

PyMeasure scientific package

[image: PyMeasure Scientific package]
PyMeasure makes scientific measurements easy to set up and run. The package contains a repository of instrument classes and a system for running experiment procedures, which provides graphical interfaces for graphing live data and managing queues of experiments. Both parts of the package are independent, and when combined provide all the necessary requirements for advanced measurements with only limited coding.

Installing Python and PyMeasure are demonstrated in the Quick Start guide. From there, checkout the existing instruments that are available for use.

PyMeasure is currently under active development, so please report any issues you experience on our Issues page [https://github.com/pymeasure/pymeasure/issues].

[image: https://github.com/pymeasure/pymeasure/workflows/Pymeasure%20CI/badge.svg]
 [https://github.com/pymeasure/pymeasure/actions][image: Documentation Status]
 [http://pymeasure.readthedocs.io/en/latest/?badge=latest][image: _images/zenodo.3732545.svg]
 [https://doi.org/10.5281/zenodo.3732545][image: _images/version.svg]
 [https://anaconda.org/conda-forge/pymeasure][image: _images/downloads.svg]
 [https://anaconda.org/conda-forge/pymeasure]The main documentation for the site is organized into a couple sections:

	Learning PyMeasure

	API Reference

	About PyMeasure

Information about development is also available:

	Getting involved

Learning PyMeasure

	Introduction
	Instrument ready

	Graphical displays

	Quick start
	Setting up Python

	Installing PyMeasure

	Tutorials
	Connecting to an instrument

	Making a measurement

	Using a graphical interface

API Reference

	pymeasure.adapters

	pymeasure.experiment

	pymeasure.display

	pymeasure.instruments

Getting involved

	Contributing
	Using the development version

	Working on a new feature

	Making a pull request

	Unit testing

	Reporting an error

	Adding instruments
	File structure

	Instrument file

	Your instrument’s user interface

	Defining default connection settings

	Writing properties

	Instruments with similar features

	Instruments with channels

	Advanced communication protocols

	Writing tests

	Solutions for implementation challenges

	Coding Standards
	Python style guides

	Documentation

	Usage of getter and setter functions

	Docstrings

About PyMeasure

	Authors

	License

	Changelog

Introduction

PyMeasure uses an object-oriented approach for communicating with scientific instruments, which provides an intuitive interface where the low-level SCPI and GPIB commands are hidden from normal use. Users can focus on solving the measurement problems at hand, instead of re-inventing how to communicate with instruments.

Instruments with VISA (GPIB, Serial, etc) are supported through the PyVISA package [https://pyvisa.readthedocs.io/en/latest/] under the hood. Prologix GPIB [http://prologix.biz/] adapters are also supported. Communication protocols can be swapped, so that instrument classes can be used with all supported protocols interchangeably.

In order to keep the corresponding numbers and physical units (e.g. 5 meters) together, pint [https://pint.readthedocs.io] quantities can be used. That way it is easy to handle different orders of magnitude (meters and centimeters) or different units (meters and feet).

Before using PyMeasure, you may find it helpful to be acquainted with basic Python programming for the sciences [https://scipy-lectures.github.io/] and understand the concept of objects.

Instrument ready

The package includes a number of instruments already defined. Their definitions are organized based on the manufacturer name of the instrument. For example the class that defines the Keithley 2400 SourceMeter can be imported by calling:

from pymeasure.instruments.keithley import Keithley2400

The Tutorials section will go into more detail on connecting to an instrument. If you don’t find the instrument you are looking for, but are interested in contributing, see the documentation on adding an instrument.

Graphical displays

Graphical user interfaces (GUIs) can be easily generated to manage execution of measurement procedures with PyMeasure. This includes live plotting for data, and a queue system for managing large numbers of experiments.

These features are explored in the Using a graphical interface tutorial.

[image: ManagedWindow Running Example]
The GUIs are not restricted to the instruments included in this package. Any python instrument may be used.
For example, this script [https://github.com/pymeasure/pymeasure/tree/master/examples/Basic/gui_foreign_instrument.py] demonstrates how to use an InstrumentKit instrument.

Quick start

This section provides instructions for getting up and running quickly with PyMeasure.

Setting up Python

The easiest way to install the necessary Python environment for PyMeasure is through the Anaconda distribution [https://www.anaconda.com/], which includes 720 scientific packages. The advantage of using this approach over just relying on the pip installer is that Anaconda correctly installs the required Qt libraries.

Download and install the appropriate Python version of Anaconda [https://www.anaconda.com/products/individual] for your operating system.

Installing PyMeasure

Install with conda

If you have the Anaconda distribution [https://www.anaconda.com/] you can use the conda package manager to easily install PyMeasure and all required dependencies.

Open a terminal and type the following commands (on Windows look for the Anaconda Prompt in the Start Menu):

conda config --add channels conda-forge
conda install pymeasure

This will install PyMeasure and all the required dependencies.

Install with pip

PyMeasure can also be installed with pip.

pip install pymeasure

Depending on your operating system, using this method may require additional work to install the required dependencies, which include the Qt libraries.

Installing VISA

Typically, communication with your instrument will happen using PyVISA, which is installed automatically.
However, this needs a VISA implementation installed to handle device communication.
If you do not already know what this means, install the pure-Python pyvisa-py package (using the same installation you used above).
If you want to know more, consult the PyVISA documentation [https://pyvisa.readthedocs.io/en/latest/introduction/configuring.html].

Checking the version

Now that you have Python and PyMeasure installed, open your python environment (e.g. a REPL or Jupyter notebook) to test which version you have installed.
Execute the following Python code.

import pymeasure
pymeasure.__version__

You should see the version of PyMeasure printed out. At this point you have PyMeasure installed, and you are ready to start using it! Are you ready to connect to an instrument?

Tutorials

The following sections provide instructions for getting started with PyMeasure.

	Connecting to an instrument
	Using adapters

	Modifying connection settings

	Making a measurement
	Using scripts

	Using Procedures

	Using a graphical interface
	Using the Plotter

	Using the ManagedWindow

	Customising the plot options

	Using tabular format

	Defining your own ManagedWindow’s widgets

	Using the sequencer

	Using the directory input

	Using the estimator widget

	Flexible hiding of inputs

	Using the ManagedDockWindow

	Using the ManagedConsole

Connecting to an instrument

After following the Quick Start section, you now have a working installation of PyMeasure. This section describes connecting to an instrument, using a Keithley 2400 SourceMeter as an example. To follow the tutorial, open a command prompt, IPython terminal, or Jupyter notebook.

First import the instrument of interest.

from pymeasure.instruments.keithley import Keithley2400

Then construct an object by passing the VISA address. For this example we connect to the instrument over GPIB (using VISA) with an address of 4:

sourcemeter = Keithley2400("GPIB::4")

Note

Passing an appropriate resource string is the default method when creating pymeasure instruments.
See the adapters section below for more details.

If you are not sure about the correct resource string identifying your instrument, you can run the pymeasure.instruments.list_resources() function to list all available resources:

from pymeasure.instruments import list_resources
list_resources()

For instruments with standard SCPI commands, an id property will return the results of a *IDN? SCPI command, identifying the instrument.

sourcemeter.id

This is equivalent to manually calling the SCPI command.

sourcemeter.ask("*IDN?")

Here the ask method writes the SCPI command, reads the result, and returns that result. This is further equivalent to calling the methods below.

sourcemeter.write("*IDN?")
sourcemeter.read()

This example illustrates that the top-level methods like id are really composed of many lower-level methods. Both can be called depending on the operation that is desired. PyMeasure hides the complexity of these lower-level operations, so you can focus on the bigger picture.

Instruments are also equipped to be used in a with statement.

with Keithley2400("GPIB::4") as sourcemeter:
 sourcemeter.id

When the with-block is exited, the shutdown method of the instrument will be called, turning the system into a safe state.

with Keithley2400("GPIB::4") as sourcemeter:
 sourcemeter.isShutdown == False
sourcemeter.isShutdown == True

Using adapters

PyMeasure supports a number of adapters, which are responsible for communicating with the underlying hardware.
In the example above, we passed the string “GPIB::4” when constructing the instrument.
By default this constructs a VISAAdapter (our most popular, default adapter) to connect to the instrument using VISA.
Passing a string (or integer in case of GPIB) is by far the most typical way to create pymeasure instruments.

Sometimes, you might need to go beyond the usual setup, which is also possible.
Instead of passing a string, you could equally pass an adapter object.

from pymeasure.adapters import VISAAdapter

adapter = VISAAdapter("GPIB::4")
sourcemeter = Keithely2400(adapter)

To instead use a Prologix GPIB device connected on /dev/ttyUSB0 (proper permissions are needed in Linux, see PrologixAdapter), the adapter is constructed in a similar way.
The Prologix adapter can be shared by many instruments.
Therefore, new PrologixAdapter instances with different GPIB addresses can be generated from an already existing instance.

from pymeasure.adapters import PrologixAdapter

adapter = PrologixAdapter('ASRL/dev/ttyUSB0::INSTR', address=7)
sourcemeter = Keithley2400(adapter) # at GPIB address 7
multimeter = Keithley2000(adapter.gpib(9)) # at GPIB address 9

Some equipment may require the vxi-11 protocol for communication. An example would be a Agilent E5810B ethernet to GPIB bridge.
To use this type equipment the python-vxi11 library has to be installed which is part of the extras package requirements.

from pymeasure.adapters import VXI11Adapter
from pymeasure.instruments import Instrument

adapter = VXI11Adapter("TCPIP::192.168.0.100::inst0::INSTR")
instr = Instrument(adapter, "my_instrument")

Modifying connection settings

Sometimes you want to tweak the connection settings when talking to a device.
This might be because you have a non-standard device or connection, or are troubleshooting why a device does not reply.

When using a string or integer to connect to an instrument, a VISAAdapter is used internally.
Additional settings need to be passed in as keyword arguments.
For example, to use a fast baud rate on a quick connection when connecting to the Keithely2400 as above, do

sourcemeter = Keithley2400("ASRL2", timeout=500, baud_rate=115200)

This overrides any defaults that may be defined for the instrument, either generally valid ones like timeout or interface-specific ones like baud_rate.

If you use an invalid argument, either misspelled or not valid for the chosen interface, an exception will be raised.

When using a separately-created Adapter instance, you define any custom settings when creating the adapter. Any keyword arguments passed in are discarded.

The above examples illustrate different methods for communicating with instruments, using adapters to keep instrument code independent from the communication protocols. Next we present the methods for setting up measurements.

Making a measurement

This tutorial will walk you through using PyMeasure to acquire a current-voltage (IV) characteristic using a Keithley 2400. Even if you don’t have access to this instrument, this tutorial will explain the method for making measurements with PyMeasure. First we describe using a simple script to make the measurement. From there, we show how Procedure objects greatly simplify the workflow, which leads to making the measurement with a graphical interface.

Using scripts

Scripts are a quick way to get up and running with a measurement in PyMeasure. For our IV characteristic measurement, we perform the following steps:

	Import the necessary packages

	Set the input parameters to define the measurement

	Set source_current and measure_voltage parameters

	Connect to the Keithley 2400

	Set up the instrument for the IV characteristic

	Allocate arrays to store the resulting measurements

	Loop through the current points, measure the voltage, and record

	Save the final data to a CSV file

	Shutdown the instrument

These steps are expressed in code as follows.

Import necessary packages
from pymeasure.instruments.keithley import Keithley2400
import numpy as np
import pandas as pd
from time import sleep

Set the input parameters
data_points = 50
averages = 10
max_current = 0.001
min_current = -max_current

Set source_current and measure_voltage parameters
current_range = 10e-3 # in Amps
compliance_voltage = 10 # in Volts
measure_nplc = 0.1 # Number of power line cycles
voltage_range = 1 # in VOlts

Connect and configure the instrument
sourcemeter = Keithley2400("GPIB::24")
sourcemeter.reset()
sourcemeter.use_front_terminals()
sourcemeter.apply_current(current_range, compliance_voltage)
sourcemeter.measure_voltage(measure_nplc, voltage_range)
sleep(0.1) # wait here to give the instrument time to react
sourcemeter.stop_buffer()
sourcemeter.disable_buffer()

Allocate arrays to store the measurement results
currents = np.linspace(min_current, max_current, num=data_points)
voltages = np.zeros_like(currents)
voltage_stds = np.zeros_like(currents)

sourcemeter.enable_source()

Loop through each current point, measure and record the voltage
for i in range(data_points):
 sourcemeter.config_buffer(averages)
 sourcemeter.source_current = currents[i]
 sourcemeter.start_buffer()
 sourcemeter.wait_for_buffer()
 # Record the average and standard deviation
 voltages[i] = sourcemeter.means[0]
 sleep(1.0)
 voltage_stds[i] = sourcemeter.standard_devs[0]

Save the data columns in a CSV file
data = pd.DataFrame({
 'Current (A)': currents,
 'Voltage (V)': voltages,
 'Voltage Std (V)': voltage_stds,
})
data.to_csv('example.csv')

sourcemeter.shutdown()

Running this example script will execute the measurement and save the data to a CSV file. While this may be sufficient for very basic measurements, this example illustrates a number of issues that PyMeasure solves. The issues with the script example include:

	The progress of the measurement is not transparent

	Input parameters are not associated with the data that is saved

	Data is not plotted during the execution (nor at all in this case)

	Data is only saved upon successful completion, which is otherwise lost

	Canceling a running measurement causes the system to end in a undetermined state

	Exceptions also end the system in an undetermined state

The Procedure class allows us to solve all of these issues. The next section introduces the Procedure class and shows how to modify our script example to take advantage of these features.

Using Procedures

The Procedure object bundles the sequence of steps in an experiment with the parameters required for its successful execution. This simple structure comes with huge benefits, since a number of convenient tools for making the measurement use this common interface.

Let’s start with a simple example of a procedure which loops over a certain number of iterations. We make the SimpleProcedure object as a sub-class of Procedure, since SimpleProcedure is a Procedure.

from time import sleep
from pymeasure.experiment import Procedure
from pymeasure.experiment import IntegerParameter

class SimpleProcedure(Procedure):

 # a Parameter that defines the number of loop iterations
 iterations = IntegerParameter('Loop Iterations')

 # a list defining the order and appearance of columns in our data file
 DATA_COLUMNS = ['Iteration']

 def execute(self):
 """Execute the procedure.

 Loops over each iteration and emits the current iteration,
 before waiting for 0.01 sec, and then checking if the procedure
 should stop.
 """
 for i in range(self.iterations):
 self.emit('results', {'Iteration': i})
 sleep(0.01)
 if self.should_stop():
 break

At the top of the SimpleProcedure class we define the required Parameters. In this case, iterations is a IntegerParameter that defines the number of loops to perform. Inside our Procedure class we reference the value in the iterations Parameter by the class variable where the Parameter is stored (self.iterations). PyMeasure swaps out the Parameters with their values behind the scene, which makes accessing the values of parameters very convenient.

We define the data columns that will be recorded in a list stored in DATA_COLUMNS. This sets the order by which columns are stored in the file. In this example, we will store the Iteration number for each loop iteration.

The execute methods defines the main body of the procedure. Our example method consists of a loop over the number of iterations, in which we emit the data to be recorded (the Iteration number). The data is broadcast to any number of listeners by using the emit method, which takes a topic as the first argument. Data with the 'results' topic and the proper data columns will be recorded to a file. The sleep function in our example provides two very useful features. The first is to delay the execution of the next lines of code by the time argument in units of seconds. The seconds is that during this delay time, the CPU is free to perform other code. Successful measurements often require the intelligent use of sleep to deal with instrument delays and ensure that the CPU is not hogged by a single script. After our delay, we check to see if the Procedure should stop by calling self.should_stop(). By checking this flag, the Procedure will react to a user canceling the procedure execution.

This covers the basic requirements of a Procedure object. Now let’s construct our SimpleProcedure object with 100 iterations.

procedure = SimpleProcedure()
procedure.iterations = 100

Next we will show how to run the procedure.

Running Procedures

A Procedure is run by a Worker object. The Worker executes the Procedure in a separate Python thread, which allows other code to execute in parallel to the procedure (e.g. a graphical user interface). In addition to performing the measurement, the Worker spawns a Recorder object, which listens for the 'results' topic in data emitted by the Procedure, and writes those lines to a data file. The Results object provides a convenient abstraction to keep track of where the data should be stored, the data in an accessible form, and the Procedure that pertains to those results.

We first construct a Results object for our Procedure.

from pymeasure.experiment import Results

data_filename = 'example.csv'
results = Results(procedure, data_filename)

Constructing the Results object for our Procedure creates the file using the data_filename, and stores the Parameters for the Procedure. This allows the Procedure and Results objects to be reconstructed later simply by loading the file using Results.load(data_filename). The Parameters in the file are easily readable.

We now construct a Worker with the Results object, since it contains our Procedure.

from pymeasure.experiment import Worker

worker = Worker(results)

The Worker publishes data and other run-time information through specific queues, but can also publish this information over the local network on a specific TCP port (using the optional port argument. Using TCP communication allows great flexibility for sharing information with Listener objects. Queues are used as the standard communication method because they preserve the data order, which is of critical importance to storing data accurately and reacting to the measurement status in order.

Now we are ready to start the worker.

worker.start()

This method starts the worker in a separate Python thread, which allows us to perform other tasks while it is running. When writing a script that should block (wait for the Worker to finish), we need to join the Worker back into the main thread.

worker.join(timeout=3600) # wait at most 1 hr (3600 sec)

Let’s put all the pieces together. Our SimpleProcedure can be run in a script by the following.

from time import sleep
from pymeasure.experiment import Procedure, Results, Worker
from pymeasure.experiment import IntegerParameter

class SimpleProcedure(Procedure):

 # a Parameter that defines the number of loop iterations
 iterations = IntegerParameter('Loop Iterations')

 # a list defining the order and appearance of columns in our data file
 DATA_COLUMNS = ['Iteration']

 def execute(self):
 """Execute the procedure.

 Loops over each iteration and emits the current iteration,
 before waiting for 0.01 sec, and then checking if the procedure
 should stop.
 """
 for i in range(self.iterations):
 self.emit('results', {'Iteration': i})
 sleep(0.01)
 if self.should_stop():
 break

if __name__ == "__main__":
 procedure = SimpleProcedure()
 procedure.iterations = 100

 data_filename = 'example.csv'
 results = Results(procedure, data_filename)

 worker = Worker(results)
 worker.start()

 worker.join(timeout=3600) # wait at most 1 hr (3600 sec)

Here we have included an if statement to only run the script if the __name__ is __main__. This precaution allows us to import the SimpleProcedure object without running the execution.

Using Logs

Logs keep track of important details in the execution of a procedure. We describe the use of the Python logging module with PyMeasure, which makes it easy to document the execution of a procedure and provides useful insight when diagnosing issues or bugs.

Let’s extend our SimpleProcedure with logging.

import logging
log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())

from time import sleep
from pymeasure.log import console_log
from pymeasure.experiment import Procedure, Results, Worker
from pymeasure.experiment import IntegerParameter

class SimpleProcedure(Procedure):

 iterations = IntegerParameter('Loop Iterations')

 DATA_COLUMNS = ['Iteration']

 def execute(self):
 log.info("Starting the loop of %d iterations" % self.iterations)
 for i in range(self.iterations):
 data = {'Iteration': i}
 self.emit('results', data)
 log.debug("Emitting results: %s" % data)
 sleep(0.01)
 if self.should_stop():
 log.warning("Caught the stop flag in the procedure")
 break

if __name__ == "__main__":
 console_log(log)

 log.info("Constructing a SimpleProcedure")
 procedure = SimpleProcedure()
 procedure.iterations = 100

 data_filename = 'example.csv'
 log.info("Constructing the Results with a data file: %s" % data_filename)
 results = Results(procedure, data_filename)

 log.info("Constructing the Worker")
 worker = Worker(results)
 worker.start()
 log.info("Started the Worker")

 log.info("Joining with the worker in at most 1 hr")
 worker.join(timeout=3600) # wait at most 1 hr (3600 sec)
 log.info("Finished the measurement")

First, we have imported the Python logging module and grabbed the logger using the __name__ argument. This gives us logging information specific to the current file. Conversely, we could use the '' argument to get all logs, including those of pymeasure. We use the console_log function to conveniently output the log to the console. Further details on how to use the logger are addressed in the Python logging documentation.

Storing metadata

Metadata (pymeasure.experiment.parameters.Metadata) allows storing information (e.g. the actual starting time, instrument parameters) about the measurement in the header of the datafile.
These Metadata objects are evaluated and stored in the datafile only after the startup method has ran; this way it is possible to e.g. retrieve settings from an instrument and store them in the file.
Using a Metadata is nearly as straightforward as using a Parameter; extending the example of above to include metadata, looks as follows:

from time import sleep, time
from pymeasure.experiment import Procedure
from pymeasure.experiment import IntegerParameter, Metadata

class SimpleProcedure(Procedure):

 # a Parameter that defines the number of loop iterations
 iterations = IntegerParameter('Loop Iterations')

 # the Metadata objects store information after the startup has ran
 starttime = Metadata('Start time', fget=time)
 custom_metadata = Metadata('Custom', default=1)

 # a list defining the order and appearance of columns in our data file
 DATA_COLUMNS = ['Iteration']

 def startup(self):
 self.custom_metadata = 20

 def execute(self):
 """ Loops over each iteration and emits the current iteration,
 before waiting for 0.01 sec, and then checking if the procedure
 should stop
 """
 for i in range(self.iterations):
 self.emit('results', {'Iteration': i})
 sleep(0.01)
 if self.should_stop():
 break

As with a Parameter, PyMeasure swaps out the Metadata with their values behind the scene, which makes accessing the values of Metadata very convenient.

The value of a Metadata can be set either using an fget method or manually in the startup method.
The fget method, if provided, is ran after startup method.
It can also be provided as a string; in that case it is assumed that the string contains the name of an attribute (either a callable or not) of the Procedure class which returns the value that is to be stored.
This also allows to retrieve nested attributes (e.g. in order to store a property or method of an instrument) by separating the attributes with a period: e.g. instrument_name.attribute_name (or even instrument_name.subclass_name.attribute_name); note that here only the final element (i.e. attribute_name in the example) is allowed to refer to a callable.
If neither an fget method is provided or a value manually set, the Metadata will return to its default value, if set.
The formatting of the value of the Metadata-object can be controlled using the fmt argument.

