweep horizontal position determine the range for this command. The
value for this command must keep the zoomed view window within the main sweep range.

property timebase_offset

Control the time interval in seconds between the trigger event and the reference position (at center of screen
by default).

property timebase_scale

Control the horizontal scale (units per division) in seconds for the main window (float).

370 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

timebase_setup(scale=None, offset=None, hor_magnify=None, hor_position=None)
Set up timebase. Unspecified parameters are not modified. Modifying a single parameter might im-
pact other parameters. Refer to oscilloscope documentation and make multiple consecutive calls to time-
base_setup if needed.

Parameters

• scale – interval in seconds between the trigger event and the reference position.

• offset – horizontal scale per division in seconds/div.

• hor_magnify – horizontal scale in the zoomed window in seconds/div.

• hor_position – horizontal position in the zoomed window in seconds.

property trigger

Get trigger setup as a dict containing the following keys:

• “mode”: trigger sweep mode [auto, normal, single, stop]

• “trigger_type”: condition that will trigger the acquisition of waveforms [edge, slew,glit,intv,runt,drop]

• “source”: trigger source [c1,c2,c3,c4]

• “hold_type”: hold type (refer to page 172 of programing guide)

• “hold_value1”: hold value1 (refer to page 172 of programing guide)

• “hold_value2”: hold value2 (refer to page 172 of programing guide)

• “coupling”: input coupling for the selected trigger sources

• “level”: trigger level voltage for the active trigger source

• “level2”: trigger lower level voltage for the active trigger source (only slew/runt trigger)

• “slope”: trigger slope of the specified trigger source

property trigger_mode

Control the trigger sweep mode (string).

<mode>:= {AUTO,NORM,SINGLE,STOP}

• auto : When AUTO sweep mode is selected, the oscilloscope begins to search for the trigger signal
that meets the conditions. If the trigger signal is satisfied, the running state on the top left corner of
the user interface shows Trig’d, and the interface shows stable waveform. Otherwise, the running state
always shows Auto, and the interface shows unstable waveform.

• normal : When NORMAL sweep mode is selected, the oscilloscope enters the wait trigger state and
begins to search for trigger signals that meet the conditions. If the trigger signal is satisfied, the run-
ning state shows Trig’d, and the interface shows stable waveform. Otherwise, the running state shows
Ready, and the interface displays the last triggered waveform (previous trigger) or does not display the
waveform (no previous trigger).

• single : When SINGLE sweep mode is selected, the backlight of SINGLE key lights up, the oscillo-
scope enters the waiting trigger state and begins to search for the trigger signal that meets the condi-
tions. If the trigger signal is satisfied, the running state shows Trig’d, and the interface shows stable
waveform. Then, the oscilloscope stops scanning, the RUN/STOP key is red light, and the running
status shows Stop. Otherwise, the running state shows Ready, and the interface does not display the
waveform.

• stopped : STOP is a part of the option of this command, but not a trigger mode of the oscilloscope.

7.30. LeCroy 371

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property trigger_select

Control the condition that will trigger the acquisition of waveforms (string).

Depending on the trigger type, additional parameters must be specified. These additional parameters are
grouped in pairs. The first in the pair names the variable to be modified, while the second gives the new
value to be assigned. Pairs may be given in any order and restricted to those variables to be changed.

There are five parameters that can be specified. Parameters 1. 2. 3. are always mandatory. Parameters 4.
5. are required only for certain combinations of the previous parameters.

1. <trig_type>:={edge, slew, glit, intv, runt, drop}

2. <source>:={c1, c2, c3, c4, line}

3. <hold_type>:=

• {ti, off} for edge trigger.

• {ti} for drop trigger.

• {ps, pl, p2, p1} for glit/runt trigger.

• {is, il, i2, i1} for slew/intv trigger.

4. <hold_value1>:= a time value with unit.

5. <hold_value2>:= a time value with unit.

Note:

• “line” can only be selected when the trigger type is “edge”.

• All time arguments should be given in multiples of seconds. Use the scientific notation if necessary.

• The range of hold_values varies from trigger types. [80nS, 1.5S] for “edge” trigger, and [2nS, 4.2S]
for others.

• The trigger_select command is switched automatically between the short, normal and extended version
depending on the number of expected parameters.

trigger_setup(mode=None, source=None, trigger_type=None, hold_type=None, hold_value1=None,
hold_value2=None, coupling=None, level=None, level2=None, slope=None)

Set up trigger.

Unspecified parameters are not modified. Modifying a single parameter might impact other parameters. Re-
fer to oscilloscope documentation and make multiple consecutive calls to trigger_setup and channel_setup
if needed.

Parameters

• mode – trigger sweep mode [auto, normal, single, stop]

• source – trigger source [c1, c2, c3, c4, line]

• trigger_type – condition that will trigger the acquisition of waveforms
[edge,slew,glit,intv,runt,drop]

• hold_type – hold type (refer to page 172 of programing guide)

• hold_value1 – hold value1 (refer to page 172 of programing guide)

• hold_value2 – hold value2 (refer to page 172 of programing guide)

• coupling – input coupling for the selected trigger sources

• level – trigger level voltage for the active trigger source

372 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• level2 – trigger lower level voltage for the active trigger source (only slew/runt trigger)

• slope – trigger slope of the specified trigger source

values(command, separator=', ', cast=<class 'float'>, preprocess_reply=None, maxsplit=-1, **kwargs)
Write a command to the instrument and return a list of formatted values from the result.

Parameters

• command – SCPI command to be sent to the instrument.

• preprocess_reply – Optional callable used to preprocess the string received from the
instrument, before splitting it. The callable returns the processed string.

• separator – A separator character to split the string returned by the device into a list.

• maxsplit – The string returned by the device is splitted at most maxsplit times. -1 (default)
indicates no limit.

• cast – A type to cast each element of the splitted string.

• **kwargs – Keyword arguments to be passed to the ask() method.

Returns
A list of the desired type, or strings where the casting fails.

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Parameters
query_delay – Delay between writing and reading in seconds.

property waveform_first_point

Control the address of the first data point to be sent (int). For waveforms acquired in sequence mode, this
refers to the relative address in the given segment. The first data point starts at zero and is strictly positive.

property waveform_points

Control the number of waveform points to be transferred with the digitize method (int). NP = 0 sends all
data points.

Note that the oscilloscope may provide less than the specified nb of points.

property waveform_preamble

Get preamble information for the selected waveform source as a dict with the following keys:

• “type”: normal, peak detect, average, high resolution (str)

• “requested_points”: number of data points requested by the user (int)

• “sampled_points”: number of data points sampled by the oscilloscope (int)

• “transmitted_points”: number of data points actually transmitted (optional) (int)

• “memory_size”: size of the oscilloscope internal memory in bytes (int)

• “sparsing”: sparse point. It defines the interval between data points. (int)

• “first_point”: address of the first data point to be sent (int)

• “source”: source of the data : “C1”, “C2”, “C3”, “C4”, “MATH”.

• “unit”: Physical units of the Y-axis

• “type”: type of data acquisition. Can be “normal”, “peak”, “average”, “highres”

• “average”: average times of average acquisition

7.30. LeCroy 373

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• “sampling_rate”: sampling rate (it is a read-only property)

• “grid_number”: number of horizontal grids (it is a read-only property)

• “status”: acquisition status of the scope. Can be “stopped”, “triggered”, “ready”, “auto”, “armed”

• “xdiv”: horizontal scale (units per division) in seconds

• “xoffset”: time interval in seconds between the trigger event and the reference position

• “ydiv”: vertical scale (units per division) in Volts

• “yoffset”: value that is represented at center of screen in Volts

property waveform_sparsing

Control the interval between data points (integer). For example:

SP = 0 sends all data points. SP = 4 sends 1 point every 4 data points.

write(command, **kwargs)
Write the command to the instrument through the adapter.

Note: if the last command was sent less than WRITE_INTERVAL_S before, this method blocks for the
remaining time so that commands are never sent with rate more than 1/WRITE_INTERVAL_S Hz.

Parameters
command – command string to be sent to the instrument

write_binary_values(command, values, *args, **kwargs)
Write binary values to the device.

Parameters

• command – Command to send.

• values – The values to transmit.

• **kwargs (*args,) – Further arguments to hand to the Adapter.

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

class pymeasure.instruments.lecroy.lecroyT3DSO1204.LeCroyT3DSO1204Channel(parent, id)
Bases: TeledyneOscilloscopeChannel

Implementation of a LeCroy T3DSO1204 Oscilloscope channel.

Implementation modeled on Channel object of Keysight DSOX1102G instrument.

property bwlimit

Control the 20 MHz internal low-pass filter (strict bool).

This oscilloscope only has one frequency available for this filter.

property invert

Control the inversion of the input signal (strict bool).

property skew_factor

Control the channel-to-channel skew factor for the specified channel. Each analog channel can be adjusted
+ or -100 ns for a total of 200 ns difference between channels. You can use the oscilloscope’s skew control
to remove cable-delay errors between channels.

374 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property trigger_level2

Control the lower trigger level voltage for the specified source (float). Higher and lower trigger levels are
used with runt/slope triggers. When setting the trigger level it must be divided by the probe attenuation.
This is not documented in the datasheet and it is probably a bug of the scope firmware. An out-of-range
value will be adjusted to the closest legal value.

property unit

Control the unit of the specified trace. Measurement results, channel sensitivity, and trigger level will reflect
the measurement units you select. (“A” for Amperes, “V” for Volts).

7.31 MKS Instruments

This section contains specific documentation on the MKS Instruments devices that are implemented. If you are inter-
ested in an instrument not included, please consider adding the instrument.

7.31.1 MKS Instruments 937B Vacuum Gauge Controller

class pymeasure.instruments.mksinst.mks937b.MKS937B(adapter, name='MKS 937B vacuum gauge
controller', address=253, **kwargs)

Bases: Instrument

MKS 937B vacuum gauge controller

Connection to the device is made through an RS232/RS485 serial connection. The communication protocol of
this device is as follows:

Query: ‘@<aaa><Command>?;FF’ with the response ‘@<aaa>ACK<Response>;FF’ Set command:
‘@<aaa><Command>!<parameter>;FF’ with the response ‘@<aaa>ACK<Response>;FF’ Above <aaa> is an
address from 001 to 254 which can be specified upon initialization. Since ‘;FF’ is not supported by pyvisa as
terminator this class overloads the device communication methods.

Parameters

• adapter – pyvisa resource name of the instrument or adapter instance

• name (string) – The name of the instrument.

• address – device address included in every message to the instrument (default=253)

• kwargs – Any valid key-word argument for Instrument

ch_1

Channel
IonGaugeAndPressureChannel

ch_2

Channel
PressureChannel

ch_3

Channel
IonGaugeAndPressureChannel

7.31. MKS Instruments 375

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

ch_4

Channel
PressureChannel

ch_5

Channel
IonGaugeAndPressureChannel

ch_6

Channel
PressureChannel

property all_pressures

Read pressures on all channels in selected units

check_set_errors()

Check reply string for acknowledgement string.

property combined_pressure1

Read pressure on channel 1 and its combination sensor

property combined_pressure2

Read pressure on channel 2 and its combination sensor

read()

Reads from the instrument including the correct termination characters

property serial

Serial number of the instrument

property unit

Pressure unit used for all pressure readings from the instrument

write(command)
Write to the instrument including the device address.

Parameters
command – command string to be sent to the instrument

class pymeasure.instruments.mksinst.mks937b.IonGaugeAndPressureChannel(parent, id)
Bases: PressureChannel

Channel having both a pressure and an ion gauge sensor

property ion_gauge_status

Ion gauge status of the channel

class pymeasure.instruments.mksinst.mks937b.PressureChannel(parent, id)
Bases: Channel

property power_enabled

Power status of the channel

property pressure

Pressure on the channel in units selected on the device

376 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.32 Newport

This section contains specific documentation on the Newport instruments that are implemented. If you are interested
in an instrument not included, please consider adding the instrument.

7.32.1 ESP 300 Motion Controller

class pymeasure.instruments.newport.ESP300(adapter, name='Newport ESP 300 Motion Controller',
**kwargs)

Bases: Instrument

Represents the Newport ESP 300 Motion Controller and provides a high-level for interacting with the instrument.

By default this instrument is constructed with x, y, and phi attributes that represent axes 1, 2, and 3. Custom
implementations can overwrite this depending on the avalible axes. Axes are controlled through an Axis class.

property axes

Get a list of the Axis objects that are present.

clear_errors()

Clears the error messages by checking until a 0 code is recived.

disable()

Disables all of the axes associated with this controller.

enable()

Enables all of the axes associated with this controller.

property error

Get an error code from the motion controller.

property errors

Get a list of error Exceptions that can be later raised, or used to diagnose the situation.

shutdown()

Shuts down the controller by disabling all of the axes.

class pymeasure.instruments.newport.esp300.Axis(axis, controller)
Bases: object

Represents an axis of the Newport ESP300 Motor Controller, which can have independent parameters from the
other axes.

define_position(position)
Overwrites the value of the current position with the given value.

disable()

Disables motion for the axis.

enable()

Enables motion for the axis.

property enabled

Returns a boolean value that is True if the motion for this axis is enabled.

7.32. Newport 377

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

home(type=1)
Drives the axis to the home position, which may be the negative hardware limit for some actuators (e.g.
LTA-HS). type can take integer values from 0 to 6.

property left_limit

A floating point property that controls the left software limit of the axis.

property motion_done

Returns a boolean that is True if the motion is finished.

property position

A floating point property that controls the position of the axis. The units are defined based on the actuator.
Use the wait_for_stop() method to ensure the position is stable.

property right_limit

A floating point property that controls the right software limit of the axis.

property units

A string property that controls the displacement units of the axis, which can take values of: enconder
count, motor step, millimeter, micrometer, inches, milli-inches, micro-inches, degree, gradient, radian,
milliradian, and microradian.

wait_for_stop(delay=0, interval=0.05)
Blocks the program until the motion is completed. A further delay can be specified in seconds.

zero()

Resets the axis position to be zero at the current poisiton.

class pymeasure.instruments.newport.esp300.AxisError(code)
Bases: Exception

Raised when a particular axis causes an error for the Newport ESP300.

class pymeasure.instruments.newport.esp300.GeneralError(code)
Bases: Exception

Raised when the Newport ESP300 has a general error.

7.33 National Instruments

This section contains specific documentation on the National Instruments instruments that are implemented. If you are
interested in an instrument not included, please consider adding the instrument.

7.33.1 NI Virtual Bench

General Information

The armstrap/pyvirtualbench Python wrapper for the VirtualBench C-API is required. This Instrument driver only
interfaces the pyvirtualbench Python wrapper.

378 Chapter 7. pymeasure.instruments

https://github.com/armstrap/armstrap-pyvirtualbench

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Examples

To be documented. Check the examples in the pyvirtualbench repository to get an idea.

Simple Example to switch digital lines of the DIO module.

from pymeasure.instruments.ni import VirtualBench

vb = VirtualBench(device_name='VB8012-3057E1C')
line = 'dig/2' # may be list of lines
initialize DIO module -> available via vb.dio
vb.acquire_digital_input_output(line, reset=False)

vb.dio.write(self.line, {True})
sleep(1000)
vb.dio.write(self.line, {False})

vb.shutdown()

Instrument Class

class pymeasure.instruments.ni.virtualbench.VirtualBench(device_name='', name='VirtualBench')
Bases: object

Represents National Instruments Virtual Bench main frame.

Subclasses implement the functionalities of the different modules:

• Mixed-Signal-Oscilloscope (MSO)

• Digital Input Output (DIO)

• Function Generator (FGEN)

• Power Supply (PS)

• Serial Peripheral Interface (SPI) -> not implemented for pymeasure yet

• Inter Integrated Circuit (I2C) -> not implemented for pymeasure yet

For every module exist methods to save/load the configuration to file. These methods are not wrapped so far,
checkout the pyvirtualbench file.

All calibration methods and classes are not wrapped so far, since these are not required on a very regular ba-
sis. Also the connections via network are not yet implemented. Check the pyvirtualbench file, if you need the
functionality.

Parameters

• device_name (str) – Full unique device name

• name (str) – Name for display in pymeasure

class DigitalInputOutput(virtualbench, lines, reset, vb_name='')
Bases: VirtualBenchInstrument

Represents Digital Input Output (DIO) Module of Virtual Bench device. Allows to read/write digital chan-
nels and/or set channels to export the start signal of FGEN module or trigger of MSO module.

7.33. National Instruments 379

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

export_signal(line, digitalSignalSource)
Exports a signal to the specified line.

Parameters
• line (str) – Line string
• digitalSignalSource (int) – 0 for FGEN start or 1 for MSO trigger

query_export_signal(line)
Indicates the signal being exported on the specified line.

Parameters
line (str) – Line string

Returns
Exported signal (FGEN start or MSO trigger)

Return type
enum

query_line_configuration()

Indicates the current line configurations. Tristate Lines, Static Lines, and Export Lines contain comma-
separated range_data and/or colon-delimited lists of all acquired lines

read(lines)
Reads the current state of the specified lines.

Parameters
lines (str) – Line string, requires full name specification e.g. 'VB8012-xxxxxxx/dig/
0:7' since instrument_handle is not required (only library_handle)

Returns
List of line states (HIGH/LOW)

Return type
list

reset_instrument()

Resets the session configuration to default values, and resets the device and driver software to a known
state.

shutdown()

Removes the session and deallocates any resources acquired during the session. If output is enabled
on any channels, they remain in their current state.

tristate_lines(lines)
Sets all specified lines to a high-impedance state. (Default)

validate_lines(lines, return_single_lines=False, validate_init=False)
Validate lines string Allowed patterns (case sensitive):

• 'VBxxxx-xxxxxxx/dig/0:7'
• 'VBxxxx-xxxxxxx/dig/0'
• 'dig/0'
• 'VBxxxx-xxxxxxx/trig'
• 'trig'

Allowed Line Numbers: 0-7 or trig

Parameters
• lines (str) – Line string to test
• return_single_lines (bool, optional) – Return list of line numbers as well, de-

faults to False
• validate_init (bool, optional) – Check if lines are initialized (in self.
_line_numbers), defaults to False

380 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Returns
Line string, optional list of single line numbers

Return type
str, optional (str, list)

write(lines, data)
Writes data to the specified lines.

Parameters
• lines (str) – Line string
• data (list or tuple) – List of data, (True = High, False = Low)

class DigitalMultimeter(virtualbench, reset, vb_name='')
Bases: VirtualBenchInstrument

Represents Digital Multimeter (DMM) Module of Virtual Bench device. Allows to measure either DC/AC
voltage or current, Resistance or Diodes.

configure_ac_current(auto_range_terminal)
Configure auto rage terminal for AC current measurement

Parameters
auto_range_terminal – Terminal to perform auto ranging ('LOW' or 'HIGH')

configure_dc_current(auto_range_terminal)
Configure auto rage terminal for DC current measurement

Parameters
auto_range_terminal – Terminal to perform auto ranging ('LOW' or 'HIGH')

configure_dc_voltage(dmm_input_resistance)
Configure DC voltage input resistance

Parameters
dmm_input_resistance (int or str) – Input resistance ('TEN_MEGA_OHM' or
'TEN_GIGA_OHM')

configure_measurement(dmm_function, auto_range=True, manual_range=1.0)
Configure Instrument to take a DMM measurement

Parameters
• name (dmm_function:DMM function index or) –

– 'DC_VOLTS', 'AC_VOLTS'
– 'DC_CURRENT', 'AC_CURRENT'
– 'RESISTANCE'
– 'DIODE'

• auto_range (bool) – Enable/Disable auto ranging
• manual_range (float) – Manually set measurement range

query_ac_current()

Indicates auto range terminal for AC current measurement

query_dc_current()

Indicates auto range terminal for DC current measurement

query_dc_voltage()

Indicates input resistance setting for DC voltage measurement

query_measurement()

Query DMM measurement settings from the instrument

Returns
Auto range, range data

7.33. National Instruments 381

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Return type
(bool, float)

read()

Read measurement value from the instrument

Returns
Measurement value

Return type
float

reset_instrument()

Reset the DMM module to defaults

shutdown()

Removes the session and deallocates any resources acquired during the session. If output is enabled
on any channels, they remain in their current state.

validate_auto_range_terminal(auto_range_terminal)
Check value for choosing the auto range terminal for DC current measurement

Parameters
auto_range_terminal (int or str) – Terminal to perform auto ranging ('LOW' or
'HIGH')

Returns
Auto range terminal to pass to the instrument

Return type
int

validate_dmm_function(dmm_function)
Check if DMM function dmm_function exists

Parameters
dmm_function (int or str) – DMM function index or name:

• 'DC_VOLTS', 'AC_VOLTS'

• 'DC_CURRENT', 'AC_CURRENT'

• 'RESISTANCE'

• 'DIODE'

Returns
DMM function index to pass to the instrument

Return type
int

static validate_range(dmm_function, range)
Checks if range is valid for the chosen dmm_function

Parameters

• dmm_function (int) – DMM Function

• range (int or float) – Range value, e.g. maximum value to measure

Returns
Range value to pass to instrument

382 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Return type
int

class FunctionGenerator(virtualbench, reset, vb_name='')
Bases: VirtualBenchInstrument

Represents Function Generator (FGEN) Module of Virtual Bench device.

configure_arbitrary_waveform(waveform, sample_period)
Configures the instrument to output a waveform. The waveform is output either after the end of the
current waveform if output is enabled, or immediately after output is enabled.

Parameters

• waveform (list) – Waveform as list of values

• sample_period (float) – Time between two waveform points (maximum of
125MS/s, which equals 80ns)

configure_arbitrary_waveform_gain_and_offset(gain, dc_offset)
Configures the instrument to output an arbitrary waveform with a specified gain and offset value. The
waveform is output either after the end of the current waveform if output is enabled, or immediately
after output is enabled.

Parameters

• gain (float) – Gain, multiplier of waveform values

• dc_offset (float) – DC offset in volts

configure_standard_waveform(waveform_function, amplitude, dc_offset, frequency, duty_cycle)
Configures the instrument to output a standard waveform. Check instrument manual for maximum
ratings which depend on load.

Parameters

• waveform_function (int or str) – Waveform function ("SINE", "SQUARE",
"TRIANGLE/RAMP", "DC")

• amplitude (float) – Amplitude in volts

• dc_offset (float) – DC offset in volts

• frequency (float) – Frequency in Hz

• duty_cycle (int) – Duty cycle in %

property filter

Enables or disables the filter on the instrument.

Parameters
enable_filter (bool) – Enable/Disable filter

query_arbitrary_waveform()

Returns the samples per second for arbitrary waveform generation.

Returns
Samples per second

Return type
int

7.33. National Instruments 383

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

query_arbitrary_waveform_gain_and_offset()

Returns the settings for arbitrary waveform generation that includes gain and offset settings.

Returns
Gain, DC offset

Return type
(float, float)

query_generation_status()

Returns the status of waveform generation on the instrument.

Returns
Status

Return type
enum

query_standard_waveform()

Returns the settings for a standard waveform generation.

Returns
Waveform function, amplitude, dc_offset, frequency, duty_cycle

Return type
(enum, float, float, float, int)

query_waveform_mode()

Indicates whether the waveform output by the instrument is a standard or arbitrary waveform.

Returns
Waveform mode

Return type
enum

reset_instrument()

Resets the session configuration to default values, and resets the device and driver software to a
known state.

run()

Transitions the session from the Stopped state to the Running state.

self_calibrate()

Performs offset nulling calibration on the device. You must run FGEN Initialize prior to running this
method.

shutdown()

Removes the session and deallocates any resources acquired during the session. If output is enabled
on any channels, they remain in their current state.

stop()

Transitions the acquisition from either the Triggered or Running state to the Stopped state.

class MixedSignalOscilloscope(virtualbench, reset, vb_name='')
Bases: VirtualBenchInstrument

Represents Mixed Signal Oscilloscope (MSO) Module of Virtual Bench device. Allows to measure oscil-
loscope data from analog and digital channels.

Methods from pyvirtualbench not implemented in pymeasure yet:

384 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• enable_digital_channels

• configure_digital_threshold

• configure_advanced_digital_timing

• configure_state_mode

• configure_digital_edge_trigger

• configure_digital_pattern_trigger

• configure_digital_glitch_trigger

• configure_digital_pulse_width_trigger

• query_digital_channel

• query_enabled_digital_channels

• query_digital_threshold

• query_advanced_digital_timing

• query_state_mode

• query_digital_edge_trigger

• query_digital_pattern_trigger

• query_digital_glitch_trigger

• query_digital_pulse_width_trigger

• read_digital_u64

auto_setup()

Automatically configure the instrument

configure_analog_channel(channel, enable_channel, vertical_range, vertical_offset,
probe_attenuation, vertical_coupling)

Configure analog measurement channel

Parameters

• channel (str) – Channel string

• enable_channel (bool) – Enable/Disable channel

• vertical_range (float) – Vertical measurement range (0V - 20V), the instrument
discretizes to these ranges: [20, 10, 5, 2, 1, 0.5, 0.2, 0.1, 0.05]which
are 5x the values shown in the native UI.

• vertical_offset (float) – Vertical offset to correct for (inverted compared to
VB native UI, -20V - +20V, resolution 0.1mV)

• probe_attenuation (int or str) – Probe attenuation ('ATTENUATION_10X'
or 'ATTENUATION_1X')

• vertical_coupling (int or str) – Vertical coupling ('AC' or 'DC')

configure_analog_channel_characteristics(channel, input_impedance, bandwidth_limit)
Configure electrical characteristics of the specified channel

Parameters

• channel (str) – Channel string

7.33. National Instruments 385

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• input_impedance (int or str) – Input Impedance ('ONE_MEGA_OHM' or
'FIFTY_OHMS')

• bandwidth_limit (int) – Bandwidth limit (100MHz or 20MHz)

configure_analog_edge_trigger(trigger_source, trigger_slope, trigger_level, trigger_hysteresis,
trigger_instance)

Configures a trigger to activate on the specified source when the analog edge reaches the specified
levels.

Parameters

• trigger_source (str) – Channel string

• trigger_slope (int or str) – Trigger slope ('RISING', 'FALLING' or
'EITHER')

• trigger_level (float) – Trigger level

• trigger_hysteresis (float) – Trigger hysteresis

• trigger_instance (int or str) – Trigger instance

configure_analog_pulse_width_trigger(trigger_source, trigger_polarity, trigger_level,
comparison_mode, lower_limit, upper_limit,
trigger_instance)

Configures a trigger to activate on the specified source when the analog edge reaches the specified
levels within a specified window of time.

Parameters

• trigger_source (str) – Channel string

• trigger_polarity (int or str) – Trigger slope ('POSITIVE' or 'NEGATIVE')

• trigger_level (float) – Trigger level

• comparison_mode (int or str) – Mode of compariosn (
'GREATER_THAN_UPPER_LIMIT', 'LESS_THAN_LOWER_LIMIT',
'INSIDE_LIMITS' or 'OUTSIDE_LIMITS')

• lower_limit (float) – Lower limit

• upper_limit (float) – Upper limit

• trigger_instance (int or str) – Trigger instance

configure_immediate_trigger()

Configures a trigger to immediately activate on the specified channels after the pretrigger time has
expired.

configure_timing(sample_rate, acquisition_time, pretrigger_time, sampling_mode)
Configure timing settings of the MSO

Parameters

• sample_rate (int) – Sample rate (15.26kS - 1GS)

• acquisition_time (float) – Acquisition time (1ns - 68.711s)

• pretrigger_time (float) – Pretrigger time (0s - 10s)

• sampling_mode – Sampling mode ('SAMPLE' or 'PEAK_DETECT')

386 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

configure_trigger_delay(trigger_delay)
Configures the amount of time to wait after a trigger condition is met before triggering.

param float trigger_delay
Trigger delay (0s - 17.1799s)

force_trigger()

Causes a software-timed trigger to occur after the pretrigger time has expired.

query_acquisition_status()

Returns the status of a completed or ongoing acquisition.

query_analog_channel(channel)
Indicates the vertical configuration of the specified channel.

Returns
Channel enabled, vertical range, vertical offset, probe attenuation, vertical coupling

Return type
(bool, float, float, enum, enum)

query_analog_channel_characteristics(channel)
Indicates the properties that control the electrical characteristics of the specified channel. This
method returns an error if too much power is applied to the channel.

return
Input impedance, bandwidth limit

rtype
(enum, float)

query_analog_edge_trigger(trigger_instance)
Indicates the analog edge trigger configuration of the specified instance.

Returns
Trigger source, trigger slope, trigger level, trigger hysteresis

Return type
(str, enum, float, float)

query_analog_pulse_width_trigger(trigger_instance)
Indicates the analog pulse width trigger configuration of the specified instance.

Returns
Trigger source, trigger polarity, trigger level, comparison mode, lower limit, upper limit

Return type
(str, enum, float, enum, float, float)

query_enabled_analog_channels()

Returns String of enabled analog channels.

Returns
Enabled analog channels

Return type
str

query_timing()

Indicates the timing configuration of the MSO. Call directly before measurement to read the actual
timing configuration and write it to the corresponding class variables. Necessary to interpret the
measurement data, since it contains no time information.

7.33. National Instruments 387

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Returns
Sample rate, acquisition time, pretrigger time, sampling mode

Return type
(float, float, float, enum)

query_trigger_delay()

Indicates the trigger delay setting of the MSO.

Returns
Trigger delay

Return type
float

query_trigger_type(trigger_instance)
Indicates the trigger type of the specified instance.

Parameters
trigger_instance – Trigger instance ('A' or 'B')

Returns
Trigger type

Return type
str

read_analog_digital_dataframe()

Transfers data from the instrument and returns a pandas dataframe of the analog measurement data,
including time coordinates

Returns
Dataframe with time and measurement data

Return type
pd.DataFrame

read_analog_digital_u64()

Transfers data from the instrument as long as the acquisition state is Acquisition Complete. If the
state is either Running or Triggered, this method will wait until the state transitions to Acquisition
Complete. If the state is Stopped, this method returns an error.

Returns
Analog data out, analog data stride, analog t0, digital data out, digital timestamps out,
digital t0, trigger timestamp, trigger reason

Return type
(list, int, pyvb.Timestamp, list, list, pyvb.Timestamp, pyvb.Timestamp, enum)

reset_instrument()

Resets the session configuration to default values, and resets the device and driver software to a
known state.

run(autoTrigger=True)
Transitions the acquisition from the Stopped state to the Running state. If the current state is Trig-
gered, the acquisition is first transitioned to the Stopped state before transitioning to the Running
state. This method returns an error if too much power is applied to any enabled channel.

Parameters
autoTrigger (bool) – Enable/Disable auto triggering

388 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

shutdown()

Removes the session and deallocates any resources acquired during the session. If output is enabled
on any channels, they remain in their current state.

stop()

Transitions the acquisition from either the Triggered or Running state to the Stopped state.

validate_channel(channel)
Check if channel is a correct specification

Parameters
channel (str) – Channel string

Returns
Channel string

Return type
str

static validate_trigger_instance(trigger_instance)
Check if trigger_instance is a valid choice

Parameters
trigger_instance (int or str) – Trigger instance ('A' or 'B')

Returns
Trigger instance

Return type
int

class PowerSupply(virtualbench, reset, vb_name='')
Bases: VirtualBenchInstrument

Represents Power Supply (PS) Module of Virtual Bench device

configure_current_output(channel, current_level, voltage_limit)
Configures a current output on the specified channel. This method should be called once for every
channel you want to configure to output current.

configure_voltage_output(channel, voltage_level, current_limit)
Configures a voltage output on the specified channel. This method should be called once for every
channel you want to configure to output voltage.

property outputs_enabled

Enables or disables all outputs on all channels of the instrument.

Parameters
enable_outputs (bool) – Enable/Disable outputs

query_current_output(channel)
Indicates the current output settings on the specified channel.

query_voltage_output(channel)
Indicates the voltage output settings on the specified channel.

read_output(channel)
Reads the voltage and current levels and outout mode of the specified channel.

7.33. National Instruments 389

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

reset_instrument()

Resets the session configuration to default values, and resets the device and driver software to a
known state.

shutdown()

Removes the session and deallocates any resources acquired during the session. If output is enabled
on any channels, they remain in their current state.

property tracking

Enables or disables tracking between the positive and negative 25V channels. If enabled, any config-
uration change on the positive 25V channel is mirrored to the negative 25V channel, and any writes
to the negative 25V channel are ignored.

Parameters
enable_tracking (bool) – Enable/Disable tracking

validate_channel(channel, current=False, voltage=False)
Check if channel string is valid and if output current/voltage are within the output ranges of the
channel

Parameters

• channel (str) – Channel string ("ps/+6V","ps/+25V","ps/-25V")

• current (bool, optional) – Current output, defaults to False

• voltage (bool, optional) – Voltage output, defaults to False

Returns
channel or channel, current & voltage

Return type
str or (str, float, float)

acquire_digital_input_output(lines, reset=False)
Establishes communication with the DIO module. This method should be called once per session.

Parameters

• lines (str) – Lines to acquire, reading is possible on all lines

• reset (bool, optional) – Reset DIO module, defaults to False

acquire_digital_multimeter(reset=False)
Establishes communication with the DMM module. This method should be called once per session.

Parameters
reset (bool, optional) – Reset the DMM module, defaults to False

acquire_function_generator(reset=False)
Establishes communication with the FGEN module. This method should be called once per session.

Parameters
reset (bool, optional) – Reset the FGEN module, defaults to False

acquire_mixed_signal_oscilloscope(reset=False)
Establishes communication with the MSO module. This method should be called once per session.

Parameters
reset (bool, optional) – Reset the MSO module, defaults to False

390 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

acquire_power_supply(reset=False)
Establishes communication with the PS module. This method should be called once per session.

Parameters
reset (bool, optional) – Reset the PS module, defaults to False

collapse_channel_string(names_in)
Collapses a channel string into a comma and colon-delimited equivalent. Last element is the number of
channels.

Parameters
names_in (str) – Channel string

Returns
Channel string with colon notation where possible, number of channels

Return type
(str, int)

convert_timestamp_to_values(timestamp)
Converts a timestamp to seconds and fractional seconds

Parameters
timestamp (pyvb.Timestamp) – VirtualBench timestamp

Returns
(seconds_since_1970, fractional seconds)

Return type
(int, float)

convert_values_to_datetime(timestamp)
Converts timestamp to datetime object

Parameters
timestamp (pyvb.Timestamp) – VirtualBench timestamp

Returns
Timestamp as DateTime object

Return type
DateTime

convert_values_to_timestamp(seconds_since_1970, fractional_seconds)
Converts seconds and fractional seconds to a timestamp

Parameters

• seconds_since_1970 (int) – Date/Time in seconds since 1970

• fractional_seconds (float) – Fractional seconds

Returns
VirtualBench timestamp

Return type
pyvb.Timestamp

expand_channel_string(names_in)
Expands a channel string into a comma-delimited (no colon) equivalent. Last element is the number of
channels. 'dig/0:2' -> ('dig/0, dig/1, dig/2',3)

7.33. National Instruments 391

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Parameters
names_in (str) – Channel string

Returns
Channel string with all channels separated by comma, number of channels

Return type
(str, int)

get_calibration_information()

Returns calibration information for the specified device, including the last calibration date and calibration
interval.

Returns
Calibration date, recommended calibration interval in months, calibration interval in
months

Return type
(pyvb.Timestamp, int, int)

get_library_version()

Return the version of the VirtualBench runtime library

shutdown()

Finalize the VirtualBench library.

class pymeasure.instruments.ni.virtualbench.VirtualBench_Direct(*args: Any, **kwargs: Any)
Bases: PyVirtualBench

Represents National Instruments Virtual Bench main frame. This class provides direct access to the arm-
strap/pyvirtualbench Python wrapper.

7.34 Novanta Photonics

This section contains specific documentation on the Novanta photonics instruments that are implemented. Novanta
contains also Lasers developed by Laserquantum. If you are interested in an instrument not included, please consider
adding the instrument.

7.34.1 Novanta FPU60 laser power supply unit

class pymeasure.instruments.novanta.Fpu60(adapter, name='Laserquantum fpu60 power supply unit',
**kwargs)

Bases: Instrument

Represents a fpu60 power supply unit for the finesse laser series by Laserquantum, a Novanta company.

The instrument responds to every command sent.

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

Returns
List of error entries.

392 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property current

Measure the diode current in percent (float).

disable_emission()

Disable emission and unlock the button afterwards.

You have to press the physical button to enable emission again.

property emission_enabled

Measure the emission status (bool).

get_operation_times()

Get the operation times in minutes as a dictionary.

property head_temperature

Measure the laser head temperature in °C (float).

property interlock_enabled

Get the interlock enabled status (bool).

property power

Measure current output power in Watts (float).

property power_setpoint

Control the output power setpoint in Watts (float).

property psu_temperature

Measure the power supply unit temperature in °C (float).

property serial_number

Get the serial number (str).

property shutter_open

Control whether the shutter is open (bool).

property software_version

Get the software version (str).

7.35 Oxford Instruments

This section contains specific documentation on the Oxford Instruments instruments that are implemented. If you are
interested in an instrument not included, please consider adding the instrument.

7.35.1 Oxford Instruments Base Instrument

class pymeasure.instruments.oxfordinstruments.base.OxfordInstrumentsBase(adapter,
name='OxfordInstruments
Base',
max_attempts=5,
**kwargs)

Bases: Instrument

Base instrument for devices from Oxford Instruments.

Checks the replies from instruments for validity.

7.35. Oxford Instruments 393

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Parameters

• adapter – A string, integer, or Adapter subclass object

• name (string) – The name of the instrument. Often the model designation by default.

• max_attempts – Integer that sets how many attempts at getting a valid response to a
query can be made

• **kwargs – In case adapter is a string or integer, additional arguments passed on to
VISAAdapter (check there for details). Discarded otherwise.

ask(command)
Write the command to the instrument and return the resulting ASCII response. Also check the validity
of the response before returning it; if the response is not valid, another attempt is made at getting a valid
response, until the maximum amount of attempts is reached.

Parameters
command – ASCII command string to be sent to the instrument

Returns
String ASCII response of the instrument

Raises
OxfordVISAError if the maximum number of attempts is surpassed without getting a
valid response

is_valid_response(response, command)
Check if the response received from the instrument after a command is valid and understood by the instru-
ment.

Parameters

• response – String ASCII response of the device

• command – command used in the initial query

Returns
True if the response is valid and the response indicates the instrument recognised the com-
mand

write(command)
Write command to instrument and check whether the reply indicates that the given command was not
understood. The devices from Oxford Instruments reply with ‘?xxx’ to a command ‘xxx’ if this command
is not known, and replies with ‘x’ if the command is understood. If the command starts with an “$” the
instrument will not reply at all; hence in that case there will be done no checking for a reply.

Raises
OxfordVISAError if the instrument does not recognise the supplied command or if the
response of the instrument is not understood

class pymeasure.instruments.oxfordinstruments.base.OxfordVISAError

Bases: Exception

394 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.35.2 Oxford Instruments Intelligent Temperature Controller 503

class pymeasure.instruments.oxfordinstruments.ITC503(adapter, name='Oxford ITC503',
clear_buffer=True, min_temperature=0,
max_temperature=1677.7, **kwargs)

Bases: OxfordInstrumentsBase

Represents the Oxford Intelligent Temperature Controller 503.

itc = ITC503("GPIB::24") # Default channel for the ITC503

itc.control_mode = "RU" # Set the control mode to remote
itc.heater_gas_mode = "AUTO" # Turn on auto heater and flow
itc.auto_pid = True # Turn on auto-pid

print(itc.temperature_setpoint) # Print the current set-point
itc.temperature_setpoint = 300 # Change the set-point to 300 K
itc.wait_for_temperature() # Wait for the temperature to stabilize
print(itc.temperature_1) # Print the temperature at sensor 1

class FLOW_CONTROL_STATUS(value, names=None, *, module=None, qualname=None, type=None,
start=1, boundary=None)

Bases: IntFlag

IntFlag class for decoding the flow control status. Contains the following flags:

bit flag meaning
4 HEATER_ERROR_SIGN Sign of heater-error; True means negative
3 TEMPERATURE_ERROR_SIGN Sign of temperature-error; True means negative
2 SLOW_VALVE_ACTION Slow valve action occurring
1 COOLDOWN_TERMINATION Cooldown-termination occurring
0 FAST_COOLDOWN Fast-cooldown occurring

property auto_pid

A boolean property that sets the Auto-PID mode on (True) or off (False).

property auto_pid_table

A property that controls values in the auto-pid table. Relies on ITC503.x_pointer and ITC503.
y_pointer (or ITC503.pointer) to point at the location in the table that is to be set or read.

The x-pointer selects the table entry (1 to 16); the y-pointer selects the parameter:

y-pointer parameter
1 upper temperature limit
2 proportional band
3 integral action time
4 derivative action time

property control_mode

A string property that sets the ITC in local or remote and locked or unlocked, locking the LOC/REM
button. Allowed values are:

7.35. Oxford Instruments 395

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

value state
LL local & locked
RL remote & locked
LU local & unlocked
RU remote & unlocked

property derivative_action_time

A floating point property that controls the derivative action time for the PID controller in minutes. Can be
set if the PID controller is in manual mode. Valid values are 0 [min.] to 273 [min.].

property front_panel_display

A string property that controls what value is displayed on the front panel of the ITC. Valid values are: ‘tem-
perature setpoint’, ‘temperature 1’, ‘temperature 2’, ‘temperature 3’, ‘temperature error’, ‘heater’, ‘heater
voltage’, ‘gasflow’, ‘proportional band’, ‘integral action time’, ‘derivative action time’, ‘channel 1 freq/4’,
‘channel 2 freq/4’, ‘channel 3 freq/4’.

property gasflow

A floating point property that controls gas flow when in manual mode. The value is expressed as a per-
centage of the maximum gas flow. Valid values are in range 0 [off] to 99.9 [%].

property gasflow_configuration_parameter

A property that controls the gas flow configuration parameters. Relies on the ITC503.x_pointer to select
which parameter is set or read:

x-pointer parameter
1 valve gearing
2 target table & features configuration
3 gas flow scaling
4 temperature error sensitivity
5 heater voltage error sensitivity
6 minimum gas valve in auto

property gasflow_control_status

A property that reads the gas-flow control status. Returns the status in the form of a ITC503.
FLOW_CONTROL_STATUS IntFlag.

property heater

A floating point property that represents the heater output power as a percentage of the maximum voltage.
Can be set if the heater is in manual mode. Valid values are in range 0 [off] to 99.9 [%].

property heater_gas_mode

A string property that sets the heater and gas flow control to auto or manual. Allowed values are:

value state
MANUAL heater & gas manual
AM heater auto, gas manual
MA heater manual, gas auto
AUTO heater & gas auto

property heater_voltage

A floating point property that represents the heater output power in volts. For controlling the heater, use
the ITC503.heater property.

396 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property integral_action_time

A floating point property that controls the integral action time for the PID controller in minutes. Can be
set if the PID controller is in manual mode. Valid values are 0 [min.] to 140 [min.].

property pointer

A tuple property to set pointers into tables for loading and examining values in the table, of format (x, y).
The significance and valid values for the pointer depends on what property is to be read or set. The value
for x and y can be in the range 0 to 128.

program_sweep(temperatures, sweep_time, hold_time, steps=None)
Program a temperature sweep in the controller. Stops any running sweep. After programming the sweep,
it can be started using OxfordITC503.sweep_status = 1.

Parameters

• temperatures – An array containing the temperatures for the sweep

• sweep_time – The time (or an array of times) to sweep to a set-point in minutes
(between 0 and 1339.9).

• hold_time – The time (or an array of times) to hold at a set-point in minutes (between
0 and 1339.9).

• steps – The number of steps in the sweep, if given, the temperatures, sweep_time and
hold_time will be interpolated into (approximately) equal segments

property proportional_band

A floating point property that controls the proportional band for the PID controller in Kelvin. Can be set
if the PID controller is in manual mode. Valid values are 0 [K] to 1677.7 [K].

property sweep_status

An integer property that sets the sweep status. Values are:

value meaning
0 Sweep not running
1 Start sweep / sweeping to first set-point
2P - 1 Sweeping to set-point P
2P Holding at set-point P

property sweep_table

A property that controls values in the sweep table. Relies on ITC503.x_pointer and ITC503.
y_pointer (or ITC503.pointer) to point at the location in the table that is to be set or read.

The x-pointer selects the step of the sweep (1 to 16); the y-pointer selects the parameter:

y-pointer parameter
1 set-point temperature
2 sweep-time to set-point
3 hold-time at set-point

property target_voltage

A float property that reads the current heater target voltage with which the actual heater voltage is being
compared. Only valid if gas-flow in auto mode.

7.35. Oxford Instruments 397

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property target_voltage_table

A property that controls values in the target heater voltage table. Relies on the ITC503.x_pointer to
select the entry in the table that is to be set or read (1 to 64).

property temperature_1

Reads the temperature of the sensor 1 in Kelvin.

property temperature_2

Reads the temperature of the sensor 2 in Kelvin.

property temperature_3

Reads the temperature of the sensor 3 in Kelvin.

property temperature_error

Reads the difference between the set-point and the measured temperature in Kelvin. Positive when set-
point is larger than measured.

property temperature_setpoint

A floating point property that controls the temperature set-point of the ITC in kelvin. (dynamic)

property valve_scaling

A float property that reads the valve scaling parameter. Only valid if gas-flow in auto mode.

property version

A string property that returns the version of the IPS.

wait_for_temperature(error=0.01, timeout=3600, check_interval=0.5, stability_interval=10,
thermalize_interval=300, should_stop=<function ITC503.<lambda>>)

Wait for the ITC to reach the set-point temperature.

Parameters

• error – The maximum error in Kelvin under which the temperature is considered at
set-point

• timeout – The maximum time the waiting is allowed to take. If timeout is exceeded,
a TimeoutError is raised. If timeout is None, no timeout will be used.

• check_interval – The time between temperature queries to the ITC.

• stability_interval – The time over which the temperature_error is to be below
error to be considered stable.

• thermalize_interval – The time to wait after stabilizing for the system to thermal-
ize.

• should_stop – Optional function (returning a bool) to allow the waiting to be stopped
before its end.

wipe_sweep_table()

Wipe the currently programmed sweep table.

property x_pointer

An integer property to set pointers into tables for loading and examining values in the table. The signifi-
cance and valid values for the pointer depends on what property is to be read or set.

property y_pointer

An integer property to set pointers into tables for loading and examining values in the table. The signifi-
cance and valid values for the pointer depends on what property is to be read or set.

398 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.35.3 Oxford Instruments Intelligent Power Supply 120-10 for superconducting
magnets

class pymeasure.instruments.oxfordinstruments.IPS120_10(adapter, name='Oxford IPS',
clear_buffer=True,
switch_heater_heating_delay=None,
switch_heater_cooling_delay=None,
field_range=None, **kwargs)

Bases: OxfordInstrumentsBase

Represents the Oxford Superconducting Magnet Power Supply IPS 120-10.

ips = IPS120_10("GPIB::25") # Default channel for the IPS

ips.enable_control() # Enables the power supply and remote control

ips.train_magnet([# Train the magnet after it has been cooled-down
(11.8, 1.0),
(13.9, 0.4),
(14.9, 0.2),
(16.0, 0.1),

])

ips.set_field(12) # Bring the magnet to 12 T. The switch heater will
be turned off when the field is reached and the
current is ramped back to 0 (i.e. persistent mode).

print(self.field) # Print the current field (whether in persistent or
non-persistent mode)

ips.set_field(0) # Bring the magnet to 0 T. The persistent mode will be
turned off first (i.e. current back to set-point and
switch-heater on); afterwards the switch-heater will
again be turned off.

ips.disable_control() # Disables the control of the supply, turns off the
switch-heater and clamps the output.

Parameters

• clear_buffer – A boolean property that controls whether the instrument buffer is clear
upon initialisation.

• switch_heater_heating_delay – The time in seconds (default is 20s) to wait after the
switch-heater is turned on before the heater is expected to be heated.

• switch_heater_cooling_delay – The time in seconds (default is 20s) to wait after the
switch-heater is turned off before the heater is expected to be cooled down.

• field_range – A numeric value or a tuple of two values to indicate the lowest and highest
allowed magnetic fields. If a numeric value is provided the range is expected to be from
-field_range to +field_range. The default range is -7 to +7 Tesla.

property activity

A string property that controls the activity of the IPS. Valid values are “hold”, “to setpoint”, “to zero” and

7.35. Oxford Instruments 399

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

“clamp”

property control_mode

A string property that sets the IPS in local or remote and locked or unlocked, locking the LOC/REM button.
Allowed values are:

value state
LL local & locked
RL remote & locked
LU local & unlocked
RU remote & unlocked

property current_measured

A floating point property that returns the measured magnet current of the IPS in amps. (dynamic)

property current_setpoint

A floating point property that controls the magnet current set-point of the IPS in ampere. (dynamic)

property demand_current

A floating point property that returns the demand magnet current of the IPS in amps. (dynamic)

property demand_field

A floating point property that returns the demand magnetic field of the IPS in Tesla. (dynamic)

disable_control()

Disable active control of the IPS (if at 0T) by turning off the switch heater, clamping the output and setting
control to local. Raise a MagnetError if field not at 0T.

disable_persistent_mode()

Disable the persistent magnetic field mode. Raise a MagnetError if the magnet is not at rest.

enable_control()

Enable active control of the IPS by setting control to remote and turning off the clamp.

enable_persistent_mode()

Enable the persistent magnetic field mode. Raise a MagnetError if the magnet is not at rest.

property field

Property that returns the current magnetic field value in Tesla.

property field_setpoint

A floating point property that controls the magnetic field set-point of the IPS in Tesla. (dynamic)

property persistent_field

A floating point property that returns the persistent magnetic field of the IPS in Tesla. (dynamic)

set_field(field, sweep_rate=None, persistent_mode_control=True)
Change the applied magnetic field to a new specified magnitude. If allowed (via persistent_mode_control)
the persistent mode will be turned off if needed and turned on when the magnetic field is reached. When
the new field set-point is 0, the set-point of the instrument will not be changed but rather the to zero
functionality will be used. Also, the persistent mode will not turned on upon reaching the 0T field in this
case.

Parameters

• field – The new set-point for the magnetic field in Tesla.

400 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• sweep_rate – A numeric value that controls the rate with which to change the mag-
netic field in Tesla/minute.

• persistent_mode_control – A boolean that controls whether the persistent mode
may be turned off (if needed before sweeping) and on (when the field is reached); if
set to False but the system is in persistent mode, a MagnetError will be raised and
the magnetic field will not be changed.

property sweep_rate

A floating point property that controls the sweep-rate of the IPS in Tesla/minute. (dynamic)

property sweep_status

A string property that returns the current sweeping mode of the IPS.

property switch_heater_enabled

A boolean property that controls whether the switch heater is enabled or not. When the switch heater is
enabled (True), the switch is closed and the switch is open and the current in the magnet can be controlled;
when the switch heater is disabled (False) the switch is closed and the current in the magnet cannot be
controlled.

When turning on the switch heater with True, the switch heater is only activated if the current of the power
supply matches the last recorded current in the magnet.

Warning: These checks can be omitted by using "Force" in stead of True. Caution: Not performing
these checks can cause serious damage to both the power supply and the magnet.

After turning on the switch heater it is necessary to wait several seconds for the switch the respond.

Raises a SwitchHeaterError if the system reports a ‘heater fault’ or if no switch is fitted on the system
upon getting the status.

property switch_heater_status

An integer property that returns the switch heater status of the IPS. Use the switch_heater_enabled
property for controlling and reading the switch heater. When using this property, the user is referred to the
IPS120-10 manual for the meaning of the integer values.

train_magnet(training_scheme)
Train the magnet after cooling down. Afterwards, set the field back to 0 tesla (at last-used ramp-rate).

Parameters
training_scheme – The training scheme as a list of tuples; each tuple should consist of
a (field [T], ramp-rate [T/min]) pair.

property version

A string property that returns the version of the IPS.

wait_for_idle(delay=1, max_wait_time=None, should_stop=<function IPS120_10.<lambda>>)
Wait until the system is at rest (i.e. current of field not ramping).

Parameters

• delay – Time in seconds between each query into the state of the instrument.

• max_wait_time – Maximum time in seconds to wait before is at rest. If the system
is not at rest within this time a TimeoutError is raised. None is interpreted as no
maximum time.

• should_stop – A function that returns True when this function should return early.

7.35. Oxford Instruments 401

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

class pymeasure.instruments.oxfordinstruments.ips120_10.MagnetError

Bases: ValueError

Exception that is raised for issues regarding the state of the magnet or power supply.

class pymeasure.instruments.oxfordinstruments.ips120_10.SwitchHeaterError

Bases: ValueError

Exception that is raised for issues regarding the state of the superconducting switch.

7.35.4 Oxford Instruments Power Supply 120-10 for superconducting magnets

class pymeasure.instruments.oxfordinstruments.PS120_10(adapter, name='Oxford PS', **kwargs)
Bases: IPS120_10

Represents the Oxford Superconducting Magnet Power Supply PS 120-10.

ps = PS120_10("GPIB::25") # Default channel for the IPS

ps.enable_control() # Enables the power supply and remote control

ps.train_magnet([# Train the magnet after it has been cooled-down
(11.8, 1.0),
(13.9, 0.4),
(14.9, 0.2),
(16.0, 0.1),

])

ps.set_field(12) # Bring the magnet to 12 T. The switch heater will
be turned off when the field is reached and the
current is ramped back to 0 (i.e. persistent mode).

print(self.field) # Print the current field (whether in persistent or
non-persistent mode)

ps.set_field(0) # Bring the magnet to 0 T. The persistent mode will be
turned off first (i.e. current back to set-point and
switch-heater on); afterwards the switch-heater will
again be turned off.

ps.disable_control() # Disables the control of the supply, turns off the
switch-heater and clamps the output.

Parameters

• clear_buffer – A boolean property that controls whether the instrument buffer is clear
upon initialisation.

• switch_heater_heating_delay – The time in seconds (default is 20s) to wait after the
switch-heater is turned on before the heater is expected to be heated.

• switch_heater_cooling_delay – The time in seconds (default is 20s) to wait after the
switch-heater is turned off before the heater is expected to be cooled down.

402 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• field_range – A numeric value or a tuple of two values to indicate the lowest and highest
allowed magnetic fields. If a numeric value is provided the range is expected to be from
-field_range to +field_range.

class pymeasure.instruments.oxfordinstruments.ips120_10.MagnetError

Bases: ValueError

Exception that is raised for issues regarding the state of the magnet or power supply.

class pymeasure.instruments.oxfordinstruments.ips120_10.SwitchHeaterError

Bases: ValueError

Exception that is raised for issues regarding the state of the superconducting switch.

7.36 Parker

This section contains specific documentation on the Parker instruments that are implemented. If you are interested in
an instrument not included, please consider adding the instrument.

7.36.1 Parker GV6 Servo Motor Controller

class pymeasure.instruments.parker.ParkerGV6(adapter, name='Parker GV6 Motor Controller',
**kwargs)

Bases: Instrument

Represents the Parker Gemini GV6 Servo Motor Controller and provides a high-level interface for interacting
with the instrument

property angle

Returns the angle in degrees based on the position and whether relative or absolute positioning is enabled,
returning None on error

property angle_error

Returns the angle error in degrees based on the position error, or returns None on error

disable()

Disables the motor from moving

enable()

Enables the motor to move

is_moving()

Returns True if the motor is currently moving

kill()

Stops the motor

move()

Initiates the motor to move to the setpoint

property position

Returns an integer number of counts that correspond to the angular position where 1 revolution equals
4000 counts

7.36. Parker 403

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property position_error

Returns the error in the number of counts that corresponds to the error in the angular position where 1
revolution equals 4000 counts

read()

Overwrites the Instrument.read command to provide the correct functionality

reset()

Resets the motor controller while blocking and (CAUTION) resets the absolute position value of the motor

set_defaults()

Sets up the default values for the motor, which is run upon construction

set_hardware_limits(positive=True, negative=True)
Enables (True) or disables (False) the hardware limits for the motor

set_software_limits(positive, negative)
Sets the software limits for motion based on the count unit where 4000 counts is 1 revolution

property status

Returns a list of the motor status in readable format

stop()

Stops the motor during movement

use_absolute_position()

Sets the motor to accept setpoints from an absolute zero position

use_relative_position()

Sets the motor to accept setpoints that are relative to the last position

7.37 Pendulum

This section contains specific documentation on the Pendulum instruments that are implemented. If you are interested
in an instrument not included, please consider adding the instrument.

7.37.1 Pendulum CNT91 frequency counter

class pymeasure.instruments.pendulum.cnt91.CNT91(adapter, name='Pendulum CNT-91', **kwargs)
Bases: Instrument

Represents a Pendulum CNT-91 frequency counter.

property batch_size

Maximum number of buffer entries that can be transmitted at once.

buffer_frequency_time_series(channel, n_samples, sample_rate, trigger_source=None)
Record a time series to the buffer and read it out after completion.

Parameters

• channel – Channel that should be used

• n_samples – The number of samples

• sample_rate – Sample rate in Hz

404 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• trigger_source – Optionally specify a trigger source to start the measurement

configure_frequency_array_measurement(n_samples, channel)
Configure the counter for an array of measurements.

Parameters

• n_samples – The number of samples

• channel – Measurment channel (A, B, C, E, INTREF)

property continuous

Controls whether to perform continuous measurements.

property external_arming_start_slope

Set slope for the start arming condition.

property external_start_arming_source

Select arming input or switch off the start arming function. Options are ‘A’, ‘B’ and ‘E’ (rear). ‘IMM’
turns trigger off.

property format

Reponse format (ASCII or REAL).

property interpolator_autocalibrated

Controls if interpolators should be calibrated automatically.

property measurement_time

Gate time for one measurement in s.

read_buffer(expected_length=0)
Read out the entire buffer.

Parameters
expected_length – The expected length of the buffer. If more data is read, values at the
end are removed. Defaults to 0, which means that the entire buffer is returned independent
of its length.

Returns
Frequency values from the buffer.

7.38 Razorbill

This section contains specific documentation on the Razorbill instruments that are implemented. If you are interested
in an instrument not included, please consider adding the instrument.

7.38.1 Razorbill RP100 custrom power supply for Razorbill Instrums stress & strain
cells

class pymeasure.instruments.razorbill.razorbillRP100(adapter, name='Razorbill RP100 Piezo Stack
Powersupply', **kwargs)

Bases: Instrument

Represents Razorbill RP100 strain cell controller

7.38. Razorbill 405

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

scontrol = razorbillRP100("ASRL/dev/ttyACM0::INSTR")

scontrol.output_1 = True # turns output on
scontrol.slew_rate_1 = 1 # sets slew rate to 1V/s
scontrol.voltage_1 = 10 # sets voltage on output 1 to 10V

property contact_current_1

Returns the current in amps present at the front panel output of channel 1

property contact_current_2

Returns the current in amps present at the front panel output of channel 2

property contact_voltage_1

Returns the Voltage in volts present at the front panel output of channel 1

property contact_voltage_2

Returns the Voltage in volts present at the front panel output of channel 2

property instant_voltage_1

Returns the instantaneous output of source one in volts

property instant_voltage_2

Returns the instanteneous output of source two in volts

property output_1

Turns output of channel 1 on or off

property output_2

Turns output of channel 2 on or off

property slew_rate_1

Sets or queries the source slew rate in volts/sec of channel 1

property slew_rate_2

Sets or queries the source slew rate in volts/sec of channel 2

property voltage_1

Sets or queries the output voltage of channel 1

property voltage_2

Sets or queries the output voltage of channel 2

7.39 Rohde & Schwarz

This section contains specific documentation on the Rohde & Schwarz instruments that are implemented. If you are
interested in an instrument not included, please consider adding the instrument.

406 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.39.1 R&S SFM TV test transmitter

class pymeasure.instruments.rohdeschwarz.sfm.SFM(adapter, name='Rohde&Schwarz SFM', **kwargs)
Bases: Instrument

Represents the Rohde&Schwarz SFM TV test transmitter interface for interacting with the instrument.

Note: The current implementation only works with the first system in this unit.

Further source extension for system 2-6 would be required.

The intermodulation subsystem is also not yet implmented.

property R75_out

A bool property that controls the use of the 75R output (if installed)

Value Meaning
False 50R output active (N)
True 75R output active (BNC)

refer also to chapter 3.6.5 of the manual

property TV_country

A string property that controls the country specifics of the video/sound system to be used

Possible values are:

7.39. Rohde & Schwarz 407

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Value Meaning
BG_G BG General
DK_G DK General
I_G I General
L_G L General
GERM Germany
BELG Belgium
NETH Netherlands
FIN Finland
AUST Australia
BG_T BG Th
DENM Denmark
NORW Norway
SWED Sweden
GUS Russia
POL1 Poland
POL2 Poland
HUNG Hungary
CHEC Czech Republic
CHINA1 China
CHINA2 China
GRE Great Britain
SAFR South Africa
FRAN France
USA United States
KOR Korea
JAP Japan
CAN Canada
SAM South America

Please confirm with the manual about the details for these settings.

property TV_standard

A string property that controls the type of video standard

Possible values are:

Value Lines System
BG 625 PAL
DK 625 SECAM
I 625 PAL
K1 625 SECAM
L 625 SECAM
M 525 NTSC
N 625 NTSC

Please confirm with the manual about the details for these settings.

property basic_info

A String property containing infomation about the hardware modules installed in the unit

property beeper_enabled

A bool property that controls the beeper status,

408 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

refer also to chapter 3.6.8 of the manual

calibration(number=1, subsystem=None)
Function to either calibrate the whole modulator, when subsystem parameter is omitted, or calibrate a
subsystem of the modulator.

Valid subsystem selections: “NICam, VISion, SOUNd1, SOUNd2, CODer”

channel_down_relative()

Decreases the output frequency to the next low channel/special channel based on the current country set-
tings

property channel_sweep_start

A float property controlling the start frequency for channel sweep in Hz

• Minimum 5 MHz

• Maximum 1 GHz

property channel_sweep_step

A float property controlling the start frequency for channel sweep in Hz

• Minimum 5 MHz

• Maximum 1 GHz

property channel_sweep_stop

A float property controlling the start frequency for channel sweep in Hz

• Minimum 5 MHz

• Maximum 1 GHz

property channel_table

A string property controlling which channel table is used

Possible selections are:

Value Meaning
DEF Default channel table
USR1 User table No. 1
USR2 User table No. 2
USR3 User table No. 3
USR4 User table No. 4
USR5 User table No. 5

refer also to chapter 3.6.6.1 of the manual

channel_up_relative()

Increases the output frequency to the next higher channel/special channel based on the current country
settings

coder_adjust()

Starts the automatic setting of the differential deviation

refer also to chapter 3.6.6.4 of the manual

property coder_id_frequency

A int property that controls the frequency of the identification of the coder

valid range 0 .. 200 Hz

7.39. Rohde & Schwarz 409

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property coder_modulation_degree

A float property that controls the modulation degree of the identification of the coder

valid range: 0 .. 0.9

property coder_pilot_deviation

A int property that controls deviation of the pilot frequency of the coder

valid range: 1 .. 4 kHz

property coder_pilot_frequency

A int property that controls the pilot frequency of the coder

valid range: 40 .. 60 kHz

property cw_frequency

A float property controlling the CW-frequency in Hz

• Minimum 5 MHz

• Maximum 1 GHz

property date

A list property for the date of the RTC in the unit

property event_reg

Content of the event register of the Status Operation Register refer also to chapter 3.6.7 of the manual

property ext_ref_base_unit

A bool property for the external reference for the basic unit

Value Meaning
False Internal 10 MHz is used
True External 10 MHz is used

property ext_ref_extension

A bool property for the external reference for the extension frame

Value Meaning
False Internal 10 MHz is used
True External 10 MHz is used

property ext_vid_connector

A string property controlling which connector is used as the input of the video source

Possible selections are:

Value Meaning
HIGH Front connector - Hi-Z
LOW Front connector - 75R
REAR1 Rear connector 1
REAR2 Rear connector 2
AUTO Automatic assignment

410 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property external_modulation_frequency

A int property that controls the setting for the external modulator frequency

valid range: 32 .. 46 MHz

property external_modulation_power

A int property that controls the setting for the external modulator output power

valid range: -7..0 dBm

refer also to chapter 3.6.6.5 of the manual

property external_modulation_source

A bool property for the modulation source selection

refer also to chapter 3.6.6.8 of the manual

property frequency

A float property controlling the frequency in Hz

• Minimum 5 MHz

• Maximum 1 GHz

property frequency_mode

A string property controlling which the unit is used in

Possible selections are:

Value Meaning
CW Continous wave mode
FIXED fixed frequency mode
CHSW Channel sweep
RFSW Frequency sweep

Note: selecting the sweep mode, will start the sweep imemdiately!

property gpib_address

A int property that controls the GPIB address of the unit

valid range: 0..30

property high_frequency_resolution

A property that controls the frequency resolution,

Possible selections are:

Value Meaning
False Low resolution (1000Hz)
True High resolution (1Hz)

property level

A float property controlling the output level in dBm,

• Minimum -99dBm

• Maximum 10dBm (depending on output mode)

7.39. Rohde & Schwarz 411

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

refer also to chapter 3.6.6.2 of the manual

property level_mode

A string property controlling the output attenuator and linearity mode

Possible selections are:

Value Meaning max. output level
NORM Normal mode +6 dBm
LOWN low noise mode +10 dBm
CONT continous mode +10 dBm
LOWD low distortion mode +0 dBm

Contiuous mode allows up to 14 dB of level setting without use of the mechanical attenuator.

property lower_sideband_enabled

A bool property that controls the use of the lower sideband

refer also to chapter 3.6.6.10 of the manual

property modulation_enabled

A bool property that controls the modulation status

property nicam_IQ_inverted

A bool property that controls if the NICAM IQ signals are inverted or not

Value Meaning
False normal (IQ)
True inverted (QI)

property nicam_additional_bits

A int property that controls the additional data in the NICAM modulator

valid range: 0 .. 2047

property nicam_audio_frequency

A int property that controls the frequency of the internal sound generator

valid range: 0 Hz .. 15 kHz

property nicam_audio_volume

A float property that controls the audio volume in the NICAM modulator in dB

valid range: 0..60 dB

property nicam_bit_error_enabled

A bool property that controls the status of an artifical bit error rate to be applied

property nicam_bit_error_rate

A float property that controls the artifical bit error rate.

valid range: 1.2E-7 .. 2E-3

property nicam_carrier_enabled

A bool property that controls if the NICAM carrier is switched on or off

412 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property nicam_carrier_frequency

A float property that controls the frequency of the NICAM carrier

valid range: 33.05 MHz +/- 0.2 Mhz

property nicam_carrier_level

A float property that controls the value of the NICAM carrier

valid range: -40 .. -13 dB

property nicam_control_bits

A int property that controls the additional data in the NICAM modulator

valid range: 0 .. 3

property nicam_data

A int property that controls the data in the NICAM modulator

valid range: 0 .. 2047

property nicam_intercarrier_frequency

A float property that controls the inter-carrier frequency of the NICAM carrier

valid range: 5 .. 9 MHz

property nicam_mode

A string property that controls the signal type to be sent via NICAM

Possible values are:

Value Meaning
MON Mono sound + NICAM data
STER Stereo sound
DUAL Dual channel sound
DATA NICAM data only

refer also to chapter 3.6.6.6 of the manual

property nicam_preemphasis_enabled

A bool property that controls the status of the J17 preemphasis

property nicam_source

A string property that controls the signal source for NICAM

Possible values are:

Value Meaning
INT Internal audio generator(s)
EXT External audio source
CW Continous wave signal
RAND Random data stream
TEST Test signal

property nicam_test_signal

A int property that controls the selection of the test signal applied

7.39. Rohde & Schwarz 413

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Value Meaning
1 Test signal 1 (91 kHz square wave, I&Q 90deg apart)
2 Test signal 2 (45.5 kHz square wave, I&Q 90deg apart)
3 Test signal 3 (182 kHz sine wave, I&Q in phase)

property normal_channel

A int property controlling the current selected regular/normal channel number valid selections are based
on the country settings.

property operation_enable_reg

Content of the enable register of the Status Operation Register

Valid range: 0. . . 32767

property output_voltage

A float property controlling the output level in Volt,

Minimum 2.50891e-6, Maximum 0.707068 (depending on output mode) refer also to chapter 3.6.6.12 of
the manual

property questionable_event_reg

Content of the event register of the Status Questionable Operation Register

property questionable_operation_enable_reg

Content of the enable register of the Status Questionable Operation Register

Valid range 0. . . 32767

property questionanble_status_reg

Content of the condition register of the Status Questionable Operation Register

property remote_interfaces

A string property controlling the selection of interfaces for remote control

Possible selections are:

Value Meaning
OFF no remote control
GPIB GPIB only enabled
SER RS232 only enabled
BOTH GPIB & RS232 enabled

property rf_out_enabled

A bool property that controls the status of the RF-output

property rf_sweep_center

A float property controlling the center frequency for sweep in Hz

• Minimum 5 MHz

• Maximum 1 GHz

property rf_sweep_span

A float property controlling the sweep span in Hz,

• Minimum 1 kHz

• Maximum 1 GHz

414 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property rf_sweep_start

A float property controlling the start frequency for sweep in Hz

• Minimum 5 MHz

• Maximum 1 GHz

property rf_sweep_step

A float property controlling the stepwidth for sweep in Hz,

• Minimum 1 kHz

• Maximum 1 GHz

property rf_sweep_stop

A float property controlling the stop frequency for sweep in Hz

• Minimum 5 MHz

• Maximum 1 GHz

property scale_volt

A string property that controls the unit to be used for voltage entries on the unit

Possible values are: AV,FV, PV, NV, UV, MV, V, KV, MAV, GV, TV, PEV, EV, DBAV, DBFV, DBPV,
DBNV, DBUV, DBMV, DBV, DBKV, DBMAv, DBGV, DBTV, DBPEv, DBEV

refer also to chapter 3.6.9 of the manual

property serial_baud

A int property that controls the serial communication speed ,

Possible values are: 110,300,600,1200,4800,9600,19200

property serial_bits

A int property that controls the number of bits used in serial communication

Possible values are: 7 or 8

property serial_flowcontrol

A string property that controls the serial handshake type used in serial communication

Possible values are:

Value Meaning
NONE no flow-control/handshake
XON XON/XOFF flow-control
ACK hardware handshake with RTS&CTS

property serial_parity

A string property that controls the parity type used for serial communication

Possible values are:

Value Meaning
NONE no parity
EVEN even parity
ODD odd parity
ONE parity bit fixed to 1
ZERO parity bit fixed to 0

7.39. Rohde & Schwarz 415

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property serial_stopbits

A int property that controls the number of stop-bits used in serial communication,

Possible values are: 1 or 2

property sound_mode

A string property that controls the type of audio signal

Possible values are:

Value Meaning
MONO MOnoaural sound
PIL pilot-carrier + mono
BTSC BTSC + mono
STER Stereo sound
DUAL Dual channel sound
NIC NICAM + Mono

property special_channel

A int property controlling the current selected special channel number valid selections are based on the
country settings.

property status_info_shown

A bool property that controls if the display shows infomation during remote control

status_preset()

partly resets the SCPI status reporting structures

property status_reg

Content of the condition register of the Status Operation Register

property subsystem_info

A String property containing infomation about the system configuration

property system_number

A int property for the selected systems (if more than 1 available)

• Minimum 1

• Maximum 6

property time

A list property for the time of the RTC in the unit

property vision_average_enabled

A bool property that controls the average mode for the vision system

property vision_balance

A float property that controls the balance of the vision modulator

valid range: -0.5 .. 0.5

property vision_carrier_enabled

A bool property that controls the vision carrier status

refer also to chapter 3.6.6.9 of the manual

416 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property vision_carrier_frequency

A float property that controls the frequency of the vision carrier

valid range: 32 .. 46 MHz

property vision_clamping_average

A float property that controls the operation point of the vision modulator

valid range: -0.5 .. 0.5

property vision_clamping_enabled

A bool property that controls the clamping behavior of the vision modulator

property vision_clamping_mode

A string property that controls the clamping mode of the vision modulator

Possible selections are HARD or SOFT

property vision_precorrection_enabled

A bool property that controls the precorrection behavior of the vision modulator

property vision_residual_carrier_level

A float property that controls the value of the residual carrier

valid range: 0 .. 0.3 (30%)

property vision_sideband_filter_enabled

A bool property that controls the use of the VSBF (vestigal sideband filter) in the vision modulator

property vision_videosignal_enabled

A bool property that controls if the video signal is switched on or off

class pymeasure.instruments.rohdeschwarz.sfm.Sound_Channel(instrument, number)
Bases: object

Class object for the two sound channels

refere also to chapter 3.6.6.7 of the user manual

property carrier_enabled

A bool property that controls if the audio carrier is switched on or off

property carrier_frequency

A float property that controls the frequency of the sound carrier

valid range: 32 .. 46 MHz

property carrier_level

A float property that controls the level of the audio carrier in dB relative to the vision carrier (0dB)

valid range: -34 .. -6 dB

property deviation

A int property that controls deviation of the selected audio signal

valid range: 0 .. 110 kHz

property frequency

A int property that controls the frequency of the internal sound generator

valid range: 300 Hz .. 15 kHz

7.39. Rohde & Schwarz 417

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property modulation_degree

A float property that controls the modulation depth for the audio signal (Note: only for the use of AM in
Standard L)

valid range: 0 .. 1 (100%)

property modulation_enabled

A bool property that controls the audio modulation status

Value Meaning
False modulation disabled
True modulation enabled

property preemphasis_enabled

A bool property that controls if the preemphasis for the audio is switched on or off

property preemphasis_time

A int property that controls if the mode of the preemphasis for the audio signal

Value Meaning
50 50 us preemphasis
75 75 us preemphasis

property use_external_source

A bool property for the audio source selection

Value Meaning
False Internal audio generator(s)
True External signal source

values(command, **kwargs)
Reads a set of values from the instrument through the adapter, passing on any keyword arguments.

7.39.2 R&S FSL spectrum analyzer

Connecting to the instrument via network

Once connected to the network, the instrument’s IP address can be found by clicking the “Setup” button and navigating
to “General Settings” -> “Network Address”.

It can then be connected like this:

from pymeasure.instruments.rohdeschwarz import FSL
fsl = FSL("TCPIP::192.168.1.123::INSTR")

418 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Getting and setting parameters

Most parameters are implemented as properties, which means they can be read and written (getting and setting) in a
consistent and simple way. If numerical values are provided, base units are used (s, Hz, dB, . . .). Alternatively, the
values can also be provided with a unit, e.g. "1.5 GHz" or "1.5GHz". Return values are always numerical.

Getting the current center frequency
fsl.freq_center

9000000000.0

Changing it to 10 MHz by providing the numerical value
fsl.freq_center = 10e6

Verifying:
fsl.freq_center

10000000.0

Changing it to 9 GHz by providing a string and verifying the result
fsl.freq_center = '9GHz'
fsl.freq_center

9000000000.0

Setting the span to maximum
fsl.freq_span = '7 GHz'

Reading a trace

We will read the current trace

x, y = fsl.read_trace()

Markers

Markers are implemented as their own class. You can create them like this:

m1 = fsl.create_marker()

Set peak exursion:

m1.peak_excursion = 3

Set marker to a specific position:

m1.x = 10e9

Find the next peak to the left and get the level:

7.39. Rohde & Schwarz 419

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

m1.to_next_peak('left')
m1.y

-34.9349060059

Delta markers

Delta markers can be created by setting the appropriate keyword.

d2 = fsl.create_marker(is_delta_marker=True)
d2.name

'DELT2'

Example program

Here is an example of a simple script for recording the peak of a signal.

m1 = fsl.create_marker() # create marker 1

Set standard settings, set to full span
fsl.continuous_sweep = False
fsl.freq_span = '18 GHz'
fsl.res_bandwidth = "AUTO"
fsl.video_bandwidth = "AUTO"
fsl.sweep_time = "AUTO"

Perform a sweep on full span, set the marker to the peak and some to that marker
fsl.single_sweep()
m1.to_peak()
m1.zoom('20 MHz')

take data from the zoomed-in region
fsl.single_sweep()
x, y = fsl.read_trace()

class pymeasure.instruments.rohdeschwarz.fsl.FSL(adapter, name='Rohde&Schwarz FSL', **kwargs)
Bases: Instrument

Represents a Rohde&Schwarz FSL spectrum analyzer.

All physical values that can be set can either be as a string of a value and a unit (e.g. “1.2 GHz”) or as a float
value in the base units (Hz, dBm, etc.).

property attenuation

Attenuation in dB.

continue_single_sweep()

Continue with single sweep with synchronization.

property continuous_sweep

Continuous (True) or single sweep (False)

420 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

create_marker(num=1, is_delta_marker=False)
Create a marker.

Parameters

• num – The marker number (1-4)

• is_delta_marker – True if the marker is a delta marker, default is False.

Returns
The marker object.

property freq_center

Center frequency in Hz.

property freq_span

Frequency span in Hz.

property freq_start

Start frequency in Hz.

property freq_stop

Stop frequency in Hz.

read_trace(n_trace=1)
Read trace data.

Parameters
n_trace – The trace number (1-6). Default is 1.

Returns
2d numpy array of the trace data, [[frequency], [amplitude]].

property res_bandwidth

Resolution bandwidth in Hz. Can be set to ‘AUTO’

single_sweep()

Perform a single sweep with synchronization.

property sweep_time

Sweep time in s. Can be set to ‘AUTO’.

property trace_mode

Trace mode (‘WRIT’, ‘MAXH’, ‘MINH’, ‘AVER’ or ‘VIEW’)

property video_bandwidth

Video bandwidth in Hz. Can be set to ‘AUTO’

7.39.3 R&S HMP4040 Power Supply

class pymeasure.instruments.rohdeschwarz.hmp.HMP4040(adapter, **kwargs)
Bases: Instrument

Represents a Rohde&Schwarz HMP4040 power supply.

beep()

Emit a single beep from the instrument.

7.39. Rohde & Schwarz 421

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

clear_sequence(channel)
Clear the sequence of the selected channel.

property control_method

Enables manual front panel (‘LOC’), remote (‘REM’) or manual/remote control(‘MIX’) control or locks
the the front panel control (‘RWL’).

property current

Output current in A. Range depends on instrument type.

property current_step

Current step in A.

current_to_max()

Set current of the selected channel to its maximum value.

current_to_min()

Set current of the selected channel to its minimum value.

load_sequence(slot)
Load a saved waveform from internal memory (slot 1, 2 or 3).

property max_current

Maximum current in A.

property max_voltage

Maximum voltage in V.

property measured_current

Measured current in A.

property measured_voltage

Measured voltage in V.

property min_current

Minimum current in A.

property min_voltage

Minimum voltage in V.

property output_enabled

Set the output on or off or check the output status.

property repetitions

Number of repetitions (0. . . 255). If 0 is entered, the sequence isrepeated indefinitely.

save_sequence(slot)
Save the sequence defined in the sequence property to internal memory (slot 1, 2 or 3).

property selected_channel

Selected channel.

property selected_channel_active

Set the selected channel to active or inactive or check its status.

property sequence

Define sequence of triplets of voltage (V), current (A) and dwell time (s).

422 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

set_channel_state(channel, state)
Set the state of the channel to active or inactive.

Parameters

• channel (int) – Channel number to set the state of.

• state (bool) – State of the channel, i.e. True for active, False for inactive.

start_sequence(channel)
Start the sequence of the selected channel.

step_current_down()

Decreases current by one step.

step_current_up()

Increase current by one step.

step_voltage_down()

Decrease voltage by one step.

step_voltage_up()

Increase voltage by one step.

stop_sequence(channel)
Stop the sequence defined in the sequence property of the selected channel.

transfer_sequence(channel)
Transfer the sequence defined in the sequence property to the selected channel.

property version

The SCPI version the instrument’s command set complies with.

property voltage

Output voltage in V. Increment 0.001 V.

property voltage_and_current

Output voltage (V) and current (A).

property voltage_step

Voltage step in V. Default 1 V.

voltage_to_max()

Set voltage of the selected channel to its maximum value.

voltage_to_min()

Set voltage of the selected channel to its minimum value.

7.40 Siglent Technologies

This section contains specific documentation on the Siglent Technologies instruments that are implemented. If you are
interested in an instrument not included, please consider adding the instrument.

7.40. Siglent Technologies 423

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.40.1 Siglent Technologies Base Class

class pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDBase(adapter,
name='Siglent
SPDxxxxX instrument
Base Class',
**kwargs)

Bases: Instrument

The base class for Siglent SPDxxxxX instruments.

Uses SPDChannel for measurement channels.

enable_local_interface(enable: bool = True)
Configure the availability of the local interface.

Type
bool True: enables the local interface False: disables it.

property error

Read the error code and information of the instrument.

Type
string

property fw_version

Read the software version of the instrument.

Type
string

recall_config(index)
Recall a config from memory.

Parameters
index – int: index of the location from which to recall the configuration

save_config(index)
Save the current config to memory.

Parameters
index – int: index of the location to save the configuration

property selected_channel

Control the selected channel of the instrument.

:type : int (dynamic)

shutdown()

Ensure that the voltage is turned to zero and disable the output.

property system_status_code

Read the system status register.

Type
SystemStatusCode

424 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

class pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDSingleChannelBase(adapter,
name='Siglent
SPDxxxxX
in-
stru-
ment
Base
Class',
**kwargs)

Bases: SPDBase

enable_4W_mode(enable: bool = True)
Enable 4-wire mode.

Type
bool True: enables 4-wire mode False: disables it.

class pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDChannel(parent, id,
voltage_range: list
= [0, 16],
current_range: list
= [0, 8])

Bases: Channel

The channel class for Siglent SPDxxxxX instruments.

configure_timer(step, voltage, current, duration)
Configure the timer step.

Parameters

• step – int: index of the step to save the configuration

• voltage – float: voltage setpoint of the step

• current – float: current limit of the step

• duration – int: duration of the step in seconds

property current

Measure the channel output current.

Type
float

property current_limit

Control the output current configuration of the channel.

:type : float (dynamic)

enable_output(enable: bool = True)
Enable the channel output.

Type
bool True: enables the output False: disables it

enable_timer(enable: bool = True)
Enable the channel timer.

Type
bool True: enables the timer False: disables it

7.40. Siglent Technologies 425

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property power

Measure the channel output power.

Type
float

property voltage

Measure the channel output voltage.

Type
float

property voltage_setpoint

Control the output voltage configuration of the channel.

:type : float (dynamic)

class pymeasure.instruments.siglenttechnologies.siglent_spdbase.SystemStatusCode(value,
names=None,
*, mod-
ule=None,
qual-
name=None,
type=None,
start=1,
bound-
ary=None)

System status enums based on IntFlag

Used in conjunction with system_status_code.

Value Enum
256 WAVEFORM_DISPLAY
64 TIMER_ENABLED
32 FOUR_WIRE
16 OUTPUT_ENABLED
1 CONSTANT_CURRENT
0 CONSTANT_VOLTAGE

7.40.2 Siglent SPD1168X Power Supply

class pymeasure.instruments.siglenttechnologies.SPD1168X(adapter, name='Siglent Technologies
SPD1168X Power Supply', **kwargs)

Bases: SPDSingleChannelBase

Represent the Siglent SPD1168X Power Supply.

ch_1

Channel
SPDChannel

426 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.40.3 Siglent SPD1305X Power Supply

class pymeasure.instruments.siglenttechnologies.SPD1305X(adapter, name='Siglent Technologies
SPD1305X Power Supply', **kwargs)

Bases: SPDSingleChannelBase

Represent the Siglent SPD1305X Power Supply.

ch_1

Channel
SPDChannel

7.41 Signal Recovery

This section contains specific documentation on the Signal Recovery instruments that are implemented. If you are
interested in an instrument not included, please consider adding the instrument.

7.41.1 DSP 7225 Lock-in Amplifier

class pymeasure.instruments.signalrecovery.DSP7225(adapter, name='Signal Recovery DSP 7225',
**kwargs)

Bases: DSPBase

Represents the Signal Recovery DSP 7225 lock-in amplifier.

Class inherits commands from the DSPBase parent class and utilizes dynamic properties for various properties.

lockin7225 = DSP7225("GPIB0::12::INSTR")
lockin7225.imode = "voltage mode" # Set to measure voltages
lockin7225.reference = "internal" # Use internal oscillator
lockin7225.fet = 1 # Use FET pre-amp
lockin7225.shield = 0 # Ground shields
lockin7225.coupling = 0 # AC input coupling
lockin7225.time_constant = 0.10 # Filter time set to 100 ms
lockin7225.sensitivity = 2E-3 # Sensitivity set to 2 mV
lockin7225.frequency = 100 # Set oscillator frequency to 100 Hz
lockin7225.voltage = 1 # Set oscillator amplitude to 1 V
lockin7225.gain = 20 # Set AC gain to 20 dB
print(lockin7225.x) # Measure X channel voltage
lockin7225.shutdown() # Instrument shutdown

property adc1

Measure the voltage of the ADC1 input on the rear panel.

Returned value is a floating point number in volts.

property adc2

Measure the voltage of the ADC2 input on the rear panel.

Returned value is a floating point number in volts.

property auto_gain

Control lock-in amplifier for automatic AC gain.

7.41. Signal Recovery 427

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

auto_phase()

Adjusts the reference absolute phase to maximize the X channel output and minimize the Y channel output
signals.

auto_sensitivity()

Adjusts the full-scale sensitivity so signal’s magnitude lies between 30 - 90 % of full-scale.

buffer_to_float(buffer_data, sensitivity=None, sensitivity2=None, raise_error=True)
Converts fixed-point buffer data to floating point data.

The provided data is converted as much as possible, but there are some requirements to the data if all
provided columns are to be converted; if a key in the provided data cannot be converted it will be omitted
in the returned data or an exception will be raised, depending on the value of raise_error.

The requirements for converting the data are as follows:

• Converting X, Y, magnitude and noise requires sensitivity data, which can either be part of the pro-
vided data or can be provided via the sensitivity argument

• The same holds for X2, Y2 and magnitude2 with sensitivity2.

• Converting the frequency requires both ‘frequency part 1’ and ‘frequency part 2’.

Parameters

• buffer_data (dict) – The data to be converted. Must be in the format as returned
by the get_buffer method: a dict of numpy arrays.

• sensitivity – If provided, the sensitivity used to convert X, Y, magnitude and
noise. Can be provided as a float or as an array that matches the length of elements in
buffer_data. If both a sensitivity is provided and present in the buffer_data, the pro-
vided value is used for the conversion, but the sensitivity in the buffer_data is stored
in the returned dict.

• sensitivity2 – Same as the first sensitivity argument, but for X2, Y2, magnitude2
and noise2.

• raise_error (bool) – Determines whether an exception is raised in case not all
keys provided in buffer_data can be converted. If False, the columns that cannot be
converted are omitted in the returned dict.

Returns
Floating-point buffer data

Return type
dict

check_errors()

Read all errors from the instrument and log them.

Returns
List of error entries.

check_get_errors()

Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

428 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

clear()

Clears the instrument status byte

property complete

Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation Complete query
places an ASCII character 1 into the device’s Output Queue when all pending selected device operations
have been finished.

property coupling

Control the input coupling mode.

Valid values are 0 for AC coupling mode or 1 for DC coupling mode.

property curve_buffer_bits

Control which data outputs are stored in the curve buffer.

Valid values are values are integers between 1 and 65,535 (or 2,097,151 in dual reference mode). (dynamic)

property curve_buffer_interval

Control the time interval between the collection of successive points in the curve buffer.

Valid values to the the time interval are integers in ms with a resolution of 5 ms; input values are rounded
up to a multiple of 5. Valid values are values between 0 and 1,000,000,000 (corresponding to 12 days).
The interval may be set to 0, which sets the rate of data storage to the curve buffer to 1.25 ms/point (800
Hz). However this only allows storage of the X and Y channel outputs. There is no need to issue a CBD 3
command to set this up since it happens automatically when acquisition starts.

property curve_buffer_length

Control the length of the curve buffer.

Valid values are integers between 1 and 32,768, but the actual maximum amount of points is determined
by the amount of curves that are stored, as set via the curve_buffer_bits property (32,768 / n).

property curve_buffer_status

Measure the status of the curve buffer acquisition.

Command returns four values: First value - Curve Acquisition Status: Number with 5 possibilities: 0: no
activity 1: acquisition via TD command running 2: acquisition by a TDC command running 5: acquisition
via TD command halted 6: acquisition bia TDC command halted Second value - Number of Sweeps
Acquired: Number of sweeps already acquired. Third value - Status Byte: Decimal representation of
the status byte (the same response as the ST command Fourth value - Number of Points Acquired:
Number of points acquired in the curve buffer.

property dac1

Control the voltage of the DAC1 output on the rear panel.

Valid values are floating point numbers between -12 to 12 V.

7.41. Signal Recovery 429

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property dac2

Control the voltage of the DAC2 output on the rear panel.

Valid values are floating point numbers between -12 to 12 V.

property fet

Control the voltage preamplifier transistor type.

Valid values are 0 for bipolar or 1 for FET.

property frequency

Control the oscillator frequency.

Valid values are floating point numbers representing the frequency in Hz. (dynamic)

property gain

Control the AC gain of signal channel amplifier.

get_buffer(quantity=None, convert_to_float=True, wait_for_buffer=True)
Retrieves the buffer after it has been filled. The data retrieved from the lock-in is in a fixed-point format,
which requires translation before it can be interpreted as meaningful data. When convert_to_float is True
the conversion is performed (if possible) before returning the data.

Parameters

• quantity (str) – If provided, names the quantity that is to be retrieved from the curve
buffer; can be any of: ‘x’, ‘y’, ‘magnitude’, ‘phase’, ‘sensitivity’, ‘adc1’, ‘adc2’, ‘adc3’,
‘dac1’, ‘dac2’, ‘noise’, ‘ratio’, ‘log ratio’, ‘event’, ‘frequency part 1’ and ‘frequency
part 2’; for both dual modes, additional options are: ‘x2’, ‘y2’, ‘magnitude2’, ‘phase2’,
‘sensitivity2’. If no quantity is provided, all available data is retrieved.

• convert_to_float (bool) – Bool that determines whether to convert the fixed-point
buffer-data to meaningful floating point values via the buffer_to_float method. If True,
this method tries to convert all the available data to meaningful values; if this is not
possible, an exception will be raised. If False, this conversion is not performed and
the raw buffer-data is returned.

• wait_for_buffer (bool) – Bool that determines whether to wait for the data acqui-
sition to finished if this method is called before the acquisition is finished. If True, the
method waits until the buffer is filled before continuing; if False, the method raises an
exception if the acquisition is not finished when the method is called.

property harmonic

Control the reference harmonic mode.

Valid values are integers. (dynamic)

property id

Measure the model number of the instrument.

Returned value is an integer.

property imode

Control the lock-in amplifier to detect a voltage or current signal.

Valid values are voltage mode, ``current mode, or low noise current mode.

init_curve_buffer()

Initializes the curve storage memory and status variables. All record of previously taken curves is removed.

430 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property log_ratio

Measure the log (base 10) of the ratio between the X channel and ADC1.

Returned value is a unitless floating point number equivalent to the mathematical expression log(X/ADC1).

property mag

Measure the magnitude of the signal.

Returned value is a floating point number in volts.

property options

Get the device options installed.

property phase

Measure the signal’s absolute phase angle.

Returned value is a floating point number in degrees.

property ratio

Measure the ratio between the X channel and ADC1.

Returned value is a unitless floating point number equivalent to the mathematical expression X/ADC1.

read(**kwargs)
Read the response and remove extra unicode character from instrument readings.

read_binary_values(**kwargs)
Read binary values from the device.

read_bytes(count, **kwargs)
Read a certain number of bytes from the instrument.

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read the whole read
buffer.

• kwargs – Keyword arguments for the adapter.

Returns bytes
Bytes response of the instrument (including termination).

property reference

Control the oscillator reference input mode.

Valid values are internal, external rear or external front.

property reference_phase

Control the reference absolute phase angle.

Valid values are floating point numbers between 0 - 360 degrees.

reset()

Resets the instrument.

property sensitivity

Control the signal’s measurement sensitivity range.

When in voltage measurement mode, valid values are discrete values from 2 nV to 1 V. When in current
measurement mode, valid values are discrete values from 2 fA to 1 µA (for normal current mode) or up to
10 nA (for low noise current mode).

7.41. Signal Recovery 431

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

setChannelAMode()

Sets lock-in amplifier to measure a voltage signal only from the A input connector.

setDifferentialMode(lineFiltering=True)
Sets lock-in amplifier to differential mode, measuring A-B.

set_buffer(points, quantities=None, interval=0.01)
Prepares the curve buffer for a measurement.

Parameters

• points (int) – Number of points to be recorded in the curve buffer

• quantities (list) – List containing the quantities (strings) that are to be recorded
in the curve buffer, can be any of: ‘x’, ‘y’, ‘magnitude’, ‘phase’, ‘sensitivity’, ‘adc1’,
‘adc2’, ‘adc3’, ‘dac1’, ‘dac2’, ‘noise’, ‘ratio’, ‘log ratio’, ‘event’, ‘frequency’ (or ‘fre-
quency part 1’ and ‘frequency part 2’); for both dual modes, additional options are:
‘x2’, ‘y2’, ‘magnitude2’, ‘phase2’, ‘sensitivity2’. Default is ‘x’ and ‘y’.

• interval (float) – The interval between two subsequent points stored in the curve
buffer in s. Default is 10 ms.

set_voltage_mode()

Sets lock-in amplifier to measure a voltage signal.

property shield

Control the input connector shield state.

Valid values are 0 to have shields grounded or 1 to have the shields floating (i.e., connected to ground via
a 1 kOhm resistor).

shutdown()

Safely shutdown the lock-in amplifier.

Sets oscillator amplitude to 0 V and AC gain to 0 dB.

property slope

Control the low-pass filter roll-off.

Valid values are the integers 6, 12, 18, or 24, which represents the slope of the low-pass filter in dB/octave.

start_buffer()

Initiates data acquisition. Acquisition starts at the current position in the curve buffer and continues at the
rate set by the STR command until the buffer is full.

property status

Get the status byte and Master Summary Status bit.

property time_constant

Control the filter time constant.

Valid values are a strict set of time constants from 10 us to 50,000 s. Returned values are floating point
numbers in seconds.

property voltage

Control the oscillator amplitude.

Valid values are floating point numbers between 0 to 5 V.

432 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Parameters
query_delay – Delay between writing and reading in seconds.

wait_for_buffer(timeout=None, delay=0.1)
Method that waits until the curve buffer is filled

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument

• kwargs – Keyword arguments for the adapter.

write_binary_values(command, values, *args, **kwargs)
Write binary values to the device.

Parameters

• command – Command to send.

• values – The values to transmit.

• **kwargs (*args,) – Further arguments to hand to the Adapter.

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

property x

Measure the output signal’s X channel.

Returned value is a floating point number in volts.

property xy

Measure both the X and Y channels.

Returned values are floating point numbers in volts.

property y

Measure the output signal’s Y channel.

Returned value is a floating point number in volts.

7.41.2 DSP 7265 Lock-in Amplifier

class pymeasure.instruments.signalrecovery.DSP7265(adapter, name='Signal Recovery DSP 7265',
**kwargs)

Bases: DSPBase

Represents the Signal Recovery DSP 7265 lock-in amplifier.

Class inherits commands from the DSPBase parent class and utilizes dynamic properties for various properties
and includes additional functionality.

7.41. Signal Recovery 433

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

lockin7265 = DSP7265("GPIB0::12::INSTR")
lockin7265.imode = "voltage mode" # Set to measure voltages
lockin7265.reference = "internal" # Use internal oscillator
lockin7265.fet = 1 # Use FET pre-amp
lockin7265.shield = 0 # Ground shields
lockin7265.coupling = 0 # AC input coupling
lockin7265.time_constant = 0.10 # Filter time set to 100 ms
lockin7265.sensitivity = 2E-3 # Sensitivity set to 2 mV
lockin7265.frequency = 100 # Set oscillator frequency to 100 Hz
lockin7265.voltage = 1 # Set oscillator amplitude to 1 V
lockin7265.gain = 20 # Set AC gain to 20 dB
print(lockin7265.x) # Measure X channel voltage
lockin7265.shutdown() # Instrument shutdown

property adc1

Measure the voltage of the ADC1 input on the rear panel.

Returned value is a floating point number in volts.

property adc2

Measure the voltage of the ADC2 input on the rear panel.

Returned value is a floating point number in volts.

property adc3

Measure the ADC3 input voltage.

property adc3_time

Control the ADC3 sample time in seconds.

property auto_gain

Control lock-in amplifier for automatic AC gain.

auto_phase()

Adjusts the reference absolute phase to maximize the X channel output and minimize the Y channel output
signals.

auto_sensitivity()

Adjusts the full-scale sensitivity so signal’s magnitude lies between 30 - 90 % of full-scale.

buffer_to_float(buffer_data, sensitivity=None, sensitivity2=None, raise_error=True)
Converts fixed-point buffer data to floating point data.

The provided data is converted as much as possible, but there are some requirements to the data if all
provided columns are to be converted; if a key in the provided data cannot be converted it will be omitted
in the returned data or an exception will be raised, depending on the value of raise_error.

The requirements for converting the data are as follows:

• Converting X, Y, magnitude and noise requires sensitivity data, which can either be part of the pro-
vided data or can be provided via the sensitivity argument

• The same holds for X2, Y2 and magnitude2 with sensitivity2.

• Converting the frequency requires both ‘frequency part 1’ and ‘frequency part 2’.

Parameters

434 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• buffer_data (dict) – The data to be converted. Must be in the format as returned
by the get_buffer method: a dict of numpy arrays.

• sensitivity – If provided, the sensitivity used to convert X, Y, magnitude and
noise. Can be provided as a float or as an array that matches the length of elements in
buffer_data. If both a sensitivity is provided and present in the buffer_data, the pro-
vided value is used for the conversion, but the sensitivity in the buffer_data is stored
in the returned dict.

• sensitivity2 – Same as the first sensitivity argument, but for X2, Y2, magnitude2
and noise2.

• raise_error (bool) – Determines whether an exception is raised in case not all
keys provided in buffer_data can be converted. If False, the columns that cannot be
converted are omitted in the returned dict.

Returns
Floating-point buffer data

Return type
dict

check_errors()

Read all errors from the instrument and log them.

Returns
List of error entries.

check_get_errors()

Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

clear()

Clears the instrument status byte

property complete

Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation Complete query
places an ASCII character 1 into the device’s Output Queue when all pending selected device operations
have been finished.

property coupling

Control the input coupling mode.

Valid values are 0 for AC coupling mode or 1 for DC coupling mode.

7.41. Signal Recovery 435

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property curve_buffer_bits

Control which data outputs are stored in the curve buffer.

Valid values are values are integers between 1 and 65,535 (or 2,097,151 in dual reference mode). (dynamic)

property curve_buffer_interval

Control the time interval between the collection of successive points in the curve buffer.

Valid values to the the time interval are integers in ms with a resolution of 5 ms; input values are rounded
up to a multiple of 5. Valid values are values between 0 and 1,000,000,000 (corresponding to 12 days).
The interval may be set to 0, which sets the rate of data storage to the curve buffer to 1.25 ms/point (800
Hz). However this only allows storage of the X and Y channel outputs. There is no need to issue a CBD 3
command to set this up since it happens automatically when acquisition starts.

property curve_buffer_length

Control the length of the curve buffer.

Valid values are integers between 1 and 32,768, but the actual maximum amount of points is determined
by the amount of curves that are stored, as set via the curve_buffer_bits property (32,768 / n).

property curve_buffer_status

Measure the status of the curve buffer acquisition.

Command returns four values: First value - Curve Acquisition Status: Number with 5 possibilities: 0: no
activity 1: acquisition via TD command running 2: acquisition by a TDC command running 5: acquisition
via TD command halted 6: acquisition bia TDC command halted Second value - Number of Sweeps
Acquired: Number of sweeps already acquired. Third value - Status Byte: Decimal representation of
the status byte (the same response as the ST command Fourth value - Number of Points Acquired:
Number of points acquired in the curve buffer.

property dac1

Control the voltage of the DAC1 output on the rear panel.

Valid values are floating point numbers between -12 to 12 V.

property dac2

Control the voltage of the DAC2 output on the rear panel.

Valid values are floating point numbers between -12 to 12 V.

property dac3

Control the voltage of the DAC3 output on the rear panel.

Valid values are floating point numbers between -12 to 12 V.

property dac4

Control the voltage of the DAC4 output on the rear panel.

Valid values are floating point numbers between -12 to 12 V.

property fet

Control the voltage preamplifier transistor type.

Valid values are 0 for bipolar or 1 for FET.

property frequency

Control the oscillator frequency.

Valid values are floating point numbers representing the frequency in Hz. (dynamic)

436 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property gain

Control the AC gain of signal channel amplifier.

get_buffer(quantity=None, convert_to_float=True, wait_for_buffer=True)
Retrieves the buffer after it has been filled. The data retrieved from the lock-in is in a fixed-point format,
which requires translation before it can be interpreted as meaningful data. When convert_to_float is True
the conversion is performed (if possible) before returning the data.

Parameters

• quantity (str) – If provided, names the quantity that is to be retrieved from the curve
buffer; can be any of: ‘x’, ‘y’, ‘magnitude’, ‘phase’, ‘sensitivity’, ‘adc1’, ‘adc2’, ‘adc3’,
‘dac1’, ‘dac2’, ‘noise’, ‘ratio’, ‘log ratio’, ‘event’, ‘frequency part 1’ and ‘frequency
part 2’; for both dual modes, additional options are: ‘x2’, ‘y2’, ‘magnitude2’, ‘phase2’,
‘sensitivity2’. If no quantity is provided, all available data is retrieved.

• convert_to_float (bool) – Bool that determines whether to convert the fixed-point
buffer-data to meaningful floating point values via the buffer_to_float method. If True,
this method tries to convert all the available data to meaningful values; if this is not
possible, an exception will be raised. If False, this conversion is not performed and
the raw buffer-data is returned.

• wait_for_buffer (bool) – Bool that determines whether to wait for the data acqui-
sition to finished if this method is called before the acquisition is finished. If True, the
method waits until the buffer is filled before continuing; if False, the method raises an
exception if the acquisition is not finished when the method is called.

property harmonic

Control the reference harmonic mode.

Valid values are integers. (dynamic)

property id

Measure the model number of the instrument.

Returned value is an integer.

property imode

Control the lock-in amplifier to detect a voltage or current signal.

Valid values are voltage mode, ``current mode, or low noise current mode.

init_curve_buffer()

Initializes the curve storage memory and status variables. All record of previously taken curves is removed.

property log_ratio

Measure the log (base 10) of the ratio between the X channel and ADC1.

Returned value is a unitless floating point number equivalent to the mathematical expression log(X/ADC1).

property mag

Measure the magnitude of the signal.

Returned value is a floating point number in volts.

property options

Get the device options installed.

7.41. Signal Recovery 437

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property phase

Measure the signal’s absolute phase angle.

Returned value is a floating point number in degrees.

property ratio

Measure the ratio between the X channel and ADC1.

Returned value is a unitless floating point number equivalent to the mathematical expression X/ADC1.

read(**kwargs)
Read the response and remove extra unicode character from instrument readings.

read_binary_values(**kwargs)
Read binary values from the device.

read_bytes(count, **kwargs)
Read a certain number of bytes from the instrument.

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read the whole read
buffer.

• kwargs – Keyword arguments for the adapter.

Returns bytes
Bytes response of the instrument (including termination).

property reference

Control the oscillator reference input mode.

Valid values are internal, external rear or external front.

property reference_phase

Control the reference absolute phase angle.

Valid values are floating point numbers between 0 - 360 degrees.

reset()

Resets the instrument.

property sensitivity

Control the signal’s measurement sensitivity range.

When in voltage measurement mode, valid values are discrete values from 2 nV to 1 V. When in current
measurement mode, valid values are discrete values from 2 fA to 1 µA (for normal current mode) or up to
10 nA (for low noise current mode).

setChannelAMode()

Sets lock-in amplifier to measure a voltage signal only from the A input connector.

setDifferentialMode(lineFiltering=True)
Sets lock-in amplifier to differential mode, measuring A-B.

set_buffer(points, quantities=None, interval=0.01)
Prepares the curve buffer for a measurement.

Parameters

• points (int) – Number of points to be recorded in the curve buffer

438 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• quantities (list) – List containing the quantities (strings) that are to be recorded
in the curve buffer, can be any of: ‘x’, ‘y’, ‘magnitude’, ‘phase’, ‘sensitivity’, ‘adc1’,
‘adc2’, ‘adc3’, ‘dac1’, ‘dac2’, ‘noise’, ‘ratio’, ‘log ratio’, ‘event’, ‘frequency’ (or ‘fre-
quency part 1’ and ‘frequency part 2’); for both dual modes, additional options are:
‘x2’, ‘y2’, ‘magnitude2’, ‘phase2’, ‘sensitivity2’. Default is ‘x’ and ‘y’.

• interval (float) – The interval between two subsequent points stored in the curve
buffer in s. Default is 10 ms.

set_voltage_mode()

Sets lock-in amplifier to measure a voltage signal.

property shield

Control the input connector shield state.

Valid values are 0 to have shields grounded or 1 to have the shields floating (i.e., connected to ground via
a 1 kOhm resistor).

shutdown()

Safely shutdown the lock-in amplifier.

Sets oscillator amplitude to 0 V and AC gain to 0 dB.

property slope

Control the low-pass filter roll-off.

Valid values are the integers 6, 12, 18, or 24, which represents the slope of the low-pass filter in dB/octave.

start_buffer()

Initiates data acquisition. Acquisition starts at the current position in the curve buffer and continues at the
rate set by the STR command until the buffer is full.

property status

Get the status byte and Master Summary Status bit.

property time_constant

Control the filter time constant.

Valid values are a strict set of time constants from 10 us to 50,000 s. Returned values are floating point
numbers in seconds.

property voltage

Control the oscillator amplitude.

Valid values are floating point numbers between 0 to 5 V.

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Parameters
query_delay – Delay between writing and reading in seconds.

wait_for_buffer(timeout=None, delay=0.1)
Method that waits until the curve buffer is filled

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument

7.41. Signal Recovery 439

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• kwargs – Keyword arguments for the adapter.

write_binary_values(command, values, *args, **kwargs)
Write binary values to the device.

Parameters

• command – Command to send.

• values – The values to transmit.

• **kwargs (*args,) – Further arguments to hand to the Adapter.

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

property x

Measure the output signal’s X channel.

Returned value is a floating point number in volts.

property xy

Measure both the X and Y channels.

Returned values are floating point numbers in volts.

property y

Measure the output signal’s Y channel.

Returned value is a floating point number in volts.

7.42 Stanford Research Systems

This section contains specific documentation on the Stanford Research Systems (SRS) instruments that are imple-
mented. If you are interested in an instrument not included, please consider adding the instrument.

7.42.1 SR510 Lock-in Amplifier

class pymeasure.instruments.srs.SR510(adapter, name='Stanford Research Systems SR510 Lock-in
amplifier', **kwargs)

Bases: Instrument

property frequency

A float property representing the SR510 input reference frequency

property output

A float property that represents the SR510 output voltage in Volts.

property phase

A float property that represents the SR510 reference to input phase offset in degrees. Queries return values
between -180 and 180 degrees. This property can be set with a range of values between -999 to 999 degrees.
Set values are mapped internal in the lockin to -180 and 180 degrees.

property sensitivity

A float property that represents the SR510 sensitivity value. This property can be set.

440 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property status

A string property representing the bits set within the SR510 status byte

property time_constant

A float property that represents the SR510 PRE filter time constant. This property can be set.

7.42.2 SR570 Lock-in Amplifier

class pymeasure.instruments.srs.SR570(adapter, name='Stanford Research Systems SR570 Lock-in
amplifier', **kwargs)

Bases: Instrument

property bias_enabled

Boolean that turns the bias on or off. Allowed values are: True (bias on) and False (bias off)

property bias_level

A floating point value in V that sets the bias voltage level of the amplifier, in the [-5V,+5V] limits. The
values are up to 1 mV precision level.

blank_front()

“Blanks the frontend output of the device

clear_overload()

“Reset the filter capacitors to clear an overload condition

disable_bias()

Turns the bias voltage off

disable_offset_current()

“Disables the offset current

enable_bias()

Turns the bias voltage on

enable_offset_current()

“Enables the offset current

property filter_type

A string that sets the filter type. Allowed values are: [‘6dB Highpass’, ‘12dB Highpass’, ‘6dB Bandpass’,
‘6dB Lowpass’, ‘12dB Lowpass’, ‘none’]

property front_blanked

Boolean that blanks(True) or un-blanks (False) the front panel

property gain_mode

A string that sets the gain mode. Allowed values are: [‘Low Noise’, ‘High Bandwidth’, ‘Low Drift’]

property high_freq

A floating point value that sets the highpass frequency of the amplifier, which takes a discrete value in a
1-3 sequence. Values are truncated to the closest allowed value if not exact. Allowed values range from
0.03 Hz to 1 MHz.

property invert_signal_sign

An boolean sets the signal invert sense. Allowed values are: True (inverted) and False (not inverted).

7.42. Stanford Research Systems 441

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property low_freq

A floating point value that sets the lowpass frequency of the amplifier, which takes a discrete value in a
1-3 sequence. Values are truncated to the closest allowed value if not exact. Allowed values range from
0.03 Hz to 1 MHz.

property offset_current

A floating point value in A that sets the absolute value of the offset current of the amplifier, in the
[1pA,5mA] limits. The offset current takes discrete values in a 1-2-5 sequence. Values are truncated
to the closest allowed value if not exact.

property offset_current_enabled

Boolean that turns the offset current on or off. Allowed values are: True (current on) and False (current
off).

property offset_current_sign

An string that sets the offset current sign. Allowed values are: ‘positive’ and ‘negative’.

property sensitivity

A floating point value that sets the sensitivity of the amplifier, which takes discrete values in a 1-2-5
sequence. Values are truncated to the closest allowed value if not exact. Allowed values range from 1
pA/V to 1 mA/V.

property signal_inverted

Boolean that inverts the signal if True

unblank_front()

Un-blanks the frontend output of the device

7.42.3 SR830 Lock-in Amplifier

class pymeasure.instruments.srs.SR830(adapter, name='Stanford Research Systems SR830 Lock-in
amplifier', **kwargs)

Bases: Instrument

property adc1

Reads the Aux input 1 value in Volts with 1/3 mV resolution.

property adc2

Reads the Aux input 2 value in Volts with 1/3 mV resolution.

property adc3

Reads the Aux input 3 value in Volts with 1/3 mV resolution.

property adc4

Reads the Aux input 4 value in Volts with 1/3 mV resolution.

auto_offset(channel)
Offsets the channel (X, Y, or R) to zero

property aux_in_1

Reads the Aux input 1 value in Volts with 1/3 mV resolution.

property aux_in_2

Reads the Aux input 2 value in Volts with 1/3 mV resolution.

442 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property aux_in_3

Reads the Aux input 3 value in Volts with 1/3 mV resolution.

property aux_in_4

Reads the Aux input 4 value in Volts with 1/3 mV resolution.

property aux_out_1

A floating point property that controls the output of Aux output 1 in Volts, taking values between -10.5 V
and +10.5 V. This property can be set.

property aux_out_2

A floating point property that controls the output of Aux output 2 in Volts, taking values between -10.5 V
and +10.5 V. This property can be set.

property aux_out_3

A floating point property that controls the output of Aux output 3 in Volts, taking values between -10.5 V
and +10.5 V. This property can be set.

property aux_out_4

A floating point property that controls the output of Aux output 4 in Volts, taking values between -10.5 V
and +10.5 V. This property can be set.

property channel1

A string property that represents the type of Channel 1, taking the values X, R, X Noise, Aux In 1, or Aux
In 2. This property can be set.

property channel2

A string property that represents the type of Channel 2, taking the values Y, Theta, Y Noise, Aux In 3, or
Aux In 4. This property can be set.

property dac1

A floating point property that controls the output of Aux output 1 in Volts, taking values between -10.5 V
and +10.5 V. This property can be set.

property dac2

A floating point property that controls the output of Aux output 2 in Volts, taking values between -10.5 V
and +10.5 V. This property can be set.

property dac3

A floating point property that controls the output of Aux output 3 in Volts, taking values between -10.5 V
and +10.5 V. This property can be set.

property dac4

A floating point property that controls the output of Aux output 4 in Volts, taking values between -10.5 V
and +10.5 V. This property can be set.

property err_status

Reads the value of the lockin error (ERR) status byte. Returns an IntFlag type with positions within the
string corresponding to different error flags:

7.42. Stanford Research Systems 443

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Bit Status
0 unused
1 backup error
2 RAM error
3 unused
4 ROM error
5 GPIB error
6 DSP error
7 DSP error

property filter_slope

An integer property that controls the filter slope, which can take on the values 6, 12, 18, and 24 dB/octave.
Values are truncated to the next highest level if they are not exact.

property filter_synchronous

A boolean property that controls the synchronous filter. This property can be set. Allowed values are:
True or False

property frequency

A floating point property that represents the lock-in frequency in Hz. This property can be set.

get_buffer(channel=1, start=0, end=None)
Aquires the 32 bit floating point data through binary transfer

get_scaling(channel)
Returns the offset precent and the exapnsion term that are used to scale the channel in question

property harmonic

An integer property that controls the harmonic that is measured. Allowed values are 1 to 19999. Can be
set.

property input_config

An string property that controls the input configuration. Allowed values are: [‘A’, ‘A - B’, ‘I (1 MOhm)’,
‘I (100 MOhm)’]

property input_coupling

An string property that controls the input coupling. Allowed values are: [‘AC’, ‘DC’]

property input_grounding

An string property that controls the input shield grounding. Allowed values are: [‘Float’, ‘Ground’]

property input_notch_config

An string property that controls the input line notch filter status. Allowed values are: [‘None’, ‘Line’, ‘2 x
Line’, ‘Both’]

is_out_of_range()

Returns True if the magnitude is out of range

property lia_status

Reads the value of the lockin amplifier (LIA) status byte. Returns a binary string with positions within the
string corresponding to different status flags:

444 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Bit Status
0 Input/Amplifier overload
1 Time constant filter overload
2 Output overload
3 Reference unlock
4 Detection frequency range switched
5 Time constant changed indirectly
6 Data storage triggered
7 unused

property magnitude

Reads the magnitude in Volts.

output_conversion(channel)
Returns a function that can be used to determine the signal from the channel output (X, Y, or R)

property phase

A floating point property that represents the lock-in phase in degrees. This property can be set.

quick_range()

While the magnitude is out of range, increase the sensitivity by one setting

property reference_source

An string property that controls the reference source. Allowed values are: [‘External’, ‘Internal’]

property reference_source_trigger

A string property that controls the reference source triggering. Allowed values are: [‘SINE’, ‘POS EDGE’,
‘NEG EDGE’]

property sample_frequency

Gets the sample frequency in Hz

property sensitivity

A floating point property that controls the sensitivity in Volts, which can take discrete values from 2 nV
to 1 V. Values are truncated to the next highest level if they are not exact.

set_scaling(channel, precent, expand=0)
Sets the offset of a channel (X=1, Y=2, R=3) to a certain precent (-105% to 105%) of the signal, with an
optional expansion term (0, 10=1, 100=2)

property sine_voltage

A floating point property that represents the reference sine-wave voltage in Volts. This property can be
set.

snap(val1='X', val2='Y', *vals)
Method that records and retrieves 2 to 6 parameters at a single instant. The parameters can be one of: X,
Y, R, Theta, Aux In 1, Aux In 2, Aux In 3, Aux In 4, Frequency, CH1, CH2. Default is “X” and “Y”.

Parameters

• val1 – first parameter to retrieve

• val2 – second parameter to retrieve

• vals – other parameters to retrieve (optional)

7.42. Stanford Research Systems 445

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property theta

Reads the theta value in degrees.

property time_constant

A floating point property that controls the time constant in seconds, which can take discrete values from
10 microseconds to 30,000 seconds. Values are truncated to the next highest level if they are not exact.

wait_for_buffer(count, has_aborted=<function SR830.<lambda>>, timeout=60, timestep=0.01)
Wait for the buffer to fill a certain count

property x

Reads the X value in Volts.

property xy

Reads the X and Y values in Volts.

property y

Reads the Y value in Volts.

7.42.4 SR860 Lock-in Amplifier

class pymeasure.instruments.srs.SR860(adapter, name='Stanford Research Systems SR860 Lock-in
amplifier', **kwargs)

Bases: Instrument

property adc1

Reads the Aux input 1 value in Volts with 1/3 mV resolution.

property adc2

Reads the Aux input 2 value in Volts with 1/3 mV resolution.

property adc3

Reads the Aux input 3 value in Volts with 1/3 mV resolution.

property adc4

Reads the Aux input 4 value in Volts with 1/3 mV resolution.

property aux_in_1

Reads the Aux input 1 value in Volts with 1/3 mV resolution.

property aux_in_2

Reads the Aux input 2 value in Volts with 1/3 mV resolution.

property aux_in_3

Reads the Aux input 3 value in Volts with 1/3 mV resolution.

property aux_in_4

Reads the Aux input 4 value in Volts with 1/3 mV resolution.

property aux_out_1

A floating point property that controls the output of Aux output 1 in Volts, taking values between -10.5 V
and +10.5 V. This property can be set.

property aux_out_2

A floating point property that controls the output of Aux output 2 in Volts, taking values between -10.5 V
and +10.5 V. This property can be set.

446 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property aux_out_3

A floating point property that controls the output of Aux output 3 in Volts, taking values between -10.5 V
and +10.5 V. This property can be set.

property aux_out_4

A floating point property that controls the output of Aux output 4 in Volts, taking values between -10.5 V
and +10.5 V. This property can be set.

property dac1

A floating point property that controls the output of Aux output 1 in Volts, taking values between -10.5 V
and +10.5 V. This property can be set.

property dac2

A floating point property that controls the output of Aux output 2 in Volts, taking values between -10.5 V
and +10.5 V. This property can be set.

property dac3

A floating point property that controls the output of Aux output 3 in Volts, taking values between -10.5 V
and +10.5 V. This property can be set.

property dac4

A floating point property that controls the output of Aux output 4 in Volts, taking values between -10.5 V
and +10.5 V. This property can be set.

property dcmode

A string property that represents the sine out dc mode. This property can be set. Allowed values
are:[‘COM’, ‘DIF’, ‘common’, ‘difference’]

property detectedfrequency

Returns the actual detected frequency in HZ.

property extfreqency

Returns the external frequency in Hz.

property filer_synchronous

A string property that represents the synchronous filter. This property can be set. Allowed values are:[‘Off’,
‘On’]

property filter_advanced

A string property that represents the advanced filter. This property can be set. Allowed values are:[‘Off’,
‘On’]

property filter_slope

A integer property that sets the filter slope to 6 dB/oct(i=0), 12 DB/oct(i=1), 18 dB/oct(i=2), 24
dB/oct(i=3).

property frequency

A floating point property that represents the lock-in frequency in Hz. This property can be set.

property frequencypreset1

A floating point property that represents the preset frequency for the F1 preset button. This property can
be set.

property frequencypreset2

A floating point property that represents the preset frequency for the F2 preset button. This property can
be set.

7.42. Stanford Research Systems 447

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property frequencypreset3

A floating point property that represents the preset frequency for the F3 preset button. This property can
be set.

property frequencypreset4

A floating point property that represents the preset frequency for the F4 preset button. This property can
be set.

property front_panel

Turns the front panel blanking on(i=0) or off(i=1).

property get_noise_bandwidth

Returns the equivalent noise bandwidth, in hertz.

property get_signal_strength_indicator

Returns the signal strength indicator.

property gettimebase

Returns the current 10 MHz timebase source.

property harmonic

An integer property that controls the harmonic that is measured. Allowed values are 1 to 99. Can be set.

property harmonicdual

An integer property that controls the harmonic in dual reference mode that is measured. Allowed values
are 1 to 99. Can be set.

property horizontal_time_div

A integer property for the horizontal time/div according to the following table:[‘0=0.5s’, ‘1=1s’, ‘2=2s’,
‘3=5s’, ‘4=10s’, ‘5=30s’, ‘6=1min’, ‘7=2min’, ‘8=5min’, ‘9=10min’, ‘10=30min’, ‘11=1hour’, ‘12=2hour’,
‘13=6hour’, ‘14=12hour’, ‘15=1day’, ‘16=2days’]

property input_coupling

A string property that represents the input coupling. This property can be set. Allowed values are:[‘AC’,
‘DC’]

property input_current_gain

A string property that represents the current input gain. This property can be set. Allowed values
are:[‘1MEG’, ‘100MEG’]

property input_range

A string property that represents the input range. This property can be set. Allowed values are:[‘1V’,
‘300M’, ‘100M’, ‘30M’, ‘10M’]

property input_shields

A string property that represents the input shield grounding. This property can be set. Allowed values
are:[‘Float’, ‘Ground’]

property input_signal

A string property that represents the signal input. This property can be set. Allowed values are:[‘VOLT’,
‘CURR’, ‘voltage’, ‘current’]

property input_voltage_mode

A string property that represents the voltage input mode. This property can be set. Allowed values are:[‘A’,
‘A-B’]

448 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property internalfrequency

A floating property that represents the internal lock-in frequency in Hz This property can be set.

property magnitude

Reads the magnitude in Volts.

property parameter_DAT1

A integer property that assigns a parameter to data channel 1(green). This parameters can be set.
Allowed values are:[‘i=’, ‘0=Xoutput’, ‘1=Youtput’, ‘2=Routput’, ‘Thetaoutput’, ‘4=Aux IN1’, ‘5=Aux
IN2’, ‘6=Aux IN3’, ‘7=Aux IN4’, ‘8=Xnoise’, ‘9=Ynoise’, ‘10=AUXOut1’, ‘11=AuxOut2’, ‘12=Phase’,
‘13=Sine Out amplitude’, ‘14=DCLevel’, ‘15I=nt.referenceFreq’, ‘16=Ext.referenceFreq’]

property parameter_DAT2

A integer property that assigns a parameter to data channel 2(blue). This parameters can be set. Al-
lowed values are:[‘i=’, ‘0=Xoutput’, ‘1=Youtput’, ‘2=Routput’, ‘Thetaoutput’, ‘4=Aux IN1’, ‘5=Aux
IN2’, ‘6=Aux IN3’, ‘7=Aux IN4’, ‘8=Xnoise’, ‘9=Ynoise’, ‘10=AUXOut1’, ‘11=AuxOut2’, ‘12=Phase’,
‘13=Sine Out amplitude’, ‘14=DCLevel’, ‘15I=nt.referenceFreq’, ‘16=Ext.referenceFreq’]

property parameter_DAT3

A integer property that assigns a parameter to data channel 3(yellow). This parameters can be set.
Allowed values are:[‘i=’, ‘0=Xoutput’, ‘1=Youtput’, ‘2=Routput’, ‘Thetaoutput’, ‘4=Aux IN1’, ‘5=Aux
IN2’, ‘6=Aux IN3’, ‘7=Aux IN4’, ‘8=Xnoise’, ‘9=Ynoise’, ‘10=AUXOut1’, ‘11=AuxOut2’, ‘12=Phase’,
‘13=Sine Out amplitude’, ‘14=DCLevel’, ‘15I=nt.referenceFreq’, ‘16=Ext.referenceFreq’]

property parameter_DAT4

A integer property that assigns a parameter to data channel 3(orange). This parameters can be set.
Allowed values are:[‘i=’, ‘0=Xoutput’, ‘1=Youtput’, ‘2=Routput’, ‘Thetaoutput’, ‘4=Aux IN1’, ‘5=Aux
IN2’, ‘6=Aux IN3’, ‘7=Aux IN4’, ‘8=Xnoise’, ‘9=Ynoise’, ‘10=AUXOut1’, ‘11=AuxOut2’, ‘12=Phase’,
‘13=Sine Out amplitude’, ‘14=DCLevel’, ‘15I=nt.referenceFreq’, ‘16=Ext.referenceFreq’]

property phase

A floating point property that represents the lock-in phase in degrees. This property can be set.

property reference_externalinput

A string property that represents the external reference input. This property can be set. Allowed values
are:[‘50OHMS’, ‘1MEG’]

property reference_source

A string property that represents the reference source. This property can be set. Allowed values are:[‘INT’,
‘EXT’, ‘DUAL’, ‘CHOP’]

property reference_triggermode

A string property that represents the external reference trigger mode. This property can be set. Allowed
values are:[‘SIN’, ‘POS’, ‘NEG’, ‘POSTTL’, ‘NEGTTL’]

property screen_layout

A integer property that Sets the screen layout to trend(i=0), full strip chart history(i=1), half strip chart
history(i=2), full FFT(i=3), half FFT(i=4) or big numerical(i=5).

screenshot()

Take screenshot on device The DCAP command saves a screenshot to a USB memory stick. This command
is the same as pressing the [Screen Shot] key. A USB memory stick must be present in the front panel
USB port.

property sensitvity

A floating point property that controls the sensitivity in Volts, which can take discrete values from 2 nV
to 1 V. Values are truncated to the next highest level if they are not exact.

7.42. Stanford Research Systems 449

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property sine_amplitudepreset1

Floating point property representing the preset sine out amplitude, for the A1 preset button. This property
can be set.

property sine_amplitudepreset2

Floating point property representing the preset sine out amplitude, for the A2 preset button. This property
can be set.

property sine_amplitudepreset3

Floating point property representing the preset sine out amplitude, for the A3 preset button. This property
can be set.

property sine_amplitudepreset4

Floating point property representing the preset sine out amplitude, for the A3 preset button. This property
can be set.

property sine_dclevelpreset1

A floating point property that represents the preset sine out dc level for the L1 button. This property can
be set.

property sine_dclevelpreset2

A floating point property that represents the preset sine out dc level for the L2 button. This property can
be set.

property sine_dclevelpreset3

A floating point property that represents the preset sine out dc level for the L3 button. This property can
be set.

property sine_dclevelpreset4

A floating point property that represents the preset sine out dc level for the L4 button. This property can
be set.

property sine_voltage

A floating point property that represents the reference sine-wave voltage in Volts. This property can be
set.

snap(val1='X', val2='Y', val3=None)
retrieve 2 or 3 parameters at once parameters can be chosen by index, or enumeration as follows:

450 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

index enumeration parameter
0 X X output
1 Y Y output
2 R R output
3 THeta output
4 IN1 Aux In1
5 IN2 Aux In2
6 IN3 Aux In3
7 IN4 Aux In4
8 XNOise Xnoise
9 YNOise Ynoise
10 OUT1 Aux Out1
11 OUT2 Aux Out2
12 PHAse Reference Phase
13 SAMp Sine Out Amplitude
14 LEVel DC Level
15 FInt Int. Ref. Frequency
16 FExt Ext. Ref. Frequency

Parameters

• val1 – parameter enumeration/index

• val2 – parameter enumeration/index

• val3 – parameter enumeration/index (optional)

Defaults:
val1 = “X” val2 = “Y” val3 = None

property strip_chart_dat1

A integer property that turns the strip chart graph of data channel 1 off(i=0) or on(i=1).

property strip_chart_dat2

A integer property that turns the strip chart graph of data channel 2 off(i=0) or on(i=1).

property strip_chart_dat3

A integer property that turns the strip chart graph of data channel 1 off(i=0) or on(i=1).

property strip_chart_dat4

A integer property that turns the strip chart graph of data channel 4 off(i=0) or on(i=1).

property theta

Reads the theta value in degrees.

property time_constant

A floating point property that controls the time constant in seconds, which can take discrete values from
10 microseconds to 30,000 seconds. Values are truncated to the next highest level if they are not exact.

property timebase

Sets the external 10 MHZ timebase to auto(i=0) or internal(i=1).

property x

Reads the X value in Volts

7.42. Stanford Research Systems 451

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property y

Reads the Y value in Volts

7.43 T&C Power Conversion

This section contains specific documentation on the instruments from T&C Power Conversion that are implemented.
If you are interested in an instrument not included, please consider adding the instrument.

7.43.1 T&C Power Conversion AG Series Plasma Generator CXN

class pymeasure.instruments.tcpowerconversion.CXN(adapter, name='T&C RF sputtering power supply',
address=0, **kwargs)

Bases: Instrument

T&C Power Conversion AG Series Plasma Generator CXN (also rebranded by AJA International Inc as 0113
GTC or 0313 GTC)

Connection to the device is made through an RS232 serial connection. The communication settings are fixed in
the device at 38400, stopbit one, parity none. The device uses a command response system where every receipt
of a command is acknowledged by returning a ‘*’. A ‘?’ is returned to indicates the command was not recognized
by the device.

A command messages always consists of the following bytes (B): 1B - header (always ‘C’), 1B - address (ignored),
2B - command id, 2B - parameter 1, 2B - parameter, 2B - checksum

A response message always consists of: 1B - header (always ‘R’), 1B - address of the device, 2B - length of the
data package, variable length data, 2B - checksum response messages are received after the acknowledge byte.

Parameters

• adapter – pyvisa resource name of the instrument or adapter instance

• name (string) – Name of the instrument.

• kwargs – Any valid key-word argument for Instrument

Note: In order to enable setting any parameters one has to request control and periodically (at least once per
2s) poll any value from the device. Failure to do so will mean loss of control and the device will reset certain
parameters (setpoint, disable RF, . . .). If no value should be polled but control should remain active one can also
use the ping method.

preset_1

Channel
PresetChannel

preset_2

Channel
PresetChannel

preset_3

Channel
PresetChannel

452 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

preset_4

Channel
PresetChannel

preset_5

Channel
PresetChannel

preset_6

Channel
PresetChannel

preset_7

Channel
PresetChannel

preset_8

Channel
PresetChannel

preset_9

Channel
PresetChannel

class Status(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

Bases: IntFlag

IntFlag type used to represent the CXN status.

The used bits correspond to: bit 14: Analog interface enabled, bit 11: Interlock open, bit 10: Over temper-
ature, bit 9: Reverse power limit, bit 8: Forward power limit, bit 6: MCG mode active, bit 5: load power
leveling active, bit 4, External RF source active, bit 0: RF power on.

property dc_voltage

Get the DC voltage in volts.

property firmware_version

Get the UI-processor and RF-processor firmware version numbers.

property frequency

Get operating frequency in Hz.

property id

Get the device identification string.

property load_capacity

Control the percentage of full-scale value of the load capacity. It can be set only when manual_mode is
True.

property manual_mode

Control the manual tuner mode.

property operation_mode

Control the operation mode.

7.43. T&C Power Conversion 453

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

ping()

Send a ping to the instrument.

property power

Get power readings for forward/reverse/load power in watts.

property power_limit

Get maximum power of the power supply.

property preset_slot

Control which preset slot will be used for auto-tune mode. Valid values are 0 to 9. 0 means no preset will
be used

property pulse_params

Get pulse on/off time of the pulse waveform.

property ramp_rate

Control the ramp rate in watts/second.

property ramp_start_power

Control the ramp starting power in watts.

read()

Reads a response message from the instrument.

This method determines the length of the message from the automatically by reading the message header
and also checks for a correct checksum.

Returns
the data fields

Return type
bytes

Raises
ValueError – if a checksum error is detected

release_control()

Release instrument control.

This will reset certain properties to safe defaults and disable the RF output.

request_control()

Request control of the instrument.

This is required to be able to set any properties.

property reverse_power_limit

Get maximum reverse power.

property rf_enabled

Control the RF output.

property serial

Get the serial number of the instrument.

property setpoint

Control the setpoint power level in watts.

454 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property status

Get status field. The return value is represented by the IntFlag type Status.

property temperature

Get heat sink temperature in deg Celsius.

property tune_capacity

Control the percentage of full-scale value of the tune capacity. It can be set only when manual_mode is
True.

property tuner

Get type of the used tuner.

values(command, cast=<class 'int'>, separator=', ', preprocess_reply=None, **kwargs)
Write a command to the instrument and return a list of formatted values from the result.

This is derived from CommonBase.values and adapted here for use with bytes communication messages
(no str conversion and strip). It is implemented as a general method to allow using it equally in PresetChan-
nel and CXN. See Github issue #784 for details.

Parameters

• command – SCPI command to be sent to the instrument

• separator – A separator character to split the string into a list

• cast – A type to cast the result

• preprocess_reply – optional callable used to preprocess values received from the
instrument. The callable returns the processed string.

Returns
A list of the desired type, or strings where the casting fails

write(command)
Writes a command to the instrument and includes needed required header and address.

Parameters
command (str) – command to be sent to the instrument

class pymeasure.instruments.tcpowerconversion.tccxn.PresetChannel(parent, id)
Bases: Channel

property load_capacity

Control the percentage of full-scale value of the load capacity preset.

property tune_capacity

Control the percentage of full-scale value of the tune capacity preset.

values(command, cast=<class 'int'>, separator=', ', preprocess_reply=None, **kwargs)
Write a command to the instrument and return a list of formatted values from the result.

This is derived from CommonBase.values and adapted here for use with bytes communication messages
(no str conversion and strip). It is implemented as a general method to allow using it equally in PresetChan-
nel and CXN. See Github issue #784 for details.

Parameters

• command – SCPI command to be sent to the instrument

• separator – A separator character to split the string into a list

• cast – A type to cast the result

7.43. T&C Power Conversion 455

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• preprocess_reply – optional callable used to preprocess values received from the
instrument. The callable returns the processed string.

Returns
A list of the desired type, or strings where the casting fails

7.44 TDK Lambda

This section contains specific documentation on the TDK Lambda instruments that are implemented. If you are inter-
ested in an instrument not included, please consider adding the instrument.

7.44.1 TDK Lambda Genesys 40-38 DC power supply

class pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38(adapter, name='TDK Lambda
Gen40-38', address=6, **kwargs)

Bases: TDK_Lambda_Base

Represents the TDK Lambda Genesys 40-38 DC power supply. Class inherits commands from the
TDK_Lambda_Base parent class and utilizes dynamic properties adjust valid values on various properties.

psu = TDK_Gen40_38("COM3", 6) # COM port and daisy-chain address
psu.remote = "REM" # PSU in remote mode
psu.output_enabled = True # Turn on output
psu.ramp_to_current(2.0) # Ramp to 2.0 A of current
print(psu.current) # Measure actual PSU current
print(psu.voltage) # Measure actual PSU voltage
psu.shutdown() # Run shutdown command

The initialization of a TDK instrument requires the current address of the TDK power supply. The default address
for the TDK Lambda is 6.

Parameters

• adapter – VISAAdapter instance

• name – Instrument name. Default is “TDK Lambda Gen40-38”

• address – Serial port daisy chain number. Default is 6.

property address

Set the address of the power supply.

Valid values are integers between 0 - 30 (inclusive).

property auto_restart_enabled

Control the auto restart mode, which restores the power supply to the last output voltage and current settings
with output enabled on startup.

Valid values are True to restore output settings with output enabled on startup and False to disable restora-
tion of settings and output disabled on startup.

check_errors()

Read all errors from the instrument and log them.

Returns
List of error entries.

456 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

check_get_errors()

Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

check_set_errors()

Only use this command for setting commands, i.e. non-querying commands.

Any non-querying commands (i.e., a command that does NOT have the “?” symbol in it like the instrument
command “PV 10”) will automatically return an “OK” reply for valid command or an error code. This is
done to confirm that the instrument has received the command. Any querying commands (i.e., a command
that does have the “?” symbol in it like the instrument command “PV?”) will return the requested value,
not the confirmation.

clear()

Clear FEVE and SEVE registers to zero.

property complete

Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation Complete query
places an ASCII character 1 into the device’s Output Queue when all pending selected device operations
have been finished.

property current

Measure the actual output current.

Returns a float with five digits of precision.

property current_setpoint

Control the programmed (set) output current.(dynamic)

property display

Get the displayed voltage and current.

Returns a list of floating point numbers in the order of [measured voltage, programmed voltage, measured
current, programmed current, over voltage set point, under voltage set point].

property foldback_delay

Control the fold back delay.

Adds an additional delay to the standard fold back delay (250 ms) by multiplying the set value by 0.1. Valid
values are integers between 0 to 255.

property foldback_enabled

Control the fold back protection of the power supply.

Valid values are True to arm the fold back protection and False to cancel the fold back protection.

foldback_reset()

Reset the fold back delay to 0 s, restoring the standard 250 ms delay.

Property is UNTESTED.

7.44. TDK Lambda 457

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property id

Get the identity of the instrument.

Returns a list of instrument manufacturer and model in the format: ["LAMBDA", "GENX-Y"]

property last_test_date

Get the date of the last test, possibly calibration date.

Returns a string in the format: yyyy/mm/dd.

property master_slave_setting

Get the master and slave settings.

Possible master return values are 1, 2, 3, and 4. The slave value is 0.

Property is UNTESTED.

property mode

Measure the output mode of the power supply.

When power supply is on, the returned value will be either 'CV' for control voltage or 'CC' for or control
current. If the power supply is off, the returned value will be 'OFF'.

property multidrop_capability

Get whether the multi-drop option is available on the power supply.

If return value is False, the option is not available, if True it is available.

Property is UNTESTED.

property options

Get the device options installed.

property output_enabled

Control the output of the power supply.

Valid values are True to turn output on and False to turn output off, shutting down any voltage or current.

property over_voltage

Control the over voltage protection. (dynamic)

property pass_filter

Control the low pass filter frequency of the A to D converter for voltage and current measurement.

Valid frequency values are 18, 23, or 46 Hz. Default value is 18 Hz.

ramp_to_current(target_current, steps=20, pause=0.2)
Ramps to a target current from the set current value over a certain number of linear steps, each separated
by a pause duration.

Parameters

• target_current – Target current in amps

• steps – Integer number of steps

• pause – Pause duration in seconds to wait between steps

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

read_binary_values(**kwargs)
Read binary values from the device.

458 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

read_bytes(count, **kwargs)
Read a certain number of bytes from the instrument.

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read the whole read
buffer.

• kwargs – Keyword arguments for the adapter.

Returns bytes
Bytes response of the instrument (including termination).

recall()

Recall last saved instrument settings.

property remote

Control the current remote operation of the power supply.

Valid values are 'LOC' for local mode, 'REM' for remote mode, and 'LLO' for local lockout mode.

property repeat

Measure the last command again.

Returns output of the last command.

reset()

Reset the instrument to default values.

save()

Save current instrument settings.

property serial

Get the serial number of the instrument.

Returns the serial number of of the instrument as an ASCII string.

set_max_over_voltage()

Set the over voltage protection to the maximum level for the power supply.

shutdown()

Safety shutdown the power supply.

Ramps the power supply down to zero current using the self.ramp_to_current(0.0)method and turns
the output off.

property status

Get the power supply status.

Returns a list in the order of [actual voltage (MV), the programmed voltage (PV), the actual current (MC),
the programmed current (PC), the status register (SR), and the fault register (FR)].

property under_voltage

Control the under voltage limit.

Property is UNTESTED. (dynamic)

property version

Get the software version on instrument.

Returns the software version as an ASCII string.

7.44. TDK Lambda 459

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property voltage

Measure the the actual output voltage.

property voltage_setpoint

Control the programmed (set) output voltage.(dynamic)

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Parameters
query_delay – Delay between writing and reading in seconds.

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument

• kwargs – Keyword arguments for the adapter.

write_binary_values(command, values, *args, **kwargs)
Write binary values to the device.

Parameters

• command – Command to send.

• values – The values to transmit.

• **kwargs (*args,) – Further arguments to hand to the Adapter.

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

7.44.2 TDK Lambda Genesys 80-65 DC power supply

class pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65(adapter, name='TDK Lambda
Gen80-65', address=6, **kwargs)

Bases: TDK_Lambda_Base

Represents the TDK Lambda Genesys 80-65 DC power supply. Class inherits commands from the
TDK_Lambda_Base parent class and utilizes dynamic properties adjust valid values on various properties.

psu = TDK_Gen80_65("COM3", 6) # COM port and daisy-chain address
psu.remote = "REM" # PSU in remote mode
psu.output_enabled = True # Turn on output
psu.ramp_to_current(2.0) # Ramp to 2.0 A of current
print(psu.current) # Measure actual PSU current
print(psu.voltage) # Measure actual PSU voltage
psu.shutdown() # Run shutdown command

The initialization of a TDK instrument requires the current address of the TDK power supply. The default address
for the TDK Lambda is 6.

Parameters

• adapter – VISAAdapter instance

• name – Instrument name. Default is “TDK Lambda Gen80-65”

460 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• address – Serial port daisy chain number. Default is 6.

property address

Set the address of the power supply.

Valid values are integers between 0 - 30 (inclusive).

property auto_restart_enabled

Control the auto restart mode, which restores the power supply to the last output voltage and current settings
with output enabled on startup.

Valid values are True to restore output settings with output enabled on startup and False to disable restora-
tion of settings and output disabled on startup.

check_errors()

Read all errors from the instrument and log them.

Returns
List of error entries.

check_get_errors()

Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

check_set_errors()

Only use this command for setting commands, i.e. non-querying commands.

Any non-querying commands (i.e., a command that does NOT have the “?” symbol in it like the instrument
command “PV 10”) will automatically return an “OK” reply for valid command or an error code. This is
done to confirm that the instrument has received the command. Any querying commands (i.e., a command
that does have the “?” symbol in it like the instrument command “PV?”) will return the requested value,
not the confirmation.

clear()

Clear FEVE and SEVE registers to zero.

property complete

Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation Complete query
places an ASCII character 1 into the device’s Output Queue when all pending selected device operations
have been finished.

property current

Measure the actual output current.

Returns a float with five digits of precision.

property current_setpoint

Control the programmed (set) output current.(dynamic)

property display

Get the displayed voltage and current.

Returns a list of floating point numbers in the order of [measured voltage, programmed voltage, measured
current, programmed current, over voltage set point, under voltage set point].

7.44. TDK Lambda 461

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property foldback_delay

Control the fold back delay.

Adds an additional delay to the standard fold back delay (250 ms) by multiplying the set value by 0.1. Valid
values are integers between 0 to 255.

property foldback_enabled

Control the fold back protection of the power supply.

Valid values are True to arm the fold back protection and False to cancel the fold back protection.

foldback_reset()

Reset the fold back delay to 0 s, restoring the standard 250 ms delay.

Property is UNTESTED.

property id

Get the identity of the instrument.

Returns a list of instrument manufacturer and model in the format: ["LAMBDA", "GENX-Y"]

property last_test_date

Get the date of the last test, possibly calibration date.

Returns a string in the format: yyyy/mm/dd.

property master_slave_setting

Get the master and slave settings.

Possible master return values are 1, 2, 3, and 4. The slave value is 0.

Property is UNTESTED.

property mode

Measure the output mode of the power supply.

When power supply is on, the returned value will be either 'CV' for control voltage or 'CC' for or control
current. If the power supply is off, the returned value will be 'OFF'.

property multidrop_capability

Get whether the multi-drop option is available on the power supply.

If return value is False, the option is not available, if True it is available.

Property is UNTESTED.

property options

Get the device options installed.

property output_enabled

Control the output of the power supply.

Valid values are True to turn output on and False to turn output off, shutting down any voltage or current.

property over_voltage

Control the over voltage protection. (dynamic)

property pass_filter

Control the low pass filter frequency of the A to D converter for voltage and current measurement.

Valid frequency values are 18, 23, or 46 Hz. Default value is 18 Hz.

462 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

ramp_to_current(target_current, steps=20, pause=0.2)
Ramps to a target current from the set current value over a certain number of linear steps, each separated
by a pause duration.

Parameters

• target_current – Target current in amps

• steps – Integer number of steps

• pause – Pause duration in seconds to wait between steps

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

read_binary_values(**kwargs)
Read binary values from the device.

read_bytes(count, **kwargs)
Read a certain number of bytes from the instrument.

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read the whole read
buffer.

• kwargs – Keyword arguments for the adapter.

Returns bytes
Bytes response of the instrument (including termination).

recall()

Recall last saved instrument settings.

property remote

Control the current remote operation of the power supply.

Valid values are 'LOC' for local mode, 'REM' for remote mode, and 'LLO' for local lockout mode.

property repeat

Measure the last command again.

Returns output of the last command.

reset()

Reset the instrument to default values.

save()

Save current instrument settings.

property serial

Get the serial number of the instrument.

Returns the serial number of of the instrument as an ASCII string.

set_max_over_voltage()

Set the over voltage protection to the maximum level for the power supply.

shutdown()

Safety shutdown the power supply.

Ramps the power supply down to zero current using the self.ramp_to_current(0.0)method and turns
the output off.

7.44. TDK Lambda 463

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property status

Get the power supply status.

Returns a list in the order of [actual voltage (MV), the programmed voltage (PV), the actual current (MC),
the programmed current (PC), the status register (SR), and the fault register (FR)].

property under_voltage

Control the under voltage limit.

Property is UNTESTED. (dynamic)

property version

Get the software version on instrument.

Returns the software version as an ASCII string.

property voltage

Measure the the actual output voltage.

property voltage_setpoint

Control the programmed (set) output voltage.(dynamic)

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Parameters
query_delay – Delay between writing and reading in seconds.

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument

• kwargs – Keyword arguments for the adapter.

write_binary_values(command, values, *args, **kwargs)
Write binary values to the device.

Parameters

• command – Command to send.

• values – The values to transmit.

• **kwargs (*args,) – Further arguments to hand to the Adapter.

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

7.45 Tektronix

This section contains specific documentation on the Tektronix instruments that are implemented. If you are interested
in an instrument not included, please consider adding the instrument.

464 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.45.1 TDS2000 Oscilloscope

class pymeasure.instruments.tektronix.TDS2000(adapter, name='Tektronix TDS 2000 Oscilliscope',
**kwargs)

Bases: Instrument

Represents the Tektronix TDS 2000 Oscilloscope and provides a high-level for interacting with the instrument

7.45.2 AFG3152C Arbitrary function generator

class pymeasure.instruments.tektronix.AFG3152C(adapter, name='Tektronix AFG3152C arbitrary
function generator', **kwargs)

Bases: Instrument

Represents the Tektronix AFG 3000 series (one or two channels) arbitrary function generator and provides a
high-level for interacting with the instrument.

afg=AFG3152C("GPIB::1") # AFG on GPIB 1
afg.reset() # Reset to default
afg.ch1.shape='sinusoidal' # Sinusoidal shape
afg.ch1.unit='VPP' # Sets CH1 unit to VPP
afg.ch1.amp_vpp=1 # Sets the CH1 level to 1 VPP
afg.ch1.frequency=1e3 # Sets the CH1 frequency to 1KHz
afg.ch1.enable() # Enables the output from CH1

7.46 Teledyne

This section contains specific documentation on the Teledyne instruments that are implemented. If you are interested
in an instrument not included, please consider adding the instrument.

If the instrument you are looking for is not here, also check LeCroy for older instruments.

7.46.1 Teledyne T3AFG Arbitrary Waveform Generator

class pymeasure.instruments.teledyne.TeledyneT3AFG(adapter, name='Teledyne T3AFG', **kwargs)
Bases: Instrument

Represents the Teledyne T3AFG series of arbitrary waveform generator interface for interacting with the instru-
ment.

Intially targeting T3AFG80, some features may not be available on lower end models and features from higher
end models are not included here intially.

Future improvements (help welcomed): - Add other OUTPut related controls like Load and Polarity - Add other
Basic Waveform related controls like Period - Add frequency ranges per model - Add channel coupling control

ch_1

Channel
SignalChannel

7.46. Teledyne 465

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

ch_2

Channel
SignalChannel

check_errors()

Read all errors from the instrument and log them.

Returns
List of error entries.

check_get_errors()

Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

clear()

Clears the instrument status byte

property complete

Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation Complete query
places an ASCII character 1 into the device’s Output Queue when all pending selected device operations
have been finished.

property id

Get the identification of the instrument.

property options

Get the device options installed.

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

read_binary_values(**kwargs)
Read binary values from the device.

read_bytes(count, **kwargs)
Read a certain number of bytes from the instrument.

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read the whole read
buffer.

• kwargs – Keyword arguments for the adapter.

466 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Returns bytes
Bytes response of the instrument (including termination).

reset()

Resets the instrument.

shutdown()

Brings the instrument to a safe and stable state

property status

Get the status byte and Master Summary Status bit.

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Parameters
query_delay – Delay between writing and reading in seconds.

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument

• kwargs – Keyword arguments for the adapter.

write_binary_values(command, values, *args, **kwargs)
Write binary values to the device.

Parameters

• command – Command to send.

• values – The values to transmit.

• **kwargs (*args,) – Further arguments to hand to the Adapter.

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

class pymeasure.instruments.teledyne.teledyneT3AFG.SignalChannel(parent, id)
Bases: Channel

property amplitude

Control the amplitude of waveform to be output in volts peak-to-peak. Has no effect when WVTP is NOISE
or DC. Max amplitude depends on offset, frequency, and load. Amplitude is also limited by the channel
max output amplitude.(dynamic)

property frequency

Control the frequency of waveform to be output in Hertz. Has no effect when WVTP is NOISE or
DC.(dynamic)

property max_output_amplitude

Control the maximum output amplitude of the channel in volts peak to peak.(dynamic)

property offset

Control the offset of waveform to be output in volts. Has no effect when WVTP is NOISE. Max off-
set depends on amplitude, frequency, and load. Offset is also limited by the channel max output ampli-
tude.(dynamic)

7.46. Teledyne 467

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property output_enabled

Control whether the channel output is enabled (boolean).

property wavetype

Control the type of waveform to be output. Options are: {‘SINE’, ‘SQUARE’, ‘RAMP’, ‘PULSE’,
‘NOISE’, ‘ARB’, ‘DC’, ‘PRBS’, ‘IQ’}

There are shared base classes for Teledyne oscilloscopes. If your device is missing, the base class might already work
well enough. If adding a new device, these base classes should limit the amount of new code necessary.

7.46.2 Teledyne Oscilloscope base classes

Teledyne Oscilloscope

class pymeasure.instruments.teledyne.TeledyneOscilloscope(adapter, name='Teledyne Oscilloscope',
**kwargs)

Bases: Instrument

A base abstract class for any Teledyne Lecroy oscilloscope.