Modifying our script

Now that you have a background on how to use the different features of the Procedure class, and how they are run, we will revisit our IV characteristic measurement using Procedures. Below we present the modified version of our example script, now as a IVProcedure class.

Import necessary packages
from pymeasure.instruments.keithley import Keithley2400
from pymeasure.experiment import Procedure, Results, Worker
from pymeasure.experiment import IntegerParameter, FloatParameter
from time import sleep
import numpy as np

from pymeasure.log import log, console_log

class IVProcedure(Procedure):

 data_points = IntegerParameter('Data points', default=20)
 averages = IntegerParameter('Averages', default=8)
 max_current = FloatParameter('Maximum Current', units='A', default=0.001)
 min_current = FloatParameter('Minimum Current', units='A', default=-0.001)

 DATA_COLUMNS = ['Current (A)', 'Voltage (V)', 'Voltage Std (V)']

 def startup(self):
 log.info("Connecting and configuring the instrument")
 self.sourcemeter = Keithley2400("GPIB::24")
 self.sourcemeter.reset()
 self.sourcemeter.use_front_terminals()
 self.sourcemeter.apply_current(100e-3, 10.0) # current_range = 100e-3, compliance_voltage = 10.0
 self.sourcemeter.measure_voltage(0.01, 1.0) # nplc = 0.01, voltage_range = 1.0
 sleep(0.1) # wait here to give the instrument time to react
 self.sourcemeter.stop_buffer()
 self.sourcemeter.disable_buffer()

 def execute(self):
 currents = np.linspace(
 self.min_current,
 self.max_current,
 num=self.data_points
)
 self.sourcemeter.enable_source()
 # Loop through each current point, measure and record the voltage
 for current in currents:
 self.sourcemeter.config_buffer(IVProcedure.averages.value)
 log.info("Setting the current to %g A" % current)
 self.sourcemeter.source_current = current
 self.sourcemeter.start_buffer()
 log.info("Waiting for the buffer to fill with measurements")
 self.sourcemeter.wait_for_buffer()
 data = {
 'Current (A)': current,
 'Voltage (V)': self.sourcemeter.means[0],
 'Voltage Std (V)': self.sourcemeter.standard_devs[0]
 }
 self.emit('results', data)
 sleep(0.01)
 if self.should_stop():
 log.info("User aborted the procedure")
 break

 def shutdown(self):
 self.sourcemeter.shutdown()
 log.info("Finished measuring")

if __name__ == "__main__":
 console_log(log)

 log.info("Constructing an IVProcedure")
 procedure = IVProcedure()
 procedure.data_points = 20
 procedure.averages = 8
 procedure.max_current = -0.001
 procedure.min_current = 0.001

 data_filename = 'example.csv'
 log.info("Constructing the Results with a data file: %s" % data_filename)
 results = Results(procedure, data_filename)

 log.info("Constructing the Worker")
 worker = Worker(results)
 worker.start()
 log.info("Started the Worker")

 log.info("Joining with the worker in at most 1 hr")
 worker.join(timeout=3600) # wait at most 1 hr (3600 sec)
 log.info("Finished the measurement")

The parentheses in the COLUMN entries indicate the physical unit of the data in the corresponding column, e.g. 'Voltage Std (V)' indicates Volts. If you want to indicate a dimensionless value, e.g. Mach number, you can use (1) instead. Combined units like (m/s) or the long form (meter/second) are also possible. The class Results ensures, that the data is stored in the correct unit, here Volts. For example a pint.Quantity of 500 mV will be stored as 0.5 V. A string will be converted first to a Quantity and a mere number (e.g. float, int, …) is assumed to be already in the right unit (e.g 5 will be stored as 5 V).
If the data entry is not compatible, either because it has the wrong unit, e.g. meters which is not a unit of voltage, or because it is no number at all, a warning is logged and ‘nan’ will be stored in the file.
If you do not specify a unit (i.e. no parentheses), no unit check is performed for this column, unless the data entry is a Quantity for that column. In this case, this column’s unit is set to the base unit (e.g. meter if unit of the data entry is kilometers) of the data entry. From this point on, unit checks are enabled for this column. Also use columns without unit checks (i.e. without parentheses) for strings or booleans.

At this point, you are familiar with how to construct a Procedure sub-class. The next section shows how to put these procedures to work in a graphical environment, where will have live-plotting of the data and the ability to easily queue up a number of experiments in sequence. All of these features come from using the Procedure object.

Using a graphical interface

In the previous tutorial we measured the IV characteristic of a sample to show how we can set up a simple experiment in PyMeasure. The real power of PyMeasure comes when we also use the graphical tools that are included to turn our simple example into a full-fledged user interface.

Using the Plotter

While it lacks the nice features of the ManagedWindow, the Plotter object is the simplest way of getting live-plotting. The Plotter takes a Results object and plots the data at a regular interval, grabbing the latest data each time from the file.

Warning

The example in this section is known to raise issues when executed: a QApplication was not created in the main thread / nextEventMatchingMask should only be called from the Main Thread warning is raised.
While the example works without issues on some operating systems and python configurations, users are advised not to rely on the plotter while this issue is unresolved.
Users can hence skip this example and continue with the Using the ManagedWindow section.

Let’s extend our SimpleProcedure with a RandomProcedure, which generates random numbers during our loop. This example does not include instruments to provide a simpler example.

import logging
log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())

import random
from time import sleep
from pymeasure.log import console_log
from pymeasure.display import Plotter
from pymeasure.experiment import Procedure, Results, Worker
from pymeasure.experiment import IntegerParameter, FloatParameter, Parameter

class RandomProcedure(Procedure):

 iterations = IntegerParameter('Loop Iterations')
 delay = FloatParameter('Delay Time', units='s', default=0.2)
 seed = Parameter('Random Seed', default='12345')

 DATA_COLUMNS = ['Iteration', 'Random Number']

 def startup(self):
 log.info("Setting the seed of the random number generator")
 random.seed(self.seed)

 def execute(self):
 log.info("Starting the loop of %d iterations" % self.iterations)
 for i in range(self.iterations):
 data = {
 'Iteration': i,
 'Random Number': random.random()
 }
 self.emit('results', data)
 log.debug("Emitting results: %s" % data)
 self.emit('progress', 100 * i / self.iterations)
 sleep(self.delay)
 if self.should_stop():
 log.warning("Caught the stop flag in the procedure")
 break

if __name__ == "__main__":
 console_log(log)

 log.info("Constructing a RandomProcedure")
 procedure = RandomProcedure()
 procedure.iterations = 100

 data_filename = 'random.csv'
 log.info("Constructing the Results with a data file: %s" % data_filename)
 results = Results(procedure, data_filename)

 log.info("Constructing the Plotter")
 plotter = Plotter(results)
 plotter.start()
 log.info("Started the Plotter")

 log.info("Constructing the Worker")
 worker = Worker(results)
 worker.start()
 log.info("Started the Worker")

 log.info("Joining with the worker in at most 1 hr")
 worker.join(timeout=3600) # wait at most 1 hr (3600 sec)
 log.info("Finished the measurement")

The important addition is the construction of the Plotter from the Results object.

plotter = Plotter(results)
plotter.start()

The Plotter is started in a different process so that it can be run on a separate CPU for higher performance. The Plotter launches a Qt graphical interface using pyqtgraph which allows the Results data to be viewed based on the columns in the data.

[image: Results Plotter Example]

Using the ManagedWindow

The ManagedWindow is the most convenient tool for running measurements with your Procedure. This has the major advantage of accepting the input parameters graphically. From the parameters, a graphical form is automatically generated that allows the inputs to be typed in. With this feature, measurements can be started dynamically, instead of defined in a script.

Another major feature of the ManagedWindow is its support for running measurements in a sequential queue. This allows you to set up a number of measurements with different input parameters, and watch them unfold on the live-plot. This is especially useful for long running measurements. The ManagedWindow achieves this through the Manager object, which coordinates which Procedure the Worker should run and keeps track of its status as the Worker progresses.

Below we adapt our previous example to use a ManagedWindow.

import logging
log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())

import sys
import tempfile
import random
from time import sleep
from pymeasure.log import console_log
from pymeasure.display.Qt import QtWidgets
from pymeasure.display.windows import ManagedWindow
from pymeasure.experiment import Procedure, Results
from pymeasure.experiment import IntegerParameter, FloatParameter, Parameter

class RandomProcedure(Procedure):

 iterations = IntegerParameter('Loop Iterations', default=100)
 delay = FloatParameter('Delay Time', units='s', default=0.2)
 seed = Parameter('Random Seed', default='12345')

 DATA_COLUMNS = ['Iteration', 'Random Number']

 def startup(self):
 log.info("Setting the seed of the random number generator")
 random.seed(self.seed)

 def execute(self):
 log.info("Starting the loop of %d iterations" % self.iterations)
 for i in range(self.iterations):
 data = {
 'Iteration': i,
 'Random Number': random.random()
 }
 self.emit('results', data)
 log.debug("Emitting results: %s" % data)
 self.emit('progress', 100 * i / self.iterations)
 sleep(self.delay)
 if self.should_stop():
 log.warning("Caught the stop flag in the procedure")
 break

class MainWindow(ManagedWindow):

 def __init__(self):
 super().__init__(
 procedure_class=RandomProcedure,
 inputs=['iterations', 'delay', 'seed'],
 displays=['iterations', 'delay', 'seed'],
 x_axis='Iteration',
 y_axis='Random Number'
)
 self.setWindowTitle('GUI Example')

 def queue(self):
 filename = tempfile.mktemp()

 procedure = self.make_procedure()
 results = Results(procedure, filename)
 experiment = self.new_experiment(results)

 self.manager.queue(experiment)

if __name__ == "__main__":
 app = QtWidgets.QApplication(sys.argv)
 window = MainWindow()
 window.show()
 sys.exit(app.exec())

This results in the following graphical display.

[image: ManagedWindow Example]
In the code, the MainWindow class is a sub-class of the ManagedWindow class. We override the constructor to provide information about the procedure class and its options. The inputs are a list of Parameters class-variable names, which the display will generate graphical fields for. When the list of inputs is long, a boolean key-word argument inputs_in_scrollarea is provided that adds a scrollbar to the input area. The displays is a list similar to the inputs list, which instead defines the parameters to display in the browser window. This browser keeps track of the experiments being run in the sequential queue.

The queue method establishes how the Procedure object is constructed. We use the self.make_procedure method to create a Procedure based on the graphical input fields. Here we are free to modify the procedure before putting it on the queue. In this context, the Manager uses an Experiment object to keep track of the Procedure, Results, and its associated graphical representations in the browser and live-graph. This is then given to the Manager to queue the experiment.

[image: ManagedWindow Queue Example]
By default the Manager starts a measurement when its procedure is queued. The abort button can be pressed to stop an experiment. In the Procedure, the self.should_stop call will catch the abort event and halt the measurement. It is important to check this value, or the Procedure will not be responsive to the abort event.

[image: ManagedWindow Resume Example]
If you abort a measurement, the resume button must be pressed to continue the next measurement. This allows you to adjust anything, which is presumably why the abort was needed.

[image: ManagedWindow Running Example]
Now that you have learned about the ManagedWindow, you have all of the basics to get up and running quickly with a measurement and produce an easy to use graphical interface with PyMeasure.

Note

For performance reasons, the default linewidth of all the graphs has been set to 1.
If performance is not an issue, the linewidth can be changed to 2 (or any other value) for better visibility by using the linewidth keyword-argument in the Plotter or the ManagedWindow.
Whenever a linewidth of 2 is preferred and a better performance is required, it is possible to enable using OpenGL in the import section of the file:

import pyqtgraph as pg
pg.setConfigOption("useOpenGL", True)

Customising the plot options

For both the PlotterWindow and ManagedWindow, plotting is provided by the pyqtgraph [http://www.pyqtgraph.org/] library. This library allows you to change various plot options, as you might expect: axis ranges (by default auto-ranging), logarithmic and semilogarithmic axes, downsampling, grid display, FFT display, etc. There are two main ways you can do this:

	You can right click on the plot to manually change any available options. This is also a good way of getting an overview of what options are available in pyqtgraph. Option changes will, of course, not persist across a restart of your program.

	You can programmatically set these options using pyqtgraph’s PlotItem [http://www.pyqtgraph.org/documentation/graphicsItems/plotitem.html] API, so that the window will open with these display options already set, as further explained below.

For Plotter, you can make a sub-class that overrides the setup_plot() method. This method will be called when the Plotter constructs the window. As an example

class LogPlotter(Plotter):
 def setup_plot(self, plot):
 # use logarithmic x-axis (e.g. for frequency sweeps)
 plot.setLogMode(x=True)

For ManagedWindow, the mechanism to customize plots is much more flexible by using specialization via inheritance. Indeed ManagedWindowBase is the base class for ManagedWindow and ManagedImageWindow which are subclasses ready to use for GUI.

Using tabular format

In some experiments, data in tabular format may be useful in addition or in alternative to graphical plot.
ManagedWindowBase allows adding a TableWidget to show
experiments data, the widget supports also exporting data in some popular format like CSV, HTML, etc.
Below an example on how to customize ManagedWindowBase to use tabular format,
it derived from example above and changed lines are marked.

 import logging
 log = logging.getLogger(__name__)
 log.addHandler(logging.NullHandler())

 import sys
 import tempfile
 import random
 from time import sleep
 from pymeasure.log import console_log
 from pymeasure.display.Qt import QtWidgets
 from pymeasure.display.windows import ManagedWindowBase
 from pymeasure.display.widgets import TableWidget, LogWidget
 from pymeasure.experiment import Procedure, Results
 from pymeasure.experiment import IntegerParameter, FloatParameter, Parameter

 class RandomProcedure(Procedure):

 iterations = IntegerParameter('Loop Iterations', default=10)
 delay = FloatParameter('Delay Time', units='s', default=0.2)
 seed = Parameter('Random Seed', default='12345')

 DATA_COLUMNS = ['Iteration', 'Random Number']

 def startup(self):
 log.info("Setting the seed of the random number generator")
 random.seed(self.seed)

 def execute(self):
 log.info("Starting the loop of %d iterations" % self.iterations)
 for i in range(self.iterations):
 data = {
 'Iteration': i,
 'Random Number': random.random()
 }
 self.emit('results', data)
 log.debug("Emitting results: %s" % data)
 self.emit('progress', 100 * i / self.iterations)
 sleep(self.delay)
 if self.should_stop():
 log.warning("Caught the stop flag in the procedure")
 break

 class MainWindow(ManagedWindowBase):

 def __init__(self):
 widget_list = (TableWidget("Experiment Table",
 RandomProcedure.DATA_COLUMNS,
 by_column=True,
),
 LogWidget("Experiment Log"),
)
 super().__init__(
 procedure_class=RandomProcedure,
 inputs=['iterations', 'delay', 'seed'],
 displays=['iterations', 'delay', 'seed'],
 widget_list=widget_list,
)
 logging.getLogger().addHandler(widget_list[1].handler)
 log.setLevel(self.log_level)
 log.info("ManagedWindow connected to logging")
 self.setWindowTitle('GUI Example')

 def queue(self):
 filename = tempfile.mktemp()

 procedure = self.make_procedure()
 results = Results(procedure, filename)
 experiment = self.new_experiment(results)

 self.manager.queue(experiment)

 if __name__ == "__main__":
 app = QtWidgets.QApplication(sys.argv)
 window = MainWindow()
 window.show()
 sys.exit(app.exec())

This results in the following graphical display.

[image: TableWidget Example]

Defining your own ManagedWindow’s widgets

The parameter widget_list in ManagedWindowBase constructor allow to introduce user’s defined widget in the GUI results display area.
The user’s widget should inherit from TabWidget and could reimplement any of the methods that needs customization.
In order to get familiar with the mechanism, users can check the following widgets already provided:

	LogWidget

	PlotWidget

	ImageWidget

	DockWidget

	TableWidget

Using the sequencer

As an extension to the way of graphically inputting parameters and executing multiple measurements using the ManagedWindow, SequencerWidget is provided which allows users to queue a series of measurements with varying one, or more, of the parameters. This sequencer thereby provides a convenient way to scan through the parameter space of the measurement procedure.

To activate the sequencer, two additional keyword arguments are added to ManagedWindow, namely sequencer and sequencer_inputs. sequencer accepts a boolean stating whether or not the sequencer has to be included into the window and sequencer_inputs accepts either None or a list of the parameter names are to be scanned over. If no list of parameters is given, the parameters displayed in the manager queue are used.

In order to be able to use the sequencer, the ManagedWindow class is required to have a queue method which takes a keyword (or better keyword-only for safety reasons) argument procedure, where a procedure instance can be passed. The sequencer will use this method to queue the parameter scan.

In order to implement the sequencer into the previous example, only the ManagedWindow has to be modified slightly (where modified lines are marked):

 class MainWindow(ManagedWindow):

 def __init__(self):
 super().__init__(
 procedure_class=TestProcedure,
 inputs=['iterations', 'delay', 'seed'],
 displays=['iterations', 'delay', 'seed'],
 x_axis='Iteration',
 y_axis='Random Number',
 sequencer=True, # Added line
 sequencer_inputs=['iterations', 'delay', 'seed'], # Added line
 sequence_file="gui_sequencer_example_sequence.txt", # Added line, optional
)
 self.setWindowTitle('GUI Example')

 def queue(self, procedure=None): # Modified line
 filename = tempfile.mktemp()

 if procedure is None: # Added line
 procedure = self.make_procedure() # Indented

 results = Results(procedure, filename)
 experiment = self.new_experiment(results)

 self.manager.queue(experiment)

This adds the sequencer underneath the input panel.

[image: Example of the sequencer widget]
The widget contains a tree-view where you can build the sequence.
It has three columns: level (indicated how deep an item is nested), parameter (a drop-down menu to select which parameter is being sequenced by that item), and sequence (the text-box where you can define the sequence).
While the two former columns are rather straightforward, filling in the later requires some explanation.

In order to maintain flexibility, the sequence is defined in a text-box, allowing the user to enter any list-generating single-line piece of code.
To assist in this, a number of functions is supported, either from the main python library (namely range, sorted, and list) or the numpy library.
The supported numpy functions (prepending numpy. or any abbreviation is not required) are: arange, linspace, arccos, arcsin, arctan, arctan2, ceil, cos, cosh, degrees, e, exp, fabs, floor, fmod, frexp, hypot, ldexp, log, log10, modf, pi, power, radians, sin, sinh, sqrt, tan, and tanh.

As an example, arange(0, 10, 1) generates a list increasing with steps of 1, while using exp(arange(0, 10, 1)) generates an exponentially increasing list.
This way complex sequences can be entered easily.

The sequences can be extended and shortened using the buttons Add root item, Add item, and Remove item.
The latter two either add an item as a child of the currently selected item or remove the selected item, respectively.
To queue the entered sequence the button Queue sequence can be used.
If an error occurs in evaluating the sequence text-boxes, this is mentioned in the logger, and nothing is queued.

Finally, it is possible to create a sequence file such that the user does not need to write the sequence again each time. The sequence file can be created by saving current sequence built within the GUI using the Save sequence button or directly writing a simple text file.
Once created, the sequence can be loaded with the Load sequence button.

In the sequence file each line adds one item to the sequence tree, starting with a number of dashes (-) to indicate the level of the item (starting with 1 dash for top level), followed by the name of the parameter and the sequence string, both as a python string between parentheses.

An example of such a sequence file is given below, resulting in the sequence shown in the figure above.

- "Delay Time", "arange(0.25, 1, 0.25)"
-- "Random Seed", "[1, 4, 8]"
--- "Loop Iterations", "exp(linspace(1, 5, 3))"
-- "Random Seed", "arange(10, 100, 10)"

This file can also be automatically loaded at the start of the program by adding the key-word argument sequence_file="filename.txt" to the super().__init__ call, as was done in the example.

Using the directory input

It is possible to add a directory input in order to choose where the experiment’s result will be saved. This option is activated by passing a boolean key-word argument directory_input during the ManagedWindow init. The value of the directory can be retrieved and set using the property directory.
A default directory can be defined by setting the directory property in the MainWindow init.

Only the MainWindow needs to be modified in order to use this option (modified lines are marked).

 class MainWindow(ManagedWindow):

 def __init__(self):
 super().__init__(
 procedure_class=TestProcedure,
 inputs=['iterations', 'delay', 'seed'],
 displays=['iterations', 'delay', 'seed'],
 x_axis='Iteration',
 y_axis='Random Number',
 directory_input=True, # Added line, enables directory widget
)
 self.setWindowTitle('GUI Example')
 self.directory = r'C:/Path/to/default/directory' # Added line, sets default directory for GUI load

 def queue(self):
 directory = self.directory # Added line
 filename = unique_filename(directory) # Modified line

 results = Results(procedure, filename)
 experiment = self.new_experiment(results)

 self.manager.queue(experiment)

This adds the input line above the Queue and Abort buttons.

[image: Example of the directory input widget]
A completer is implemented allowing to quickly select an existing folder, and a button on the right side of the input widget opens a browse dialog.

Using the estimator widget

In order to provide estimates of the measurement procedure, an EstimatorWidget is provided that allows the user to define and calculate estimates.
The widget is automatically activated when the get_estimates method is added in the Procedure.

The quickest and most simple implementation of the get_estimates function simply returns the estimated duration of the measurement in seconds (as an int or a float).
As an example, in the example provided in the Using the ManagedWindow section, the Procedure is changed to:

class RandomProcedure(Procedure):

 # ...

 def get_estimates(self, sequence_length=None, sequence=None):

 return self.iterations * self.delay

This will add the estimator widget at the dock on the left.
The duration and finishing-time of a single measurement is always displayed in this case.
Depending on whether the SequencerWidget is also used, the length, duration and finishing-time of the full sequence is also shown.

For maximum flexibility (e.g. for showing multiple and other types of estimates, such as the duration, filesize, finishing-time, etc.) it is also possible that the get_estimates returns a list of tuples.
Each of these tuple consists of two strings: the first is the name (label) of the estimate, the second is the estimate itself.