All Teledyne oscilloscopes have a very similar interface, hence this base class to combine them. Note that specific
models will likely have conflicts in their interface.

Attributes:
WRITE_INTERVAL_S: minimum time between two commands. If a command is received less than
WRITE_INTERVAL_S after the previous one, the code blocks until at least WRITE_INTERVAL_S sec-
onds have passed. Because the oscilloscope takes a non neglibile time to perform some operations, it might
be needed for the user to tweak the sleep time between commands. The WRITE_INTERVAL_S is set to
10ms as default however its optimal value heavily depends on the actual commands and on the connection
type, so it is impossible to give a unique value to fit all cases. An interval between 10ms and 500ms second
proved to be good, depending on the commands and connection latency.

ch_1

Channel
TeledyneOscilloscopeChannel

ch_2

Channel
TeledyneOscilloscopeChannel

ch_3

Channel
TeledyneOscilloscopeChannel

ch_4

Channel
TeledyneOscilloscopeChannel

autoscale()

Autoscale displayed channels.

property bwlimit

Set the internal low-pass filter for all channels.(dynamic)

468 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

center_trigger()

Set the trigger levels to center of the trigger source waveform.

ch(source)
Get channel object from its index or its name. Or if source is “math”, just return the scope object.

Parameters
source – can be 1, 2, 3, 4 or C1, C2, C3, C4, MATH

Returns
handle to the selected source.

default_setup()

Set up the oscilloscope for remote operation.

The COMM_HEADER command controls the way the oscilloscope formats response to queries. This
command does not affect the interpretation of messages sent to the oscilloscope. Headers can be sent in
their long or short form regardless of the CHDR setting. By setting the COMM_HEADER to OFF, the
instrument is going to reply with minimal information, and this makes the response message much easier
to parse. The user should not be fiddling with the COMM_HEADER during operation, because if the
communication header is anything other than OFF, the whole driver breaks down.

display_parameter(parameter, channel)
Same as the display_parameter method in the Channel subclass.

download_image()

Get a BMP image of oscilloscope screen in bytearray of specified file format.

download_waveform(source, requested_points=None, sparsing=None)
Get data points from the specified source of the oscilloscope.

The returned objects are two np.ndarray of data and time points and a dict with the waveform preamble,
that contains metadata about the waveform.

Parameters

• source – measurement source. It can be “C1”, “C2”, “C3”, “C4”, “MATH”.

• requested_points – number of points to acquire. If None the number of points re-
quested in the previous call will be assumed, i.e. the value of the number of points
stored in the oscilloscope memory. If 0 the maximum number of points will be re-
turned.

• sparsing – interval between data points. For example if sparsing = 4, only one point
every 4 points is read. If 0 or None the sparsing of the previous call is assumed, i.e.
the value of the sparsing stored in the oscilloscope memory.

Returns
data_ndarray, time_ndarray, waveform_preamble_dict: see waveform_preamble property
for dict format.

property intensity

Set the intensity level of the grid or the trace in percent

measure_parameter(parameter, channel)
Same as the measure_parameter method in the Channel subclass

property memory_size

Control the maximum depth of memory (float or string). Assign for example 500, 100e6, “100K”, “25MA”.

The reply will always be a float.

7.46. Teledyne 469

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

run()

Starts repetitive acquisitions.

This is the same as pressing the Run key on the front panel.

single()

Causes the instrument to acquire a single trigger of data.

This is the same as pressing the Single key on the front panel.

stop()

Stops the acquisition. This is the same as pressing the Stop key on the front panel.

property timebase

Get timebase setup as a dict containing the following keys:

• “timebase_scale”: horizontal scale in seconds/div (float)

• “timebase_offset”: interval in seconds between the trigger and the reference position (float)

property timebase_offset

Control the time interval in seconds between the trigger event and the reference position (at center of screen
by default).

property timebase_scale

Control the horizontal scale (units per division) in seconds for the main window (float).

timebase_setup(scale=None, offset=None)
Set up timebase. Unspecified parameters are not modified. Modifying a single parameter might im-
pact other parameters. Refer to oscilloscope documentation and make multiple consecutive calls to time-
base_setup if needed.

Parameters

• scale – interval in seconds between the trigger event and the reference position.

• offset – horizontal scale per division in seconds/div.

property trigger

Get trigger setup as a dict containing the following keys:

• “mode”: trigger sweep mode [auto, normal, single, stop]

• “trigger_type”: condition that will trigger the acquisition of waveforms [edge,
slew,glit,intv,runt,drop]

• “source”: trigger source [c1,c2,c3,c4]

• “hold_type”: hold type (refer to page 172 of programing guide)

• “hold_value1”: hold value1 (refer to page 172 of programing guide)

• “hold_value2”: hold value2 (refer to page 172 of programing guide)

• “coupling”: input coupling for the selected trigger sources

• “level”: trigger level voltage for the active trigger source

• “level2”: trigger lower level voltage for the active trigger source (only slew/runt trigger)

• “slope”: trigger slope of the specified trigger source

470 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property trigger_mode

Control the trigger sweep mode (string).

<mode>:= {AUTO,NORM,SINGLE,STOP}

• auto : When AUTO sweep mode is selected, the oscilloscope begins to search for the trigger signal
that meets the conditions. If the trigger signal is satisfied, the running state on the top left corner
of the user interface shows Trig’d, and the interface shows stable waveform. Otherwise, the running
state always shows Auto, and the interface shows unstable waveform.

• normal : When NORMAL sweep mode is selected, the oscilloscope enters the wait trigger state and
begins to search for trigger signals that meet the conditions. If the trigger signal is satisfied, the
running state shows Trig’d, and the interface shows stable waveform. Otherwise, the running state
shows Ready, and the interface displays the last triggered waveform (previous trigger) or does not
display the waveform (no previous trigger).

• single : When SINGLE sweep mode is selected, the backlight of SINGLE key lights up, the os-
cilloscope enters the waiting trigger state and begins to search for the trigger signal that meets the
conditions. If the trigger signal is satisfied, the running state shows Trig’d, and the interface shows
stable waveform. Then, the oscilloscope stops scanning, the RUN/STOP key is red light, and the
running status shows Stop. Otherwise, the running state shows Ready, and the interface does not
display the waveform.

• stopped : STOP is a part of the option of this command, but not a trigger mode of the oscilloscope.

property trigger_select

Control the condition that will trigger the acquisition of waveforms (string).

Depending on the trigger type, additional parameters must be specified. These additional parameters are
grouped in pairs. The first in the pair names the variable to be modified, while the second gives the new
value to be assigned. Pairs may be given in any order and restricted to those variables to be changed.

There are five parameters that can be specified. Parameters 1. 2. 3. are always mandatory. Parameters 4.
5. are required only for certain combinations of the previous parameters.

1. <trig_type>:={edge, slew, glit, intv, runt, drop}

2. <source>:={c1, c2, c3, c4, line}

3. <hold_type>:=

• {ti, off} for edge trigger.

• {ti} for drop trigger.

• {ps, pl, p2, p1} for glit/runt trigger.

• {is, il, i2, i1} for slew/intv trigger.

4. <hold_value1>:= a time value with unit.

5. <hold_value2>:= a time value with unit.

Note:

• “line” can only be selected when the trigger type is “edge”.

• All time arguments should be given in multiples of seconds. Use the scientific notation if necessary.

• The range of hold_values varies from trigger types. [80nS, 1.5S] for “edge” trigger, and [2nS, 4.2S]
for others.

• The trigger_select command is switched automatically between the short, normal and extended ver-
sion depending on the number of expected parameters.

7.46. Teledyne 471

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

trigger_setup(mode=None, source=None, trigger_type=None, hold_type=None, hold_value1=None,
hold_value2=None, coupling=None, level=None, level2=None, slope=None)

Set up trigger.

Unspecified parameters are not modified. Modifying a single parameter might impact other parame-
ters. Refer to oscilloscope documentation and make multiple consecutive calls to trigger_setup and chan-
nel_setup if needed.

Parameters

• mode – trigger sweep mode [auto, normal, single, stop]

• source – trigger source [c1, c2, c3, c4, line]

• trigger_type – condition that will trigger the acquisition of waveforms
[edge,slew,glit,intv,runt,drop]

• hold_type – hold type (refer to page 172 of programing guide)

• hold_value1 – hold value1 (refer to page 172 of programing guide)

• hold_value2 – hold value2 (refer to page 172 of programing guide)

• coupling – input coupling for the selected trigger sources

• level – trigger level voltage for the active trigger source

• level2 – trigger lower level voltage for the active trigger source (only slew/runt trig-
ger)

• slope – trigger slope of the specified trigger source

property waveform_first_point

Control the address of the first data point to be sent (int). For waveforms acquired in sequence mode, this
refers to the relative address in the given segment. The first data point starts at zero and is strictly positive.

property waveform_points

Control the number of waveform points to be transferred with the digitize method (int). NP = 0 sends all
data points.

Note that the oscilloscope may provide less than the specified nb of points.

property waveform_preamble

Get preamble information for the selected waveform source as a dict with the following keys:

• “requested_points”: number of data points requested by the user (int)

• “sampled_points”: number of data points sampled by the oscilloscope (int)

• “transmitted_points”: number of data points actually transmitted (optional) (int)

• “memory_size”: size of the oscilloscope internal memory in bytes (int)

• “sparsing”: sparse point. It defines the interval between data points. (int)

• “first_point”: address of the first data point to be sent (int)

• “source”: source of the data : “C1”, “C2”, “C3”, “C4”, “MATH”.

• “grid_number”: number of horizontal grids (it is a read-only property)

• “xdiv”: horizontal scale (units per division) in seconds

• “xoffset”: time interval in seconds between the trigger event and the reference position

• “ydiv”: vertical scale (units per division) in Volts

472 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• “yoffset”: value that is represented at center of screen in Volts

property waveform_sparsing

Control the interval between data points (integer). For example:

SP = 0 sends all data points. SP = 4 sends 1 point every 4 data points.

write(command, **kwargs)
Write the command to the instrument through the adapter.

Note: if the last command was sent less than WRITE_INTERVAL_S before, this method blocks for the
remaining time so that commands are never sent with rate more than 1/WRITE_INTERVAL_S Hz.

Parameters
command – command string to be sent to the instrument

Teledyne Channel

class pymeasure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel(parent,
id)

Bases: Channel

A base abstract class for channel on a TeledyneOscilloscope device.

property bwlimit

Control the internal low-pass filter for this channel.

The current bandwidths can only be read back for all channels at once! (dynamic)

property coupling

Control the coupling with a string parameter (“ac 1M”, “dc 1M”, “ground”).

property current_configuration

Get channel configuration as a dict containing the following keys:

• “channel”: channel number (int)

• “attenuation”: probe attenuation (float)

• “bandwidth_limit”: bandwidth limiting enabled (bool)

• “coupling”: “ac 1M”, “dc 1M”, “ground” coupling (str)

• “offset”: vertical offset (float)

• “skew_factor”: channel-tochannel skew factor (float)

• “display”: currently displayed (bool)

• “unit”: “A” or “V” units (str)

• “volts_div”: vertical divisions (float)

• “inverted”: inverted (bool)

• “trigger_coupling”: trigger coupling can be “dc” “ac” “highpass” “lowpass” (str)

• “trigger_level”: trigger level (float)

• “trigger_level2”: trigger lower level for SLEW or RUNT trigger (float)

• “trigger_slope”: trigger slope can be “negative” “positive” “window” (str)

7.46. Teledyne 473

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property display

Control the display enabled state. (strict bool)

property display_parameter

Set the waveform processing of this channel with the specified algorithm and the result is displayed on the
front panel.

The command accepts the following parameters:

Parameter Description
PKPK vertical peak-to-peak
MAX maximum vertical value
MIN minimum vertical value
AMPL vertical amplitude
TOP waveform top value
BASE waveform base value
CMEAN average value in the first cycle
MEAN average value
RMS RMS value
CRMS RMS value in the first cycle
OVSN overshoot of a falling edge
FPRE preshoot of a falling edge
OVSP overshoot of a rising edge
RPRE preshoot of a rising edge
PER period
FREQ frequency
PWID positive pulse width
NWID negative pulse width
RISE rise-time
FALL fall-time
WID Burst width
DUTY positive duty cycle
NDUTY negative duty cycle
ALL All measurement

insert_id(command)
Insert the channel id in a command replacing placeholder.

Subclass this method if you want to do something else, like always prepending the channel id.

measure_parameter(parameter: str)
Process a waveform with the selected algorithm and returns the specified measurement.

Parameters
parameter – same as the display_parameter property

property offset

Control the center of the screen in Volts by a a float parameter. The range of legal values varies depending
on range and scale. If the specified value is outside of the legal range, the offset value is automatically set
to the nearest legal value.

property probe_attenuation

Control the probe attenuation. The probe attenuation may be from 0.1 to 10000.

474 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property scale

Control the vertical scale (units per division) in Volts.

setup(**kwargs)
Setup channel. Unspecified settings are not modified.

Modifying values such as probe attenuation will modify offset, range, etc. Refer to oscilloscope docu-
mentation and make multiple consecutive calls to setup() if needed. See property descriptions for more
information.

Parameters

• bwlimit –

• coupling –

• display –

• invert –

• offset –

• skew_factor –

• probe_attenuation –

• scale –

• unit –

• trigger_coupling –

• trigger_level –

• trigger_level2 –

• trigger_slope –

property trigger_coupling

Control the input coupling for the selected trigger sources (string).

• ac: AC coupling block DC component in the trigger path, removing dc offset voltage from the trigger
waveform. Use AC coupling to get a stable edge trigger when your waveform has a large dc offset.

• dc: DC coupling allows dc and ac signals into the trigger path.

• lowpass: HFREJ coupling places a lowpass filter in the trigger path.

• highpass: LFREJ coupling places a highpass filter in the trigger path.

property trigger_level

Control the trigger level voltage for the active trigger source (float).

When there are two trigger levels to set, this command is used to set the higher trigger level voltage for the
specified source. trigger_level2 is used to set the lower trigger level voltage.

When setting the trigger level it must be divided by the probe attenuation. This is not documented in the
datasheet and it is probably a bug of the scope firmware. An out-of-range value will be adjusted to the
closest legal value.

property trigger_slope

Control the trigger slope of the specified trigger source (string).

<trig_slope>:={NEG,POS,WINDOW} for edge trigger <trig_slope>:={NEG,POS} for other trigger

7.46. Teledyne 475

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

parameter trigger slope
negative Negative slope for edge trigger or other trigger
positive Positive slope for edge trigger or other trigger
window Window slope for edge trigger

(dynamic)

7.47 Temptronic

This section contains specific documentation on the temptronic instruments that are implemented. If you are interested
in an instrument not included, please consider adding the instrument.

7.47.1 Temptronic Base Class

class pymeasure.instruments.temptronic.ATSBase(adapter, name='ATSBase', **kwargs)
Bases: Instrument

The base class for Temptronic ATSXXX instruments.

property air_temperature

Read air temperature in 0.1 °C increments.

Type
float

at_temperature()

Returns
True if at temperature.

property auxiliary_condition_code

Read out auxiliary condition status register.

Type
int

Relevant flags are:

Bit Meaning
10 None
9 Ramp mode
8 Mode: 0 programming, 1 manual
7 None
6 TS status: 0 start-up, 1 ready
5 Flow: 0 off, 1 on
4 Sense mode: 0 air, 1 DUT
3 Compressor: 0 on, 1 off (heating possible)
2 Head: 0 lower, upper
1 None
0 None

Refere to chapter 4 in the manual

476 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

clear()

Clear device-specific errors.

See error_code for further information.

property compressor_enable

True enables compressors, False disables it.

Type
Boolean

configure(temp_window=1, dut_type='T', soak_time=30, dut_constant=100, temp_limit_air_low=-60,
temp_limit_air_high=220, temp_limit_air_dut=50, maximum_test_time=1000)

Convenience method for most relevant configuration properties.

Parameters

• dut_type – string: indicating which DUT type to use

• soak_time – float: elapsed time in soak_window before settling is indicated

• soak_window – float: Soak window size or temperature settlings bounds (K)

• dut_constant – float: time constant of DUT, higher values indicate higher thermal
mass

• temp_limit_air_low – float: minimum flow temperature limit (°C)

• temp_limit_air_high – float: maximum flow temperature limit (°C)

• temp_limit_air_dut – float: allowed temperature difference (K) between DUT and
Flow

• maximum_test_time – float: maximum test time (seconds) for a single temperature
point (safety)

Returns
self

property copy_active_setup_file

Copy active setup file (0) to setup n (1 - 12).

Type
int

property current_cycle_count

Read the number of cycles to do

Type
int

property cycling_enable

CYCL Start/stop cycling.

Type
bool

cycling_enable = True (start cycling) cycling_enable = False (stop cycling)

cycling_stopped()

Returns
True if cycling has stopped.

7.47. Temptronic 477

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property dut_constant

Control thermal constant (default 100) of DUT.

Type
float

Lower values indicate lower thermal mass, higher values indicate higher thermal mass respectively.

property dut_mode

On enables DUT mode, OFF enables air mode

Type
string

property dut_temperature

Read DUT temperature, in 0.1 °C increments.

Type
float

property dut_type

Control DUT sensor type.

Type
string

Possible values are:

String Meaning
‘’ no DUT
‘T’ T-DUT
‘K’ K-DUT

Warning: If in DUT mode without DUT being connected, TS flags DUT error

property dynamic_temperature_setpoint

Read the dynamic temperature setpoint.

Type
float

property enable_air_flow

Set TS air flow.

True enables air flow, False disables it

Type
bool

end_of_all_cycles()

Returns
True if cycling has stopped.

end_of_one_cycle()

Returns
True if TS is at end of one cycle.

478 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

end_of_test()

Returns
True if TS is at end of test.

enter_cycle()

Enter Cycle by sending RMPC 1.

Returns
self

enter_ramp()

Enter Ramp by sending RMPS 0.

Returns
self

property error_code

Read the device-specific error register (16 bits).

Type
ErrorCode

error_status()

Returns error status code (maybe used for logging).

Returns
ErrorCode

property head

Control TS head position.

Type
string

down: transfer head to lower position up: transfer head to elevated position

property learn_mode

Control DUT automatic tuning (learning).

Type
bool False: off True: automatic tuning on

property load_setup_file

loads setup file SFIL.

Valid range is between 1 to 12.

Type
int

property local_lockout

True disables TS GUI, False enables it.

property main_air_flow_rate

Read main nozzle air flow rate in liters/sec.

property maximum_test_time

Control maximum allowed test time (s).

Type
float

7.47. Temptronic 479

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

This prevents TS from staying at a single temperature forever. Valid range: 0 to 9999

property mode

Returns a string indicating what the system is doing at the time the query is processed.

Type
string

(dynamic)

next_setpoint()

Step to the next setpoint during temperature cycling.

not_at_temperature()

Returns
True if not at temperature.

property nozzle_air_flow_rate

Read main nozzle air flow rate in scfm.

property ramp_rate

Control ramp rate (K / min).

Type
float

allowed values: nn.n: 0 to 99.9 in 0.1 K per minute steps. nnnn: 100 to 9999 in 1 K per minute steps.

property remote_mode

True disables TS GUI but displays a “Return to local” switch.

reset()

Reset (force) the System to the Operator screen.

Returns
self

property set_point_number

Select a setpoint to be the current setpoint.

Type
int

Valid range is 0 to 17 when on the Cycle screen or or 0 to 2 in case of operator screen (0=hot, 1=ambient,
2=cold).

set_temperature(set_temp)
sweep to a specified setpoint.

Parameters
set_temp – target temperature for DUT (float)

Returns
self

shutdown(head=False)
Turn down TS (flow and remote operation).

Parameters
head – Lift head if True

480 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Returns
self

start(enable_air_flow=True)
start TS in remote mode.

Parameters
enable_air_flow – flow starts if True

Returns
self

property temperature

Read current temperature with 0.1 °C resolution.

Type
float

Temperature readings origin depends on dut_mode setting. Reading higher than 400 (°C) indicates inva-
lidity.

property temperature_condition_status_code

Temperature condition status register.

Type
TemperatureStatusCode

property temperature_event_status

temperature event status register.

Type
TemperatureStatusCode

Hint: Reading will clear register content.

property temperature_limit_air_dut

Air to DUT temperature limit.

Type
float

Allowed difference between nozzle air and DUT temperature during settling. Valid range between 10 to
300 °C in 1 degree increments.

property temperature_limit_air_high

upper air temperature limit.

Type
float

Valid range between 25 to 255 (°C). Setpoints above current value cause “out of range” error in TS.

property temperature_limit_air_low

Control lower air temperature limit.

Type
float

Valid range between -99 to 25 (°C). Setpoints below current value cause “out of range” error in TS. (dy-
namic)

7.47. Temptronic 481

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property temperature_setpoint

Set or get selected setpoint’s temperature.

Type
float

Valid range is -99.9 to 225.0 (°C) or as indicated by temperature_limit_air_high and
temperature_limit_air_low. Use convenience function set_temperature() to prevent unexpected
behavior.

property temperature_setpoint_window

Setpoint’s temperature window.

Type
float

Valid range is between 0.1 to 9.9 (°C). Temperature status register flags at temperature in case soak
time elapsed while temperature stays in between bounds given by this value around the current setpoint.

property temperature_soak_time

Set the soak time for the currently selected setpoint.

Type
float

Valid range is between 0 to 9999 (s). Lower values shorten cycle times. Higher values increase cycle
times, but may reduce settling errors. See temperature_setpoint_window for further information.

property total_cycle_count

Set or read current cycle count (1 - 9999).

Type
int

Sending 0 will stop cycling

wait_for_settling(time_limit=300)
block script execution until TS is settled.

Parameters
time_limit – set the maximum blocking time within TS has to settle (float).

Returns
self

Script execution is blocked until either TS has settled or time_limit has been exceeded (float).

class pymeasure.instruments.temptronic.temptronic_base.TemperatureStatusCode(value,
names=None, *,
module=None,
qual-
name=None,
type=None,
start=1, bound-
ary=None)

Temperature status enums based on IntFlag

Used in conjunction with temperature_condition_status_code.

482 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Value Enum
32 CYCLING_STOPPED
16 END_OF_ALL_CYCLES
8 END_OF_ONE_CYCLE
4 END_OF_TEST
2 NOT_AT_TEMPERATURE
1 AT_TEMPERATURE
0 NO_STATUS

class pymeasure.instruments.temptronic.temptronic_base.ErrorCode(value, names=None, *,
module=None,
qualname=None, type=None,
start=1, boundary=None)

Error code enums based on IntFlag.

Used in conjunction with error_code.

Value Enum
16384 NO_DUT_SENSOR_SELECTED
4096 BVRAM_FAULT
2048 NVRAM_FAULT
1024 NO_LINE_SENSE
512 FLOW_SENSOR_HARDWARE_ERROR
128 INTERNAL_ERROR
32 AIR_SENSOR_OPEN
16 LOW_INPUT_AIR_PRESSURE
8 LOW_FLOW
2 AIR_OPEN_LOOP
1 OVERHEAT
0 OK

7.47.2 Temptronic ATS525 Thermostream

class pymeasure.instruments.temptronic.ATS525(adapter, name='Temptronic ATS-525 Thermostream',
**kwargs)

Bases: ATSBase

Represent the TemptronicATS525 instruments.

property system_current

Operating current.

7.47. Temptronic 483

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.47.3 Temptronic ATS545 Thermostream

class pymeasure.instruments.temptronic.ATS545(adapter, name='Temptronic ATS-545 Thermostream',
**kwargs)

Bases: ATSBase

Represents the TemptronicATS545 instrument.

Coding example

ts = ATS545('ASRL3::INSTR') # replace adapter address
ts.configure() # basic configuration (defaults to T-DUT)
ts.start() # starts flow (head position not changed)
ts.set_temperature(25) # sets temperature to 25 degC
ts.wait_for_settling() # blocks script execution and polls for settling
ts.shutdown(head=False) # disables thermostream, keeps head down

next_setpoint()

not implemented in ATS545

set self.set_point_number instead

7.47.4 Temptronic ECO560 Thermostream

class pymeasure.instruments.temptronic.ECO560(adapter, name='Temptronic ECO-560 Thermostream',
**kwargs)

Bases: ATSBase

Represent the TemptronicECO560 instruments.

copy_active_setup_file = None

7.48 TEXIO

This section contains specific documentation on the TEXIO instruments that are implemented. If you are interested in
an instrument not included, please consider adding the instrument.

7.48.1 TEXIO PSW-360L30 Power Supply

class pymeasure.instruments.texio.TexioPSW360L30(adapter, name='TEXIO PSW-360L30 Power Supply',
**kwargs)

Bases: Keithley2260B

Represents the TEXIO PSW-360L30 Power Supply (minimal implementation) and provides a high-level interface
for interacting with the instrument.

For a connection through tcpip, the device only accepts connections at port 2268, which cannot be configured
otherwise. example connection string: ‘TCPIP::xxx.xxx.xxx.xxx::2268::SOCKET’

For a connection through USB on Linux, the kernel is going to create a /dev/ttyACMX device automatically. The
serial connection properties are fixed at 9600–8-N-1.

The read termination for this interface is Line-Feed n.

484 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

This driver inherits from the Keithley2260B one. All instructions implemented in the Keithley 2260B driver are
also available for the TEXIO PSW-360L30 power supply.

The only addition is the “output” property that is just an alias for the “enabled” property of the Keithley 2260B.
Calling the output switch “enabled” is confusing because it is not clear if the whole device is enabled/disable or
only the output.

source = TexioPSW360L30("TCPIP::xxx.xxx.xxx.xxx::2268::SOCKET")
source.voltage = 1
print(source.voltage)
print(source.current)
print(source.power)
print(source.applied)

property applied

Simultaneous control of voltage (volts) and current (amps). Values need to be supplied as tuple of (voltage,
current). Depending on whether the instrument is in constant current or constant voltage mode, the values
achieved by the instrument will differ from the ones set.

check_errors()

Logs any system errors reported by the instrument.

check_get_errors()

Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

clear()

Clears the instrument status byte

property complete

Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation Complete query
places an ASCII character 1 into the device’s Output Queue when all pending selected device operations
have been finished.

property current

Reads the current (in Ampere) the dc power supply is putting out.

property current_limit

A floating point property that controls the source current in amps. This is not checked against the allowed
range. Depending on whether the instrument is in constant current or constant voltage mode, this might
differ from the actual current achieved.

7.48. TEXIO 485

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property error

Returns a tuple of an error code and message from a single error.

property id

Get the identification of the instrument.

property options

Get the device options installed.

property output_enabled

A boolean property that controls whether the source is enabled, takes values True or False.

property power

Reads the power (in Watt) the dc power supply is putting out.

read(**kwargs)
Read up to (excluding) read_termination or the whole read buffer.

read_binary_values(**kwargs)
Read binary values from the device.

read_bytes(count, **kwargs)
Read a certain number of bytes from the instrument.

Parameters

• count (int) – Number of bytes to read. A value of -1 indicates to read the whole read
buffer.

• kwargs – Keyword arguments for the adapter.

Returns bytes
Bytes response of the instrument (including termination).

reset()

Resets the instrument.

shutdown()

Disable output, call parent function

property status

Get the status byte and Master Summary Status bit.

property voltage

Reads the voltage (in Volt) the dc power supply is putting out.

property voltage_setpoint

A floating point property that controls the source voltage in volts. This is not checked against the allowed
range. Depending on whether the instrument is in constant current or constant voltage mode, this might
differ from the actual voltage achieved.

wait_for(query_delay=0)
Wait for some time. Used by ‘ask’ to wait before reading.

Parameters
query_delay – Delay between writing and reading in seconds.

486 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

write(command, **kwargs)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument

• kwargs – Keyword arguments for the adapter.

write_binary_values(command, values, *args, **kwargs)
Write binary values to the device.

Parameters

• command – Command to send.

• values – The values to transmit.

• **kwargs (*args,) – Further arguments to hand to the Adapter.

write_bytes(content, **kwargs)
Write the bytes content to the instrument.

7.49 Thermotron

This section contains specific documentation on the Thermotron instruments that are implemented. If you are interested
in an instrument not included, please consider adding the instrument.

7.49.1 Thermotron 3800 Oven

class pymeasure.instruments.thermotron.Thermotron3800(adapter, name='Thermotron 3800',
**kwargs)

Bases: Instrument

Represents the Thermotron 3800 Oven. For now, this driver only supports using Control Channel 1. There is a
1000ms built in wait time after all write commands.

class Thermotron3800Mode(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

Bases: IntFlag

Bit Mode
0 Program mode
1 Edit mode (controller in stop mode)
2 View program mode
3 Edit mode (controller in hold mode)
4 Manual mode
5 Delayed start mode
6 Unused
7 Calibration mode

property id

Reads the instrument identification

7.49. Thermotron 487

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Returns
String

initalize_oven(wait=True)
The manufacturer recommends a 3 second wait time after after initializing the oven. The optional “wait”
variable should remain true, unless the 3 second wait time is taken care of on the user end. The wait time
is split up in the following way: 1 second (built into the write function) + 2 seconds (optional wait time
from this function (initialize_oven)).

Returns
None

property mode

Gets the operating mode of the oven.

Returns
Tuple(String, int)

run()

Starts temperature forcing. The oven will ramp to the setpoint.

Returns
None

property setpoint

A floating point property that controls the setpoint of the oven in Celsius. This property can be set. “set-
point” will not update until the “run()” command is called. After setpoint is set to a new value, the “run()”
command must be called to tell the oven to run to the new temperature.

Returns
None

stop()

Stops temperature forcing on the oven.

Returns
None

property temperature

Reads the current temperature of the oven via built in thermocouple. Default unit is Celsius, unless changed
by the user.

Returns
float

write(command)
Write a string command to the instrument appending write_termination.

Parameters

• command – command string to be sent to the instrument

• kwargs – Keyword arguments for the adapter.

488 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.50 Thorlabs

This section contains specific documentation on the Thorlabs instruments that are implemented. If you are interested
in an instrument not included, please consider adding the instrument.

7.50.1 Thorlabs PM100USB Powermeter

class pymeasure.instruments.thorlabs.ThorlabsPM100USB(adapter, name='ThorlabsPM100USB
powermeter', **kwargs)

Bases: Instrument

Represents Thorlabs PM100USB powermeter.

property energy

Measure the energy in J.

property power

Measure the power in W.

property wavelength

Control the wavelength in nm.

property wavelength_max

Measure maximum wavelength, in nm

property wavelength_min

Measure minimum wavelength, in nm

7.50.2 Thorlabs Pro 8000 modular laser driver

class pymeasure.instruments.thorlabs.ThorlabsPro8000(adapter, name='Thorlabs Pro 8000',
**kwargs)

Bases: Instrument

Represents Thorlabs Pro 8000 modular laser driver

property LDCCurrent

Control laser current.

property LDCCurrentLimit

Set Software current Limit (value must be lower than hardware current limit).

property LDCPolarity

Set laser diode polarity. Allowed values are: [‘AG’, ‘CG’]

property LDCStatus

Set laser diode status. Allowed values are: [‘ON’, ‘OFF’]

property TEDSetTemperature

Control TEC temperature

property TEDStatus

Control TEC status. Allowed values are: [‘ON’, ‘OFF’]

property slot

Control slot selection. Allowed values are: range(1, 9)

7.50. Thorlabs 489

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.51 Thyracont

This section contains specific documentation on the Thyracont instruments that are implemented. If you are interested
in an instrument not included, please consider adding the instrument.

7.51.1 Smartline V1 Transmitter Series

class pymeasure.instruments.thyracont.smartline_v1.SmartlineV1(adapter, name='Thyracont
Vacuum Gauge V1', address=1,
baud_rate=9600, **kwargs)

Bases: Instrument

Thyracont Vacuum Instruments Smartline gauges with Communication Protocol V1.

Devices using Protocol V1 were manufactured until 2017.

Connection to the device is made through an RS485 serial connection. The default communication settings are
baudrate 9600, 8 data bits, 1 stop bit, no parity, no handshake.

A communication packages is structured as follows:

Characters 0-2: Address for communication Character 3: Command character, uppercase letter for reading and
lowercase for writing Characters 4-n: Data for the command, can be empty. Character n+1: Checksum calculated
by: (sum of the decimal value of bytes 0-n) mod 64 + 64 Character n+2: Carriage return

Parameters

• adapter – pyvisa resource name of the instrument or adapter instance

• name (string) – Name of the instrument.

• address (int) – RS485 adddress of the instrument 1-15.

• baud_rate (int) – baudrate used for the communication with the device.

• kwargs – Any valid key-word argument for Instrument

property cathode_enabled

Control the hot/cold cathode state of the pressure gauge.

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

Returns
List of error entries.

property device_type

Get the device type.

property display_unit

Control the display’s pressure unit.

property pressure

Get the pressure measurement in mbar.

490 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

read()

Reads a response message from the instrument.

This method also checks for a correct checksum.

Returns
the data fields

Return type
string

Raises
ValueError – if a checksum error is detected

write(command)
Writes a command to the instrument.

This method adds the required address and checksum.

Parameters
command (str) – command to be sent to the instrument

7.51.2 Smartline V2 Transmitter Series

class pymeasure.instruments.thyracont.smartline_v2.SmartlineV2(adapter, name='Thyracont
SmartlineV2 Transmitter',
baud_rate=115200, address=1,
timeout=250, **kwargs)

Bases: Instrument

A Thyracont vacuum sensor transmitter of the Smartline V2 series.

You may subclass this Instrument and add the appropriate channels, see the following example.

from pymeasure.instruments import Instrument
from pymeasure.instruments.thyractont import SmartlineV2

PiezoAndPiraniInstrument(SmartlineV2):
piezo = Instrument.ChannelCreator(Piezo)
pirani = Instrument.ChannelCreator(Pirani)

Communication Protocol v2 via RS485:

• Everything is sent as ASCII characters

• Package (bytes and usage):

– 0-2 address, 3 access code, 4-5 command, 6-7 data length.

– if data: 8-n data to be sent, n+1 checksum, n+2 carriage return

– if no data: 8 checksum, 9 carriage return

• Access codes (request: master->transmitter, response: transmitter->master):

– read: 0, 1

– write: 2, 3

– factory default: 4,5

7.51. Thyracont 491

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

– error: -, 7

– binary 8, 9

• Data length is number of data in bytes (padding with zeroes on left)

• Checksum: Add the decimal numbers of the characters before, mod 64, add 64, show as ASCII.

Parameters
adress – The device address in the range 1-16.

class Sources(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

Bases: IntEnum

property analog_output_setting

Get current analog output setting. See manual.

ask(command_message, query_delay=0)
Ask for some value and check that the response matches the original command.

Parameters
command_message (str) – Access code, command, length, and content. The command
sent is compared to the response command.

ask_manually(accessCode, command, data='', query_delay=0)
Send a message to the transmitter and return its answer.

Parameters

• accessCode – How to access the device.

• command – Command to send to the device.

• data – Data for the command.

• query_delay (int) – Time to wait between writing and reading.

Return str
Response from the device after error checking.

property baud_rate

Set the device baud rate.

property bootloader_version

Get the bootloader version.

check_set_errors()

Check the errors after setting a property.

property device_address

Set the device address.

property device_serial

Get the transmitter device serial number.

property device_type

Get the device type, like ‘VSR205’.

property device_version

Get the device hardware version.

492 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property display_data

Control the display data source (strict SOURCES).

property display_orientation

Control the orientation of the display in relation to the pipe (‘top’, ‘bottom’).

property display_unit

Control the unit shown in the display. (‘mbar’, ‘Torr’, ‘hPa’)

property firmware_version

Get the firmware version.

get_sensor_transition()

Get the current sensor transition between sensors.

return interpretation:

• direct
switch at 1 mbar.

• continuous
switch between 5 and 15 mbar.

• F[float]T[float]
switch between low and high value.

• D[float]
switch at value.

property operating_hours

Measure the operating hours.

property pressure

Get the current pressure of the default sensor in mbar

property product_name

Get the product name (article number).

property range

Get the measurement range in mbar.

read(command=None)
Read from the device and do error checking.

Parameters
command (str) – Original command sent to the device to compare it with the response.
None deactivates the check.

property sensor_serial

Get the sensor head serial number.

set_continuous_sensor_transition(low, high)
Set the sensor transition mode to “continuous” mode between low and high (floats).

set_default_sensor_transition()

Set the senstor transition mode to the default value, depends on the device.

set_direct_sensor_transition(transition_point)
Set the sensor transition to “direct” mode.

7.51. Thyracont 493

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Parameters
transition_point (float) – Switch between the sensors at that value.

set_high(high='')
Set the high pressure to high pressure in mbar.

set_low(low='')
Set the low pressure to low pressure in mbar.

write(command)
Write a command to the device.

write_composition(accessCode, command, data='')
Write a command with an accessCode and optional data to the device.

Parameters

• accessCode – How to access the device.

• command – Two char command string to send to the device.

• data – Data for the command.

class pymeasure.instruments.thyracont.smartline_v2.VSH(adapter, name='Thyracont SmartlineV2
Transmitter', baud_rate=115200, address=1,
timeout=250, **kwargs)

Bases: SmartlineV2

Vacuum transmitter of VSH series with both a pirani and a hot cathode sensor.

hotcathode

Channel
HotCathode

pirani

Channel
Pirani

class pymeasure.instruments.thyracont.smartline_v2.VSR(adapter, name='Thyracont SmartlineV2
Transmitter', baud_rate=115200, address=1,
timeout=250, **kwargs)

Bases: SmartlineV2

Vacuum transmitter of VSR/VCR series with both a piezo and a pirani sensor.

piezo

Channel
Piezo

pirani

Channel
Pirani

494 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.52 Toptica

This section contains specific documentation on the Toptica Photonics instruments that are implemented. If you are
interested in an instrument not included, please consider adding the instrument.

7.52.1 Toptica IBeam Smart Laser diode

class pymeasure.instruments.toptica.ibeamsmart.IBeamSmart(adapter, name='Toptica IBeam Smart
laser diode', baud_rate=115200,
**kwargs)

Bases: Instrument

IBeam Smart laser diode

For the usage of the different diode driver channels, see the manual

laser = IBeamSmart("SomeResourceString")
laser.emission = True
laser.ch_2.power = 1000 # µW
laser.ch_2.enabled = True
laser.shutdown()

Parameters

• adapter – pyvisa resource name or adapter instance.

• baud_rate – The baud rate you have set in the instrument.

• **kwargs – Any valid key-word argument for VISAAdapter.

ch_1

Channel
DriverChannel

ch_2

Channel
DriverChannel

ch_3

Channel
DriverChannel

ch_4

Channel
DriverChannel

ch_5

Channel
DriverChannel

7.52. Toptica 495

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property channel1_enabled

Control status of Channel 1 of the laser (bool).

Deprecated since version 0.12: Use ch_1.enabled instead.

property channel2_enabled

Control status of Channel 2 of the laser (bool).

Deprecated since version 0.12: Use ch_2.enabled instead.

check_set_errors()

Check for errors after having gotten a property and log them.

Checks if the last reply is only ‘[OK]’, otherwise a ValueError is raised and the read buffer is flushed
because one has to assume that some communication is out of sync.

property current

Measure the laser diode current in mA.

disable()

Shutdown all laser operation.

property emission

Control emission status of the laser diode driver (bool).

enable_continous()

Enable countinous emmission mode.

enable_pulsing()

Enable pulsing mode.

The optical output is controlled by a digital input signal on a dedicated connnector on the device.

property laser_enabled

Control emission status of the laser diode driver (bool).

Deprecated since version 0.12: Use attr:emission instead.

property power

Control actual output power in µW of the laser system. In pulse mode this means that the set value might
not correspond to the readback one (float up to 200000).

read()

Read a reply of the instrument and extract the values, if possible.

Reads a reply of the instrument which consists of at least two lines. The initial ones are the reply to the
command while the last one should be ‘[OK]’ which acknowledges that the device is ready to receive more
commands.

Note: ‘[OK]’ is always returned as last message even in case of an invalid command, where a message
indicating the error is returned before the ‘[OK]’

Value extraction: extract <value> from ‘name = <value> [unit]’. If <value> can not be identified the orignal
string is returned.

Returns
string containing the ASCII response of the instrument (without ‘[OK]’).

property serial

Get Serial number of the laser system.

496 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

shutdown()

Brings the instrument to a safe and stable state.

property system_temp

Measure base plate (heatsink) temperature in degree centigrade.

property temp

Measure the temperature of the laser diode in degree centigrade.

property version

Get Firmware version number.

class pymeasure.instruments.toptica.ibeamsmart.DriverChannel(parent, id)
Bases: Channel

A laser diode driver channel for the IBeam Smart laser.

property enabled

Control the enabled state of the driver channel.

property power

Set the output power in µW (float up to 200000).

7.53 Velleman

This section contains specific documentation on the Velleman instruments that are implemented. If you are interested
in an instrument not included, please consider adding the instrument.

7.53.1 Velleman K8090 8-channel relay board

class pymeasure.instruments.velleman.VellemanK8090(adapter, name='Velleman K8090', timeout=100,
**kwargs)

Bases: Instrument

For usage with the K8090 relay board, by Velleman.

View the “K8090/VM8090 PROTOCOL MANUAL” for the serial command instructions.

The communication is done by serial USB. The IO settings are fixed:

Baud rate 19200
Data bits 8
Parity None
Stop bits 1
Flow control None

A short timeout is recommended, since the device is not consistent in giving status messages and serial timeouts
will occur also in normal operation.

Use the class like:

7.53. Velleman 497

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

from pymeasure.instruments.velleman import VellemanK8090, VellemanK8090Switches as␣
→˓Switches

instrument = VellemanK8090("ASRL1::INSTR")

Get status update from device
last_on, curr_on, time_on = instrument.status

Toggle a selection of channels on
instrument.switch_on = Switches.CH3 | Switches.CH4 | Switches.CH5

check_set_errors()

Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

The K8090 replies with a status after a switch command, but only after any switch actually changed. In
order to guarantee the buffer is empty, we attempt to read it fully here. No actual error checking is done
here!

Returns
List of error entries.

id = None

read(**kwargs)
The read command specifically for the protocol of the K8090.

This overrides the method from the instrument class.

See write(), replies from the machine use the same format.

A read will return a list of CMD, MASK, PARAM1 and PARAM2.

property status

Get current relay status. The reply has a different command byte than the request.

Three items (VellemanK8090Switches flags) are returned:

• Previous state: the state of each relay before this event

• Current state: the state of each relay now

• Timer state: the state of each relay timer

property switch_off

Switch off a set of channels. See switch_on for more details.

property switch_on

” Switch on a set of channels. Other channels are unaffected. Pass either a list or set of channel numbers
(starting at 1), or pass a bitmask.

After switching this waits for a reply from the device. This is only send when a relay actually toggles,
otherwise expect a blocking time equal to the communication timeout If speed is important, avoid calling
switch_ unnecessarily.

property version

Get firmware version, as (year - 2000, week). E.g. (10, 1)

498 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

write(command, **kwargs)
The write command specifically for the protocol of the K8090.

This overrides the method from the Instrument class.

Each packet to the device is 7 bytes:

STX (0x04) - CMD - MASK - PARAM1 - PARAM2 - CHK - ETX (0x0F)

Where CHK is checksum of the package.

Parameters
command (str) – String like “CMD[, MASK, PARAM1, PARAM2]” - only CMD is
mandatory

class pymeasure.instruments.velleman.VellemanK8090Switches(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Bases: IntFlag

Use to identify switch channels.

7.54 Yokogawa

This section contains specific documentation on the Yokogawa instruments that are implemented. If you are interested
in an instrument not included, please consider adding the instrument.

7.54.1 Yokogawa 7651 Programmable Supply

class pymeasure.instruments.yokogawa.Yokogawa7651(adapter, name='Yokogawa 7651 Programmable
DC Source', **kwargs)

Bases: Instrument

Represents the Yokogawa 7651 Programmable DC Source and provides a high-level for interacting with the
instrument.

yoko = Yokogawa7651("GPIB::1")

yoko.apply_current() # Sets up to source current
yoko.source_current_range = 10e-3 # Sets the current range to 10 mA
yoko.compliance_voltage = 10 # Sets the compliance voltage to 10 V
yoko.source_current = 0 # Sets the source current to 0 mA

yoko.enable_source() # Enables the current output
yoko.ramp_to_current(5e-3) # Ramps the current to 5 mA

yoko.shutdown() # Ramps the current to 0 mA and disables output

apply_current(max_current=0.001, compliance_voltage=1)
Configures the instrument to apply a source current, which can take optional parameters that defer to the
source_current_range and compliance_voltage properties.

apply_voltage(max_voltage=1, compliance_current=0.01)
Configures the instrument to apply a source voltage, which can take optional parameters that defer to the
source_voltage_range and compliance_current properties.

7.54. Yokogawa 499

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property compliance_current

A floating point property that sets the compliance current in Amps, which can take values from 5 to 120
mA.

property compliance_voltage

A floating point property that sets the compliance voltage in Volts, which can take values between 1 and
30 V.

disable_source()

Disables the source of current or voltage depending on the configuration of the instrument.

enable_source()

Enables the source of current or voltage depending on the configuration of the instrument.

property id

Returns the identification of the instrument

ramp_to_current(current, steps=25, duration=0.5)
Ramps the current to a value in Amps by traversing a linear spacing of current steps over a duration, defined
in seconds.

Parameters

• steps – A number of linear steps to traverse

• duration – A time in seconds over which to ramp

ramp_to_voltage(voltage, steps=25, duration=0.5)
Ramps the voltage to a value in Volts by traversing a linear spacing of voltage steps over a duration, defined
in seconds.

Parameters

• steps – A number of linear steps to traverse

• duration – A time in seconds over which to ramp

shutdown()

Shuts down the instrument, and ramps the current or voltage to zero before disabling the source.

property source_current

A floating point property that controls the source current in Amps, if that mode is active.

property source_current_range

A floating point property that sets the current voltage range in Amps, which can take values: 1 mA, 10
mA, and 100 mA. Currents are truncted to an appropriate value if needed.

property source_enabled

Reads a boolean value that is True if the source is enabled, determined by checking if the 5th bit of the OC
flag is a binary 1.

property source_mode

A string property that controls the source mode, which can take the values ‘current’ or ‘voltage’. The
convenience methods apply_current() and apply_voltage() can also be used.

property source_voltage

A floating point property that controls the source voltage in Volts, if that mode is active.

property source_voltage_range

A floating point property that sets the source voltage range in Volts, which can take values: 10 mV, 100
mV, 1 V, 10 V, and 30 V. Voltages are truncted to an appropriate value if needed.

500 Chapter 7. pymeasure.instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

7.54.2 Yokogawa GS200 Source

class pymeasure.instruments.yokogawa.YokogawaGS200(adapter, name='Yokogawa GS200 Source',
**kwargs)

Bases: Instrument

Represents the Yokogawa GS200 source and provides a high-level interface for interacting with the instrument.

property current_limit

Floating point number that controls the current limit. “Limit” refers to maximum value of the electrical
value that is conjugate to the mode (current is conjugate to voltage, and vice versa). Thus, current limit is
only applicable when in ‘voltage’ mode

property source_enabled

A boolean property that controls whether the source is enabled, takes values True or False.

property source_level

Floating point number that controls the output level, either a voltage or a current, depending on the source
mode.

property source_mode

String property that controls the source mode. Can be either ‘current’ or ‘voltage’.

property source_range

Floating point number that controls the range (either in voltage or current) of the output. “Range” refers
to the maximum source level.

trigger_ramp_to_level(level, ramp_time)
Ramp the output level from its current value to “level” in time “ramp_time”. This method will NOT wait
until the ramp is finished (thus, it will not block further code evaluation).

Parameters

• level (float) – final output level

• ramp_time (float) – time in seconds to ramp

Returns
None

property voltage_limit

Floating point number that controls the voltage limit. “Limit” refers to maximum value of the electrical
value that is conjugate to the mode (current is conjugate to voltage, and vice versa). Thus, voltage limit is
only applicable when in ‘current’ mode

7.54. Yokogawa 501

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

502 Chapter 7. pymeasure.instruments

CHAPTER

EIGHT

CONTRIBUTING

Contributions to the instrument repository and the main code base are highly encouraged. This section outlines the
basic work-flow for new contributors.

8.1 Using the development version

New features are added to the development version of PyMeasure, hosted on GitHub. We use Git version control to
track and manage changes to the source code. On Windows, we recommend using GitHub Desktop. Make sure you
have an appropriate version of Git (or GitHub Desktop) installed and that you have a GitHub account.

In order to add your feature, you need to first fork PyMeasure. This will create a copy of the repository under your
GitHub account.

The instructions below assume that you have set up Anaconda, as described in the Quick Start guide and describe the
terminal commands necessary. If you are using GitHub Desktop, take a look through their documentation to understand
the corresponding steps.

Clone your fork of PyMeasure your-github-username/pymeasure. In the following terminal commands replace
your desired path and GitHub username.

cd /path/for/code
git clone https://github.com/your-github-username/pymeasure.git

If you had already installed PyMeasure using pip, make sure to uninstall it before continuing.

pip uninstall pymeasure

Install PyMeasure in the editable mode.

cd /path/for/code/pymeasure
pip install -e .

This will allow you to edit the files of PyMeasure and see the changes reflected. Make sure to reset your notebook
kernel or Python console when doing so. Now you have your own copy of the development version of PyMeasure
installed!

503

https://github.com/
https://git-scm.com/
https://git-scm.com/downloads
https://help.github.com/articles/fork-a-repo/
https://help.github.com/desktop/

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

8.2 Working on a new feature

We use branches in Git to allow multiple features to be worked on simultaneously, without causing conflicts. The
master branch contains the stable development version. Instead of working on the master branch, you will create your
own branch off the master and merge it back into the master when you are finished.

Create a new branch for your feature before editing the code. For example, if you want to add the new instrument
“Extreme 5000” you will make a new branch “dev/extreme-5000”.

git branch dev/extreme-5000

You can also make a new branch on GitHub. If you do so, you will have to fetch these changes before the branch will
show up on your local computer.

git fetch

Once you have created the branch, change your current branch to match the new one.

git checkout dev/extreme-5000

Now you are ready to write your new feature and make changes to the code. To ensure consistency, please follow the
coding standards for PyMeasure. Use git status to check on the files that have been changed. As you go, commit
your changes and push them to your fork.

git add file-that-changed.py
git commit -m "A short description about what changed"
git push

8.3 Making a pull request

While you are working, it is helpful to start a pull request (PR) targeting the master branch of pymeasure/pymeasure.
This will allow you to discuss your feature with other contributors. We encourage you to start this pull request already
after your first commit. You may mark a pull request as a draft, if it is in an early state.

Start a pull request on the PyMeasure GitHub page.

There is some automation in place to run the unit tests and check some coding standards. Annotations in the “Files
changed” tab indicate problems for you to correct (e.g. linting or docstring warnings).

Your pull-request will be reviewed by the PyMeasure maintainers. Frequently there is some iteration and discussion
based on that feedback until a pull request can be merged. This will happen either in the conversation tab or in inline
code comments.

Be aware that due to maintainer manpower limitations it might take a long time until PRs get reviewed and/or merged.
In general, review effort scales badly with PR size. Therefore, smaller PRs are much preferred. Try to limit your
contribution to one “aspect”, e.g. one instrument (or a few if closely related), one bug fix, or one feature contribution.

If you placed your contribution in a separate branch as suggested above, you can easily use your contribution in the
meantime – just check out your feature branch instead of master.

504 Chapter 8. Contributing

https://help.github.com/articles/creating-and-deleting-branches-within-your-repository/
https://help.github.com/articles/using-pull-requests/
https://github.com/pymeasure/pymeasure

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

8.4 Unit testing

Unit tests are run each time a new commit is made to a branch. The purpose is to catch changes that break the current
functionality, by testing each feature unit. PyMeasure relies on pytest to preform these tests, which are run on TravisCI
and Appveyor for Linux/macOS and Windows respectively.

Running the unit tests while you develop is highly encouraged. This will ensure that you have a working contribution
when you create a pull request.

pytest

If your feature can be tested, unit tests are required. This will ensure that your features keep working as new features
are added.

Now you are familiar with all the pieces of the PyMeasure development work-flow. We look forward to seeing your
pull-request!

8.4. Unit testing 505

http://pytest.org/latest/

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

506 Chapter 8. Contributing

CHAPTER

NINE

REPORTING AN ERROR

Please report all errors to the Issues section of the PyMeasure GitHub repository. Use the search function to determine
if there is an existing or resolved issued before posting.

507

https://github.com/pymeasure/pymeasure/issues

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

508 Chapter 9. Reporting an error

CHAPTER

TEN

ADDING INSTRUMENTS

You can make a significant contribution to PyMeasure by adding a new instrument to the pymeasure.instruments
package. Even adding an instrument with a few features can help get the ball rolling, since its likely that others are
interested in the same instrument.

Before getting started, become familiar with the contributing work-flow for PyMeasure, which steps through the process
of adding a new feature (like an instrument) to the development version of the source code.

Pymeasure instruments communicate with the devices via transfer of bytes or ASCII characters encoded as bytes. For
ease of use, we have property creators to easily create python properties. Similarly, we have creators to easily implement
channels. Finally, for a smoother implementation process and better maintenance, we have tests.

The following sections will describe how to lay out your instrument code.

10.1 File structure

Your new instrument should be placed in the directory corresponding to the manufacturer of the instrument. For
example, if you are going to add an “Extreme 5000” instrument you should add the following files assuming “Extreme”
is the manufacturer. Use lowercase for all filenames to distinguish packages from CamelCase Python classes.

pymeasure/pymeasure/instruments/extreme/
|--> __init__.py
|--> extreme5000.py

10.1.1 Updating the init file

The __init__.py file in the manufacturer directory should import all of the instruments that correspond to the man-
ufacturer, to allow the files to be easily imported. For a new manufacturer, the manufacturer should also be added to
pymeasure/pymeasure/instruments/__init__.py.

10.1.2 Add test files

Test files (pytest) for each instrument are highly encouraged, as they help verify the code and implement changes.
Testing new code parts with a test (Test Driven Development) is a good way for fast and good programming, as you
catch errors early on.

pymeasure/tests/instruments/extreme/
|--> test_extreme5000.py

509

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

10.1.3 Adding documentation

Documentation for each instrument is required, and helps others understand the features you have implemented. Add
a new reStructuredText file to the documentation.

pymeasure/docs/api/instruments/extreme/
|--> index.rst
|--> extreme5000.rst

Copy an existing instrument documentation file, which will automatically generate the documentation for the instru-
ment. The index.rst file should link to the extreme5000 file. For a new manufacturer, the manufacturer should be
also linked in pymeasure/docs/api/instruments/index.rst.

10.2 Instrument file

All standard instruments should be child class of Instrument. This provides the basic functionality for working with
Adapters, which perform the actual communication.

The most basic instrument, for our “Extreme 5000” example starts like this:

#
This file is part of the PyMeasure package.
#
Copyright (c) 2013-2023 PyMeasure Developers
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
#

from pymeasure.instruments import Instrument

This is a minimal instrument definition:

class Extreme5000(Instrument):
"""Control the imaginary Extreme 5000 instrument."""

def __init__(self, adapter, name="Extreme 5000", **kwargs):
super().__init__(

(continues on next page)

510 Chapter 10. Adding instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

adapter,
name,
**kwargs

)

Make sure to include the PyMeasure license to each file, and add yourself as an author to the AUTHORS.txt file.

There is a certain order of elements in an instrument class that is useful to adhere to:

• First, the initializer (the __init__() method), this makes it faster to find when browsing the source code.

• Then class attributes/variables, if you need them.

• Then properties (pymeasure-specific or generic Python variants). This will be the bulk of the implementation.

• Finally, any methods.

10.3 Your instrument’s user interface

Your instrument will have a certain set of properties and methods that are available to a user and discoverable via the
documentation or their editor’s autocomplete function.

In principle you are free to choose how you do this (with the exception of standard SCPI properties like id). However,
there are a couple of practices that have turned out to be useful to follow:

• Naming things is important. Try to choose clear, expressive, unambiguous names for your instrument’s elements.

• If there are already similar instruments in the same “family” (like a power supply) in pymeasure, try to follow
their lead where applicable. It’s better if, e.g., all power supplies have a current_limit instead of an assortment
of current_max, Ilim, max_curr, etc.

• If there is already an instrument with a similar command set, check if you can inherit from that one and just tweak
a couple of things. This massively reduces code duplication and maintenance effort. The section Instruments
with similar features shows how to achieve that.

• The bulk of your instrument’s interface will probably be made up of properties for quantities to set and/or read
out. Our custom properties (see Writing properties ff. below) offer some convenience features and are therefore
preferable, but plain Python properties are also fine.

• “Actions”, commands or verbs should typically be methods, not properties: recall(), trigger_scan(),
prepare_resistance_measurement(), etc.

• This separation between properties and methods also naturally helps with observing the “command-query sepa-
ration” principle.

• If your instrument has multiple identical channels, see Instruments with channels.

In principle, you are free to write any methods that are necessary for interacting with the instrument. When doing so,
make sure to use the self.ask(command), self.write(command), and self.read() methods to issue commands
instead of calling the adapter directly. If the communication requires changes to the commands sent/received, you can
override these methods in your instrument, for further information see Advanced communication protocols.

In practice, we have developed a number of best practices for making instruments easy to write and maintain. The
following sections detail these, which are highly encouraged to follow.

10.3. Your instrument’s user interface 511

https://en.wikipedia.org/wiki/Command%E2%80%93query_separation
https://en.wikipedia.org/wiki/Command%E2%80%93query_separation

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

10.3.1 Common instrument types

There are a number of categories that many instruments fit into. In the future, pymeasure should gain an abstraction
layer based on that, see this issue. Until that is ready, here are a couple of guidelines towards a more uniform API. Note
that not all already available instruments follow these, but expect this to be harmonized in the future.

Frequent properties

If your instrument has an output that can be switched on and off, use a boolean property called output_enabled.

Power supplies

PSUs typically can measure the actual current and voltage, as well as have settings for the voltage level and the current
limit. To keep naming clear and avoid confusion, implement the properties current, voltage, voltage_setpoint
and current_limit, respectively.

10.3.2 Managing status codes or other indicator values

Often, an instrument features one or more collections of specific values that signal some status, an instrument mode
or a number of possible configuration values. Typically, these are collected in mappings of some sort, as you want to
provide a clear and understandable value to the user, while abstracting away the raw data, think ACQUISITION_MODE
instead of 0x04. The mappings normally are kept at module level (i.e. not defined within the instrument class), so that
they are available when using the property factories. This is a small drawback of using Python class attributes.

The easiest way to handle these mappings is a plain dict. However, there is often a better way, the Python enum.Enum.
To cite the Python documentation,

An Enum is a set of symbolic names bound to unique values. They are similar to global variables, but they
offer a more useful repr(), grouping, type-safety, and a few other features.

As our signal values are often integers, the most appropriate enum types are IntEnum and IntFlag.

IntEnum is the same as Enum, but its members are also integers and can be used anywhere that an integer can be used
(so their use for composing commands is transparent), but logic/code they appear in is much more legible. Note that
starting from Python version 3.11, the printed format of the IntEnum and IntFlag has been changed to return numeric
value; however, the symbolic name can be obtained by printing its repr or the .name property, or returning the value
in a REPL.

>>> from enum import IntEnum
>>> class InstrMode(IntEnum):
... WAITING = 0x00
... HEATING = 0x01
... COOLING = 0x05
...
>>> received_from_device = 0x01
>>> current_mode = InstrMode(received_from_device)
>>> if current_mode == InstrMode.WAITING:
... print('Idle')
... else:
... current_mode
... print(repr(current_mode))
... print(f'Mode value: {current_mode}')
...

(continues on next page)

512 Chapter 10. Adding instruments

https://github.com/pymeasure/pymeasure/issues/416
https://docs.python.org/3.11/howto/enum.html

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

<InstrMode.HEATING: 1>
<InstrMode.HEATING: 1>
Mode value: 1

IntFlag has the added benefit that it supports bitwise operators and combinations, and as such is a good fit for status
bitmasks or error codes that can represent multiple values:

>>> from enum import IntFlag
>>> class ErrorCode(IntFlag):
... TEMP_OUT_OF_RANGE = 8
... TEMPSENSOR_FAILURE = 4
... COOLER_FAILURE = 2
... HEATER_FAILURE = 1
... OK = 0
...
>>> received_from_device = 7
>>> ErrorCode(received_from_device)
<ErrorCode.TEMPSENSOR_FAILURE|COOLER_FAILURE|HEATER_FAILURE: 7>

IntFlags are used by many instruments for the purpose just demonstrated.

The status property could look like this:

status = Instrument.measurement(
"STB?",
"""Measure the status of the device as enum.""",
get_process=lambda v: ErrorCode(v),

)

10.4 Defining default connection settings

When implementing instruments, it’s sometimes necessary to define default connection settings. This might be because
an instrument connection requires specific non-default settings, or because your instrument actually supports multiple
interfaces.

The VISAAdapter class offers a flexible way of dealing with connection settings fully within the initializer of your
instrument.

10.4.1 Single interface

The simplest version, suitable when the instrument connection needs default settings, just passes all keywords through
to the Instrument initializer, which hands them over to VISAAdapter if adapter is a string or integer.

def __init__(self, adapter, name="Extreme 5000", **kwargs):
super().__init__(

adapter,
name,
**kwargs

)

10.4. Defining default connection settings 513

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

If you want to set defaults that should be prominently visible to the user and may be overridden, place them in the
signature. This is suitable when the instrument has one type of interface, or any defaults are valid for all interface
types, see the documentation in VISAAdapter for details.

def __init__(self, adapter, name="Extreme 5000", baud_rate=2400, **kwargs):
super().__init__(

adapter,
name,
baud_rate=baud_rate,
**kwargs

)

If you want to set defaults, but they don’t need to be prominently exposed for replacement, use this pattern, which sets
the value only when there is no entry in kwargs, yet.

def __init__(self, adapter, name="Extreme 5000", **kwargs):
kwargs.setdefault('timeout', 1500)
super().__init__(

adapter,
name,
**kwargs

)

10.4.2 Multiple interfaces

Now, if you have instruments with multiple interfaces (e.g. serial, TCPI/IP, USB), things get interesting. You might
have settings common to all interfaces (like timeout), but also settings that are only valid for one interface type, but
not others.

The trick is to add keyword arguments that name the interface type, like asrl or gpib, below (see here for the full list).
These then contain a dictionary with the settings specific to the respective interface:

def __init__(self, adapter, name="Extreme 5000", baud_rate=2400, **kwargs):
kwargs.setdefault('timeout', 1500)
super().__init__(

adapter,
name,
gpib=dict(enable_repeat_addressing=False,

read_termination='\r'),
asrl={'baud_rate': baud_rate,

'read_termination': '\r\n'},
**kwargs

)

When the instrument instance is created, the interface-specific settings for the actual interface being used get merged
with **kwargs before passing them on to PyVISA, the rest is discarded. This way, we always pass on a valid set of
arguments. In addition, any entries in **kwargs** take precedence, so if they need to, it is still possible for users to
override any defaults you set in the instrument definition.

For many instruments, the simple way presented first is enough, but in case you have a more complex arrangement to
implement, see whether Advanced communication protocols fits your bill. If, for some exotic reason, you need a special
connection type, which you cannot model with PyVISA, you can write your own Adapter.

514 Chapter 10. Adding instruments

https://pyvisa.readthedocs.io/en/latest/api/constants.html#pyvisa.constants.InterfaceType

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

10.5 Writing properties

In PyMeasure, Python properties are the preferred method for dealing with variables that are read or set.

10.5.1 The property factories

PyMeasure comes with three central convenience factory functions for making properties for classes: CommonBase.
control, CommonBase.measurement, and CommonBase.setting. You can call them, however, as Instrument.
control, Instrument.measurement, and Instrument.setting.

The Instrument.measurement function returns a property that can only read values from an instrument. For exam-
ple, if our “Extreme 5000” has the *IDN? command, we can write the following property to be added after the def
__init__ line in our above example class, or added to the class after the fact as in the code here:

Extreme5000.cell_temp = Instrument.measurement(
":TEMP?",
"""Measure the temperature of the reaction cell.""",

)

You will notice that a documentation string is required, see Docstrings for details.

When we use this property we will get the temperature of the reaction cell.

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.cell_temp # Sends ":TEMP?" to the device
127.2

The Instrument.control function extends this behavior by creating a property that you can read and set. For ex-
ample, if our “Extreme 5000” has the :VOLT? and :VOLT <float> commands that are in Volts, we can write the
following property.

Extreme5000.voltage = Instrument.control(
":VOLT?", ":VOLT %g",
"""Control the voltage in Volts (float)."""

)

You will notice that we use the Python string format %g to format passed-through values as floating point.

We can use this property to set the voltage to 100 mV, which will send the appropriate command, and then to request
the current voltage:

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.voltage = 0.1 # Sends ":VOLT 0.1" to set the voltage to 100 mV
>>> extreme.voltage # Sends ":VOLT?" to query for the current value
0.1

Finally, the Instrument.setting function can only set, but not read values.

Using the Instrument.control, Instrument.measurement, and Instrument.control functions, you can create
a number of properties for basic measurements and controls.

The next sections detail additional features of the property factories. These allow you to write properties that cover
specific ranges, or that have to map between a real value to one used in the command. Furthermore it is shown how to
perform more complex processing of return values from your device.

10.5. Writing properties 515

https://docs.python.org/3/howto/descriptor.html#properties
https://docs.python.org/3/library/string.html#format-specification-mini-language

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

10.5.2 Restricting values with validators

Many GPIB/SCPI commands are more restrictive than our basic examples above. The Instrument.control function
has the ability to encode these restrictions using validators. A validator is a function that takes a value and a set of
values, and returns a valid value or raises an exception. There are a number of pre-defined validators in pymeasure.
instruments.validators that should cover most situations. We will cover the four basic types here.

In the examples below we assume you have imported the validators.

In many situations you will also need to process the return string in order to extract the wanted quantity or process a
value before sending it to the device. The Instrument.control, Instrument.measurement and Instrument.
setting function also provide means to achieve this.

In a restricted range

If you have a property with a restricted range, you can use the strict_range and truncated_range functions.

For example, if our “Extreme 5000” can only support voltages from -1 V to 1 V, we can modify our previous example
to use a strict validator over this range.

Extreme5000.voltage = Instrument.control(
":VOLT?", ":VOLT %g",
"""Control the voltage in Volts (float strictly from -1 to 1).""",
validator=strict_range,
values=[-1, 1]

)

Now our voltage will raise a ValueError if the value is out of the range.

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.voltage = 100
Traceback (most recent call last):
...
ValueError: Value of 100 is not in range [-1,1]

This is useful if you want to alert the programmer that they are using an invalid value. However, sometimes it can be
nicer to truncate the value to be within the range.

Extreme5000.voltage = Instrument.control(
":VOLT?", ":VOLT %g",
"""Control the voltage in Volts (float from -1 to 1).

Invalid voltages are truncated.
""",
validator=truncated_range,
values=[-1, 1]

)

Now our voltage will not raise an error, and will truncate the value to the range bounds.

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.voltage = 100 # Executes ":VOLT 1"
>>> extreme.voltage
1.0

516 Chapter 10. Adding instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

In a discrete set

Often a control property should only take a few discrete values. You can use the strict_discrete_set and
truncated_discrete_set functions to handle these situations. The strict version raises an error if the value is
not in the set, as in the range examples above.

For example, if our “Extreme 5000” has a :RANG <float> command that sets the voltage range that can take values
of 10 mV, 100 mV, and 1 V in Volts, then we can write a control as follows.

Extreme5000.voltage = Instrument.control(
":RANG?", ":RANG %g",
"""Control the voltage range in Volts (float in 10e-3, 100e-3, 1).""",
validator=truncated_discrete_set,
values=[10e-3, 100e-3, 1]

)

Now we can set the voltage range, which will automatically truncate to an appropriate value.

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.voltage = 0.08
>>> extreme.voltage
0.1

10.5.3 Mapping values

Now that you are familiar with the validators, you can additionally use maps to satisfy instruments which require non-
physical values. The map_values argument of Instrument.control enables this feature.

If your set of values is a list, then the command will use the index of the list. For example, if our “Extreme 5000” instead
has a :RANG <integer>, where 0, 1, and 2 correspond to 10 mV, 100 mV, and 1 V, then we can use the following
control.

Extreme5000.voltage = Instrument.control(
":RANG?", ":RANG %d",
"""Control the voltage range in Volts (float in 10 mV, 100 mV and 1 V).
""",
validator=truncated_discrete_set,
values=[10e-3, 100e-3, 1],
map_values=True

)

Now the actual GPIB/SCIP command is “:RANG 1” for a value of 100 mV, since the index of 100 mV in the values
list is 1.

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.voltage = 100e-3
>>> extreme.read()
'1'
>>> extreme.voltage = 1
>>> extreme.voltage
1

Dictionaries provide a more flexible method for mapping between real-values and those required by the instrument. If
instead the :RANG <integer> took 1, 2, and 3 to correspond to 10 mV, 100 mV, and 1 V, then we can replace our
previous control with the following.

10.5. Writing properties 517

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Extreme5000.voltage = Instrument.control(
":RANG?", ":RANG %d",
"""Control the voltage range in Volts (float in 10 mV, 100 mV and 1 V).
""",
validator=truncated_discrete_set,
values={10e-3:1, 100e-3:2, 1:3},
map_values=True

)

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.voltage = 10e-3
>>> extreme.read()
'1'
>>> extreme.voltage = 100e-3
>>> extreme.voltage
0.1

The dictionary now maps the keys to specific values. The values and keys can be any type, so this can support properties
that use strings:

Extreme5000.channel = Instrument.control(
":CHAN?", ":CHAN %d",
"""Control the measurement channel (string strictly in 'X', 'Y', 'Z').""",
validator=strict_discrete_set,
values={'X':1, 'Y':2, 'Z':3},
map_values=True

)

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.channel = 'X'
>>> extreme.read()
'1'
>>> extreme.channel = 'Y'
>>> extreme.channel
'Y'

As you have seen, the Instrument.control function can be significantly extended by using validators and maps.

10.5.4 Boolean properties

The idea of using maps can be leveraged to implement properties where the user-facing values are booleans, so you
can interact in a pythonic way using True and False:

Extreme5000.output_enabled = Instrument.control(
"OUTP?", "OUTP %d",
"""Control the instrument output is enabled (boolean).""",
validator=strict_discrete_set,
map_values=True,
values={True: 1, False: 0}, # the dict values could also be "on" and "off", etc.␣

→˓depending on the device
)

518 Chapter 10. Adding instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.output_enabled = True
>>> extreme.read()
'1'
>>> extreme.output_enabled = False
>>> extreme.output_enabled
False
>>> # Invalid input raises an exception
>>> extreme.output_enabled = 34
Traceback (most recent call last):
...
ValueError: Value of 34 is not in the discrete set {True: 1, False: 0}

Good names for boolean properties are chosen such that they could also be a yes/no question: “Is the output enabled?”
-> output_enabled, display_active, etc.

10.5.5 Processing of set values

The Instrument.control, and Instrument.setting allow a keyword argument set_process which must be a func-
tion that takes a value after validation and performs processing before value mapping. This function must return the
processed value. This can be typically used for unit conversions as in the following example:

Extreme5000.current = Instrument.setting(
":CURR %g",
"""Set the measurement current in A (float strictly from 0 to 10).""",
validator=strict_range,
values=[0, 10],
set_process=lambda v: 1e3*v, # convert current to mA

)

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.current = 1 # set current to 1000 mA

10.5.6 Processing of return values

Similar to set_process the Instrument.control, and Instrument.measurement functions allow a get_process
argument which if specified must be a function that takes a value and performs processing before value mapping.
The function must return the processed value. In analogy to the example above this can be used for example for unit
conversion:

Extreme5000.current = Instrument.control(
":CURR?", ":CURR %g",
"""Control the measurement current in A (float strictly from 0 to 10).""",
validator=strict_range,
values=[0, 10],
set_process=lambda v: 1e3*v, # convert to mA
get_process=lambda v: 1e-3*v, # convert to A

)

10.5. Writing properties 519

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.current = 3.1
>>> extreme.current
3.1

Another use-case of set-process, get-process is conversion from/to a pint.Quantity. Modifying above example to
set or return a quantity, we get:

from pymeasure.units import ureg

Extreme5000.current = Instrument.control(
":CURR?", ":CURR %g",
"""Control the measurement current (float).""",
set_process=lambda v: v.m_as(ureg.mA), # send the value as mA to the device
get_process=lambda v: ureg.Quantity(v, ureg.mA), # convert to quantity

)

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.current = 3.1 * ureg.A
>>> extreme.current.m_as(ureg.A)
3.1

Note: This is, how quantities can be used in pymeasure instruments right now. Issue 666 develops a more convenient
implementation of quantities in the property factories.

get_process can also be used to perform string processing. Let’s say your instrument returns a value with its unit (e.g.
1.23 nF), which has to be removed. This could be achieved by the following code:

Extreme5000.capacity = Instrument.measurement(
":CAP?",
"""Measure the capacity in nF (float).""",
get_process=lambda v: float(v.replace('nF', ''))

)

The same can be also achieved by the preprocess_reply keyword argument to Instrument.control or Instrument.
measurement. This function is forwarded to Adapter.values and runs directly after receiving the reply from the
device. One can therefore take advantage of the built in casting abilities and simplify the code accordingly:

Extreme5000.capacity = Instrument.measurement(
":CAP?",
"""Measure the capacity in nF (float).""",
preprocess_reply=lambda v: v.replace('nF', '')
notice how we don't need to cast to float anymore

)

520 Chapter 10. Adding instruments

https://github.com/pymeasure/pymeasure/issues/666

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

10.5.7 Checking the instrument for errors

If you need to separately ask your instrument about its error state after getting/setting, use the parameters
check_get_errors and check_set_errors of control(), respectively. If those are enabled, the methods
check_get_errors() and check_set_errors(), respectively, will be called be called after device communica-
tion has concluded. In the default implementation, for simplicity both methods call check_errors(). To read the
automatic response of instruments that respond to every set command with an acknowledgment or error, override
check_set_errors() as needed.

10.5.8 Using multiple values

Seldomly, you might need to send/receive multiple values in one command. The Instrument.control function
can be used with multiple values at one time, passed as a tuple. Say, we may set voltages and frequencies in our
“Extreme 5000”, and the the commands for this are :VOLTFREQ? and :VOLTFREQ <float>,<float>, we could use
the following property:

Extreme5000.combination = Instrument.control(
":VOLTFREQ?", ":VOLTFREQ %g,%g",
"""Simultaneously control the voltage in Volts and the frequency in Hertz (both␣

→˓float).

This property is set by a tuple.
"""

)

In use, we could set the voltage to 200 mV, and the Frequency to 931 Hz, and read both values immediately afterwards.

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.combination = (0.2, 931) # Executes ":VOLTFREQ 0.2,931"
>>> extreme.combination # Reads ":VOLTFREQ?"
[0.2, 931.0]

This interface is not too convenient, but luckily not often needed.

10.5.9 Dynamic properties

As described in previous sections, Python properties are a very powerful tool to easily code an instrument’s program-
ming interface. One very interesting feature provided in PyMeasure is the ability to adjust properties’ behaviour in
subclasses or dynamically in instances. This feature allows accomodating some interesting use cases with a very com-
pact syntax.

Dynamic features of a property are enabled by setting its dynamic parameter to True.

Afterwards, creating specifically-named attributes (either in class definitions or on instances) allows modifying the
parameters used at the time of property definition. You need to define an attribute whose name is <property
name>_<property_parameter> and assign to it the desired value. Pay attention not to inadvertently define other class
attribute or instance attribute names matching this pattern, since they could unintentionally modify the property be-
haviour.

Note: To clearly distinguish these special attributes from normal class/instance attributes, they can only be set, not
read.

10.5. Writing properties 521

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

The mechanism works for all the parameters in properties, except dynamic and docs – see Instrument.control,
Instrument.measurement, Instrument.setting.

Dynamic validity range

Let’s assume we have an instrument with a command that accepts a different valid range of values depending on its
current state. The code below shows how this can be accomplished with dynamic properties.

Extreme5000.voltage = Instrument.control(
":VOLT?", ":VOLT %g",
"""Control the voltage in Volts (float).""",
validator=strict_range,
values=[-1, 1],
dynamic = True,

)
def set_bipolar_mode(self, enabled = True):

"""Safely switch between bipolar/unipolar mode."""

some code to switch off the output first
...

if enabled:
self.mode = "BIPOLAR"
set valid range of "voltage" property
self.voltage_values = [-1, 1]

else:
self.mode = "UNIPOLAR"
note the "propertyname_parametername" form of the attribute
self.voltage_values = [0, 1]

Now our voltage property has a dynamic validity range, either [-1, 1] or [0, 1]. A side effect of this is that the property’s
docstring should be less specific, to avoid it containing dynamically changed information (like the admissible value
range). In this example, the property name was voltage and the parameter to adjust was values, so we used self.
voltage_values to set our desired values.

10.6 Instruments with similar features

When instruments have a similar set of features, it makes sense to use inheritance to obtain most of the functionality
from a parent instrument class, instead of copy-pasting code.

Note: Don’t forget to update the instrument’s name attribute accordingly, by either supplying an appropriate argument
(if available) during the super().__init__() call, or by setting it anew below that call.

In some cases, one only needs to add additional properties and methods. In other cases, some of the already present
properties/methods need to be completely replaced by defining them again in the derived class. Often, however, only
some details need to be changed. This can be dealt with efficiently using dynamic properties.

522 Chapter 10. Adding instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

10.6.1 Instrument family with different parameter values

A common case is to have a family of similar instruments with some parameter range different for each family member.
In this case you would update the specific class parameter range without rewriting the entire property:

class FictionalInstrumentFamily(Instrument):
frequency = Instrument.setting(

"FREQ %g",
"""Set the frequency (float).""",
validator=strict_range,
values=[0, 1e9],
dynamic=True,
... other possible parameters follow

)
#
... complete class implementation here
#

class FictionalInstrument_1GHz(FictionalInstrumentFamily):
pass

class FictionalInstrument_3GHz(FictionalInstrumentFamily):
frequency_values = [0, 3e9]

class FictionalInstrument_9GHz(FictionalInstrumentFamily):
frequency_values = [0, 9e9]

Notice how easily you can derive the different family members from a common class, and the fact that the attribute is
now defined at class level and not at instance level.

10.6.2 Instruments with similar command syntax

Another use case involves maintaining compatibility between instruments with commands having different syntax, like
in the following example.

class MultimeterA(Instrument):
voltage = Instrument.measurement(get_command="VOLT?",...)

...full class definition code here

class MultimeterB(MultimeterA):
Same as brand A multimeter, but the command to read voltage
is slightly different
voltage_get_command = "VOLTAGE?"

In the above example, MultimeterA and MultimeterB use a different command to read the voltage, but the rest of the
behaviour is identical. MultimeterB can be defined subclassing MultimeterA and just implementing the difference.

10.6. Instruments with similar features 523

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

10.7 Instruments with channels

Some instruments, like oscilloscopes and voltage sources, have channels whose commands differ only in the channel
name. For this case, we have Channel, which is similar to Instrument and its property factories, but does expect an
Instrument instance (i.e., a parent instrument) instead of an Adapter as parameter. All the channel communication
is routed through the instrument’s methods (write, read, etc.). However, Channel.insert_id uses str.format to
insert the channel’s id at any occurrence of the class attribute Channel.placeholder, which defaults to "ch", in the
written commands. For example "Ch{ch}:VOLT?" will be sent as "Ch3:VOLT?" to the device, if the channel’s id is
“3”.

Please add any created channel classes to the documentation. In the instrument’s documentation file, you may add

.. autoclass:: pymeasure.instruments.MANUFACTURER.INSTRUMENT.CHANNEL
:members:
:show-inheritance:

MANUFACTURER is the folder name of the manufacturer and INSTRUMENT the file name of the instrument def-
inition, which contains the CHANNEL class. You may link in the instrument’s docstring to the channel with
:class:`CHANNEL`

To simplify and standardize the creation of channels in an Instrument class, there are two classes that can be used.
For instruments with fewer than 16 channels, ChannelCreator should be used to explicitly declare each individual
channel. For instruments with more than 16 channels, the MultiChannelCreator can create multiple channels in a
single declaration.

10.7.1 Adding a channel with ChannelCreator

For instruments with fewer than 16 channels the class ChannelCreator should be used to assign each channel interface
to a class attribute. ChannelCreator constructor accepts two parameters, the channel class for this channel interface,
and the instrument’s channel id for the channel interface.

In this example, we are defining a channel class and an instrument driver class. The VoltageChannel channel class will
be used for controlling two channels in our ExtremeVoltage5000 instrument. In the ExtremeVoltage5000 class
we declare two class attributes with ChannelCreator, output_A and output_B, which will become our channel
interfaces.

class VoltageChannel(Channel):
"""A channel of the voltage source."""

voltage = Channel.control(
"SOURce{ch}:VOLT?", "SOURce{ch}:VOLT %g",
"""Control the output voltage of this channel.""",

)

class ExtremeVoltage5000(Instrument):
"""An instrument with channels."""
output_A = Instrument.ChannelCreator(VoltageChannel, "A")
output_B = Instrument.ChannelCreator(VoltageChannel, "B")

At instrument class instantiation, the instrument class will create an instance of the channel class and assign it to the
class attribute name. Additionally the channels will be collected in a dictionary, by default named channels. We can
access the channel interface through that class name:

524 Chapter 10. Adding instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

extreme_inst = ExtremeVoltage5000('COM3')
Set channel A voltage
extreme_inst.output_A.voltage = 50
Read channel B voltage
chan_b_voltage = extreme_inst.output_B.voltage

Or we can access the channel interfaces through the channels collection:

Set channel A voltage
extreme_inst.channels['A'].voltage = 50
Read channel B voltage
chan_b_voltage = extreme_inst.channels['B'].voltage

10.7.2 Adding multiple channels with MultiChannelCreator

For instruments greater than 16 channels the class MultiChannelCreator can be used to easily generate a list of
channels from one class attribute declaration.

The MultiChannelCreator constructor accepts a single channel class or list of channel classes, and a list of corre-
sponding channel ids. Instead of lists, you may also use tuples. If you give a single class and a list of ids, all channels
will be of the same class.

At instrument instantiation, the instrument will generate channel interfaces as class attribute names composing of
the prefix (default "ch_") and channel id, e.g. the channel with id “A” will be added as attribute ch_A. While
ChannelCreator creates a channel interface for each class attribute, MultiChannelCreator creates a channel col-
lection for the assigned class attribute. It is recommended you use the class attribute name channels to keep the
codebase homogenous.

To modify our example, we will use MultiChannelCreator to generate 24 channels of the VoltageChannel class.

class VoltageChannel(Channel):
"""A channel of the voltage source."""

voltage = Channel.control(
"SOURce{ch}:VOLT?", "SOURce{ch}:VOLT %g",
"""Control the output voltage of this channel.""",

)

class MultiExtremeVoltage5000(Instrument):
"""An instrument with channels."""
channels = Instrument.MultiChannelCreator(VoltageChannel, list(range(1,25)))

We can now access the channel interfaces through the generated class attributes:

extreme_inst = MultiExtremeVoltage5000('COM3')
Set channel 5 voltage
extreme_inst.ch_5.voltage = 50
Read channel 16 voltage
chan_16_voltage = extreme_inst.ch_16.voltage

Because we use channels as the class attribute for MultiChannelCreator, we can access the channel interfaces
through the channels collection:

10.7. Instruments with channels 525

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Set channel 10 voltage
extreme_inst.channels[10].voltage = 50
Read channel 22 voltage
chan_b_voltage = extreme_inst.channels[22].voltage

10.7.3 Advanced channel management

Adding / removing channels

In order to add or remove programmatically channels, use the parent’s add_child(), remove_child() methods.

Channels with fixed prefix

If all channel communication is prefixed by a specific command, e.g. "SOURceA:" for channel A, you can override the
channel’s insert_id() method. That is especially useful, if you have only one channel of that type, e.g. because it
defines one function of the instrument vs. another one.

class VoltageChannelPrefix(Channel):
"""A channel of a voltage source, every command has the same prefix."""

def insert_id(self, command):
return f"SOURce{self.id}:{command}"

voltage = Channel.control(
"VOLT?", "VOLT %g",
"""Control the output voltage of this channel.""",

)

This channel class implements the same communication as the previous example, but implements the channel prefix
in the insert_id() method and not in the individual property (created by control()).

Collections of different channel types

Some devices have different types of channels. In this case, you can specify a different collection and prefix
parameter.

class PowerChannel(Channel):
"""A channel controlling the power."""
power = Channel.measurement(

"POWER?", """Measure the currently consumed power.""")

class MultiChannelTypeInstrument(Instrument):
"""An instrument with two different channel types."""
analog = Instrument.MultiChannelCreator(

(VoltageChannel, VoltageChannelPrefix),
("A", "B"),
prefix="an_")

digital = Instrument.MultiChannelCreator(VoltageChannel, (0, 1, 2), prefix="di_")
power = Instrument.ChannelCreator(PowerChannel)

526 Chapter 10. Adding instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

This instrument has two collections of channels and one single channel. The first collection in the dictionary analog
contains an instance of VoltageChannel with the name an_A and an instance of VoltageChannelPrefix with the
name an_B. The second collection contains three channels of type VoltageChannel with the names di_0, di_1,
di_2 in the dictionary digital. You can address the first channel of the second group either with inst.di_0 or with
inst.digital[0]. Finally, the instrument has a single channel with the name power, as it does not have a prefix.

If you have a single channel category, do not change the default parameters of ChannelCreator or add_child(), in
order to keep the code base homogeneous. We expect the default behaviour to be sufficient for most use cases.

10.8 Advanced communication protocols

Some devices require a more advanced communication protocol, e.g. due to checksums or device addresses. In most
cases, it is sufficient to subclass Instrument.write and Instrument.read .

10.8.1 Instrument’s inner workings

In order to adjust an instrument for more complicated protocols, it is key to understand the different parts.

The Adapter exposes write() and read() for strings, write_bytes() and read_bytes() for bytes messages.
These are the most basic methods, which log all the traffic going through them. For the actual communication, they
call private methods of the Adapter in use, e.g. VISAAdapter._read. For binary data, like waveforms, the adapter
provides also write_binary_values() and read_binary_values(), which use the aforementioned methods. You
do not need to call all these methods directly, instead, you should use the methods of Instrument with the same name.
They call the Adapter for you and keep the code tidy.

Now to Instrument. The most important methods are write() and read(), as they are the most basic building
blocks for the communication. The pymeasure properties (Instrument.control and its derivatives Instrument.
measurement and Instrument.setting) and probably most of your methods and properties will call them. In any
instrument, write() should write a general string command to the device in such a way, that it understands it. Similarly,
read() should return a string in a general fashion in order to process it further.

The getter of Instrument.control does not call them directly, but via a chain of methods. It calls values() which
in turn calls ask() and processes the returned string into understandable values. ask() sends the readout command
via write(), waits some time if necessary via wait_for(), and reads the device response via read().

Similarly, Instrument.binary_values sends a command via write(), waits with wait_till_read(), but reads
the response via Adapter.read_binary_values.

10.8.2 Adding a device address and adding delay

Let’s look at a simple example for a device, which requires its address as the first three characters and returns the same
style. This is straightforward, as write() just prepends the device address to the command, and read() has to strip
it again doing some error checking. Similarly, a checksum could be added. Additionally, the device needs some time
after it received a command, before it responds, therefore wait_for() waits always a certain time span.

class ExtremeCommunication(Instrument):
"""Control the ExtremeCommunication instrument.

:param address: The device address for the communication.
:param query_delay: Wait time after writing and before reading in seconds.
"""
def __init__(self, adapter, name="ExtremeCommunication", address=0, query_delay=0.1):

(continues on next page)

10.8. Advanced communication protocols 527

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

super().__init__(adapter, name)
self.address = f"{address:03}"
self.query_delay = query_delay

def write(self, command):
"""Add the device address in front of every command before sending it."""
super().write(self.address + command)

def wait_for(self, query_delay=0):
"""Wait for some time.

:param query_delay: override the global query_delay.
"""
super().wait_for(query_delay or self.query_delay)

def read(self):
"""Read from the device and check the response.

Assert that the response starts with the device address.
"""
got = super().read()
if got.startswith(self.address):

return got[3:]
else:

raise ConnectionError(f"Expected message address '{self.address}', but read '
→˓{got[3:]}' for wrong address '{got[:3]}'.")

voltage = Instrument.measurement(
":VOLT:?", """Measure the voltage in Volts.""")

If the device is initialized with address=12, a request for the voltage would send "012:VOLT:?" to the device and
expect a response beginning with "012".

10.8.3 Bytes communication

Some devices do not expect ASCII strings but raw bytes. In those cases, you can call the write_bytes() and
read_bytes() in your write() and read() methods. The following example shows an instrument, which has reg-
isters to be written and read via bytes sent.

class ExtremeBytes(Instrument):
"""Control the ExtremeBytes instrument with byte-based communication."""
def __init__(self, adapter, name="ExtremeBytes"):

super().__init__(adapter, name)

def write(self, command):
"""Write to the device according to the comma separated command.

:param command: R or W for read or write, hexadecimal address, and data.
"""
function, address, data = command.split(",")
b = [0x03] if function == "R" else [0x10]

(continues on next page)

528 Chapter 10. Adding instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

b.extend(int(address, 16).to_bytes(2, byteorder="big"))
b.extend(int(data).to_bytes(length=8, byteorder="big", signed=True))
self.write_bytes(bytes(b))

def read(self):
"""Read the response and return the data as a string, if applicable."""
response = self.read_bytes(2) # return type and payload
if response[0] == 0x00:

raise ConnectionError(f"Device error of type {response[1]} occurred.")
if response[0] == 0x03:

read that many bytes and return them as an integer
data = self.read_bytes(response[1])
return str(int.from_bytes(data, byteorder="big", signed=True))

if response[0] == 0x10 and response[1] != 0x00:
raise ConnectionError(f"Writing to the device failed with error {response[1]}

→˓")

voltage = Instrument.control(
"R,0x106,1", "W,0x106,%i",
"""Control the output voltage in mV.""",

)

10.9 Writing tests

Tests are very useful for writing good code. We have a number of tests checking the correctness of the pymeasure
implementation. Those tests (located in the tests directory) are run automatically on our CI server, but you can also
run them locally using pytest.

When adding instruments, your primary concern will be tests for the instrument driver you implement. We distinguish
two groups of tests for instruments: the first group does not rely on a connected instrument. These tests verify that
the implemented instrument driver exchanges the correct messages with a device (for example according to a device
manual). We call those “protocol tests”. The second group tests the code with a device connected.

Implement device tests by adding files in the tests/instruments/... directory tree, mirroring the structure of the
instrument implementations. There are other instrument tests already available that can serve as inspiration.

10.9.1 Protocol tests

In order to verify the expected working of the device code, it is good to test every part of the written code. The
expected_protocol() context manager (using a ProtocolAdapter internally) simulates the communication with
a device and verifies that the sent/received messages triggered by the code inside the with statement match the expec-
tation.

import pytest

from pymeasure.test import expected_protocol

from pymeasure.instruments.extreme5000 import Extreme5000

def test_voltage():
(continues on next page)

10.9. Writing tests 529

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

"""Verify the communication of the voltage getter."""
with expected_protocol(

Extreme5000,
[(":VOLT 0.345", None),
(":VOLT?", "0.3000")],

) as inst:
inst.voltage = 0.345
assert inst.voltage == 0.3

In the above example, the imports import the pytest package, the expected_protocol and the instrument class to be
tested.

The first parameter, Extreme5000, is the class to be tested.

When setting the voltage, the driver sends a message (":VOLT 0.345"), but does not expect a response (None). Getting
the voltage sends a query (":VOLT?") and expects a string response ("0.3000"). Therefore, we expect two pairs of
send/receive exchange. The list of those pairs is the second argument, the expected message protocol.

The context manager returns an instance of the class (inst), which is then used to trigger the behaviour corresponding
to the message protocol (e.g. by using its properties).

If the communication of the driver does not correspond to the expected messages, an Exception is raised.

Note: The expected messages are without the termination characters, as they depend on the connection type and are
handled by the normal adapter (e.g. VISAAdapter).

Some protocol tests in the test suite can serve as examples:

• Testing a simple instrument: tests/instruments/keithley/test_keithley2000.py

• Testing a multi-channel instrument: tests/instruments/tektronix/test_afg3152.py

• Testing instruments using frame-based communication: tests/instruments/hcp/tc038.py

Test generator

In order to facilitate writing tests, if you already have working code and a device at hand, we have a Generator for
tests. You can control your instrument with the TestGenerator as a middle man. It logs the method calls, the device
communication and the return values, if any, and writes tests according to these log entries.

from pymeasure.generator import Generator
from pymeasure.instruments.hcp import TC038

generator = Generator()
inst = generator.instantiate(TC038, adapter, 'hcp', adapter_kwargs={'baud_rate': 9600})

As a first step, this code imports the Generator and generates a middle man instrument. The instantiate() method
creates an instrument instance and logs the communication at startup. The Generator creates a special adapter for
the communication with the device. It cannot inspect the instrument’s __init__(), however. Therefore you have to
specify the all connection settings via the adapter_kwargs dictionary, even those, which are defined in __init__().
These adapter arguments are not written to tests. If you have arguments for the instrument itself, e.g. a RS485 address,
you may give it as a keyword argument. These additional keyword arguments are included in the tests.

Now we can use inst as if it were created the normal way, i.e. inst = TC038(adapter), where adapter is some
resource string. Having gotten and set some properties, and called some methods, we can write the tests to a file.

530 Chapter 10. Adding instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

inst.information # returns the 'information' property, e.g. 'UT150333 V01.
→˓R001111222233334444'
inst.setpoint = 20
assert inst.setpoint == 20
inst.setpoint = 60

generator.write_file(file)

The following data will be written to file:

import pytest

from pymeasure.test import expected_protocol
from pymeasure.instruments.hcp import TC038

def test_init():
with expected_protocol(

TC038,
[(b'\x0201010WRS01D0002\x03', b'\x020101OK\x03')],

):
pass # Verify the expected communication.

def test_information_getter():
with expected_protocol(

TC038,
[(b'\x0201010WRS01D0002\x03', b'\x020101OK\x03'),
(b'\x0201010INF6\x03', b'\x020101OKUT150333 V01.R001111222233334444\x03')],

) as inst:
assert inst.information == 'UT150333 V01.R001111222233334444'

@pytest.mark.parametrize("comm_pairs, value", (
([(b'\x0201010WRS01D0002\x03', b'\x020101OK\x03'),

(b'\x0201010WWRD0120,01,00C8\x03', b'\x020101OK\x03')],
20),

([(b'\x0201010WRS01D0002\x03', b'\x020101OK\x03'),
(b'\x0201010WWRD0120,01,0258\x03', b'\x020101OK\x03')],
60),

))
def test_setpoint_setter(comm_pairs, value):

with expected_protocol(
TC038,
comm_pairs,

) as inst:
inst.setpoint = value

def test_setpoint_getter():
with expected_protocol(

TC038,
[(b'\x0201010WRS01D0002\x03', b'\x020101OK\x03'),

(continues on next page)

10.9. Writing tests 531

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

(b'\x0201010WRDD0120,01\x03', b'\x020101OK00C8\x03')],
) as inst:

assert inst.setpoint == 20.0

10.9.2 Device tests

It can be useful as well to test the code against an actual device. The necessary device setup instructions (for example:
connect a probe to the test output) should be written in the header of the test file or test methods. There should be the
connection configuration (for example serial port), too. In order to distinguish the test module from protocol tests, the
filename should be test_instrumentName_with_device.py, if the device is called instrumentName.

To make it easier for others to run these tests using their own instruments, we recommend to use pytest.
fixture to create an instance of the instrument class. It is important to use the specific argument name
connected_device_address and define the scope of the fixture to only establish a single connection to the de-
vice. This ensures two things: First, it makes it possible to specify the address of the device to be used for the test using
the --device-address command line argument. Second, tests using this fixture, i.e. tests that rely on a device to be
connected to the computer are skipped by default when running pytest. This is done to avoid that tests that require a
device are run when none is connected. It is important that all tests that require a connection to a device either use the
connected_device_address fixture or a fixture derived from it as an argument.

A simple example of a fixture that returns a connected instrument instance looks like this:

@pytest.fixture(scope="module")
def extreme5000(connected_device_address):

instr = Extreme5000(connected_device_address)
ensure the device is in a defined state, e.g. by resetting it.
return instr

Note that this fixture uses connected_device_address as an input argument and will thus be skipped by automatic
test runs. This fixture can then be used in a test functions like this:

def test_voltage(extreme5000):
extreme5000.voltage = 0.345
assert extreme5000.voltage == 0.3

Again, by specifying the fixture’s name, in this case extreme5000, invoking pytest will skip these tests by default.

It is also possible to define derived fixtures, for example to put the device into a specific state. Such a fixture would
look like this:

@pytest.fixture
def auto_scaled_extreme5000(extreme5000):

extreme5000.auto_scale()
return extreme5000

In this case, do not specify the fixture’s scope, so it is called again for every test function using it.

To run the test, specify the address of the device to be used via the --device-address command line argument and
limit pytest to the relevant tests. You can filter tests with the -k option or you can specify the filename. For example, if
your tests are in a file called test_extreme5000_with_device.py, invoke pytest with pytest -k extreme5000
--device-address TCPIP::192.168.0.123::INSTR".

There might also be tests where manual intervention is necessary. In this case, skip the test by prepending the test
function with a @pytest.mark.skip(reason="A human needs to press a button.") decorator.

532 Chapter 10. Adding instruments

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

10.10 Solutions for implementation challenges

This is a list of less common challenges, their solutions, and example instruments.

10.10.1 General issues

• Small numbers (<1e-5) are shown as 0 with %f. If an instrument understands exponential notation, you can use
%g, which switches between floating point and exponential format, depending on the exponent.

10.10.2 Communication protocol issues

• The instrument answers every message, even a setting command. You can set the setting’s check_set_errors
= True parameter and redefine check_set_errors() to read an answer, see hcp.TC038D

• Binary, frame-based communication, see hcp.TC038D

• All replies have the same length, see aja.DCXS

• The device generates garbage messages at startup, cluttering the buffer, see aja.DCXS

• An instrument and its channel need to override values, but it has to use the correct ask method as well, see
tcpowerconversion.CXN

10.10.3 Channels

• Not all channels have the same features, see MKS937B

• Channel names in the communication (1, 2, 3) differ from front panel (A, B, C), see AdvantestR624X

• A family of instruments in which a property of the channels is different for different members of the family , see
AnritsuMS464xB

10.10. Solutions for implementation challenges 533

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

534 Chapter 10. Adding instruments

CHAPTER

ELEVEN

CODING STANDARDS

In order to maintain consistency across the different instruments in the PyMeasure repository, we enforce the following
standards.

11.1 Python style guides

The PEP8 style guide and PEP257 docstring conventions should be followed.

Function and variable names should be lower case with underscores as needed to separate words. CamelCase should
only be used for class names, unless working with Qt, where its use is common.

In addition, there is a configuration for the flake8 linter present. Our codebase should not trigger any warnings. Many
editors/IDEs can run this tool in the background while you work, showing results inline. Alternatively, you can run
flake8 in the repository root to check for problems. In addition, our automation on Github also runs some checkers.
As this results in a much slower feedback loop for you, it’s not recommended to rely only on this.

It is allowed but not required to use the black code formatter. To avoid introducing unrelated changes when working
on an existing file, it is recommended to use the darker tool instead of black. This helps to keep the focus on the
implementation instead of unrelated formatting, and thereby facilitates code reviews. darker is compatible with black,
but only formats regions that show as changed in Git. If there are conflicts between black/darker’s output and flake8
(especially related to E203), flake8 takes precedence. Use #noqa : E203 to disable E203 warnings for a specific
line if appropriate.

There are no plans to support type hinting in PyMeasure code. This adds a lot of additional code to manage, without
a clear advantage for this project. Type documentation should be placed in the docstring where not clear from the
variable name.

11.2 Documentation

PyMeasure documents code using reStructuredText and the Sphinx documentation generator. All functions, classes,
and methods should be documented in the code using a docstring, see section Docstrings.

535

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/
https://flake8.pycqa.org/en/latest/
https://black.readthedocs.io/en/stable/
https://github.com/akaihola/darker
https://www.flake8rules.com/rules/E203.html
http://www.sphinx-doc.org/en/stable/

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

11.3 Usage of getter and setter functions

Getter and setter functions are discouraged, since properties provide a more fluid experience. Given the extensive tools
available for defining properties, detailed in the sections starting with Writing properties, these types of properties are
prefered.

11.4 Docstrings

Descriptive and specific docstrings for your properties and methods are important for your users to quickly glean
important information about a property. It is advisable to follow the PEP257 docstring guidelines. Most importantly:

• Use triple-quoted strings (""") to delimit docstrings.

• One short summary line in imperative voice, with a period at the end.

• Optionally, after a blank line, include more detailed information.

• For functions and methods, you can add documentation on their parameters using the reStructuredText docstring
format.

Specific to properties, start them with “Control”, “Get”, “Measure”, or “Set” to indicate the kind of property, as it is
not visible after import, whether a property is gettable (“Get” or “Measure”), settable (“Set”), or both (“Control”). In
addition, it is useful to add type and information about Restricting values with validators (if applicable) at the end of
the summary line, see the docstrings shown in examples throughout the Adding instruments section. For example a
docstring could be """Control the voltage in Volts (float strictly from -1 to 1).""".

The docstring is for information that is relevant for using a property/method. Therefore, do not add information about
internal/hidden details, like the format of commands exchanged with the device.

536 Chapter 11. Coding Standards

https://peps.python.org/pep-0257/
https://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#info-field-lists
https://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#info-field-lists

CHAPTER

TWELVE

AUTHORS

PyMeasure was started in 2013 by Colin Jermain and Graham Rowlands at Cornell University, when it became apparent
that both were working on similar Python packages for scientific measurements. PyMeasure combined these efforts and
continues to gain valuable contributions from other scientists who are interested in advancing measurement software.

The following developers have contributed to the PyMeasure package:

Colin Jermain
Graham Rowlands
Minh-Hai Nguyen
Guen Prawiro-Atmodjo
Tim van Boxtel
Davide Spirito
Marcos Guimaraes
Ghislain Antony Vaillant
Ben Feinstein
Neal Reynolds
Christoph Buchner
Julian Dlugosch
Sylvain Karlen
Joseph Mittelstaedt
Troy Fox
Vikram Sekar
Casper Schippers
Sumatran Tiger
Michael Schneider
Dennis Feng
Stefano Pirotta
Moritz Jung
Richard Schlitz
Manuel Zahn
Mikhaël Myara
Domenic Prete
Mathieu Jeannin
Paul Goulain
John McMaster
Dominik Kriegner
Jonathan Larochelle
Dominic Caron
Mathieu Plante
Michele Sardo
Steven Siegl

(continues on next page)

537

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

(continued from previous page)

Benjamin Klebel-Knobloch
Markus Röleke
Demetra Adrahtas
Dan McDonald
Hud Wahab
Nicola Corna
Robert Eckelmann
Sam Condon
Andreas Maeder
Bastian Leykauf
Matthew Delaney
Marco von Rosenberg
Jack Van Sambeek
JC Arbelbide
Florian Jünger
Benedikt Moneke
Asaf Yagoda
Fabio Garzetti
Daniel Schmeer
Mike Manno
David Sanchez Sanchez
Andres Ruz-Nieto
Carlos Martinez
Scott Candey
Tom Verbeure
Max Herbold
Alexander Wichers
Ashok Bruno
Robert Roos
Sebastien Weber
Sebastian Neusch
Ulrich Sauter

538 Chapter 12. Authors

CHAPTER

THIRTEEN

LICENSE

Copyright (c) 2013-2023 PyMeasure Developers

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

539

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

540 Chapter 13. License

CHAPTER

FOURTEEN

CHANGELOG

14.1 Version 0.13.1 (2023-10-05)

New release to fix ineffective python version restriction in the project metadata (only affected Python<=3.7 environ-
ments installing via pip).

14.2 Version 0.13.0 (2023-09-23)

Main items of this new release:

• Dropped support for Python 3.7, added support for Python 3.11.

• Adds a test generator, which observes the communication with an actual device and writes protocol tests accord-
ingly.

• 2 new instrument drivers have been added.

14.2.1 Deprecated features

• Attocube ANC300: The stepu and stepd properties are deprecated, use the new move_raw method instead.
(@dkriegner, #938)

14.2.2 Instruments

• Adds a test generator (@bmoneke, #882)

• Adds Thyracont Smartline v2 vacuum sensor transmitter (@bmoneke, #940)

• Adds Thyracont Smartline v1 vacuum gauge (@dkriegner, #937)

• AddsTeledyne base classes with most of LeCroyT3DSO1204 functionality (@RobertoRoos, #951)

• Fixes instrument documentation (@mcdo0486, #941, #903, @omahs, #960)

• Fixes Toptica Ibeamsmart’s __init__ (@waveman68, #959)

• Fixes VISAAdapter flush_read_buffer() (@ileu, #968)

• Updates Keithley2306 and AFG3152C to Channels (@bilderbuchi, #953)

541

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

14.2.3 GUI

• Adds console mode (@msmttchr, #500)

• Fixes Dock widget (@msmttchr, #961)

14.2.4 Miscellaneous

• Change CI from conda to mamba (@bmoneke, #947)

• Add support for python 3.11 (@CasperSchippers, #896)

14.2.5 New Contributors

@waveman68, @omahs, @ileu

Full Changelog: https://github.com/pymeasure/pymeasure/compare/v0.12.0. . . v0.13.0

14.3 Version 0.12.0 (2023-07-05)

Main items of this new release:

• A Channel base class has been added for easier implementation of instruments with channels.

• 19 new instrument drivers have been added.

• Added tests for some commonalities across all instruments.

• We continue to clean up our API in preparation for a future version 1.0. Deprecations and subsequent removals
are listed below.

14.3.1 Deprecated features

• HP 34401A: voltage_ac, current_dc, current_ac, resistance, resistance_4w properties, use
function_ and reading properties instead.

• Toptica IBeamSmart: channel1_enabled, use ch_1.enabled property instead (equivalent for channel2). Also
laser_enabled is deprecated in favor of emission (@bmoneke, #819).

• TelnetAdapter: use VISAAdapter instead. VISA supports TCPIP connections. Use the resource_name
TCPIP[board]::<hostname>::<port>::SOCKET to connect to a server (@Max-Herbold, #835).

• Attocube ANC300: host argument, pass a resource string or adapter as Adapter passed to Instrument. Now
communicates through the VISAAdapter rather than deprecated TelnetAdapter. The initializer now accepts
name as its second keyword argument so all previous initialization positional arguments (axisnames, passwd,
query_delay) should be switched to keyword arguments.

• The property creators control, measurement, and setting do not accept arbitrary keyword arguments any-
more. Use the v_kwargs parameter for arguments you want to pass on to values method, instead.

• The property creators control, measurement, and setting do not accept command_process anymore. Use a
dynamic property or a Channel instead, as appropriate (@bmoneke, #878).

• See also the next section.

542 Chapter 14. Changelog

https://github.com/pymeasure/pymeasure/compare/v0.12.0...v0.13.0

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

14.3.2 New adapter and instrument mechanics

• All instrument constructors are required to accept a name argument.

• Changed: read_bytes of all Adapters by default does not stop reading on a termination character, unless the
new argument break_on_termchar is set to True.

• Channel class added. Instrument.channels and Instrument.ch_X (X is any channel name) are reserved
attributes for channel mechanics.

• The parameters check_get_errors and check_set_errors enable calling methods of the same name. This
enables more systematically dealing with instruments that acknowledge every “set” command.

• Adds Channel feature to instruments (@bmoneke, mcdo0486, #718, #761, #852, #931)

• Adds maxsplit parameter to values method (@bmoneke, #793)

• Adds (deprecated) global preprocess reply for backward compatibility (@bmoneke, #876)

• Adds fallback version for discarding the read buffer to VISAAdapter (@dkriegner, #836)

• Adds flush_read_buffer to SerialAdapter (@RobertoRoos, #865)

• Adds gpib_read_timeout to PrologixAdapter (@neuschs, #927)

• Adds command line option to pass resource address for instrument tests (@bleykauf, #789)

• Adds “find all instruments” and channels for testing (@bmoneke, #909, @mcdo0486, #911, #912)

• Adds test that an instrument hands kwargs to the adapter (@bmoneke, #814)

• Adds property docstring check (@bmoneke, #895)

• Improves property factories’ docstrings (@bmoneke, #843)

• Improves property factories: do not allow undefined kwargs (@bmoneke, #856)

• Improves property factories: check_set/get_errors argument to call methods of the same name (@bmoneke,
#883)

• Improves read_bytes of Adapter (@bmoneke, #839)

• Improves the ProtocolAdapter with a mock connection (@bmoneke, #782), and enable it to have empty messages
in the protocol (@bmoneke, #818)

• Improves Prologix adapter documentation (@bmoneke, #813) and configurable settings (@bmoneke, #845)

• Improves behavior of read_bytes(-1) for SerialAdapter (@RobertoRoos, #866)

• Improves all instruments with name kwarg (@bmoneke, #877)

• Improves VisaAdapter: close manager only when using pyvisa-sim (@dkriegner, #900)

• Harmonises instrument name definition pattern, consistently name the instrument connection argument “adapter”
(@bmoneke, #659)

• Fixes ProtocolAdapter has list in signature (@bmoneke, #901)

• Fixes VISAAdapter’s read_bytes (@bmoneke, #867)

• Fixes query_delay usage in VISAAdapter (@bmoneke, #765)

• Fixes VisaAdapter: close resource manager only when using pyvisa-sim (@dkriegner, #900)

14.3. Version 0.12.0 (2023-07-05) 543

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

14.3.3 Instruments

• New Advantest R624X DC Voltage/Current Sources/Monitors (@wichers, #802)

• New AJA International DC sputtering power supply (@dkriegner, #778)

• New Anritus MS2090A (@aruznieto, #787)

• New Anritsu MS4644B (@CasperSchippers, #827)

• New DSP 7225 and new DSPBase instrument (@mcdo0486, #902)

• New HP 8560A / 8561B Spectrum Analyzer (@neuschs, #888)

• New IPG Photonics YAR Amplifier series (@bmoneke, #851)

• New Keysight E36312A power supply (@scandey, #785)

• New Keithley 2200 power supply (@ashokbruno, #806)

• New Lake Shore 211 Temperature Monitor (@mcdo0486, #889)

• New Lake Shore 224 and improves Lakeshore instruments (@samcondon4, #870)

• New MKS Instruments 937B vacuum gauge controller (@dkriegner, @bilderbuchi, #637, #772, #936)

• New Novanta FPU60 laser power supply unit (@bmoneke, #885)

• New TDK Lambda Genesys 80-65 DC and 40-38 DC power supplies (@mcdo0486, 906)

• New Teledyne T3AFG waveform generator instrument (@scandey, #791)

• New Teledyne (LeCroy) T3DSO1204 Oscilloscope (@LastStartDust, #697, @bilderbuchi, #770)

• New T&C Power Conversion RF power supply (@dkriegner, #800)

• New Velleman K8090 relay device (@RobertoRoos, #859)

• Improves Agilent 33500 with the new channel feature (@JCarl-OS, #763, #773)

• Improves HP 3478A with calibration data related functions (@tomverbeure, #777)

• Improves HP 34401A (@CodingMarco, #810)

• Improves the Oxford instruments with the new channel feature (@bmoneke, #844)

• Improves Siglent SPDxxxxX with the new channel feature (@AidenDawn 758)

• Improves Teledyne T3DSO1204 device tests (@LastStarDust, #841)

• Fixes Ametek DSP 7270 lockin amplifier issues (@seb5g, #897)

• Fixes DSP 7265 erroneously using preprocess_reply (@mcdo0486, #873)

• Fixes print statement in DSPBase.sensitivity (@mcdo0486, #915)

• Fixes Fluke bath commands (@bmoneke, #874)

• Fixes a frequency limitation in HP 8657B (@LongnoseRob, #769)

• Fixes Keithley 2600 channel calling parent’s shutdown (@mcdo0486, #795)

544 Chapter 14. Changelog

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

14.3.4 Automation

• Adds tolerance for opening result files with missing parameters (@msmttchr, #780)

• Validate DATA_COLUMNS entries earlier, avoid exceptions in a running procedure (@mcdo0486, #796, #934)

14.3.5 GUI

• Adds docking windows (@mcdo0486, #722, #762)

• Adds save plot settings in addition to dock layout (@mcdo0486, #850)

• Adds log widget colouring and format option (@CasperSchippers, #890)

• Adds table widget (@msmttchr, #771)

• New sequencer architecture: decouples it from the graphical tree, adapts it for further expansions (@msmttchr,
#518)

• Moves coordinates label to the pyqtgraph PlotItem (@CasperSchippers, #822)

• Fixes crashing ImageWidget at new measurement (@CasperSchippers, #790)

• Fixes checkboxes not working for groups in inputs-widget (@CasperSchippers, #794)

14.3.6 Miscellaneous

• Adds a collection of solutions for instrument implementation challenges (@bmoneke, #853, #861)

• Updates Tutorials/Making_a_measurement/ example_codes (@sansanda, #749)

14.3.7 New Contributors

@JCarl-OS, @aruznieto, @scandey, @tomverbeure, @wichers, @Max-Herbold, @RobertoRoos

Full Changelog: https://github.com/pymeasure/pymeasure/compare/v0.11.1. . . v0.12.0

14.4 Version 0.11.1 (2022-12-31)

14.4.1 Adapter and instrument mechanics

• Fix broken PrologixAdapter.gpib. Due to a bug in VISAAdapter, you could not get a second adapter with that
connection (#765).

Full Changelog: https://github.com/pymeasure/pymeasure/compare/v0.11.0. . . v0.11.1

14.4. Version 0.11.1 (2022-12-31) 545

https://github.com/pymeasure/pymeasure/compare/v0.11.1...v0.12.0
https://github.com/pymeasure/pymeasure/compare/v0.11.0...v0.11.1

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

14.4.2 Dependency updates

• Required version of PyQtGraph is increased from pyqtgraph >= 0.9.10 to pyqtgraph >= 0.12 to support
new PyMeasure display widgets.

14.4.3 GUI

• Added ManagedDockWindow to allow multiple dockable plots (@mcdo0486, @CasperSchippers, #722)

• Move coordinates label to the pyqtgraph PlotItem (@CasperSchippers, #822)

• New sequencer architecture (@msmttchr, @CasperSchippers, @mcdo0486, #518)

• Added “Save Dock Layout” functionality to DockWidget context menu. (@mcdo0486, #762)

14.5 Version 0.11.0 (2022-11-19)

Main items of this new release:

• 11 new instrument drivers have been added

• A method for testing instrument communication without hardware present has been added, see the documenta-
tion.

• The separation between Instrument and Adapter has been improved to make future modifications easier.
Adapters now focus on the hardware communication, and the communication protocol should be defined in the
Instruments. Details in a section below.

• The GUI is now compatible with Qt6.

• We have started to clean up our API in preparation for a future version 1.0. There will be deprecations and
subsequent removals, which will be prominently listed in the changelog.

14.5.1 Deprecated features

In preparation for a stable 1.0 release and a more consistent API, we have now started formally deprecating some
features. You should get warnings if those features are used.

• Adapter methods ask, values, binary_values, use Instrument methods of the same name instead.

• Adapter parameter preprocess_reply, override Instrument.read instead.

• Adapter.query_delay in favor of Instrument.wait_for().

• Keithley 2260B: enabled property, use output_enabled instead.

14.5.2 New adapter and instrument mechanics

• Nothing should have changed for users, this section is mainly interesting for instrument implementors.

• Documentation in ‘Advanced communication protocols’ in ‘Adding instruments’.

• Adapter logs written and read messages.

• Particular adapters (VISAAdapter etc.) implement the actual communication.

• Instrument.control getter calls Instrument.values.

546 Chapter 14. Changelog

https://www.pyqtgraph.org/
https://pymeasure.readthedocs.io/en/latest/tutorial/graphical.html#using-the-manageddockwindow
https://pymeasure.readthedocs.io/en/latest/dev/adding_instruments.html#protocol-tests
https://pymeasure.readthedocs.io/en/latest/dev/adding_instruments.html#protocol-tests

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• Instrument.values calls Instrument.ask, which calls Instrument.write, wait_for, and read.

• All protocol quirks of an instrument should be implemented overriding Instrument.write and read.

• Instrument.wait_until_read implements waiting between writing and reading.

• reading/writing binary values is in the Adapter class itself.

• PrologixAdapter is now based on VISAAdapter.

• SerialAdapter improved to be more similar to VISAAdapter: read/write use strings, read/write_bytes
bytes. - Support for termination characters added.

14.5.3 Instruments

• New Active Technologies AWG-401x (@garzetti, #649)

• New Eurotest hpp_120_256_ieee (@sansanda, #701)

• New HC Photonics crystal ovens TC038, TC038D (@bmoneke, #621, #706)

• New HP 6632A/6633A/6634A power supplies (@LongnoseRob, #651)

• New HP 8657B RF signal generator (@LongnoseRob, #732)

• New Rohde&Schwarz HMP4040 power supply. (@bleykauf, #582)

• New Siglent SPDxxxxX series Power Supplies (@AidenDawn, #719)

• New Temptronic Thermostream devices (@mroeleke, #368)

• New TEXIO PSW-360L30 Power Supply (@LastStarDust, #698)

• New Thermostream ECO-560 (@AidenDawn, #679)

• New Thermotron 3800 Oven (@jcarbelbide, #606)

• Harmonize instruments’ adapter argument (@bmoneke, #674)

• Harmonize usage of shutdown method (@LongnoseRob, #739)

• Rework Adapter structure (@bmoneke, #660)

• Add Protocol tests without hardware present (@bilderbuchi, #634, @bmoneke, #628, #635)

• Add Instruments and adapter protocol tests for adapter rework (@bmoneke, #665)

• Add SR830 sync filter and reference source trigger (@AsafYagoda, #630)

• Add Keithley6221 phase marker phase and line (@AsafYagoda, #629)

• Add missing docstrings to Keithley 2306 battery simulator (@AidenDawn, #720)

• Fix hcp instruments documentation (@bmoneke, #671)

• Fix HPLegacyInstrument initializer API (@bilderbuchi, #684)

• Fix Fwbell 5080 implementation (@mcdo0486, #714)

• Fix broken documentation example. (@bmoneke, #738)

• Fix typo in Keithley 2600 driver (@mcdo0486, #615)

• Remove dynamic use of docstring from ATS545 and make more generic (@AidenDawn, #685)

14.5. Version 0.11.0 (2022-11-19) 547

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

14.5.4 Automation

• Add storing unitful experiment results (@bmoneke, #642)

• Add storing conditions in file (@CasperSchippers, #503)

14.5.5 GUI

• Add compatibility with Qt 6 (@CasperSchippers, #688)

• Add spinbox functionality for IntegerParameter and FloatParameter (@jarvas24, #656)

• Add “delete data file” button to the browser_item_menu (@jarvas24, #654)

• Split windows.py into a folder with separate modules (@mcdo0486, #593)

• Remove dependency on matplotlib (@msmttchr, #622)

• Remove deprecated access to QtWidgets through QtGui (@maederan201, #695)

14.5.6 Miscellaneous

• Update and extend documentation (@bilderbuchi, #712, @bmoneke, #655)

• Add PEP517 compatibility & dynamically obtaining a version number (@bilderbuchi, #613)

• Add an example and documentation regarding using a foreign instrument (@bmoneke, #647)

• Add black configuration (@bleykauf, #683)

• Remove VISAAdapter.has_supported_version() as it is not needed anymore.

14.5.7 New Contributors

@jcarbelbide, @mroeleke, @bmoneke, @garzetti, @AsafYagoda, @AidenDawn, @LastStarDust, @sansanda

Full Changelog: https://github.com/pymeasure/pymeasure/compare/v0.10.0. . . v0.11.0

14.6 Version 0.10.0 (2022-04-09)

Main items of this new release:

• 23 new instrument drivers have been added

• New dynamic Instrument properties can change their parameters at runtime

• Communication settings can now be flexibly defined per protocol

• Python 3.10 support was added and Python 3.6 support was removed.

• Many additions, improvements and have been merged

548 Chapter 14. Changelog

https://github.com/pymeasure/pymeasure/compare/v0.10.0...v0.11.0

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

14.6.1 Instruments

• New Agilent B1500 Data Formats and Documentation (@moritzj29)

• New Anaheim Automation stepper motor controllers (@samcondon4)

• New Andeen Hagerling capacitance bridges (@dkriegner)

• New Anritsu MS9740A Optical Spectrum Analyzer (@md12g12)

• New BK Precision 9130B Instrument (@dennisfeng2)

• New Edwards nXDS (10i) Vacuum Pump (@hududed)

• New Fluke 7341 temperature bath instrument (@msmttchr)

• New Heidenhain ND287 Position Display Unit Driver (@samcondon4)

• New HP 3478A (@LongnoseRob)

• New HP 8116A 50 MHz Pulse/Function Generator (@CodingMarco)

• New Keithley 2260B DC Power Supply (@bklebel)

• New Keithley 2306 Dual Channel Battery/Charger Simulator (@mfikes)

• New Keithley 2600 SourceMeter series (@Daivesd)

• New Keysight N7776C Swept Laser Source (@maederan201)

• New Lakeshore 421 (@CasperSchippers)

• New Oxford IPS120-10 (@CasperSchippers)

• New Pendulum CNT-91 frequency counter (@bleykauf)

• New Rohde&Schwarz - SFM TV test transmitter (@LongnoseRob)

• New Rohde&Schwarz FSL spectrum analyzer (@bleykauf)

• New SR570 current amplifier driver (@pyMatJ)

• New Stanford Research Systems SR510 instrument driver (@samcondon4)

• New Toptica Smart Laser diode (@dkriegner)

• New Yokogawa GS200 Instrument (@dennisfeng2)

• Add output low grounded property to Keithley 6221 (@CasperSchippers)

• Add shutdown function for Keithley 2260B (@bklebel)

• Add phase control for Agilent 33500 (@corna)

• Add assigning “ONCE” to auto_zero to Keithley 2400 (@mfikes)

• Add line frequency controls to Keithley 2400 (@mfikes)

• Add LIA and ERR status byte read properties to the SRS Sr830 driver (@samcondon4)

• Add all commands to Oxford Intelligent Temperature Controller 503 (@CasperSchippers)

• Fix DSP 7265 lockin amplifier (@CasperSchippers)

• Fix bug in Keithley 6517B Electrometer (@CasperSchippers)

• Fix Keithley2000 deprecated call to visa.config (@bklebel)

• Fix bug in the Keithley 2700 (@CasperSchippers)

• Fix setting of sensor flags for Thorlabs PM100D (@bleykauf)

14.6. Version 0.10.0 (2022-04-09) 549

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• Fix SCPI used for Keithley 2400 voltage NPLC (@mfikes)

• Fix missing return statements in Tektronix AFG3152C (@bleykauf)

• Fix DPSeriesMotorController bug (@samcondon4)

• Fix Keithley2600 error when retrieving error code (@bicarlsen)

• Fix Attocube ANC300 with new SCPI Instrument properties (@dkriegner)

• Fix bug in wait_for_trigger of Agilent33220A (neal-kepler)

14.6.2 GUI

• Add time-estimator widget (@CasperSchippers)

• Add management of progress bar (@msmttchr)

• Remove broken errorbar feature (@CasperSchippers)

• Change of pen width for pyqtgraph (@maederan201)

• Make linewidth changeable (@CasperSchippers)

• Generalise warning in plotter section (@CasperSchippers)

• Implement visibility groups in InputsWidgets (@CasperSchippers)

• Modify navigation of ManagedWindow directory widget (@jarvas24)

• Improve Placeholder logic (@CasperSchippers)

• Breakout widgets into separate modules (@mcdo0486)

• Fix setSizePolicy bug with PySide2 (@msmttchr)

• Fix managed window (@msmttchr)

• Fix ListParameter for numbers (@moritzj29)

• Fix incorrect columns on showing data (@CasperSchippers)

• Fix procedure property issue (@msmttchr)

• Fix pyside2 (@msmttchr)

14.6.3 Miscellaneous

• Improve SCPI property support (@msmttchr)

• Remove broken safeKeyword management (@msmttchr)

• Add dynamic property support (@msmttchr)

• Add flexible API for defining connection configuration (@bilderbuchi)

• Add write_binary_values() to SerialAdapter (@msmttchr)

• Change an outdated pyvisa ask() to query() (@LongnoseRob)

• Fix ZMQ bug (@bilderbuchi)

• Documentation for passing tuples to control property (@bklebel)

• Documentation bugfix (@CasperSchippers)

• Fixed broken links in documentation. (@samcondon4)

550 Chapter 14. Changelog

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• Updated widget documentation (@mcdo0486)

• Fix typo SCIP->SCPI (@mfikes)

• Remove Python 3.6, add Python 3.10 testing (@bilderbuchi)

• Modernise the code base to use Python 3.7 features (@bilderbuchi)

• Added image data generation to Mock Instrument class (@samcondon4)

• Add autodoc warnings to the problem matcher (@bilderbuchi)

• Update CI & annotations (@bilderbuchi)

• Test workers (@mcdo0486)

• Change copyright date to 2022 (@LongnoseRob)

• Removed unused code (@msmttchr)

14.6.4 New Contributors

@LongnoseRob, @neal, @hududed, @corna, @Daivesd, @samcondon4, @maederan201, @bleykauf, @mfikes, @bi-
carlsen, @md12g12, @CodingMarco, @jarvas24, @mcdo0486!

Full Changelog: https://github.com/pymeasure/pymeasure/compare/v0.9. . . v0.10.0

14.7 Version 0.9 – released 2/7/21

• PyMeasure is now officially at github.com/pymeasure/pymeasure

• Python 3.9 is now supported, Python 3.5 removed due to EOL

• Move to GitHub Actions from TravisCI and Appveyor for CI (@bilderbuchi)

• New additions to Oxford Instruments ITC 503 (@CasperSchippers)

• New Agilent 34450A and Keysight DSOX1102G instruments (@theMashUp, @jlarochelle)

• Improvements to NI VirtualBench (@moritzj29)

• New Agilent B1500 instrument (@moritzj29)

• New Keithley 6517B instrument (@wehlgrundspitze)

• Major improvements to PyVISA compatbility (@bilderbuchi, @msmttchr, @CasperSchippers, @cjermain)

• New Anapico APSIN12G instrument (@StePhanino)

• Improvements to Thorelabs Pro 8000 and SR830 (@Mike-HubGit)

• New SR860 instrument (@StevenSiegl, @bklebel)

• Fix to escape sequences (@tirkarthi)

• New directory input for ManagedWindow (@paulgoulain)

• New TelnetAdapter and Attocube ANC300 Piezo controller (@dkriegner)

• New Agilent 34450A (@theMashUp)

• New Razorbill RP100 strain cell controller (@pheowl)

• Fixes to precision and default value of ScientificInput and FloatParameter (@moritzj29)

14.7. Version 0.9 – released 2/7/21 551

https://github.com/pymeasure/pymeasure/compare/v0.9...v0.10.0

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

• Fixes for Keithly 2400 and 2450 controls (@pyMatJ)

• Improvments to Inputs and open_file_externally (@msmttchr)

• Fixes to Agilent 8722ES (@alexmcnabb)

• Fixes to QThread cleanup (@neal-kepler, @msmttchr)

• Fixes to Keyboard interrupt, and parameters (@CasperSchippers)

14.8 Version 0.8 – released 3/29/19

• Python 3.8 is now supported

• New Measurement Sequencer allows for running over a large parameter space (@CasperSchippers)

• New image plotting feature for live image measurements (@jmittelstaedt)

• Improvements to VISA adapter (@moritzj29)

• Added Tektronix AFG 3000, Keithley 2750 (@StePhanino, @dennisfeng2)

• Documentation improvements (@mivade)

• Fix to ScientificInput for float strings (@moritzj29)

• New validator: strict_discrete_range (@moritzj29)

• Improvements to Recorder thread joining

• Migrating the ReadtheDocs configuration to version 2

• National Instruments Virtual Bench initial support (@moritzj29)

14.9 Version 0.7 – released 8/4/19

• Dropped support for Python 3.4, adding support for Python 3.7

• Significant improvements to CI, dependencies, and conda environment (@bilderbuchi, @cjermain)

• Fix for PyQT issue in ResultsDialog (@CasperSchippers)

• Fix for wire validator in Keithley 2400 (@Fattotora)

• Addition of source_enabled control for Keithley 2400 (@dennisfeng2)

• Time constant fix and input controls for SR830 (@dennisfeng2)

• Added Keithley 2450 and Agilent 33521A (@hlgirard, @Endever42)

• Proper escaping support in CSV headers (@feph)

• Minor updates (@dvase)

552 Chapter 14. Changelog

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

14.10 Version 0.6.1 – released 4/21/19

• Added Elektronica SM70-45D, Agilent 33220A, and Keysight N5767A instruments (@CasperSchippers,
@sumatrae)

• Fixes for Prologix adapter and Keithley 2400 (@hlgirard, @ronan-sensome)

• Improved support for SRS SR830 (@CasperSchippers)

14.11 Version 0.6 – released 1/14/19

• New VXI11 Adapter for ethernet instruments (@chweiser)

• PyQt updates to 5.6.0

• Added SRS SG380, Ametek 7270, Agilent 4156, HP 34401A, Advantest R3767CG, and Oxford ITC503 in-
strustruments (@sylkar, @jmittelstaedt, @vik-s, @troylf, @CasperSchippers)

• Updates to Keithley 2000, Agilent 8257D, ESP 300, and Keithley 2400 instruments (@watersjason, @jmittel-
staedt, @nup002)

• Various minor bug fixes (@thosou)

14.12 Version 0.5.1 – released 4/14/18

• Minor versions of PyVISA are now properly handled

• Documentation improvements (@Laogeodritt and @ederag)

• Instruments now have set_process capability (@bilderbuchi)

• Plotter now uses threads (@dvspirito)

• Display inputs and PlotItem improvements (@Laogeodritt)

14.13 Version 0.5 – released 10/18/17

• Threads are used by default, eliminating multiprocessing issues with spawn

• Enhanced unit tests for threading

• Sphinx Doctests are added to the documentation (@bilderbuchi)

• Improvements to documentation (@JuMaD)

14.10. Version 0.6.1 – released 4/21/19 553

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

14.14 Version 0.4.6 – released 8/12/17

• Reverted multiprocessing start method keyword arguments to fix Unix spawn issues (@ndr37)

• Fixes to regressions in Results writing (@feinsteinben)

• Fixes to TCP support using cloudpickle (@feinsteinben)

• Restructing of unit test framework

14.15 Version 0.4.5 – released 7/4/17

• Recorder and Scribe now leverage QueueListener (@feinsteinben)

• PrologixAdapter and SerialAdapter now handle Serial objects as adapters (@feinsteinben)

• Optional TCP support now uses cloudpickle for serialization (@feinsteinben)

• Significant PEP8 review and bug fixes (@feinsteinben)

• Includes docs in the code distribution (@ghisvail)

• Continuous integration support for Python 3.6 (@feinsteinben)

14.16 Version 0.4.4 – released 6/4/17

• Fix pip install for non-wheel builds

• Update to Agilent E4980 (@dvspirito)

• Minor fixes for docs, tests, and formatting (@ghisvail, @feinsteinben)

14.17 Version 0.4.3 – released 3/30/17

• Added Agilent E4980, AMI 430, Agilent 34410A, Thorlabs PM100, and Anritsu MS9710C instruments
(@TvBMcMaster, @dvspirito, and @mhdg)

• Updates to PyVISA support (@minhhaiphys)

• Initial work on resource manager (@dvspirito)

• Fixes for Prologix adapter that allow read-write delays (@TvBMcMaster)

• Fixes for conda environment on continuous integration

554 Chapter 14. Changelog

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

14.18 Version 0.4.2 – released 8/23/16

• New instructions for installing with Anaconda and conda-forge package (thanks @melund!)

• Bug-fixes to the Keithley 2000, SR830, and Agilent E4408B

• Re-introduced the Newport ESP300 motion controller

• Major update to the Keithely 2400, 2000 and Yokogawa 7651 to achieve a common interface

• New command-string processing hooks for Instrument property functions

• Updated LakeShore 331 temperature controller with new features

• Updates to the Agilent 8257D signal generator for better feature exposure

14.19 Version 0.4.1 – released 7/31/16

• Critical fix in setup.py for importing instruments (also added to documentation)

14.20 Version 0.4 – released 7/29/16

• Replaced Instrument add_measurement and add_control with measurement and control functions

• Added validators to allow Instrument.control to match restricted ranges

• Added mapping to Instrument.control to allow more flexible inputs

• Conda is now used to set up the Python environment

• macOS testing in continuous integration

• Major updates to the documentation

14.21 Version 0.3 – released 4/8/16

• Added IPython (Jupyter) notebook support with significant features

• Updated set of example scripts and notebooks

• New PyMeasure logo released

• Removed support for Python <3.4

• Changed multiprocessing to use spawn for compatibility

• Significant work on the documentation

• Added initial tests for non-instrument code

• Continuous integration setup for Linux and Windows

14.18. Version 0.4.2 – released 8/23/16 555

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

14.22 Version 0.2 – released 12/16/15

• Python 3 compatibility, removed support for Python 2

• Considerable renaming for better PEP8 compliance

• Added MIT License

• Major restructuring of the package to break it into smaller modules

• Major rewrite of display functionality, introducing new Qt objects for easy extensions

• Major rewrite of procedure execution, now using a Worker process which takes advantage of multi-core CPUs

• Addition of a number of examples

• New methods for listening to Procedures, introducing ZMQ for TCP connectivity

• Updates to Keithley2400 and VISAAdapter

14.23 Version 0.1.6 – released 4/19/15

• Renamed the package to PyMeasure from Automate to be more descriptive about its purpose

• Addition of VectorParameter to allow vectors to be input for Procedures

• Minor fixes for the Results and Danfysik8500

14.24 Version 0.1.5 – release 10/22/14

• New Manager class for handling Procedures in a queue fashion

• New Browser that works in tandem with the Manager to display the queue

• Bug fixes for Results loading

14.25 Version 0.1.4 – released 8/2/14

• Integrated Results class into display and file writing

• Bug fixes for Listener classes

• Bug fixes for SR830

14.26 Version 0.1.3 – released 7/20/14

• Replaced logging system with Python logging package

• Added data management (Results) and bug fixes for Procedures and Parameters

• Added pandas v0.14 to requirements for data management

• Added data listeners, Qt4 and PyQtGraph helpers

556 Chapter 14. Changelog

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

14.27 Version 0.1.2 – released 7/18/14

• Bug fixes to LakeShore 425

• Added new Procedure and Parameter classes for generic experiments

• Added version number in package

14.28 Version 0.1.1 – released 7/16/14

• Bug fixes to PrologixAdapter, VISAAdapter, Agilent 8722ES, Agilent 8257D, Stanford SR830, Danfysik8500

• Added Tektronix TDS 2000 with basic functionality

• Fixed Danfysik communication to handle errors properly

14.29 Version 0.1.0 – released 7/15/14

• Initial release

14.27. Version 0.1.2 – released 7/18/14 557

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

558 Chapter 14. Changelog

PYTHON MODULE INDEX

p
pymeasure.display.browser, 83
pymeasure.display.console, 83
pymeasure.display.curves, 84
pymeasure.display.inputs, 85
pymeasure.display.listeners, 87
pymeasure.display.log, 87
pymeasure.display.manager, 87
pymeasure.display.plotter, 89
pymeasure.display.thread, 89
pymeasure.display.widgets.browser_widget, 90
pymeasure.display.widgets.directory_widget,

90
pymeasure.display.widgets.dock_widget, 95
pymeasure.display.widgets.estimator_widget,

90
pymeasure.display.widgets.image_frame, 90
pymeasure.display.widgets.image_widget, 90
pymeasure.display.widgets.inputs_widget, 91
pymeasure.display.widgets.log_widget, 91
pymeasure.display.widgets.plot_frame, 91
pymeasure.display.widgets.plot_widget, 92
pymeasure.display.widgets.results_dialog, 92
pymeasure.display.widgets.sequencer_widget,

92
pymeasure.display.widgets.tab_widget, 94
pymeasure.display.widgets.table_widget, 95
pymeasure.display.windows.managed_dock_window,

101
pymeasure.display.windows.managed_image_window,

98
pymeasure.display.windows.managed_window, 98
pymeasure.display.windows.plotter_window, 100
pymeasure.experiment.experiment, 71
pymeasure.experiment.listeners, 72
pymeasure.experiment.parameters, 74
pymeasure.experiment.procedure, 73
pymeasure.experiment.results, 79
pymeasure.experiment.workers, 79
pymeasure.instruments, 101
pymeasure.instruments.activetechnologies, 116
pymeasure.instruments.advantest, 121

pymeasure.instruments.advantest.advantestR3767CG,
122

pymeasure.instruments.advantest.advantestR624X,
143

pymeasure.instruments.agilent, 152
pymeasure.instruments.agilent.agilent4156,

163
pymeasure.instruments.agilent.agilentB1500,

193
pymeasure.instruments.aja, 196
pymeasure.instruments.ametek, 198
pymeasure.instruments.ami, 200
pymeasure.instruments.anaheimautomation, 202
pymeasure.instruments.anapico, 204
pymeasure.instruments.andeenhagerling, 205
pymeasure.instruments.anritsu, 208
pymeasure.instruments.attocube, 223
pymeasure.instruments.bkprecision, 226
pymeasure.instruments.comedi, 116
pymeasure.instruments.danfysik, 226
pymeasure.instruments.deltaelektronika, 229
pymeasure.instruments.edwards, 231
pymeasure.instruments.eurotest, 231
pymeasure.instruments.fluke, 233
pymeasure.instruments.fwbell, 234
pymeasure.instruments.hcp, 237
pymeasure.instruments.heidenhain, 237
pymeasure.instruments.hp, 239
pymeasure.instruments.ipgphotonics, 286
pymeasure.instruments.keithley, 287
pymeasure.instruments.keysight, 338
pymeasure.instruments.lakeshore, 351
pymeasure.instruments.lecroy, 360
pymeasure.instruments.mksinst, 375
pymeasure.instruments.newport, 376
pymeasure.instruments.ni, 378
pymeasure.instruments.novanta, 392
pymeasure.instruments.oxfordinstruments, 393
pymeasure.instruments.parker, 403
pymeasure.instruments.pendulum, 404
pymeasure.instruments.razorbill, 405
pymeasure.instruments.rohdeschwarz, 406

559

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

pymeasure.instruments.siglenttechnologies,
423

pymeasure.instruments.signalrecovery, 427
pymeasure.instruments.srs, 440
pymeasure.instruments.tcpowerconversion, 452
pymeasure.instruments.tdk, 456
pymeasure.instruments.tektronix, 464
pymeasure.instruments.teledyne, 465
pymeasure.instruments.temptronic, 476
pymeasure.instruments.texio, 484
pymeasure.instruments.thermotron, 487
pymeasure.instruments.thorlabs, 488
pymeasure.instruments.thyracont, 489
pymeasure.instruments.toptica, 494
pymeasure.instruments.validators, 113
pymeasure.instruments.velleman, 497
pymeasure.instruments.yokogawa, 499
pymeasure.test, 66

560 Python Module Index

INDEX

Symbols
__call__() (pymeasure.instruments.agilent.agilentB1500.Ranging

method), 192
__str__() (pymeasure.instruments.agilent.agilentB1500.CustomIntEnum

method), 193
_format_binary_values() (pymea-

sure.adapters.PrologixAdapter method),
57

_format_binary_values() (pymea-
sure.adapters.SerialAdapter method), 53

A
A (pymeasure.instruments.hp.hp856Xx.Trace attribute),

277
abort() (pymeasure.display.console.ManagedConsole

method), 84
abort() (pymeasure.display.manager.BaseManager

method), 87
abort() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500

method), 184
abort() (pymeasure.instruments.anritsu.AnritsuMS2090A

method), 211
absolute_position (pymea-

sure.instruments.anaheimautomation.DPSeriesMotorController
property), 202

absolute_to_steps() (pymea-
sure.instruments.anaheimautomation.DPSeriesMotorController
method), 202

AC (pymeasure.instruments.hp.hp856Xx.CouplingMode
attribute), 278

ac_current (pymeasure.instruments.agilent.AgilentE4980
property), 157

ac_mode() (pymeasure.instruments.lakeshore.LakeShore425
method), 358

ac_voltage (pymeasure.instruments.agilent.AgilentE4980
property), 157

acquire_digital_input_output() (pymea-
sure.instruments.ni.virtualbench.VirtualBench
method), 390

acquire_digital_multimeter() (pymea-
sure.instruments.ni.virtualbench.VirtualBench
method), 390

acquire_function_generator() (pymea-
sure.instruments.ni.virtualbench.VirtualBench
method), 390

acquire_mixed_signal_oscilloscope() (pymea-
sure.instruments.ni.virtualbench.VirtualBench
method), 390

acquire_power_supply() (pymea-
sure.instruments.ni.virtualbench.VirtualBench
method), 390

acquire_reference() (pymea-
sure.instruments.keithley.Keithley2000
method), 287

acquisition_average (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
property), 362

acquisition_mode (pymea-
sure.instruments.keysight.KeysightDSOX1102G
property), 339

acquisition_sample_size() (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
method), 362

acquisition_sample_size_c1 (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
property), 362

acquisition_sample_size_c2 (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
property), 362

acquisition_sample_size_c3 (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
property), 362

acquisition_sample_size_c4 (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
property), 362

acquisition_sampling_rate (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
property), 363

acquisition_status (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
property), 363

acquisition_type (pymea-
sure.instruments.keysight.KeysightDSOX1102G
property), 339

561

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

acquisition_type (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
property), 363

activate() (pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
method), 220

activate() (pymeasure.instruments.anritsu.anritsuMS464xB.Trace
method), 223

activate_source_peak_tracking() (pymea-
sure.instruments.hp.HP8560A method), 273

active_channel (pymea-
sure.instruments.anritsu.AnritsuMS464xB
property), 216

active_connectors (pymea-
sure.instruments.hp.HP3478A property),
245

active_gun (pymeasure.instruments.aja.DCXS prop-
erty), 196

active_state (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 211

active_trace (pymea-
sure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
property), 220

activity (pymeasure.instruments.oxfordinstruments.IPS120_10
property), 399

Adapter (class in pymeasure.adapters), 47
adc1 (pymeasure.instruments.ametek.Ametek7270 prop-

erty), 198
adc1 (pymeasure.instruments.signalrecovery.DSP7225

property), 427
adc1 (pymeasure.instruments.signalrecovery.DSP7265

property), 434
adc1 (pymeasure.instruments.srs.SR830 property), 442
adc1 (pymeasure.instruments.srs.SR860 property), 446
adc2 (pymeasure.instruments.ametek.Ametek7270 prop-

erty), 198
adc2 (pymeasure.instruments.signalrecovery.DSP7225

property), 427
adc2 (pymeasure.instruments.signalrecovery.DSP7265

property), 434
adc2 (pymeasure.instruments.srs.SR830 property), 442
adc2 (pymeasure.instruments.srs.SR860 property), 446
adc3 (pymeasure.instruments.ametek.Ametek7270 prop-

erty), 198
adc3 (pymeasure.instruments.signalrecovery.DSP7265

property), 434
adc3 (pymeasure.instruments.srs.SR830 property), 442
adc3 (pymeasure.instruments.srs.SR860 property), 446
adc3_time (pymeasure.instruments.signalrecovery.DSP7265

property), 434
adc4 (pymeasure.instruments.ametek.Ametek7270 prop-

erty), 198
adc4 (pymeasure.instruments.srs.SR830 property), 442
adc4 (pymeasure.instruments.srs.SR860 property), 446

adc_auto_zero (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
property), 186

adc_averaging() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 185

adc_setup() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500
method), 185

adc_type (pymeasure.instruments.agilent.agilentB1500.SMU
property), 189

ADCMode (class in pymea-
sure.instruments.agilent.agilentB1500), 193

ADCType (class in pymea-
sure.instruments.agilent.agilentB1500), 193

add() (pymeasure.display.browser.Browser method), 83
add_child() (pymeasure.instruments.common_base.CommonBase

method), 104
add_child() (pymeasure.instruments.keithley.Keithley2200

method), 335
add_child() (pymeasure.instruments.keysight.KeysightE36312A

method), 345
add_child() (pymeasure.instruments.lecroy.LeCroyT3DSO1204

method), 363
add_node() (pymeasure.display.widgets.sequencer_widget.SequencerTreeModel

method), 93
add_ramp_step() (pymea-

sure.instruments.danfysik.Danfysik8500
method), 227

address (pymeasure.instruments.anaheimautomation.DPSeriesMotorController
property), 202

address (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
property), 456

address (pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
property), 461

adjust_all() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 256

adjust_if (pymeasure.instruments.hp.hp856Xx.HP856Xx
attribute), 256

AdvantestR3767CG (class in pymea-
sure.instruments.advantest.advantestR3767CG),
122

AdvantestR6245 (class in pymea-
sure.instruments.advantest.advantestR624X),
122

AdvantestR6246 (class in pymea-
sure.instruments.advantest.advantestR624X),
122

AdvantestR624X (class in pymea-
sure.instruments.advantest.advantestR624X),
123

AFG3152C (class in pymeasure.instruments.tektronix),
465

Agilent33220A (class in pymea-

562 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

sure.instruments.agilent), 170
Agilent33500 (class in pymeasure.instruments.agilent),

172
Agilent33500Channel (class in pymea-

sure.instruments.agilent.agilent33500), 176
Agilent33521A (class in pymea-

sure.instruments.agilent), 176
Agilent34410A (class in pymea-

sure.instruments.agilent), 159
Agilent34450A (class in pymea-

sure.instruments.agilent), 159
Agilent4156 (class in pymea-

sure.instruments.agilent.agilent4156), 163
Agilent8257D (class in pymeasure.instruments.agilent),

152
Agilent8722ES (class in pymea-

sure.instruments.agilent), 155
AgilentB1500 (class in pymea-

sure.instruments.agilent.agilentB1500), 183
AgilentE4408B (class in pymea-

sure.instruments.agilent), 156
AgilentE4980 (class in pymeasure.instruments.agilent),

157
AH2500A (class in pymea-

sure.instruments.andeenhagerling), 205
AH2700A (class in pymea-

sure.instruments.andeenhagerling), 206
air_temperature (pymea-

sure.instruments.temptronic.ATSBase prop-
erty), 476

alarm_active (pymea-
sure.instruments.lakeshore.LakeShore421
property), 355

alarm_audible (pymea-
sure.instruments.lakeshore.LakeShore421
property), 355

alarm_high (pymeasure.instruments.lakeshore.LakeShore421
property), 356

alarm_high_multiplier (pymea-
sure.instruments.lakeshore.LakeShore421
property), 356

alarm_high_raw (pymea-
sure.instruments.lakeshore.LakeShore421
property), 356

alarm_in_out (pymea-
sure.instruments.lakeshore.LakeShore421
property), 356

alarm_low (pymeasure.instruments.lakeshore.LakeShore421
property), 356

alarm_low_multiplier (pymea-
sure.instruments.lakeshore.LakeShore421
property), 356

alarm_low_raw (pymea-
sure.instruments.lakeshore.LakeShore421

property), 356
alarm_mode_enabled (pymea-

sure.instruments.lakeshore.LakeShore421
property), 356

alarm_sort_enabled (pymea-
sure.instruments.lakeshore.LakeShore421
property), 356

all_pressures (pymea-
sure.instruments.mksinst.mks937b.MKS937B
property), 376

am_depth (pymeasure.instruments.hp.HP8657B prop-
erty), 281

am_source (pymeasure.instruments.hp.HP8657B prop-
erty), 281

Ametek7270 (class in pymeasure.instruments.ametek),
198

AMI430 (class in pymeasure.instruments.ami), 200
amplitude (pymeasure.instruments.agilent.Agilent33220A

property), 170
amplitude (pymeasure.instruments.agilent.Agilent33500

property), 173
amplitude (pymeasure.instruments.agilent.agilent33500.Agilent33500Channel

property), 176
amplitude (pymeasure.instruments.hp.HP33120A prop-

erty), 239
amplitude (pymeasure.instruments.hp.HP8116A prop-

erty), 248
Amplitude (pymeasure.instruments.hp.hp856Xx.DemodulationMode

attribute), 278
amplitude (pymeasure.instruments.teledyne.teledyneT3AFG.SignalChannel

property), 467
amplitude_depth (pymea-

sure.instruments.agilent.Agilent8257D prop-
erty), 152

amplitude_source (pymea-
sure.instruments.agilent.Agilent8257D prop-
erty), 152

amplitude_unit (pymea-
sure.instruments.agilent.Agilent33220A
property), 170

amplitude_unit (pymea-
sure.instruments.agilent.Agilent33500 prop-
erty), 173

amplitude_unit (pymea-
sure.instruments.agilent.agilent33500.Agilent33500Channel
property), 176

amplitude_unit (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 251

amplitude_units (pymea-
sure.instruments.hp.HP33120A property),
240

AmplitudeUnits (class in pymea-
sure.instruments.hp.hp856Xx), 277

Index 563

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

analog_configuration (pymea-
sure.instruments.lakeshore.LakeShore211
property), 351

analog_input (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
property), 132

analog_out (pymeasure.instruments.lakeshore.LakeShore211
property), 352

analog_output_setting (pymea-
sure.instruments.thyracont.smartline_v2.SmartlineV2
property), 492

analysis (pymeasure.instruments.anritsu.AnritsuMS9710C
property), 208

analysis_result (pymea-
sure.instruments.anritsu.AnritsuMS9710C
property), 209

analyzer_mode (pymea-
sure.instruments.agilent.agilent4156.Agilent4156
property), 164