As an example, in the example provided in the Using the ManagedWindow section, the Procedure is changed to:

class RandomProcedure(Procedure):

 # ...

 def get_estimates(self, sequence_length=None, sequence=None):

 duration = self.iterations * self.delay

 estimates = [
 ("Duration", "%d s" % int(duration)),
 ("Number of lines", "%d" % int(self.iterations)),
 ("Sequence length", str(sequence_length)),
 ('Measurement finished at', str(datetime.now() + timedelta(seconds=duration))),
]

 return estimates

This will add the estimator widget at the dock on the left.

[image: Example of the estimator widget]
Note that after the initialisation of the widget both the label of the estimate as of course the estimate itself can be modified, but the amount of estimates is fixed.

The keyword arguments are not required in the implementation of the function, but are passed if asked for (i.e. def get_estimates(self) does also works).
Keyword arguments that are accepted are sequence, which contains the full sequence of the sequencer (if present), and sequence_length, which gives the length of the sequence as integer (if present).
If the sequencer is not present or the sequence cannot be parsed, both sequence and sequence_length will contain None.

The estimates are automatically updated every 2 seconds.
Changing this update interval is possible using the “Update continuously”-checkbox, which can be toggled between three states: off (i.e. no updating), auto-update every two seconds (default) or auto-update every 100 milliseconds.
Manually updating the estimates (useful whenever continuous updating is turned off) is also possible using the “update”-button.

Flexible hiding of inputs

There can be situations when it may be relevant to turn on or off a number of inputs (e.g. when a part of the measurement script is skipped upon turning of a single BooleanParameter).
For these cases, it is possible to assign a Parameter to a controlling Parameter, which will hide or show the Input of the Parameter depending on the value of the Parameter.
This is done with the group_by key-word argument.

toggle = BooleanParameter("toggle", default=True)
param = FloatParameter('some parameter', group_by='toggle')

When both the toggle and param are visible in the InputsWidget (via inputs=['iterations', 'delay', 'seed'] as demonstrated above) one can control whether the input-field of param is visible by checking and unchecking the checkbox of toggle.
By default, the group will be visible if the value of the group_by Parameter is True (which is only relevant for a BooleanParameter), but it is possible to specify other value as conditions using the group_condition keyword argument.

iterations = IntegerParameter('Loop Iterations', default=100)
param = FloatParameter('some parameter', group_by='iterations', group_condition=99)

Here the input of param is only visible if iterations has a value of 99.
This works with any type of Parameter as group_by parameter.

To allow for even more flexibility, it is also possible to pass a (lambda)function as a condition:

iterations = IntegerParameter('Loop Iterations', default=100)
param = FloatParameter('some parameter', group_by='iterations', group_condition=lambda v: 50 < v < 100)

Now the input of param is only shown if the value of iterations is between 51 and 99.

Using the hide_groups keyword-argument of the ManagedWindow you can choose between hiding the groups (hide_groups = True) and disabling / graying-out the groups (hide_groups = False).

Finally, it is also possible to provide multiple parameters to the group_by argument, in which case the input will only be visible if all of the conditions are true.
Multiple parameters for grouping can either be passed as a dict of string: condition pairs, or as a list of strings, in which case the group_condition can be either a single condition or a list of conditions:

iterations = IntegerParameter('Loop Iterations', default=100)
toggle = BooleanParameter('A checkbox')
param_A = FloatParameter('some parameter', group_by=['iterations', 'toggle'], group_condition=[lambda v: 50 < v < 100, True])
param_B = FloatParameter('some parameter', group_by={'iterations': lambda v: 50 < v < 100, 'toggle': True})

Note that in this example, param_A and param_B are identically grouped: they’re only visible if iterations is between 51 and 99 and if the toggle checkbox is checked (i.e. True).

Using the ManagedDockWindow

Building off the Using the ManagedWindow section where we used a ManagedWindow, we can also use ManagedDockWindow to build a graphical interface with multiple graphs that can be docked in the main GUI window or popped out into their own window.

To start with, let’s make the following highlighted edits to the code example from Using the ManagedWindow:

	On line 10 we now import ManagedDockWindow

	On line 20, and lines 32 and 33, we add two new columns of data to be recorded 'Random Number 2' and 'Random Number 3'

	On line 44 we make MainWindow a subclass of ManagedDockWindow

	On line 51 we will pass in a list of strings from DATA_COLUMNS to the x_axis argument

	On line 52 we will pass in a list of strings from DATA_COLUMNS to the y_axis argument

import logging
log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())

import sys
import tempfile
import random
from time import sleep
from pymeasure.display.Qt import QtWidgets
from pymeasure.display.windows.managed_dock_window import ManagedDockWindow
from pymeasure.experiment import Procedure, Results
from pymeasure.experiment import IntegerParameter, FloatParameter, Parameter

class RandomProcedure(Procedure):

 iterations = IntegerParameter('Loop Iterations', default=10)
 delay = FloatParameter('Delay Time', units='s', default=0.2)
 seed = Parameter('Random Seed', default='12345')

 DATA_COLUMNS = ['Iteration', 'Random Number 1', 'Random Number 2', 'Random Number 3']

 def startup(self):
 log.info("Setting the seed of the random number generator")
 random.seed(self.seed)

 def execute(self):
 log.info("Starting the loop of %d iterations" % self.iterations)
 for i in range(self.iterations):
 data = {
 'Iteration': i,
 'Random Number 1': random.random(),
 'Random Number 2': random.random(),
 'Random Number 3': random.random()
 }
 self.emit('results', data)
 log.debug("Emitting results: %s" % data)
 self.emit('progress', 100 * i / self.iterations)
 sleep(self.delay)
 if self.should_stop():
 log.warning("Caught the stop flag in the procedure")
 break

class MainWindow(ManagedDockWindow):

 def __init__(self):
 super().__init__(
 procedure_class=RandomProcedure,
 inputs=['iterations', 'delay', 'seed'],
 displays=['iterations', 'delay', 'seed'],
 x_axis=['Iteration', 'Random Number 1'],
 y_axis=['Random Number 1','Random Number 2', 'Random Number 3']
)
 self.setWindowTitle('GUI Example')

 def queue(self):
 filename = tempfile.mktemp()

 procedure = self.make_procedure()
 results = Results(procedure, filename)
 experiment = self.new_experiment(results)

 self.manager.queue(experiment)

if __name__ == "__main__":
 app = QtWidgets.QApplication(sys.argv)
 window = MainWindow()
 window.show()
 sys.exit(app.exec())

Now we can see our ManagedDockWindow:

[image: Managed dock window]
As you can see from the above screenshot, our example code created three docks with following “X Axis” and “Y Axis” labels:

	X Axis: “Iteration” Y Axis: “Random Number 1”

	X Axis: “Random Number 1” Y Axis: “Random Number 2”

	X Axis: “Random Number 1” Y Axis: “Random Number 3”

The list of strings for x_axis and y_axis set the default labels for each dockable plot and the longest list determines how many dockable plots are created. To highlight this point, in our example we define x_axis and y_axis with the following lists:

x_axis=['Iteration', 'Random Number 1'],
y_axis=['Random Number 1','Random Number 2', 'Random Number 3']

If one list is longer than the last element if the other list is used as the default label for the rest of the dockable plots.
In our example that is why we have two X Axis labels with “Random Number 1”.
The longest list between x_axis and y_axis determines the number of plots.
In our example y_axis has the longest list with a length of three so three plots are created.

You can pop out a dockable plot from the main dock window to its own window by double clicking the blue “Dock #” title bar, which is to the left of each plot by default:

[image: Pop up a managed dock window]
You can return the popped out window to the main window by clicking the close icon X in the top right.

After positioning your dock windows, you can save the layout by right-clicking a dock widget and select “Save Dock Layout” from the context menu.
This will save the layout of all docks and the settings for each plot to a file. By default the file path is the current working directory of the python file
that started ManagedDockWindow, and the default file name is ‘procedure class + “_dock_layout.json”’. For our example, that would be “./RandomProcedure_dock_layout.json”

When you run the python file that invokes ManagedDockWindow again, it will look for and load the dock layout file if it exists.

[image: Save dock window layout]
You can drag a dockable plot to reposition it in reference to other plots in the main dock window in several ways. You can drag the blue “Dock #” title bar to the left or right side of another plot to reposition a plot to be side by side with another plot:

[image: Side drag managed dock window]
[image: Side position managed dock window]
You can also drag the blue “Dock #” title bar to the top or bottom side of another plot to reposition a plot to rearrange the vertical order of the plots:

[image: Top position managed dock window]
You can drag the blue “Dock #” title bar to the middle of another plot to reposition a plot to create a tabbed view of the two plots:

[image: Tab drag managed dock window]
[image: Tab position managed dock window]

Using the ManagedConsole

The ManagedConsole is the most convenient tool for running measurements with your Procedure using a command line interface. The ManagedConsole allows to run an experiment with the same set of parameters available in the ManagedWindow, but they are defined using a set of command line switches.

It is also possible to define a test that uses both ManagedConsole or ManagedWindow according to user selection in the command line.

Enabling console mode is easy and straightforward and the following example demonstrates how to do it.

The following example is a variant of the code example from Using the ManagedWindow where some parts have been highlighted:

	On line 8 we now import ManagedConsole

	On line 73, we add the support for console mode

import sys
import random
import tempfile
from time import sleep

from pymeasure.experiment import Procedure, IntegerParameter, Parameter, FloatParameter
from pymeasure.experiment import Results
from pymeasure.display.console import ManagedConsole
from pymeasure.display.Qt import QtWidgets
from pymeasure.display.windows import ManagedWindow
import logging

log = logging.getLogger('')
log.addHandler(logging.NullHandler())

class TestProcedure(Procedure):
 iterations = IntegerParameter('Loop Iterations', default=100)
 delay = FloatParameter('Delay Time', units='s', default=0.2)
 seed = Parameter('Random Seed', default='12345')

 DATA_COLUMNS = ['Iteration', 'Random Number']

 def startup(self):
 log.info("Setting up random number generator")
 random.seed(self.seed)

 def execute(self):
 log.info("Starting to generate numbers")
 for i in range(self.iterations):
 data = {
 'Iteration': i,
 'Random Number': random.random()
 }
 log.debug("Produced numbers: %s" % data)
 self.emit('results', data)
 self.emit('progress', 100 * (i + 1) / self.iterations)
 sleep(self.delay)
 if self.should_stop():
 log.warning("Catch stop command in procedure")
 break

 def shutdown(self):
 log.info("Finished")

class MainWindow(ManagedWindow):

 def __init__(self):
 super(MainWindow, self).__init__(
 procedure_class=TestProcedure,
 inputs=['iterations', 'delay', 'seed'],
 displays=['iterations', 'delay', 'seed'],
 x_axis='Iteration',
 y_axis='Random Number'
)
 self.setWindowTitle('GUI Example')

 def queue(self):
 filename = tempfile.mktemp()

 procedure = self.make_procedure()
 results = Results(procedure, filename)
 experiment = self.new_experiment(results)

 self.manager.queue(experiment)

if __name__ == "__main__":
 if len(sys.argv) > 1:
 # If any parameter is passed, the console mode is run
 # This criteria can be changed at user discretion
 app = ManagedConsole(procedure_class=TestProcedure)
 else:
 app = QtWidgets.QApplication(sys.argv)
 window = MainWindow()
 window.show()

 sys.exit(app.exec())

If we run the script above without any parameter, you will have the graphical user interface example.
If you run as follow, you will use the command line mode:

python console.py --iterations 10 --result-file console_test

Console output is as follow (to show the progress bar, you need to install the optional module progressbar2 [https://pypi.org/project/progressbar2/]):

[image: Console mode output]

Other useful commands

To show all the command line switches:

python console.py --help

To run an experiment with parameters retrieved from an existing result file.

python console.py --use-result-file console_test2023-08-09_1.csv

pymeasure.adapters

The adapter classes allow the instruments to be independent of the communication method used.
The instrument implementation takes care of any potential quirks in its communication protocol (see Advanced communication protocols), and the adapter takes care of the details of the over-the-wire communication with the hardware device.
In the vast majority of cases, it will be sufficient to pass a connection string or integer to the instrument (see Connecting to an instrument), which uses the pymeasure.adapters.VISAAdapter in the background.

Adapter base class

	
class pymeasure.adapters.Adapter(preprocess_reply=None, log=None, **kwargs)

	Base class for Adapter child classes, which adapt between the Instrument
object and the connection, to allow flexible use of different connection
techniques.

This class should only be inherited from.

	Parameters

	
	preprocess_reply – An optional callable used to preprocess
strings received from the instrument. The callable returns the
processed string.

Deprecated since version 0.11: Implement it in the instrument’s read method instead.

	log – Parent logger of the ‘Adapter’ logger.

	**kwargs – Keyword arguments just to be cooperative.

	
ask(command)

	Write the command to the instrument and returns the resulting
ASCII response.

Deprecated since version 0.11: Call Instrument.ask instead.

	Parameters

	command – SCPI command string to be sent to the instrument

	Returns

	String ASCII response of the instrument

	
binary_values(command, header_bytes=0, dtype=<class 'numpy.float32'>)

	Returns a numpy array from a query for binary data

Deprecated since version 0.11: Call Instrument.binary_values instead.

	Parameters

	
	command – SCPI command to be sent to the instrument

	header_bytes – Integer number of bytes to ignore in header

	dtype – The NumPy data type to format the values with

	Returns

	NumPy array of values

	
close()

	Close the connection.

	
flush_read_buffer()

	Flush and discard the input buffer. Implement in subclass.

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

Do not override in a subclass!

	Parameters

	**kwargs – Keyword arguments for the connection itself.

	Returns str

	ASCII response of the instrument (excluding read_termination).

	
read_binary_values(header_bytes=0, termination_bytes=None, dtype=<class 'numpy.float32'>, **kwargs)

	Returns a numpy array from a query for binary data

	Parameters

	
	header_bytes (int) – Number of bytes to ignore in header.

	termination_bytes (int) – Number of bytes to strip at end of message or None.

	dtype – The NumPy data type to format the values with.

	**kwargs – Further arguments for the NumPy fromstring method.

	Returns

	NumPy array of values

	
read_bytes(count=-1, break_on_termchar=False, **kwargs)

	Read a certain number of bytes from the instrument.

Do not override in a subclass!

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read from the whole read buffer.

	break_on_termchar (bool) – Stop reading at a termination character.

	**kwargs – Keyword arguments for the connection itself.

	Returns bytes

	Bytes response of the instrument (including termination).

	
values(command, separator=', ', cast=<class 'float'>, preprocess_reply=None)

	Write a command to the instrument and returns a list of formatted
values from the result.

Deprecated since version 0.11: Call Instrument.values instead.

	Parameters

	
	command – SCPI command to be sent to the instrument

	separator – A separator character to split the string into a list

	cast – A type to cast the result

	preprocess_reply – optional callable used to preprocess values
received from the instrument. The callable returns the processed string.
If not specified, the Adapter default is used if available, otherwise no
preprocessing is done.

	Returns

	A list of the desired type, or strings where the casting fails

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

Do not override in a subclass!

	Parameters

	
	command (str) – Command string to be sent to the instrument
(without termination).

	**kwargs – Keyword arguments for the connection itself.

	
write_binary_values(command, values, termination='', **kwargs)

	Write binary data to the instrument, e.g. waveform for signal generators

	Parameters

	
	command – command string to be sent to the instrument

	values – iterable representing the binary values

	termination – String added afterwards to terminate the message.

	**kwargs – Key-word arguments to pass onto Adapter._format_binary_values()

	Returns

	number of bytes written

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

Do not override in a subclass!

	Parameters

	
	content (bytes) – The bytes to write to the instrument.

	**kwargs – Keyword arguments for the connection itself.

VISA adapter

	
class pymeasure.adapters.VISAAdapter(resource_name, visa_library='', preprocess_reply=None, query_delay=0, log=None, **kwargs)

	Bases: Adapter

Adapter class for the VISA library, using PyVISA to communicate with instruments.

The workhorse of our library, used by most instruments.

	Parameters

	
	resource_name – A
VISA resource string [https://pyvisa.readthedocs.io/en/latest/introduction/names.html]
or GPIB address integer that identifies the target of the connection

	visa_library – PyVISA VisaLibrary Instance, path of the VISA library or VisaLibrary spec
string (@py or @ivi). If not given, the default for the platform will be used.

	preprocess_reply – An optional callable used to preprocess strings
received from the instrument. The callable returns the processed string.

Deprecated since version 0.11: Implement it in the instrument’s read method instead.

	query_delay (float) – Time in s to wait after writing and before reading.

Deprecated since version 0.11: Implement it in the instrument’s wait_for method instead.

	log – Parent logger of the ‘Adapter’ logger.

	**kwargs – Keyword arguments for configuring the PyVISA connection.

	Kwargs

	Keyword arguments are used to configure the connection created by PyVISA. This is
complicated by the fact that which arguments are valid depends on the interface (e.g.
serial, GPIB, TCPI/IP, USB) determined by the current resource_name.

A flexible process is used to easily define reasonable default values for
different instrument interfaces, but also enable the instrument user to override any
setting if their situation demands it.

A kwarg that names a pyVISA interface type (most commonly asrl, gpib, tcpip, or
usb) is a dictionary with keyword arguments defining defaults specific to that
interface. Example: asrl={'baud_rate': 4200}.

All other kwargs are either generally valid (e.g. timeout=500) or override any default
settings from the interface-specific entries above. For example, passing
baud_rate=115200 when connecting via a resource name ASRL1 would override a
default of 4200 defined as above.

See Modifying connection settings for how to tweak settings when connecting to an instrument.
See Defining default connection settings for how to best define default settings when
implementing an instrument.

	
ask(command)

	Writes the command to the instrument and returns the resulting
ASCII response

Deprecated since version 0.11: Call Instrument.ask instead.

	Parameters

	command – SCPI command string to be sent to the instrument

	Returns

	String ASCII response of the instrument

	
ask_values(command, **kwargs)

	Writes a command to the instrument and returns a list of formatted
values from the result. This leverages the query_ascii_values method
in PyVISA.

Deprecated since version 0.11: Call Instrument.values instead.

	Parameters

	
	command – SCPI command to be sent to the instrument

	**kwargs – Key-word arguments to pass onto query_ascii_values

	Returns

	Formatted response of the instrument.

	
binary_values(command, header_bytes=0, dtype=<class 'numpy.float32'>)

	Returns a numpy array from a query for binary data

Deprecated since version 0.11: Call Instrument.binary_values instead.

	Parameters

	
	command – SCPI command to be sent to the instrument

	header_bytes – Integer number of bytes to ignore in header

	dtype – The NumPy data type to format the values with

	Returns

	NumPy array of values

	
close()

	Close the connection.

Note

This closes the connection to the resource for all adapters using
it currently (e.g. different adapters using the same GPIB line).

	
flush_read_buffer()

	Flush and discard the input buffer

As detailed by pyvisa, discard the read and receivee buffer contents
and if data was present in the read buffer and no END-indicator was present,
read from the device until encountering an END indicator (which causes loss of data).

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

Do not override in a subclass!

	Parameters

	**kwargs – Keyword arguments for the connection itself.

	Returns str

	ASCII response of the instrument (excluding read_termination).

	
read_binary_values(header_bytes=0, termination_bytes=None, dtype=<class 'numpy.float32'>, **kwargs)

	Returns a numpy array from a query for binary data

	Parameters

	
	header_bytes (int) – Number of bytes to ignore in header.

	termination_bytes (int) – Number of bytes to strip at end of message or None.

	dtype – The NumPy data type to format the values with.

	**kwargs – Further arguments for the NumPy fromstring method.

	Returns

	NumPy array of values

	
read_bytes(count=-1, break_on_termchar=False, **kwargs)

	Read a certain number of bytes from the instrument.

Do not override in a subclass!

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read from the whole read buffer.

	break_on_termchar (bool) – Stop reading at a termination character.

	**kwargs – Keyword arguments for the connection itself.

	Returns bytes

	Bytes response of the instrument (including termination).

	
values(command, separator=', ', cast=<class 'float'>, preprocess_reply=None)

	Write a command to the instrument and returns a list of formatted
values from the result.

Deprecated since version 0.11: Call Instrument.values instead.

	Parameters

	
	command – SCPI command to be sent to the instrument

	separator – A separator character to split the string into a list

	cast – A type to cast the result

	preprocess_reply – optional callable used to preprocess values
received from the instrument. The callable returns the processed string.
If not specified, the Adapter default is used if available, otherwise no
preprocessing is done.

	Returns

	A list of the desired type, or strings where the casting fails

	
wait_for_srq(timeout=25, delay=0.1)

	Block until a SRQ, and leave the bit high

	Parameters

	
	timeout – Timeout duration in seconds

	delay – Time delay between checking SRQ in seconds

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

Do not override in a subclass!

	Parameters

	
	command (str) – Command string to be sent to the instrument
(without termination).

	**kwargs – Keyword arguments for the connection itself.

	
write_binary_values(command, values, termination='', **kwargs)

	Write binary data to the instrument, e.g. waveform for signal generators

	Parameters

	
	command – command string to be sent to the instrument

	values – iterable representing the binary values

	termination – String added afterwards to terminate the message.

	**kwargs – Key-word arguments to pass onto Adapter._format_binary_values()

	Returns

	number of bytes written

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

Do not override in a subclass!

	Parameters

	
	content (bytes) – The bytes to write to the instrument.

	**kwargs – Keyword arguments for the connection itself.

Serial adapter

	
class pymeasure.adapters.SerialAdapter(port, preprocess_reply=None, write_termination='', read_termination='', **kwargs)

	Bases: Adapter

Adapter class for using the Python Serial package to allow
serial communication to instrument

	Parameters

	
	port – Serial port

	preprocess_reply – An optional callable used to preprocess strings
received from the instrument. The callable returns the processed string.

Deprecated since version 0.11: Implement it in the instrument’s read method instead.

	write_termination – String appended to messages before writing them.

	read_termination – String expected at end of read message and removed.

	**kwargs – Any valid key-word argument for serial.Serial

	
_format_binary_values(values, datatype='f', is_big_endian=False, header_fmt='ieee')

	Format values in binary format, used internally in Adapter.write_binary_values().

	Parameters

	
	values – data to be written to the device.

	datatype – the format string for a single element. See struct module.

	is_big_endian – boolean indicating endianess.

	header_fmt – Format of the header prefixing the data (“ieee”, “hp”, “empty”).

	Returns

	binary string.

	Return type

	bytes

	
ask(command)

	Write the command to the instrument and returns the resulting
ASCII response.

Deprecated since version 0.11: Call Instrument.ask instead.

	Parameters

	command – SCPI command string to be sent to the instrument

	Returns

	String ASCII response of the instrument

	
binary_values(command, header_bytes=0, dtype=<class 'numpy.float32'>)

	Returns a numpy array from a query for binary data

Deprecated since version 0.11: Call Instrument.binary_values instead.

	Parameters

	
	command – SCPI command to be sent to the instrument

	header_bytes – Integer number of bytes to ignore in header

	dtype – The NumPy data type to format the values with

	Returns

	NumPy array of values

	
close()

	Close the connection.

	
flush_read_buffer()

	Flush and discard the input buffer.

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

Do not override in a subclass!

	Parameters

	**kwargs – Keyword arguments for the connection itself.

	Returns str

	ASCII response of the instrument (excluding read_termination).

	
read_binary_values(header_bytes=0, termination_bytes=None, dtype=<class 'numpy.float32'>, **kwargs)

	Returns a numpy array from a query for binary data

	Parameters

	
	header_bytes (int) – Number of bytes to ignore in header.

	termination_bytes (int) – Number of bytes to strip at end of message or None.

	dtype – The NumPy data type to format the values with.

	**kwargs – Further arguments for the NumPy fromstring method.

	Returns

	NumPy array of values

	
read_bytes(count=-1, break_on_termchar=False, **kwargs)

	Read a certain number of bytes from the instrument.

Do not override in a subclass!

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read from the whole read buffer.

	break_on_termchar (bool) – Stop reading at a termination character.

	**kwargs – Keyword arguments for the connection itself.

	Returns bytes

	Bytes response of the instrument (including termination).

	
values(command, separator=', ', cast=<class 'float'>, preprocess_reply=None)

	Write a command to the instrument and returns a list of formatted
values from the result.

Deprecated since version 0.11: Call Instrument.values instead.

	Parameters

	
	command – SCPI command to be sent to the instrument

	separator – A separator character to split the string into a list

	cast – A type to cast the result

	preprocess_reply – optional callable used to preprocess values
received from the instrument. The callable returns the processed string.
If not specified, the Adapter default is used if available, otherwise no
preprocessing is done.

	Returns

	A list of the desired type, or strings where the casting fails

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

Do not override in a subclass!

	Parameters

	
	command (str) – Command string to be sent to the instrument
(without termination).

	**kwargs – Keyword arguments for the connection itself.

	
write_binary_values(command, values, termination='', **kwargs)

	Write binary data to the instrument, e.g. waveform for signal generators

	Parameters

	
	command – command string to be sent to the instrument

	values – iterable representing the binary values

	termination – String added afterwards to terminate the message.

	**kwargs – Key-word arguments to pass onto Adapter._format_binary_values()

	Returns

	number of bytes written

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

Do not override in a subclass!

	Parameters

	
	content (bytes) – The bytes to write to the instrument.

	**kwargs – Keyword arguments for the connection itself.

Prologix adapter

	
class pymeasure.adapters.PrologixAdapter(resource_name, address=None, rw_delay=0, serial_timeout=None, preprocess_reply=None, auto=False, eoi=True, eos='\n', gpib_read_timeout=None, **kwargs)

	Bases: VISAAdapter

Encapsulates the additional commands necessary
to communicate over a Prologix GPIB-USB Adapter,
using the VISAAdapter.

Each PrologixAdapter is constructed based on a connection to the Prologix device
itself and the GPIB address of the instrument to be communicated to.
Connection sharing is achieved by using the gpib()
method to spawn new PrologixAdapters for different GPIB addresses.

	Parameters

	
	resource_name – A
VISA resource string [https://pyvisa.readthedocs.io/en/latest/introduction/names.html]
that identifies the connection to the Prologix device itself, for example
“ASRL5” for the 5th COM port.

	address – Integer GPIB address of the desired instrument.

	rw_delay – An optional delay to set between a write and read call for
slow to respond instruments.

Deprecated since version 0.11: Implement it in the instrument’s wait_for method instead.

	preprocess_reply – optional callable used to preprocess
strings received from the instrument. The callable returns the
processed string.

Deprecated since version 0.11: Implement it in the instrument’s read method instead.

	auto – Enable or disable read-after-write and address instrument to listen.

	eoi – Enable or disable EOI assertion.

	eos – Set command termination string (CR+LF, CR, LF, or “”)

	gpib_read_timeout – Set read timeout for GPIB communication in milliseconds from 1..3000

	kwargs – Key-word arguments if constructing a new serial object

	Variables

	address – Integer GPIB address of the desired instrument.

Usage example:

adapter = PrologixAdapter("ASRL5::INSTR", 7)
sourcemeter = Keithley2400(adapter) # at GPIB address 7
generate another instance with a different GPIB address:
adapter2 = adapter.gpib(9)
multimeter = Keithley2000(adapter2) # at GPIB address 9

To allow user access to the Prologix adapter in Linux, create the file:
/etc/udev/rules.d/51-prologix.rules, with contents:

SUBSYSTEMS=="usb",ATTRS{idVendor}=="0403",ATTRS{idProduct}=="6001",MODE="0666"

Then reload the udev rules with:

sudo udevadm control --reload-rules
sudo udevadm trigger

	
_format_binary_values(values, datatype='f', is_big_endian=False, header_fmt='ieee')

	Format values in binary format, used internally in write_binary_values().

	Parameters

	
	values – data to be writen to the device.

	datatype – the format string for a single element. See struct module.

	is_big_endian – boolean indicating endianess.

	header_fmt – Format of the header prefixing the data (“ieee”, “hp”, “empty”).

	Returns

	binary string.

	Return type

	bytes

	
ask(command)

	Ask the Prologix controller.

Deprecated since version 0.11: Call Instrument.ask instead.

	Parameters

	command – SCPI command string to be sent to instrument

	
ask_values(command, **kwargs)

	Writes a command to the instrument and returns a list of formatted
values from the result. This leverages the query_ascii_values method
in PyVISA.

Deprecated since version 0.11: Call Instrument.values instead.

	Parameters

	
	command – SCPI command to be sent to the instrument

	**kwargs – Key-word arguments to pass onto query_ascii_values

	Returns

	Formatted response of the instrument.

	
property auto

	Control whether to address instruments to talk after sending them a command (bool).

Configure Prologix GPIB controller to automatically address instruments
to talk after sending them a command in order to read their response. The
feature called, Read-After-Write, saves the user from having to issue read commands
repeatedly. This property enables (True) or disables (False) this feature.

	
binary_values(command, header_bytes=0, dtype=<class 'numpy.float32'>)

	Returns a numpy array from a query for binary data

Deprecated since version 0.11: Call Instrument.binary_values instead.

	Parameters

	
	command – SCPI command to be sent to the instrument

	header_bytes – Integer number of bytes to ignore in header

	dtype – The NumPy data type to format the values with

	Returns

	NumPy array of values

	
close()

	Close the connection.

Note

This closes the connection to the resource for all adapters using
it currently (e.g. different adapters using the same GPIB line).

	
property eoi

	Control whether to assert the EOI signal with the last character
of any command sent over GPIB port (bool).

Some instruments require EOI signal to be
asserted in order to properly detect the end of a command.

	
property eos

	Control GPIB termination characters (str).

	possible values:
	
	CR+LF

	CR

	LF

	empty string

When data from host is received, all non-escaped LF, CR and ESC characters are
removed and GPIB terminators, as specified by this command, are appended before
sending the data to instruments. This command does not affect data from
instruments received over GPIB port.

	
flush_read_buffer()

	Flush and discard the input buffer

As detailed by pyvisa, discard the read and receivee buffer contents
and if data was present in the read buffer and no END-indicator was present,
read from the device until encountering an END indicator (which causes loss of data).

	
gpib(address, **kwargs)

	Return a PrologixAdapter object that references the GPIB
address specified, while sharing the Serial connection with other
calls of this function

	Parameters

	
	address – Integer GPIB address of the desired instrument

	kwargs – Arguments for the initialization

	Returns

	PrologixAdapter for specific GPIB address

	
property gpib_read_timeout

	Control the timeout value for the GPIB communication in milliseconds

possible values: 1 - 3000

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

Do not override in a subclass!

	Parameters

	**kwargs – Keyword arguments for the connection itself.

	Returns str

	ASCII response of the instrument (excluding read_termination).

	
read_binary_values(header_bytes=0, termination_bytes=None, dtype=<class 'numpy.float32'>, **kwargs)

	Returns a numpy array from a query for binary data

	Parameters

	
	header_bytes (int) – Number of bytes to ignore in header.

	termination_bytes (int) – Number of bytes to strip at end of message or None.

	dtype – The NumPy data type to format the values with.

	**kwargs – Further arguments for the NumPy fromstring method.

	Returns

	NumPy array of values

	
read_bytes(count=-1, break_on_termchar=False, **kwargs)

	Read a certain number of bytes from the instrument.

Do not override in a subclass!

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read from the whole read buffer.

	break_on_termchar (bool) – Stop reading at a termination character.

	**kwargs – Keyword arguments for the connection itself.

	Returns bytes

	Bytes response of the instrument (including termination).

	
reset()

	Perform a power-on reset of the controller.

The process takes about 5 seconds. All input received during this time
is ignored and the connection is closed.

	
values(command, separator=', ', cast=<class 'float'>, preprocess_reply=None)

	Write a command to the instrument and returns a list of formatted
values from the result.

Deprecated since version 0.11: Call Instrument.values instead.

	Parameters

	
	command – SCPI command to be sent to the instrument

	separator – A separator character to split the string into a list

	cast – A type to cast the result

	preprocess_reply – optional callable used to preprocess values
received from the instrument. The callable returns the processed string.
If not specified, the Adapter default is used if available, otherwise no
preprocessing is done.

	Returns

	A list of the desired type, or strings where the casting fails

	
property version

	Get the version string of the Prologix controller.

	
wait_for_srq(timeout=25, delay=0.1)

	Blocks until a SRQ, and leaves the bit high

	Parameters

	
	timeout – Timeout duration in seconds.

	delay – Time delay between checking SRQ in seconds.

	Raises

	TimeoutError – “Waiting for SRQ timed out.”

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

If the GPIB address in address is defined, it is sent first.

	Parameters

	
	command (str) – Command string to be sent to the instrument
(without termination).

	kwargs – Keyword arguments for the connection itself.

	
write_binary_values(command, values, **kwargs)

	Write binary data to the instrument, e.g. waveform for signal generators.

values are encoded in a binary format according to
IEEE 488.2 Definite Length Arbitrary Block Response Data block.

	Parameters

	
	command – SCPI command to be sent to the instrument

	values – iterable representing the binary values

	kwargs – Key-word arguments to pass onto _format_binary_values()

	Returns

	number of bytes written

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

Do not override in a subclass!

	Parameters

	
	content (bytes) – The bytes to write to the instrument.

	**kwargs – Keyword arguments for the connection itself.

VXI-11 adapter

	
class pymeasure.adapters.VXI11Adapter(host, preprocess_reply=None, **kwargs)

	Bases: Adapter

	VXI11 Adapter class. Provides a adapter object that
	wraps around the read, write and ask functionality
of the vxi11 library.

Deprecated since version 0.11: Use VISAAdapter instead.

	Parameters

	
	host – string containing the visa connection information.

	preprocess_reply – (deprecated) optional callable used to preprocess strings
received from the instrument. The callable returns the processed string.

	
ask(command)

	Wrapper function for the ask command using the
vx11 interface.

Deprecated since version 0.11: Call Instrument.ask instead.

	Parameters

	command – string with the command that will be transmitted
to the instrument.

:returns string containing a response from the device.

	
ask_raw(command)

	Wrapper function for the ask_raw command using the
vx11 interface.

Deprecated since version 0.11: Use Instrument.write_bytes and Instrument.read_bytes instead.

	Parameters

	command – binary string with the command that will be
transmitted to the instrument

:returns binary string containing the response from the device.

	
binary_values(command, header_bytes=0, dtype=<class 'numpy.float32'>)

	Returns a numpy array from a query for binary data

Deprecated since version 0.11: Call Instrument.binary_values instead.

	Parameters

	
	command – SCPI command to be sent to the instrument

	header_bytes – Integer number of bytes to ignore in header

	dtype – The NumPy data type to format the values with

	Returns

	NumPy array of values

	
close()

	Close the connection.

	
flush_read_buffer()

	Flush and discard the input buffer. Implement in subclass.

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

Do not override in a subclass!

	Parameters

	**kwargs – Keyword arguments for the connection itself.

	Returns str

	ASCII response of the instrument (excluding read_termination).

	
read_binary_values(header_bytes=0, termination_bytes=None, dtype=<class 'numpy.float32'>, **kwargs)

	Returns a numpy array from a query for binary data

	Parameters

	
	header_bytes (int) – Number of bytes to ignore in header.

	termination_bytes (int) – Number of bytes to strip at end of message or None.

	dtype – The NumPy data type to format the values with.

	**kwargs – Further arguments for the NumPy fromstring method.

	Returns

	NumPy array of values

	
read_bytes(count=-1, break_on_termchar=False, **kwargs)

	Read a certain number of bytes from the instrument.

Do not override in a subclass!

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read from the whole read buffer.

	break_on_termchar (bool) – Stop reading at a termination character.

	**kwargs – Keyword arguments for the connection itself.

	Returns bytes

	Bytes response of the instrument (including termination).

	
read_raw()

	Read bytes from the device.

Deprecated since version 0.11: Use read_bytes instead.

	
values(command, separator=', ', cast=<class 'float'>, preprocess_reply=None)

	Write a command to the instrument and returns a list of formatted
values from the result.

Deprecated since version 0.11: Call Instrument.values instead.

	Parameters

	
	command – SCPI command to be sent to the instrument

	separator – A separator character to split the string into a list

	cast – A type to cast the result

	preprocess_reply – optional callable used to preprocess values
received from the instrument. The callable returns the processed string.
If not specified, the Adapter default is used if available, otherwise no
preprocessing is done.

	Returns

	A list of the desired type, or strings where the casting fails

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

Do not override in a subclass!

	Parameters

	
	command (str) – Command string to be sent to the instrument
(without termination).

	**kwargs – Keyword arguments for the connection itself.

	
write_binary_values(command, values, termination='', **kwargs)

	Write binary data to the instrument, e.g. waveform for signal generators

	Parameters

	
	command – command string to be sent to the instrument

	values – iterable representing the binary values

	termination – String added afterwards to terminate the message.

	**kwargs – Key-word arguments to pass onto Adapter._format_binary_values()

	Returns

	number of bytes written

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

Do not override in a subclass!

	Parameters

	
	content (bytes) – The bytes to write to the instrument.

	**kwargs – Keyword arguments for the connection itself.

	
write_raw(command)

	Write bytes to the device.

Deprecated since version 0.11: Use write_bytes instead.

Telnet adapter

	
class pymeasure.adapters.TelnetAdapter(host, port=0, query_delay=0, preprocess_reply=None, **kwargs)

	Bases: Adapter

Adapter class for using the Python telnetlib package to allow
communication to instruments

Deprecated since version 0.11.2: The Python telnetlib module is deprecated since Python 3.11 and will be removed
in Python 3.13 release.
As a result, TelnetAdapter is deprecated, use VISAAdapter instead.
The VISAAdapter supports TCPIP socket connections. When using the VISAAdapter,
the resource_name argument should be TCPIP[board]::<host>::<port>::SOCKET.
see here, <https://pyvisa.readthedocs.io/en/latest/introduction/names.html>

	Parameters

	
	host – host address of the instrument

	port – TCPIP port

	query_delay – delay in seconds between write and read in the ask
method

	preprocess_reply – An optional callable used to preprocess
strings received from the instrument. The callable returns the
processed string.

Deprecated since version 0.11: Implement it in the instrument’s read method instead.

	kwargs – Valid keyword arguments for telnetlib.Telnet, currently
this is only ‘timeout’

	
ask(command)

	Writes a command to the instrument and returns the resulting ASCII
response

Deprecated since version 0.11: Call Instrument.ask instead.

	Parameters

	command – command string to be sent to the instrument

	Returns

	String ASCII response of the instrument

	
binary_values(command, header_bytes=0, dtype=<class 'numpy.float32'>)

	Returns a numpy array from a query for binary data

Deprecated since version 0.11: Call Instrument.binary_values instead.

	Parameters

	
	command – SCPI command to be sent to the instrument

	header_bytes – Integer number of bytes to ignore in header

	dtype – The NumPy data type to format the values with

	Returns

	NumPy array of values

	
close()

	Close the connection.

	
flush_read_buffer()

	Flush and discard the input buffer. Implement in subclass.

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

Do not override in a subclass!

	Parameters

	**kwargs – Keyword arguments for the connection itself.

	Returns str

	ASCII response of the instrument (excluding read_termination).

	
read_binary_values(header_bytes=0, termination_bytes=None, dtype=<class 'numpy.float32'>, **kwargs)

	Returns a numpy array from a query for binary data

	Parameters

	
	header_bytes (int) – Number of bytes to ignore in header.

	termination_bytes (int) – Number of bytes to strip at end of message or None.

	dtype – The NumPy data type to format the values with.

	**kwargs – Further arguments for the NumPy fromstring method.

	Returns

	NumPy array of values

	
read_bytes(count=-1, break_on_termchar=False, **kwargs)

	Read a certain number of bytes from the instrument.

Do not override in a subclass!

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read from the whole read buffer.

	break_on_termchar (bool) – Stop reading at a termination character.

	**kwargs – Keyword arguments for the connection itself.

	Returns bytes

	Bytes response of the instrument (including termination).

	
values(command, separator=', ', cast=<class 'float'>, preprocess_reply=None)

	Write a command to the instrument and returns a list of formatted
values from the result.

Deprecated since version 0.11: Call Instrument.values instead.

	Parameters

	
	command – SCPI command to be sent to the instrument

	separator – A separator character to split the string into a list

	cast – A type to cast the result

	preprocess_reply – optional callable used to preprocess values
received from the instrument. The callable returns the processed string.
If not specified, the Adapter default is used if available, otherwise no
preprocessing is done.

	Returns

	A list of the desired type, or strings where the casting fails

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

Do not override in a subclass!

	Parameters

	
	command (str) – Command string to be sent to the instrument
(without termination).

	**kwargs – Keyword arguments for the connection itself.

	
write_binary_values(command, values, termination='', **kwargs)

	Write binary data to the instrument, e.g. waveform for signal generators

	Parameters

	
	command – command string to be sent to the instrument

	values – iterable representing the binary values

	termination – String added afterwards to terminate the message.

	**kwargs – Key-word arguments to pass onto Adapter._format_binary_values()

	Returns

	number of bytes written

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

Do not override in a subclass!

	Parameters

	
	content (bytes) – The bytes to write to the instrument.

	**kwargs – Keyword arguments for the connection itself.

Test adapters

These pieces are useful when writing tests.

	
pymeasure.test.expected_protocol(instrument_cls, comm_pairs, connection_attributes={}, connection_methods={}, **kwargs)

	Context manager that checks sent/received instrument commands without a
device connected.

Given an instrument class and a list of command-response pairs, this
context manager confirms that the code in the context manager block
produces the expected messages.

Terminators are excluded from the protocol definition, as those are
typically a detail of the communication method (i.e. Adapter), and not the
protocol itself.

	Parameters

	
	instrument_cls (pymeasure.Instrument) – Instrument subclass to instantiate.

	comm_pairs (list[2-tuples[str]]) – List of command-response pairs, i.e. 2-tuples like (‘VOLT?’, ‘3.14’).
‘None’ indicates that a pair member (command or response) does not
exist, e.g. (None, ‘RESP1’). Commands and responses are without
termination characters.

	connection_attributes – Dictionary of connection attributes and their values.

	connection_methods – Dictionary of method names of the connection and their return values.

	**kwargs – Keyword arguments for the instantiation of the instrument.

	
class pymeasure.adapters.ProtocolAdapter(comm_pairs=None, preprocess_reply=None, connection_attributes=None, connection_methods=None, **kwargs)

	Bases: Adapter

Adapter class for testing the command exchange protocol without instrument hardware.

This adapter is primarily meant for use within pymeasure.test.expected_protocol().

The connection attribute is a unittest.mock.MagicMock such
that every call returns. If you want to set a return value, you can use
adapter.connection.some_method.return_value = 7,
such that a call to adapter.connection.some_method() will return 7.
Similarly, you can verify that this call to the connection method happened
with assert adapter.connection.some_method.called is True.
You can specify dictionaries with return values of attributes and methods.

	Parameters

	
	comm_pairs (list) – List of “reference” message pair tuples. The first element is
what is sent to the instrument, the second one is the returned message.
‘None’ indicates that a pair member (write or read) does not exist.
The messages do not include the termination characters.

	connection_attributes – Dictionary of connection attributes and their values.

	connection_methods – Dictionary of method names of the connection and their return values.

	
flush_read_buffer()

	Flush and discard the input buffer

As detailed by pyvisa, discard the read buffer contents and if data was present
in the read buffer and no END-indicator was present, read from the device until
encountering an END indicator (which causes loss of data).

	
class pymeasure.adapters.FakeAdapter(preprocess_reply=None, log=None, **kwargs)

	Bases: Adapter

Provides a fake adapter for debugging purposes,
which bounces back the command so that arbitrary values
testing is possible.

a = FakeAdapter()
assert a.read() == ""
a.write("5")
assert a.read() == "5"
assert a.read() == ""
assert a.ask("10") == "10"
assert a.values("10") == [10]

	
ask(command)

	Write the command to the instrument and returns the resulting
ASCII response.

Deprecated since version 0.11: Call Instrument.ask instead.

	Parameters

	command – SCPI command string to be sent to the instrument

	Returns

	String ASCII response of the instrument

	
binary_values(command, header_bytes=0, dtype=<class 'numpy.float32'>)

	Returns a numpy array from a query for binary data

Deprecated since version 0.11: Call Instrument.binary_values instead.

	Parameters

	
	command – SCPI command to be sent to the instrument

	header_bytes – Integer number of bytes to ignore in header

	dtype – The NumPy data type to format the values with

	Returns

	NumPy array of values

	
close()

	Close the connection.

	
flush_read_buffer()

	Flush and discard the input buffer. Implement in subclass.