ANC300Controller (class in pymea-
sure.instruments.attocube.anc300), 223

angle (pymeasure.instruments.parker.ParkerGV6 prop-
erty), 403

angle_error (pymeasure.instruments.parker.ParkerGV6
property), 403

annotation_enabled (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 256

AnritsuMG3692C (class in pymea-
sure.instruments.anritsu), 208

AnritsuMS2090A (class in pymea-
sure.instruments.anritsu), 211

AnritsuMS4642B (class in pymea-
sure.instruments.anritsu), 215

AnritsuMS4644B (class in pymea-
sure.instruments.anritsu), 215

AnritsuMS4645B (class in pymea-
sure.instruments.anritsu), 215

AnritsuMS4647B (class in pymea-
sure.instruments.anritsu), 215

AnritsuMS464xB (class in pymea-
sure.instruments.anritsu), 215

AnritsuMS9710C (class in pymea-
sure.instruments.anritsu), 208

AnritsuMS9740A (class in pymea-
sure.instruments.anritsu), 211

aperture() (pymeasure.instruments.agilent.AgilentE4980
method), 157

append() (pymeasure.display.curves.BufferCurve
method), 84

application_type (pymea-
sure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
property), 220

applied (pymeasure.instruments.keithley.Keithley2260B

property), 295
applied (pymeasure.instruments.texio.TexioPSW360L30

property), 485
apply_current() (pymea-

sure.instruments.keithley.Keithley2400
method), 300

apply_current() (pymea-
sure.instruments.keithley.Keithley2450
method), 308

apply_current() (pymea-
sure.instruments.yokogawa.Yokogawa7651
method), 499

apply_voltage() (pymea-
sure.instruments.keithley.Keithley2400
method), 300

apply_voltage() (pymea-
sure.instruments.keithley.Keithley2450
method), 308

apply_voltage() (pymea-
sure.instruments.keithley.Keithley6517B
method), 326

apply_voltage() (pymea-
sure.instruments.yokogawa.Yokogawa7651
method), 499

APSIN12G (class in pymeasure.instruments.anapico), 205
arb_advance (pymeasure.instruments.agilent.Agilent33500

property), 173
arb_advance (pymeasure.instruments.agilent.agilent33500.Agilent33500Channel

property), 176
arb_file (pymeasure.instruments.agilent.Agilent33500

property), 173
arb_file (pymeasure.instruments.agilent.agilent33500.Agilent33500Channel

property), 176
arb_filter (pymeasure.instruments.agilent.Agilent33500

property), 173
arb_filter (pymeasure.instruments.agilent.agilent33500.Agilent33500Channel

property), 176
arb_srate (pymeasure.instruments.agilent.Agilent33500

property), 173
arb_srate (pymeasure.instruments.agilent.agilent33500.Agilent33500Channel

property), 176
arb_srate (pymeasure.instruments.agilent.Agilent33521A

property), 176
ask() (pymeasure.adapters.Adapter method), 47
ask() (pymeasure.adapters.FakeAdapter method), 67
ask() (pymeasure.adapters.PrologixAdapter method), 57
ask() (pymeasure.adapters.SerialAdapter method), 53
ask() (pymeasure.adapters.TelnetAdapter method), 64
ask() (pymeasure.adapters.VISAAdapter method), 50
ask() (pymeasure.adapters.VXI11Adapter method), 61
ask() (pymeasure.instruments.agilent.agilentB1500.SMU

method), 188
ask() (pymeasure.instruments.aja.DCXS method), 196
ask() (pymeasure.instruments.ametek.Ametek7270

564 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

method), 198
ask() (pymeasure.instruments.common_base.CommonBase

method), 105
ask() (pymeasure.instruments.eurotest.EurotestHPP120256

method), 232
ask() (pymeasure.instruments.hp.HP8116A method),

248
ask() (pymeasure.instruments.keysight.KeysightE36312A

method), 345
ask() (pymeasure.instruments.lecroy.LeCroyT3DSO1204

method), 363
ask() (pymeasure.instruments.oxfordinstruments.base.OxfordInstrumentsBase

method), 394
ask() (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2

method), 492
ask_manually() (pymea-

sure.instruments.thyracont.smartline_v2.SmartlineV2
method), 492

ask_raw() (pymeasure.adapters.VXI11Adapter method),
61

ask_values() (pymeasure.adapters.PrologixAdapter
method), 57

ask_values() (pymeasure.adapters.VISAAdapter
method), 50

at_temperature() (pymea-
sure.instruments.temptronic.ATSBase method),
476

ATS525 (class in pymeasure.instruments.temptronic), 483
ATS545 (class in pymeasure.instruments.temptronic), 484
ATSBase (class in pymeasure.instruments.temptronic),

476
attenuation (pymeasure.instruments.hp.hp856Xx.HP856Xx

attribute), 251
attenuation (pymeasure.instruments.rohdeschwarz.fsl.FSL

property), 420
auto (pymeasure.adapters.PrologixAdapter property), 57
AUTO (pymeasure.instruments.agilent.agilentB1500.ADCMode

attribute), 193
AUTO (pymeasure.instruments.agilent.agilentB1500.AutoManual

attribute), 194
AUTO (pymeasure.instruments.agilent.agilentB1500.CompliancePolarity

attribute), 196
AUTO (pymeasure.instruments.hp.hp856Xx.AmplitudeUnits

attribute), 277
auto_calibration (pymea-

sure.instruments.agilent.agilentB1500.AgilentB1500
property), 184

auto_gain (pymeasure.instruments.signalrecovery.DSP7225
property), 427

auto_gain (pymeasure.instruments.signalrecovery.DSP7265
property), 434

auto_input_impedance_enabled (pymea-
sure.instruments.hp.HP34401A property),
240

auto_offset() (pymeasure.instruments.srs.SR830
method), 442

auto_output_off (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 300

auto_phase() (pymea-
sure.instruments.signalrecovery.DSP7225
method), 427

auto_phase() (pymea-
sure.instruments.signalrecovery.DSP7265
method), 434

auto_pid (pymeasure.instruments.oxfordinstruments.ITC503
property), 395

auto_pid_table (pymea-
sure.instruments.oxfordinstruments.ITC503
property), 395

auto_range (pymeasure.instruments.lakeshore.LakeShore421
property), 356

auto_range() (pymea-
sure.instruments.fwbell.FWBell5080 method),
235

auto_range() (pymea-
sure.instruments.keithley.Keithley2000
method), 288

auto_range() (pymea-
sure.instruments.lakeshore.LakeShore425
method), 358

auto_range_enabled (pymea-
sure.instruments.hp.HP3478A property),
245

auto_range_source() (pymea-
sure.instruments.keithley.Keithley2400
method), 300

auto_range_source() (pymea-
sure.instruments.keithley.Keithley2450
method), 308

auto_range_source() (pymea-
sure.instruments.keithley.Keithley6517B
method), 326

auto_restart_enabled (pymea-
sure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
property), 456

auto_restart_enabled (pymea-
sure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
property), 461

auto_sensitivity() (pymea-
sure.instruments.signalrecovery.DSP7225
method), 428

auto_sensitivity() (pymea-
sure.instruments.signalrecovery.DSP7265
method), 434

auto_setup() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope
method), 385

Index 565

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

auto_zero (pymeasure.instruments.keithley.Keithley2400
property), 300

auto_zero_enabled (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
property), 141

auto_zero_enabled (pymea-
sure.instruments.hp.HP3478A property),
245

AutoManual (class in pymea-
sure.instruments.agilent.agilentB1500), 194

autorange (pymeasure.instruments.hp.HP34401A prop-
erty), 241

autoscale() (pymeasure.instruments.keysight.KeysightDSOX1102G
method), 339

autoscale() (pymeasure.instruments.lecroy.LeCroyT3DSO1204
method), 363

autoscale() (pymeasure.instruments.teledyne.TeledyneOscilloscope
method), 468

autovernier_enabled (pymea-
sure.instruments.hp.HP8116A property),
248

autozero_enabled (pymea-
sure.instruments.hp.HP34401A property),
241

aux_in_1 (pymeasure.instruments.srs.SR830 property),
442

aux_in_1 (pymeasure.instruments.srs.SR860 property),
446

aux_in_2 (pymeasure.instruments.srs.SR830 property),
442

aux_in_2 (pymeasure.instruments.srs.SR860 property),
446

aux_in_3 (pymeasure.instruments.srs.SR830 property),
442

aux_in_3 (pymeasure.instruments.srs.SR860 property),
446

aux_in_4 (pymeasure.instruments.srs.SR830 property),
443

aux_in_4 (pymeasure.instruments.srs.SR860 property),
446

aux_out_1 (pymeasure.instruments.srs.SR830 property),
443

aux_out_1 (pymeasure.instruments.srs.SR860 property),
446

aux_out_2 (pymeasure.instruments.srs.SR830 property),
443

aux_out_2 (pymeasure.instruments.srs.SR860 property),
446

aux_out_3 (pymeasure.instruments.srs.SR830 property),
443

aux_out_3 (pymeasure.instruments.srs.SR860 property),
446

aux_out_4 (pymeasure.instruments.srs.SR830 property),
443

aux_out_4 (pymeasure.instruments.srs.SR860 property),
447

auxiliary_condition_code (pymea-
sure.instruments.temptronic.ATSBase prop-
erty), 476

average_count (pymea-
sure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
property), 220

average_point (pymea-
sure.instruments.anritsu.AnritsuMS9710C
property), 209

average_sweep (pymea-
sure.instruments.anritsu.AnritsuMS9710C
property), 209

average_sweep (pymea-
sure.instruments.anritsu.AnritsuMS9740A
property), 211

average_sweep_count (pymea-
sure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
property), 220

average_type (pymea-
sure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
property), 220

averages (pymeasure.instruments.agilent.Agilent8722ES
property), 155

averaging_enabled (pymea-
sure.instruments.agilent.Agilent8722ES
property), 155

averaging_enabled (pymea-
sure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
property), 221

AWG401x_AFG (class in pymea-
sure.instruments.activetechnologies), 116

AWG401x_AWG (class in pymea-
sure.instruments.activetechnologies), 117

AWG401x_AWG.DummyEntriesElements (class in
pymeasure.instruments.activetechnologies),
117

AWG401x_AWG.WaveformsLazyDict (class in pymea-
sure.instruments.activetechnologies), 118

axes (pymeasure.instruments.newport.ESP300 prop-
erty), 377

Axis (class in pymeasure.instruments.attocube.anc300),
224

Axis (class in pymeasure.instruments.newport.esp300),
377

AxisError (class in pymea-
sure.instruments.newport.esp300), 378

B
B (pymeasure.instruments.hp.hp856Xx.Trace attribute),

277
bandwidth (pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel

property), 221

566 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

bandwidth_enhancer_enabled (pymea-
sure.instruments.anritsu.AnritsuMS464xB
property), 216

BASE (pymeasure.instruments.agilent.agilentB1500.SamplingPostOutput
attribute), 195

BaseBrowserItem (class in pymea-
sure.display.browser), 83

baseline_offset (pymea-
sure.instruments.activetechnologies.AWG401x.ChannelAFG
property), 120

baseline_offset_max (pymea-
sure.instruments.activetechnologies.AWG401x.ChannelAFG
property), 120

baseline_offset_min (pymea-
sure.instruments.activetechnologies.AWG401x.ChannelAFG
property), 120

BaseManager (class in pymeasure.display.manager), 87
basespeed (pymeasure.instruments.anaheimautomation.DPSeriesMotorController

property), 202
basic_info (pymeasure.instruments.rohdeschwarz.sfm.SFM

property), 408
batch_size (pymeasure.instruments.pendulum.cnt91.CNT91

property), 404
baud_rate (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2

property), 492
beep() (pymeasure.instruments.agilent.Agilent33220A

method), 170
beep() (pymeasure.instruments.agilent.Agilent33500

method), 173
beep() (pymeasure.instruments.agilent.Agilent34450A

method), 159
beep() (pymeasure.instruments.hp.HP33120A method),

240
beep() (pymeasure.instruments.hp.HP34401A method),

241
beep() (pymeasure.instruments.keithley.Keithley2000

method), 288
beep() (pymeasure.instruments.keithley.Keithley2400

method), 300
beep() (pymeasure.instruments.keithley.Keithley2450

method), 308
beep() (pymeasure.instruments.keithley.Keithley2700

method), 315
beep() (pymeasure.instruments.keithley.Keithley6221

method), 319
beep() (pymeasure.instruments.rohdeschwarz.hmp.HMP4040

method), 421
beep_state (pymeasure.instruments.keithley.Keithley2000

property), 288
beeper_enabled (pymea-

sure.instruments.hp.HP34401A property),
241

beeper_enabled (pymea-
sure.instruments.rohdeschwarz.sfm.SFM

property), 408
beeper_state (pymea-

sure.instruments.agilent.Agilent33220A
property), 170

BIAS (pymeasure.instruments.agilent.agilentB1500.SamplingPostOutput
attribute), 195

bias_enabled (pymeasure.instruments.srs.SR570 prop-
erty), 441

bias_level (pymeasure.instruments.srs.SR570 prop-
erty), 441

binary_data_byte_order (pymea-
sure.instruments.anritsu.AnritsuMS464xB
property), 216

binary_values() (pymeasure.adapters.Adapter
method), 47

binary_values() (pymeasure.adapters.FakeAdapter
method), 67

binary_values() (pymea-
sure.adapters.PrologixAdapter method),
57

binary_values() (pymeasure.adapters.SerialAdapter
method), 53

binary_values() (pymeasure.adapters.TelnetAdapter
method), 64

binary_values() (pymeasure.adapters.VISAAdapter
method), 50

binary_values() (pymeasure.adapters.VXI11Adapter
method), 61

binary_values() (pymea-
sure.instruments.common_base.CommonBase
method), 105

binary_values() (pymea-
sure.instruments.keithley.Keithley2200
method), 336

binary_values() (pymea-
sure.instruments.keysight.KeysightE36312A
method), 346

binary_values() (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
method), 364

BKPrecision9130B (class in pymea-
sure.instruments.bkprecision), 226

blank_front() (pymeasure.instruments.srs.SR570
method), 441

blank_trace() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 265

blanking (pymeasure.instruments.anapico.APSIN12G
property), 205

BooleanInput (class in pymeasure.display.inputs), 85
BooleanParameter (class in pymea-

sure.experiment.parameters), 74
bootloader_version (pymea-

sure.instruments.thyracont.smartline_v2.SmartlineV2

Index 567

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property), 492
both_channels_enabled (pymea-

sure.instruments.keithley.Keithley2306 prop-
erty), 297

Browser (class in pymeasure.display.browser), 83
BrowserItem (class in pymeasure.display.browser), 83
BrowserWidget (class in pymea-

sure.display.widgets.browser_widget), 90
buffer_data (pymeasure.instruments.keithley.Keithley2000

property), 288
buffer_data (pymeasure.instruments.keithley.Keithley2400

property), 301
buffer_data (pymeasure.instruments.keithley.Keithley2450

property), 309
buffer_data (pymeasure.instruments.keithley.Keithley2700

property), 315
buffer_data (pymeasure.instruments.keithley.Keithley6221

property), 320
buffer_data (pymeasure.instruments.keithley.Keithley6517B

property), 326
buffer_frequency_time_series() (pymea-

sure.instruments.pendulum.cnt91.CNT91
method), 404

buffer_points (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 288

buffer_points (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 301

buffer_points (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 309

buffer_points (pymea-
sure.instruments.keithley.Keithley2700 prop-
erty), 315

buffer_points (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 320

buffer_points (pymea-
sure.instruments.keithley.Keithley6517B
property), 326

buffer_to_float() (pymea-
sure.instruments.signalrecovery.DSP7225
method), 428

buffer_to_float() (pymea-
sure.instruments.signalrecovery.DSP7265
method), 434

BufferCurve (class in pymeasure.display.curves), 84
burst_count (pymeasure.instruments.activetechnologies.AWG401x_AWG

property), 118
burst_count_max (pymea-

sure.instruments.activetechnologies.AWG401x_AWG
property), 118

burst_count_min (pymea-

sure.instruments.activetechnologies.AWG401x_AWG
property), 118

burst_mode (pymeasure.instruments.agilent.Agilent33220A
property), 170

burst_mode (pymeasure.instruments.agilent.Agilent33500
property), 173

burst_mode (pymeasure.instruments.agilent.agilent33500.Agilent33500Channel
property), 176

burst_ncycles (pymea-
sure.instruments.agilent.Agilent33220A
property), 170

burst_ncycles (pymea-
sure.instruments.agilent.Agilent33500 prop-
erty), 173

burst_ncycles (pymea-
sure.instruments.agilent.agilent33500.Agilent33500Channel
property), 176

burst_number (pymeasure.instruments.hp.HP8116A
property), 248

burst_period (pymea-
sure.instruments.agilent.Agilent33500 prop-
erty), 173

burst_period (pymea-
sure.instruments.agilent.agilent33500.Agilent33500Channel
property), 177

burst_state (pymeasure.instruments.agilent.Agilent33220A
property), 170

burst_state (pymeasure.instruments.agilent.Agilent33500
property), 173

burst_state (pymeasure.instruments.agilent.agilent33500.Agilent33500Channel
property), 177

busy (pymeasure.instruments.anaheimautomation.DPSeriesMotorController
property), 203

bwlimit (pymeasure.instruments.lecroy.LeCroyT3DSO1204
property), 364

bwlimit (pymeasure.instruments.lecroy.lecroyT3DSO1204.LeCroyT3DSO1204Channel
property), 374

bwlimit (pymeasure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel
property), 473

bwlimit (pymeasure.instruments.teledyne.TeledyneOscilloscope
property), 468

C
calibration() (pymea-

sure.instruments.rohdeschwarz.sfm.SFM
method), 409

calibration_data (pymea-
sure.instruments.hp.HP3478A property),
245

calibration_enabled (pymea-
sure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
property), 221

calibration_enabled (pymea-
sure.instruments.hp.HP3478A property),

568 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

246
calibration_factor (pymea-

sure.instruments.advantest.advantestR624X.SMUChannel
property), 143

calibration_generation_factor (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
property), 143

calibration_init() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 142

calibration_measured_value (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
property), 142

calibration_store_factor() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 142

capacitance (pymeasure.instruments.agilent.Agilent34450A
property), 159

capacitance_auto_range (pymea-
sure.instruments.agilent.Agilent34450A
property), 159

capacitance_range (pymea-
sure.instruments.agilent.Agilent34450A
property), 159

capacity (pymeasure.instruments.attocube.anc300.Axis
property), 225

caplossvolt (pymeasure.instruments.andeenhagerling.AH2500A
property), 205

caplossvolt (pymeasure.instruments.andeenhagerling.AH2700A
property), 206

carrier_enabled (pymea-
sure.instruments.rohdeschwarz.sfm.Sound_Channel
property), 417

carrier_frequency (pymea-
sure.instruments.rohdeschwarz.sfm.Sound_Channel
property), 417

carrier_level (pymea-
sure.instruments.rohdeschwarz.sfm.Sound_Channel
property), 417

cathode_enabled (pymea-
sure.instruments.thyracont.smartline_v1.SmartlineV1
property), 490

celcius (pymeasure.instruments.lakeshore.lakeshore_base.LakeShoreTemperatureChannel
property), 359

center_at_peak() (pymea-
sure.instruments.anritsu.AnritsuMS9710C
method), 209

center_frequency (pymea-
sure.instruments.advantest.advantestR3767CG.AdvantestR3767CG
property), 122

center_frequency (pymea-
sure.instruments.agilent.Agilent8257D prop-
erty), 152

center_frequency (pymea-

sure.instruments.agilent.AgilentE4408B
property), 156

center_frequency (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 259

center_trigger() (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
method), 364

center_trigger() (pymea-
sure.instruments.teledyne.TeledyneOscilloscope
method), 468

ch() (pymeasure.instruments.keithley.Keithley2306
method), 297

ch() (pymeasure.instruments.lecroy.LeCroyT3DSO1204
method), 364

ch() (pymeasure.instruments.teledyne.TeledyneOscilloscope
method), 469

ch_1 (pymeasure.instruments.activetechnologies.AWG401x_AFG
attribute), 117

ch_1 (pymeasure.instruments.agilent.Agilent33500 at-
tribute), 172

ch_1 (pymeasure.instruments.agilent.Agilent33521A at-
tribute), 176

ch_1 (pymeasure.instruments.keithley.Keithley2200 at-
tribute), 334

ch_1 (pymeasure.instruments.keysight.KeysightE36312A
attribute), 343

ch_1 (pymeasure.instruments.lecroy.LeCroyT3DSO1204
attribute), 360

ch_1 (pymeasure.instruments.mksinst.mks937b.MKS937B
attribute), 375

ch_1 (pymeasure.instruments.siglenttechnologies.SPD1168X
attribute), 426

ch_1 (pymeasure.instruments.siglenttechnologies.SPD1305X
attribute), 427

ch_1 (pymeasure.instruments.teledyne.TeledyneOscilloscope
attribute), 468

ch_1 (pymeasure.instruments.teledyne.TeledyneT3AFG
attribute), 465

ch_1 (pymeasure.instruments.toptica.ibeamsmart.IBeamSmart
attribute), 495

ch_2 (pymeasure.instruments.activetechnologies.AWG401x_AFG
attribute), 117

ch_2 (pymeasure.instruments.agilent.Agilent33500 at-
tribute), 173

ch_2 (pymeasure.instruments.agilent.Agilent33521A at-
tribute), 176

ch_2 (pymeasure.instruments.keithley.Keithley2200 at-
tribute), 334

ch_2 (pymeasure.instruments.keysight.KeysightE36312A
attribute), 343

ch_2 (pymeasure.instruments.lecroy.LeCroyT3DSO1204
attribute), 361

ch_2 (pymeasure.instruments.mksinst.mks937b.MKS937B

Index 569

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

attribute), 375
ch_2 (pymeasure.instruments.teledyne.TeledyneOscilloscope

attribute), 468
ch_2 (pymeasure.instruments.teledyne.TeledyneT3AFG

attribute), 465
ch_2 (pymeasure.instruments.toptica.ibeamsmart.IBeamSmart

attribute), 495
ch_3 (pymeasure.instruments.keithley.Keithley2200 at-

tribute), 334
ch_3 (pymeasure.instruments.keysight.KeysightE36312A

attribute), 343
ch_3 (pymeasure.instruments.lecroy.LeCroyT3DSO1204

attribute), 361
ch_3 (pymeasure.instruments.mksinst.mks937b.MKS937B

attribute), 375
ch_3 (pymeasure.instruments.teledyne.TeledyneOscilloscope

attribute), 468
ch_3 (pymeasure.instruments.toptica.ibeamsmart.IBeamSmart

attribute), 495
ch_4 (pymeasure.instruments.lecroy.LeCroyT3DSO1204

attribute), 361
ch_4 (pymeasure.instruments.mksinst.mks937b.MKS937B

attribute), 375
ch_4 (pymeasure.instruments.teledyne.TeledyneOscilloscope

attribute), 468
ch_4 (pymeasure.instruments.toptica.ibeamsmart.IBeamSmart

attribute), 495
ch_5 (pymeasure.instruments.mksinst.mks937b.MKS937B

attribute), 376
ch_5 (pymeasure.instruments.toptica.ibeamsmart.IBeamSmart

attribute), 495
ch_6 (pymeasure.instruments.mksinst.mks937b.MKS937B

attribute), 376
ch_A (pymeasure.instruments.advantest.advantestR624X.AdvantestR6245

attribute), 122
ch_A (pymeasure.instruments.advantest.advantestR624X.AdvantestR6246

attribute), 123
ch_B (pymeasure.instruments.advantest.advantestR624X.AdvantestR6245

attribute), 122
ch_B (pymeasure.instruments.advantest.advantestR624X.AdvantestR6246

attribute), 123
change_source_current (pymea-

sure.instruments.advantest.advantestR624X.SMUChannel
property), 138

change_source_voltage (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
property), 135

Channel (class in pymeasure.instruments), 111
channel (pymeasure.instruments.bkprecision.BKPrecision9130B

property), 226
channel1 (pymeasure.instruments.srs.SR830 property),

443
channel1_enabled (pymea-

sure.instruments.toptica.ibeamsmart.IBeamSmart

property), 495
channel2 (pymeasure.instruments.srs.SR830 property),

443
channel2_enabled (pymea-

sure.instruments.toptica.ibeamsmart.IBeamSmart
property), 496

channel_down_relative() (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
method), 409

channel_function (pymea-
sure.instruments.agilent.agilent4156.SMU
property), 166

channel_function (pymea-
sure.instruments.agilent.agilent4156.VSU
property), 169

channel_mode (pymea-
sure.instruments.agilent.agilent4156.SMU
property), 166

channel_mode (pymea-
sure.instruments.agilent.agilent4156.VMU
property), 169

channel_mode (pymea-
sure.instruments.agilent.agilent4156.VSU
property), 169

channel_sweep_start (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 409

channel_sweep_step (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 409

channel_sweep_stop (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 409

channel_table (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 409

channel_up_relative() (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
method), 409

ChannelAFG (class in pymea-
sure.instruments.activetechnologies.AWG401x),
120

channels_from_rows_columns() (pymea-
sure.instruments.keithley.Keithley2700
method), 315

check_done() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 253

check_errors() (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
method), 123

check_errors() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 184

570 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

check_errors() (pymea-
sure.instruments.agilent.agilentB1500.SMU
method), 188

check_errors() (pymea-
sure.instruments.anaheimautomation.DPSeriesMotorController
method), 203

check_errors() (pymea-
sure.instruments.andeenhagerling.AH2700A
method), 206

check_errors() (pymea-
sure.instruments.anritsu.AnritsuMS464xB
method), 216

check_errors() (pymea-
sure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
method), 221

check_errors() (pymeasure.instruments.Channel
method), 111

check_errors() (pymea-
sure.instruments.common_base.CommonBase
method), 105

check_errors() (pymea-
sure.instruments.fwbell.FWBell5080 method),
235

check_errors() (pymea-
sure.instruments.heidenhain.ND287 method),
237

check_errors() (pymeasure.instruments.hp.HP3437A
method), 244

check_errors() (pymeasure.instruments.hp.HP3478A
method), 246

check_errors() (pymeasure.instruments.hp.HP6632A
method), 285

check_errors() (pymeasure.instruments.hp.HP8116A
method), 248

check_errors() (pymeasure.instruments.hp.HP8657B
method), 282

check_errors() (pymeasure.instruments.Instrument
method), 109

check_errors() (pymea-
sure.instruments.keithley.Keithley2000
method), 288

check_errors() (pymea-
sure.instruments.keithley.Keithley2200
method), 336

check_errors() (pymea-
sure.instruments.keithley.Keithley2260B
method), 295

check_errors() (pymea-
sure.instruments.keithley.Keithley2306
method), 297

check_errors() (pymea-
sure.instruments.keithley.Keithley2400
method), 301

check_errors() (pymea-

sure.instruments.keithley.Keithley2450
method), 309

check_errors() (pymea-
sure.instruments.keithley.Keithley2600
method), 332

check_errors() (pymea-
sure.instruments.keithley.Keithley2700
method), 316

check_errors() (pymea-
sure.instruments.keithley.Keithley2750
method), 330

check_errors() (pymea-
sure.instruments.keithley.Keithley6221
method), 320

check_errors() (pymea-
sure.instruments.keithley.Keithley6517B
method), 326

check_errors() (pymea-
sure.instruments.keysight.KeysightE36312A
method), 346

check_errors() (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
method), 364

check_errors() (pymea-
sure.instruments.signalrecovery.DSP7225
method), 428

check_errors() (pymea-
sure.instruments.signalrecovery.DSP7265
method), 435

check_errors() (pymea-
sure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
method), 456

check_errors() (pymea-
sure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
method), 461

check_errors() (pymea-
sure.instruments.teledyne.TeledyneT3AFG
method), 466

check_errors() (pymea-
sure.instruments.texio.TexioPSW360L30
method), 485

check_get_errors() (pymea-
sure.instruments.andeenhagerling.AH2700A
method), 206

check_get_errors() (pymeasure.instruments.Channel
method), 111

check_get_errors() (pymea-
sure.instruments.common_base.CommonBase
method), 105

check_get_errors() (pymea-
sure.instruments.fwbell.FWBell5080 method),
235

check_get_errors() (pymea-
sure.instruments.Instrument method), 109

Index 571

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

check_get_errors() (pymea-
sure.instruments.keithley.Keithley2000
method), 288

check_get_errors() (pymea-
sure.instruments.keithley.Keithley2200
method), 336

check_get_errors() (pymea-
sure.instruments.keithley.Keithley2260B
method), 295

check_get_errors() (pymea-
sure.instruments.keithley.Keithley2306
method), 298

check_get_errors() (pymea-
sure.instruments.keithley.Keithley2400
method), 301

check_get_errors() (pymea-
sure.instruments.keithley.Keithley2450
method), 309

check_get_errors() (pymea-
sure.instruments.keithley.Keithley2600
method), 332

check_get_errors() (pymea-
sure.instruments.keithley.Keithley2700
method), 316

check_get_errors() (pymea-
sure.instruments.keithley.Keithley2750
method), 330

check_get_errors() (pymea-
sure.instruments.keithley.Keithley6221
method), 320

check_get_errors() (pymea-
sure.instruments.keithley.Keithley6517B
method), 326

check_get_errors() (pymea-
sure.instruments.keysight.KeysightE36312A
method), 346

check_get_errors() (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
method), 364

check_get_errors() (pymea-
sure.instruments.signalrecovery.DSP7225
method), 428

check_get_errors() (pymea-
sure.instruments.signalrecovery.DSP7265
method), 435

check_get_errors() (pymea-
sure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
method), 456

check_get_errors() (pymea-
sure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
method), 461

check_get_errors() (pymea-
sure.instruments.teledyne.TeledyneT3AFG
method), 466

check_get_errors() (pymea-
sure.instruments.texio.TexioPSW360L30
method), 485

check_get_estimates_signature() (pymea-
sure.display.widgets.estimator_widget.EstimatorWidget
method), 90

check_idle() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 184

check_parameters() (pymea-
sure.experiment.procedure.Procedure method),
73

check_selftest_errors() (pymea-
sure.instruments.hp.HP6632A method), 285

check_set_errors() (pymea-
sure.instruments.ametek.Ametek7270 method),
198

check_set_errors() (pymea-
sure.instruments.andeenhagerling.AH2700A
method), 206

check_set_errors() (pymea-
sure.instruments.attocube.anc300.ANC300Controller
method), 224

check_set_errors() (pymeasure.instruments.Channel
method), 111

check_set_errors() (pymea-
sure.instruments.common_base.CommonBase
method), 105

check_set_errors() (pymea-
sure.instruments.fwbell.FWBell5080 method),
235

check_set_errors() (pymea-
sure.instruments.hcp.TC038 method), 238

check_set_errors() (pymea-
sure.instruments.hcp.TC038D method), 239

check_set_errors() (pymea-
sure.instruments.Instrument method), 110

check_set_errors() (pymea-
sure.instruments.ipgphotonics.yar.YAR
method), 286

check_set_errors() (pymea-
sure.instruments.keithley.Keithley2000
method), 288

check_set_errors() (pymea-
sure.instruments.keithley.Keithley2200
method), 336

check_set_errors() (pymea-
sure.instruments.keithley.Keithley2260B
method), 295

check_set_errors() (pymea-
sure.instruments.keithley.Keithley2306
method), 298

check_set_errors() (pymea-
sure.instruments.keithley.Keithley2400

572 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

method), 301
check_set_errors() (pymea-

sure.instruments.keithley.Keithley2450
method), 309

check_set_errors() (pymea-
sure.instruments.keithley.Keithley2600
method), 332

check_set_errors() (pymea-
sure.instruments.keithley.Keithley2700
method), 316

check_set_errors() (pymea-
sure.instruments.keithley.Keithley2750
method), 330

check_set_errors() (pymea-
sure.instruments.keithley.Keithley6221
method), 320

check_set_errors() (pymea-
sure.instruments.keithley.Keithley6517B
method), 326

check_set_errors() (pymea-
sure.instruments.keysight.KeysightE36312A
method), 346

check_set_errors() (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
method), 364

check_set_errors() (pymea-
sure.instruments.mksinst.mks937b.MKS937B
method), 376

check_set_errors() (pymea-
sure.instruments.novanta.Fpu60 method),
392

check_set_errors() (pymea-
sure.instruments.signalrecovery.DSP7225
method), 428

check_set_errors() (pymea-
sure.instruments.signalrecovery.DSP7265
method), 435

check_set_errors() (pymea-
sure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
method), 457

check_set_errors() (pymea-
sure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
method), 461

check_set_errors() (pymea-
sure.instruments.teledyne.TeledyneT3AFG
method), 466

check_set_errors() (pymea-
sure.instruments.texio.TexioPSW360L30
method), 485

check_set_errors() (pymea-
sure.instruments.thyracont.smartline_v1.SmartlineV1
method), 490

check_set_errors() (pymea-
sure.instruments.thyracont.smartline_v2.SmartlineV2

method), 492
check_set_errors() (pymea-

sure.instruments.toptica.ibeamsmart.IBeamSmart
method), 496

check_set_errors() (pymea-
sure.instruments.velleman.VellemanK8090
method), 498

check_stop() (pymea-
sure.display.windows.plotter_window.PlotterWindow
method), 100

choices (pymeasure.experiment.parameters.ListParameter
property), 76

clear() (pymeasure.display.manager.BaseManager
method), 87

clear() (pymeasure.instruments.andeenhagerling.AH2700A
method), 206

clear() (pymeasure.instruments.fwbell.FWBell5080
method), 235

clear() (pymeasure.instruments.hp.HP6632A method),
285

clear() (pymeasure.instruments.hp.HP8657B method),
282

clear() (pymeasure.instruments.Instrument method),
110

clear() (pymeasure.instruments.ipgphotonics.yar.YAR
method), 286

clear() (pymeasure.instruments.keithley.Keithley2000
method), 288

clear() (pymeasure.instruments.keithley.Keithley2260B
method), 296

clear() (pymeasure.instruments.keithley.Keithley2306
method), 298

clear() (pymeasure.instruments.keithley.Keithley2400
method), 301

clear() (pymeasure.instruments.keithley.Keithley2450
method), 309

clear() (pymeasure.instruments.keithley.Keithley2600
method), 333

clear() (pymeasure.instruments.keithley.Keithley2700
method), 316

clear() (pymeasure.instruments.keithley.Keithley2750
method), 330

clear() (pymeasure.instruments.keithley.Keithley6221
method), 320

clear() (pymeasure.instruments.keithley.Keithley6517B
method), 326

clear() (pymeasure.instruments.keysight.KeysightE36312A
method), 346

clear() (pymeasure.instruments.lecroy.LeCroyT3DSO1204
method), 364

clear() (pymeasure.instruments.signalrecovery.DSP7225
method), 429

clear() (pymeasure.instruments.signalrecovery.DSP7265
method), 435

Index 573

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

clear() (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
method), 457

clear() (pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
method), 461

clear() (pymeasure.instruments.teledyne.TeledyneT3AFG
method), 466

clear() (pymeasure.instruments.temptronic.ATSBase
method), 476

clear() (pymeasure.instruments.texio.TexioPSW360L30
method), 485

clear_average_count() (pymea-
sure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
method), 221

clear_buffer() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 184

clear_display() (pymea-
sure.instruments.agilent.Agilent33500 method),
173

clear_errors() (pymea-
sure.instruments.newport.ESP300 method),
377

clear_measurement_buffer() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 132

clear_overload() (pymeasure.instruments.srs.SR570
method), 441

clear_plot() (pymea-
sure.experiment.experiment.Experiment
method), 71

clear_ramp_set() (pymea-
sure.instruments.danfysik.Danfysik8500
method), 227

clear_sequence() (pymea-
sure.instruments.danfysik.Danfysik8500
method), 227

clear_sequence() (pymea-
sure.instruments.rohdeschwarz.hmp.HMP4040
method), 421

clear_status() (pymea-
sure.instruments.keysight.KeysightDSOX1102G
method), 339

clear_status_register() (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
method), 124

clear_timer() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 184

clear_widget() (pymea-
sure.display.widgets.plot_widget.PlotWidget
method), 92

clear_widget() (pymea-
sure.display.widgets.tab_widget.TabWidget
method), 94

clear_widget() (pymea-
sure.display.widgets.table_widget.TableWidget
method), 97

clear_write_trace() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 265

cli_args (pymeasure.experiment.parameters.Parameter
property), 77

close() (pymeasure.adapters.Adapter method), 48
close() (pymeasure.adapters.FakeAdapter method), 67
close() (pymeasure.adapters.PrologixAdapter method),

58
close() (pymeasure.adapters.SerialAdapter method), 54
close() (pymeasure.adapters.TelnetAdapter method), 64
close() (pymeasure.adapters.VISAAdapter method), 51
close() (pymeasure.adapters.VXI11Adapter method),

61
close() (pymeasure.instruments.keithley.Keithley2750

method), 331
close() (pymeasure.instruments.keysight.KeysightN7776C

method), 342
close_rows_to_columns() (pymea-

sure.instruments.keithley.Keithley2700
method), 316

closed_channels (pymea-
sure.instruments.keithley.Keithley2700 prop-
erty), 316

closed_channels (pymea-
sure.instruments.keithley.Keithley2750 prop-
erty), 331

CMU_MEASUREMENT (pymea-
sure.instruments.agilent.agilentB1500.WaitTimeType
attribute), 196

CNT91 (class in pymeasure.instruments.pendulum.cnt91),
404

coder_adjust() (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
method), 409

coder_id_frequency (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 409

coder_modulation_degree (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 410

coder_pilot_deviation (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 410

coder_pilot_frequency (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 410

coilconst (pymeasure.instruments.ami.AMI430 prop-
erty), 201

collapse_channel_string() (pymea-
sure.instruments.ni.virtualbench.VirtualBench

574 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

method), 391
colormap() (pymeasure.display.curves.ResultsImage

method), 85
columnCount() (pymea-

sure.display.widgets.sequencer_widget.SequencerTreeModel
method), 93

columnCount() (pymea-
sure.display.widgets.table_widget.PandasModelBase
method), 96

combined_pressure1 (pymea-
sure.instruments.mksinst.mks937b.MKS937B
property), 376

combined_pressure2 (pymea-
sure.instruments.mksinst.mks937b.MKS937B
property), 376

ComboBoxDelegate (class in pymea-
sure.display.widgets.sequencer_widget),
92

COMMAND_COMPLETE (pymea-
sure.instruments.hp.hp856Xx.StatusRegister
attribute), 279

CommonBase (class in pymea-
sure.instruments.common_base), 103

CommonBase.BaseChannelCreator (class in pymea-
sure.instruments.common_base), 103

CommonBase.ChannelCreator (class in pymea-
sure.instruments.common_base), 103

CommonBase.MultiChannelCreator (class in pymea-
sure.instruments.common_base), 104

complement_enabled (pymea-
sure.instruments.hp.HP8116A property),
249

complete (pymeasure.instruments.andeenhagerling.AH2700A
property), 206

complete (pymeasure.instruments.fwbell.FWBell5080
property), 235

complete (pymeasure.instruments.hp.HP8116A prop-
erty), 249

complete (pymeasure.instruments.Instrument property),
110

complete (pymeasure.instruments.keithley.Keithley2000
property), 288

complete (pymeasure.instruments.keithley.Keithley2200
property), 337

complete (pymeasure.instruments.keithley.Keithley2260B
property), 296

complete (pymeasure.instruments.keithley.Keithley2306
property), 298

complete (pymeasure.instruments.keithley.Keithley2400
property), 301

complete (pymeasure.instruments.keithley.Keithley2450
property), 309

complete (pymeasure.instruments.keithley.Keithley2600
property), 333

complete (pymeasure.instruments.keithley.Keithley2700
property), 316

complete (pymeasure.instruments.keithley.Keithley2750
property), 331

complete (pymeasure.instruments.keithley.Keithley6221
property), 320

complete (pymeasure.instruments.keithley.Keithley6517B
property), 326

complete (pymeasure.instruments.keysight.KeysightE36312A
property), 346

complete (pymeasure.instruments.lecroy.LeCroyT3DSO1204
property), 364

complete (pymeasure.instruments.signalrecovery.DSP7225
property), 429

complete (pymeasure.instruments.signalrecovery.DSP7265
property), 435

complete (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
property), 457

complete (pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
property), 461

complete (pymeasure.instruments.teledyne.TeledyneT3AFG
property), 466

complete (pymeasure.instruments.texio.TexioPSW360L30
property), 485

compliance (pymeasure.instruments.agilent.agilent4156.SMU
property), 167

compliance (pymeasure.instruments.agilent.agilent4156.VARD
property), 168

compliance (pymeasure.instruments.agilent.agilent4156.VARX
property), 168

COMPLIANCE_AND_FORCE_SIDE (pymea-
sure.instruments.agilent.agilentB1500.MeasOpMode
attribute), 194

compliance_current (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 301

compliance_current (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 309

compliance_current (pymea-
sure.instruments.yokogawa.Yokogawa7651
property), 500

COMPLIANCE_SIDE (pymea-
sure.instruments.agilent.agilentB1500.MeasOpMode
attribute), 194

compliance_voltage (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 301

compliance_voltage (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 309

compliance_voltage (pymea-
sure.instruments.yokogawa.Yokogawa7651
property), 500

Index 575

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

CompliancePolarity (class in pymea-
sure.instruments.agilent.agilentB1500), 195

compressor_enable (pymea-
sure.instruments.temptronic.ATSBase prop-
erty), 477

config (pymeasure.instruments.andeenhagerling.AH2500A
property), 205

config (pymeasure.instruments.andeenhagerling.AH2700A
property), 206

config_amplitude_modulation() (pymea-
sure.instruments.agilent.Agilent8257D
method), 152

config_buffer() (pymea-
sure.instruments.keithley.Keithley2000
method), 288

config_buffer() (pymea-
sure.instruments.keithley.Keithley2400
method), 301

config_buffer() (pymea-
sure.instruments.keithley.Keithley2450
method), 309

config_buffer() (pymea-
sure.instruments.keithley.Keithley2700
method), 316

config_buffer() (pymea-
sure.instruments.keithley.Keithley6221
method), 320

config_buffer() (pymea-
sure.instruments.keithley.Keithley6517B
method), 326

config_low_freq_out() (pymea-
sure.instruments.agilent.Agilent8257D
method), 153

config_pulse_modulation() (pymea-
sure.instruments.agilent.Agilent8257D
method), 153

config_step_sweep() (pymea-
sure.instruments.agilent.Agilent8257D
method), 153

configure() (pymeasure.instruments.agilent.agilent4156.Agilent4156
method), 165

configure() (pymeasure.instruments.temptronic.ATSBase
method), 477

configure_ac_current() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter
method), 381

configure_alarm() (pymea-
sure.instruments.lakeshore.LakeShore211
method), 352

configure_analog_channel() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope
method), 385

configure_analog_channel_characteristics()
(pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope

method), 385
configure_analog_edge_trigger() (pymea-

sure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope
method), 386

configure_analog_pulse_width_trigger()
(pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope
method), 386

configure_arbitrary_waveform() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator
method), 383

configure_arbitrary_waveform_gain_and_offset()
(pymeasure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator
method), 383

configure_capacitance() (pymea-
sure.instruments.agilent.Agilent34450A
method), 159

configure_continuity() (pymea-
sure.instruments.agilent.Agilent34450A
method), 160

configure_current() (pymea-
sure.instruments.agilent.Agilent34450A
method), 160

configure_current_output() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.PowerSupply
method), 389

configure_dc_current() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter
method), 381

configure_dc_voltage() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter
method), 381

configure_diode() (pymea-
sure.instruments.agilent.Agilent34450A
method), 160

configure_frequency() (pymea-
sure.instruments.agilent.Agilent34450A
method), 160

configure_frequency_array_measurement()
(pymeasure.instruments.pendulum.cnt91.CNT91
method), 405

configure_immediate_trigger() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope
method), 386

configure_measurement() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter
method), 381

configure_relay() (pymea-
sure.instruments.lakeshore.LakeShore211
method), 352

configure_resistance() (pymea-
sure.instruments.agilent.Agilent34450A
method), 160

configure_standard_waveform() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator

576 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

method), 383
configure_temperature() (pymea-

sure.instruments.agilent.Agilent34450A
method), 160

configure_timer() (pymea-
sure.instruments.siglenttechnologies.siglent_spdbase.SPDChannel
method), 425

configure_timing() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope
method), 386

configure_trigger_delay() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope
method), 386

configure_voltage() (pymea-
sure.instruments.agilent.Agilent34450A
method), 160

configure_voltage_output() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.PowerSupply
method), 389

ConsoleArgumentParser (class in pymea-
sure.display.console), 83

ConsoleBrowserItem (class in pymea-
sure.display.console), 83

constant_value (pymea-
sure.instruments.agilent.agilent4156.SMU
property), 167

constant_value (pymea-
sure.instruments.agilent.agilent4156.VSU
property), 169

contact_current_1 (pymea-
sure.instruments.razorbill.razorbillRP100
property), 406

contact_current_2 (pymea-
sure.instruments.razorbill.razorbillRP100
property), 406

contact_voltage_1 (pymea-
sure.instruments.razorbill.razorbillRP100
property), 406

contact_voltage_2 (pymea-
sure.instruments.razorbill.razorbillRP100
property), 406

contextMenuEvent() (pymea-
sure.display.widgets.dock_widget.DockWidget
method), 95

continue_single_sweep() (pymea-
sure.instruments.rohdeschwarz.fsl.FSL
method), 420

continuity (pymeasure.instruments.agilent.Agilent34450A
property), 161

continuous (pymeasure.instruments.pendulum.cnt91.CNT91
property), 405

continuous_sweep (pymea-
sure.instruments.rohdeschwarz.fsl.FSL prop-
erty), 420

control() (pymeasure.instruments.common_base.CommonBase
static method), 105

control() (pymeasure.instruments.fakes.FakeInstrument
static method), 113

control() (pymeasure.instruments.keysight.KeysightE36312A
static method), 346

control() (pymeasure.instruments.lecroy.LeCroyT3DSO1204
static method), 365

control_method (pymea-
sure.instruments.rohdeschwarz.hmp.HMP4040
property), 422

control_mode (pymeasure.instruments.hp.HP8116A
property), 249

control_mode (pymea-
sure.instruments.oxfordinstruments.IPS120_10
property), 400

control_mode (pymea-
sure.instruments.oxfordinstruments.ITC503
property), 395

controllerBoardVersion (pymea-
sure.instruments.attocube.anc300.ANC300Controller
property), 224

conversion_loss (pymea-
sure.instruments.hp.HP8561B property),
275

convert() (pymeasure.experiment.parameters.BooleanParameter
method), 74

convert() (pymeasure.experiment.parameters.FloatParameter
method), 75

convert() (pymeasure.experiment.parameters.IntegerParameter
method), 76

convert() (pymeasure.experiment.parameters.ListParameter
method), 76

convert() (pymeasure.experiment.parameters.Parameter
method), 77

convert() (pymeasure.experiment.parameters.PhysicalParameter
method), 78

convert() (pymeasure.experiment.parameters.VectorParameter
method), 78

convert_timestamp_to_values() (pymea-
sure.instruments.ni.virtualbench.VirtualBench
method), 391

convert_values_to_datetime() (pymea-
sure.instruments.ni.virtualbench.VirtualBench
method), 391

convert_values_to_timestamp() (pymea-
sure.instruments.ni.virtualbench.VirtualBench
method), 391

copy_active_setup_file (pymea-
sure.instruments.temptronic.ATSBase prop-
erty), 477

copy_active_setup_file (pymea-
sure.instruments.temptronic.ECO560 at-
tribute), 484

Index 577

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

copy_data_file() (pymea-
sure.instruments.anritsu.AnritsuMS464xB
method), 216

COR (class in pymea-
sure.instruments.advantest.advantestR624X),
144

coupling (pymeasure.instruments.hp.hp856Xx.HP856Xx
attribute), 252

coupling (pymeasure.instruments.signalrecovery.DSP7225
property), 429

coupling (pymeasure.instruments.signalrecovery.DSP7265
property), 435

coupling (pymeasure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel
property), 473

CouplingMode (class in pymea-
sure.instruments.hp.hp856Xx), 277

create_directory() (pymea-
sure.instruments.anritsu.AnritsuMS464xB
method), 216

create_fft_trace_window() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 262

create_filename() (in module pymea-
sure.experiment.experiment), 72

create_marker() (pymea-
sure.instruments.rohdeschwarz.fsl.FSL
method), 420

createEditor() (pymea-
sure.display.widgets.sequencer_widget.ComboBoxDelegate
method), 92

createEditor() (pymea-
sure.display.widgets.sequencer_widget.LineEditDelegate
method), 92

Crosshairs (class in pymeasure.display.curves), 84
CSVFormatter (class in pymeasure.experiment.results),

79
current (pymeasure.instruments.agilent.Agilent34450A

property), 161
CURRENT (pymeasure.instruments.agilent.agilentB1500.MeasOpMode

attribute), 194
current (pymeasure.instruments.aja.DCXS property),

197
current (pymeasure.instruments.bkprecision.BKPrecision9130B

property), 226
current (pymeasure.instruments.danfysik.Danfysik8500

property), 227
current (pymeasure.instruments.deltaelektronika.SM7045D

property), 230
current (pymeasure.instruments.eurotest.EurotestHPP120256

property), 232
current (pymeasure.instruments.hp.HP6632A prop-

erty), 285
current (pymeasure.instruments.ipgphotonics.yar.YAR

property), 286

current (pymeasure.instruments.keithley.Keithley2000
property), 289

current (pymeasure.instruments.keithley.keithley2200.PSChannel
property), 338

current (pymeasure.instruments.keithley.Keithley2260B
property), 296

current (pymeasure.instruments.keithley.Keithley2400
property), 301

current (pymeasure.instruments.keithley.Keithley2450
property), 309

current (pymeasure.instruments.keithley.Keithley6517B
property), 327

current (pymeasure.instruments.keysight.keysightE36312A.VoltageChannel
property), 351

current (pymeasure.instruments.keysight.KeysightN5767A
property), 341

current (pymeasure.instruments.novanta.Fpu60 prop-
erty), 392

current (pymeasure.instruments.rohdeschwarz.hmp.HMP4040
property), 422

current (pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDChannel
property), 425

current (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
property), 457

current (pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
property), 461

current (pymeasure.instruments.texio.TexioPSW360L30
property), 485

current (pymeasure.instruments.toptica.ibeamsmart.IBeamSmart
property), 496

current_ac (pymeasure.instruments.agilent.Agilent34410A
property), 159

current_ac (pymeasure.instruments.agilent.Agilent34450A
property), 161

current_ac (pymeasure.instruments.hp.HP34401A
property), 241

current_ac_auto_range (pymea-
sure.instruments.agilent.Agilent34450A
property), 161

current_ac_bandwidth (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 289

current_ac_digits (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 289

current_ac_nplc (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 289

current_ac_range (pymea-
sure.instruments.agilent.Agilent34450A
property), 161

current_ac_range (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 289

578 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

current_ac_reference (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 289

current_ac_resolution (pymea-
sure.instruments.agilent.Agilent34450A
property), 161

current_auto_range (pymea-
sure.instruments.agilent.Agilent34450A
property), 161

current_configuration (pymea-
sure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel
property), 473

current_cycle_count (pymea-
sure.instruments.temptronic.ATSBase prop-
erty), 477

current_dc (pymeasure.instruments.agilent.Agilent34410A
property), 159

current_dc (pymeasure.instruments.hp.HP34401A
property), 241

current_digits (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 289

current_filter_count (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 309

current_filter_state (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 310

current_filter_type (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 310

current_fixed_level_sweep() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 138

current_fixed_pulsed_sweep() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 138

current_limit (pymea-
sure.instruments.eurotest.EurotestHPP120256
property), 232

current_limit (pymea-
sure.instruments.keithley.keithley2200.PSChannel
property), 338

current_limit (pymea-
sure.instruments.keithley.Keithley2260B
property), 296

current_limit (pymea-
sure.instruments.keysight.keysightE36312A.VoltageChannel
property), 351

current_limit (pymea-
sure.instruments.siglenttechnologies.siglent_spdbase.SPDChannel
property), 425

current_limit (pymea-
sure.instruments.texio.TexioPSW360L30

property), 485
current_limit (pymea-

sure.instruments.yokogawa.YokogawaGS200
property), 501

current_measured (pymea-
sure.instruments.oxfordinstruments.IPS120_10
property), 400

current_name (pymea-
sure.instruments.agilent.agilent4156.SMU
property), 167

current_nplc (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 289

current_nplc (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 302

current_nplc (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 310

current_nplc (pymea-
sure.instruments.keithley.Keithley6517B
property), 327

current_output_off_state (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 310

current_ppm (pymeasure.instruments.danfysik.Danfysik8500
property), 227

current_pulsed_source() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 138

current_pulsed_sweep() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 139

current_random_pulsed_sweep() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 140

current_random_sweep() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 139

current_range (pymea-
sure.instruments.agilent.Agilent34450A
property), 161

current_range (pymea-
sure.instruments.eurotest.EurotestHPP120256
property), 232

current_range (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 289

current_range (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 302

current_range (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 310

Index 579

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

current_range (pymea-
sure.instruments.keithley.Keithley6517B
property), 327

current_range (pymea-
sure.instruments.keysight.KeysightN5767A
property), 341

current_reference (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 289

current_resolution (pymea-
sure.instruments.agilent.Agilent34450A
property), 161

current_set_random_memory() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 140

current_setpoint (pymea-
sure.instruments.danfysik.Danfysik8500
property), 227

current_setpoint (pymea-
sure.instruments.oxfordinstruments.IPS120_10
property), 400

current_setpoint (pymea-
sure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
property), 457

current_setpoint (pymea-
sure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
property), 461

current_source() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 137

current_step (pymea-
sure.instruments.rohdeschwarz.hmp.HMP4040
property), 422

current_sweep() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 138

current_to_max() (pymea-
sure.instruments.rohdeschwarz.hmp.HMP4040
method), 422

current_to_min() (pymea-
sure.instruments.rohdeschwarz.hmp.HMP4040
method), 422

CurrentRange (class in pymea-
sure.instruments.advantest.advantestR624X),
143

curve_buffer_bits (pymea-
sure.instruments.signalrecovery.DSP7225
property), 429

curve_buffer_bits (pymea-
sure.instruments.signalrecovery.DSP7265
property), 435

curve_buffer_interval (pymea-
sure.instruments.signalrecovery.DSP7225
property), 429

curve_buffer_interval (pymea-
sure.instruments.signalrecovery.DSP7265
property), 436

curve_buffer_length (pymea-
sure.instruments.signalrecovery.DSP7225
property), 429

curve_buffer_length (pymea-
sure.instruments.signalrecovery.DSP7265
property), 436

curve_buffer_status (pymea-
sure.instruments.signalrecovery.DSP7225
property), 429

curve_buffer_status (pymea-
sure.instruments.signalrecovery.DSP7265
property), 436

CustomIntEnum (class in pymea-
sure.instruments.agilent.agilentB1500), 193

cw_frequency (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 410

cw_mode_enabled (pymea-
sure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
property), 221

cw_number_of_points (pymea-
sure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
property), 221

CXN (class in pymeasure.instruments.tcpowerconversion),
452

CXN.Status (class in pymea-
sure.instruments.tcpowerconversion), 453

cycling_enable (pymea-
sure.instruments.temptronic.ATSBase prop-
erty), 477

cycling_stopped() (pymea-
sure.instruments.temptronic.ATSBase method),
477

D
dac1 (pymeasure.instruments.ametek.Ametek7270 prop-

erty), 198
dac1 (pymeasure.instruments.signalrecovery.DSP7225

property), 429
dac1 (pymeasure.instruments.signalrecovery.DSP7265

property), 436
dac1 (pymeasure.instruments.srs.SR830 property), 443
dac1 (pymeasure.instruments.srs.SR860 property), 447
dac2 (pymeasure.instruments.ametek.Ametek7270 prop-

erty), 198
dac2 (pymeasure.instruments.signalrecovery.DSP7225

property), 429
dac2 (pymeasure.instruments.signalrecovery.DSP7265

property), 436
dac2 (pymeasure.instruments.srs.SR830 property), 443
dac2 (pymeasure.instruments.srs.SR860 property), 447

580 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

dac3 (pymeasure.instruments.ametek.Ametek7270 prop-
erty), 199

dac3 (pymeasure.instruments.signalrecovery.DSP7265
property), 436

dac3 (pymeasure.instruments.srs.SR830 property), 443
dac3 (pymeasure.instruments.srs.SR860 property), 447
dac4 (pymeasure.instruments.ametek.Ametek7270 prop-

erty), 199
dac4 (pymeasure.instruments.signalrecovery.DSP7265

property), 436
dac4 (pymeasure.instruments.srs.SR830 property), 443
dac4 (pymeasure.instruments.srs.SR860 property), 447
Danfysik8500 (class in pymea-

sure.instruments.danfysik), 227
data (pymeasure.experiment.experiment.Experiment

property), 72
data (pymeasure.instruments.agilent.Agilent8722ES

property), 155
data() (pymeasure.display.widgets.sequencer_widget.SequencerTreeModel

method), 93
data() (pymeasure.display.widgets.table_widget.PandasModelBase

method), 96
data_arb() (pymeasure.instruments.agilent.Agilent33500

method), 173
data_arb() (pymeasure.instruments.agilent.agilent33500.Agilent33500Channel

method), 177
data_complex (pymea-

sure.instruments.agilent.Agilent8722ES
property), 155

data_drawing_enabled (pymea-
sure.instruments.anritsu.AnritsuMS464xB
property), 216

data_format() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 184

data_log_magnitude (pymea-
sure.instruments.agilent.Agilent8722ES
property), 155

data_magnitude (pymea-
sure.instruments.agilent.Agilent8722ES
property), 155

data_memory_a_condition (pymea-
sure.instruments.anritsu.AnritsuMS9710C
property), 209

data_memory_a_size (pymea-
sure.instruments.anritsu.AnritsuMS9710C
property), 209

data_memory_a_values (pymea-
sure.instruments.anritsu.AnritsuMS9710C
property), 209

data_memory_b_condition (pymea-
sure.instruments.anritsu.AnritsuMS9710C
property), 209

data_memory_b_size (pymea-

sure.instruments.anritsu.AnritsuMS9710C
property), 209

data_memory_b_values (pymea-
sure.instruments.anritsu.AnritsuMS9710C
property), 209

data_memory_select (pymea-
sure.instruments.anritsu.AnritsuMS9710C
property), 209

data_memory_select (pymea-
sure.instruments.anritsu.AnritsuMS9740A
property), 211

data_phase (pymeasure.instruments.agilent.Agilent8722ES
property), 155

data_variables (pymea-
sure.instruments.agilent.agilent4156.Agilent4156
property), 165

data_volatile_clear() (pymea-
sure.instruments.agilent.Agilent33500 method),
174

data_volatile_clear() (pymea-
sure.instruments.agilent.agilent33500.Agilent33500Channel
method), 177

datablock_header_format (pymea-
sure.instruments.anritsu.AnritsuMS464xB
property), 216

datablock_numeric_format (pymea-
sure.instruments.anritsu.AnritsuMS464xB
property), 217

datafile_frequency_unit (pymea-
sure.instruments.anritsu.AnritsuMS464xB
property), 217

datafile_include_heading (pymea-
sure.instruments.anritsu.AnritsuMS464xB
property), 217

datafile_parameter_format (pymea-
sure.instruments.anritsu.AnritsuMS464xB
property), 217

date (pymeasure.instruments.rohdeschwarz.sfm.SFM
property), 410

DBM (pymeasure.instruments.hp.hp856Xx.AmplitudeUnits
attribute), 277

DBMV (pymeasure.instruments.hp.hp856Xx.AmplitudeUnits
attribute), 277

DBUV (pymeasure.instruments.hp.hp856Xx.AmplitudeUnits
attribute), 277

DC (pymeasure.instruments.hp.hp856Xx.CouplingMode
attribute), 278

dc_mode() (pymeasure.instruments.lakeshore.LakeShore425
method), 358

dc_voltage (pymeasure.instruments.tcpowerconversion.CXN
property), 453

dcmode (pymeasure.instruments.srs.SR860 property),
447

DCXS (class in pymeasure.instruments.aja), 196

Index 581

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

deactivate_marker() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 267

default_setup() (pymea-
sure.instruments.keysight.KeysightDSOX1102G
method), 339

default_setup() (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
method), 366

default_setup() (pymea-
sure.instruments.teledyne.TeledyneOscilloscope
method), 469

define_arbitary_waveform() (pymea-
sure.instruments.keithley.Keithley6221
method), 320

define_position() (pymea-
sure.instruments.newport.esp300.Axis method),
377

delay (pymeasure.instruments.hp.HP3437A property),
244

delay (pymeasure.instruments.hp.HP6632A property),
285

delay_time (pymeasure.instruments.agilent.agilent4156.Agilent4156
property), 165

delete_data_file() (pymea-
sure.instruments.anritsu.AnritsuMS464xB
method), 217

delete_directory() (pymea-
sure.instruments.anritsu.AnritsuMS464xB
method), 217

demand_current (pymea-
sure.instruments.oxfordinstruments.IPS120_10
property), 400

demand_field (pymea-
sure.instruments.oxfordinstruments.IPS120_10
property), 400

demodulation_agc_enabled (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 258

demodulation_mode (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 258

demodulation_time (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 258

DemodulationMode (class in pymea-
sure.instruments.hp.hp856Xx), 278

deposition_time_min (pymea-
sure.instruments.aja.DCXS property), 197

deposition_time_sec (pymea-
sure.instruments.aja.DCXS property), 197

derivative_action_time (pymea-
sure.instruments.oxfordinstruments.ITC503
property), 396

detectedfrequency (pymeasure.instruments.srs.SR860
property), 447

DetectionModes (class in pymea-
sure.instruments.hp.hp856Xx), 278

detector_bandwidth (pymea-
sure.instruments.hp.HP34401A property),
241

detector_mode (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 252

determine_valid_channels() (pymea-
sure.instruments.keithley.Keithley2700
method), 316

deviation (pymeasure.instruments.rohdeschwarz.sfm.Sound_Channel
property), 417

device_address (pymea-
sure.instruments.thyracont.smartline_v2.SmartlineV2
property), 492

device_operation_enable_register (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
property), 130

device_operation_register (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
property), 131

device_serial (pymea-
sure.instruments.thyracont.smartline_v2.SmartlineV2
property), 492

device_type (pymeasure.instruments.thyracont.smartline_v1.SmartlineV1
property), 490

device_type (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2
property), 492

device_version (pymea-
sure.instruments.thyracont.smartline_v2.SmartlineV2
property), 492

digital_out_enable_data (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
property), 130

digitize() (pymeasure.instruments.keysight.KeysightDSOX1102G
method), 339

diode (pymeasure.instruments.agilent.Agilent34450A
property), 161

dip_search (pymeasure.instruments.anritsu.AnritsuMS9710C
property), 209

direction (pymeasure.instruments.anaheimautomation.DPSeriesMotorController
property), 203

DirectoryLineEdit (class in pymea-
sure.display.widgets.directory_widget), 90

disable (pymeasure.instruments.agilent.agilent4156.SMU
property), 167

disable (pymeasure.instruments.agilent.agilent4156.VMU
property), 169

disable (pymeasure.instruments.agilent.agilent4156.VSU
property), 169

disable() (pymeasure.instruments.agilent.Agilent8257D

582 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

method), 153
disable() (pymeasure.instruments.agilent.agilentB1500.SMU

method), 188
disable() (pymeasure.instruments.anritsu.AnritsuMG3692C

method), 208
disable() (pymeasure.instruments.danfysik.Danfysik8500

method), 227
disable() (pymeasure.instruments.deltaelektronika.SM7045D

method), 230
disable() (pymeasure.instruments.keysight.KeysightN5767A

method), 341
disable() (pymeasure.instruments.newport.ESP300

method), 377
disable() (pymeasure.instruments.newport.esp300.Axis

method), 377
disable() (pymeasure.instruments.parker.ParkerGV6

method), 403
disable() (pymeasure.instruments.toptica.ibeamsmart.IBeamSmart

method), 496
disable_all() (pymea-

sure.instruments.agilent.agilent4156.Agilent4156
method), 165

disable_amplitude_modulation() (pymea-
sure.instruments.agilent.Agilent8257D
method), 153

disable_averaging() (pymea-
sure.instruments.agilent.Agilent8722ES
method), 155

disable_bias() (pymeasure.instruments.srs.SR570
method), 441

disable_buffer() (pymea-
sure.instruments.keithley.Keithley2000
method), 289

disable_buffer() (pymea-
sure.instruments.keithley.Keithley2400
method), 302

disable_buffer() (pymea-
sure.instruments.keithley.Keithley2450
method), 310

disable_buffer() (pymea-
sure.instruments.keithley.Keithley2700
method), 317

disable_buffer() (pymea-
sure.instruments.keithley.Keithley6221
method), 321

disable_buffer() (pymea-
sure.instruments.keithley.Keithley6517B
method), 327

disable_control() (pymea-
sure.instruments.oxfordinstruments.IPS120_10
method), 400

disable_emission() (pymea-
sure.instruments.novanta.Fpu60 method),
393

disable_filter() (pymea-
sure.instruments.keithley.Keithley2000
method), 289

disable_low_freq_out() (pymea-
sure.instruments.agilent.Agilent8257D
method), 153

disable_modulation() (pymea-
sure.instruments.agilent.Agilent8257D
method), 153

disable_offset_current() (pymea-
sure.instruments.srs.SR570 method), 441

disable_output_trigger() (pymea-
sure.instruments.keithley.Keithley2400
method), 302

disable_output_trigger() (pymea-
sure.instruments.keithley.Keithley6221
method), 321

disable_persistent_mode() (pymea-
sure.instruments.oxfordinstruments.IPS120_10
method), 400

disable_persistent_switch() (pymea-
sure.instruments.ami.AMI430 method), 201

disable_pulse_modulation() (pymea-
sure.instruments.agilent.Agilent8257D
method), 153

disable_reference() (pymea-
sure.instruments.keithley.Keithley2000
method), 289

disable_rf() (pymea-
sure.instruments.anapico.APSIN12G method),
205

disable_source() (pymea-
sure.instruments.keithley.Keithley2400
method), 302

disable_source() (pymea-
sure.instruments.keithley.Keithley2450
method), 310

disable_source() (pymea-
sure.instruments.keithley.Keithley6221
method), 321

disable_source() (pymea-
sure.instruments.keithley.Keithley6517B
method), 327

disable_source() (pymea-
sure.instruments.yokogawa.Yokogawa7651
method), 500

display (pymeasure.instruments.agilent.Agilent33500
property), 174

display (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
property), 457

display (pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
property), 461

display (pymeasure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel
property), 473

Index 583

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

display_active (pymeasure.instruments.hp.HP6632A
property), 285

display_brightness (pymea-
sure.instruments.keithley.Keithley2306 prop-
erty), 298

display_channel (pymea-
sure.instruments.keithley.Keithley2306 prop-
erty), 298

display_closed_channels() (pymea-
sure.instruments.keithley.Keithley2700
method), 317

display_data (pymea-
sure.instruments.thyracont.smartline_v2.SmartlineV2
property), 492

display_enabled (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
property), 131

display_enabled (pymea-
sure.instruments.hp.HP34401A property),
241

display_enabled (pymea-
sure.instruments.keithley.Keithley2200 prop-
erty), 337

display_enabled (pymea-
sure.instruments.keithley.Keithley2306 prop-
erty), 298

display_enabled (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 302

display_enabled (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 321

display_estimates() (pymea-
sure.display.widgets.estimator_widget.EstimatorWidget
method), 90

display_filter_enabled (pymea-
sure.instruments.lakeshore.LakeShore421
property), 356

display_layout (pymea-
sure.instruments.anritsu.AnritsuMS464xB
property), 217

display_layout (pymea-
sure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
property), 221

display_line (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 255

display_orientation (pymea-
sure.instruments.thyracont.smartline_v2.SmartlineV2
property), 493

display_parameter (pymea-
sure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel
property), 474

display_parameter() (pymea-

sure.instruments.lecroy.LeCroyT3DSO1204
method), 366

display_parameter() (pymea-
sure.instruments.teledyne.TeledyneOscilloscope
method), 469

display_parameters (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 257

display_reset() (pymea-
sure.instruments.hp.HP3478A method), 246

display_text (pymeasure.instruments.hp.HP3478A
property), 246

display_text (pymea-
sure.instruments.keithley.Keithley2700 prop-
erty), 317

display_text_data (pymea-
sure.instruments.keithley.Keithley2200 prop-
erty), 337

display_text_data (pymea-
sure.instruments.keithley.Keithley2306 prop-
erty), 298

display_text_enabled (pymea-
sure.instruments.keithley.Keithley2306 prop-
erty), 298

display_text_no_symbol (pymea-
sure.instruments.hp.HP3478A property),
246

display_unit (pymea-
sure.instruments.thyracont.smartline_v1.SmartlineV1
property), 490

display_unit (pymea-
sure.instruments.thyracont.smartline_v2.SmartlineV2
property), 493

display_units (pymea-
sure.instruments.lakeshore.LakeShore211
property), 352

displayed_text (pymea-
sure.instruments.hp.HP34401A property),
241

do_fft() (pymeasure.instruments.hp.hp856Xx.HP856Xx
method), 262

DockWidget (class in pymea-
sure.display.widgets.dock_widget), 95

DOR (class in pymea-
sure.instruments.advantest.advantestR624X),
144

download_data() (pymea-
sure.instruments.keysight.KeysightDSOX1102G
method), 339

download_image() (pymea-
sure.instruments.keysight.KeysightDSOX1102G
method), 340

download_image() (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204

584 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

method), 366
download_image() (pymea-

sure.instruments.teledyne.TeledyneOscilloscope
method), 469

download_waveform() (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
method), 366

download_waveform() (pymea-
sure.instruments.teledyne.TeledyneOscilloscope
method), 469

DPSeriesMotorController (class in pymea-
sure.instruments.anaheimautomation), 202

DriverChannel (class in pymea-
sure.instruments.toptica.ibeamsmart), 497

DSP7225 (class in pymea-
sure.instruments.signalrecovery), 427

DSP7265 (class in pymea-
sure.instruments.signalrecovery), 433

dut_constant (pymea-
sure.instruments.temptronic.ATSBase prop-
erty), 477

dut_mode (pymeasure.instruments.temptronic.ATSBase
property), 478

dut_temperature (pymea-
sure.instruments.temptronic.ATSBase prop-
erty), 478

dut_type (pymeasure.instruments.temptronic.ATSBase
property), 478

duty_cycle (pymeasure.instruments.hp.HP8116A prop-
erty), 249

dwell_time (pymeasure.instruments.agilent.Agilent8257D
property), 153

dynamic_temperature_setpoint (pymea-
sure.instruments.temptronic.ATSBase prop-
erty), 478