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

Do not override in a subclass!

	Parameters

	**kwargs – Keyword arguments for the connection itself.

	Returns str

	ASCII response of the instrument (excluding read_termination).

	
read_binary_values(header_bytes=0, termination_bytes=None, dtype=<class 'numpy.float32'>, **kwargs)

	Returns a numpy array from a query for binary data

	Parameters

	
	header_bytes (int) – Number of bytes to ignore in header.

	termination_bytes (int) – Number of bytes to strip at end of message or None.

	dtype – The NumPy data type to format the values with.

	**kwargs – Further arguments for the NumPy fromstring method.

	Returns

	NumPy array of values

	
read_bytes(count=-1, break_on_termchar=False, **kwargs)

	Read a certain number of bytes from the instrument.

Do not override in a subclass!

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read from the whole read buffer.

	break_on_termchar (bool) – Stop reading at a termination character.

	**kwargs – Keyword arguments for the connection itself.

	Returns bytes

	Bytes response of the instrument (including termination).

	
values(command, separator=', ', cast=<class 'float'>, preprocess_reply=None)

	Write a command to the instrument and returns a list of formatted
values from the result.

Deprecated since version 0.11: Call Instrument.values instead.

	Parameters

	
	command – SCPI command to be sent to the instrument

	separator – A separator character to split the string into a list

	cast – A type to cast the result

	preprocess_reply – optional callable used to preprocess values
received from the instrument. The callable returns the processed string.
If not specified, the Adapter default is used if available, otherwise no
preprocessing is done.

	Returns

	A list of the desired type, or strings where the casting fails

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

Do not override in a subclass!

	Parameters

	
	command (str) – Command string to be sent to the instrument
(without termination).

	**kwargs – Keyword arguments for the connection itself.

	
write_binary_values(command, values, termination='', **kwargs)

	Write binary data to the instrument, e.g. waveform for signal generators

	Parameters

	
	command – command string to be sent to the instrument

	values – iterable representing the binary values

	termination – String added afterwards to terminate the message.

	**kwargs – Key-word arguments to pass onto Adapter._format_binary_values()

	Returns

	number of bytes written

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

Do not override in a subclass!

	Parameters

	
	content (bytes) – The bytes to write to the instrument.

	**kwargs – Keyword arguments for the connection itself.

	
class pymeasure.generator.Generator

	Generates tests from the communication with an instrument.

Example usage:

g = Generator()
inst = g.instantiate(TC038, "COM5", 'hcp', adapter_kwargs={'baud_rate': 9600})
inst.information # returns the 'information' property and adds it to the tests
inst.setpoint = 20
inst.setpoint == 20 # should be True
g.write_file("test_tc038.py") # write the tests to a file

	
instantiate(instrument_class, adapter, manufacturer, adapter_kwargs=None, **kwargs)

	Instantiate the instrument and store the instantiation communication.

..note:

You have to give all keyword arguments necessary for adapter instantiation in
`adapter_kwargs`, even those, which are defined somewhere in the instrument's
``__init__`` method, be it as a default value, be it directly in the
``Instrument.__init__()`` call.

	Parameters

	
	instrument_class – Class of the instrument to test.

	adapter – Adapter (instance or str) for the instrument instantiation.

	manufacturer – Module from which to import the instrument, e.g. ‘hcp’ if
instrument_class is ‘pymeasure.hcp.tc038’.

	adapter_kwargs – Keyword arguments for the adapter instantiation (see note above).

	**kwargs – Keyword arguments for the instrument instantiation.

	Returns

	A man-in-the-middle instrument, which can be used like a normal instrument.

	
parse_stream()

	Parse the stream not yet read.

	
test_method(method_name, *args, **kwargs)

	Test calling the method_name of the instruments with args and kwargs.

	
test_property_getter(property)

	Test getting the property of the instrument, adding it to the list.

	
test_property_setter(property, value)

	Test setting the property of the instrument to value, adding it to the list.

	
test_property_setter_batch(property, values)

	Test setting property to each element in values.

	
write_file(filename='tests.py')

	Write the tests into the file.

	Parameters

	filename – Name to save the tests to, may contain the path, e.g. “/tests/test_abc.py”.

	
write_getter_test(file, property, parameters)

	Write a getter test.

	
write_init_test(file)

	Write the header and init test.

	
write_method_test(file, method, parameters)

	Write a test for a method.

	
write_method_tests(file)

	Write all parametrized method tests in alphabetic order.

	
write_property_tests(file)

	Write tests for properties in alphabetic order.

If getter and setter exist, the setter is the first test.

	
write_setter_test(file, property, parameters)

	Write a setter test.

pymeasure.experiment

This section contains specific documentation on the classes and methods of the package.

	Experiment class
	Experiment

	create_filename()

	get_array()

	get_array_steps()

	get_array_zero()

	Listener class
	Listener

	Monitor

	Recorder

	Procedure class
	Procedure

	UnknownProcedure

	Parameter classes
	BooleanParameter

	FloatParameter

	IntegerParameter

	ListParameter

	Measurable

	Metadata

	Parameter

	PhysicalParameter

	VectorParameter

	Worker class
	Worker

	Results class
	CSVFormatter

	Results

	replace_placeholders()

	unique_filename()

Experiment class

The Experiment class is intended for use in the Jupyter notebook environment.

	
class pymeasure.experiment.experiment.Experiment(title, procedure, analyse=<function Experiment.<lambda>>)

	Bases: object

Class which starts logging and creates/runs the results and worker processes.

procedure = Procedure()
experiment = Experiment(title, procedure)
experiment.start()
experiment.plot_live('x', 'y', style='.-')

for a multi-subplot graph:

import pylab as pl
ax1 = pl.subplot(121)
experiment.plot('x','y',ax=ax1)
ax2 = pl.subplot(122)
experiment.plot('x','z',ax=ax2)
experiment.plot_live()

	Variables

	value – The value of the parameter

	Parameters

	
	title – The experiment title

	procedure – The procedure object

	analyse – Post-analysis function, which takes a pandas dataframe as input and
returns it with added (analysed) columns. The analysed results are accessible via
experiment.data, as opposed to experiment.results.data for the ‘raw’ data.

	_data_timeout – Time limit for how long live plotting should wait for datapoints.

	
clear_plot()

	Clear the figures and plot lists.

	
property data

	Data property which returns analysed data, if an analyse function
is defined, otherwise returns the raw data.

	
plot(*args, **kwargs)

	Plot the results from the experiment.data pandas dataframe. Store the
plots in a plots list attribute.

	
plot_live(*args, **kwargs)

	Live plotting loop for jupyter notebook, which automatically updates
(an) in-line matplotlib graph(s). Will create a new plot as specified by input
arguments, or will update (an) existing plot(s).

	
start()

	Start the worker

	
update_line(ax, hl, xname, yname)

	Update a line in a matplotlib graph with new data.

	
update_plot()

	Update the plots in the plots list with new data from the experiment.data
pandas dataframe.

	
wait_for_data()

	Wait for the data attribute to fill with datapoints.

	
pymeasure.experiment.experiment.create_filename(title)

	Create a new filename according to the style defined in the config file.
If no config is specified, create a temporary file.

	
pymeasure.experiment.experiment.get_array(start, stop, step)

	Returns a numpy array from start to stop

	
pymeasure.experiment.experiment.get_array_steps(start, stop, numsteps)

	Returns a numpy array from start to stop in numsteps

	
pymeasure.experiment.experiment.get_array_zero(maxval, step)

	Returns a numpy array from 0 to maxval to -maxval to 0

Listener class

	
class pymeasure.experiment.listeners.Listener(port, topic='', timeout=0.01)

	Bases: StoppableThread

Base class for Threads that need to listen for messages on
a ZMQ TCP port and can be stopped by a thread-safe method call

	
message_waiting()

	Check if we have a message, wait at most until timeout.

	
receive(flags=0)

	

	
class pymeasure.experiment.listeners.Monitor(results, queue)

	Bases: QueueListener

	
class pymeasure.experiment.listeners.Recorder(results, queue, **kwargs)

	Bases: QueueListener

Recorder loads the initial Results for a filepath and
appends data by listening for it over a queue. The queue
ensures that no data is lost between the Recorder and Worker.

	
stop()

	Stop the listener.

This asks the thread to terminate, and then waits for it to do so.
Note that if you don’t call this before your application exits, there
may be some records still left on the queue, which won’t be processed.

Procedure class

	
class pymeasure.experiment.procedure.Procedure(**kwargs)

	Provides the base class of a procedure to organize the experiment
execution. Procedures should be run by Workers to ensure that
asynchronous execution is properly managed.

procedure = Procedure()
results = Results(procedure, data_filename)
worker = Worker(results, port)
worker.start()

Inheriting classes should define the startup, execute, and shutdown
methods as needed. The shutdown method is called even with a
software exception or abort event during the execute method.

If keyword arguments are provided, they are added to the object as
attributes.

	
check_parameters()

	Raises an exception if any parameter is missing before calling
the associated function. Ensures that each value can be set and
got, which should cast it into the right format. Used as a decorator
@check_parameters on the startup method

	
evaluate_metadata()

	Evaluates all Metadata objects, fixing their values to the current value

	
execute()

	Preforms the commands needed for the measurement itself. During
execution the shutdown method will always be run following this method.
This includes when Exceptions are raised.

	
gen_measurement()

	Create MEASURE and DATA_COLUMNS variables for get_datapoint method.

	
get_estimates()

	Function that returns estimates that are to be displayed by
the EstimatorWidget. Must be reimplemented by subclasses. Should
return an int or float representing the duration in seconds, or
a list with a tuple for each estimate. The tuple should consists
of two strings: the first will be used as the label of the
estimate, the second as the displayed estimate.

	
metadata_objects()

	Returns a dictionary of all the Metadata objects

	
parameter_objects()

	Returns a dictionary of all the Parameter objects and grabs any
current values that are not in the default definitions

	
parameter_values()

	Returns a dictionary of all the Parameter values and grabs any
current values that are not in the default definitions

	
parameters_are_set()

	Returns True if all parameters are set

	
static parse_columns(columns)

	Get columns with any units in parentheses.
For each column, if there are matching parentheses containing text
with no spaces, parse the value between the parentheses as a Pint unit. For example,
“Source Voltage (V)” will be parsed and matched to Unit('volt').
Raises an error if a parsed value is undefined in Pint unit registry.
Return a dictionary of matched columns with their units.

	Parameters

	columns – List of columns to be parsed.

	Returns

	Dictionary of columns with Pint units.

	
refresh_parameters()

	Enforces that all the parameters are re-cast and updated in the meta
dictionary

	
set_parameters(parameters, except_missing=True)

	Sets a dictionary of parameters and raises an exception if additional
parameters are present if except_missing is True

	
shutdown()

	Executes the commands necessary to shut down the instruments
and leave them in a safe state. This method is always run at the end.

	
startup()

	Executes the commands needed at the start-up of the measurement

	
class pymeasure.experiment.procedure.UnknownProcedure(parameters)

	Handles the case when a Procedure object can not be imported
during loading in the Results class

	
startup()

	Executes the commands needed at the start-up of the measurement

Parameter classes

The parameter classes are used to define input variables for a Procedure. They each inherit from the Parameter base class.

	
class pymeasure.experiment.parameters.BooleanParameter(name, default=None, ui_class=None, group_by=None, group_condition=True)

	Parameter sub-class that uses the boolean type to
store the value.

	Variables

	value – The boolean value of the parameter

	Parameters

	
	name – The parameter name

	default – The default boolean value

	ui_class – A Qt class to use for the UI of this parameter

	
convert(value)

	Convert user input to python data format

Subclasses are exptected to customize this method.
Default implementation is the identity function

	Parameters

	value – value to be converted

	Returns

	converted value

	
class pymeasure.experiment.parameters.FloatParameter(name, units=None, minimum=-1000000000.0, maximum=1000000000.0, decimals=15, step=None, **kwargs)

	Parameter sub-class that uses the floating point
type to store the value.

	Variables

	value – The floating point value of the parameter

	Parameters

	
	name – The parameter name

	units – The units of measure for the parameter

	minimum – The minimum allowed value (default: -1e9)

	maximum – The maximum allowed value (default: 1e9)

	decimals – The number of decimals considered (default: 15)

	default – The default floating point value

	ui_class – A Qt class to use for the UI of this parameter

	step – step size for parameter’s UI spinbox. If None, spinbox will have step disabled

	
convert(value)

	Convert user input to python data format

Subclasses are exptected to customize this method.
Default implementation is the identity function

	Parameters

	value – value to be converted

	Returns

	converted value

	
class pymeasure.experiment.parameters.IntegerParameter(name, units=None, minimum=-1000000000.0, maximum=1000000000.0, step=None, **kwargs)

	Parameter sub-class that uses the integer type to
store the value.

	Variables

	value – The integer value of the parameter

	Parameters

	
	name – The parameter name

	units – The units of measure for the parameter

	minimum – The minimum allowed value (default: -1e9)

	maximum – The maximum allowed value (default: 1e9)

	default – The default integer value

	ui_class – A Qt class to use for the UI of this parameter

	step – int step size for parameter’s UI spinbox. If None, spinbox will have step disabled

	
convert(value)

	Convert user input to python data format

Subclasses are exptected to customize this method.
Default implementation is the identity function

	Parameters

	value – value to be converted

	Returns

	converted value

	
class pymeasure.experiment.parameters.ListParameter(name, choices=None, units=None, **kwargs)

	Parameter sub-class that stores the value as a list.
String representation of choices must be unique.

	Parameters

	
	name – The parameter name

	choices – An explicit list of choices, which is disregarded if None

	units – The units of measure for the parameter

	default – The default value

	ui_class – A Qt class to use for the UI of this parameter

	
property choices

	Returns an immutable iterable of choices, or None if not set.

	
convert(value)

	Convert user input to python data format

Subclasses are exptected to customize this method.
Default implementation is the identity function

	Parameters

	value – value to be converted

	Returns

	converted value

	
class pymeasure.experiment.parameters.Measurable(name, fget=None, units=None, measure=True, default=None, **kwargs)

	Encapsulates the information for a measurable experiment parameter
with information about the name, fget function and units if supplied.
The value property is called when the procedure retrieves a datapoint
and calls the fget function. If no fget function is specified, the value
property will return the latest set value of the parameter (or default
if never set).

	Variables

	value – The value of the parameter

	Parameters

	
	name – The parameter name

	fget – The parameter fget function (e.g. an instrument parameter)

	default – The default value

	
class pymeasure.experiment.parameters.Metadata(name, fget=None, units=None, default=None, fmt='%s')

	Encapsulates the information for metadata of the experiment with
information about the name, the fget function and the units, if supplied.
If no fget function is specified, the value property will return the
latest set value of the parameter (or default if never set).

	Variables

	value – The value of the parameter. This returns (if a value is set)
the value obtained from the fget (after evaluation) or a manually
set value. Returns None if no value has been set

	Parameters

	
	name – The parameter name

	fget – The parameter fget function; can be provided as a callable,
or as a string, in which case it is assumed to be the name of a
method or attribute of the Procedure class in which the Metadata is
defined. Passing a string also allows for nested attributes by separating
them with a period (e.g. to access an attribute or method of an
instrument) where only the last attribute can be a method.

	units – The parameter units

	default – The default value, in case no value is assigned or if no
fget method is provided

	fmt – A string used to format the value upon writing it to a file.
Default is “%s”

	
is_set()

	Returns True if the Parameter value is set

	
class pymeasure.experiment.parameters.Parameter(name, default=None, ui_class=None, group_by=None, group_condition=True)

	Encapsulates the information for an experiment parameter
with information about the name, and units if supplied.

	Variables

	value – The value of the parameter

	Parameters

	
	name – The parameter name

	default – The default value

	ui_class – A Qt class to use for the UI of this parameter

	group_by – Defines the Parameter(s) that controls the visibility
of the associated input; can be a string containting the Parameter
name, a list of strings with multiple Parameter names, or a dict
containing {“Parameter name”: condition} pairs.

	group_condition – The condition for the group_by Parameter
that controls the visibility of this parameter, provided as a value
or a (lambda)function. If the group_by argument is provided as a
list of strings, this argument can be either a single condition or
a list of conditions. If the group_by argument is provided as a dict
this argument is ignored.

	
property cli_args

	helper for command line interface parsing of parameters

This property returns a list of data to help formatting a command line
interface interpreter, the list is composed of the following elements:
- index 0: default value
- index 1: List of value to format an help string, that is either,
the name of the fields to be documented or a tuple with (helps_string,
field)
- index 2: type

	
convert(value)

	Convert user input to python data format

Subclasses are exptected to customize this method.
Default implementation is the identity function

	Parameters

	value – value to be converted

	Returns

	converted value

	
is_set()

	Returns True if the Parameter value is set

	
class pymeasure.experiment.parameters.PhysicalParameter(name, uncertaintyType='absolute', **kwargs)

	VectorParameter sub-class of 2 dimensions to store a value
and its uncertainty.

	Variables

	value – The value of the parameter as a list of 2 floating point numbers

	Parameters

	
	name – The parameter name

	uncertainty_type – Type of uncertainty, ‘absolute’, ‘relative’ or ‘percentage’

	units – The units of measure for the parameter

	default – The default value

	ui_class – A Qt class to use for the UI of this parameter

	
convert(value)

	Convert user input to python data format

Subclasses are exptected to customize this method.
Default implementation is the identity function

	Parameters

	value – value to be converted

	Returns

	converted value

	
class pymeasure.experiment.parameters.VectorParameter(name, length=3, units=None, **kwargs)

	Parameter sub-class that stores the value in a
vector format.

	Variables

	value – The value of the parameter as a list of floating point numbers

	Parameters

	
	name – The parameter name

	length – The integer dimensions of the vector

	units – The units of measure for the parameter

	default – The default value

	ui_class – A Qt class to use for the UI of this parameter

	
convert(value)

	Convert user input to python data format

Subclasses are exptected to customize this method.
Default implementation is the identity function

	Parameters

	value – value to be converted

	Returns

	converted value

Worker class

	
class pymeasure.experiment.workers.Worker(results, log_queue=None, log_level=20, port=None)

	Bases: StoppableThread

Worker runs the procedure and emits information about
the procedure and its status over a ZMQ TCP port. In a child
thread, a Recorder is run to write the results to

	
emit(topic, record)

	Emits data of some topic over TCP

	
handle_abort()

	

	
handle_error()

	

	
join(timeout=0)

	Joins the current thread and forces it to stop after
the timeout if necessary

	Parameters

	timeout – Timeout duration in seconds

	
run()

	Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

	
shutdown()

	

	
update_status(status)

	

Results class

	
class pymeasure.experiment.results.CSVFormatter(columns, delimiter=',')

	Formatter of data results

	
format(record)

	Formats a record as csv.

	Parameters

	record (dict) – record to format.

	Returns

	a string

	
class pymeasure.experiment.results.Results(procedure, data_filename)

	The Results class provides a convenient interface to reading and
writing data in connection with a Procedure object.

	Variables

	
	COMMENT – The character used to identify a comment (default: #)

	DELIMITER – The character used to delimit the data (default: ,)

	LINE_BREAK – The character used for line breaks (default n)

	CHUNK_SIZE – The length of the data chuck that is read

	Parameters

	
	procedure – Procedure object

	data_filename – The data filename where the data is or should be
stored

	
format(data)

	Returns a formatted string containing the data to be written
to a file

	
header()

	Returns a text header to accompany a datafile so that the procedure
can be reconstructed

	
labels()

	Returns the columns labels as a string to be written
to the file

	
static load(data_filename, procedure_class=None)

	Returns a Results object with the associated Procedure object and
data

	
metadata()

	Returns a text header for the metadata to write into the datafile

	
parse(line)

	Returns a dictionary containing the data from the line

	
static parse_header(header, procedure_class=None)

	Returns a Procedure object with the parameters as defined in the
header text.

	
reload()

	Preforms a full reloading of the file data, neglecting
any changes in the comments

	
store_metadata()

	Inserts the metadata header (if any) into the datafile

	
pymeasure.experiment.results.replace_placeholders(string, procedure, date_format='%Y-%m-%d', time_format='%H:%M:%S')

	Replace placeholders in string with values from procedure parameters.

Replaces the placeholders in the provided string with the values of the
associated parameters, as provided by the procedure. This uses the standard
python string.format syntax. Apart from the parameter in the procedure (which
should be called by their full names) “date” and “time” are also added as optional
placeholders.

	Parameters

	
	string – The string in which the placeholders are to be replaced. Python string.format
syntax is used, e.g. “{Parameter Name}” to insert a FloatParameter called
“Parameter Name”, or “{Parameter Name:.2f}” to also specifically format the
parameter.

	procedure – The procedure from which to get the parameter values.

	date_format – A string to represent how the additional placeholder “date” will be formatted.

	time_format – A string to represent how the additional placeholder “time” will be formatted.

	
pymeasure.experiment.results.unique_filename(directory, prefix='DATA', suffix='', ext='csv', dated_folder=False, index=True, datetimeformat='%Y-%m-%d', procedure=None)

	Returns a unique filename based on the directory and prefix

pymeasure.display

This section contains specific documentation on the classes and methods of the package.

	Browser classes
	BaseBrowserItem

	Browser

	BrowserItem

	Console class
	ConsoleArgumentParser

	ConsoleBrowserItem

	ManagedConsole

	Curves classes
	BufferCurve

	Crosshairs

	ResultsCurve

	ResultsImage

	Inputs classes
	BooleanInput

	Input

	IntegerInput

	ListInput

	ScientificInput

	StringInput

	Listeners classes
	Monitor

	QListener

	Log classes
	LogHandler

	Manager classes
	BaseManager

	Experiment

	ExperimentQueue

	Manager

	Plotter class
	Plotter

	Qt classes

	Thread classes
	StoppableQThread

	Widget classes
	BrowserWidget

	DirectoryLineEdit

	EstimatorThread

	EstimatorWidget

	ImageFrame

	ImageWidget

	InputsWidget

	HTMLFormatter

	LogWidget

	PlotFrame

	PlotWidget

	ResultsDialog

	ComboBoxDelegate

	ExpressionValidator

	LineEditDelegate

	SequenceDialog

	SequencerTreeModel

	SequencerTreeView

	SequencerWidget

	TabWidget

	DockWidget

	PandasModelBase

	PandasModelByColumn

	PandasModelByRow

	ResultsTable

	Table

	TableWidget

	Windows classes
	ManagedImageWindow

	ManagedWindow

	ManagedWindowBase

	PlotterWindow

	ManagedDockWindow

Browser classes

	
class pymeasure.display.browser.BaseBrowserItem

	Bases: object

Base class for an experiment’s browser item. BaseBrowerItem outlines core functionality
for displaying progress of an experiment to the user.

	
class pymeasure.display.browser.Browser(procedure_class, display_parameters, measured_quantities, sort_by_filename=False, parent=None)

	Bases: QTreeWidget

Graphical list view of Experiment
objects allowing the user to view the status of queued Experiments as well as
loading and displaying data from previous runs.

In order that different Experiments be displayed within the same Browser,
they must have entries in DATA_COLUMNS corresponding to the
measured_quantities of the Browser.

	
add(experiment)

	Add a Experiment object
to the Browser. This function checks to make sure that the Experiment
measures the appropriate quantities to warrant its inclusion, and then
adds a BrowserItem to the Browser, filling all relevant columns with
Parameter data.

	
class pymeasure.display.browser.BrowserItem(results, color, parent=None)

	Bases: QTreeWidgetItem, BaseBrowserItem

Represent a row in the Browser tree widget

Console class

	
class pymeasure.display.console.ConsoleArgumentParser(procedure_class, **kwargs)

	Bases: ArgumentParser

	
setup_parser()

	Setup command line arguments parsing from parameters information

	
class pymeasure.display.console.ConsoleBrowserItem(progress_bar)

	Bases: BaseBrowserItem

	
class pymeasure.display.console.ManagedConsole(procedure_class, log_channel='', log_level=20)

	Bases: QCoreApplication

Base class for console experiment management.

Parameters for __init__ constructor.

	Parameters

	
	procedure_class – procedure class describing the experiment
(see Procedure)

	log_channel – logging.Logger instance to use for logging output

	log_level – logging level

	
abort()

	Aborts the currently running Experiment, but raises an exception if
there is no running experiment

	
exec() → int

	

	
get_filename(directory, procedure=None)

	Return filename for saving results file

	Parameters

	directory – directory of the returned filename.

Curves classes

	
class pymeasure.display.curves.BufferCurve(**kwargs)

	Bases: PlotDataItem

Creates a curve based on a predefined buffer size and allows data to be added dynamically.

	
append(x, y)

	Appends data to the curve with optional errors

	
prepare(size, dtype=<class 'numpy.float32'>)

	Prepares the buffer based on its size, data type

	
class pymeasure.display.curves.Crosshairs(plot, pen=None)

	Bases: QObject

Attaches crosshairs to the a plot and provides a signal with the
x and y graph coordinates

	
mouseMoved(event=None)

	Updates the mouse position upon mouse movement

	
update()

	Updates the mouse position based on the data in the plot. For
dynamic plots, this is called each time the data changes to ensure
the x and y values correspond to those on the display.

	
class pymeasure.display.curves.ResultsCurve(results, x, y, force_reload=False, wdg=None, **kwargs)

	Bases: PlotDataItem

Creates a curve loaded dynamically from a file through the Results object. The data can
be forced to fully reload on each update, useful for cases when the data is changing across
the full file instead of just appending.

	
update_data()

	Updates the data by polling the results

	
class pymeasure.display.curves.ResultsImage(results, x, y, z, force_reload=False, wdg=None, **kwargs)

	Bases: ImageItem

Creates an image loaded dynamically from a file through the Results
object.

	
colormap(x)

	Return mapped color as 0.0-1.0 floats RGBA

	
find_img_index(x, y)

	Finds the integer image indices corresponding to the
closest x and y points of the data given some x and y data.

	
round_up(x)

	Convenience function since numpy rounds to even

Inputs classes

	
class pymeasure.display.inputs.BooleanInput(parameter, parent=None, **kwargs)

	Bases: Input, QCheckBox

Checkbox for boolean values, connected to a BooleanParameter.

	
set_parameter(parameter)

	Connects a new parameter to the input box, and initializes the box
value.

	Parameters

	parameter – parameter to connect.

	
class pymeasure.display.inputs.Input(parameter, **kwargs)

	Bases: object

Mix-in class that connects a Parameter object to a GUI
input box.

	Parameters

	parameter – The parameter to connect to this input box.

	Attr parameter

	Read-only property to access the associated parameter.

	
property parameter

	The connected parameter object. Read-only property; see
set_parameter().

Note that reading this property will have the side-effect of updating
its value from the GUI input box.

	
set_parameter(parameter)

	Connects a new parameter to the input box, and initializes the box
value.

	Parameters

	parameter – parameter to connect.

	
update_parameter()

	Update the parameter value with the Input GUI element’s current value.

	
class pymeasure.display.inputs.IntegerInput(parameter, parent=None, **kwargs)

	Bases: Input, QSpinBox

Spin input box for integer values, connected to a IntegerParameter.

	
set_parameter(parameter)

	Connects a new parameter to the input box, and initializes the box
value.

	Parameters

	parameter – parameter to connect.

	
stepEnabled(self) → QAbstractSpinBox.StepEnabled

	

	
class pymeasure.display.inputs.ListInput(parameter, parent=None, **kwargs)

	Bases: Input, QComboBox

Dropdown for list values, connected to a ListParameter.

	
set_parameter(parameter)

	Connects a new parameter to the input box, and initializes the box
value.

	Parameters

	parameter – parameter to connect.

	
class pymeasure.display.inputs.ScientificInput(parameter, parent=None, **kwargs)

	Bases: Input, QDoubleSpinBox

Spinner input box for floating-point values, connected to a
FloatParameter. This box will display and accept values in
scientific notation when appropriate.

See also

	Class FloatInput
	For a non-scientific floating-point input box.

	
set_parameter(parameter)

	Connects a new parameter to the input box, and initializes the box
value.

	Parameters

	parameter – parameter to connect.

	
stepEnabled(self) → QAbstractSpinBox.StepEnabled

	

	
textFromValue(self, v: float) → str

	

	
validate(self, input: str, pos: int) → Tuple[QValidator.State, str, int]

	

	
valueFromText(self, text: str) → float

	

	
class pymeasure.display.inputs.StringInput(parameter, parent=None, **kwargs)

	Bases: Input, QLineEdit

String input box connected to a Parameter. Parameter subclasses
that are string-based may also use this input, but non-string parameters
should use more specialised input classes.

Listeners classes

	
class pymeasure.display.listeners.Monitor(queue)

	Bases: QThread

Monitor listens for status and progress messages
from a Worker through a queue to ensure no messages
are losts

	
run(self)

	

	
class pymeasure.display.listeners.QListener(port, topic='', timeout=0.01)

	Bases: StoppableQThread

Base class for QThreads that need to listen for messages
on a ZMQ TCP port and can be stopped by a thread- and process-safe
method call

Log classes

	
class pymeasure.display.log.LogHandler

	Bases: Handler

	
class Emitter

	Bases: QObject

	
emit(record)

	Do whatever it takes to actually log the specified logging record.

This version is intended to be implemented by subclasses and so
raises a NotImplementedError.

Manager classes

	
class pymeasure.display.manager.BaseManager(port=5888, log_level=20, parent=None)

	Bases: QObject

Controls the execution of Experiment classes by implementing
a queue system in which Experiments are added, removed, executed, or
aborted.

	
abort()

	Aborts the currently running Experiment, but raises an exception if
there is no running experiment

	
clear()

	Remove all Experiments

	
is_running()

	Returns True if a procedure is currently running

	
load(experiment)

	Load a previously executed Experiment

	
next()

	Initiates the start of the next experiment in the queue as long
as no other experiments are currently running and there is a procedure
in the queue.

	
queue(experiment)

	Adds an experiment to the queue.

	
remove(experiment)

	Removes an Experiment

	
resume()

	Resume processing of the queue.

	
class pymeasure.display.manager.Experiment(results, curve_list=None, browser_item=None, parent=None)

	Bases: QObject

The Experiment class helps group the Procedure,
Results, and their display functionality. Its function
is only a convenient container.

	Parameters

	
	results – Results object

	curve_list – ResultsCurve list. List of curves associated with
an experiment. They could represent different views of the same experiment. Not required
for .ManagedConsole displayed experiments.

	browser_item – BaseBrowserItem based object

	
class pymeasure.display.manager.ExperimentQueue

	Bases: QObject

Represents a queue of Experiments and allows queries to
be easily preformed.

	
has_next()

	Returns True if another item is on the queue

	
next()

	Returns the next experiment on the queue

	
class pymeasure.display.manager.Manager(widget_list, browser, port=5888, log_level=20, parent=None)

	Bases: BaseManager

Controls the execution of Experiment classes by implementing
a queue system in which Experiments are added, removed, executed, or
aborted. When instantiated, the Manager is linked to a Browser
and a PyQtGraph PlotItem within the user interface, which are updated
in accordance with the execution status of the Experiments.

	
load(experiment)

	Load a previously executed Experiment

	
remove(experiment)

	Removes an Experiment

Plotter class

	
class pymeasure.display.plotter.Plotter(results, refresh_time=0.1, linewidth=1)

	Bases: StoppableThread

Plotter dynamically plots data from a file through the Results object.

See also

	Tutorial Using the Plotter
	A tutorial and example on using the Plotter and PlotterWindow.

	
run()

	Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

	
setup_plot(plot)

	This method does nothing by default, but can be overridden by the child
class in order to set up custom options for the plot window, via its
PlotItem [https://pyqtgraph.readthedocs.io/en/latest/graphicsItems/plotitem.html].

	Parameters

	plot – This window’s PlotItem [https://pyqtgraph.readthedocs.io/en/latest/graphicsItems/plotitem.html] instance.

Qt classes

All Qt imports should reference pymeasure.display.Qt, for consistant importing from either PySide or PyQt4.

	
Qt.fromUi(**kwargs)

	Returns a Qt object constructed using loadUiType
based on its arguments. All QWidget objects in the
form class are set in the returned object for easy
accessability.

Thread classes

	
class pymeasure.display.thread.StoppableQThread(parent=None)

	Bases: QThread

Base class for QThreads which require the ability
to be stopped by a thread-safe method call

	
join(timeout=0)

	Joins the current thread and forces it to stop after
the timeout if necessary

	Parameters

	timeout – Timeout duration in seconds

Widget classes

	
class pymeasure.display.widgets.browser_widget.BrowserWidget(*args, parent=None)

	Bases: QWidget

Widget wrapper for Browser class

	
class pymeasure.display.widgets.directory_widget.DirectoryLineEdit(parent=None)

	Bases: QLineEdit

Widget that allows to choose a directory path.
A completer is implemented for quick completion.
A browse button is available.

	
class pymeasure.display.widgets.estimator_widget.EstimatorThread(get_estimates_callable)

	Bases: StoppableQThread

	
run(self)

	

	
class pymeasure.display.widgets.estimator_widget.EstimatorWidget(parent=None)

	Bases: QWidget

Widget that allows to display up-front estimates of the measurement
procedure.

This widget relies on a get_estimates method of the
Procedure class.
get_estimates is expected to return a list of tuples, where each tuple
contains two strings: a label and the estimate.

If the SequencerWidget
is also used, it is possible to ask for the current sequencer or its length by
asking for two keyword arguments in the Implementation of the get_estimates function:
sequence and sequence_length, respectively.

	
check_get_estimates_signature()

	Method that checks the signature of the get_estimates function.
It checks which input arguments are allowed and, if the output is
correct for the EstimatorWidget, stores the number of estimates.

	
display_estimates(estimates)

	Method that updates the shown estimates for the given set of
estimates.

	Parameters

	estimates – The set of estimates to be shown in the form of a
list of tuples of (2) strings

	
get_estimates()

	Method that makes a procedure with the currently entered
parameters and returns the estimates for these parameters.

	
update_estimates()

	Method that gets and displays the estimates.
Implemented for connecting to the ‘update’-button.

	
class pymeasure.display.widgets.image_frame.ImageFrame(x_axis, y_axis, z_axis=None, refresh_time=0.2, check_status=True, parent=None)

	Bases: PlotFrame

Extends PlotFrame
to plot also axis Z using colors

	
ResultsClass

	alias of ResultsImage

	
class pymeasure.display.widgets.image_widget.ImageWidget(name, columns, x_axis, y_axis, z_axis=None, refresh_time=0.2, check_status=True, parent=None)

	Bases: TabWidget, QWidget

Extends the ImageFrame
to allow different columns of the data to be dynamically chosen

	
load(curve)

	Add curve to widget

	
new_curve(results, color=<PyQt5.QtGui.QColor object>, **kwargs)

	Creates a new image

	
remove(curve)

	Remove curve from widget

	
sizeHint(self) → QSize

	

	
class pymeasure.display.widgets.inputs_widget.InputsWidget(procedure_class, inputs=(), parent=None, hide_groups=True)

	Bases: QWidget

Widget wrapper for various Inputs classes

	
get_procedure()

	Returns the current procedure

	
class pymeasure.display.widgets.log_widget.HTMLFormatter(fmt=None, datefmt=None, style='%', validate=True, *, defaults=None)

	Bases: Formatter

	
format(record)

	Format the specified record as text.

The record’s attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory steps
are carried out. The message attribute of the record is computed
using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is
called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.

	
class pymeasure.display.widgets.log_widget.LogWidget(name, parent=None, fmt=None, datefmt=None)

	Bases: TabWidget, QWidget

Widget to display logging information in GUI

It is recommended to include this widget in all subclasses of
ManagedWindowBase

	
class pymeasure.display.widgets.plot_frame.PlotFrame(x_axis=None, y_axis=None, refresh_time=0.2, check_status=True, parent=None)

	Bases: QFrame

Combines a PyQtGraph Plot with Crosshairs. Refreshes
the plot based on the refresh_time, and allows the axes
to be changed on the fly, which updates the plotted data

	
ResultsClass

	alias of ResultsCurve

	
parse_axis(axis)

	Returns the units of an axis by searching the string

	
class pymeasure.display.widgets.plot_widget.PlotWidget(name, columns, x_axis=None, y_axis=None, refresh_time=0.2, check_status=True, linewidth=1, parent=None)

	Bases: TabWidget, QWidget

Extends PlotFrame
to allow different columns of the data to be dynamically chosen

	
clear_widget()

	Clear widget content

Behaviour is widget specific and it is currently used in preview mode

	
load(curve)

	Add curve to widget

	
new_curve(results, color=<PyQt5.QtGui.QColor object>, **kwargs)

	Create a new curve

	
preview_widget(parent=None)

	Return a widget suitable for preview during loading

	
remove(curve)

	Remove curve from widget

	
set_color(curve, color)

	Change the color of the pen of the curve

	
sizeHint(self) → QSize

	

	
class pymeasure.display.widgets.results_dialog.ResultsDialog(procedure_class, widget_list=(), parent=None)

	Bases: QFileDialog

Widget that displays a dialog box for loading a past experiment run.
It shows a preview of curves from the results file when selected in the dialog box.

This widget used by the open_experiment method in
ManagedWindowBase class

	
class pymeasure.display.widgets.sequencer_widget.ComboBoxDelegate(owner, choices)

	Bases: QStyledItemDelegate

	
createEditor(self, parent: QWidget, option: QStyleOptionViewItem, index: QModelIndex) → QWidget

	

	
setEditorData(self, editor: QWidget, index: QModelIndex)

	

	
setModelData(self, editor: QWidget, model: QAbstractItemModel, index: QModelIndex)

	

	
updateEditorGeometry(self, editor: QWidget, option: QStyleOptionViewItem, index: QModelIndex)

	

	
class pymeasure.display.widgets.sequencer_widget.ExpressionValidator

	Bases: QValidator

	
validate(self, a0: str, a1: int) → Tuple[QValidator.State, str, int]

	

	
class pymeasure.display.widgets.sequencer_widget.LineEditDelegate

	Bases: QStyledItemDelegate

	
createEditor(self, parent: QWidget, option: QStyleOptionViewItem, index: QModelIndex) → QWidget

	

	
setEditorData(self, editor: QWidget, index: QModelIndex)

	

	
setModelData(self, editor: QWidget, model: QAbstractItemModel, index: QModelIndex)

	

	
updateEditorGeometry(self, editor: QWidget, option: QStyleOptionViewItem, index: QModelIndex)

	

	
class pymeasure.display.widgets.sequencer_widget.SequenceDialog(save=False, parent=None)

	Bases: QFileDialog

Widget that displays a dialog box for loading or saving a sequence tree.

It also shows a preview of sequence tree in the dialog box

	Parameters

	save – True if we are saving a file. Default False.

	
class pymeasure.display.widgets.sequencer_widget.SequencerTreeModel(data, header=('Level', 'Parameter', 'Sequence'), parent=None)

	Bases: QAbstractItemModel

Model for sequencer data

	Parameters

	
	header – List of string representing header data

	data – data associated with the model

	parent – A QWidget that QT will give ownership of this Widget to.

	
add_node(parameter, parent=None)

	Add a row in the sequencer

	
columnCount(parent)

	Return the number of columns in the model header.

The parent parameter exists only to support the signature of QAbstractItemModel.

	
data(index, role)

	Return the data to display for the given index and the given role.

This method should not be called directly.
This method is called implicitly by the QTreeView that is
displaying us, as the way of finding out what to display where.

	
flags(index)

	Set the flags for the item at the given QModelIndex.

Here, we just set all indexes to enabled, and selectable.

	
headerData(section, orientation, role)

	Return the header data for the given section, orientation and role.

This method should not be called directly.
This method is called implicitly by the QTreeView that is displaying us,
as the way of finding out what to display where.

	
index(row, col, parent)

	Return a QModelIndex instance pointing the row and column underneath the parent given.
This method should not be called directly. This method is called implicitly by the
QTreeView that is displaying us, as the way of finding out what to display where.

	
parent(index=None)

	Return the index of the parent of a given index. If index is not supplied,
return an invalid QModelIndex.

	Parameters

	index – QModelIndex optional.

	Returns

	

	
remove_node(index)

	Remove a row in the sequencer

	
rowCount(parent)

	Return the number of children of a given parent.

If an invalid QModelIndex is supplied, return the number of children under the root.

	Parameters

	parent – QModelIndex

	
setData(self, index: QModelIndex, value: Any, role: int = Qt.ItemDataRole.EditRole) → bool

	

	
visit_tree(parent)

	Return a generator to enumerate all the nodes in the tree

	
class pymeasure.display.widgets.sequencer_widget.SequencerTreeView(parent=None)

	Bases: QTreeView

	
setModel(self, model: QAbstractItemModel)

	

	
class pymeasure.display.widgets.sequencer_widget.SequencerWidget(inputs=None, sequence_file=None, parent=None)

	Bases: QWidget

Widget that allows to generate a sequence of measurements

It allows sweeping parameters and moreover, one can write a simple text file to easily load a
sequence. Sequences can also be saved

Currently requires a queue function of the
ManagedWindow to have a
“procedure” argument.

	Parameters

	inputs – List of strings representing the parameters name

	
load_sequence(*, filename=None)

	Load a sequence from a .txt file.

	Parameters

	filename – Filename (string) of the to-be-loaded file.

	
queue_sequence()

	Obtain a list of parameters from the sequence tree, enter these into
procedures, and queue these procedures.

	
class pymeasure.display.widgets.tab_widget.TabWidget(name, *args, **kwargs)

	Bases: object

Utility class to define default implementation for some basic methods.

When defining a widget to be used in subclasses of
ManagedWindowBase,
users should inherit from this class and provide an
implementation of these methods

	
clear_widget()

	Clear widget content

Behaviour is widget specific and it is currently used in preview mode

	
load(curve)

	Add curve to widget

	
new_curve(*args, **kwargs)

	Create a new curve

	
preview_widget(parent=None)

	Return a Qt widget suitable for preview during loading

See also ResultsDialog
If the object returned is not None, then it should have also an
attribute name.

	
remove(curve)

	Remove curve from widget

	
set_color(curve, color)

	Set color for widget

	
class pymeasure.display.widgets.dock_widget.DockWidget(name, procedure_class, x_axis_labels=None, y_axis_labels=None, linewidth=1, layout_path='./', layout_filename='', parent=None)

	Bases: TabWidget, QWidget

Widget that contains a DockArea with a number of Docks as determined by the length of
the longest x_axis_labels or y_axis_labels list.

	Parameters

	
	name – Name for the TabWidget

	procedure_class – procedure class describing the experiment (see
Procedure)

	x_axis_labels – List of data column(s) for the x-axis of the plot. If the list is shorter
than y_axis_labels the last item in the list to match y_axis_labels length.

	y_axis_labels – List of data column(s) for the y-axis of the plot. If the list is shorter
than x_axis_labels the last item in the list to match x_axis_labels length.

	linewidth – line width for plots in
PlotWidget

	layout_path – Directory path to save dock layout state. Default is ‘./’

	layout_filename – Optional filename for dock layout file.
Default: current procedure class + “_dock_layout.json”

	parent – Passed on to QtWidgets.QWidget. Default is None

	
contextMenuEvent(self, a0: QContextMenuEvent)

	

	
new_curve(results, color=<PyQt5.QtGui.QColor object>, **kwargs)

	Create a new curve

	
save_dock_layout()

	Save the current layout of the docks and the plot settings.
When running the GUI you can access this function by right-clicking in the
widget area to bring up the context menu and selecting “Save Dock Layout”

	
class pymeasure.display.widgets.table_widget.PandasModelBase(column_index=None, results_list=[], parent=None)

	Bases: QAbstractTableModel

This class provided a model to manage multiple panda dataframes and
display them as a single table.

The multiple pandas dataframes are provided as ResultTable class instances
and all of them share the same number of columns.