E
ECO560 (class in pymeasure.instruments.temptronic), 484
elapsed_time (pymea-

sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 257

emergency_off() (pymea-
sure.instruments.eurotest.EurotestHPP120256
method), 232

emission (pymeasure.instruments.toptica.ibeamsmart.IBeamSmart
property), 496

emission_enabled (pymea-
sure.instruments.ipgphotonics.yar.YAR prop-
erty), 286

emission_enabled (pymea-
sure.instruments.novanta.Fpu60 property),
393

emit() (pymeasure.display.log.LogHandler method), 87

emit() (pymeasure.experiment.workers.Worker method),
79

enable (pymeasure.instruments.edwards.Nxds property),
231

enable() (pymeasure.instruments.agilent.Agilent8257D
method), 153

enable() (pymeasure.instruments.agilent.agilentB1500.SMU
method), 188

enable() (pymeasure.instruments.anritsu.AnritsuMG3692C
method), 208

enable() (pymeasure.instruments.danfysik.Danfysik8500
method), 227

enable() (pymeasure.instruments.deltaelektronika.SM7045D
method), 230

enable() (pymeasure.instruments.keysight.KeysightN5767A
method), 341

enable() (pymeasure.instruments.newport.ESP300
method), 377

enable() (pymeasure.instruments.newport.esp300.Axis
method), 377

enable() (pymeasure.instruments.parker.ParkerGV6
method), 403

enable_4W_mode() (pymea-
sure.instruments.siglenttechnologies.siglent_spdbase.SPDSingleChannelBase
method), 425

enable_air_flow (pymea-
sure.instruments.temptronic.ATSBase prop-
erty), 478

enable_amplitude_modulation() (pymea-
sure.instruments.agilent.Agilent8257D
method), 153

enable_averaging() (pymea-
sure.instruments.agilent.Agilent8722ES
method), 155

enable_bias() (pymeasure.instruments.srs.SR570
method), 441

enable_continous() (pymea-
sure.instruments.toptica.ibeamsmart.IBeamSmart
method), 496

enable_control() (pymea-
sure.instruments.oxfordinstruments.IPS120_10
method), 400

enable_filter() (pymea-
sure.instruments.keithley.Keithley2000
method), 290

enable_local_interface() (pymea-
sure.instruments.siglenttechnologies.siglent_spdbase.SPDBase
method), 424

enable_low_freq_out() (pymea-
sure.instruments.agilent.Agilent8257D
method), 153

enable_offset_current() (pymea-
sure.instruments.srs.SR570 method), 441

enable_output() (pymea-

Index 585

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

sure.instruments.siglenttechnologies.siglent_spdbase.SPDChannel
method), 425

enable_persistent_mode() (pymea-
sure.instruments.oxfordinstruments.IPS120_10
method), 400

enable_persistent_switch() (pymea-
sure.instruments.ami.AMI430 method), 201

enable_pulse_modulation() (pymea-
sure.instruments.agilent.Agilent8257D
method), 153

enable_pulsing() (pymea-
sure.instruments.toptica.ibeamsmart.IBeamSmart
method), 496

enable_reference() (pymea-
sure.instruments.keithley.Keithley2000
method), 290

enable_rf() (pymeasure.instruments.anapico.APSIN12G
method), 205

enable_source() (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
method), 124

enable_source() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 140

enable_source() (pymea-
sure.instruments.keithley.Keithley2400
method), 302

enable_source() (pymea-
sure.instruments.keithley.Keithley2450
method), 310

enable_source() (pymea-
sure.instruments.keithley.Keithley6221
method), 321

enable_source() (pymea-
sure.instruments.keithley.Keithley6517B
method), 327

enable_source() (pymea-
sure.instruments.yokogawa.Yokogawa7651
method), 500

enable_timer() (pymea-
sure.instruments.siglenttechnologies.siglent_spdbase.SPDChannel
method), 425

enabled (pymeasure.instruments.activetechnologies.AWG401x_AFG
property), 117

enabled (pymeasure.instruments.activetechnologies.AWG401x_AWG
property), 118

enabled (pymeasure.instruments.aja.DCXS property),
197

enabled (pymeasure.instruments.newport.esp300.Axis
property), 377

enabled (pymeasure.instruments.toptica.ibeamsmart.DriverChannel
property), 497

encoder_autocorrect (pymea-
sure.instruments.anaheimautomation.DPSeriesMotorController

property), 203
encoder_delay (pymea-

sure.instruments.anaheimautomation.DPSeriesMotorController
property), 203

encoder_enabled (pymea-
sure.instruments.anaheimautomation.DPSeriesMotorController
property), 203

encoder_motor_ratio (pymea-
sure.instruments.anaheimautomation.DPSeriesMotorController
property), 203

encoder_retries (pymea-
sure.instruments.anaheimautomation.DPSeriesMotorController
property), 203

encoder_window (pymea-
sure.instruments.anaheimautomation.DPSeriesMotorController
property), 203

end_of_all_cycles() (pymea-
sure.instruments.temptronic.ATSBase method),
478

end_of_one_cycle() (pymea-
sure.instruments.temptronic.ATSBase method),
478

END_OF_SWEEP (pymea-
sure.instruments.hp.hp856Xx.StatusRegister
attribute), 279

end_of_test() (pymea-
sure.instruments.temptronic.ATSBase method),
478

end_sequence() (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
method), 125

energy (pymeasure.instruments.thorlabs.ThorlabsPM100USB
property), 489

enter_cycle() (pymea-
sure.instruments.temptronic.ATSBase method),
479

enter_ramp() (pymea-
sure.instruments.temptronic.ATSBase method),
479

entry_level_strategy (pymea-
sure.instruments.activetechnologies.AWG401x_AWG
property), 118

eoi (pymeasure.adapters.PrologixAdapter property), 58
eos (pymeasure.adapters.PrologixAdapter property), 58
err_status (pymeasure.instruments.srs.SR830 prop-

erty), 443
error (pymeasure.instruments.keithley.Keithley2260B

property), 296
error (pymeasure.instruments.keithley.Keithley2400

property), 302
error (pymeasure.instruments.keithley.Keithley2450

property), 310
error (pymeasure.instruments.keithley.Keithley2600

property), 333

586 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

error (pymeasure.instruments.keithley.Keithley2700
property), 317

error (pymeasure.instruments.keithley.Keithley6221
property), 321

error (pymeasure.instruments.keithley.Keithley6517B
property), 327

error (pymeasure.instruments.newport.ESP300 prop-
erty), 377

error (pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDBase
property), 424

error (pymeasure.instruments.texio.TexioPSW360L30
property), 485

error_code (pymeasure.instruments.temptronic.ATSBase
property), 479

ERROR_PRESENT (pymea-
sure.instruments.hp.hp856Xx.StatusRegister
attribute), 279

error_reg (pymeasure.instruments.anaheimautomation.DPSeriesMotorController
property), 203

error_register (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
property), 131

error_status (pymeasure.instruments.hp.HP3478A
property), 246

error_status() (pymea-
sure.instruments.temptronic.ATSBase method),
479

ErrorCode (class in pymea-
sure.instruments.hp.hp856Xx), 278

ErrorCode (class in pymea-
sure.instruments.temptronic.temptronic_base),
483

errors (pymeasure.instruments.hp.hp856Xx.HP856Xx
attribute), 253

errors (pymeasure.instruments.newport.ESP300 prop-
erty), 377

ese2 (pymeasure.instruments.anritsu.AnritsuMS9710C
property), 209

ESP300 (class in pymeasure.instruments.newport), 377
esr2 (pymeasure.instruments.anritsu.AnritsuMS9710C

property), 209
EstimatorThread (class in pymea-

sure.display.widgets.estimator_widget), 90
EstimatorWidget (class in pymea-

sure.display.widgets.estimator_widget), 90
EurotestHPP120256 (class in pymea-

sure.instruments.eurotest), 231
EurotestHPP120256.EurotestHPP120256Status

(class in pymeasure.instruments.eurotest), 232
evaluate_metadata() (pymea-

sure.experiment.procedure.Procedure method),
73

event_reg (pymeasure.instruments.rohdeschwarz.sfm.SFM
property), 410

event_status_enable (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
property), 130

event_status_enable_bits (pymea-
sure.instruments.anritsu.AnritsuMS464xB
property), 217

event_status_register (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
property), 131

exchange_traces() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 265

exec() (pymeasure.display.console.ManagedConsole
method), 84

execute() (pymeasure.experiment.procedure.Procedure
method), 73

expand_channel_string() (pymea-
sure.instruments.ni.virtualbench.VirtualBench
method), 391

expected_protocol() (in module pymeasure.test), 66
Experiment (class in pymeasure.display.manager), 88
Experiment (class in pymea-

sure.experiment.experiment), 71
ExperimentQueue (class in pymea-

sure.display.manager), 88
export_signal() (pymea-

sure.instruments.ni.virtualbench.VirtualBench.DigitalInputOutput
method), 379

ExpressionValidator (class in pymea-
sure.display.widgets.sequencer_widget),
92

ext_ref_base_unit (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 410

ext_ref_extension (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 410

ext_trig_out (pymea-
sure.instruments.agilent.Agilent33500 prop-
erty), 174

ext_vid_connector (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 410

External (pymeasure.instruments.hp.hp856Xx.FrequencyReference
attribute), 278

External (pymeasure.instruments.hp.hp856Xx.MixerMode
attribute), 277

External (pymeasure.instruments.hp.hp856Xx.SourceLevelingControlMode
attribute), 279

External (pymeasure.instruments.hp.hp856Xx.TriggerMode
attribute), 280

external_arming_start_slope (pymea-
sure.instruments.pendulum.cnt91.CNT91
property), 405

Index 587

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

external_current (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 211

external_modulation_frequency (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 410

external_modulation_power (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 411

external_modulation_source (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 411

external_start_arming_source (pymea-
sure.instruments.pendulum.cnt91.CNT91
property), 405

external_trigger_delay (pymea-
sure.instruments.anritsu.AnritsuMS464xB
property), 218

external_trigger_edge (pymea-
sure.instruments.anritsu.AnritsuMS464xB
property), 218

external_trigger_handshake (pymea-
sure.instruments.anritsu.AnritsuMS464xB
property), 218

external_trigger_type (pymea-
sure.instruments.anritsu.AnritsuMS464xB
property), 218

extfreqency (pymeasure.instruments.srs.SR860 prop-
erty), 447

extract_value() (pymea-
sure.instruments.keithley.Keithley6517B
static method), 327

F
factory_reset() (pymea-

sure.instruments.keysight.KeysightDSOX1102G
method), 340

FakeAdapter (class in pymeasure.adapters), 67
FakeInstrument (class in pymea-

sure.instruments.fakes), 112
fast_mode (pymeasure.instruments.lakeshore.LakeShore421

property), 356
fast_mode_enabled (pymea-

sure.instruments.advantest.advantestR624X.SMUChannel
property), 133

fault_code (pymeasure.instruments.aja.DCXS prop-
erty), 197

Fav (pymeasure.instruments.hp.hp856Xx.SweepOut at-
tribute), 280

fet (pymeasure.instruments.signalrecovery.DSP7225
property), 430

fet (pymeasure.instruments.signalrecovery.DSP7265
property), 436

fetch_control (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 211

fetch_density (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 211

fetch_eirpower (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 211

fetch_eirpower_data (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 211

fetch_eirpower_max (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 211

fetch_emf (pymeasure.instruments.anritsu.AnritsuMS2090A
property), 211

fetch_emf_meter (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 212

fetch_emf_meter_sample (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 212

fetch_interference_power (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 212

fetch_mimo_antenas (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 212

fetch_ocupied_bw (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 212

fetch_ota_mapping (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 212

fetch_pan (pymeasure.instruments.anritsu.AnritsuMS2090A
property), 212

fetch_pbch_constellation (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 212

fetch_pci (pymeasure.instruments.anritsu.AnritsuMS2090A
property), 212

fetch_pdsch (pymeasure.instruments.anritsu.AnritsuMS2090A
property), 212

fetch_pdsch_constellation (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 212

fetch_peak (pymeasure.instruments.anritsu.AnritsuMS2090A
property), 212

fetch_power (pymeasure.instruments.anritsu.AnritsuMS2090A
property), 212

fetch_rrm (pymeasure.instruments.anritsu.AnritsuMS2090A
property), 212

fetch_scan (pymeasure.instruments.anritsu.AnritsuMS2090A

588 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property), 212
fetch_semask (pymea-

sure.instruments.anritsu.AnritsuMS2090A
property), 212

fetch_ssb (pymeasure.instruments.anritsu.AnritsuMS2090A
property), 212

fetch_sync_evm (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 212

fetch_sync_power (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 212

fetch_tae (pymeasure.instruments.anritsu.AnritsuMS2090A
property), 213

field (pymeasure.instruments.ami.AMI430 property),
201

field (pymeasure.instruments.fwbell.FWBell5080 prop-
erty), 235

field (pymeasure.instruments.lakeshore.LakeShore421
property), 356

field (pymeasure.instruments.lakeshore.LakeShore425
property), 359

field (pymeasure.instruments.oxfordinstruments.IPS120_10
property), 400

field_mode (pymeasure.instruments.lakeshore.LakeShore421
property), 356

field_multiplier (pymea-
sure.instruments.lakeshore.LakeShore421
property), 356

field_range (pymeasure.instruments.lakeshore.LakeShore421
property), 356

field_range_raw (pymea-
sure.instruments.lakeshore.LakeShore421
property), 357

field_raw (pymeasure.instruments.lakeshore.LakeShore421
property), 357

field_setpoint (pymea-
sure.instruments.oxfordinstruments.IPS120_10
property), 400

fields() (pymeasure.instruments.fwbell.FWBell5080
method), 235

filer_synchronous (pymeasure.instruments.srs.SR860
property), 447

filter (pymeasure.instruments.agilent.agilentB1500.SMU
property), 188

filter (pymeasure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator
property), 383

filter_advanced (pymeasure.instruments.srs.SR860
property), 447

filter_count (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 302

filter_slope (pymeasure.instruments.srs.SR830 prop-
erty), 444

filter_slope (pymeasure.instruments.srs.SR860 prop-
erty), 447

filter_state (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 302

filter_synchronous (pymea-
sure.instruments.srs.SR830 property), 444

filter_type (pymeasure.instruments.keithley.Keithley2400
property), 302

filter_type (pymeasure.instruments.srs.SR570 prop-
erty), 441

find_img_index() (pymea-
sure.display.curves.ResultsImage method),
85

firmware (pymeasure.instruments.ipgphotonics.yar.YAR
property), 286

firmware_revision (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 257

firmware_version (pymea-
sure.instruments.tcpowerconversion.CXN
property), 453

firmware_version (pymea-
sure.instruments.thyracont.smartline_v2.SmartlineV2
property), 493

flags() (pymeasure.display.widgets.sequencer_widget.SequencerTreeModel
method), 93

Flattop (pymeasure.instruments.hp.hp856Xx.WindowType
attribute), 280

FloatParameter (class in pymea-
sure.experiment.parameters), 75

Fluke7341 (class in pymeasure.instruments.fluke), 234
flush_read_buffer() (pymeasure.adapters.Adapter

method), 48
flush_read_buffer() (pymea-

sure.adapters.FakeAdapter method), 67
flush_read_buffer() (pymea-

sure.adapters.PrologixAdapter method),
58

flush_read_buffer() (pymea-
sure.adapters.ProtocolAdapter method),
67

flush_read_buffer() (pymea-
sure.adapters.SerialAdapter method), 54

flush_read_buffer() (pymea-
sure.adapters.TelnetAdapter method), 64

flush_read_buffer() (pymea-
sure.adapters.VISAAdapter method), 51

flush_read_buffer() (pymea-
sure.adapters.VXI11Adapter method), 61

fm_deviation (pymeasure.instruments.hp.HP8657B
property), 282

fm_source (pymeasure.instruments.hp.HP8657B prop-
erty), 282

Index 589

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

foldback_delay (pymea-
sure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
property), 457

foldback_delay (pymea-
sure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
property), 462

foldback_enabled (pymea-
sure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
property), 457

foldback_enabled (pymea-
sure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
property), 462

foldback_reset() (pymea-
sure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
method), 457

foldback_reset() (pymea-
sure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
method), 462

force() (pymeasure.instruments.agilent.agilentB1500.SMU
method), 189

force_gnd() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500
method), 184

force_gnd() (pymeasure.instruments.agilent.agilentB1500.SMU
method), 188

FORCE_SIDE (pymeasure.instruments.agilent.agilentB1500.MeasOpMode
attribute), 194

force_trigger() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope
method), 387

format (pymeasure.instruments.pendulum.cnt91.CNT91
property), 405

format() (pymeasure.display.widgets.log_widget.HTMLFormatter
method), 91

format() (pymeasure.experiment.results.CSVFormatter
method), 79

format() (pymeasure.experiment.results.Results
method), 80

Fpu60 (class in pymeasure.instruments.novanta), 392
frame (pymeasure.instruments.fakes.SwissArmyFake

property), 113
frame_format (pymea-

sure.instruments.fakes.SwissArmyFake prop-
erty), 113

frame_height (pymea-
sure.instruments.fakes.SwissArmyFake prop-
erty), 113

frame_width (pymeasure.instruments.fakes.SwissArmyFake
property), 113

Free (pymeasure.instruments.hp.hp856Xx.TriggerMode
attribute), 280

freq_center (pymeasure.instruments.rohdeschwarz.fsl.FSL
property), 421

freq_span (pymeasure.instruments.rohdeschwarz.fsl.FSL
property), 421

freq_start (pymeasure.instruments.rohdeschwarz.fsl.FSL
property), 421

freq_stop (pymeasure.instruments.rohdeschwarz.fsl.FSL
property), 421

freq_sweep() (pymea-
sure.instruments.agilent.AgilentE4980
method), 157

frequencies (pymeasure.instruments.agilent.Agilent8722ES
property), 155

frequencies (pymeasure.instruments.agilent.AgilentE4408B
property), 156

frequency (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG
property), 120

frequency (pymeasure.instruments.agilent.Agilent33220A
property), 171

frequency (pymeasure.instruments.agilent.Agilent33500
property), 174

frequency (pymeasure.instruments.agilent.agilent33500.Agilent33500Channel
property), 177

frequency (pymeasure.instruments.agilent.Agilent33521A
property), 176

frequency (pymeasure.instruments.agilent.Agilent34450A
property), 161

frequency (pymeasure.instruments.agilent.Agilent8257D
property), 153

frequency (pymeasure.instruments.agilent.AgilentE4980
property), 157

frequency (pymeasure.instruments.ametek.Ametek7270
property), 199

frequency (pymeasure.instruments.anapico.APSIN12G
property), 205

frequency (pymeasure.instruments.andeenhagerling.AH2700A
property), 206

frequency (pymeasure.instruments.anritsu.AnritsuMG3692C
property), 208

frequency (pymeasure.instruments.attocube.anc300.Axis
property), 225

frequency (pymeasure.instruments.hp.HP33120A prop-
erty), 240

frequency (pymeasure.instruments.hp.HP8116A prop-
erty), 249

Frequency (pymeasure.instruments.hp.hp856Xx.DemodulationMode
attribute), 278

frequency (pymeasure.instruments.hp.HP8657B prop-
erty), 282

frequency (pymeasure.instruments.keithley.Keithley2000
property), 290

frequency (pymeasure.instruments.rohdeschwarz.sfm.SFM
property), 411

frequency (pymeasure.instruments.rohdeschwarz.sfm.Sound_Channel
property), 417

frequency (pymeasure.instruments.signalrecovery.DSP7225
property), 430

frequency (pymeasure.instruments.signalrecovery.DSP7265

590 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property), 436
frequency (pymeasure.instruments.srs.SR510 property),

440
frequency (pymeasure.instruments.srs.SR830 property),

444
frequency (pymeasure.instruments.srs.SR860 property),

447
frequency (pymeasure.instruments.tcpowerconversion.CXN

property), 453
frequency (pymeasure.instruments.teledyne.teledyneT3AFG.SignalChannel

property), 467
frequency_aperature (pymea-

sure.instruments.keithley.Keithley2000 prop-
erty), 290

frequency_aperture (pymea-
sure.instruments.agilent.Agilent34450A
property), 161

frequency_center (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 213

frequency_center (pymea-
sure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
property), 221

frequency_counter_mode_enabled (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 256

frequency_counter_resolution (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 256

frequency_current_auto_range (pymea-
sure.instruments.agilent.Agilent34450A
property), 161

frequency_current_range (pymea-
sure.instruments.agilent.Agilent34450A
property), 161

frequency_CW (pymea-
sure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
property), 221

frequency_digits (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 290

frequency_display_enabled (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 260

frequency_max (pymea-
sure.instruments.activetechnologies.AWG401x.ChannelAFG
property), 120

frequency_min (pymea-
sure.instruments.activetechnologies.AWG401x.ChannelAFG
property), 120

frequency_mode (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 411

frequency_offset (pymea-

sure.instruments.anritsu.AnritsuMS2090A
property), 213

frequency_offset (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 259

frequency_points (pymea-
sure.instruments.agilent.AgilentE4408B
property), 156

frequency_reference (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 290

frequency_reference_source (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 260

frequency_span (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 213

frequency_span (pymea-
sure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
property), 221

frequency_span_full (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 213

frequency_span_last (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 213

frequency_start (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 213

frequency_start (pymea-
sure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
property), 221

frequency_step (pymea-
sure.instruments.agilent.AgilentE4408B
property), 156

frequency_step (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 213

frequency_stop (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 213

frequency_stop (pymea-
sure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
property), 221

frequency_threshold (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 290

frequency_voltage_auto_range (pymea-
sure.instruments.agilent.Agilent34450A
property), 162

frequency_voltage_range (pymea-
sure.instruments.agilent.Agilent34450A
property), 162

frequencypreset1 (pymeasure.instruments.srs.SR860

Index 591

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property), 447
frequencypreset2 (pymeasure.instruments.srs.SR860

property), 447
frequencypreset3 (pymeasure.instruments.srs.SR860

property), 447
frequencypreset4 (pymeasure.instruments.srs.SR860

property), 448
FrequencyReference (class in pymea-

sure.instruments.hp.hp856Xx), 278
front_blanked (pymeasure.instruments.srs.SR570

property), 441
front_panel (pymeasure.instruments.srs.SR860 prop-

erty), 448
front_panel_brightness (pymea-

sure.instruments.lakeshore.LakeShore421
property), 357

front_panel_display (pymea-
sure.instruments.oxfordinstruments.ITC503
property), 396

front_panel_locked (pymea-
sure.instruments.lakeshore.LakeShore421
property), 357

FSL (class in pymeasure.instruments.rohdeschwarz.fsl),
420

function_ (pymeasure.instruments.hp.HP34401A prop-
erty), 241

fw_version (pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDBase
property), 424

FWBell5080 (class in pymeasure.instruments.fwbell),
234

G
gain (pymeasure.instruments.signalrecovery.DSP7225

property), 430
gain (pymeasure.instruments.signalrecovery.DSP7265

property), 436
gain_mode (pymeasure.instruments.srs.SR570 property),

441
gasflow (pymeasure.instruments.oxfordinstruments.ITC503

property), 396
gasflow_configuration_parameter (pymea-

sure.instruments.oxfordinstruments.ITC503
property), 396

gasflow_control_status (pymea-
sure.instruments.oxfordinstruments.ITC503
property), 396

gate_time (pymeasure.instruments.hp.HP34401A prop-
erty), 241

gen_measurement() (pymea-
sure.experiment.procedure.Procedure method),
73

GeneralError (class in pymea-
sure.instruments.newport.esp300), 378

Generator (class in pymeasure.generator), 69

get() (pymeasure.instruments.agilent.agilentB1500.CustomIntEnum
class method), 193

get_alarm_status() (pymea-
sure.instruments.lakeshore.LakeShore211
method), 352

get_array() (in module pymea-
sure.experiment.experiment), 72

get_array_steps() (in module pymea-
sure.experiment.experiment), 72

get_array_zero() (in module pymea-
sure.experiment.experiment), 72

get_buffer() (pymea-
sure.instruments.signalrecovery.DSP7225
method), 430

get_buffer() (pymea-
sure.instruments.signalrecovery.DSP7265
method), 437

get_buffer() (pymeasure.instruments.srs.SR830
method), 444

get_calibration_information() (pymea-
sure.instruments.ni.virtualbench.VirtualBench
method), 392

get_channel_pairs() (pymea-
sure.instruments.common_base.CommonBase
static method), 107

get_channel_pairs() (pymea-
sure.instruments.keithley.Keithley2200 static
method), 337

get_channel_pairs() (pymea-
sure.instruments.keysight.KeysightE36312A
static method), 348

get_channel_pairs() (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
static method), 367

get_channels() (pymea-
sure.instruments.common_base.CommonBase
static method), 107

get_channels() (pymea-
sure.instruments.keithley.Keithley2200 static
method), 337

get_channels() (pymea-
sure.instruments.keysight.KeysightE36312A
static method), 348

get_channels() (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
static method), 367

get_data() (pymeasure.instruments.agilent.agilent4156.Agilent4156
method), 165

get_estimates() (pymea-
sure.display.widgets.estimator_widget.EstimatorWidget
method), 90

get_estimates() (pymea-
sure.experiment.procedure.Procedure method),
73

592 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

get_filename() (pymea-
sure.display.console.ManagedConsole
method), 84

get_library_version() (pymea-
sure.instruments.ni.virtualbench.VirtualBench
method), 392

get_noise_bandwidth (pymea-
sure.instruments.srs.SR860 property), 448

get_operation_times() (pymea-
sure.instruments.novanta.Fpu60 method),
393

get_power_bandwidth() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 262

get_procedure() (pymea-
sure.display.widgets.inputs_widget.InputsWidget
method), 91

get_relay_mode() (pymea-
sure.instruments.lakeshore.LakeShore211
method), 353

get_scaling() (pymeasure.instruments.srs.SR830
method), 444

get_sensor_transition() (pymea-
sure.instruments.thyracont.smartline_v2.SmartlineV2
method), 493

get_signal_strength_indicator (pymea-
sure.instruments.srs.SR860 property), 448

get_state_of_channels() (pymea-
sure.instruments.keithley.Keithley2700
method), 317

get_trace_data_a() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 263

get_trace_data_b() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 263

get_wl_data() (pymea-
sure.instruments.keysight.KeysightN7776C
method), 342

getAI() (in module pymeasure.instruments.comedi), 116
getAO() (in module pymeasure.instruments.comedi), 116
gettimebase (pymeasure.instruments.srs.SR860 prop-

erty), 448
gpib() (pymeasure.adapters.PrologixAdapter method),

58
gpib_address (pymea-

sure.instruments.rohdeschwarz.sfm.SFM
property), 411

gpib_read_timeout (pymea-
sure.adapters.PrologixAdapter property),
58

GPIB_trigger() (pymeasure.instruments.hp.HP8116A
method), 248

GPIB_trigger() (pymea-

sure.instruments.hp.HPLegacyInstrument
method), 283

gps (pymeasure.instruments.anritsu.AnritsuMS2090A
property), 213

gps_all (pymeasure.instruments.anritsu.AnritsuMS2090A
property), 213

gps_full (pymeasure.instruments.anritsu.AnritsuMS2090A
property), 213

gps_last (pymeasure.instruments.anritsu.AnritsuMS2090A
property), 213

graticule_enabled (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 257

grid_display (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
property), 367

ground_all() (pymea-
sure.instruments.attocube.anc300.ANC300Controller
method), 224

H
handle_abort() (pymea-

sure.experiment.workers.Worker method),
79

handle_deprecated_host_arg() (pymea-
sure.instruments.attocube.anc300.ANC300Controller
method), 224

handle_error() (pymea-
sure.experiment.workers.Worker method),
79

Hanning (pymeasure.instruments.hp.hp856Xx.WindowType
attribute), 281

harmonic (pymeasure.instruments.ametek.Ametek7270
property), 199

harmonic (pymeasure.instruments.signalrecovery.DSP7225
property), 430

harmonic (pymeasure.instruments.signalrecovery.DSP7265
property), 437

harmonic (pymeasure.instruments.srs.SR830 property),
444

harmonic (pymeasure.instruments.srs.SR860 property),
448

harmonic_number_lock (pymea-
sure.instruments.hp.HP8561B property),
275

harmonicdual (pymeasure.instruments.srs.SR860 prop-
erty), 448

has_amplitude_modulation (pymea-
sure.instruments.agilent.Agilent8257D prop-
erty), 154

has_modulation (pymea-
sure.instruments.agilent.Agilent8257D prop-
erty), 154

Index 593

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

has_next() (pymeasure.display.manager.ExperimentQueue
method), 88

has_persistent_switch_enabled() (pymea-
sure.instruments.ami.AMI430 method), 201

has_pulse_modulation (pymea-
sure.instruments.agilent.Agilent8257D prop-
erty), 154

haversine_enabled (pymea-
sure.instruments.hp.HP8116A property),
249

head (pymeasure.instruments.temptronic.ATSBase prop-
erty), 479

head_temperature (pymea-
sure.instruments.novanta.Fpu60 property),
393

header() (pymeasure.experiment.results.Results
method), 80

headerData() (pymea-
sure.display.widgets.sequencer_widget.SequencerTreeModel
method), 93

headerData() (pymea-
sure.display.widgets.table_widget.PandasModelBase
method), 96

heater (pymeasure.instruments.oxfordinstruments.ITC503
property), 396

heater_gas_mode (pymea-
sure.instruments.oxfordinstruments.ITC503
property), 396

heater_voltage (pymea-
sure.instruments.oxfordinstruments.ITC503
property), 396

High (pymeasure.instruments.hp.hp856Xx.PeakSearchMode
attribute), 279

high_freq (pymeasure.instruments.srs.SR570 property),
441

high_frequency_resolution (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 411

high_level (pymeasure.instruments.hp.HP8116A prop-
erty), 249

HMP4040 (class in pymea-
sure.instruments.rohdeschwarz.hmp), 421

hold() (pymeasure.instruments.hp.hp856Xx.HP856Xx
method), 256

hold_function (pymea-
sure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
property), 222

hold_function_all_channels (pymea-
sure.instruments.anritsu.AnritsuMS464xB
property), 218

hold_time (pymeasure.instruments.agilent.agilent4156.Agilent4156
property), 165

home() (pymeasure.instruments.anaheimautomation.DPSeriesMotorController
method), 203

home() (pymeasure.instruments.newport.esp300.Axis
method), 377

horizontal_time_div (pymea-
sure.instruments.srs.SR860 property), 448

hotcathode (pymeasure.instruments.thyracont.smartline_v2.VSH
attribute), 494

HP33120A (class in pymeasure.instruments.hp), 239
HP3437A (class in pymeasure.instruments.hp), 243
HP3437A.SRQ (class in pymeasure.instruments.hp), 243
HP34401A (class in pymeasure.instruments.hp), 240
HP3478A (class in pymeasure.instruments.hp), 245
HP3478A.ERRORS (class in pymeasure.instruments.hp),

245
HP6632A (class in pymeasure.instruments.hp), 284
HP6632A.ERRORS (class in pymeasure.instruments.hp),

284
HP6632A.ST_ERRORS (class in pymea-

sure.instruments.hp), 284
HP6633A (class in pymeasure.instruments.hp), 286
HP6634A (class in pymeasure.instruments.hp), 286
HP8116A (class in pymeasure.instruments.hp), 248
HP8116A.Digit (class in pymeasure.instruments.hp),

248
HP8116A.Direction (class in pymea-

sure.instruments.hp), 248
HP8560A (class in pymeasure.instruments.hp), 273
HP8561B (class in pymeasure.instruments.hp), 275
HP8657B (class in pymeasure.instruments.hp), 281
HP8657B.Modulation (class in pymea-

sure.instruments.hp), 281
HPLegacyInstrument (class in pymea-

sure.instruments.hp), 283
HRADC (pymeasure.instruments.agilent.agilentB1500.ADCType

attribute), 193
HSADC (pymeasure.instruments.agilent.agilentB1500.ADCType

attribute), 193
HSADC_PULSED (pymea-

sure.instruments.agilent.agilentB1500.ADCType
attribute), 193

HTMLFormatter (class in pymea-
sure.display.widgets.log_widget), 91

I
IBeamSmart (class in pymea-

sure.instruments.toptica.ibeamsmart), 495
id (pymeasure.instruments.advantest.advantestR3767CG.AdvantestR3767CG

property), 122
id (pymeasure.instruments.aja.DCXS property), 197
id (pymeasure.instruments.ametek.Ametek7270 prop-

erty), 199
id (pymeasure.instruments.andeenhagerling.AH2700A

property), 206
id (pymeasure.instruments.danfysik.Danfysik8500 prop-

erty), 228

594 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

id (pymeasure.instruments.eurotest.EurotestHPP120256
property), 233

id (pymeasure.instruments.fluke.Fluke7341 property),
234

id (pymeasure.instruments.fwbell.FWBell5080 property),
235

id (pymeasure.instruments.heidenhain.ND287 property),
237

id (pymeasure.instruments.hp.HP6632A property), 285
id (pymeasure.instruments.hp.hp856Xx.HP856Xx at-

tribute), 257
id (pymeasure.instruments.hp.HP8657B attribute), 283
id (pymeasure.instruments.Instrument property), 110
id (pymeasure.instruments.ipgphotonics.yar.YAR prop-

erty), 286
id (pymeasure.instruments.keithley.Keithley2000 prop-

erty), 290
id (pymeasure.instruments.keithley.Keithley2200 prop-

erty), 337
id (pymeasure.instruments.keithley.Keithley2260B prop-

erty), 296
id (pymeasure.instruments.keithley.Keithley2306 prop-

erty), 298
id (pymeasure.instruments.keithley.Keithley2400 prop-

erty), 302
id (pymeasure.instruments.keithley.Keithley2450 prop-

erty), 310
id (pymeasure.instruments.keithley.Keithley2600 prop-

erty), 333
id (pymeasure.instruments.keithley.Keithley2700 prop-

erty), 317
id (pymeasure.instruments.keithley.Keithley2750 prop-

erty), 331
id (pymeasure.instruments.keithley.Keithley6221 prop-

erty), 321
id (pymeasure.instruments.keithley.Keithley6517B prop-

erty), 327
id (pymeasure.instruments.keysight.KeysightE36312A

property), 348
id (pymeasure.instruments.lecroy.LeCroyT3DSO1204

property), 367
id (pymeasure.instruments.signalrecovery.DSP7225

property), 430
id (pymeasure.instruments.signalrecovery.DSP7265

property), 437
id (pymeasure.instruments.tcpowerconversion.CXN

property), 453
id (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38

property), 457
id (pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65

property), 462
id (pymeasure.instruments.teledyne.TeledyneT3AFG

property), 466
id (pymeasure.instruments.texio.TexioPSW360L30 prop-

erty), 486
id (pymeasure.instruments.thermotron.Thermotron3800

property), 487
id (pymeasure.instruments.velleman.VellemanK8090 at-

tribute), 498
id (pymeasure.instruments.yokogawa.Yokogawa7651

property), 500
ImageFrame (class in pymea-

sure.display.widgets.image_frame), 90
ImageWidget (class in pymea-

sure.display.widgets.image_widget), 90
imode (pymeasure.instruments.signalrecovery.DSP7225

property), 430
imode (pymeasure.instruments.signalrecovery.DSP7265

property), 437
impedance (pymeasure.instruments.agilent.AgilentE4980

property), 157
index() (pymeasure.display.widgets.sequencer_widget.SequencerTreeModel

method), 93
information (pymeasure.instruments.hcp.TC038 prop-

erty), 238
init_all_sweep() (pymea-

sure.instruments.anritsu.AnritsuMS2090A
method), 213

init_continuous (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 213

init_curve_buffer() (pymea-
sure.instruments.signalrecovery.DSP7225
method), 430

init_curve_buffer() (pymea-
sure.instruments.signalrecovery.DSP7265
method), 437

init_sequence() (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
method), 125

init_spa_self (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 213

init_sweep() (pymea-
sure.instruments.anritsu.AnritsuMS2090A
method), 213

init_trigger() (pymea-
sure.instruments.hp.HP34401A method),
241

initalize_oven() (pymea-
sure.instruments.thermotron.Thermotron3800
method), 488

initialize_all_smus() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 184

initialize_smu() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 184

Index 595

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

Input (class in pymeasure.display.inputs), 85
input_0 (pymeasure.instruments.lakeshore.LakeShore224

attribute), 353
input_A (pymeasure.instruments.lakeshore.LakeShore224

attribute), 353
input_A (pymeasure.instruments.lakeshore.LakeShore331

attribute), 355
input_B (pymeasure.instruments.lakeshore.LakeShore224

attribute), 353
input_B (pymeasure.instruments.lakeshore.LakeShore331

attribute), 355
input_C1 (pymeasure.instruments.lakeshore.LakeShore224

attribute), 354
input_C2 (pymeasure.instruments.lakeshore.LakeShore224

attribute), 354
input_C3 (pymeasure.instruments.lakeshore.LakeShore224

attribute), 354
input_C4 (pymeasure.instruments.lakeshore.LakeShore224

attribute), 354
input_C5 (pymeasure.instruments.lakeshore.LakeShore224

attribute), 354
input_config (pymeasure.instruments.srs.SR830 prop-

erty), 444
input_coupling (pymeasure.instruments.srs.SR830

property), 444
input_coupling (pymeasure.instruments.srs.SR860

property), 448
input_current_gain (pymea-

sure.instruments.srs.SR860 property), 448
input_D1 (pymeasure.instruments.lakeshore.LakeShore224

attribute), 354
input_D2 (pymeasure.instruments.lakeshore.LakeShore224

attribute), 354
input_D3 (pymeasure.instruments.lakeshore.LakeShore224

attribute), 354
input_D4 (pymeasure.instruments.lakeshore.LakeShore224

attribute), 354
input_D5 (pymeasure.instruments.lakeshore.LakeShore224

attribute), 354
input_grounding (pymeasure.instruments.srs.SR830

property), 444
input_notch_config (pymea-

sure.instruments.srs.SR830 property), 444
input_range (pymeasure.instruments.srs.SR860 prop-

erty), 448
input_shields (pymeasure.instruments.srs.SR860

property), 448
input_signal (pymeasure.instruments.srs.SR860 prop-

erty), 448
input_voltage_mode (pymea-

sure.instruments.srs.SR860 property), 448
InputsWidget (class in pymea-

sure.display.widgets.inputs_widget), 91
insert_id() (pymeasure.instruments.advantest.advantestR624X.SMUChannel

method), 132
insert_id() (pymeasure.instruments.attocube.anc300.Axis

method), 225
insert_id() (pymeasure.instruments.Channel method),

112
insert_id() (pymeasure.instruments.keithley.keithley2200.PSChannel

method), 338
insert_id() (pymeasure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel

method), 474
instant_voltage_1 (pymea-

sure.instruments.razorbill.razorbillRP100
property), 406

instant_voltage_2 (pymea-
sure.instruments.razorbill.razorbillRP100
property), 406

instantiate() (pymeasure.generator.Generator
method), 69

Instrument (class in pymeasure.instruments), 109
IntegerInput (class in pymeasure.display.inputs), 85
IntegerParameter (class in pymea-

sure.experiment.parameters), 75
integral_action_time (pymea-

sure.instruments.oxfordinstruments.ITC503
property), 396

integration_time (pymea-
sure.instruments.agilent.agilent4156.Agilent4156
property), 165

intensity (pymeasure.instruments.lecroy.LeCroyT3DSO1204
property), 367

intensity (pymeasure.instruments.teledyne.TeledyneOscilloscope
property), 469

interlock_enabled (pymea-
sure.instruments.novanta.Fpu60 property),
393

Internal (pymeasure.instruments.hp.hp856Xx.FrequencyReference
attribute), 278

Internal (pymeasure.instruments.hp.hp856Xx.MixerMode
attribute), 277

Internal (pymeasure.instruments.hp.hp856Xx.SourceLevelingControlMode
attribute), 279

internal_frequency (pymea-
sure.instruments.agilent.Agilent8257D prop-
erty), 154

internal_shape (pymea-
sure.instruments.agilent.Agilent8257D prop-
erty), 154

internalfrequency (pymeasure.instruments.srs.SR860
property), 448

interpolator_autocalibrated (pymea-
sure.instruments.pendulum.cnt91.CNT91
property), 405

interrupt_sequence_command() (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
method), 126

596 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

invert (pymeasure.instruments.lecroy.lecroyT3DSO1204.LeCroyT3DSO1204Channel
property), 374

invert_signal_sign (pymea-
sure.instruments.srs.SR570 property), 441

ion_gauge_status (pymea-
sure.instruments.mksinst.mks937b.IonGaugeAndPressureChannel
property), 376

IonGaugeAndPressureChannel (class in pymea-
sure.instruments.mksinst.mks937b), 376

IPS120_10 (class in pymea-
sure.instruments.oxfordinstruments), 399

is_averaging() (pymea-
sure.instruments.agilent.Agilent8722ES
method), 155

is_buffer_full() (pymea-
sure.instruments.keithley.Keithley2000
method), 290

is_buffer_full() (pymea-
sure.instruments.keithley.Keithley2400
method), 302

is_buffer_full() (pymea-
sure.instruments.keithley.Keithley2450
method), 310

is_buffer_full() (pymea-
sure.instruments.keithley.Keithley2700
method), 317

is_buffer_full() (pymea-
sure.instruments.keithley.Keithley6221
method), 321

is_buffer_full() (pymea-
sure.instruments.keithley.Keithley6517B
method), 327

is_current_stable() (pymea-
sure.instruments.danfysik.Danfysik8500
method), 228

is_enabled (pymeasure.instruments.agilent.Agilent8257D
property), 154

is_enabled() (pymea-
sure.instruments.danfysik.Danfysik8500
method), 228

is_enabled() (pymea-
sure.instruments.keysight.KeysightN5767A
method), 342

is_moving() (pymeasure.instruments.parker.ParkerGV6
method), 403

is_out_of_range() (pymeasure.instruments.srs.SR830
method), 444

is_ready() (pymeasure.instruments.danfysik.Danfysik8500
method), 228

is_running() (pymea-
sure.display.manager.BaseManager method),
87

is_sequence_running() (pymea-
sure.instruments.danfysik.Danfysik8500

method), 228
is_set() (pymeasure.experiment.parameters.Metadata

method), 77
is_set() (pymeasure.experiment.parameters.Parameter

method), 78
is_valid_response() (pymea-

sure.instruments.oxfordinstruments.base.OxfordInstrumentsBase
method), 394

ITC503 (class in pymea-
sure.instruments.oxfordinstruments), 395

ITC503.FLOW_CONTROL_STATUS (class in pymea-
sure.instruments.oxfordinstruments), 395

J
join() (pymeasure.display.thread.StoppableQThread

method), 89
join() (pymeasure.experiment.workers.Worker method),

79

K
Keithley2000 (class in pymea-

sure.instruments.keithley), 287
Keithley2200 (class in pymea-

sure.instruments.keithley), 334
Keithley2200.BaseChannelCreator (class in pymea-

sure.instruments.keithley), 334
Keithley2200.ChannelCreator (class in pymea-

sure.instruments.keithley), 334
Keithley2200.MultiChannelCreator (class in

pymeasure.instruments.keithley), 335
Keithley2260B (class in pymea-

sure.instruments.keithley), 295
Keithley2306 (class in pymea-

sure.instruments.keithley), 297
Keithley2400 (class in pymea-

sure.instruments.keithley), 300
Keithley2450 (class in pymea-

sure.instruments.keithley), 308
Keithley2600 (class in pymea-

sure.instruments.keithley), 332
Keithley2700 (class in pymea-

sure.instruments.keithley), 315
Keithley2750 (class in pymea-

sure.instruments.keithley), 330
Keithley6221 (class in pymea-

sure.instruments.keithley), 319
Keithley6517B (class in pymea-

sure.instruments.keithley), 325
kelvin (pymeasure.instruments.lakeshore.lakeshore_base.LakeShoreTemperatureChannel

property), 359
KeysightDSOX1102G (class in pymea-

sure.instruments.keysight), 339
KeysightE36312A (class in pymea-

sure.instruments.keysight), 343

Index 597

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

KeysightE36312A.BaseChannelCreator (class in
pymeasure.instruments.keysight), 344

KeysightE36312A.ChannelCreator (class in pymea-
sure.instruments.keysight), 344

KeysightE36312A.MultiChannelCreator (class in
pymeasure.instruments.keysight), 344

KeysightN5767A (class in pymea-
sure.instruments.keysight), 341

KeysightN7776C (class in pymea-
sure.instruments.keysight), 342

kill() (pymeasure.instruments.parker.ParkerGV6
method), 403

kill_enabled (pymea-
sure.instruments.eurotest.EurotestHPP120256
property), 233

L
labels() (pymeasure.experiment.results.Results

method), 80
LakeShore211 (class in pymea-

sure.instruments.lakeshore), 351
LakeShore211.AnalogMode (class in pymea-

sure.instruments.lakeshore), 351
LakeShore211.AnalogRange (class in pymea-

sure.instruments.lakeshore), 351
LakeShore211.RelayMode (class in pymea-

sure.instruments.lakeshore), 351
LakeShore211.RelayNumber (class in pymea-

sure.instruments.lakeshore), 351
LakeShore224 (class in pymea-

sure.instruments.lakeshore), 353
LakeShore331 (class in pymea-

sure.instruments.lakeshore), 355
LakeShore421 (class in pymea-

sure.instruments.lakeshore), 355
LakeShore425 (class in pymea-

sure.instruments.lakeshore), 358
LakeShoreHeaterChannel (class in pymea-

sure.instruments.lakeshore.lakeshore_base),
359

LakeShoreTemperatureChannel (class in pymea-
sure.instruments.lakeshore.lakeshore_base),
359

lam_status (pymeasure.instruments.eurotest.EurotestHPP120256
property), 233

laser_enabled (pymea-
sure.instruments.toptica.ibeamsmart.IBeamSmart
property), 496

last_test_date (pymea-
sure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
property), 458

last_test_date (pymea-
sure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
property), 462

LDCCurrent (pymeasure.instruments.thorlabs.ThorlabsPro8000
property), 489

LDCCurrentLimit (pymea-
sure.instruments.thorlabs.ThorlabsPro8000
property), 489

LDCPolarity (pymeasure.instruments.thorlabs.ThorlabsPro8000
property), 489

LDCStatus (pymeasure.instruments.thorlabs.ThorlabsPro8000
property), 489

learn_mode (pymeasure.instruments.temptronic.ATSBase
property), 479

LeCroyT3DSO1204 (class in pymea-
sure.instruments.lecroy), 360

LeCroyT3DSO1204.BaseChannelCreator (class in
pymeasure.instruments.lecroy), 361

LeCroyT3DSO1204.ChannelCreator (class in pymea-
sure.instruments.lecroy), 361

LeCroyT3DSO1204.MultiChannelCreator (class in
pymeasure.instruments.lecroy), 361

LeCroyT3DSO1204Channel (class in pymea-
sure.instruments.lecroy.lecroyT3DSO1204),
374

left_limit (pymeasure.instruments.newport.esp300.Axis
property), 378

level (pymeasure.instruments.hp.HP8657B property),
283

level (pymeasure.instruments.rohdeschwarz.sfm.SFM
property), 411

level_lin (pymeasure.instruments.anritsu.AnritsuMS9710C
property), 209

level_log (pymeasure.instruments.anritsu.AnritsuMS9710C
property), 209

level_mode (pymeasure.instruments.rohdeschwarz.sfm.SFM
property), 412

level_offset (pymeasure.instruments.hp.HP8657B
property), 283

level_opt_attn (pymea-
sure.instruments.anritsu.AnritsuMS9710C
property), 209

level_scale (pymeasure.instruments.anritsu.AnritsuMS9710C
property), 209

lia_status (pymeasure.instruments.srs.SR830 prop-
erty), 444

limit_enabled (pymeasure.instruments.hp.HP8116A
property), 249

Line (pymeasure.instruments.hp.hp856Xx.TriggerMode
attribute), 280

line_frequency (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
property), 131

line_frequency (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 302

line_frequency_auto (pymea-

598 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

sure.instruments.keithley.Keithley2400 prop-
erty), 302

LINEAR (pymeasure.instruments.agilent.agilentB1500.SamplingMode
attribute), 195

LINEAR_DOUBLE (pymea-
sure.instruments.agilent.agilentB1500.SweepMode
attribute), 194

LINEAR_SINGLE (pymea-
sure.instruments.agilent.agilentB1500.SweepMode
attribute), 194

LineEditDelegate (class in pymea-
sure.display.widgets.sequencer_widget),
92

list_files() (pymea-
sure.instruments.activetechnologies.AWG401x_AWG
method), 118

list_resources() (in module pymeasure.instruments),
116

Listener (class in pymeasure.experiment.listeners), 72
ListInput (class in pymeasure.display.inputs), 86
ListParameter (class in pymea-

sure.experiment.parameters), 76
lo_frequency (pymea-

sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 269

load() (pymeasure.display.manager.BaseManager
method), 87

load() (pymeasure.display.manager.Manager method),
88

load() (pymeasure.display.widgets.image_widget.ImageWidget
method), 91

load() (pymeasure.display.widgets.plot_widget.PlotWidget
method), 92

load() (pymeasure.display.widgets.tab_widget.TabWidget
method), 95

load() (pymeasure.display.widgets.table_widget.TableWidget
method), 97

load() (pymeasure.experiment.results.Results static
method), 80

load_capacity (pymea-
sure.instruments.tcpowerconversion.CXN
property), 453

load_capacity (pymea-
sure.instruments.tcpowerconversion.tccxn.PresetChannel
property), 455

load_config (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X
property), 131

load_data_file() (pymea-
sure.instruments.anritsu.AnritsuMS464xB
method), 218

load_data_file_to_memory() (pymea-
sure.instruments.anritsu.AnritsuMS464xB
method), 218

load_impedance (pymea-

sure.instruments.activetechnologies.AWG401x.ChannelAFG
property), 120

load_sequence() (pymea-
sure.display.widgets.sequencer_widget.SequencerWidget
method), 94

load_sequence() (pymea-
sure.instruments.rohdeschwarz.hmp.HMP4040
method), 422

load_setup_file (pymea-
sure.instruments.temptronic.ATSBase prop-
erty), 479

local() (pymeasure.instruments.danfysik.Danfysik8500
method), 228

local() (pymeasure.instruments.keithley.Keithley2000
method), 290

local_lockout (pymea-
sure.instruments.temptronic.ATSBase prop-
erty), 479

locked (pymeasure.instruments.keysight.KeysightN7776C
property), 342

LOG_10 (pymeasure.instruments.agilent.agilentB1500.SamplingMode
attribute), 195

LOG_100 (pymeasure.instruments.agilent.agilentB1500.SamplingMode
attribute), 195

LOG_25 (pymeasure.instruments.agilent.agilentB1500.SamplingMode
attribute), 195

LOG_250 (pymeasure.instruments.agilent.agilentB1500.SamplingMode
attribute), 195

LOG_50 (pymeasure.instruments.agilent.agilentB1500.SamplingMode
attribute), 195

LOG_5000 (pymeasure.instruments.agilent.agilentB1500.SamplingMode
attribute), 195

LOG_DOUBLE (pymeasure.instruments.agilent.agilentB1500.SweepMode
attribute), 194

log_magnitude() (pymea-
sure.instruments.agilent.Agilent8722ES
method), 155

log_ratio (pymeasure.instruments.signalrecovery.DSP7225
property), 430

log_ratio (pymeasure.instruments.signalrecovery.DSP7265
property), 437

LOG_SINGLE (pymeasure.instruments.agilent.agilentB1500.SweepMode
attribute), 194

logarithmic_scale (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 252

LogHandler (class in pymeasure.display.log), 87
LogHandler.Emitter (class in pymeasure.display.log),

87
LogWidget (class in pymea-

sure.display.widgets.log_widget), 91
low_freq (pymeasure.instruments.srs.SR570 property),

441
low_freq_out_amplitude (pymea-

Index 599

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

sure.instruments.agilent.Agilent8257D prop-
erty), 154

low_freq_out_source (pymea-
sure.instruments.agilent.Agilent8257D prop-
erty), 154

low_level (pymeasure.instruments.hp.HP8116A prop-
erty), 249

lower_sideband_enabled (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 412

M
mag (pymeasure.instruments.ametek.Ametek7270 prop-

erty), 199
mag (pymeasure.instruments.signalrecovery.DSP7225

property), 431
mag (pymeasure.instruments.signalrecovery.DSP7265

property), 437
magnet_current (pymeasure.instruments.ami.AMI430

property), 201
MagnetError (class in pymea-

sure.instruments.oxfordinstruments.ips120_10),
401

magnitude (pymeasure.instruments.srs.SR830 property),
445

magnitude (pymeasure.instruments.srs.SR860 property),
449

magnitude() (pymeasure.instruments.agilent.Agilent8722ES
method), 155

main_air_flow_rate (pymea-
sure.instruments.temptronic.ATSBase prop-
erty), 479

ManagedConsole (class in pymeasure.display.console),
83

ManagedDockWindow (class in pymea-
sure.display.windows.managed_dock_window),
101

ManagedImageWindow (class in pymea-
sure.display.windows.managed_image_window),
98

ManagedWindow (class in pymea-
sure.display.windows.managed_window),
98

ManagedWindowBase (class in pymea-
sure.display.windows.managed_window),
99

Manager (class in pymeasure.display.manager), 88
MANUAL (pymeasure.instruments.agilent.agilentB1500.ADCMode

attribute), 193
MANUAL (pymeasure.instruments.agilent.agilentB1500.AutoManual

attribute), 194
MANUAL (pymeasure.instruments.agilent.agilentB1500.CompliancePolarity

attribute), 196

MANUAL (pymeasure.instruments.hp.hp856Xx.AmplitudeUnits
attribute), 277

manual_mode (pymeasure.instruments.tcpowerconversion.CXN
property), 453

manual_trigger_type (pymea-
sure.instruments.anritsu.AnritsuMS464xB
property), 218

marker_amplitude (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 266

marker_delta (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 266

marker_frequency (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 267

marker_noise_mode_enabled (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 267

marker_signal_tracking_enabled (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 268

marker_threshold (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 267

marker_time (pymeasure.instruments.hp.hp856Xx.HP856Xx
attribute), 268

master_slave_setting (pymea-
sure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
property), 458

master_slave_setting (pymea-
sure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
property), 462

material (pymeasure.instruments.aja.DCXS property),
197

math_define (pymeasure.instruments.lecroy.LeCroyT3DSO1204
property), 367

math_vdiv (pymeasure.instruments.lecroy.LeCroyT3DSO1204
property), 367

math_vpos (pymeasure.instruments.lecroy.LeCroyT3DSO1204
property), 367

max_amplitude (pymeasure.instruments.hp.HP33120A
property), 240

max_current (pymeasure.instruments.deltaelektronika.SM7045D
property), 230

max_current (pymeasure.instruments.keithley.Keithley2400
property), 302

max_current (pymeasure.instruments.keithley.Keithley2450
property), 310

max_current (pymeasure.instruments.rohdeschwarz.hmp.HMP4040
property), 422

max_frequency (pymeasure.instruments.hp.HP33120A
property), 240

max_hold_enabled (pymea-

600 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

sure.instruments.lakeshore.LakeShore421
property), 357

max_hold_field (pymea-
sure.instruments.lakeshore.LakeShore421
property), 357

max_hold_field_raw (pymea-
sure.instruments.lakeshore.LakeShore421
property), 357

max_hold_multiplier (pymea-
sure.instruments.lakeshore.LakeShore421
property), 357

max_hold_reset() (pymea-
sure.instruments.lakeshore.LakeShore421
method), 357

max_number_of_points (pymea-
sure.instruments.anritsu.AnritsuMS464xB
property), 218

max_offset (pymeasure.instruments.hp.HP33120A
property), 240

max_output_amplitude (pymea-
sure.instruments.teledyne.teledyneT3AFG.SignalChannel
property), 467

max_resistance (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 302

max_resistance (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 310

max_voltage (pymeasure.instruments.deltaelektronika.SM7045D
property), 230

max_voltage (pymeasure.instruments.keithley.Keithley2400
property), 302

max_voltage (pymeasure.instruments.keithley.Keithley2450
property), 310

max_voltage (pymeasure.instruments.rohdeschwarz.hmp.HMP4040
property), 422

maximum_case_temperature (pymea-
sure.instruments.ipgphotonics.yar.YAR prop-
erty), 287

maximum_test_time (pymea-
sure.instruments.temptronic.ATSBase prop-
erty), 479

maximums (pymeasure.instruments.keithley.Keithley2400
property), 303

maximums (pymeasure.instruments.keithley.Keithley2450
property), 310

maxspeed (pymeasure.instruments.anaheimautomation.DPSeriesMotorController
property), 203

mean_current (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 303

mean_current (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 310

mean_resistance (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 303

mean_resistance (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 310

mean_voltage (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 303

mean_voltage (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 311

means (pymeasure.instruments.keithley.Keithley2400
property), 303

means (pymeasure.instruments.keithley.Keithley2450
property), 311

meas_acpower (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 213

meas_emf_meter_clear_all (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 213

meas_emf_meter_clear_sample (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 214

meas_emf_meter_sample (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 214

meas_int_power (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 214

meas_iq_capture (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 214

meas_iq_capture_fail (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 214

meas_mode() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500
method), 185

meas_op_mode (pymea-
sure.instruments.agilent.agilentB1500.SMU
property), 188

meas_ota_mapp (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 214

meas_ota_run (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 214

meas_power (pymeasure.instruments.anritsu.AnritsuMS2090A
property), 214

meas_power_all (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 214

meas_range_current (pymea-

Index 601

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

sure.instruments.agilent.agilentB1500.SMU
property), 189

meas_range_current_auto() (pymea-
sure.instruments.agilent.agilentB1500.SMU
method), 189

meas_range_voltage (pymea-
sure.instruments.agilent.agilentB1500.SMU
property), 189

MeasMode (class in pymea-
sure.instruments.agilent.agilentB1500), 194

MeasOpMode (class in pymea-
sure.instruments.agilent.agilentB1500), 194

Measurable (class in pymea-
sure.experiment.parameters), 76

measure() (pymeasure.instruments.agilent.agilent4156.Agilent4156
method), 166

measure() (pymeasure.instruments.lakeshore.LakeShore425
method), 359

measure_ACI (pymeasure.instruments.hp.HP3478A
property), 246

measure_ACV (pymeasure.instruments.hp.HP3478A
property), 246

measure_capacity() (pymea-
sure.instruments.attocube.anc300.Axis
method), 225

measure_concurent_functions (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 303

measure_continuity() (pymea-
sure.instruments.keithley.Keithley2000
method), 290

measure_current (pymea-
sure.instruments.deltaelektronika.SM7045D
property), 230

measure_current() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 139

measure_current() (pymea-
sure.instruments.keithley.Keithley2000
method), 290

measure_current() (pymea-
sure.instruments.keithley.Keithley2400
method), 303

measure_current() (pymea-
sure.instruments.keithley.Keithley2450
method), 311

measure_current() (pymea-
sure.instruments.keithley.Keithley6517B
method), 327

measure_DCI (pymeasure.instruments.hp.HP3478A
property), 246

measure_DCV (pymeasure.instruments.hp.HP3478A
property), 246

measure_delay (pymea-

sure.instruments.lecroy.LeCroyT3DSO1204
property), 367

measure_diode() (pymea-
sure.instruments.keithley.Keithley2000
method), 291

measure_frequency() (pymea-
sure.instruments.keithley.Keithley2000
method), 291

measure_mode (pymea-
sure.instruments.anritsu.AnritsuMS9710C
property), 209

measure_parameter() (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
method), 368

measure_parameter() (pymea-
sure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel
method), 474

measure_parameter() (pymea-
sure.instruments.teledyne.TeledyneOscilloscope
method), 469

measure_peak() (pymea-
sure.instruments.anritsu.AnritsuMS9710C
method), 209

measure_period() (pymea-
sure.instruments.keithley.Keithley2000
method), 291

measure_R2W (pymeasure.instruments.hp.HP3478A
property), 246

measure_R4W (pymeasure.instruments.hp.HP3478A
property), 246

measure_resistance() (pymea-
sure.instruments.keithley.Keithley2000
method), 291

measure_resistance() (pymea-
sure.instruments.keithley.Keithley2400
method), 303

measure_resistance() (pymea-
sure.instruments.keithley.Keithley2450
method), 311

measure_resistance() (pymea-
sure.instruments.keithley.Keithley6517B
method), 327

measure_Rext (pymeasure.instruments.hp.HP3478A
property), 246

measure_temperature() (pymea-
sure.instruments.keithley.Keithley2000
method), 291

measure_voltage (pymea-
sure.instruments.deltaelektronika.SM7045D
property), 230

measure_voltage() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 134

measure_voltage() (pymea-

602 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

sure.instruments.keithley.Keithley2000
method), 291

measure_voltage() (pymea-
sure.instruments.keithley.Keithley2400
method), 303

measure_voltage() (pymea-
sure.instruments.keithley.Keithley2450
method), 311

measure_voltage() (pymea-
sure.instruments.keithley.Keithley6517B
method), 327

measured_current (pymea-
sure.instruments.rohdeschwarz.hmp.HMP4040
property), 422

measured_voltage (pymea-
sure.instruments.rohdeschwarz.hmp.HMP4040
property), 422

measurement() (pymea-
sure.instruments.common_base.CommonBase
static method), 107

measurement() (pymea-
sure.instruments.keysight.KeysightE36312A
static method), 348

measurement() (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
static method), 368

measurement_count (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
property), 141

measurement_event_enabled (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 321

measurement_events (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 321

measurement_parameter (pymea-
sure.instruments.anritsu.anritsuMS464xB.Trace
property), 223

measurement_time (pymea-
sure.instruments.pendulum.cnt91.CNT91
property), 405

MeasurementChannel (class in pymea-
sure.instruments.anritsu.anritsuMS464xB),
220

MeasurementType (class in pymea-
sure.instruments.advantest.advantestR624X),
144

memory_size (pymeasure.instruments.lecroy.LeCroyT3DSO1204
property), 369

memory_size (pymeasure.instruments.teledyne.TeledyneOscilloscope
property), 469

menu (pymeasure.instruments.lecroy.LeCroyT3DSO1204
property), 369

MESSAGE (pymeasure.instruments.hp.hp856Xx.StatusRegister

attribute), 279
message_waiting() (pymea-

sure.experiment.listeners.Listener method),
72

Metadata (class in pymeasure.experiment.parameters),
76

metadata() (pymeasure.experiment.results.Results
method), 80

metadata_objects() (pymea-
sure.experiment.procedure.Procedure method),
73

min_amplitude (pymeasure.instruments.hp.HP33120A
property), 240

min_current (pymeasure.instruments.keithley.Keithley2400
property), 303

min_current (pymeasure.instruments.keithley.Keithley2450
property), 311

min_current (pymeasure.instruments.rohdeschwarz.hmp.HMP4040
property), 422

min_frequency (pymeasure.instruments.hp.HP33120A
property), 240

min_offset (pymeasure.instruments.hp.HP33120A
property), 240

min_resistance (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 303

min_resistance (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 311

min_voltage (pymeasure.instruments.keithley.Keithley2400
property), 303

min_voltage (pymeasure.instruments.keithley.Keithley2450
property), 311

min_voltage (pymeasure.instruments.rohdeschwarz.hmp.HMP4040
property), 422

minimum_display_power (pymea-
sure.instruments.ipgphotonics.yar.YAR prop-
erty), 287

minimums (pymeasure.instruments.keithley.Keithley2400
property), 304

minimums (pymeasure.instruments.keithley.Keithley2450
property), 311

mixer_bias (pymeasure.instruments.hp.HP8561B prop-
erty), 275

mixer_level (pymeasure.instruments.hp.hp856Xx.HP856Xx
attribute), 255

mixer_mode (pymeasure.instruments.hp.HP8561B prop-
erty), 275

MixerMode (class in pymea-
sure.instruments.hp.hp856Xx), 277

MKS937B (class in pymea-
sure.instruments.mksinst.mks937b), 375

mode (pymeasure.instruments.agilent.AgilentE4980 prop-
erty), 157

Index 603

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

mode (pymeasure.instruments.attocube.anc300.Axis
property), 225

mode (pymeasure.instruments.hp.HP3478A property),
246

mode (pymeasure.instruments.keithley.Keithley2000
property), 291

mode (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
property), 458

mode (pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
property), 462

mode (pymeasure.instruments.temptronic.ATSBase prop-
erty), 480

mode (pymeasure.instruments.thermotron.Thermotron3800
property), 488

modulation_degree (pymea-
sure.instruments.rohdeschwarz.sfm.Sound_Channel
property), 417

modulation_enabled (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 412

modulation_enabled (pymea-
sure.instruments.rohdeschwarz.sfm.Sound_Channel
property), 418

module
pymeasure.display.browser, 83
pymeasure.display.console, 83
pymeasure.display.curves, 84
pymeasure.display.inputs, 85
pymeasure.display.listeners, 87
pymeasure.display.log, 87
pymeasure.display.manager, 87
pymeasure.display.plotter, 89
pymeasure.display.thread, 89
pymeasure.display.widgets.browser_widget,

90
pymeasure.display.widgets.directory_widget,

90
pymeasure.display.widgets.dock_widget, 95
pymeasure.display.widgets.estimator_widget,

90
pymeasure.display.widgets.image_frame, 90
pymeasure.display.widgets.image_widget,

90
pymeasure.display.widgets.inputs_widget,

91
pymeasure.display.widgets.log_widget, 91
pymeasure.display.widgets.plot_frame, 91
pymeasure.display.widgets.plot_widget, 92
pymeasure.display.widgets.results_dialog,

92
pymeasure.display.widgets.sequencer_widget,

92
pymeasure.display.widgets.tab_widget, 94
pymeasure.display.widgets.table_widget,

95
pymeasure.display.windows.managed_dock_window,

101
pymeasure.display.windows.managed_image_window,

98
pymeasure.display.windows.managed_window,

98
pymeasure.display.windows.plotter_window,

100
pymeasure.experiment.experiment, 71
pymeasure.experiment.listeners, 72
pymeasure.experiment.parameters, 74
pymeasure.experiment.procedure, 73
pymeasure.experiment.results, 79
pymeasure.experiment.workers, 79
pymeasure.instruments, 101
pymeasure.instruments.activetechnologies,

116
pymeasure.instruments.advantest, 121
pymeasure.instruments.advantest.advantestR3767CG,

122
pymeasure.instruments.advantest.advantestR624X,

143
pymeasure.instruments.agilent, 152
pymeasure.instruments.agilent.agilent4156,

163
pymeasure.instruments.agilent.agilentB1500,

193
pymeasure.instruments.aja, 196
pymeasure.instruments.ametek, 198
pymeasure.instruments.ami, 200
pymeasure.instruments.anaheimautomation,

202
pymeasure.instruments.anapico, 204
pymeasure.instruments.andeenhagerling,

205
pymeasure.instruments.anritsu, 208
pymeasure.instruments.attocube, 223
pymeasure.instruments.bkprecision, 226
pymeasure.instruments.comedi, 116
pymeasure.instruments.danfysik, 226
pymeasure.instruments.deltaelektronika,

229
pymeasure.instruments.edwards, 231
pymeasure.instruments.eurotest, 231
pymeasure.instruments.fluke, 233
pymeasure.instruments.fwbell, 234
pymeasure.instruments.hcp, 237
pymeasure.instruments.heidenhain, 237
pymeasure.instruments.hp, 239
pymeasure.instruments.ipgphotonics, 286
pymeasure.instruments.keithley, 287
pymeasure.instruments.keysight, 338
pymeasure.instruments.lakeshore, 351

604 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

pymeasure.instruments.lecroy, 360
pymeasure.instruments.mksinst, 375
pymeasure.instruments.newport, 376
pymeasure.instruments.ni, 378
pymeasure.instruments.novanta, 392
pymeasure.instruments.oxfordinstruments,

393
pymeasure.instruments.parker, 403
pymeasure.instruments.pendulum, 404
pymeasure.instruments.razorbill, 405
pymeasure.instruments.rohdeschwarz, 406
pymeasure.instruments.siglenttechnologies,

423
pymeasure.instruments.signalrecovery, 427
pymeasure.instruments.srs, 440
pymeasure.instruments.tcpowerconversion,

452
pymeasure.instruments.tdk, 456
pymeasure.instruments.tektronix, 464
pymeasure.instruments.teledyne, 465
pymeasure.instruments.temptronic, 476
pymeasure.instruments.texio, 484
pymeasure.instruments.thermotron, 487
pymeasure.instruments.thorlabs, 488
pymeasure.instruments.thyracont, 489
pymeasure.instruments.toptica, 494
pymeasure.instruments.validators, 113
pymeasure.instruments.velleman, 497
pymeasure.instruments.yokogawa, 499
pymeasure.test, 66

Monitor (class in pymeasure.display.listeners), 87
Monitor (class in pymeasure.experiment.listeners), 72
monitored_value (pymeasure.instruments.hcp.TC038

property), 238
motion_done (pymeasure.instruments.newport.esp300.Axis

property), 378
mouseMoved() (pymeasure.display.curves.Crosshairs

method), 84
mout (pymeasure.instruments.lakeshore.lakeshore_base.LakeShoreHeaterChannel

property), 360
move() (pymeasure.instruments.anaheimautomation.DPSeriesMotorController

method), 203
move() (pymeasure.instruments.attocube.anc300.Axis

method), 225
move() (pymeasure.instruments.parker.ParkerGV6

method), 403
move_raw() (pymeasure.instruments.attocube.anc300.Axis

method), 225
mroll_frequency (pymea-

sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 269

multidrop_capability (pymea-
sure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
property), 458

multidrop_capability (pymea-
sure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
property), 462

N
NA (pymeasure.instruments.hp.hp856Xx.StatusRegister

attribute), 279
ND287 (class in pymeasure.instruments.heidenhain), 237
NegativePeak (pymea-

sure.instruments.hp.hp856Xx.DetectionModes
attribute), 278

new_curve() (pymeasure.display.widgets.dock_widget.DockWidget
method), 95

new_curve() (pymeasure.display.widgets.image_widget.ImageWidget
method), 91

new_curve() (pymeasure.display.widgets.plot_widget.PlotWidget
method), 92

new_curve() (pymeasure.display.widgets.tab_widget.TabWidget
method), 95

new_curve() (pymeasure.display.widgets.table_widget.TableWidget
method), 97

next() (pymeasure.display.manager.BaseManager
method), 87

next() (pymeasure.display.manager.ExperimentQueue
method), 88

next_setpoint() (pymea-
sure.instruments.temptronic.ATS545 method),
484

next_setpoint() (pymea-
sure.instruments.temptronic.ATSBase method),
480

next_step() (pymeasure.instruments.keysight.KeysightN7776C
method), 342

NextHigh (pymeasure.instruments.hp.hp856Xx.PeakSearchMode
attribute), 279

NextLeft (pymeasure.instruments.hp.hp856Xx.PeakSearchMode
attribute), 279

NextRight (pymeasure.instruments.hp.hp856Xx.PeakSearchMode
attribute), 279

nicam_additional_bits (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 412

nicam_audio_frequency (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 412

nicam_audio_volume (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 412

nicam_bit_error_enabled (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 412

nicam_bit_error_rate (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 412

Index 605

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

nicam_carrier_enabled (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 412

nicam_carrier_frequency (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 412

nicam_carrier_level (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 413

nicam_control_bits (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 413

nicam_data (pymeasure.instruments.rohdeschwarz.sfm.SFM
property), 413

nicam_intercarrier_frequency (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 413

nicam_IQ_inverted (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 412

nicam_mode (pymeasure.instruments.rohdeschwarz.sfm.SFM
property), 413

nicam_preemphasis_enabled (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 413

nicam_source (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 413

nicam_test_signal (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 413

NONE (pymeasure.instruments.hp.hp856Xx.StatusRegister
attribute), 279

Normal (pymeasure.instruments.hp.hp856Xx.DetectionModes
attribute), 278

normal_channel (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 414

normalize_trace_data_enabled (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 270

normalized_reference_level (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 270

normalized_reference_position (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 271

not_at_temperature() (pymea-
sure.instruments.temptronic.ATSBase method),
480

nozzle_air_flow_rate (pymea-
sure.instruments.temptronic.ATSBase prop-
erty), 480

nplc (pymeasure.instruments.hp.HP34401A property),

241
null_operation_enabled (pymea-

sure.instruments.advantest.advantestR624X.SMUChannel
property), 141

num_ch (pymeasure.instruments.activetechnologies.AWG401x_AWG
property), 118

num_dch (pymeasure.instruments.activetechnologies.AWG401x_AWG
property), 118

number_of_channels (pymea-
sure.instruments.anritsu.AnritsuMS464xB
property), 218

number_of_points (pymea-
sure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
property), 222

number_of_ports (pymea-
sure.instruments.anritsu.AnritsuMS464xB
property), 219

number_of_traces (pymea-
sure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
property), 222

number_readings (pymea-
sure.instruments.hp.HP3437A property),
244

Nxds (class in pymeasure.instruments.edwards), 231

O
OCP_enabled (pymeasure.instruments.hp.HP6632A

property), 284
Off (pymeasure.instruments.hp.hp856Xx.DemodulationMode

attribute), 278
offset (pymeasure.instruments.agilent.Agilent33220A

property), 171
offset (pymeasure.instruments.agilent.Agilent33500

property), 174
offset (pymeasure.instruments.agilent.agilent33500.Agilent33500Channel

property), 177
offset (pymeasure.instruments.agilent.agilent4156.VARD

property), 168
offset (pymeasure.instruments.hp.HP33120A prop-

erty), 240
offset (pymeasure.instruments.hp.HP8116A property),

249
offset (pymeasure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel

property), 474
offset (pymeasure.instruments.teledyne.teledyneT3AFG.SignalChannel

property), 467
offset_current (pymeasure.instruments.srs.SR570

property), 442
offset_current_enabled (pymea-

sure.instruments.srs.SR570 property), 442
offset_current_sign (pymea-

sure.instruments.srs.SR570 property), 442
offset_voltage (pymea-

sure.instruments.attocube.anc300.Axis prop-

606 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

erty), 225
open() (pymeasure.instruments.keithley.Keithley2750

method), 331
open_all() (pymeasure.instruments.keithley.Keithley2750

method), 331
open_all_channels() (pymea-

sure.instruments.keithley.Keithley2700
method), 317

open_channels (pymea-
sure.instruments.keithley.Keithley2700 prop-
erty), 317

open_file_externally() (pymea-
sure.display.windows.managed_window.ManagedWindowBase
method), 100

open_rows_to_columns() (pymea-
sure.instruments.keithley.Keithley2700
method), 317

operating_hours (pymea-
sure.instruments.thyracont.smartline_v2.SmartlineV2
property), 493

operating_mode (pymeasure.instruments.hp.HP8116A
property), 249

operation_enable_reg (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 414

operation_event_enabled (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 321

operation_events (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 321

operation_mode (pymea-
sure.instruments.tcpowerconversion.CXN
property), 453

operation_register (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
property), 142

options (pymeasure.instruments.andeenhagerling.AH2700A
property), 207

options (pymeasure.instruments.fwbell.FWBell5080
property), 235

options (pymeasure.instruments.hp.HP8116A prop-
erty), 249

options (pymeasure.instruments.Instrument property),
110

options (pymeasure.instruments.keithley.Keithley2000
property), 291

options (pymeasure.instruments.keithley.Keithley2200
property), 337

options (pymeasure.instruments.keithley.Keithley2260B
property), 296

options (pymeasure.instruments.keithley.Keithley2306
property), 298

options (pymeasure.instruments.keithley.Keithley2400

property), 304
options (pymeasure.instruments.keithley.Keithley2450

property), 311
options (pymeasure.instruments.keithley.Keithley2600

property), 333
options (pymeasure.instruments.keithley.Keithley2700

property), 317
options (pymeasure.instruments.keithley.Keithley2750

property), 331
options (pymeasure.instruments.keithley.Keithley6221

property), 321
options (pymeasure.instruments.keithley.Keithley6517B

property), 328
options (pymeasure.instruments.keysight.KeysightE36312A

property), 349
options (pymeasure.instruments.lecroy.LeCroyT3DSO1204

property), 369
options (pymeasure.instruments.signalrecovery.DSP7225

property), 431
options (pymeasure.instruments.signalrecovery.DSP7265

property), 437
options (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38

property), 458
options (pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65

property), 462
options (pymeasure.instruments.teledyne.TeledyneT3AFG

property), 466
options (pymeasure.instruments.texio.TexioPSW360L30

property), 486
oroll_frequency (pymea-

sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 269

output (pymeasure.instruments.agilent.Agilent33220A
property), 171

output (pymeasure.instruments.agilent.Agilent33500
property), 174

output (pymeasure.instruments.agilent.agilent33500.Agilent33500Channel
property), 177

output (pymeasure.instruments.anritsu.AnritsuMG3692C
property), 208

output (pymeasure.instruments.lakeshore.lakeshore_base.LakeShoreHeaterChannel
property), 360

output (pymeasure.instruments.srs.SR510 property),
440

output_1 (pymeasure.instruments.lakeshore.LakeShore331
attribute), 355

output_1 (pymeasure.instruments.razorbill.razorbillRP100
property), 406

output_2 (pymeasure.instruments.lakeshore.LakeShore331
attribute), 355

output_2 (pymeasure.instruments.razorbill.razorbillRP100
property), 406

output_all_measurements() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel

Index 607

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

method), 140
output_conversion() (pymea-

sure.instruments.srs.SR830 method), 445
output_enable_register (pymea-

sure.instruments.advantest.advantestR624X.SMUChannel
property), 142

output_enabled (pymea-
sure.instruments.eurotest.EurotestHPP120256
property), 233

output_enabled (pymeasure.instruments.hp.HP6632A
property), 285

output_enabled (pymeasure.instruments.hp.HP8116A
property), 249

output_enabled (pymeasure.instruments.hp.HP8657B
property), 283

output_enabled (pymea-
sure.instruments.keithley.keithley2200.PSChannel
property), 338

output_enabled (pymea-
sure.instruments.keithley.Keithley2260B
property), 296

output_enabled (pymea-
sure.instruments.keysight.keysightE36312A.VoltageChannel
property), 351

output_enabled (pymea-
sure.instruments.keysight.KeysightN7776C
property), 342

output_enabled (pymea-
sure.instruments.rohdeschwarz.hmp.HMP4040
property), 422

output_enabled (pymea-
sure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
property), 458

output_enabled (pymea-
sure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
property), 462

output_enabled (pymea-
sure.instruments.teledyne.teledyneT3AFG.SignalChannel
property), 467

output_enabled (pymea-
sure.instruments.texio.TexioPSW360L30
property), 486

output_impedance (pymea-
sure.instruments.activetechnologies.AWG401x.ChannelAFG
property), 120

output_load (pymeasure.instruments.agilent.Agilent33500
property), 174

output_load (pymeasure.instruments.agilent.agilent33500.Agilent33500Channel
property), 177

output_low_grounded (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 321

output_off_state (pymea-
sure.instruments.keithley.Keithley2400 prop-

erty), 304
output_trigger_on_external() (pymea-

sure.instruments.keithley.Keithley2400
method), 304

output_trigger_on_external() (pymea-
sure.instruments.keithley.Keithley6221
method), 321

output_voltage (pymea-
sure.instruments.attocube.anc300.Axis prop-
erty), 225

output_voltage (pymea-
sure.instruments.fakes.SwissArmyFake prop-
erty), 113

output_voltage (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 414

outputs_enabled (pymea-
sure.instruments.ni.virtualbench.VirtualBench.PowerSupply
property), 389