There are some assumptions:
- Series in the dataframe are identical, we call this number k
- Series length can be different, we call this number l(x), where x=1..n

The data can be presented as follow:
- By column: each series in a separate column, in this case table shape
will be: (k*n) x (max(l(x) x=1..n)
- By row: column fixed to the number of series, in this case table shape
will be: k x (sum of l(x) x=1..n)

	
columnCount(self, parent: QModelIndex = QModelIndex()) → int

	

	
data(self, index: QModelIndex, role: int = Qt.ItemDataRole.DisplayRole) → Any

	

	
headerData(section, orientation, role)

	Return header information

Override method from QAbstractTableModel

	
pandas_column_count()

	Return total column count of the panda dataframes

The value depends on the geometry selected to display dataframes

	
pandas_row_count()

	Return total row count of the panda dataframes

The value depends on the geometry selected to display dataframes

	
rowCount(self, parent: QModelIndex = QModelIndex()) → int

	

	
translate_to_global(results, row, col)

	Translate from single results coordinates to full table coordinates

	
translate_to_local(row, col)

	Translate from full table coordinate to single results coordinates

	
class pymeasure.display.widgets.table_widget.PandasModelByColumn(column_index=None, results_list=[], parent=None)

	Bases: PandasModelBase

	
pandas_column_count()

	Return total column count of the panda dataframes

The value depends on the geometry selected to display dataframes

	
pandas_row_count()

	Return total row count of the panda dataframes

The value depends on the geometry selected to display dataframes

	
translate_to_global(results, row, col)

	Translate from single results coordinates to full table coordinates

	
translate_to_local(row, col)

	Translate from full table coordinate to single results coordinates

	
class pymeasure.display.widgets.table_widget.PandasModelByRow(column_index=None, results_list=[], parent=None)

	Bases: PandasModelBase

	
pandas_column_count()

	Return total column count of the panda dataframes

The value depends on the geometry selected to display dataframes

	
pandas_row_count()

	Return total row count of the panda dataframes

The value depends on the geometry selected to display dataframes

	
translate_to_global(results, row, col)

	Translate from single results coordinates to full table coordinates

	
translate_to_local(row, col)

	Translate from full table coordinate to single results coordinates

	
class pymeasure.display.widgets.table_widget.ResultsTable(results, color, column_index=None, force_reload=False, wdg=None, **kwargs)

	Bases: QObject

Class representing a panda dataframe

	
class pymeasure.display.widgets.table_widget.Table(refresh_time=0.2, check_status=True, force_reload=False, layout_class=<class 'pymeasure.display.widgets.table_widget.PandasModelByColumn'>, column_index=None, float_digits=6, parent=None)

	Bases: QTableView

Table format view of Experiment
objects

	
setModel(self, model: QAbstractItemModel)

	

	
set_model(model_class)

	Replace model with new instance of model_class

	
class pymeasure.display.widgets.table_widget.TableWidget(name, columns, by_column=True, column_index=None, refresh_time=0.2, float_digits=6, check_status=True, parent=None)

	Bases: TabWidget, QWidget

Widget to display experiment data in a tabular format

	
clear_widget()

	Clear widget content

Behaviour is widget specific and it is currently used in preview mode

	
load(table)

	Add curve to widget

	
new_curve(results, color=<PyQt5.QtGui.QColor object>, **kwargs)

	Create a new curve

	
preview_widget(parent=None)

	Return a widget suitable for preview during loading

	
remove(table)

	Remove curve from widget

	
set_color(table, color)

	Change the color of the pen of the curve

Windows classes

	
class pymeasure.display.windows.managed_image_window.ManagedImageWindow(procedure_class, x_axis, y_axis, z_axis=None, **kwargs)

	Bases: ManagedWindow

Display experiment output with an ImageWidget
class.

	Parameters

	
	procedure_class – procedure class describing the experiment (see
Procedure)

	x_axis – the data-column for the x-axis of the plot, cannot be changed afterwards for
the image-plot

	y_axis – the data-column for the y-axis of the plot, cannot be changed afterwards for
the image-plot

	z_axis – the initial data-column for the z-axis of the plot, can be changed afterwards

	**kwargs – optional keyword arguments that will be passed to
ManagedWindow

	
class pymeasure.display.windows.managed_window.ManagedWindow(procedure_class, x_axis=None, y_axis=None, linewidth=1, log_fmt=None, log_datefmt=None, **kwargs)

	Bases: ManagedWindowBase

Display experiment output with an
PlotWidget class.

See also

	Tutorial Using the ManagedWindow
	A tutorial and example on the basic configuration and usage of ManagedWindow.

	Parameters

	
	procedure_class – procedure class describing the experiment (see
Procedure)

	x_axis – the initial data-column for the x-axis of the plot

	y_axis – the initial data-column for the y-axis of the plot

	linewidth – linewidth for the displayed curves, default is 1

	log_fmt – formatting string for the log-widget

	log_datefmt – formatting string for the date in the log-widget

	**kwargs – optional keyword arguments that will be passed to
ManagedWindowBase

	
class pymeasure.display.windows.managed_window.ManagedWindowBase(procedure_class, widget_list=(), inputs=(), displays=(), log_channel='', log_level=20, parent=None, sequencer=False, sequencer_inputs=None, sequence_file=None, inputs_in_scrollarea=False, directory_input=False, hide_groups=True)

	Bases: QMainWindow

Base class for GUI experiment management .

The ManagedWindowBase provides an interface for inputting experiment
parameters, running several experiments
(Procedure), plotting
result curves, and listing the experiments conducted during a session.

The ManagedWindowBase uses a Manager to control Workers in a Queue,
and provides a simple interface.
The queue() method must be
overridden by the child class.

The ManagedWindowBase allow user to define a set of widget that display information about the
experiment. The information displayed may include: plots, tabular view, logging information,…

This class is not intended to be used directy, but it should be subclassed to provide some
appropriate widget list. Example of classes usable as element of widget list are:

	LogWidget

	PlotWidget

	ImageWidget

Of course, users can define its own widget making sure that inherits from
TabWidget.

Examples of ready to use classes inherited from ManagedWindowBase are:

	ManagedWindow

	ManagedImageWindow

See also

	Tutorial Using the ManagedWindow
	A tutorial and example on the basic configuration and usage of ManagedWindow.

Parameters for __init__ constructor.

	Parameters

	
	procedure_class – procedure class describing the experiment (see
Procedure)

	widget_list – list of widget to be displayed in the GUI

	inputs – list of Parameter instance variable
names, which the display will generate graphical fields for

	displays – list of Parameter instance variable
names displayed in the browser window

	log_channel – logging.Logger instance to use for logging output

	log_level – logging level

	parent – Parent widget or None

	sequencer – a boolean stating whether or not the sequencer has to be included into the
window

	sequencer_inputs – either None or a list of the parameter names to be scanned
over. If no list of parameters is given, the parameters displayed in the manager queue
are used.

	sequence_file – simple text file to quickly load a pre-defined sequence with the
code:Load sequence button

	inputs_in_scrollarea – boolean that display or hide a scrollbar to the input area

	directory_input – specify, if present, where the experiment’s result will be saved.

	hide_groups – a boolean controlling whether parameter groups are hidden (True, default)
or disabled/grayed-out (False) when the group conditions are not met.

	
open_file_externally(filename)

	Method to open the datafile using an external editor or viewer. Uses the default
application to open a datafile of this filetype, but can be overridden by the child
class in order to open the file in another application of choice.

	
queue(procedure=None)

	Abstract method, which must be overridden by the child class.

Implementations must call self.manager.queue(experiment) and pass
an experiment
(Experiment) object which
contains the
Results and
Procedure to be run.

The optional procedure argument is not required for a basic implementation,
but is required when the
SequencerWidget is used.

For example:

def queue(self):
 filename = unique_filename('results', prefix="data") # from pymeasure.experiment

 procedure = self.make_procedure() # Procedure class was passed at construction
 results = Results(procedure, filename)
 experiment = self.new_experiment(results)

 self.manager.queue(experiment)

	
set_parameters(parameters)

	This method should be overwritten by the child class. The
parameters argument is a dictionary of Parameter objects.
The Parameters should overwrite the GUI values so that a user
can click “Queue” to capture the same parameters.

	
class pymeasure.display.windows.plotter_window.PlotterWindow(plotter, refresh_time=0.1, linewidth=1, parent=None)

	Bases: QMainWindow

A window for plotting experiment results. Should not be
instantiated directly, but only via the
Plotter class.

See also

Tutorial Using the Plotter
A tutorial and example code for using the Plotter and PlotterWindow.

	
check_stop()

	Checks if the Plotter should stop and exits the Qt main loop if so

	
class pymeasure.display.windows.managed_dock_window.ManagedDockWindow(procedure_class, x_axis=None, y_axis=None, linewidth=1, log_fmt=None, log_datefmt=None, **kwargs)

	Bases: ManagedWindowBase

Display experiment output with multiple docking windows with
DockWidget class.

	Parameters

	
	procedure_class – procedure class describing the experiment (see
Procedure)

	x_axis – the data column(s) for the x-axis of the plot. This may be a string or a list
of strings from the data columns of the procedure. The list length determines the number of
plots

	y_axis – the data column(s) for the y-axis of the plot. This may be a string or a list
of strings from the data columns of the procedure. The list length determines the number of
plots

	linewidth – linewidth for the displayed curves, default is 1

	log_fmt – formatting string for the log-widget

	log_datefmt – formatting string for the date in the log-widget

	**kwargs – optional keyword arguments that will be passed to
ManagedWindowBase

pymeasure.instruments

This section contains documentation on the instrument classes.

	Instrument classes
	CommonBase

	Instrument

	Channel

	FakeInstrument

	SwissArmyFake

	Validator functions

	Comedi data acquisition
	getAI()

	getAO()

	readAI()

	writeAO()

	Resource Manager
	list_resources()

Instruments by manufacturer:

	Active Technologies
	Active Technologies AWG-401x 1.2GS/s Arbitrary Waveform Generator

	Advantest
	Advantest R3767CG Vector Network Analyzer

	Advantest R6245/R6246 DC Voltage/Current Sources/Monitors

	Agilent
	Agilent 8257D Signal Generator

	Agilent 8722ES Vector Network Analyzer

	Agilent E4408B Spectrum Analyzer

	Agilent E4980 LCR Meter

	Agilent 34410A Multimeter

	HP/Agilent/Keysight 34450A Digital Multimeter

	Agilent 4155/4156 Semiconductor Parameter Analyzer

	Agilent 33220A Arbitrary Waveform Generator

	Agilent 33500 Function/Arbitrary Waveform Generator Family

	Agilent 33521A Function/Arbitrary Waveform Generator

	Agilent B1500 Semiconductor Parameter Analyzer

	AJA International
	AJA DCXS-750 or 1500 DC magnetron sputtering power supply

	Ametek
	Ametek 7270 DSP Lockin Amplifier

	AMI
	AMI 430 Power Supply

	Anaheim Automation
	DP-Series Step Motor Controller

	Anapico
	Anapico APSIN12G Signal Generator

	Andeen Hagerling
	Andeen Hagerling AH2500A capacitance bridge

	Andeen Hagerling AH2700A capacitance bridge

	Anritsu
	Anritsu MG3692C Signal Generator

	Anritsu MS9710C Optical Spectrum Analyzer

	Anritsu MS9740A Optical Spectrum Analyzer

	Anritsu MS2090A Handheld Spectrum Analyzer

	Anritsu MS464xB Vector Network Analyzer

	Attocube
	Attocube ANC300 Motion Controller

	BK Precision
	BK Precision 9130B DC Power Supply

	Danfysik
	Danfysik 8500 Power Supply

	Delta Elektronika
	Delta Elektronica SM7045D Power source

	Edwards
	Edwards nxds vacuum pump

	EURO TEST
	Euro Test HPP120256 High Voltage Power Supply

	Fluke
	Fluke 7341 Temperature bath

	F.W. Bell
	F.W. Bell 5080 Handheld Gaussmeter

	Heidenhain
	Heidenhain ND287 Position Display Unit

	HC Photonics
	HCP TC038 crystal oven

	HCP TC038D crystal oven

	Hewlett Packard
	HP 33120A Arbitrary Waveform Generator

	HP 34401A Multimeter

	HP 3437A System-Voltmeter

	HP 3478A Multimeter

	HP 8116A 50 MHz Pulse/Function Generator

	HP 8560A / 8561B Spectrum Analyzer

	HP Signal generator HP8657B

	Support class for HP legacy devices

	HP System Power Supplies HP663XA

	IPG Photonics
	YAR fiber amplifier series

	Keithley
	Keithley 2000 Multimeter

	Keithley 2260B DC Power Supply

	Keithley 2306 Dual Channel Battery/Charger Simulator

	Keithley 2400 SourceMeter

	Keithley 2450 SourceMeter

	Keithley 2700 MultiMeter/Switch System

	Keithley 6221 AC and DC Current Source

	Keithley 6517B Electrometer

	Keithley 2750 Multimeter/Switch System

	Keithley 2600 SourceMeter

	Keithley 2200 Series Power Supplies

	Keysight
	Keysight DSOX1102G Oscilloscope

	Keysight N5767A Power Supply

	Keysight N5776C Power Supply

	Keysight E36312A Triple Output Power Supply

	Lake Shore Cryogenics
	Lake Shore 211 Temperature Monitor

	Lake Shore 224 Temperature Monitor

	Lake Shore 331 Temperature Controller

	Lake Shore 421 Gaussmeter

	Lake Shore 425 Gaussmeter

	LakeShore Channel Classes

	LeCroy
	LeCroy T3DSO1204 Oscilloscope

	MKS Instruments
	MKS Instruments 937B Vacuum Gauge Controller

	Newport
	ESP 300 Motion Controller

	National Instruments
	NI Virtual Bench

	Novanta Photonics
	Novanta FPU60 laser power supply unit

	Oxford Instruments
	Oxford Instruments Base Instrument

	Oxford Instruments Intelligent Temperature Controller 503

	Oxford Instruments Intelligent Power Supply 120-10 for superconducting magnets

	Oxford Instruments Power Supply 120-10 for superconducting magnets

	Parker
	Parker GV6 Servo Motor Controller

	Pendulum
	Pendulum CNT91 frequency counter

	Razorbill
	Razorbill RP100 custrom power supply for Razorbill Instrums stress & strain cells

	Rohde & Schwarz
	R&S SFM TV test transmitter

	R&S FSL spectrum analyzer

	R&S HMP4040 Power Supply

	Siglent Technologies
	Siglent Technologies Base Class

	Siglent SPD1168X Power Supply

	Siglent SPD1305X Power Supply

	Signal Recovery
	DSP 7225 Lock-in Amplifier

	DSP 7265 Lock-in Amplifier

	Stanford Research Systems
	SR510 Lock-in Amplifier

	SR570 Lock-in Amplifier

	SR830 Lock-in Amplifier

	SR860 Lock-in Amplifier

	T&C Power Conversion
	T&C Power Conversion AG Series Plasma Generator CXN

	TDK Lambda
	TDK Lambda Genesys 40-38 DC power supply

	TDK Lambda Genesys 80-65 DC power supply

	Tektronix
	TDS2000 Oscilloscope

	AFG3152C Arbitrary function generator

	Teledyne
	Teledyne T3AFG Arbitrary Waveform Generator

	Teledyne Oscilloscope base classes

	Temptronic
	Temptronic Base Class

	Temptronic ATS525 Thermostream

	Temptronic ATS545 Thermostream

	Temptronic ECO560 Thermostream

	TEXIO
	TEXIO PSW-360L30 Power Supply

	Thermotron
	Thermotron 3800 Oven

	Thorlabs
	Thorlabs PM100USB Powermeter

	Thorlabs Pro 8000 modular laser driver

	Thyracont
	Smartline V1 Transmitter Series

	Smartline V2 Transmitter Series

	Toptica
	Toptica IBeam Smart Laser diode

	Velleman
	Velleman K8090 8-channel relay board

	Yokogawa
	Yokogawa 7651 Programmable Supply

	Yokogawa GS200 Source

Instrument classes

	
class pymeasure.instruments.common_base.CommonBase(preprocess_reply=None, **kwargs)

	Base class for instruments and channels.

This class contains everything needed for pymeasure’s property creator
control() and its derivatives measurement() and setting().

	Parameters

	preprocess_reply – An optional callable used to preprocess
strings received from the instrument. The callable returns the
processed string.

Deprecated since version 0.11: Implement it in the instrument’s read method instead.

	
class BaseChannelCreator(cls, **kwargs)

	Base class for ChannelCreator and MultiChannelCreator.

	Parameters

	
	cls – Class for all children or tuple/list of classes, one for each child.

	**kwargs – Keyword arguments for all children.

	
class ChannelCreator(cls, id=None, **kwargs)

	Add a single channel to the parent class.

The child will be added to the parent instance at instantiation with
CommonBase.add_child(). The attribute name that ChannelCreator was assigned
to in the Instrument class will be the name of the channel interface.

class Extreme5000(Instrument):
 # Two output channels, accessible by their property names
 # and both are accessible through the 'channels' collection
 output_A = Instrument.ChannelCreator(Extreme5000Channel, "A")
 output_B = Instrument.ChannelCreator(Extreme5000Channel, "B")
 # A channel without a channel accessible through the 'motor' collection
 motor = Instrument.ChannelCreator(MotorControl)

inst = SomeInstrument()
Set the extreme_temp for channel A of Extreme5000 instrument
inst.output_A.extreme_temp = 42

	Parameters

	
	cls – Channel class for channel interface

	id – The id of the channel on the instrument, integer or string.

	**kwargs – Keyword arguments for all children.

	
class MultiChannelCreator(cls, id=None, prefix='ch_', **kwargs)

	Add channels to the parent class.

The children will be added to the parent instance at instantiation with
CommonBase.add_child(). The attribute name (e.g. channels) will be
used as the collection of the children. You may define the attribute
prefix. If there are no other pressing reasons, use channels as the attribute name
and leave the prefix at the default "ch_".

class Extreme5000(Instrument):
 # Three channels of the same type: 'ch_A', 'ch_B', 'ch_C'
 # and add them to the 'channels' collection
 channels = Instrument.MultiChannelCreator(Extreme5000Channel, ["A", "B", "C"])
 # Two channel interfaces of different types: 'fn_power', 'fn_voltage'
 # and add them to the 'functions' collection
 functions = Instrument.MultiChannelCreator((PowerChannel, VoltageChannel),
 ["power", "voltage"], prefix="fn_")

	Parameters

	
	cls – Class for all children or tuple/list of classes, one for each child.

	id – tuple/list of ids of the channels on the instrument.

	prefix – Collection prefix for the attributes, e.g. “ch_”
creates attribute self.ch_A. If prefix evaluates False,
the child will be added directly under the variable name. Required if id is tuple/list.

	**kwargs – Keyword arguments for all children.

	
add_child(cls, id=None, collection='channels', prefix='ch_', attr_name='', **kwargs)

	Add a child to this instance and return its index in the children list.

The newly created child may be accessed either by the id in the
children dictionary or by the created attribute, e.g. the fifth channel of instrument
with id “F” has two access options:
instrument.channels["F"] == instrument.ch_F

Note

Do not change the default collection or prefix parameter, unless
you have to distinguish several collections of different children,
e.g. different channel types (analog and digital).

	Parameters

	
	cls – Class of the channel.

	id – Child id how it is used in communication, e.g. “A”.

	collection – Name of the collection of children, used for dictionary access to the
channel interfaces.

	prefix – For creating multiple channel interfaces, the prefix e.g. “ch_”
is prepended to the attribute name of the channel interface self.ch_A.
If prefix evaluates False, the child will be added directly under the collection name.

	attr_name – For creating a single channel interface, the attr_name argument is used
when setting the attribute name of the channel interface.

	**kwargs – Keyword arguments for the channel creator.

	Returns

	Instance of the created child.

	
ask(command, query_delay=0)

	Write a command to the instrument and return the read response.

	Parameters

	
	command – Command string to be sent to the instrument.

	query_delay – Delay between writing and reading in seconds.

	Returns

	String returned by the device without read_termination.

	
binary_values(command, query_delay=0, **kwargs)

	Write a command to the instrument and return a numpy array of the binary data.

	Parameters

	
	command – Command to be sent to the instrument.

	query_delay – Delay between writing and reading in seconds.

	kwargs – Arguments for read_binary_values().

	Returns

	NumPy array of values.

	
check_errors()

	Read all errors from the instrument and log them.

	Returns

	List of error entries.

	
check_get_errors()

	Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
static control(get_command, set_command, docs, validator=<function CommonBase.<lambda>>, values=(), map_values=False, get_process=<function CommonBase.<lambda>>, set_process=<function CommonBase.<lambda>>, command_process=None, check_set_errors=False, check_get_errors=False, dynamic=False, preprocess_reply=None, separator=', ', maxsplit=-1, cast=<class 'float'>, values_kwargs=None, **kwargs)

	Return a property for the class based on the supplied
commands. This property may be set and read from the
instrument. See also measurement() and setting().

	Parameters

	
	get_command – A string command that asks for the value, set to None
if get is not supported (see also setting()).

	set_command – A string command that writes the value, set to None
if set is not supported (see also measurement()).

	docs – A docstring that will be included in the documentation

	validator – A function that takes both a value and a group of valid values
and returns a valid value, while it otherwise raises an exception

	values – A list, tuple, range, or dictionary of valid values, that can be used
as to map values if map_values is True.

	map_values – A boolean flag that determines if the values should be
interpreted as a map

	get_process – A function that take a value and allows processing
before value mapping, returning the processed value

	set_process – A function that takes a value and allows processing
before value mapping, returning the processed value

	command_process – A function that takes a command and allows processing
before executing the command

Deprecated since version 0.12: Use a dynamic property instead.

	check_set_errors – Toggles checking errors after setting

	check_get_errors – Toggles checking errors after getting

	dynamic – Specify whether the property parameters are meant to be changed in
instances or subclasses.

	preprocess_reply – Optional callable used to preprocess the string
received from the instrument, before splitting it.
The callable returns the processed string.

	separator – A separator character to split the string returned by
the device into a list.

	maxsplit – The string returned by the device is splitted at most maxsplit times.
-1 (default) indicates no limit.

	cast – A type to cast each element of the splitted string.

	values_kwargs (dict) – Further keyword arguments for values().

	**kwargs – Keyword arguments for values().

Deprecated since version 0.12: Use values_kwargs dictionary parameter instead.