OutputType (class in pymea-
sure.instruments.advantest.advantestR624X),
143

over_voltage (pymea-
sure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
property), 458

over_voltage (pymea-
sure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
property), 462

over_voltage_limit (pymea-
sure.instruments.hp.HP6632A property),
285

OxfordInstrumentsBase (class in pymea-
sure.instruments.oxfordinstruments.base),
393

OxfordVISAError (class in pymea-
sure.instruments.oxfordinstruments.base),
394

P
pandas_column_count() (pymea-

sure.display.widgets.table_widget.PandasModelBase
method), 96

pandas_column_count() (pymea-
sure.display.widgets.table_widget.PandasModelByColumn
method), 96

pandas_column_count() (pymea-
sure.display.widgets.table_widget.PandasModelByRow
method), 97

pandas_row_count() (pymea-
sure.display.widgets.table_widget.PandasModelBase
method), 96

pandas_row_count() (pymea-
sure.display.widgets.table_widget.PandasModelByColumn
method), 96

608 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

pandas_row_count() (pymea-
sure.display.widgets.table_widget.PandasModelByRow
method), 97

PandasModelBase (class in pymea-
sure.display.widgets.table_widget), 95

PandasModelByColumn (class in pymea-
sure.display.widgets.table_widget), 96

PandasModelByRow (class in pymea-
sure.display.widgets.table_widget), 97

parallel_meas (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
property), 185

Parameter (class in pymeasure.experiment.parameters),
77

parameter (pymeasure.display.inputs.Input property),
85

parameter_DAT1 (pymeasure.instruments.srs.SR860
property), 449

parameter_DAT2 (pymeasure.instruments.srs.SR860
property), 449

parameter_DAT3 (pymeasure.instruments.srs.SR860
property), 449

parameter_DAT4 (pymeasure.instruments.srs.SR860
property), 449

parameter_objects() (pymea-
sure.experiment.procedure.Procedure method),
73

parameter_values() (pymea-
sure.experiment.procedure.Procedure method),
73

parameters_are_set() (pymea-
sure.experiment.procedure.Procedure method),
74

parent() (pymeasure.display.widgets.sequencer_widget.SequencerTreeModel
method), 93

ParkerGV6 (class in pymeasure.instruments.parker), 403
parse() (pymeasure.experiment.results.Results method),

80
parse_axis() (pymea-

sure.display.widgets.plot_frame.PlotFrame
method), 91

parse_columns() (pymea-
sure.experiment.procedure.Procedure static
method), 74

parse_header() (pymeasure.experiment.results.Results
static method), 80

parse_stream() (pymeasure.generator.Generator
method), 70

pass_filter (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
property), 458

pass_filter (pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
property), 462

pattern_down (pymea-
sure.instruments.attocube.anc300.Axis prop-

erty), 225
pattern_up (pymeasure.instruments.attocube.anc300.Axis

property), 226
pause() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500

method), 184
pause() (pymeasure.instruments.ami.AMI430 method),

201
pb_desc (pymeasure.instruments.hp.HP3437A at-

tribute), 244
peak_excursion (pymea-

sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 268

peak_preselector() (pymea-
sure.instruments.hp.HP8561B method), 275

peak_search (pymeasure.instruments.anritsu.AnritsuMS9710C
property), 210

PeakSearchMode (class in pymea-
sure.instruments.hp.hp856Xx), 279

period (pymeasure.instruments.keithley.Keithley2000
property), 291

period_aperature (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 291

period_digits (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 291

period_reference (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 291

period_threshold (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 291

persistent_field (pymea-
sure.instruments.oxfordinstruments.IPS120_10
property), 400

phase (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG
property), 120

phase (pymeasure.instruments.agilent.Agilent33500
property), 174

phase (pymeasure.instruments.agilent.agilent33500.Agilent33500Channel
property), 177

phase (pymeasure.instruments.ametek.Ametek7270 prop-
erty), 199

phase (pymeasure.instruments.signalrecovery.DSP7225
property), 431

phase (pymeasure.instruments.signalrecovery.DSP7265
property), 437

phase (pymeasure.instruments.srs.SR510 property), 440
phase (pymeasure.instruments.srs.SR830 property), 445
phase (pymeasure.instruments.srs.SR860 property), 449
phase() (pymeasure.instruments.agilent.Agilent8722ES

method), 156
phase_max (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG

property), 120

Index 609

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

phase_min (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG
property), 120

phase_sync() (pymea-
sure.instruments.agilent.Agilent33500 method),
174

PhysicalParameter (class in pymea-
sure.experiment.parameters), 78

piezo (pymeasure.instruments.thyracont.smartline_v2.VSR
attribute), 494

ping() (pymeasure.instruments.hcp.TC038D method),
239

ping() (pymeasure.instruments.tcpowerconversion.CXN
method), 453

pirani (pymeasure.instruments.thyracont.smartline_v2.VSH
attribute), 494

pirani (pymeasure.instruments.thyracont.smartline_v2.VSR
attribute), 494

PLC (pymeasure.instruments.agilent.agilentB1500.ADCMode
attribute), 193

plot() (pymeasure.experiment.experiment.Experiment
method), 72

plot_live() (pymeasure.experiment.experiment.Experiment
method), 72

PlotFrame (class in pymea-
sure.display.widgets.plot_frame), 91

Plotter (class in pymeasure.display.plotter), 89
PlotterWindow (class in pymea-

sure.display.windows.plotter_window), 100
PlotWidget (class in pymea-

sure.display.widgets.plot_widget), 92
pointer (pymeasure.instruments.oxfordinstruments.ITC503

property), 397
points (pymeasure.instruments.agilent.agilent4156.VAR2

property), 168
polarity (pymeasure.instruments.danfysik.Danfysik8500

property), 228
Port (class in pymea-

sure.instruments.anritsu.anritsuMS464xB),
223

position (pymeasure.instruments.heidenhain.ND287
property), 237

position (pymeasure.instruments.newport.esp300.Axis
property), 378

position (pymeasure.instruments.parker.ParkerGV6
property), 403

position_error (pymea-
sure.instruments.parker.ParkerGV6 property),
403

PositivePeak (pymea-
sure.instruments.hp.hp856Xx.DetectionModes
attribute), 278

power (pymeasure.instruments.agilent.Agilent8257D
property), 154

power (pymeasure.instruments.aja.DCXS property), 197

power (pymeasure.instruments.anapico.APSIN12G prop-
erty), 205

power (pymeasure.instruments.anritsu.AnritsuMG3692C
property), 208

power (pymeasure.instruments.ipgphotonics.yar.YAR
property), 287

power (pymeasure.instruments.keithley.keithley2200.PSChannel
property), 338

power (pymeasure.instruments.keithley.Keithley2260B
property), 296

power (pymeasure.instruments.novanta.Fpu60 property),
393

power (pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDChannel
property), 425

power (pymeasure.instruments.tcpowerconversion.CXN
property), 454

power (pymeasure.instruments.texio.TexioPSW360L30
property), 486

power (pymeasure.instruments.thorlabs.ThorlabsPM100USB
property), 489

power (pymeasure.instruments.toptica.ibeamsmart.DriverChannel
property), 497

power (pymeasure.instruments.toptica.ibeamsmart.IBeamSmart
property), 496

power_density (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 214

power_enabled (pymea-
sure.instruments.mksinst.mks937b.PressureChannel
property), 376

power_level (pymeasure.instruments.anritsu.anritsuMS464xB.Port
property), 223

power_limit (pymeasure.instruments.tcpowerconversion.CXN
property), 454

power_on_clear (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
property), 130

power_range (pymeasure.instruments.ipgphotonics.yar.YAR
property), 287

power_setpoint (pymea-
sure.instruments.ipgphotonics.yar.YAR prop-
erty), 287

power_setpoint (pymea-
sure.instruments.novanta.Fpu60 property),
393

preamp (pymeasure.instruments.anritsu.AnritsuMS2090A
property), 214

preemphasis_enabled (pymea-
sure.instruments.rohdeschwarz.sfm.Sound_Channel
property), 418

preemphasis_time (pymea-
sure.instruments.rohdeschwarz.sfm.Sound_Channel
property), 418

prepare() (pymeasure.display.curves.BufferCurve

610 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

method), 84
preselector_dac_number (pymea-

sure.instruments.hp.HP8561B property),
275

preset() (pymeasure.instruments.hp.hp856Xx.HP856Xx
method), 251

preset_1 (pymeasure.instruments.tcpowerconversion.CXN
attribute), 452

preset_2 (pymeasure.instruments.tcpowerconversion.CXN
attribute), 452

preset_3 (pymeasure.instruments.tcpowerconversion.CXN
attribute), 452

preset_4 (pymeasure.instruments.tcpowerconversion.CXN
attribute), 452

preset_5 (pymeasure.instruments.tcpowerconversion.CXN
attribute), 453

preset_6 (pymeasure.instruments.tcpowerconversion.CXN
attribute), 453

preset_7 (pymeasure.instruments.tcpowerconversion.CXN
attribute), 453

preset_8 (pymeasure.instruments.tcpowerconversion.CXN
attribute), 453

preset_9 (pymeasure.instruments.tcpowerconversion.CXN
attribute), 453

preset_slot (pymeasure.instruments.tcpowerconversion.CXN
property), 454

PresetChannel (class in pymea-
sure.instruments.tcpowerconversion.tccxn),
455

pressure (pymeasure.instruments.mksinst.mks937b.PressureChannel
property), 376

pressure (pymeasure.instruments.thyracont.smartline_v1.SmartlineV1
property), 490

pressure (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2
property), 493

PressureChannel (class in pymea-
sure.instruments.mksinst.mks937b), 376

preview_widget() (pymea-
sure.display.widgets.plot_widget.PlotWidget
method), 92

preview_widget() (pymea-
sure.display.widgets.tab_widget.TabWidget
method), 95

preview_widget() (pymea-
sure.display.widgets.table_widget.TableWidget
method), 98

previous_step() (pymea-
sure.instruments.keysight.KeysightN7776C
method), 342

probe_attenuation (pymea-
sure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel
property), 474

probe_type (pymeasure.instruments.lakeshore.LakeShore421
property), 357

Procedure (class in pymeasure.experiment.procedure),
73

product_name (pymea-
sure.instruments.thyracont.smartline_v2.SmartlineV2
property), 493

program_sweep() (pymea-
sure.instruments.oxfordinstruments.ITC503
method), 397

PrologixAdapter (class in pymeasure.adapters), 56
proportional_band (pymea-

sure.instruments.oxfordinstruments.ITC503
property), 397

protect_state_enabled (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 255

ProtocolAdapter (class in pymeasure.adapters), 66
PS120_10 (class in pymea-

sure.instruments.oxfordinstruments), 402
PSChannel (class in pymea-

sure.instruments.keithley.keithley2200), 338
psu_temperature (pymea-

sure.instruments.novanta.Fpu60 property),
393

pulse_dutycycle (pymea-
sure.instruments.agilent.Agilent33220A
property), 171

pulse_dutycycle (pymea-
sure.instruments.agilent.Agilent33500 prop-
erty), 174

pulse_dutycycle (pymea-
sure.instruments.agilent.agilent33500.Agilent33500Channel
property), 178

pulse_frequency (pymea-
sure.instruments.agilent.Agilent8257D prop-
erty), 154

pulse_hold (pymeasure.instruments.agilent.Agilent33220A
property), 171

pulse_hold (pymeasure.instruments.agilent.Agilent33500
property), 174

pulse_hold (pymeasure.instruments.agilent.agilent33500.Agilent33500Channel
property), 178

pulse_input (pymeasure.instruments.agilent.Agilent8257D
property), 154

pulse_params (pymea-
sure.instruments.tcpowerconversion.CXN
property), 454

pulse_period (pymea-
sure.instruments.agilent.Agilent33220A
property), 171

pulse_period (pymea-
sure.instruments.agilent.Agilent33500 prop-
erty), 175

pulse_period (pymea-
sure.instruments.agilent.agilent33500.Agilent33500Channel

Index 611

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property), 178
pulse_source (pymea-

sure.instruments.agilent.Agilent8257D prop-
erty), 154

pulse_transition (pymea-
sure.instruments.agilent.Agilent33220A
property), 171

pulse_transition (pymea-
sure.instruments.agilent.Agilent33500 prop-
erty), 175

pulse_transition (pymea-
sure.instruments.agilent.agilent33500.Agilent33500Channel
property), 178

pulse_width (pymeasure.instruments.agilent.Agilent33220A
property), 171

pulse_width (pymeasure.instruments.agilent.Agilent33500
property), 175

pulse_width (pymeasure.instruments.agilent.agilent33500.Agilent33500Channel
property), 178

pulse_width (pymeasure.instruments.hp.HP8116A
property), 249

pymeasure.display.browser
module, 83

pymeasure.display.console
module, 83

pymeasure.display.curves
module, 84

pymeasure.display.inputs
module, 85

pymeasure.display.listeners
module, 87

pymeasure.display.log
module, 87

pymeasure.display.manager
module, 87

pymeasure.display.plotter
module, 89

pymeasure.display.thread
module, 89

pymeasure.display.widgets.browser_widget
module, 90

pymeasure.display.widgets.directory_widget
module, 90

pymeasure.display.widgets.dock_widget
module, 95

pymeasure.display.widgets.estimator_widget
module, 90

pymeasure.display.widgets.image_frame
module, 90

pymeasure.display.widgets.image_widget
module, 90

pymeasure.display.widgets.inputs_widget
module, 91

pymeasure.display.widgets.log_widget

module, 91
pymeasure.display.widgets.plot_frame

module, 91
pymeasure.display.widgets.plot_widget

module, 92
pymeasure.display.widgets.results_dialog

module, 92
pymeasure.display.widgets.sequencer_widget

module, 92
pymeasure.display.widgets.tab_widget

module, 94
pymeasure.display.widgets.table_widget

module, 95
pymeasure.display.windows.managed_dock_window

module, 101
pymeasure.display.windows.managed_image_window

module, 98
pymeasure.display.windows.managed_window

module, 98
pymeasure.display.windows.plotter_window

module, 100
pymeasure.experiment.experiment

module, 71
pymeasure.experiment.listeners

module, 72
pymeasure.experiment.parameters

module, 74
pymeasure.experiment.procedure

module, 73
pymeasure.experiment.results

module, 79
pymeasure.experiment.workers

module, 79
pymeasure.instruments

module, 101
pymeasure.instruments.activetechnologies

module, 116
pymeasure.instruments.advantest

module, 121
pymeasure.instruments.advantest.advantestR3767CG

module, 122
pymeasure.instruments.advantest.advantestR624X

module, 143
pymeasure.instruments.agilent

module, 152
pymeasure.instruments.agilent.agilent4156

module, 163
pymeasure.instruments.agilent.agilentB1500

module, 193
pymeasure.instruments.aja

module, 196
pymeasure.instruments.ametek

module, 198
pymeasure.instruments.ami

612 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

module, 200
pymeasure.instruments.anaheimautomation

module, 202
pymeasure.instruments.anapico

module, 204
pymeasure.instruments.andeenhagerling

module, 205
pymeasure.instruments.anritsu

module, 208
pymeasure.instruments.attocube

module, 223
pymeasure.instruments.bkprecision

module, 226
pymeasure.instruments.comedi

module, 116
pymeasure.instruments.danfysik

module, 226
pymeasure.instruments.deltaelektronika

module, 229
pymeasure.instruments.edwards

module, 231
pymeasure.instruments.eurotest

module, 231
pymeasure.instruments.fluke

module, 233
pymeasure.instruments.fwbell

module, 234
pymeasure.instruments.hcp

module, 237
pymeasure.instruments.heidenhain

module, 237
pymeasure.instruments.hp

module, 239
pymeasure.instruments.ipgphotonics

module, 286
pymeasure.instruments.keithley

module, 287
pymeasure.instruments.keysight

module, 338
pymeasure.instruments.lakeshore

module, 351
pymeasure.instruments.lecroy

module, 360
pymeasure.instruments.mksinst

module, 375
pymeasure.instruments.newport

module, 376
pymeasure.instruments.ni

module, 378
pymeasure.instruments.novanta

module, 392
pymeasure.instruments.oxfordinstruments

module, 393
pymeasure.instruments.parker

module, 403
pymeasure.instruments.pendulum

module, 404
pymeasure.instruments.razorbill

module, 405
pymeasure.instruments.rohdeschwarz

module, 406
pymeasure.instruments.siglenttechnologies

module, 423
pymeasure.instruments.signalrecovery

module, 427
pymeasure.instruments.srs

module, 440
pymeasure.instruments.tcpowerconversion

module, 452
pymeasure.instruments.tdk

module, 456
pymeasure.instruments.tektronix

module, 464
pymeasure.instruments.teledyne

module, 465
pymeasure.instruments.temptronic

module, 476
pymeasure.instruments.texio

module, 484
pymeasure.instruments.thermotron

module, 487
pymeasure.instruments.thorlabs

module, 488
pymeasure.instruments.thyracont

module, 489
pymeasure.instruments.toptica

module, 494
pymeasure.instruments.validators

module, 113
pymeasure.instruments.velleman

module, 497
pymeasure.instruments.yokogawa

module, 499
pymeasure.test

module, 66

Q
QListener (class in pymeasure.display.listeners), 87
query_ac_current() (pymea-

sure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter
method), 381

query_acquisition_status() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope
method), 387

query_adc_setup() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 185

Index 613

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

query_analog_channel() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope
method), 387

query_analog_channel_characteristics()
(pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope
method), 387

query_analog_edge_trigger() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope
method), 387

query_analog_pulse_width_trigger() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope
method), 387

query_arbitrary_waveform() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator
method), 383

query_arbitrary_waveform_gain_and_offset()
(pymeasure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator
method), 383

query_current_output() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.PowerSupply
method), 389

query_dc_current() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter
method), 381

query_dc_voltage() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter
method), 381

query_enabled_analog_channels() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope
method), 387

query_event_status_register() (pymea-
sure.instruments.anritsu.AnritsuMS464xB
method), 219

query_export_signal() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.DigitalInputOutput
method), 380

query_generation_status() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator
method), 384

query_learn() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 183

query_learn() (pymea-
sure.instruments.agilent.agilentB1500.QueryLearn
static method), 191

query_learn() (pymea-
sure.instruments.agilent.agilentB1500.SMU
method), 188

query_learn_header() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 183

query_learn_header() (pymea-
sure.instruments.agilent.agilentB1500.QueryLearn
class method), 191

query_line_configuration() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.DigitalInputOutput
method), 380

query_meas_mode() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 185

query_meas_op_mode() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 188

query_meas_range_current_auto() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 187

query_meas_ranges() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 188

query_meas_settings() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 185

query_measurement() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter
method), 381

query_modules() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 183

query_sampling_settings() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 187

query_series_resistor() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 187

query_staircase_sweep_settings() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 186

query_standard_waveform() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator
method), 384

query_time_stamp_setting() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 186

query_timing() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope
method), 387

query_trigger_delay() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope
method), 388

query_trigger_type() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope
method), 388

query_voltage_output() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.PowerSupply
method), 389

query_waveform_mode() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator
method), 384

614 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

QueryLearn (class in pymea-
sure.instruments.agilent.agilentB1500), 191

questionable_event_enabled (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 322

questionable_event_reg (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 414

questionable_events (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 322

questionable_operation_enable_reg (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 414

questionanble_status_reg (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 414

queue() (pymeasure.display.manager.BaseManager
method), 87

queue() (pymeasure.display.windows.managed_window.ManagedWindowBase
method), 100

queue_sequence() (pymea-
sure.display.widgets.sequencer_widget.SequencerWidget
method), 94

quick_range() (pymeasure.instruments.srs.SR830
method), 445

R
R75_out (pymeasure.instruments.rohdeschwarz.sfm.SFM

property), 407
Ramp (pymeasure.instruments.hp.hp856Xx.SweepOut at-

tribute), 280
ramp() (pymeasure.instruments.ami.AMI430 method),

201
ramp_rate (pymeasure.instruments.tcpowerconversion.CXN

property), 454
ramp_rate (pymeasure.instruments.temptronic.ATSBase

property), 480
ramp_rate_current (pymea-

sure.instruments.ami.AMI430 property),
201

ramp_rate_field (pymeasure.instruments.ami.AMI430
property), 201

ramp_source() (pymea-
sure.instruments.agilent.agilentB1500.SMU
method), 189

ramp_start_power (pymea-
sure.instruments.tcpowerconversion.CXN
property), 454

ramp_symmetry (pymea-
sure.instruments.agilent.Agilent33220A
property), 171

ramp_symmetry (pymea-
sure.instruments.agilent.Agilent33500 prop-

erty), 175
ramp_symmetry (pymea-

sure.instruments.agilent.agilent33500.Agilent33500Channel
property), 178

ramp_time (pymeasure.instruments.aja.DCXS property),
197

ramp_to_current() (pymea-
sure.instruments.ami.AMI430 method), 201

ramp_to_current() (pymea-
sure.instruments.danfysik.Danfysik8500
method), 228

ramp_to_current() (pymea-
sure.instruments.deltaelektronika.SM7045D
method), 230

ramp_to_current() (pymea-
sure.instruments.keithley.Keithley2400
method), 304

ramp_to_current() (pymea-
sure.instruments.keithley.Keithley2450
method), 311

ramp_to_current() (pymea-
sure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
method), 458

ramp_to_current() (pymea-
sure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
method), 462

ramp_to_current() (pymea-
sure.instruments.yokogawa.Yokogawa7651
method), 500

ramp_to_field() (pymeasure.instruments.ami.AMI430
method), 201

ramp_to_voltage() (pymea-
sure.instruments.keithley.Keithley2400
method), 304

ramp_to_voltage() (pymea-
sure.instruments.keithley.Keithley2450
method), 312

ramp_to_voltage() (pymea-
sure.instruments.keithley.Keithley6517B
method), 328

ramp_to_voltage() (pymea-
sure.instruments.yokogawa.Yokogawa7651
method), 500

ramp_to_zero() (pymea-
sure.instruments.deltaelektronika.SM7045D
method), 230

ramp_to_zero() (pymea-
sure.instruments.eurotest.EurotestHPP120256
method), 233

range (pymeasure.instruments.fwbell.FWBell5080 prop-
erty), 236

range (pymeasure.instruments.hp.HP3437A property),
244

range (pymeasure.instruments.hp.HP3478A property),

Index 615

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

247
range (pymeasure.instruments.lakeshore.LakeShore425

property), 359
range (pymeasure.instruments.lakeshore.lakeshore_base.LakeShoreHeaterChannel

property), 360
range (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2

property), 493
range_ (pymeasure.instruments.hp.HP34401A prop-

erty), 242
Ranging (class in pymea-

sure.instruments.agilent.agilentB1500), 191
ratio (pymeasure.instruments.agilent.agilent4156.VARD

property), 168
ratio (pymeasure.instruments.signalrecovery.DSP7225

property), 431
ratio (pymeasure.instruments.signalrecovery.DSP7265

property), 438
razorbillRP100 (class in pymea-

sure.instruments.razorbill), 405
read() (pymeasure.adapters.Adapter method), 48
read() (pymeasure.adapters.FakeAdapter method), 68
read() (pymeasure.adapters.PrologixAdapter method),

58
read() (pymeasure.adapters.SerialAdapter method), 54
read() (pymeasure.adapters.TelnetAdapter method), 64
read() (pymeasure.adapters.VISAAdapter method), 51
read() (pymeasure.adapters.VXI11Adapter method), 61
read() (pymeasure.instruments.aja.DCXS method), 197
read() (pymeasure.instruments.andeenhagerling.AH2700A

method), 207
read() (pymeasure.instruments.attocube.anc300.ANC300Controller

method), 224
read() (pymeasure.instruments.Channel method), 112
read() (pymeasure.instruments.danfysik.Danfysik8500

method), 228
read() (pymeasure.instruments.fluke.Fluke7341

method), 234
read() (pymeasure.instruments.fwbell.FWBell5080

method), 236
read() (pymeasure.instruments.hcp.TC038 method), 238
read() (pymeasure.instruments.hcp.TC038D method),

239
read() (pymeasure.instruments.Instrument method), 110
read() (pymeasure.instruments.ipgphotonics.yar.YAR

method), 287
read() (pymeasure.instruments.keithley.Keithley2000

method), 291
read() (pymeasure.instruments.keithley.Keithley2260B

method), 296
read() (pymeasure.instruments.keithley.Keithley2306

method), 298
read() (pymeasure.instruments.keithley.Keithley2400

method), 304
read() (pymeasure.instruments.keithley.Keithley2450

method), 312
read() (pymeasure.instruments.keithley.Keithley2600

method), 333
read() (pymeasure.instruments.keithley.Keithley2700

method), 317
read() (pymeasure.instruments.keithley.Keithley2750

method), 331
read() (pymeasure.instruments.keithley.Keithley6221

method), 322
read() (pymeasure.instruments.keithley.Keithley6517B

method), 328
read() (pymeasure.instruments.keysight.KeysightE36312A

method), 349
read() (pymeasure.instruments.lecroy.LeCroyT3DSO1204

method), 369
read() (pymeasure.instruments.mksinst.mks937b.MKS937B

method), 376
read() (pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalInputOutput

method), 380
read() (pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter

method), 382
read() (pymeasure.instruments.parker.ParkerGV6

method), 404
read() (pymeasure.instruments.signalrecovery.DSP7225

method), 431
read() (pymeasure.instruments.signalrecovery.DSP7265

method), 438
read() (pymeasure.instruments.tcpowerconversion.CXN

method), 454
read() (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38

method), 458
read() (pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65

method), 463
read() (pymeasure.instruments.teledyne.TeledyneT3AFG

method), 466
read() (pymeasure.instruments.texio.TexioPSW360L30

method), 486
read() (pymeasure.instruments.thyracont.smartline_v1.SmartlineV1

method), 490
read() (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2

method), 493
read() (pymeasure.instruments.toptica.ibeamsmart.IBeamSmart

method), 496
read() (pymeasure.instruments.velleman.VellemanK8090

method), 498
read_analog_digital_dataframe() (pymea-

sure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope
method), 388

read_analog_digital_u64() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope
method), 388

read_binary_values() (pymeasure.adapters.Adapter
method), 48

read_binary_values() (pymea-

616 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

sure.adapters.FakeAdapter method), 68
read_binary_values() (pymea-

sure.adapters.PrologixAdapter method),
59

read_binary_values() (pymea-
sure.adapters.SerialAdapter method), 54

read_binary_values() (pymea-
sure.adapters.TelnetAdapter method), 64

read_binary_values() (pymea-
sure.adapters.VISAAdapter method), 51

read_binary_values() (pymea-
sure.adapters.VXI11Adapter method), 62

read_binary_values() (pymea-
sure.instruments.andeenhagerling.AH2700A
method), 207

read_binary_values() (pymea-
sure.instruments.Channel method), 112

read_binary_values() (pymea-
sure.instruments.fwbell.FWBell5080 method),
236

read_binary_values() (pymea-
sure.instruments.Instrument method), 110

read_binary_values() (pymea-
sure.instruments.keithley.Keithley2000
method), 292

read_binary_values() (pymea-
sure.instruments.keithley.Keithley2200
method), 337

read_binary_values() (pymea-
sure.instruments.keithley.Keithley2260B
method), 296

read_binary_values() (pymea-
sure.instruments.keithley.Keithley2306
method), 299

read_binary_values() (pymea-
sure.instruments.keithley.Keithley2400
method), 304

read_binary_values() (pymea-
sure.instruments.keithley.Keithley2450
method), 312

read_binary_values() (pymea-
sure.instruments.keithley.Keithley2600
method), 333

read_binary_values() (pymea-
sure.instruments.keithley.Keithley2700
method), 317

read_binary_values() (pymea-
sure.instruments.keithley.Keithley2750
method), 331

read_binary_values() (pymea-
sure.instruments.keithley.Keithley6221
method), 322

read_binary_values() (pymea-
sure.instruments.keithley.Keithley6517B

method), 328
read_binary_values() (pymea-

sure.instruments.keysight.KeysightE36312A
method), 349

read_binary_values() (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
method), 369

read_binary_values() (pymea-
sure.instruments.signalrecovery.DSP7225
method), 431

read_binary_values() (pymea-
sure.instruments.signalrecovery.DSP7265
method), 438

read_binary_values() (pymea-
sure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
method), 458

read_binary_values() (pymea-
sure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
method), 463

read_binary_values() (pymea-
sure.instruments.teledyne.TeledyneT3AFG
method), 466

read_binary_values() (pymea-
sure.instruments.texio.TexioPSW360L30
method), 486

read_buffer() (pymea-
sure.instruments.pendulum.cnt91.CNT91
method), 405

read_bytes() (pymeasure.adapters.Adapter method),
48

read_bytes() (pymeasure.adapters.FakeAdapter
method), 68

read_bytes() (pymeasure.adapters.PrologixAdapter
method), 59

read_bytes() (pymeasure.adapters.SerialAdapter
method), 54

read_bytes() (pymeasure.adapters.TelnetAdapter
method), 65

read_bytes() (pymeasure.adapters.VISAAdapter
method), 51

read_bytes() (pymeasure.adapters.VXI11Adapter
method), 62

read_bytes() (pymea-
sure.instruments.andeenhagerling.AH2700A
method), 207

read_bytes() (pymeasure.instruments.Channel
method), 112

read_bytes() (pymea-
sure.instruments.fwbell.FWBell5080 method),
236

read_bytes() (pymeasure.instruments.Instrument
method), 110

read_bytes() (pymea-
sure.instruments.keithley.Keithley2000

Index 617

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

method), 292
read_bytes() (pymea-

sure.instruments.keithley.Keithley2200
method), 337

read_bytes() (pymea-
sure.instruments.keithley.Keithley2260B
method), 296

read_bytes() (pymea-
sure.instruments.keithley.Keithley2306
method), 299

read_bytes() (pymea-
sure.instruments.keithley.Keithley2400
method), 304

read_bytes() (pymea-
sure.instruments.keithley.Keithley2450
method), 312

read_bytes() (pymea-
sure.instruments.keithley.Keithley2600
method), 333

read_bytes() (pymea-
sure.instruments.keithley.Keithley2700
method), 317

read_bytes() (pymea-
sure.instruments.keithley.Keithley2750
method), 331

read_bytes() (pymea-
sure.instruments.keithley.Keithley6221
method), 322

read_bytes() (pymea-
sure.instruments.keithley.Keithley6517B
method), 328

read_bytes() (pymea-
sure.instruments.keysight.KeysightE36312A
method), 349

read_bytes() (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
method), 369

read_bytes() (pymea-
sure.instruments.signalrecovery.DSP7225
method), 431

read_bytes() (pymea-
sure.instruments.signalrecovery.DSP7265
method), 438

read_bytes() (pymea-
sure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
method), 458

read_bytes() (pymea-
sure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
method), 463

read_bytes() (pymea-
sure.instruments.teledyne.TeledyneT3AFG
method), 466

read_bytes() (pymea-
sure.instruments.texio.TexioPSW360L30

method), 486
read_channels() (pymea-

sure.instruments.agilent.agilentB1500.AgilentB1500
method), 187

read_data() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500
method), 187

read_data() (pymeasure.instruments.hp.HP3437A
method), 244

read_datafile() (pymea-
sure.instruments.anritsu.AnritsuMS464xB
method), 219

read_measurement() (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
method), 132

read_measurement_from_addr() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 141

read_memory() (pymea-
sure.instruments.anritsu.AnritsuMS9710C
method), 210

read_output() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.PowerSupply
method), 389

read_random_memory() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 140

read_raw() (pymeasure.adapters.VXI11Adapter
method), 62

read_trace() (pymea-
sure.instruments.rohdeschwarz.fsl.FSL
method), 421

readAI() (in module pymeasure.instruments.comedi),
116

reading (pymeasure.instruments.hp.HP34401A prop-
erty), 242

recall() (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
method), 459

recall() (pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
method), 463

recall_config() (pymea-
sure.instruments.siglenttechnologies.siglent_spdbase.SPDBase
method), 424

recall_open_short_average() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 271

recall_state() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 254

recall_thru() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 272

recall_trace() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 264

618 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

receive() (pymeasure.experiment.listeners.Listener
method), 72

Recorder (class in pymeasure.experiment.listeners), 72
reference (pymeasure.instruments.signalrecovery.DSP7225

property), 431
reference (pymeasure.instruments.signalrecovery.DSP7265

property), 438
reference_externalinput (pymea-

sure.instruments.srs.SR860 property), 449
reference_level (pymea-

sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 255

reference_level_calibration (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 254

reference_offset (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 255

reference_output (pymea-
sure.instruments.anapico.APSIN12G property),
205

reference_phase (pymea-
sure.instruments.signalrecovery.DSP7225
property), 431

reference_phase (pymea-
sure.instruments.signalrecovery.DSP7265
property), 438

reference_source (pymeasure.instruments.srs.SR830
property), 445

reference_source (pymeasure.instruments.srs.SR860
property), 449

reference_source_trigger (pymea-
sure.instruments.srs.SR830 property), 445

reference_triggermode (pymea-
sure.instruments.srs.SR860 property), 449

refresh_parameters() (pymea-
sure.experiment.procedure.Procedure method),
74

regulation_mode (pymeasure.instruments.aja.DCXS
property), 197

relative_field (pymea-
sure.instruments.lakeshore.LakeShore421
property), 357

relative_field_raw (pymea-
sure.instruments.lakeshore.LakeShore421
property), 357

relative_mode_enabled (pymea-
sure.instruments.lakeshore.LakeShore421
property), 357

relative_multiplier (pymea-
sure.instruments.lakeshore.LakeShore421
property), 357

relative_setpoint (pymea-
sure.instruments.lakeshore.LakeShore421

property), 357
relative_setpoint_multiplier (pymea-

sure.instruments.lakeshore.LakeShore421
property), 357

relative_setpoint_raw (pymea-
sure.instruments.lakeshore.LakeShore421
property), 358

relay() (pymeasure.instruments.keithley.Keithley2306
method), 299

relay_mode (pymeasure.instruments.advantest.advantestR624X.SMUChannel
property), 142

release_control() (pymea-
sure.instruments.tcpowerconversion.CXN
method), 454

reload() (pymeasure.experiment.results.Results
method), 80

remaining_deposition_time_min (pymea-
sure.instruments.aja.DCXS property), 197

remaining_deposition_time_sec (pymea-
sure.instruments.aja.DCXS property), 197

remote (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
property), 459

remote (pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
property), 463

remote() (pymeasure.instruments.danfysik.Danfysik8500
method), 228

remote() (pymeasure.instruments.keithley.Keithley2000
method), 292

remote_interfaces (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 414

remote_local_state (pymea-
sure.instruments.agilent.Agilent33220A
property), 171

remote_lock() (pymea-
sure.instruments.keithley.Keithley2000
method), 292

remote_mode (pymeasure.instruments.temptronic.ATSBase
property), 480

remote_trigger_type (pymea-
sure.instruments.anritsu.AnritsuMS464xB
property), 219

remove() (pymeasure.display.manager.BaseManager
method), 88

remove() (pymeasure.display.manager.Manager
method), 88

remove() (pymeasure.display.widgets.image_widget.ImageWidget
method), 91

remove() (pymeasure.display.widgets.plot_widget.PlotWidget
method), 92

remove() (pymeasure.display.widgets.tab_widget.TabWidget
method), 95

remove() (pymeasure.display.widgets.table_widget.TableWidget
method), 98

Index 619

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

remove_child() (pymea-
sure.instruments.common_base.CommonBase
method), 108

remove_child() (pymea-
sure.instruments.keithley.Keithley2200
method), 337

remove_child() (pymea-
sure.instruments.keysight.KeysightE36312A
method), 349

remove_child() (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
method), 369

remove_file() (pymea-
sure.instruments.activetechnologies.AWG401x_AWG
method), 118

remove_node() (pymea-
sure.display.widgets.sequencer_widget.SequencerTreeModel
method), 94

repeat (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
property), 459

repeat (pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
property), 463

repeat_sweep() (pymea-
sure.instruments.anritsu.AnritsuMS9740A
method), 211

repetition_rate (pymea-
sure.instruments.hp.HP8116A property),
250

repetitions (pymeasure.instruments.rohdeschwarz.hmp.HMP4040
property), 422

replace_placeholders() (in module pymea-
sure.experiment.results), 80

request_control() (pymea-
sure.instruments.tcpowerconversion.CXN
method), 454

request_service() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 253

request_service_conditions (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 254

res_bandwidth (pymea-
sure.instruments.rohdeschwarz.fsl.FSL prop-
erty), 421

reset() (pymeasure.adapters.PrologixAdapter method),
59

reset() (pymeasure.instruments.activetechnologies.AWG401x_AWG.WaveformsLazyDict
method), 118

reset() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500
method), 183

reset() (pymeasure.instruments.andeenhagerling.AH2700A
method), 207

reset() (pymeasure.instruments.fwbell.FWBell5080
method), 236

reset() (pymeasure.instruments.hp.HP8116A method),
250

reset() (pymeasure.instruments.hp.HP8657B method),
283

reset() (pymeasure.instruments.hp.HPLegacyInstrument
method), 283

reset() (pymeasure.instruments.Instrument method),
110

reset() (pymeasure.instruments.keithley.Keithley2000
method), 292

reset() (pymeasure.instruments.keithley.Keithley2200
method), 337

reset() (pymeasure.instruments.keithley.Keithley2260B
method), 296

reset() (pymeasure.instruments.keithley.Keithley2306
method), 299

reset() (pymeasure.instruments.keithley.Keithley2400
method), 305

reset() (pymeasure.instruments.keithley.Keithley2450
method), 312

reset() (pymeasure.instruments.keithley.Keithley2600
method), 333

reset() (pymeasure.instruments.keithley.Keithley2700
method), 318

reset() (pymeasure.instruments.keithley.Keithley2750
method), 331

reset() (pymeasure.instruments.keithley.Keithley6221
method), 322

reset() (pymeasure.instruments.keithley.Keithley6517B
method), 328

reset() (pymeasure.instruments.keysight.KeysightE36312A
method), 349

reset() (pymeasure.instruments.lecroy.LeCroyT3DSO1204
method), 369

reset() (pymeasure.instruments.parker.ParkerGV6
method), 404

reset() (pymeasure.instruments.signalrecovery.DSP7225
method), 431

reset() (pymeasure.instruments.signalrecovery.DSP7265
method), 438

reset() (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
method), 459

reset() (pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
method), 463

reset() (pymeasure.instruments.teledyne.TeledyneT3AFG
method), 467

reset() (pymeasure.instruments.temptronic.ATSBase
method), 480

reset() (pymeasure.instruments.texio.TexioPSW360L30
method), 486

reset_alarm() (pymea-
sure.instruments.lakeshore.LakeShore211
method), 353

reset_buffer() (pymea-

620 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

sure.instruments.keithley.Keithley2000
method), 292

reset_buffer() (pymea-
sure.instruments.keithley.Keithley2400
method), 305

reset_buffer() (pymea-
sure.instruments.keithley.Keithley2450
method), 312

reset_buffer() (pymea-
sure.instruments.keithley.Keithley2700
method), 318

reset_buffer() (pymea-
sure.instruments.keithley.Keithley6221
method), 322

reset_buffer() (pymea-
sure.instruments.keithley.Keithley6517B
method), 328

reset_instrument() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.DigitalInputOutput
method), 380

reset_instrument() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter
method), 382

reset_instrument() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator
method), 384

reset_instrument() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope
method), 388

reset_instrument() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.PowerSupply
method), 389

reset_interlocks() (pymea-
sure.instruments.danfysik.Danfysik8500
method), 228

reset_OVP_OCP() (pymea-
sure.instruments.hp.HP6632A method), 285

reset_position() (pymea-
sure.instruments.anaheimautomation.DPSeriesMotorController
method), 204

resistance (pymeasure.instruments.agilent.Agilent34410A
property), 159

resistance (pymeasure.instruments.agilent.Agilent34450A
property), 162

resistance (pymeasure.instruments.hp.HP34401A
property), 242

resistance (pymeasure.instruments.keithley.Keithley2000
property), 292

resistance (pymeasure.instruments.keithley.Keithley2400
property), 305

resistance (pymeasure.instruments.keithley.Keithley2450
property), 312

resistance (pymeasure.instruments.keithley.Keithley6517B
property), 328

resistance_4w (pymea-
sure.instruments.agilent.Agilent34410A
property), 159

resistance_4w (pymea-
sure.instruments.agilent.Agilent34450A
property), 162

resistance_4w (pymeasure.instruments.hp.HP34401A
property), 242

resistance_4w_auto_range (pymea-
sure.instruments.agilent.Agilent34450A
property), 162

resistance_4W_digits (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 292

resistance_4W_nplc (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 292

resistance_4w_range (pymea-
sure.instruments.agilent.Agilent34450A
property), 162

resistance_4W_range (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 292

resistance_4W_reference (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 292

resistance_4w_resolution (pymea-
sure.instruments.agilent.Agilent34450A
property), 162

resistance_auto_range (pymea-
sure.instruments.agilent.Agilent34450A
property), 162

resistance_digits (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 292

resistance_nplc (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 292

resistance_nplc (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 305

resistance_nplc (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 312

resistance_nplc (pymea-
sure.instruments.keithley.Keithley6517B
property), 328

resistance_range (pymea-
sure.instruments.agilent.Agilent34450A
property), 162

resistance_range (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 293

resistance_range (pymea-

Index 621

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

sure.instruments.keithley.Keithley2400 prop-
erty), 305

resistance_range (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 312

resistance_range (pymea-
sure.instruments.keithley.Keithley6517B
property), 328

resistance_reference (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 293

resistance_resolution (pymea-
sure.instruments.agilent.Agilent34450A
property), 162

resolution (pymeasure.instruments.anritsu.AnritsuMS9710C
property), 210

resolution (pymeasure.instruments.anritsu.AnritsuMS9740A
property), 211

resolution (pymeasure.instruments.hp.HP34401A
property), 242

resolution (pymeasure.instruments.hp.HP3478A prop-
erty), 247

resolution_actual (pymea-
sure.instruments.anritsu.AnritsuMS9710C
property), 210

resolution_bandwidth (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 260

resolution_bandwidth_to_span_ratio (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 260

resolution_vbw (pymea-
sure.instruments.anritsu.AnritsuMS9710C
property), 210

resolution_vbw (pymea-
sure.instruments.anritsu.AnritsuMS9740A
property), 211

Results (class in pymeasure.experiment.results), 79
ResultsClass (pymea-

sure.display.widgets.image_frame.ImageFrame
attribute), 90

ResultsClass (pymea-
sure.display.widgets.plot_frame.PlotFrame
attribute), 91

ResultsCurve (class in pymeasure.display.curves), 84
ResultsDialog (class in pymea-

sure.display.widgets.results_dialog), 92
ResultsImage (class in pymeasure.display.curves), 84
ResultsTable (class in pymea-

sure.display.widgets.table_widget), 97
resume() (pymeasure.display.manager.BaseManager

method), 88
return_to_local() (pymea-

sure.instruments.anritsu.AnritsuMS464xB

method), 219
reverse_power_limit (pymea-

sure.instruments.tcpowerconversion.CXN
property), 454

rf_enabled (pymeasure.instruments.tcpowerconversion.CXN
property), 454

rf_out_enabled (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 414

rf_sweep_center (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 414

rf_sweep_span (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 414

rf_sweep_start (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 414

rf_sweep_step (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 415

rf_sweep_stop (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 415

right_limit (pymeasure.instruments.newport.esp300.Axis
property), 378

rom_version (pymeasure.instruments.hp.HP6632A
property), 285

round_up() (pymeasure.display.curves.ResultsImage
method), 85

rowCount() (pymeasure.display.widgets.sequencer_widget.SequencerTreeModel
method), 94

rowCount() (pymeasure.display.widgets.table_widget.PandasModelBase
method), 96

RQS (pymeasure.instruments.hp.hp856Xx.StatusRegister
attribute), 280

rsd (pymeasure.instruments.deltaelektronika.SM7045D
property), 231

run() (pymeasure.display.listeners.Monitor method), 87
run() (pymeasure.display.plotter.Plotter method), 89
run() (pymeasure.display.widgets.estimator_widget.EstimatorThread

method), 90
run() (pymeasure.experiment.workers.Worker method),

79
run() (pymeasure.instruments.keysight.KeysightDSOX1102G

method), 340
run() (pymeasure.instruments.lecroy.LeCroyT3DSO1204

method), 369
run() (pymeasure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator

method), 384
run() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope

method), 388
run() (pymeasure.instruments.teledyne.TeledyneOscilloscope

method), 469

622 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

run() (pymeasure.instruments.thermotron.Thermotron3800
method), 488

run_mode (pymeasure.instruments.activetechnologies.AWG401x_AWG
property), 118

run_status (pymeasure.instruments.activetechnologies.AWG401x_AWG
property), 119

S
Sample (pymeasure.instruments.hp.hp856Xx.DetectionModes

attribute), 278
sample_continuously() (pymea-

sure.instruments.keithley.Keithley2400
method), 305

sample_count (pymeasure.instruments.hp.HP34401A
property), 242

sample_decreasing_strategy (pymea-
sure.instruments.activetechnologies.AWG401x_AWG
property), 119

sample_frequency (pymeasure.instruments.srs.SR830
property), 445

sample_hold_mode (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
property), 133

sample_increasing_strategy (pymea-
sure.instruments.activetechnologies.AWG401x_AWG
property), 119

SampleHold (class in pymea-
sure.instruments.advantest.advantestR624X),
143

SampleMode (class in pymea-
sure.instruments.advantest.advantestR624X),
143

sampler_harmonic_number (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 269

SAMPLING (pymeasure.instruments.agilent.agilentB1500.MeasMode
attribute), 194

sampling_auto_abort() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 187

sampling_frequency (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 269

sampling_mode (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
property), 187

sampling_points (pymea-
sure.instruments.anritsu.AnritsuMS9710C
property), 210

sampling_points (pymea-
sure.instruments.anritsu.AnritsuMS9740A
property), 211

sampling_rate (pymea-
sure.instruments.activetechnologies.AWG401x_AWG

property), 119
sampling_rate_max (pymea-

sure.instruments.activetechnologies.AWG401x_AWG
property), 119

sampling_rate_min (pymea-
sure.instruments.activetechnologies.AWG401x_AWG
property), 119

sampling_source() (pymea-
sure.instruments.agilent.agilentB1500.SMU
method), 190

sampling_timing() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 187

SamplingMode (class in pymea-
sure.instruments.agilent.agilentB1500), 194

SamplingPostOutput (class in pymea-
sure.instruments.agilent.agilentB1500), 195

save() (pymeasure.instruments.agilent.agilent4156.Agilent4156
method), 166

save() (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
method), 459

save() (pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
method), 463

save_config() (pymea-
sure.instruments.siglenttechnologies.siglent_spdbase.SPDBase
method), 424

save_dock_layout() (pymea-
sure.display.widgets.dock_widget.DockWidget
method), 95

save_file() (pymeasure.instruments.activetechnologies.AWG401x_AWG
method), 119

save_sequence() (pymea-
sure.instruments.rohdeschwarz.hmp.HMP4040
method), 422

save_state() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 254

save_trace() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 264

save_var() (pymeasure.instruments.agilent.agilent4156.Agilent4156
method), 166

scale (pymeasure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel
property), 474

scale_volt (pymeasure.instruments.rohdeschwarz.sfm.SFM
property), 415

scan() (pymeasure.instruments.agilent.Agilent8722ES
method), 156

scan_continuous() (pymea-
sure.instruments.agilent.Agilent8722ES
method), 156

scan_points (pymeasure.instruments.agilent.Agilent8722ES
property), 156

scan_single() (pymea-

Index 623

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

sure.instruments.agilent.Agilent8722ES
method), 156

ScientificInput (class in pymeasure.display.inputs),
86

scpi_version (pymeasure.instruments.hp.HP34401A
property), 242

screen_layout (pymeasure.instruments.srs.SR860
property), 449

screenshot() (pymeasure.instruments.srs.SR860
method), 449

search_peak() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 266

select_for_output() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 134

selected_channel (pymea-
sure.instruments.rohdeschwarz.hmp.HMP4040
property), 422

selected_channel (pymea-
sure.instruments.siglenttechnologies.siglent_spdbase.SPDBase
property), 424

selected_channel_active (pymea-
sure.instruments.rohdeschwarz.hmp.HMP4040
property), 422

self_calibrate() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator
method), 384

self_test (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X
property), 131

self_test_result (pymea-
sure.instruments.hp.HP34401A property),
242

send_trigger() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 184

sense_mode (pymeasure.instruments.anritsu.AnritsuMS2090A
property), 214

sensitivity (pymeasure.instruments.ametek.Ametek7270
property), 199

sensitivity (pymeasure.instruments.signalrecovery.DSP7225
property), 431

sensitivity (pymeasure.instruments.signalrecovery.DSP7265
property), 438

sensitivity (pymeasure.instruments.srs.SR510 prop-
erty), 440

sensitivity (pymeasure.instruments.srs.SR570 prop-
erty), 442

sensitivity (pymeasure.instruments.srs.SR830 prop-
erty), 445

sensitvity (pymeasure.instruments.srs.SR860 prop-
erty), 449

sensor (pymeasure.instruments.lakeshore.lakeshore_base.LakeShoreTemperatureChannel
property), 359

sensor_serial (pymea-
sure.instruments.thyracont.smartline_v2.SmartlineV2
property), 493

sequence (pymeasure.instruments.rohdeschwarz.hmp.HMP4040
property), 422

sequence_program_listing() (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
method), 126

sequence_program_number (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
property), 126

sequence_wait() (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
method), 125

SequenceDialog (class in pymea-
sure.display.widgets.sequencer_widget),
93

SequenceInterruptionType (class in pymea-
sure.instruments.advantest.advantestR624X),
144

SequencerTreeModel (class in pymea-
sure.display.widgets.sequencer_widget),
93

SequencerTreeView (class in pymea-
sure.display.widgets.sequencer_widget),
94

SequencerWidget (class in pymea-
sure.display.widgets.sequencer_widget),
94

serial (pymeasure.instruments.mksinst.mks937b.MKS937B
property), 376

serial (pymeasure.instruments.tcpowerconversion.CXN
property), 454

serial (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
property), 459

serial (pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
property), 463

serial (pymeasure.instruments.toptica.ibeamsmart.IBeamSmart
property), 496

serial_baud (pymeasure.instruments.rohdeschwarz.sfm.SFM
property), 415

serial_bits (pymeasure.instruments.rohdeschwarz.sfm.SFM
property), 415

serial_flowcontrol (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 415

serial_nr (pymeasure.instruments.attocube.anc300.Axis
property), 226

serial_number (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 257

serial_number (pymea-
sure.instruments.lakeshore.LakeShore421
property), 358

624 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

serial_number (pymeasure.instruments.novanta.Fpu60
property), 393

serial_parity (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 415

serial_stopbits (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 416

SerialAdapter (class in pymeasure.adapters), 53
series_resistance (pymea-

sure.instruments.agilent.agilent4156.SMU
property), 167

series_resistor (pymea-
sure.instruments.agilent.agilentB1500.SMU
property), 188

service_request_enable_bits (pymea-
sure.instruments.anritsu.AnritsuMS464xB
property), 219

service_request_enable_register (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
property), 130

SESR (class in pymea-
sure.instruments.advantest.advantestR624X),
145

set_auto_couple() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 252

set_averaging() (pymea-
sure.instruments.agilent.Agilent8722ES
method), 156

set_buffer() (pymea-
sure.instruments.signalrecovery.DSP7225
method), 432

set_buffer() (pymea-
sure.instruments.signalrecovery.DSP7265
method), 438

set_channel_A_mode() (pymea-
sure.instruments.ametek.Ametek7270 method),
199

set_channel_state() (pymea-
sure.instruments.rohdeschwarz.hmp.HMP4040
method), 422

set_color() (pymeasure.display.widgets.plot_widget.PlotWidget
method), 92

set_color() (pymeasure.display.widgets.tab_widget.TabWidget
method), 95

set_color() (pymeasure.display.widgets.table_widget.TableWidget
method), 98

set_comparison_limits() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 142

set_continuous_sensor_transition() (pymea-
sure.instruments.thyracont.smartline_v2.SmartlineV2
method), 493

set_continuous_sweep (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 270

set_crt_adjustment_pattern() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 257

set_current_mode() (pymea-
sure.instruments.ametek.Ametek7270 method),
199

set_default_sensor_transition() (pymea-
sure.instruments.thyracont.smartline_v2.SmartlineV2
method), 493

set_defaults() (pymea-
sure.instruments.parker.ParkerGV6 method),
404

set_differential_mode() (pymea-
sure.instruments.ametek.Ametek7270 method),
199

set_digital_output() (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
method), 124

set_direct_sensor_transition() (pymea-
sure.instruments.thyracont.smartline_v2.SmartlineV2
method), 493

set_field() (pymeasure.instruments.oxfordinstruments.IPS120_10
method), 400

set_fixed_frequency() (pymea-
sure.instruments.agilent.Agilent8722ES
method), 156

set_full_span() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 260

set_fullband() (pymeasure.instruments.hp.HP8561B
method), 276

set_hardware_limits() (pymea-
sure.instruments.parker.ParkerGV6 method),
404

set_high() (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2
method), 494

set_IF_bandwidth() (pymea-
sure.instruments.agilent.Agilent8722ES
method), 156

set_linear_scale() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 252

set_lo_common_connection_relay() (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
method), 131

set_low() (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2
method), 494

set_marker_delta_to_span() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 268

set_marker_minimum() (pymea-

Index 625

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

sure.instruments.hp.hp856Xx.HP856Xx
method), 267

set_marker_to_center_frequency() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 266

set_marker_to_center_frequency_step_size()
(pymeasure.instruments.hp.hp856Xx.HP856Xx
method), 268

set_marker_to_reference_level() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 268

set_max_over_voltage() (pymea-
sure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
method), 459

set_max_over_voltage() (pymea-
sure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
method), 463

set_maximum_hold (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 254

set_minimum_hold (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 254

set_model() (pymeasure.display.widgets.table_widget.Table
method), 97

set_monitored_quantity() (pymea-
sure.instruments.hcp.TC038 method), 238

set_output_format() (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
method), 127

set_output_type() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 132

set_parameter() (pymea-
sure.display.inputs.BooleanInput method),
85

set_parameter() (pymeasure.display.inputs.Input
method), 85

set_parameter() (pymea-
sure.display.inputs.IntegerInput method),
85

set_parameter() (pymeasure.display.inputs.ListInput
method), 86

set_parameter() (pymea-
sure.display.inputs.ScientificInput method),
86

set_parameters() (pymea-
sure.display.windows.managed_window.ManagedWindowBase
method), 100

set_parameters() (pymea-
sure.experiment.procedure.Procedure method),
74

set_point (pymeasure.instruments.fluke.Fluke7341
property), 234

set_point_number (pymea-
sure.instruments.temptronic.ATSBase prop-
erty), 480

set_ramp_delay() (pymea-
sure.instruments.danfysik.Danfysik8500
method), 228

set_ramp_to_current() (pymea-
sure.instruments.danfysik.Danfysik8500
method), 228

set_reference_mode() (pymea-
sure.instruments.ametek.Ametek7270 method),
199

set_sample_mode() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 134

set_scaling() (pymeasure.instruments.srs.SR830
method), 445

set_scanner_control() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 132

set_sequence() (pymea-
sure.instruments.danfysik.Danfysik8500
method), 229

set_signal_identification_to_center_frequency()
(pymeasure.instruments.hp.HP8561B method),
276

set_software_limits() (pymea-
sure.instruments.parker.ParkerGV6 method),
404

set_temperature() (pymea-
sure.instruments.temptronic.ATSBase method),
480

set_timed_arm() (pymea-
sure.instruments.keithley.Keithley2400
method), 305

set_timed_arm() (pymea-
sure.instruments.keithley.Keithley6221
method), 322

set_timing_parameters() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 134

set_title() (pymeasure.instruments.hp.hp856Xx.HP856Xx
method), 253

set_trace_data_a (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 263

set_trace_data_b (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 263

set_trigger_counts() (pymea-
sure.instruments.keithley.Keithley2400
method), 305

set_voltage_mode() (pymea-
sure.instruments.ametek.Ametek7270 method),

626 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

199
set_voltage_mode() (pymea-

sure.instruments.signalrecovery.DSP7225
method), 432

set_voltage_mode() (pymea-
sure.instruments.signalrecovery.DSP7265
method), 439

set_wire_mode() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 141

setChannelAMode() (pymea-
sure.instruments.signalrecovery.DSP7225
method), 431

setChannelAMode() (pymea-
sure.instruments.signalrecovery.DSP7265
method), 438

setData() (pymeasure.display.widgets.sequencer_widget.SequencerTreeModel
method), 94

setDifferentialMode() (pymea-
sure.instruments.signalrecovery.DSP7225
method), 432

setDifferentialMode() (pymea-
sure.instruments.signalrecovery.DSP7265
method), 438

setEditorData() (pymea-
sure.display.widgets.sequencer_widget.ComboBoxDelegate
method), 92

setEditorData() (pymea-
sure.display.widgets.sequencer_widget.LineEditDelegate
method), 93

setModel() (pymeasure.display.widgets.sequencer_widget.SequencerTreeView
method), 94

setModel() (pymeasure.display.widgets.table_widget.Table
method), 97

setModelData() (pymea-
sure.display.widgets.sequencer_widget.ComboBoxDelegate
method), 92

setModelData() (pymea-
sure.display.widgets.sequencer_widget.LineEditDelegate
method), 93

setpoint (pymeasure.instruments.aja.DCXS property),
197

setpoint (pymeasure.instruments.hcp.TC038 property),
238

setpoint (pymeasure.instruments.hcp.TC038D prop-
erty), 239

setpoint (pymeasure.instruments.lakeshore.lakeshore_base.LakeShoreHeaterChannel
property), 360

setpoint (pymeasure.instruments.tcpowerconversion.CXN
property), 454

setpoint (pymeasure.instruments.thermotron.Thermotron3800
property), 488

setting() (pymeasure.instruments.common_base.CommonBase
static method), 108

setting() (pymeasure.instruments.keysight.KeysightE36312A
static method), 349

setting() (pymeasure.instruments.lecroy.LeCroyT3DSO1204
static method), 369

setup() (pymeasure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel
method), 475

setup_parser() (pymea-
sure.display.console.ConsoleArgumentParser
method), 83

setup_plot() (pymeasure.display.plotter.Plotter
method), 89

SFM (class in pymeasure.instruments.rohdeschwarz.sfm),
407

shape (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG
property), 120

shape (pymeasure.instruments.agilent.Agilent33220A
property), 171

shape (pymeasure.instruments.agilent.Agilent33500
property), 175

shape (pymeasure.instruments.agilent.agilent33500.Agilent33500Channel
property), 178

shape (pymeasure.instruments.hp.HP33120A property),
240

shape (pymeasure.instruments.hp.HP8116A property),
250

shield (pymeasure.instruments.signalrecovery.DSP7225
property), 432

shield (pymeasure.instruments.signalrecovery.DSP7265
property), 439

shutdown() (pymeasure.experiment.procedure.Procedure
method), 74

shutdown() (pymeasure.experiment.workers.Worker
method), 79

shutdown() (pymeasure.instruments.agilent.Agilent8257D
method), 154

shutdown() (pymeasure.instruments.ametek.Ametek7270
method), 199

shutdown() (pymeasure.instruments.ami.AMI430
method), 201

shutdown() (pymeasure.instruments.andeenhagerling.AH2700A
method), 207

shutdown() (pymeasure.instruments.anritsu.AnritsuMG3692C
method), 208

shutdown() (pymeasure.instruments.deltaelektronika.SM7045D
method), 231

shutdown() (pymeasure.instruments.eurotest.EurotestHPP120256
method), 233

shutdown() (pymeasure.instruments.fwbell.FWBell5080
method), 236

shutdown() (pymeasure.instruments.hp.HP8116A
method), 250

shutdown() (pymeasure.instruments.hp.HP8657B
method), 283

shutdown() (pymeasure.instruments.hp.HPLegacyInstrument

Index 627

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

method), 283
shutdown() (pymeasure.instruments.Instrument

method), 110
shutdown() (pymeasure.instruments.keithley.Keithley2000

method), 293
shutdown() (pymeasure.instruments.keithley.Keithley2200

method), 337
shutdown() (pymeasure.instruments.keithley.Keithley2260B

method), 296
shutdown() (pymeasure.instruments.keithley.Keithley2306

method), 299
shutdown() (pymeasure.instruments.keithley.Keithley2400

method), 305
shutdown() (pymeasure.instruments.keithley.Keithley2450

method), 312
shutdown() (pymeasure.instruments.keithley.Keithley2600

method), 333
shutdown() (pymeasure.instruments.keithley.Keithley2700

method), 318
shutdown() (pymeasure.instruments.keithley.Keithley2750

method), 332
shutdown() (pymeasure.instruments.keithley.Keithley6221

method), 322
shutdown() (pymeasure.instruments.keithley.Keithley6517B

method), 328
shutdown() (pymeasure.instruments.keysight.KeysightE36312A

method), 350
shutdown() (pymeasure.instruments.lakeshore.LakeShore421

method), 358
shutdown() (pymeasure.instruments.lecroy.LeCroyT3DSO1204

method), 370
shutdown() (pymeasure.instruments.newport.ESP300

method), 377
shutdown() (pymeasure.instruments.ni.virtualbench.VirtualBench

method), 392
shutdown() (pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalInputOutput

method), 380
shutdown() (pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter

method), 382
shutdown() (pymeasure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator

method), 384
shutdown() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope

method), 388
shutdown() (pymeasure.instruments.ni.virtualbench.VirtualBench.PowerSupply

method), 390
shutdown() (pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDBase

method), 424
shutdown() (pymeasure.instruments.signalrecovery.DSP7225

method), 432
shutdown() (pymeasure.instruments.signalrecovery.DSP7265

method), 439
shutdown() (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38

method), 459
shutdown() (pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65

method), 463
shutdown() (pymeasure.instruments.teledyne.TeledyneT3AFG

method), 467
shutdown() (pymeasure.instruments.temptronic.ATSBase

method), 480
shutdown() (pymeasure.instruments.texio.TexioPSW360L30

method), 486
shutdown() (pymeasure.instruments.toptica.ibeamsmart.IBeamSmart

method), 496
shutdown() (pymeasure.instruments.yokogawa.Yokogawa7651

method), 500
shutter_delay (pymeasure.instruments.aja.DCXS

property), 197
shutter_open (pymeasure.instruments.novanta.Fpu60

property), 393
shutter_state (pymeasure.instruments.aja.DCXS

property), 197
signal_identification (pymea-

sure.instruments.hp.HP8561B property),
276

signal_identification_frequency (pymea-
sure.instruments.hp.HP8561B property),
276

signal_inverted (pymeasure.instruments.srs.SR570
property), 442

SignalChannel (class in pymea-
sure.instruments.teledyne.teledyneT3AFG),
467

sine_amplitudepreset1 (pymea-
sure.instruments.srs.SR860 property), 449

sine_amplitudepreset2 (pymea-
sure.instruments.srs.SR860 property), 450

sine_amplitudepreset3 (pymea-
sure.instruments.srs.SR860 property), 450

sine_amplitudepreset4 (pymea-
sure.instruments.srs.SR860 property), 450

sine_dclevelpreset1 (pymea-
sure.instruments.srs.SR860 property), 450

sine_dclevelpreset2 (pymea-
sure.instruments.srs.SR860 property), 450

sine_dclevelpreset3 (pymea-
sure.instruments.srs.SR860 property), 450

sine_dclevelpreset4 (pymea-
sure.instruments.srs.SR860 property), 450

sine_voltage (pymeasure.instruments.srs.SR830 prop-
erty), 445

sine_voltage (pymeasure.instruments.srs.SR860 prop-
erty), 450

single() (pymeasure.instruments.keysight.KeysightDSOX1102G
method), 340

single() (pymeasure.instruments.lecroy.LeCroyT3DSO1204
method), 370

single() (pymeasure.instruments.teledyne.TeledyneOscilloscope
method), 470

628 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

single_sweep() (pymea-
sure.instruments.anritsu.AnritsuMS9710C
method), 210

single_sweep() (pymea-
sure.instruments.rohdeschwarz.fsl.FSL
method), 421

sizeHint() (pymeasure.display.widgets.image_widget.ImageWidget
method), 91

sizeHint() (pymeasure.display.widgets.plot_widget.PlotWidget
method), 92

skew_factor (pymeasure.instruments.lecroy.lecroyT3DSO1204.LeCroyT3DSO1204Channel
property), 374

slew_rate (pymeasure.instruments.danfysik.Danfysik8500
property), 229

slew_rate_1 (pymeasure.instruments.razorbill.razorbillRP100
property), 406

slew_rate_2 (pymeasure.instruments.razorbill.razorbillRP100
property), 406

slope (pymeasure.instruments.ametek.Ametek7270 prop-
erty), 199

slope (pymeasure.instruments.signalrecovery.DSP7225
property), 432

slope (pymeasure.instruments.signalrecovery.DSP7265
property), 439

slot (pymeasure.instruments.thorlabs.ThorlabsPro8000
property), 489

SM7045D (class in pymea-
sure.instruments.deltaelektronika), 230

SmartlineV1 (class in pymea-
sure.instruments.thyracont.smartline_v1),
490

SmartlineV2 (class in pymea-
sure.instruments.thyracont.smartline_v2),
491

SmartlineV2.Sources (class in pymea-
sure.instruments.thyracont.smartline_v2),
492

SMU (class in pymea-
sure.instruments.agilent.agilent4156), 166

SMU (class in pymea-
sure.instruments.agilent.agilentB1500), 188

SMU_MEASUREMENT (pymea-
sure.instruments.agilent.agilentB1500.WaitTimeType
attribute), 196

smu_names (pymeasure.instruments.agilent.agilentB1500.AgilentB1500
property), 183

smu_references (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
property), 183

SMU_SOURCE (pymeasure.instruments.agilent.agilentB1500.WaitTimeType
attribute), 196

SMUChannel (class in pymea-
sure.instruments.advantest.advantestR624X),
132

SMUCurrentRanging (class in pymea-
sure.instruments.agilent.agilentB1500), 192

SMUVoltageRanging (class in pymea-
sure.instruments.agilent.agilentB1500), 192

snap() (pymeasure.instruments.srs.SR830 method), 445
snap() (pymeasure.instruments.srs.SR860 method), 450
software_version (pymeasure.instruments.aja.DCXS

property), 198
software_version (pymea-

sure.instruments.novanta.Fpu60 property),
393

Sound_Channel (class in pymea-
sure.instruments.rohdeschwarz.sfm), 417

sound_mode (pymeasure.instruments.rohdeschwarz.sfm.SFM
property), 416

source_auto_range (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 322

source_compliance (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 322

source_current (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 305

source_current (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 312

source_current (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 322

source_current (pymea-
sure.instruments.yokogawa.Yokogawa7651
property), 500

source_current_delay (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 312

source_current_delay_auto (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 313

source_current_range (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 305

source_current_range (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 313

source_current_range (pymea-
sure.instruments.yokogawa.Yokogawa7651
property), 500

source_current_resistance_limit (pymea-
sure.instruments.keithley.Keithley6517B
property), 329

source_delay (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 305

Index 629

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

source_delay (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 323

source_delay_auto (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 305

source_enabled (pymea-
sure.instruments.bkprecision.BKPrecision9130B
property), 226

source_enabled (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 305

source_enabled (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 313

source_enabled (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 323

source_enabled (pymea-
sure.instruments.keithley.Keithley6517B
property), 329

source_enabled (pymea-
sure.instruments.yokogawa.Yokogawa7651
property), 500

source_enabled (pymea-
sure.instruments.yokogawa.YokogawaGS200
property), 501

source_level (pymea-
sure.instruments.yokogawa.YokogawaGS200
property), 501

source_leveling_control (pymea-
sure.instruments.hp.HP8560A property),
273

source_mode (pymeasure.instruments.keithley.Keithley2400
property), 305

source_mode (pymeasure.instruments.keithley.Keithley2450
property), 313

source_mode (pymeasure.instruments.yokogawa.Yokogawa7651
property), 500

source_mode (pymeasure.instruments.yokogawa.YokogawaGS200
property), 501

source_power (pymeasure.instruments.hp.HP8560A
property), 273

source_power_offset (pymea-
sure.instruments.hp.HP8560A property),
274

source_power_step (pymea-
sure.instruments.hp.HP8560A property),
274

source_power_sweep (pymea-
sure.instruments.hp.HP8560A property),
274

source_range (pymea-
sure.instruments.keithley.Keithley6221 prop-

erty), 323
source_range (pymea-

sure.instruments.yokogawa.YokogawaGS200
property), 501

source_voltage (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 306

source_voltage (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 313

source_voltage (pymea-
sure.instruments.keithley.Keithley6517B
property), 329

source_voltage (pymea-
sure.instruments.yokogawa.Yokogawa7651
property), 500

source_voltage_delay (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 313

source_voltage_delay_auto (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 313

source_voltage_range (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 306

source_voltage_range (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 313

source_voltage_range (pymea-
sure.instruments.keithley.Keithley6517B
property), 329

source_voltage_range (pymea-
sure.instruments.yokogawa.Yokogawa7651
property), 500

SourceLevelingControlMode (class in pymea-
sure.instruments.hp.hp856Xx), 279

spacing (pymeasure.instruments.agilent.agilent4156.VAR1
property), 167

span (pymeasure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 260

span_frequency (pymea-
sure.instruments.advantest.advantestR3767CG.AdvantestR3767CG
property), 122

SPD1168X (class in pymea-
sure.instruments.siglenttechnologies), 426

SPD1305X (class in pymea-
sure.instruments.siglenttechnologies), 427

SPDBase (class in pymea-
sure.instruments.siglenttechnologies.siglent_spdbase),
424

SPDChannel (class in pymea-
sure.instruments.siglenttechnologies.siglent_spdbase),
425

SPDSingleChannelBase (class in pymea-

630 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

sure.instruments.siglenttechnologies.siglent_spdbase),
424

special_channel (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 416

SpectrumAnalyzer (pymea-
sure.instruments.hp.hp856Xx.SweepCoupleMode
attribute), 280

SPOT (pymeasure.instruments.agilent.agilentB1500.MeasMode
attribute), 194

square_dutycycle (pymea-
sure.instruments.agilent.Agilent33220A
property), 171

square_dutycycle (pymea-
sure.instruments.agilent.Agilent33500 prop-
erty), 175

square_dutycycle (pymea-
sure.instruments.agilent.agilent33500.Agilent33500Channel
property), 178

squelch (pymeasure.instruments.hp.hp856Xx.HP856Xx
attribute), 258

SR510 (class in pymeasure.instruments.srs), 440
SR570 (class in pymeasure.instruments.srs), 441
SR830 (class in pymeasure.instruments.srs), 442
SR860 (class in pymeasure.instruments.srs), 446
SRER (class in pymea-

sure.instruments.advantest.advantestR624X),
145

srq_enabled (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X
property), 124

SRQ_enabled (pymeasure.instruments.hp.HP6632A
property), 284

srq_event_enabled (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 323

SRQ_mask (pymeasure.instruments.hp.HP3437A prop-
erty), 243

SRQ_mask (pymeasure.instruments.hp.HP3478A prop-
erty), 245

STAIRCASE_SWEEP (pymea-
sure.instruments.agilent.agilentB1500.MeasMode
attribute), 194

staircase_sweep_source() (pymea-
sure.instruments.agilent.agilentB1500.SMU
method), 190

StaircaseSweepPostOutput (class in pymea-
sure.instruments.agilent.agilentB1500), 195

standard_devs (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 306

standard_devs (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 313

standard_event_enabled (pymea-

sure.instruments.keithley.Keithley6221 prop-
erty), 323

standard_events (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 323

standby() (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X
method), 124

standby() (pymeasure.instruments.advantest.advantestR624X.SMUChannel
method), 140

start (pymeasure.instruments.agilent.agilent4156.VARX
property), 168

START (pymeasure.instruments.agilent.agilentB1500.StaircaseSweepPostOutput
attribute), 195

start() (pymeasure.experiment.experiment.Experiment
method), 72

start() (pymeasure.instruments.temptronic.ATSBase
method), 481

start_autovernier() (pymea-
sure.instruments.hp.HP8116A method), 250

start_buffer() (pymea-
sure.instruments.keithley.Keithley2000
method), 293

start_buffer() (pymea-
sure.instruments.keithley.Keithley2400
method), 306

start_buffer() (pymea-
sure.instruments.keithley.Keithley2450
method), 313

start_buffer() (pymea-
sure.instruments.keithley.Keithley2700
method), 318

start_buffer() (pymea-
sure.instruments.keithley.Keithley6221
method), 323

start_buffer() (pymea-
sure.instruments.keithley.Keithley6517B
method), 329

start_buffer() (pymea-
sure.instruments.signalrecovery.DSP7225
method), 432

start_buffer() (pymea-
sure.instruments.signalrecovery.DSP7265
method), 439

start_frequency (pymea-
sure.instruments.advantest.advantestR3767CG.AdvantestR3767CG
property), 122

start_frequency (pymea-
sure.instruments.agilent.Agilent8257D prop-
erty), 154

start_frequency (pymea-
sure.instruments.agilent.Agilent8722ES
property), 156

start_frequency (pymea-
sure.instruments.agilent.AgilentE4408B

Index 631

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property), 156
start_frequency (pymea-

sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 259

start_power (pymeasure.instruments.agilent.Agilent8257D
property), 154

start_ramp() (pymea-
sure.instruments.danfysik.Danfysik8500
method), 229

start_sequence() (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
method), 125

start_sequence() (pymea-
sure.instruments.danfysik.Danfysik8500
method), 229

start_sequence() (pymea-
sure.instruments.rohdeschwarz.hmp.HMP4040
method), 423

start_sequence_program() (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
method), 125

start_step_sweep() (pymea-
sure.instruments.agilent.Agilent8257D
method), 154

startup() (pymeasure.experiment.procedure.Procedure
method), 74

startup() (pymeasure.experiment.procedure.UnknownProcedure
method), 74

state (pymeasure.instruments.ami.AMI430 property),
201

status (pymeasure.instruments.agilent.agilentB1500.SMU
property), 188

status (pymeasure.instruments.andeenhagerling.AH2700A
property), 207

status (pymeasure.instruments.danfysik.Danfysik8500
property), 229

status (pymeasure.instruments.eurotest.EurotestHPP120256
property), 233

status (pymeasure.instruments.fwbell.FWBell5080
property), 236

status (pymeasure.instruments.heidenhain.ND287
property), 237

status (pymeasure.instruments.hp.HP6632A property),
285

status (pymeasure.instruments.hp.HP8116A property),
250

status (pymeasure.instruments.hp.hp856Xx.HP856Xx
attribute), 253

status (pymeasure.instruments.hp.HPLegacyInstrument
property), 283

status (pymeasure.instruments.Instrument property),
110

status (pymeasure.instruments.ipgphotonics.yar.YAR
property), 287

status (pymeasure.instruments.keithley.Keithley2000
property), 293

status (pymeasure.instruments.keithley.Keithley2200
property), 338

status (pymeasure.instruments.keithley.Keithley2260B
property), 296

status (pymeasure.instruments.keithley.Keithley2306
property), 299

status (pymeasure.instruments.keithley.Keithley2450
property), 313

status (pymeasure.instruments.keithley.Keithley2600
property), 333

status (pymeasure.instruments.keithley.Keithley2700
property), 318

status (pymeasure.instruments.keithley.Keithley2750
property), 332

status (pymeasure.instruments.keithley.Keithley6221
property), 323

status (pymeasure.instruments.keithley.Keithley6517B
property), 329

status (pymeasure.instruments.keysight.KeysightE36312A
property), 350

status (pymeasure.instruments.lecroy.LeCroyT3DSO1204
property), 370

status (pymeasure.instruments.parker.ParkerGV6 prop-
erty), 404

status (pymeasure.instruments.signalrecovery.DSP7225
property), 432

status (pymeasure.instruments.signalrecovery.DSP7265
property), 439

status (pymeasure.instruments.srs.SR510 property),
440

status (pymeasure.instruments.tcpowerconversion.CXN
property), 454

status (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
property), 459

status (pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
property), 464

status (pymeasure.instruments.teledyne.TeledyneT3AFG
property), 467

status (pymeasure.instruments.texio.TexioPSW360L30
property), 486

status (pymeasure.instruments.velleman.VellemanK8090
property), 498

status() (pymeasure.instruments.keithley.Keithley2400
method), 306

status_byte_register (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
property), 130

status_desc (pymeasure.instruments.hp.HP3437A at-
tribute), 244

status_desc (pymeasure.instruments.hp.HP3478A at-
tribute), 247

status_desc (pymeasure.instruments.hp.HP6632A at-

632 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

tribute), 285
status_desc (pymeasure.instruments.hp.HPLegacyInstrument

attribute), 283
status_hex (pymeasure.instruments.danfysik.Danfysik8500

property), 229
status_info_shown (pymea-

sure.instruments.rohdeschwarz.sfm.SFM
property), 416

status_preset() (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
method), 416

status_reg (pymeasure.instruments.rohdeschwarz.sfm.SFM
property), 416

StatusRegister (class in pymea-
sure.instruments.hp.hp856Xx), 279

std_current (pymeasure.instruments.keithley.Keithley2400
property), 306

std_current (pymeasure.instruments.keithley.Keithley2450
property), 313

std_resistance (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 306

std_resistance (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 313

std_voltage (pymeasure.instruments.keithley.Keithley2400
property), 306

std_voltage (pymeasure.instruments.keithley.Keithley2450
property), 313

step (pymeasure.instruments.agilent.agilent4156.VARX
property), 168

step_current_down() (pymea-
sure.instruments.rohdeschwarz.hmp.HMP4040
method), 423

step_current_up() (pymea-
sure.instruments.rohdeschwarz.hmp.HMP4040
method), 423

step_points (pymeasure.instruments.agilent.Agilent8257D
property), 154

step_position (pymea-
sure.instruments.anaheimautomation.DPSeriesMotorController
property), 204

step_voltage_down() (pymea-
sure.instruments.rohdeschwarz.hmp.HMP4040
method), 423

step_voltage_up() (pymea-
sure.instruments.rohdeschwarz.hmp.HMP4040
method), 423

stepd (pymeasure.instruments.attocube.anc300.Axis
property), 226

stepEnabled() (pymeasure.display.inputs.IntegerInput
method), 86

stepEnabled() (pymea-
sure.display.inputs.ScientificInput method),

86
steps_to_absolute() (pymea-

sure.instruments.anaheimautomation.DPSeriesMotorController
method), 204

stepu (pymeasure.instruments.attocube.anc300.Axis
property), 226

StimulusResponse (pymea-
sure.instruments.hp.hp856Xx.SweepCoupleMode
attribute), 280

stop (pymeasure.instruments.agilent.agilent4156.VARX
property), 169

STOP (pymeasure.instruments.agilent.agilentB1500.StaircaseSweepPostOutput
attribute), 195

stop() (pymeasure.experiment.listeners.Recorder
method), 73

stop() (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X
method), 124

stop() (pymeasure.instruments.advantest.advantestR624X.SMUChannel
method), 140

stop() (pymeasure.instruments.agilent.agilent4156.Agilent4156
method), 166

stop() (pymeasure.instruments.anaheimautomation.DPSeriesMotorController
method), 204

stop() (pymeasure.instruments.attocube.anc300.Axis
method), 226

stop() (pymeasure.instruments.keysight.KeysightDSOX1102G
method), 340

stop() (pymeasure.instruments.lecroy.LeCroyT3DSO1204
method), 370

stop() (pymeasure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator
method), 384

stop() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope
method), 389

stop() (pymeasure.instruments.parker.ParkerGV6
method), 404

stop() (pymeasure.instruments.teledyne.TeledyneOscilloscope
method), 470

stop() (pymeasure.instruments.thermotron.Thermotron3800
method), 488

stop_all() (pymeasure.instruments.attocube.anc300.ANC300Controller
method), 224

stop_buffer() (pymea-
sure.instruments.keithley.Keithley2000
method), 293

stop_buffer() (pymea-
sure.instruments.keithley.Keithley2400
method), 306

stop_buffer() (pymea-
sure.instruments.keithley.Keithley2450
method), 313

stop_buffer() (pymea-
sure.instruments.keithley.Keithley2700
method), 318

stop_buffer() (pymea-

Index 633

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

sure.instruments.keithley.Keithley6221
method), 323

stop_buffer() (pymea-
sure.instruments.keithley.Keithley6517B
method), 329

stop_frequency (pymea-
sure.instruments.advantest.advantestR3767CG.AdvantestR3767CG
property), 122

stop_frequency (pymea-
sure.instruments.agilent.Agilent8257D prop-
erty), 155

stop_frequency (pymea-
sure.instruments.agilent.Agilent8722ES
property), 156

stop_frequency (pymea-
sure.instruments.agilent.AgilentE4408B
property), 157

stop_frequency (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 259

stop_power (pymeasure.instruments.agilent.Agilent8257D
property), 155

stop_ramp() (pymeasure.instruments.danfysik.Danfysik8500
method), 229

stop_sequence() (pymea-
sure.instruments.danfysik.Danfysik8500
method), 229

stop_sequence() (pymea-
sure.instruments.rohdeschwarz.hmp.HMP4040
method), 423

stop_step_sweep() (pymea-
sure.instruments.agilent.Agilent8257D
method), 155

StoppableQThread (class in pymeasure.display.thread),
89

store_config (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
property), 131

store_image() (pymea-
sure.instruments.anritsu.AnritsuMS464xB
method), 219

store_metadata() (pymea-
sure.experiment.results.Results method),
80

store_open() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 272

store_sequence_command() (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
method), 126

store_short() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 272

store_thru() (pymea-

sure.instruments.hp.hp856Xx.HP856Xx
method), 272

stored_reading (pymea-
sure.instruments.hp.HP34401A property),
242

stored_readings_count (pymea-
sure.instruments.hp.HP34401A property),
242

StringInput (class in pymeasure.display.inputs), 86
strip_chart_dat1 (pymeasure.instruments.srs.SR860

property), 451
strip_chart_dat2 (pymeasure.instruments.srs.SR860

property), 451
strip_chart_dat3 (pymeasure.instruments.srs.SR860

property), 451
strip_chart_dat4 (pymeasure.instruments.srs.SR860

property), 451
subsystem_info (pymea-

sure.instruments.rohdeschwarz.sfm.SFM
property), 416

subtract_display_line_from_trace_b() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 265

supply_current (pymeasure.instruments.ami.AMI430
property), 201

sweep_auto_abort() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 186

sweep_couple (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 270

sweep_delay_time (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
property), 125

sweep_marker_frequency (pymea-
sure.instruments.hp.HP8116A property),
250

sweep_mode (pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
property), 222

sweep_mode (pymeasure.instruments.keysight.KeysightN7776C
property), 342

sweep_output (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 270

sweep_points (pymea-
sure.instruments.keysight.KeysightN7776C
property), 342

sweep_rate (pymeasure.instruments.oxfordinstruments.IPS120_10
property), 401

sweep_single (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 270

sweep_speed (pymeasure.instruments.keysight.KeysightN7776C
property), 342

634 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

sweep_start (pymeasure.instruments.hp.HP8116A
property), 250

sweep_state (pymeasure.instruments.keysight.KeysightN7776C
property), 343

sweep_status (pymea-
sure.instruments.oxfordinstruments.IPS120_10
property), 401

sweep_status (pymea-
sure.instruments.oxfordinstruments.ITC503
property), 397

sweep_step (pymeasure.instruments.keysight.KeysightN7776C
property), 343

sweep_stop (pymeasure.instruments.hp.HP8116A prop-
erty), 250

sweep_table (pymeasure.instruments.oxfordinstruments.ITC503
property), 397

sweep_time (pymeasure.instruments.agilent.Agilent8722ES
property), 156

sweep_time (pymeasure.instruments.agilent.AgilentE4408B
property), 157

sweep_time (pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
property), 222

sweep_time (pymeasure.instruments.hp.HP8116A prop-
erty), 250

sweep_time (pymeasure.instruments.hp.hp856Xx.HP856Xx
attribute), 270

sweep_time (pymeasure.instruments.rohdeschwarz.fsl.FSL
property), 421

sweep_timing() (pymea-
sure.instruments.agilent.agilentB1500.AgilentB1500
method), 186

sweep_twoway (pymea-
sure.instruments.keysight.KeysightN7776C
property), 343

sweep_type (pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
property), 222

sweep_wl_start (pymea-
sure.instruments.keysight.KeysightN7776C
property), 343

sweep_wl_stop (pymea-
sure.instruments.keysight.KeysightN7776C
property), 343

SweepCoupleMode (class in pymea-
sure.instruments.hp.hp856Xx), 280

SweepMode (class in pymea-
sure.instruments.advantest.advantestR624X),
143

SweepMode (class in pymea-
sure.instruments.agilent.agilentB1500), 194

SweepOut (class in pymeasure.instruments.hp.hp856Xx),
280

SwissArmyFake (class in pymeasure.instruments.fakes),
113

switch_heater_enabled (pymea-

sure.instruments.oxfordinstruments.IPS120_10
property), 401

switch_heater_status (pymea-
sure.instruments.oxfordinstruments.IPS120_10
property), 401

switch_off (pymeasure.instruments.velleman.VellemanK8090
property), 498

switch_on (pymeasure.instruments.velleman.VellemanK8090
property), 498

SwitchHeaterError (class in pymea-
sure.instruments.oxfordinstruments.ips120_10),
402

sync_sequence() (pymea-
sure.instruments.danfysik.Danfysik8500
method), 229

synchronous_sweep_source() (pymea-
sure.instruments.agilent.agilentB1500.SMU
method), 190

system_current (pymea-
sure.instruments.temptronic.ATS525 property),
483

system_number (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 416

system_setup (pymea-
sure.instruments.keysight.KeysightDSOX1102G
property), 340

system_status_code (pymea-
sure.instruments.siglenttechnologies.siglent_spdbase.SPDBase
property), 424

system_temp (pymeasure.instruments.toptica.ibeamsmart.IBeamSmart
property), 497

SystemStatusCode (class in pymea-
sure.instruments.siglenttechnologies.siglent_spdbase),
426

T
Table (class in pymeasure.display.widgets.table_widget),

97
TableWidget (class in pymea-

sure.display.widgets.table_widget), 97
TabWidget (class in pymea-

sure.display.widgets.tab_widget), 94
talk_ascii (pymeasure.instruments.hp.HP3437A prop-

erty), 244
target_current (pymeasure.instruments.ami.AMI430

property), 201
target_field (pymeasure.instruments.ami.AMI430

property), 201
target_voltage (pymea-

sure.instruments.oxfordinstruments.ITC503
property), 397

target_voltage_table (pymea-
sure.instruments.oxfordinstruments.ITC503

Index 635

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

property), 397
TC038 (class in pymeasure.instruments.hcp), 238
TC038D (class in pymeasure.instruments.hcp), 239
TDK_Gen40_38 (class in pymea-

sure.instruments.tdk.tdk_gen40_38), 456
TDK_Gen80_65 (class in pymea-

sure.instruments.tdk.tdk_gen80_65), 460
TDS2000 (class in pymeasure.instruments.tektronix), 465
TEDSetTemperature (pymea-

sure.instruments.thorlabs.ThorlabsPro8000
property), 489

TEDStatus (pymeasure.instruments.thorlabs.ThorlabsPro8000
property), 489

TeledyneOscilloscope (class in pymea-
sure.instruments.teledyne), 468

TeledyneOscilloscopeChannel (class in pymea-
sure.instruments.teledyne.teledyne_oscilloscope),
473

TeledyneT3AFG (class in pymea-
sure.instruments.teledyne), 465

TelnetAdapter (class in pymeasure.adapters), 63
temp (pymeasure.instruments.toptica.ibeamsmart.IBeamSmart

property), 497
temperature (pymeasure.instruments.agilent.Agilent34450A

property), 162
temperature (pymeasure.instruments.fluke.Fluke7341

property), 234
temperature (pymeasure.instruments.hcp.TC038 prop-

erty), 238
temperature (pymeasure.instruments.hcp.TC038D

property), 239
temperature (pymeasure.instruments.ipgphotonics.yar.YAR

property), 287
temperature (pymeasure.instruments.keithley.Keithley2000

property), 293
temperature (pymeasure.instruments.tcpowerconversion.CXN

property), 455
temperature (pymeasure.instruments.temptronic.ATSBase

property), 481
temperature (pymeasure.instruments.thermotron.Thermotron3800

property), 488
temperature_1 (pymea-

sure.instruments.oxfordinstruments.ITC503
property), 398

temperature_2 (pymea-
sure.instruments.oxfordinstruments.ITC503
property), 398

temperature_3 (pymea-
sure.instruments.oxfordinstruments.ITC503
property), 398

temperature_celsius (pymea-
sure.instruments.lakeshore.LakeShore211
property), 353

temperature_condition_status_code (pymea-

sure.instruments.temptronic.ATSBase prop-
erty), 481

temperature_digits (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 293

temperature_error (pymea-
sure.instruments.oxfordinstruments.ITC503
property), 398

temperature_event_status (pymea-
sure.instruments.temptronic.ATSBase prop-
erty), 481

temperature_fahrenheit (pymea-
sure.instruments.lakeshore.LakeShore211
property), 353

temperature_kelvin (pymea-
sure.instruments.lakeshore.LakeShore211
property), 353

temperature_limit_air_dut (pymea-
sure.instruments.temptronic.ATSBase prop-
erty), 481

temperature_limit_air_high (pymea-
sure.instruments.temptronic.ATSBase prop-
erty), 481

temperature_limit_air_low (pymea-
sure.instruments.temptronic.ATSBase prop-
erty), 481

temperature_nplc (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 293

temperature_reference (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 293

temperature_seed (pymea-
sure.instruments.ipgphotonics.yar.YAR prop-
erty), 287

temperature_sensor (pymea-
sure.instruments.lakeshore.LakeShore211
property), 353

temperature_setpoint (pymea-
sure.instruments.oxfordinstruments.ITC503
property), 398

temperature_setpoint (pymea-
sure.instruments.temptronic.ATSBase prop-
erty), 481

temperature_setpoint_window (pymea-
sure.instruments.temptronic.ATSBase prop-
erty), 482

temperature_soak_time (pymea-
sure.instruments.temptronic.ATSBase prop-
erty), 482

TemperatureStatusCode (class in pymea-
sure.instruments.temptronic.temptronic_base),
482

terminals_used (pymea-

636 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

sure.instruments.hp.HP34401A property),
242

test_method() (pymeasure.generator.Generator
method), 70

test_property_getter() (pymea-
sure.generator.Generator method), 70

test_property_setter() (pymea-
sure.generator.Generator method), 70

test_property_setter_batch() (pymea-
sure.generator.Generator method), 70

TexioPSW360L30 (class in pymeasure.instruments.texio),
484

text_enabled (pymea-
sure.instruments.keithley.Keithley2700 prop-
erty), 318

textFromValue() (pymea-
sure.display.inputs.ScientificInput method),
86

Thermotron3800 (class in pymea-
sure.instruments.thermotron), 487

Thermotron3800.Thermotron3800Mode (class in
pymeasure.instruments.thermotron), 487

theta (pymeasure.instruments.ametek.Ametek7270 prop-
erty), 199

theta (pymeasure.instruments.srs.SR830 property), 445
theta (pymeasure.instruments.srs.SR860 property), 451
ThorlabsPM100USB (class in pymea-

sure.instruments.thorlabs), 489
ThorlabsPro8000 (class in pymea-

sure.instruments.thorlabs), 489
threshold (pymeasure.instruments.hp.hp856Xx.HP856Xx

attribute), 253
TIME (pymeasure.instruments.agilent.agilentB1500.ADCMode

attribute), 193
time (pymeasure.instruments.fakes.SwissArmyFake

property), 113
time (pymeasure.instruments.rohdeschwarz.sfm.SFM

property), 416
time_constant (pymea-

sure.instruments.ametek.Ametek7270 prop-
erty), 199

time_constant (pymea-
sure.instruments.signalrecovery.DSP7225
property), 432

time_constant (pymea-
sure.instruments.signalrecovery.DSP7265
property), 439

time_constant (pymeasure.instruments.srs.SR510
property), 441

time_constant (pymeasure.instruments.srs.SR830
property), 446

time_constant (pymeasure.instruments.srs.SR860
property), 451

time_stamp (pymeasure.instruments.agilent.agilentB1500.AgilentB1500

property), 186
timebase (pymeasure.instruments.keysight.KeysightDSOX1102G

property), 340
timebase (pymeasure.instruments.lecroy.LeCroyT3DSO1204

property), 370
timebase (pymeasure.instruments.srs.SR860 property),

451
timebase (pymeasure.instruments.teledyne.TeledyneOscilloscope

property), 470
timebase_hor_magnify (pymea-

sure.instruments.lecroy.LeCroyT3DSO1204
property), 370

timebase_hor_position (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
property), 370

timebase_mode (pymea-
sure.instruments.keysight.KeysightDSOX1102G
property), 340

timebase_offset (pymea-
sure.instruments.keysight.KeysightDSOX1102G
property), 340

timebase_offset (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
property), 370

timebase_offset (pymea-
sure.instruments.teledyne.TeledyneOscilloscope
property), 470

timebase_range (pymea-
sure.instruments.keysight.KeysightDSOX1102G
property), 340

timebase_scale (pymea-
sure.instruments.keysight.KeysightDSOX1102G
property), 340

timebase_scale (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
property), 370

timebase_scale (pymea-
sure.instruments.teledyne.TeledyneOscilloscope
property), 470

timebase_setup() (pymea-
sure.instruments.keysight.KeysightDSOX1102G
method), 340

timebase_setup() (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
method), 370

timebase_setup() (pymea-
sure.instruments.teledyne.TeledyneOscilloscope
method), 470

to_dict() (pymeasure.instruments.agilent.agilentB1500.QueryLearn
static method), 191

total_cycle_count (pymea-
sure.instruments.temptronic.ATSBase prop-
erty), 482

Trace (class in pymea-

Index 637

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

sure.instruments.anritsu.anritsuMS464xB),
223

Trace (class in pymeasure.instruments.hp.hp856Xx), 277
trace() (pymeasure.instruments.agilent.AgilentE4408B

method), 157
trace_1 (pymeasure.instruments.advantest.advantestR3767CG.AdvantestR3767CG

property), 122
trace_a_minus_b_enabled (pymea-

sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 266

trace_a_minus_b_plus_dl_enabled (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 265

trace_data_format (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 264

trace_df() (pymeasure.instruments.agilent.AgilentE4408B
method), 157

trace_marker (pymea-
sure.instruments.anritsu.AnritsuMS9710C
property), 210

trace_marker_center (pymea-
sure.instruments.anritsu.AnritsuMS9710C
property), 210

trace_mode (pymeasure.instruments.rohdeschwarz.fsl.FSL
property), 421

tracking (pymeasure.instruments.ni.virtualbench.VirtualBench.PowerSupply
property), 390

tracking_adjust_coarse (pymea-
sure.instruments.hp.HP8560A property),
274

tracking_adjust_fine (pymea-
sure.instruments.hp.HP8560A property),
274

train_magnet() (pymea-
sure.instruments.oxfordinstruments.IPS120_10
method), 401

transfer_sequence() (pymea-
sure.instruments.rohdeschwarz.hmp.HMP4040
method), 423

translate_to_global() (pymea-
sure.display.widgets.table_widget.PandasModelBase
method), 96

translate_to_global() (pymea-
sure.display.widgets.table_widget.PandasModelByColumn
method), 96

translate_to_global() (pymea-
sure.display.widgets.table_widget.PandasModelByRow
method), 97

translate_to_local() (pymea-
sure.display.widgets.table_widget.PandasModelBase
method), 96

translate_to_local() (pymea-
sure.display.widgets.table_widget.PandasModelByColumn

method), 96
translate_to_local() (pymea-

sure.display.widgets.table_widget.PandasModelByRow
method), 97

triad() (pymeasure.instruments.keithley.Keithley2400
method), 306

triad() (pymeasure.instruments.keithley.Keithley2450
method), 313

triad() (pymeasure.instruments.keithley.Keithley2700
method), 318

triad() (pymeasure.instruments.keithley.Keithley6221
method), 323

trigger (pymeasure.instruments.hp.HP3437A prop-
erty), 244

trigger (pymeasure.instruments.hp.HP3478A prop-
erty), 247

TRIGGER (pymeasure.instruments.hp.hp856Xx.StatusRegister
attribute), 280

trigger (pymeasure.instruments.lecroy.LeCroyT3DSO1204
property), 371

trigger (pymeasure.instruments.teledyne.TeledyneOscilloscope
property), 470

trigger() (pymeasure.instruments.activetechnologies.AWG401x_AWG
method), 119

trigger() (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X
method), 124

trigger() (pymeasure.instruments.advantest.advantestR624X.SMUChannel
method), 134

trigger() (pymeasure.instruments.agilent.Agilent33220A
method), 171

trigger() (pymeasure.instruments.agilent.Agilent33500
method), 175

trigger() (pymeasure.instruments.andeenhagerling.AH2500A
method), 205

trigger() (pymeasure.instruments.andeenhagerling.AH2700A
method), 207

trigger() (pymeasure.instruments.anritsu.AnritsuMS464xB
method), 219

trigger() (pymeasure.instruments.keithley.Keithley2400
method), 306

trigger() (pymeasure.instruments.keithley.Keithley2450
method), 314

trigger() (pymeasure.instruments.keithley.Keithley6221
method), 323

trigger() (pymeasure.instruments.keithley.Keithley6517B
method), 329

trigger_auto_delay_enabled (pymea-
sure.instruments.hp.HP34401A property),
242

trigger_continuous() (pymea-
sure.instruments.anritsu.AnritsuMS464xB
method), 219

trigger_count (pymeasure.instruments.hp.HP34401A
property), 243

638 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

trigger_count (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 293

trigger_count (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 306

trigger_coupling (pymea-
sure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel
property), 475

trigger_delay (pymeasure.instruments.hp.HP34401A
property), 243

trigger_delay (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 293

trigger_delay (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 306

trigger_immediately() (pymea-
sure.instruments.keithley.Keithley2400
method), 306

trigger_immediately() (pymea-
sure.instruments.keithley.Keithley6221
method), 323

trigger_immediately() (pymea-
sure.instruments.keithley.Keithley6517B
method), 329

trigger_in (pymeasure.instruments.keysight.KeysightN7776C
property), 343

trigger_input (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
property), 133

trigger_level (pymea-
sure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel
property), 475

trigger_level2 (pymea-
sure.instruments.lecroy.lecroyT3DSO1204.LeCroyT3DSO1204Channel
property), 374

trigger_link_function_enabled (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
property), 131

trigger_mode (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 251

trigger_mode (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
property), 371

trigger_mode (pymea-
sure.instruments.teledyne.TeledyneOscilloscope
property), 470

trigger_on_bus() (pymea-
sure.instruments.keithley.Keithley2400
method), 306

trigger_on_bus() (pymea-
sure.instruments.keithley.Keithley6221

method), 323
trigger_on_bus() (pymea-

sure.instruments.keithley.Keithley6517B
method), 329

trigger_on_external() (pymea-
sure.instruments.keithley.Keithley2400
method), 306

trigger_on_external() (pymea-
sure.instruments.keithley.Keithley6221
method), 323

trigger_out (pymeasure.instruments.keysight.KeysightN7776C
property), 343

trigger_output_signal() (pymea-
sure.instruments.advantest.advantestR624X.AdvantestR624X
method), 126

trigger_output_timing (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
property), 132

trigger_ramp_to_level() (pymea-
sure.instruments.yokogawa.YokogawaGS200
method), 501

trigger_select (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
property), 371

trigger_select (pymea-
sure.instruments.teledyne.TeledyneOscilloscope
property), 471

trigger_setup() (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
method), 372

trigger_setup() (pymea-
sure.instruments.teledyne.TeledyneOscilloscope
method), 471

trigger_single() (pymea-
sure.instruments.anritsu.AnritsuMS464xB
method), 219

trigger_single_autozero() (pymea-
sure.instruments.hp.HP34401A method),
243

trigger_slope (pymeasure.instruments.hp.HP8116A
property), 250

trigger_slope (pymea-
sure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel
property), 475

trigger_source (pymea-
sure.instruments.activetechnologies.AWG401x_AWG
property), 119

trigger_source (pymea-
sure.instruments.agilent.Agilent33220A
property), 171

trigger_source (pymea-
sure.instruments.agilent.Agilent33500 prop-
erty), 175

trigger_source (pymea-

Index 639

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

sure.instruments.agilent.AgilentE4980 prop-
erty), 158

trigger_source (pymea-
sure.instruments.anritsu.AnritsuMS464xB
property), 219

trigger_source (pymea-
sure.instruments.hp.HP34401A property),
243

trigger_state (pymea-
sure.instruments.agilent.Agilent33220A
property), 171

trigger_sweep() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 270

triggered_caplossvolt() (pymea-
sure.instruments.andeenhagerling.AH2500A
method), 205

triggered_caplossvolt() (pymea-
sure.instruments.andeenhagerling.AH2700A
method), 207

TriggerInputType (class in pymea-
sure.instruments.advantest.advantestR624X),
143

TriggerMode (class in pymea-
sure.instruments.hp.hp856Xx), 280

TriggerOutputSignalTiming (class in pymea-
sure.instruments.advantest.advantestR624X),
146

tristate_lines() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.DigitalInputOutput
method), 380

tune_capacity (pymea-
sure.instruments.tcpowerconversion.CXN
property), 455

tune_capacity (pymea-
sure.instruments.tcpowerconversion.tccxn.PresetChannel
property), 455

tuner (pymeasure.instruments.tcpowerconversion.CXN
property), 455

TV_country (pymeasure.instruments.rohdeschwarz.sfm.SFM
property), 407

TV_standard (pymeasure.instruments.rohdeschwarz.sfm.SFM
property), 408

U
unblank_front() (pymeasure.instruments.srs.SR570

method), 442
under_voltage (pymea-

sure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
property), 459

under_voltage (pymea-
sure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
property), 464

Uniform (pymeasure.instruments.hp.hp856Xx.WindowType
attribute), 281

unique_filename() (in module pymea-
sure.experiment.results), 81

unit (pymeasure.instruments.fluke.Fluke7341 property),
234

unit (pymeasure.instruments.lakeshore.LakeShore421
property), 358

unit (pymeasure.instruments.lakeshore.LakeShore425
property), 359

unit (pymeasure.instruments.lecroy.lecroyT3DSO1204.LeCroyT3DSO1204Channel
property), 375

unit (pymeasure.instruments.mksinst.mks937b.MKS937B
property), 376

units (pymeasure.instruments.fwbell.FWBell5080 prop-
erty), 236

units (pymeasure.instruments.heidenhain.ND287 prop-
erty), 237

units (pymeasure.instruments.newport.esp300.Axis
property), 378

UnknownProcedure (class in pymea-
sure.experiment.procedure), 74

unlock_harmonic_number() (pymea-
sure.instruments.hp.HP8561B method), 276

update() (pymeasure.display.curves.Crosshairs
method), 84

update_channels() (pymea-
sure.instruments.anritsu.AnritsuMS464xB
method), 220

update_data() (pymea-
sure.display.curves.ResultsCurve method),
84

update_estimates() (pymea-
sure.display.widgets.estimator_widget.EstimatorWidget
method), 90

update_frequency_range() (pymea-
sure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
method), 222

update_line() (pymea-
sure.experiment.experiment.Experiment
method), 72

update_parameter() (pymeasure.display.inputs.Input
method), 85

update_plot() (pymea-
sure.experiment.experiment.Experiment
method), 72

update_status() (pymea-
sure.experiment.workers.Worker method),
79

update_traces() (pymea-
sure.instruments.anritsu.anritsuMS464xB.MeasurementChannel
method), 222

updateEditorGeometry() (pymea-
sure.display.widgets.sequencer_widget.ComboBoxDelegate

640 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

method), 92
updateEditorGeometry() (pymea-

sure.display.widgets.sequencer_widget.LineEditDelegate
method), 93

use_absolute_position() (pymea-
sure.instruments.parker.ParkerGV6 method),
404

use_external_source (pymea-
sure.instruments.rohdeschwarz.sfm.Sound_Channel
property), 418

use_front_terminals() (pymea-
sure.instruments.keithley.Keithley2400
method), 307

use_front_terminals() (pymea-
sure.instruments.keithley.Keithley2450
method), 314

use_rear_terminals() (pymea-
sure.instruments.keithley.Keithley2400
method), 307

use_rear_terminals() (pymea-
sure.instruments.keithley.Keithley2450
method), 314

use_relative_position() (pymea-
sure.instruments.parker.ParkerGV6 method),
404

V
V (pymeasure.instruments.hp.hp856Xx.AmplitudeUnits

attribute), 277
validate() (pymeasure.display.inputs.ScientificInput

method), 86
validate() (pymeasure.display.widgets.sequencer_widget.ExpressionValidator

method), 92
validate_auto_range_terminal() (pymea-

sure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter
method), 382

validate_channel() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope
method), 389

validate_channel() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.PowerSupply
method), 390

validate_dmm_function() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter
method), 382

validate_lines() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.DigitalInputOutput
method), 380

validate_range() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter
static method), 382

validate_trigger_instance() (pymea-
sure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope
static method), 389

valueFromText() (pymea-
sure.display.inputs.ScientificInput method),
86

values() (pymeasure.adapters.Adapter method), 48
values() (pymeasure.adapters.FakeAdapter method), 68
values() (pymeasure.adapters.PrologixAdapter

method), 59
values() (pymeasure.adapters.SerialAdapter method),

55
values() (pymeasure.adapters.TelnetAdapter method),

65
values() (pymeasure.adapters.VISAAdapter method),

52
values() (pymeasure.adapters.VXI11Adapter method),

62
values() (pymeasure.instruments.common_base.CommonBase

method), 108
values() (pymeasure.instruments.hp.HPLegacyInstrument

method), 283
values() (pymeasure.instruments.keysight.KeysightE36312A

method), 350
values() (pymeasure.instruments.lecroy.LeCroyT3DSO1204

method), 373
values() (pymeasure.instruments.rohdeschwarz.sfm.Sound_Channel

method), 418
values() (pymeasure.instruments.tcpowerconversion.CXN

method), 455
values() (pymeasure.instruments.tcpowerconversion.tccxn.PresetChannel

method), 455
valve_scaling (pymea-

sure.instruments.oxfordinstruments.ITC503
property), 398

VAR1 (class in pymea-
sure.instruments.agilent.agilent4156), 167

VAR2 (class in pymea-
sure.instruments.agilent.agilent4156), 168

VARD (class in pymea-
sure.instruments.agilent.agilent4156), 168

VARX (class in pymea-
sure.instruments.agilent.agilent4156), 168

VectorParameter (class in pymea-
sure.experiment.parameters), 78

VellemanK8090 (class in pymea-
sure.instruments.velleman), 497

VellemanK8090Switches (class in pymea-
sure.instruments.velleman), 499

verify_calibration_data() (pymea-
sure.instruments.hp.HP3478A method), 247

verify_calibration_entry() (pymea-
sure.instruments.hp.HP3478A method), 248

version (pymeasure.adapters.PrologixAdapter prop-
erty), 59

version (pymeasure.instruments.attocube.anc300.ANC300Controller
property), 224

Index 641

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

version (pymeasure.instruments.oxfordinstruments.IPS120_10
property), 401

version (pymeasure.instruments.oxfordinstruments.ITC503
property), 398

version (pymeasure.instruments.rohdeschwarz.hmp.HMP4040
property), 423

version (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
property), 459

version (pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
property), 464

version (pymeasure.instruments.toptica.ibeamsmart.IBeamSmart
property), 497

version (pymeasure.instruments.velleman.VellemanK8090
property), 498

vhighest (pymeasure.instruments.andeenhagerling.AH2500A
property), 205

vhighest (pymeasure.instruments.andeenhagerling.AH2700A
property), 207

Video (pymeasure.instruments.hp.hp856Xx.TriggerMode
attribute), 280

video_average (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 261

video_bandwidth (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 261

video_bandwidth (pymea-
sure.instruments.rohdeschwarz.fsl.FSL prop-
erty), 421

video_bandwidth_to_resolution_bandwidth
(pymeasure.instruments.hp.hp856Xx.HP856Xx
attribute), 261

video_trigger_level (pymea-
sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 261

view_sense_modes (pymea-
sure.instruments.anritsu.AnritsuMS2090A
property), 214

view_trace() (pymea-
sure.instruments.hp.hp856Xx.HP856Xx
method), 263

VirtualBench (class in pymea-
sure.instruments.ni.virtualbench), 379

VirtualBench.DigitalInputOutput (class in pymea-
sure.instruments.ni.virtualbench), 379

VirtualBench.DigitalMultimeter (class in pymea-
sure.instruments.ni.virtualbench), 381

VirtualBench.FunctionGenerator (class in pymea-
sure.instruments.ni.virtualbench), 383

VirtualBench.MixedSignalOscilloscope (class in
pymeasure.instruments.ni.virtualbench), 384

VirtualBench.PowerSupply (class in pymea-
sure.instruments.ni.virtualbench), 389

VirtualBench_Direct (class in pymea-

sure.instruments.ni.virtualbench), 392
VISAAdapter (class in pymeasure.adapters), 49
vision_average_enabled (pymea-

sure.instruments.rohdeschwarz.sfm.SFM
property), 416

vision_balance (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 416

vision_carrier_enabled (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 416

vision_carrier_frequency (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 416

vision_clamping_average (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 417

vision_clamping_enabled (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 417

vision_clamping_mode (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 417

vision_precorrection_enabled (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 417

vision_residual_carrier_level (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 417

vision_sideband_filter_enabled (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 417

vision_videosignal_enabled (pymea-
sure.instruments.rohdeschwarz.sfm.SFM
property), 417

visit_tree() (pymea-
sure.display.widgets.sequencer_widget.SequencerTreeModel
method), 94

VMU (class in pymea-
sure.instruments.agilent.agilent4156), 169

voltage (pymeasure.instruments.agilent.Agilent34450A
property), 162

VOLTAGE (pymeasure.instruments.agilent.agilentB1500.MeasOpMode
attribute), 194

voltage (pymeasure.instruments.aja.DCXS property),
198

voltage (pymeasure.instruments.ametek.Ametek7270
property), 200

voltage (pymeasure.instruments.attocube.anc300.Axis
property), 226

voltage (pymeasure.instruments.bkprecision.BKPrecision9130B
property), 226

voltage (pymeasure.instruments.deltaelektronika.SM7045D
property), 231

642 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

voltage (pymeasure.instruments.eurotest.EurotestHPP120256
property), 233

voltage (pymeasure.instruments.fakes.SwissArmyFake
property), 113

voltage (pymeasure.instruments.hp.HP6632A prop-
erty), 286

voltage (pymeasure.instruments.keithley.Keithley2000
property), 293

voltage (pymeasure.instruments.keithley.keithley2200.PSChannel
property), 338

voltage (pymeasure.instruments.keithley.Keithley2260B
property), 297

voltage (pymeasure.instruments.keithley.Keithley2400
property), 307

voltage (pymeasure.instruments.keithley.Keithley2450
property), 314

voltage (pymeasure.instruments.keithley.Keithley6517B
property), 329

voltage (pymeasure.instruments.keysight.keysightE36312A.VoltageChannel
property), 351

voltage (pymeasure.instruments.keysight.KeysightN5767A
property), 342

voltage (pymeasure.instruments.rohdeschwarz.hmp.HMP4040
property), 423

voltage (pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDChannel
property), 426

voltage (pymeasure.instruments.signalrecovery.DSP7225
property), 432

voltage (pymeasure.instruments.signalrecovery.DSP7265
property), 439

voltage (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
property), 459

voltage (pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
property), 464

voltage (pymeasure.instruments.texio.TexioPSW360L30
property), 486

voltage_1 (pymeasure.instruments.razorbill.razorbillRP100
property), 406

voltage_2 (pymeasure.instruments.razorbill.razorbillRP100
property), 406

voltage_ac (pymeasure.instruments.agilent.Agilent34410A
property), 159

voltage_ac (pymeasure.instruments.agilent.Agilent34450A
property), 162

voltage_ac (pymeasure.instruments.hp.HP34401A
property), 243

voltage_ac_auto_range (pymea-
sure.instruments.agilent.Agilent34450A
property), 162

voltage_ac_bandwidth (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 293

voltage_ac_digits (pymea-
sure.instruments.keithley.Keithley2000 prop-

erty), 293
voltage_ac_nplc (pymea-

sure.instruments.keithley.Keithley2000 prop-
erty), 294

voltage_ac_range (pymea-
sure.instruments.agilent.Agilent34450A
property), 162

voltage_ac_range (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 294

voltage_ac_reference (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 294

voltage_ac_resolution (pymea-
sure.instruments.agilent.Agilent34450A
property), 162

voltage_amplitude (pymea-
sure.instruments.activetechnologies.AWG401x.ChannelAFG
property), 120

voltage_amplitude_max (pymea-
sure.instruments.activetechnologies.AWG401x.ChannelAFG
property), 121

voltage_amplitude_min (pymea-
sure.instruments.activetechnologies.AWG401x.ChannelAFG
property), 121

voltage_and_current (pymea-
sure.instruments.rohdeschwarz.hmp.HMP4040
property), 423

voltage_auto_range (pymea-
sure.instruments.agilent.Agilent34450A
property), 163

voltage_dc (pymeasure.instruments.agilent.Agilent34410A
property), 159

voltage_digits (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 294

voltage_filter_count (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 314

voltage_filter_type (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 314

voltage_fixed_level_sweep() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 135

voltage_fixed_pulsed_sweep() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 136

voltage_high (pymea-
sure.instruments.activetechnologies.AWG401x.ChannelAFG
property), 121

voltage_high (pymea-
sure.instruments.agilent.Agilent33220A
property), 172

Index 643

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

voltage_high (pymea-
sure.instruments.agilent.Agilent33500 prop-
erty), 175

voltage_high (pymea-
sure.instruments.agilent.agilent33500.Agilent33500Channel
property), 178

voltage_high_max (pymea-
sure.instruments.activetechnologies.AWG401x.ChannelAFG
property), 121

voltage_high_min (pymea-
sure.instruments.activetechnologies.AWG401x.ChannelAFG
property), 121

voltage_limit (pymeasure.instruments.ami.AMI430
property), 202

voltage_limit (pymea-
sure.instruments.keithley.keithley2200.PSChannel
property), 338

voltage_limit (pymea-
sure.instruments.yokogawa.YokogawaGS200
property), 501

voltage_limit_enabled (pymea-
sure.instruments.keithley.keithley2200.PSChannel
property), 338

voltage_low (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG
property), 121

voltage_low (pymeasure.instruments.agilent.Agilent33220A
property), 172

voltage_low (pymeasure.instruments.agilent.Agilent33500
property), 175

voltage_low (pymeasure.instruments.agilent.agilent33500.Agilent33500Channel
property), 178

voltage_low_max (pymea-
sure.instruments.activetechnologies.AWG401x.ChannelAFG
property), 121

voltage_low_min (pymea-
sure.instruments.activetechnologies.AWG401x.ChannelAFG
property), 121

voltage_name (pymea-
sure.instruments.agilent.agilent4156.SMU
property), 167

voltage_name (pymea-
sure.instruments.agilent.agilent4156.VMU
property), 169

voltage_name (pymea-
sure.instruments.agilent.agilent4156.VSU
property), 169

voltage_nplc (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 294

voltage_nplc (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 307

voltage_nplc (pymea-
sure.instruments.keithley.Keithley2450 prop-

erty), 314
voltage_nplc (pymea-

sure.instruments.keithley.Keithley6517B
property), 329

voltage_offset (pymea-
sure.instruments.activetechnologies.AWG401x.ChannelAFG
property), 121

voltage_offset_max (pymea-
sure.instruments.activetechnologies.AWG401x.ChannelAFG
property), 121

voltage_offset_min (pymea-
sure.instruments.activetechnologies.AWG401x.ChannelAFG
property), 121

voltage_output_off_state (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 314

voltage_pulsed_source() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 135

voltage_pulsed_sweep() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 136

voltage_ramp (pymea-
sure.instruments.eurotest.EurotestHPP120256
property), 233

voltage_random_pulsed_sweep() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 137

voltage_random_sweep() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 136

voltage_range (pymea-
sure.instruments.agilent.Agilent34450A
property), 163

voltage_range (pymea-
sure.instruments.eurotest.EurotestHPP120256
property), 233

voltage_range (pymea-
sure.instruments.keithley.Keithley2000 prop-
erty), 294

voltage_range (pymea-
sure.instruments.keithley.Keithley2400 prop-
erty), 307

voltage_range (pymea-
sure.instruments.keithley.Keithley2450 prop-
erty), 314

voltage_range (pymea-
sure.instruments.keithley.Keithley6517B
property), 329

voltage_range (pymea-
sure.instruments.keysight.KeysightN5767A
property), 342

voltage_reference (pymea-
sure.instruments.keithley.Keithley2000 prop-

644 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

erty), 294
voltage_resolution (pymea-

sure.instruments.agilent.Agilent34450A
property), 163

voltage_set_random_memory() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 137

voltage_setpoint (pymea-
sure.instruments.eurotest.EurotestHPP120256
property), 233

voltage_setpoint (pymea-
sure.instruments.keithley.keithley2200.PSChannel
property), 338

voltage_setpoint (pymea-
sure.instruments.keithley.Keithley2260B
property), 297

voltage_setpoint (pymea-
sure.instruments.keysight.keysightE36312A.VoltageChannel
property), 351

voltage_setpoint (pymea-
sure.instruments.siglenttechnologies.siglent_spdbase.SPDChannel
property), 426

voltage_setpoint (pymea-
sure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
property), 460

voltage_setpoint (pymea-
sure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
property), 464

voltage_setpoint (pymea-
sure.instruments.texio.TexioPSW360L30
property), 486

voltage_source() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 135

voltage_step (pymea-
sure.instruments.rohdeschwarz.hmp.HMP4040
property), 423

voltage_sweep() (pymea-
sure.instruments.advantest.advantestR624X.SMUChannel
method), 136

voltage_to_max() (pymea-
sure.instruments.rohdeschwarz.hmp.HMP4040
method), 423

voltage_to_min() (pymea-
sure.instruments.rohdeschwarz.hmp.HMP4040
method), 423

voltage_unit (pymea-
sure.instruments.activetechnologies.AWG401x.ChannelAFG
property), 121

VoltageChannel (class in pymea-
sure.instruments.keysight.keysightE36312A),
350

VoltageRange (class in pymea-
sure.instruments.advantest.advantestR624X),

143
VSH (class in pymea-

sure.instruments.thyracont.smartline_v2),
494

VSR (class in pymea-
sure.instruments.thyracont.smartline_v2),
494

VSU (class in pymea-
sure.instruments.agilent.agilent4156), 169

VXI11Adapter (class in pymeasure.adapters), 61

W
W (pymeasure.instruments.hp.hp856Xx.AmplitudeUnits

attribute), 277
wait() (pymeasure.instruments.anritsu.AnritsuMS9710C

method), 210
wait_for() (pymeasure.instruments.andeenhagerling.AH2700A

method), 207
wait_for() (pymeasure.instruments.attocube.anc300.ANC300Controller

method), 224
wait_for() (pymeasure.instruments.Channel method),

112
wait_for() (pymeasure.instruments.common_base.CommonBase

method), 109
wait_for() (pymeasure.instruments.fwbell.FWBell5080

method), 236
wait_for() (pymeasure.instruments.Instrument

method), 111
wait_for() (pymeasure.instruments.keithley.Keithley2000

method), 294
wait_for() (pymeasure.instruments.keithley.Keithley2200

method), 338
wait_for() (pymeasure.instruments.keithley.Keithley2260B

method), 297
wait_for() (pymeasure.instruments.keithley.Keithley2306

method), 299
wait_for() (pymeasure.instruments.keithley.Keithley2400

method), 307
wait_for() (pymeasure.instruments.keithley.Keithley2450

method), 314
wait_for() (pymeasure.instruments.keithley.Keithley2600

method), 333
wait_for() (pymeasure.instruments.keithley.Keithley2700

method), 318
wait_for() (pymeasure.instruments.keithley.Keithley2750

method), 332
wait_for() (pymeasure.instruments.keithley.Keithley6221

method), 324
wait_for() (pymeasure.instruments.keithley.Keithley6517B

method), 329
wait_for() (pymeasure.instruments.keysight.KeysightE36312A

method), 350
wait_for() (pymeasure.instruments.lecroy.LeCroyT3DSO1204

method), 373

Index 645

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

wait_for() (pymeasure.instruments.signalrecovery.DSP7225
method), 432

wait_for() (pymeasure.instruments.signalrecovery.DSP7265
method), 439

wait_for() (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
method), 460

wait_for() (pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
method), 464

wait_for() (pymeasure.instruments.teledyne.TeledyneT3AFG
method), 467

wait_for() (pymeasure.instruments.texio.TexioPSW360L30
method), 486

wait_for_buffer() (pymea-
sure.instruments.keithley.Keithley2000
method), 294

wait_for_buffer() (pymea-
sure.instruments.keithley.Keithley2400
method), 307

wait_for_buffer() (pymea-
sure.instruments.keithley.Keithley2450
method), 314

wait_for_buffer() (pymea-
sure.instruments.keithley.Keithley2700
method), 318

wait_for_buffer() (pymea-
sure.instruments.keithley.Keithley6221
method), 324

wait_for_buffer() (pymea-
sure.instruments.keithley.Keithley6517B
method), 329

wait_for_buffer() (pymea-
sure.instruments.signalrecovery.DSP7225
method), 433

wait_for_buffer() (pymea-
sure.instruments.signalrecovery.DSP7265
method), 439

wait_for_buffer() (pymeasure.instruments.srs.SR830
method), 446

wait_for_completion() (pymea-
sure.instruments.anaheimautomation.DPSeriesMotorController
method), 204

wait_for_current() (pymea-
sure.instruments.danfysik.Danfysik8500
method), 229

wait_for_data() (pymea-
sure.experiment.experiment.Experiment
method), 72

wait_for_holding() (pymea-
sure.instruments.ami.AMI430 method), 202

wait_for_idle() (pymea-
sure.instruments.oxfordinstruments.IPS120_10
method), 401

wait_for_output_voltage_reached() (pymea-
sure.instruments.eurotest.EurotestHPP120256

method), 233
wait_for_ready() (pymea-

sure.instruments.danfysik.Danfysik8500
method), 229

wait_for_settling() (pymea-
sure.instruments.temptronic.ATSBase method),
482

wait_for_srq() (pymeasure.adapters.PrologixAdapter
method), 60

wait_for_srq() (pymeasure.adapters.VISAAdapter
method), 52

wait_for_stop() (pymea-
sure.instruments.newport.esp300.Axis method),
378

wait_for_sweep() (pymea-
sure.instruments.anritsu.AnritsuMS9710C
method), 210

wait_for_temperature() (pymea-
sure.instruments.lakeshore.lakeshore_base.LakeShoreTemperatureChannel
method), 359

wait_for_temperature() (pymea-
sure.instruments.oxfordinstruments.ITC503
method), 398

wait_for_trigger() (pymea-
sure.instruments.agilent.Agilent33220A
method), 172

wait_for_trigger() (pymea-
sure.instruments.agilent.Agilent33500 method),
175

wait_time() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500
method), 186

WaitTimeType (class in pymea-
sure.instruments.agilent.agilentB1500), 196

wave (pymeasure.instruments.fakes.SwissArmyFake
property), 113

waveform_abort() (pymea-
sure.instruments.keithley.Keithley6221
method), 324

waveform_amplitude (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 324

waveform_arm() (pymea-
sure.instruments.keithley.Keithley6221
method), 324

waveform_data (pymea-
sure.instruments.keysight.KeysightDSOX1102G
property), 341

waveform_duration_cycles (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 324

waveform_duration_set_infinity() (pymea-
sure.instruments.keithley.Keithley6221
method), 324

waveform_duration_time (pymea-

646 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

sure.instruments.keithley.Keithley6221 prop-
erty), 324

waveform_dutycycle (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 324

waveform_first_point (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
property), 373

waveform_first_point (pymea-
sure.instruments.teledyne.TeledyneOscilloscope
property), 472

waveform_format (pymea-
sure.instruments.keysight.KeysightDSOX1102G
property), 341

waveform_frequency (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 324

waveform_function (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 324

waveform_offset (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 324

waveform_phasemarker_line (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 324

waveform_phasemarker_phase (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 325

waveform_points (pymea-
sure.instruments.keysight.KeysightDSOX1102G
property), 341

waveform_points (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
property), 373

waveform_points (pymea-
sure.instruments.teledyne.TeledyneOscilloscope
property), 472

waveform_points_mode (pymea-
sure.instruments.keysight.KeysightDSOX1102G
property), 341

waveform_preamble (pymea-
sure.instruments.keysight.KeysightDSOX1102G
property), 341

waveform_preamble (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
property), 373

waveform_preamble (pymea-
sure.instruments.teledyne.TeledyneOscilloscope
property), 472

waveform_ranging (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 325

waveform_source (pymea-

sure.instruments.keysight.KeysightDSOX1102G
property), 341

waveform_sparsing (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
property), 374

waveform_sparsing (pymea-
sure.instruments.teledyne.TeledyneOscilloscope
property), 473

waveform_start() (pymea-
sure.instruments.keithley.Keithley6221
method), 325

waveform_use_phasemarker (pymea-
sure.instruments.keithley.Keithley6221 prop-
erty), 325

waveforms (pymeasure.instruments.activetechnologies.AWG401x_AWG
property), 119

wavelength (pymeasure.instruments.keysight.KeysightN7776C
property), 343

wavelength (pymeasure.instruments.thorlabs.ThorlabsPM100USB
property), 489

wavelength_center (pymea-
sure.instruments.anritsu.AnritsuMS9710C
property), 210

wavelength_marker_value (pymea-
sure.instruments.anritsu.AnritsuMS9710C
property), 210

wavelength_max (pymea-
sure.instruments.thorlabs.ThorlabsPM100USB
property), 489

wavelength_min (pymea-
sure.instruments.thorlabs.ThorlabsPM100USB
property), 489

wavelength_span (pymea-
sure.instruments.anritsu.AnritsuMS9710C
property), 210

wavelength_start (pymea-
sure.instruments.anritsu.AnritsuMS9710C
property), 210

wavelength_stop (pymea-
sure.instruments.anritsu.AnritsuMS9710C
property), 210

wavelength_temperature (pymea-
sure.instruments.ipgphotonics.yar.YAR prop-
erty), 287

wavelength_value_in (pymea-
sure.instruments.anritsu.AnritsuMS9710C
property), 210

wavelengths (pymeasure.instruments.anritsu.AnritsuMS9710C
property), 210

wavetype (pymeasure.instruments.teledyne.teledyneT3AFG.SignalChannel
property), 468

WindowType (class in pymea-
sure.instruments.hp.hp856Xx), 280

wipe_sweep_table() (pymea-

Index 647

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

sure.instruments.oxfordinstruments.ITC503
method), 398

wires (pymeasure.instruments.keithley.Keithley2400
property), 307

wires (pymeasure.instruments.keithley.Keithley2450
property), 314

wl_logging (pymeasure.instruments.keysight.KeysightN7776C
property), 343

Worker (class in pymeasure.experiment.workers), 79
write() (pymeasure.adapters.Adapter method), 49
write() (pymeasure.adapters.FakeAdapter method), 69
write() (pymeasure.adapters.PrologixAdapter method),

60
write() (pymeasure.adapters.SerialAdapter method), 55
write() (pymeasure.adapters.TelnetAdapter method), 65
write() (pymeasure.adapters.VISAAdapter method), 52
write() (pymeasure.adapters.VXI11Adapter method),

62
write() (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X

method), 123
write() (pymeasure.instruments.agilent.agilentB1500.SMU

method), 188
write() (pymeasure.instruments.anaheimautomation.DPSeriesMotorController

method), 204
write() (pymeasure.instruments.andeenhagerling.AH2700A

method), 207
write() (pymeasure.instruments.Channel method), 112
write() (pymeasure.instruments.eurotest.EurotestHPP120256

method), 233
write() (pymeasure.instruments.fwbell.FWBell5080

method), 236
write() (pymeasure.instruments.hcp.TC038 method),

238
write() (pymeasure.instruments.hcp.TC038D method),

239
write() (pymeasure.instruments.hp.HP34401A

method), 243
write() (pymeasure.instruments.hp.HP8116A method),

250
write() (pymeasure.instruments.hp.HPLegacyInstrument

method), 284
write() (pymeasure.instruments.Instrument method),

111
write() (pymeasure.instruments.keithley.Keithley2000

method), 294
write() (pymeasure.instruments.keithley.Keithley2260B

method), 297
write() (pymeasure.instruments.keithley.Keithley2306

method), 299
write() (pymeasure.instruments.keithley.Keithley2400

method), 307
write() (pymeasure.instruments.keithley.Keithley2450

method), 315
write() (pymeasure.instruments.keithley.Keithley2600

method), 334
write() (pymeasure.instruments.keithley.Keithley2700

method), 318
write() (pymeasure.instruments.keithley.Keithley2750

method), 332
write() (pymeasure.instruments.keithley.Keithley6221

method), 325
write() (pymeasure.instruments.keithley.Keithley6517B

method), 330
write() (pymeasure.instruments.keysight.KeysightE36312A

method), 350
write() (pymeasure.instruments.lakeshore.LakeShore421

method), 358
write() (pymeasure.instruments.lecroy.LeCroyT3DSO1204

method), 374
write() (pymeasure.instruments.mksinst.mks937b.MKS937B

method), 376
write() (pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalInputOutput

method), 381
write() (pymeasure.instruments.oxfordinstruments.base.OxfordInstrumentsBase

method), 394
write() (pymeasure.instruments.signalrecovery.DSP7225

method), 433
write() (pymeasure.instruments.signalrecovery.DSP7265

method), 439
write() (pymeasure.instruments.tcpowerconversion.CXN

method), 455
write() (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38

method), 460
write() (pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65

method), 464
write() (pymeasure.instruments.teledyne.TeledyneOscilloscope

method), 473
write() (pymeasure.instruments.teledyne.TeledyneT3AFG

method), 467
write() (pymeasure.instruments.texio.TexioPSW360L30

method), 486
write() (pymeasure.instruments.thermotron.Thermotron3800

method), 488
write() (pymeasure.instruments.thyracont.smartline_v1.SmartlineV1

method), 491
write() (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2

method), 494
write() (pymeasure.instruments.velleman.VellemanK8090

method), 498
write_binary_values() (pymeasure.adapters.Adapter

method), 49
write_binary_values() (pymea-

sure.adapters.FakeAdapter method), 69
write_binary_values() (pymea-

sure.adapters.PrologixAdapter method),
60

write_binary_values() (pymea-
sure.adapters.SerialAdapter method), 55

648 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

write_binary_values() (pymea-
sure.adapters.TelnetAdapter method), 65

write_binary_values() (pymea-
sure.adapters.VISAAdapter method), 52

write_binary_values() (pymea-
sure.adapters.VXI11Adapter method), 63

write_binary_values() (pymea-
sure.instruments.andeenhagerling.AH2700A
method), 207

write_binary_values() (pymea-
sure.instruments.Channel method), 112

write_binary_values() (pymea-
sure.instruments.fwbell.FWBell5080 method),
236

write_binary_values() (pymea-
sure.instruments.Instrument method), 111

write_binary_values() (pymea-
sure.instruments.keithley.Keithley2000
method), 294

write_binary_values() (pymea-
sure.instruments.keithley.Keithley2200
method), 338

write_binary_values() (pymea-
sure.instruments.keithley.Keithley2260B
method), 297

write_binary_values() (pymea-
sure.instruments.keithley.Keithley2306
method), 299

write_binary_values() (pymea-
sure.instruments.keithley.Keithley2400
method), 307

write_binary_values() (pymea-
sure.instruments.keithley.Keithley2450
method), 315

write_binary_values() (pymea-
sure.instruments.keithley.Keithley2600
method), 334

write_binary_values() (pymea-
sure.instruments.keithley.Keithley2700
method), 319

write_binary_values() (pymea-
sure.instruments.keithley.Keithley2750
method), 332

write_binary_values() (pymea-
sure.instruments.keithley.Keithley6221
method), 325

write_binary_values() (pymea-
sure.instruments.keithley.Keithley6517B
method), 330

write_binary_values() (pymea-
sure.instruments.keysight.KeysightE36312A
method), 350

write_binary_values() (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204

method), 374
write_binary_values() (pymea-

sure.instruments.signalrecovery.DSP7225
method), 433

write_binary_values() (pymea-
sure.instruments.signalrecovery.DSP7265
method), 440

write_binary_values() (pymea-
sure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
method), 460

write_binary_values() (pymea-
sure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
method), 464

write_binary_values() (pymea-
sure.instruments.teledyne.TeledyneT3AFG
method), 467

write_binary_values() (pymea-
sure.instruments.texio.TexioPSW360L30
method), 487

write_bytes() (pymeasure.adapters.Adapter method),
49

write_bytes() (pymeasure.adapters.FakeAdapter
method), 69

write_bytes() (pymeasure.adapters.PrologixAdapter
method), 60

write_bytes() (pymeasure.adapters.SerialAdapter
method), 55

write_bytes() (pymeasure.adapters.TelnetAdapter
method), 66

write_bytes() (pymeasure.adapters.VISAAdapter
method), 52

write_bytes() (pymeasure.adapters.VXI11Adapter
method), 63

write_bytes() (pymea-
sure.instruments.andeenhagerling.AH2700A
method), 208

write_bytes() (pymeasure.instruments.Channel
method), 112

write_bytes() (pymea-
sure.instruments.fwbell.FWBell5080 method),
237

write_bytes() (pymeasure.instruments.Instrument
method), 111

write_bytes() (pymea-
sure.instruments.keithley.Keithley2000
method), 295

write_bytes() (pymea-
sure.instruments.keithley.Keithley2200
method), 338

write_bytes() (pymea-
sure.instruments.keithley.Keithley2260B
method), 297

write_bytes() (pymea-
sure.instruments.keithley.Keithley2306

Index 649

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

method), 299
write_bytes() (pymea-

sure.instruments.keithley.Keithley2400
method), 308

write_bytes() (pymea-
sure.instruments.keithley.Keithley2450
method), 315

write_bytes() (pymea-
sure.instruments.keithley.Keithley2600
method), 334

write_bytes() (pymea-
sure.instruments.keithley.Keithley2700
method), 319

write_bytes() (pymea-
sure.instruments.keithley.Keithley2750
method), 332

write_bytes() (pymea-
sure.instruments.keithley.Keithley6221
method), 325

write_bytes() (pymea-
sure.instruments.keithley.Keithley6517B
method), 330

write_bytes() (pymea-
sure.instruments.keysight.KeysightE36312A
method), 350

write_bytes() (pymea-
sure.instruments.lecroy.LeCroyT3DSO1204
method), 374

write_bytes() (pymea-
sure.instruments.signalrecovery.DSP7225
method), 433

write_bytes() (pymea-
sure.instruments.signalrecovery.DSP7265
method), 440

write_bytes() (pymea-
sure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38
method), 460

write_bytes() (pymea-
sure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65
method), 464

write_bytes() (pymea-
sure.instruments.teledyne.TeledyneT3AFG
method), 467

write_bytes() (pymea-
sure.instruments.texio.TexioPSW360L30
method), 487

write_calibration_data() (pymea-
sure.instruments.hp.HP3478A method), 248

write_composition() (pymea-
sure.instruments.thyracont.smartline_v2.SmartlineV2
method), 494

write_file() (pymeasure.generator.Generator
method), 70

write_getter_test() (pymea-

sure.generator.Generator method), 70
write_init_test() (pymeasure.generator.Generator

method), 70
write_method_test() (pymea-

sure.generator.Generator method), 70
write_method_tests() (pymea-

sure.generator.Generator method), 70
write_property_tests() (pymea-

sure.generator.Generator method), 70
write_raw() (pymeasure.adapters.VXI11Adapter

method), 63
write_setter_test() (pymea-

sure.generator.Generator method), 70
writeAO() (in module pymeasure.instruments.comedi),

116

X
x (pymeasure.instruments.ametek.Ametek7270 property),

200
x (pymeasure.instruments.signalrecovery.DSP7225 prop-

erty), 433
x (pymeasure.instruments.signalrecovery.DSP7265 prop-

erty), 440
x (pymeasure.instruments.srs.SR830 property), 446
x (pymeasure.instruments.srs.SR860 property), 451
x1 (pymeasure.instruments.ametek.Ametek7270 prop-

erty), 200
x2 (pymeasure.instruments.ametek.Ametek7270 prop-

erty), 200
x_pointer (pymeasure.instruments.oxfordinstruments.ITC503

property), 398
xroll_frequency (pymea-

sure.instruments.hp.hp856Xx.HP856Xx at-
tribute), 269

xy (pymeasure.instruments.ametek.Ametek7270 prop-
erty), 200

xy (pymeasure.instruments.signalrecovery.DSP7225
property), 433

xy (pymeasure.instruments.signalrecovery.DSP7265
property), 440

xy (pymeasure.instruments.srs.SR830 property), 446

Y
y (pymeasure.instruments.ametek.Ametek7270 property),

200
y (pymeasure.instruments.signalrecovery.DSP7225 prop-

erty), 433
y (pymeasure.instruments.signalrecovery.DSP7265 prop-

erty), 440
y (pymeasure.instruments.srs.SR830 property), 446
y (pymeasure.instruments.srs.SR860 property), 451
y1 (pymeasure.instruments.ametek.Ametek7270 prop-

erty), 200

650 Index

PyMeasure Documentation, Release 0.1.dev577+ga064eef.d20231006

y2 (pymeasure.instruments.ametek.Ametek7270 prop-
erty), 200

y_pointer (pymeasure.instruments.oxfordinstruments.ITC503
property), 398

YAR (class in pymeasure.instruments.ipgphotonics.yar),
286

YAR.Status (class in pymea-
sure.instruments.ipgphotonics.yar), 286

Yokogawa7651 (class in pymea-
sure.instruments.yokogawa), 499

YokogawaGS200 (class in pymea-
sure.instruments.yokogawa), 501

Z
zero() (pymeasure.instruments.ami.AMI430 method),

202
zero() (pymeasure.instruments.newport.esp300.Axis

method), 378
zero_probe() (pymea-

sure.instruments.lakeshore.LakeShore421
method), 358

zero_probe() (pymea-
sure.instruments.lakeshore.LakeShore425
method), 359

Index 651

	Introduction
	Instrument ready
	Graphical displays

	Quick start
	Setting up Python
	Installing PyMeasure
	Install with conda
	Install with pip
	Installing VISA
	Checking the version

	Tutorials
	Connecting to an instrument
	Using adapters
	Modifying connection settings

	Making a measurement
	Using scripts
	Using Procedures
	Running Procedures
	Using Logs
	Storing metadata
	Modifying our script

	Using a graphical interface
	Using the Plotter
	Using the ManagedWindow
	Customising the plot options
	Using tabular format
	Defining your own ManagedWindow’s widgets
	Using the sequencer
	Using the directory input
	Using the estimator widget
	Flexible hiding of inputs
	Using the ManagedDockWindow
	Using the ManagedConsole
	Other useful commands

	pymeasure.adapters
	Adapter base class
	VISA adapter
	Serial adapter
	Prologix adapter
	VXI-11 adapter
	Telnet adapter
	Test adapters

	pymeasure.experiment
	Experiment class
	Listener class
	Procedure class
	Parameter classes
	Worker class
	Results class

	pymeasure.display
	Browser classes
	Console class
	Curves classes
	Inputs classes
	Listeners classes
	Log classes
	Manager classes
	Plotter class
	Qt classes
	Thread classes
	Widget classes
	Windows classes

	pymeasure.instruments
	Instrument classes
	Validator functions
	Comedi data acquisition
	Resource Manager
	Active Technologies
	Active Technologies AWG-401x 1.2GS/s Arbitrary Waveform Generator

	Advantest
	Advantest R3767CG Vector Network Analyzer
	Advantest R6245/R6246 DC Voltage/Current Sources/Monitors
	Main Classes
	General Information
	Examples
	Initialization of the Instrument
	Simple dual channel measurement example
	Program example for DC measurement
	Program example for DC measurement (with external trigger)
	Program example for pulse measurement
	Fixed Level Sweep Program Example

	Agilent
	Agilent 8257D Signal Generator
	Agilent 8722ES Vector Network Analyzer
	Agilent E4408B Spectrum Analyzer
	Agilent E4980 LCR Meter
	Agilent 34410A Multimeter
	HP/Agilent/Keysight 34450A Digital Multimeter
	Agilent 4155/4156 Semiconductor Parameter Analyzer
	Agilent 33220A Arbitrary Waveform Generator
	Agilent 33500 Function/Arbitrary Waveform Generator Family
	Agilent 33521A Function/Arbitrary Waveform Generator
	Agilent B1500 Semiconductor Parameter Analyzer
	General Information
	Command Translation

	Examples
	Initialization of the Instrument
	IV measurement with 4 SMUs
	Sampling measurement with 4 SMUs

	Main Classes
	Supporting Classes
	Enumerations

	AJA International
	AJA DCXS-750 or 1500 DC magnetron sputtering power supply

	Ametek
	Ametek 7270 DSP Lockin Amplifier

	AMI
	AMI 430 Power Supply

	Anaheim Automation
	DP-Series Step Motor Controller

	Anapico
	Anapico APSIN12G Signal Generator

	Andeen Hagerling
	Andeen Hagerling AH2500A capacitance bridge
	Andeen Hagerling AH2700A capacitance bridge

	Anritsu
	Anritsu MG3692C Signal Generator
	Anritsu MS9710C Optical Spectrum Analyzer
	Anritsu MS9740A Optical Spectrum Analyzer
	Anritsu MS2090A Handheld Spectrum Analyzer
	Anritsu MS464xB Vector Network Analyzer

	Attocube
	Attocube ANC300 Motion Controller

	BK Precision
	BK Precision 9130B DC Power Supply

	Danfysik
	Danfysik 8500 Power Supply

	Delta Elektronika
	Delta Elektronica SM7045D Power source

	Edwards
	Edwards nxds vacuum pump

	EURO TEST
	Euro Test HPP120256 High Voltage Power Supply

	Fluke
	Fluke 7341 Temperature bath

	F.W. Bell
	F.W. Bell 5080 Handheld Gaussmeter

	Heidenhain
	Heidenhain ND287 Position Display Unit

	HC Photonics
	HCP TC038 crystal oven
	HCP TC038D crystal oven

	Hewlett Packard
	HP 33120A Arbitrary Waveform Generator
	HP 34401A Multimeter
	HP 3437A System-Voltmeter
	HP 3478A Multimeter
	HP 8116A 50 MHz Pulse/Function Generator
	HP 8560A / 8561B Spectrum Analyzer
	Generic Specific Attributes & Methods
	General
	Demodulation
	Frequency
	Resolution Bandwidth
	Video
	FFT & Measurements
	Trace
	Marker
	Diagnostic Values
	Sweep
	Normalization
	Open/Short Calibration (Reflection)
	Thru Calibration

	HP8560A Specific Attributes & Methods
	HP8561B Specific Attributes & Methods
	Enumerations

	HP Signal generator HP8657B
	Support class for HP legacy devices
	HP System Power Supplies HP663XA

	IPG Photonics
	YAR fiber amplifier series

	Keithley
	Keithley 2000 Multimeter
	Keithley 2260B DC Power Supply
	Keithley 2306 Dual Channel Battery/Charger Simulator
	Keithley 2400 SourceMeter
	Keithley 2450 SourceMeter
	Keithley 2700 MultiMeter/Switch System
	Keithley 6221 AC and DC Current Source
	Keithley 6517B Electrometer
	Keithley 2750 Multimeter/Switch System
	Keithley 2600 SourceMeter
	Keithley 2200 Series Power Supplies

	Keysight
	Keysight DSOX1102G Oscilloscope
	Keysight N5767A Power Supply
	Keysight N5776C Power Supply
	Keysight E36312A Triple Output Power Supply

	Lake Shore Cryogenics
	Lake Shore 211 Temperature Monitor
	Lake Shore 224 Temperature Monitor
	Lake Shore 331 Temperature Controller
	Lake Shore 421 Gaussmeter
	Lake Shore 425 Gaussmeter
	LakeShore Channel Classes

	LeCroy
	LeCroy T3DSO1204 Oscilloscope

	MKS Instruments
	MKS Instruments 937B Vacuum Gauge Controller

	Newport
	ESP 300 Motion Controller

	National Instruments
	NI Virtual Bench
	General Information
	Examples
	Instrument Class

	Novanta Photonics
	Novanta FPU60 laser power supply unit

	Oxford Instruments
	Oxford Instruments Base Instrument
	Oxford Instruments Intelligent Temperature Controller 503
	Oxford Instruments Intelligent Power Supply 120-10 for superconducting magnets
	Oxford Instruments Power Supply 120-10 for superconducting magnets

	Parker
	Parker GV6 Servo Motor Controller

	Pendulum
	Pendulum CNT91 frequency counter

	Razorbill
	Razorbill RP100 custrom power supply for Razorbill Instrums stress & strain cells

	Rohde & Schwarz
	R&S SFM TV test transmitter
	R&S FSL spectrum analyzer
	Connecting to the instrument via network
	Getting and setting parameters
	Reading a trace
	Markers
	Delta markers

	Example program

	R&S HMP4040 Power Supply

	Siglent Technologies
	Siglent Technologies Base Class
	Siglent SPD1168X Power Supply
	Siglent SPD1305X Power Supply

	Signal Recovery
	DSP 7225 Lock-in Amplifier
	DSP 7265 Lock-in Amplifier

	Stanford Research Systems
	SR510 Lock-in Amplifier
	SR570 Lock-in Amplifier
	SR830 Lock-in Amplifier
	SR860 Lock-in Amplifier

	T&C Power Conversion
	T&C Power Conversion AG Series Plasma Generator CXN

	TDK Lambda
	TDK Lambda Genesys 40-38 DC power supply
	TDK Lambda Genesys 80-65 DC power supply

	Tektronix
	TDS2000 Oscilloscope
	AFG3152C Arbitrary function generator

	Teledyne
	Teledyne T3AFG Arbitrary Waveform Generator
	Teledyne Oscilloscope base classes
	Teledyne Oscilloscope
	Teledyne Channel

	Temptronic
	Temptronic Base Class
	Temptronic ATS525 Thermostream
	Temptronic ATS545 Thermostream
	Temptronic ECO560 Thermostream

	TEXIO
	TEXIO PSW-360L30 Power Supply

	Thermotron
	Thermotron 3800 Oven

	Thorlabs
	Thorlabs PM100USB Powermeter
	Thorlabs Pro 8000 modular laser driver

	Thyracont
	Smartline V1 Transmitter Series
	Smartline V2 Transmitter Series

	Toptica
	Toptica IBeam Smart Laser diode

	Velleman
	Velleman K8090 8-channel relay board

	Yokogawa
	Yokogawa 7651 Programmable Supply
	Yokogawa GS200 Source

	Contributing
	Using the development version
	Working on a new feature
	Making a pull request
	Unit testing

	Reporting an error
	Adding instruments
	File structure
	Updating the init file
	Add test files
	Adding documentation

	Instrument file
	Your instrument’s user interface
	Common instrument types
	Frequent properties
	Power supplies

	Managing status codes or other indicator values

	Defining default connection settings
	Single interface
	Multiple interfaces

	Writing properties
	The property factories
	Restricting values with validators
	In a restricted range
	In a discrete set

	Mapping values
	Boolean properties
	Processing of set values
	Processing of return values
	Checking the instrument for errors
	Using multiple values
	Dynamic properties
	Dynamic validity range

	Instruments with similar features
	Instrument family with different parameter values
	Instruments with similar command syntax

	Instruments with channels
	Adding a channel with ChannelCreator
	Adding multiple channels with MultiChannelCreator
	Advanced channel management
	Adding / removing channels
	Channels with fixed prefix
	Collections of different channel types

	Advanced communication protocols
	Instrument’s inner workings
	Adding a device address and adding delay
	Bytes communication

	Writing tests
	Protocol tests
	Test generator

	Device tests

	Solutions for implementation challenges
	General issues
	Communication protocol issues
	Channels

	Coding Standards
	Python style guides
	Documentation
	Usage of getter and setter functions
	Docstrings

	Authors
	License
	Changelog
	Version 0.13.1 (2023-10-05)
	Version 0.13.0 (2023-09-23)
	Deprecated features
	Instruments
	GUI
	Miscellaneous
	New Contributors

	Version 0.12.0 (2023-07-05)
	Deprecated features
	New adapter and instrument mechanics
	Instruments
	Automation
	GUI
	Miscellaneous
	New Contributors

	Version 0.11.1 (2022-12-31)
	Adapter and instrument mechanics
	Dependency updates
	GUI

	Version 0.11.0 (2022-11-19)
	Deprecated features
	New adapter and instrument mechanics
	Instruments
	Automation
	GUI
	Miscellaneous
	New Contributors

	Version 0.10.0 (2022-04-09)
	Instruments
	GUI
	Miscellaneous
	New Contributors

	Version 0.9 – released 2/7/21
	Version 0.8 – released 3/29/19
	Version 0.7 – released 8/4/19
	Version 0.6.1 – released 4/21/19
	Version 0.6 – released 1/14/19
	Version 0.5.1 – released 4/14/18
	Version 0.5 – released 10/18/17
	Version 0.4.6 – released 8/12/17
	Version 0.4.5 – released 7/4/17
	Version 0.4.4 – released 6/4/17
	Version 0.4.3 – released 3/30/17
	Version 0.4.2 – released 8/23/16
	Version 0.4.1 – released 7/31/16
	Version 0.4 – released 7/29/16
	Version 0.3 – released 4/8/16
	Version 0.2 – released 12/16/15
	Version 0.1.6 – released 4/19/15
	Version 0.1.5 – release 10/22/14
	Version 0.1.4 – released 8/2/14
	Version 0.1.3 – released 7/20/14
	Version 0.1.2 – released 7/18/14
	Version 0.1.1 – released 7/16/14
	Version 0.1.0 – released 7/15/14

	Python Module Index
	Index