Example of usage of dynamic parameter is as follows:

class GenericInstrument(Instrument):
 center_frequency = Instrument.control(
 ":SENS:FREQ:CENT?;", ":SENS:FREQ:CENT %e GHz;",
 " A floating point property that represents the frequency ... ",
 validator=strict_range,
 # Redefine this in subclasses to reflect actual instrument value:
 values=(1, 20),
 dynamic=True # enable changing property parameters on-the-fly
)

class SpecificInstrument(GenericInstrument):
 # Identical to GenericInstrument, except for frequency range
 # Override the "values" parameter of the "center_frequency" property
 center_frequency_values = (1, 10) # Redefined at subclass level

instrument = SpecificInstrument()
instrument.center_frequency_values = (1, 6e9) # Redefined at instance level

Warning

Unexpected side effects when using dynamic properties

Users must pay attention when using dynamic properties, since definition of class and/or
instance attributes matching specific patterns could have unwanted side effect.
The attribute name pattern property_param, where property is the name of the dynamic
property (e.g. center_frequency in the example) and param is any of this method
parameters name except dynamic and docs (e.g. values in the example) has to be
considered reserved for dynamic property control.

	
static get_channel_pairs(cls)

	Return a list of all the Instrument’s channel pairs

	
static get_channels(cls)

	Return a list of all the Instrument’s ChannelCreator and MultiChannelCreator instances

	
static measurement(get_command, docs, values=(), map_values=None, get_process=<function CommonBase.<lambda>>, command_process=None, check_get_errors=False, dynamic=False, preprocess_reply=None, separator=', ', maxsplit=-1, cast=<class 'float'>, values_kwargs=None, **kwargs)

	Return a property for the class based on the supplied
commands. This is a measurement quantity that may only be
read from the instrument, not set.

	Parameters

	
	get_command – A string command that asks for the value

	docs – A docstring that will be included in the documentation

	values – A list, tuple, range, or dictionary of valid values, that can be used
as to map values if map_values is True.

	map_values – A boolean flag that determines if the values should be
interpreted as a map

	get_process – A function that take a value and allows processing
before value mapping, returning the processed value

	command_process – A function that take a command and allows processing
before executing the command, for getting

Deprecated since version 0.12: Use a dynamic property instead.

	check_get_errors – Toggles checking errors after getting

	dynamic – Specify whether the property parameters are meant to be changed in
instances or subclasses. See control() for an usage example.

	preprocess_reply – Optional callable used to preprocess the string
received from the instrument, before splitting it.
The callable returns the processed string.

	separator – A separator character to split the string returned by
the device into a list.

	maxsplit – The string returned by the device is splitted at most maxsplit times.
-1 (default) indicates no limit.

	cast – A type to cast each element of the splitted string.

	values_kwargs (dict) – Further keyword arguments for values().

	**kwargs – Keyword arguments for values().

Deprecated since version 0.12: Use values_kwargs dictionary parameter instead.

	
remove_child(child)

	Remove the child from the instrument and the corresponding collection.

	Parameters

	child – Instance of the child to delete.

	
static setting(set_command, docs, validator=<function CommonBase.<lambda>>, values=(), map_values=False, set_process=<function CommonBase.<lambda>>, check_set_errors=False, dynamic=False)

	Return a property for the class based on the supplied
commands. This property may be set, but raises an exception
when being read from the instrument.

	Parameters

	
	set_command – A string command that writes the value

	docs – A docstring that will be included in the documentation

	validator – A function that takes both a value and a group of valid values
and returns a valid value, while it otherwise raises an exception

	values – A list, tuple, range, or dictionary of valid values, that can be used
as to map values if map_values is True.

	map_values – A boolean flag that determines if the values should be
interpreted as a map

	set_process – A function that takes a value and allows processing
before value mapping, returning the processed value

	check_set_errors – Toggles checking errors after setting

	dynamic – Specify whether the property parameters are meant to be changed in
instances or subclasses. See control() for an usage example.

	
values(command, separator=', ', cast=<class 'float'>, preprocess_reply=None, maxsplit=-1, **kwargs)

	Write a command to the instrument and return a list of formatted
values from the result.

	Parameters

	
	command – SCPI command to be sent to the instrument.

	preprocess_reply – Optional callable used to preprocess the string
received from the instrument, before splitting it.
The callable returns the processed string.

	separator – A separator character to split the string returned by
the device into a list.

	maxsplit – The string returned by the device is splitted at most maxsplit times.
-1 (default) indicates no limit.

	cast – A type to cast each element of the splitted string.

	**kwargs – Keyword arguments to be passed to the ask() method.

	Returns

	A list of the desired type, or strings where the casting fails.

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

Implement in subclass!

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
class pymeasure.instruments.Instrument(adapter, name, includeSCPI=True, preprocess_reply=None, **kwargs)

	The base class for all Instrument definitions.

It makes use of one of the Adapter classes for communication
with the connected hardware device. This decouples the instrument/command definition from the
specific communication interface used.

When adapter is a string, this is taken as an appropriate resource name. Depending on your
installed VISA library, this can be something simple like COM1 or ASRL2, or a more
complicated
VISA resource name [https://pyvisa.readthedocs.io/en/latest/introduction/names.html]
defining the target of your connection.

When adapter is an integer, a GPIB resource name is created based on that.
In either case a VISAAdapter is constructed based on that
resource name.
Keyword arguments can be used to further configure the connection.

Otherwise, the passed Adapter object is used and any keyword
arguments are discarded.

This class defines basic SCPI commands by default. This can be disabled with
includeSCPI for instruments not compatible with the standard SCPI commands.

	Parameters

	
	adapter – A string, integer, or Adapter subclass object

	name (string) – The name of the instrument. Often the model designation by default.

	includeSCPI – A boolean, which toggles the inclusion of standard SCPI commands

	preprocess_reply – An optional callable used to preprocess
strings received from the instrument. The callable returns the
processed string.

Deprecated since version 0.11: Implement it in the instrument’s read method instead.

	**kwargs – In case adapter is a string or integer, additional arguments passed on
to VISAAdapter (check there for details).
Discarded otherwise.

	
check_errors()

	Read all errors from the instrument and log them.

	Returns

	List of error entries.

	
check_get_errors()

	Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
clear()

	Clears the instrument status byte

	
property complete

	Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation
Complete query places an ASCII character 1 into the device’s Output Queue when all pending
selected device operations have been finished.

	
property id

	Get the identification of the instrument.

	
property options

	Get the device options installed.

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

	
read_binary_values(**kwargs)

	Read binary values from the device.

	
read_bytes(count, **kwargs)

	Read a certain number of bytes from the instrument.

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read the whole read buffer.

	kwargs – Keyword arguments for the adapter.

	Returns bytes

	Bytes response of the instrument (including termination).

	
reset()

	Resets the instrument.

	
shutdown()

	Brings the instrument to a safe and stable state

	
property status

	Get the status byte and Master Summary Status bit.

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument

	kwargs – Keyword arguments for the adapter.

	
write_binary_values(command, values, *args, **kwargs)

	Write binary values to the device.

	Parameters

	
	command – Command to send.

	values – The values to transmit.

	**kwargs (*args,) – Further arguments to hand to the Adapter.

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

	
class pymeasure.instruments.Channel(parent, id)

	The base class for channel definitions.

This class supports dynamic properties like Instrument,
but requires an Instrument instance as a parent for communication.

insert_id() inserts the channel id into the command string sent to the instrument.
The default implementation replaces the Channel’s placeholder (default “ch”)
with the channel id in all command strings (e.g. “CHANnel{ch}:foo”).

	Parameters

	
	parent – The instrument (an instance of Instrument)
to which the channel belongs.

	id – Identifier of the channel, as it is used for the communication.

	
check_errors()

	Read all errors from the instrument and log them.

	Returns

	List of error entries.

	
check_get_errors()

	Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
insert_id(command)

	Insert the channel id in a command replacing placeholder.

Subclass this method if you want to do something else,
like always prepending the channel id.

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

	
read_binary_values(**kwargs)

	Read binary values from the instrument.

	
read_bytes(count, **kwargs)

	Read a certain number of bytes from the instrument.

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read the whole read buffer.

	kwargs – Keyword arguments for the adapter.

	Returns bytes

	Bytes response of the instrument (including termination).

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument.
‘{ch}’ is replaced by the channel id.

	kwargs – Keyword arguments for the adapter.

	
write_binary_values(command, values, *args, **kwargs)

	Write binary values to the instrument.

	Parameters

	
	command – Command to send.

	values – The values to transmit.

	**kwargs (*args,) – Further arguments to hand to the Adapter.

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

	
class pymeasure.instruments.fakes.FakeInstrument(adapter=None, name='Fake Instrument', includeSCPI=False, **kwargs)

	Bases: Instrument

Provides a fake implementation of the Instrument class
for testing purposes.

	
static control(get_command, set_command, docs, validator=<function FakeInstrument.<lambda>>, values=(), map_values=False, get_process=<function FakeInstrument.<lambda>>, set_process=<function FakeInstrument.<lambda>>, check_set_errors=False, check_get_errors=False, **kwargs)

	Fake Instrument.control.

Strip commands and only store and return values indicated by
format strings to mimic many simple commands.
This is analogous how the tests in test_instrument are handled.

	
class pymeasure.instruments.fakes.SwissArmyFake(name='Mock instrument', wait=0.1, **kwargs)

	Bases: FakeInstrument

Dummy instrument class useful for testing.

Like a Swiss Army knife, this class provides multi-tool functionality in the form of streams
of multiple types of fake data. Data streams that can currently be generated by this class
include ‘voltages’, sinusoidal ‘waveforms’, and mono channel ‘image data’.

	
property frame

	Get a new image frame.

	
property frame_format

	Control the format for image data returned from the get_frame() method.
Allowed values are:
mono_8: single channel 8-bit image.
mono_16: single channel 16-bit image.

	
property frame_height

	Control frame height in pixels.

	
property frame_width

	Control frame width in pixels.

	
property output_voltage

	Control the voltage.

	
property time

	Control the elapsed time.

	
property voltage

	Measure the voltage.

	
property wave

	Measure a waveform.

Validator functions

Validators are used in conjunction with the Instrument.control or Instrument.setting functions to allow properties with complex restrictions for valid values. They are described in more detail in the Restricting values with validators section.

	
pymeasure.instruments.validators.discreteTruncate(number, discreteSet)

	Truncates the number to the closest element in the positive discrete set.
Returns False if the number is larger than the maximum value or negative.

	
pymeasure.instruments.validators.joined_validators(*validators)

	Returns a validator function that represents a list of validators joined together.

A value passed to the validator is returned if it passes any validator (not all of them).
Otherwise it raises a ValueError.

Note: the joined validator expects values to be a sequence of values
appropriate for the respective validators (often sequences themselves).

	Example

	

>>> from pymeasure.instruments.validators import strict_discrete_set, strict_range
>>> from pymeasure.instruments.validators import joined_validators
>>> joined_v = joined_validators(strict_discrete_set, strict_range)
>>> values = [['MAX','MIN'], range(10)]
>>> joined_v(5, values)
5
>>> joined_v('MAX', values)
'MAX'
>>> joined_v('NONSENSE', values)
Traceback (most recent call last):
...
ValueError: Value of NONSENSE does not match any of the joined validators

	Parameters

	validators – an iterable of other validators

	
pymeasure.instruments.validators.modular_range(value, values)

	Provides a validator function that returns the value
if it is in the range. Otherwise it returns the value,
modulo the max of the range.

	Parameters

	
	value – a value to test

	values – A set of values that are valid

	
pymeasure.instruments.validators.modular_range_bidirectional(value, values)

	Provides a validator function that returns the value
if it is in the range. Otherwise it returns the value,
modulo the max of the range. Allows negative values.

	Parameters

	
	value – a value to test

	values – A set of values that are valid

	
pymeasure.instruments.validators.strict_discrete_range(value, values, step)

	Provides a validator function that returns the value
if its value is less than the maximum and greater than the
minimum of the range and is a multiple of step.
Otherwise it raises a ValueError.

	Parameters

	
	value – A value to test

	values – A range of values (range, list, etc.)

	step – Minimum stepsize (resolution limit)

	Raises

	ValueError if the value is out of the range

	
pymeasure.instruments.validators.strict_discrete_set(value, values)

	Provides a validator function that returns the value
if it is in the discrete set. Otherwise it raises a ValueError.

	Parameters

	
	value – A value to test

	values – A set of values that are valid

	Raises

	ValueError if the value is not in the set

	
pymeasure.instruments.validators.strict_range(value, values)

	Provides a validator function that returns the value
if its value is less than or equal to the maximum and
greater than or equal to the minimum of values.
Otherwise it raises a ValueError.

	Parameters

	
	value – A value to test

	values – A range of values (range, list, etc.)

	Raises

	ValueError if the value is out of the range

	
pymeasure.instruments.validators.truncated_discrete_set(value, values)

	Provides a validator function that returns the value
if it is in the discrete set. Otherwise, it returns the smallest
value that is larger than the value.

	Parameters

	
	value – A value to test

	values – A set of values that are valid

	
pymeasure.instruments.validators.truncated_range(value, values)

	Provides a validator function that returns the value
if it is in the range. Otherwise it returns the closest
range bound.

	Parameters

	
	value – A value to test

	values – A set of values that are valid

Comedi data acquisition

The Comedi libraries provide a convenient method for interacting with data acquisition cards, but are restricted to Linux compatible operating systems.

	
pymeasure.instruments.comedi.getAI(device, channel, range=None)

	Returns the analog input channel as specified for a given device

	
pymeasure.instruments.comedi.getAO(device, channel, range=None)

	Returns the analog output channel as specified for a given device

	
pymeasure.instruments.comedi.readAI(device, channel, range=None, count=1)

	Reads a single measurement (count==1) from the analog input channel
of the device specified. Multiple readings can be preformed with count
not equal to one, which are seperated by an arbitrary time

	
pymeasure.instruments.comedi.writeAO(device, channel, voltage, range=None)

	Writes a single voltage to the analog output channel of the
device specified

Resource Manager

The list_resources function provides an interface to check connected instruments interactively.

	
pymeasure.instruments.list_resources()

	Prints the available resources, and returns a list of VISA resource names

resources = list_resources()
#prints (e.g.)
 #0 : GPIB0::22::INSTR : Agilent Technologies,34410A,******
 #1 : GPIB0::26::INSTR : Keithley Instruments Inc., Model 2612, *****
dmm = Agilent34410(resources[0])

Active Technologies

This section contains specific documentation on the Active Technologies instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Active Technologies AWG-401x 1.2GS/s Arbitrary Waveform Generator
	AWG401x_AFG

	AWG401x_AWG

	ChannelAFG

Active Technologies AWG-401x 1.2GS/s Arbitrary Waveform Generator

	
class pymeasure.instruments.activetechnologies.AWG401x_AFG(adapter, **kwargs)

	Bases: AWG401x_base

Represents the Active Technologies AWG-401x Arbitrary Waveform Generator
in AFG mode.

wfg = AWG401x_AFG("TCPIP::192.168.0.123::INSTR")

wfg.reset() # Reset the instrument at default state

wfg.ch[1].shape = "SINUSOID" # Sets a sine waveform on CH1
wfg.ch[1].frequency = 4.7e3 # Sets the frequency to 4.7 kHz on CH1
wfg.ch[1].amplitude = 1 # Set amplitude of 1 V on CH1
wfg.ch[1].offset = 0 # Set the amplitude to 0 V on CH1
wfg.ch[1].enabled = True # Enables the CH1

wfg.ch[2].shape = "SQUARE" # Sets a square waveform on CH2
wfg.ch[2].frequency = 100e6 # Sets the frequency to 100 MHz on CH2
wfg.ch[2].amplitude = 0.5 # Set amplitude of 0.5 V on CH2
wfg.ch[2].offset = 0 # Set the amplitude to 0 V on CH2
wfg.ch[2].enabled = True # Enables the CH2

wfg.enabled = True # Enable output of waveform generator
wfg.beep() # "beep"

print(wfg.check_errors()) # Get the error queue

	
ch_1

	
	Channel

	ChannelAFG

	
ch_2

	
	Channel

	ChannelAFG

	
property enabled

	A boolean property that enables the generation of signals.

	
class pymeasure.instruments.activetechnologies.AWG401x_AWG(adapter, **kwargs)

	Bases: AWG401x_base

Represents the Active Technologies AWG-401x Arbitrary Waveform Generator
in AWG mode.

wfg = AWG401x_AWG("TCPIP::192.168.0.123::INSTR")

wfg.reset() # Reset the instrument at default state

Set a oscillating waveform
wfg.waveforms["MyWaveform"] = [1, 0] * 8

for i in range(1, wfg.num_ch + 1):
 wfg.entries[1].ch[i].voltage_high = 1 # Sets high voltage = 1
 wfg.entries[1].ch[i].voltage_low = 0 # Sets low voltage = 1
 wfg.entries[1].ch[i].waveform = "SQUARE" # Sets a square wave
 wfg.setting_ch[i].enabled = True # Enable channel

wfg.entries.resize(2) # Resize the number of entries to 2

wfg.entries[2].ch[1].waveform = "MyWaveform" # Set custom waveform

wfg.enabled = True # Enable output of waveform generator
wfg.beep() # "beep"

print(wfg.check_errors()) # Get the error queue

	
class DummyEntriesElements(parent, number_of_channel)

	Bases: Sequence

Dummy List Class to list every sequencer entry. The content is
loaded in real-time.

	
class WaveformsLazyDict(parent)

	Bases: MutableMapping

This class inherit from MutableMapping in order to create a custom
dict to lazy load, modify, delete and create instrument waveform.

	
reset()

	Reset the class reloading the waveforms from instrument

	
property burst_count

	This property sets or queries the burst count parameter.(dynamic)

	
property burst_count_max

	This property queries the maximum burst count parameter.

	
property burst_count_min

	This property queries the minimum burst count parameter.

	
property enabled

	A boolean property that enables the generation of signals.

	
property entry_level_strategy

	This property sets or or returns the Entry Length Strategy. This
strategy manages the length of the sequencer entries in relationship
with the length of the channel waveforms defined for each entry. The
possible values are:

	ADAPTL<ONGER>: the length of an entry of the sequencer by default
will be equal to the length of the longer channel waveform, among all
analog channels, assigned to the entry.

	ADAPTS<HORTER>: the length of an entry of the sequencer by default
will be equal to the length of the shorter channel waveform, among
all analog channels, assigned to the entry.

	DEF<AULT>:the length of an entry of the sequencer by default will be
equal to the value specified in the Sequencer Item Default Length [N]
parameter

	
list_files(path=None)

	Return a List of tuples with all file found in a directory. If the
path is not specified the current directory will be used

	
property num_ch

	This property queries the number of analog channels.

	
property num_dch

	This property queries the number of digital channels.

	
remove_file(file_name, path=None)

	Remove a specified file

	
property run_mode

	This property sets or returns the AWG run mode. The possible values
are:

	CONT<INUOUS>: each waveform will loop as written in the entry
repetition parameter and the entire sequence is repeated circularly

	BURS<T>: the AWG waits for a trigger event. When the trigger event
occurs each waveform will loop as written in the entry repetition
parameter and the entire sequence will be repeated circularly many
times as written in the Burst Count[N] parameter. If you set Burst
Count[N]=1 the instrument is in Single mode and the sequence will be
repeated only once.

	TCON<TINUOUS>: the AWG waits for a trigger event. When the trigger
event occurs each waveform will loop as written in the entry
repetition parameter and the entire sequence will be repeated
circularly.

	STEP<PED>: the AWG, for each entry, waits for a trigger event before
the execution of the sequencer entry. The waveform of the entry will
loop as written in the entry repetition parameter. After the
generation of an entry has completed, the last sample of the current
entry or the first sample of the next entry is held until the next
trigger is received. At the end of the entire sequence the execution
will restart from the first entry.

	ADVA<NCED>: it enables the “Advanced” mode. In this mode the
execution of the sequence can be changed by using conditional and
unconditional jumps (JUMPTO and GOTO commands) and dynamic jumps
(PATTERN JUMP commands).

The *RST command sets this parameter to CONTinuous.

	
property run_status

	This property returns the run state of the AWG. The possible values
are: STOPPED, WAITING_TRIGGER, RUNNING

	
property sample_decreasing_strategy

	This property sets or returns the Sample Decreasing Strategy. The
“Sample decreasing strategy” parameter defines the strategy used to
adapt the waveform length to the sequencer entry length in the case
where the original waveform length is longer than the sequencer entry
length. Can be set to: DECIM<ATION>, CUTT<AIL>, CUTH<EAD>

	
property sample_increasing_strategy

	This property sets or or returns the Sample Increasing Strategy. The
“Sample increasing strategy” parameter defines the strategy used to
adapt the waveform length to the sequencer entry length in the case
where the original waveform length is shorter than the sequencer entry
length. Can be set to: INTER<POLATION>, RETURN<ZERO>, HOLD<LAST>,
SAMPLESM<ULTIPLICATION>

	
property sampling_rate

	This property sets or queries the sample rate for the Sampling
Clock.(dynamic)

	
property sampling_rate_max

	This property queries the maximum sample rate for the Sampling
Clock.

	
property sampling_rate_min

	This property queries the minimum sample rate for the Sampling
Clock.

	
save_file(file_name, data, path=None, override_existing=False)

	Write a string in a file in the instrument

	
trigger()

	Force a trigger event to occour.

	
property trigger_source

	This property sets or returns the instrument trigger source. The
possible values are:

	TIM<ER>: the trigger is sent at regular intervals.

	EXT<ERNAL>: the trigger come from the external BNC connector.

	MAN<UAL>: the trigger is sent via software or using the trigger
button on front panel.

	
property waveforms

	This property returns a dict with all the waveform present
in the instrument system (Wave. List). It is possible to modify the
values, delete them or create new waveforms

	
class pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG(instrument, id)

	Bases: ChannelBase

Implementation of a Active Technologies AWG-4000 channel in AFG mode.

	
property baseline_offset

	This property sets or queries the offset level for the specified
channel. The offset range setting depends on the amplitude parameter.
(dynamic)

	
property baseline_offset_max

	This property queries the maximum offset voltage level that can be
set to the output waveform.

	
property baseline_offset_min

	This property queries the minimum offset voltage level that can be
set to the output waveform.

	
property frequency

	This property sets or queries the frequency of the output waveform.
This command is available when the Run Mode is set to any setting other
than Sweep. The output frequency range setting depends on the type of
output waveform. If you change the type of output waveform, it may
change the output frequency because changing waveform types affects the
setting range of the output frequency. The output frequency range
setting depends also on the amplitude parameter.(dynamic)

	
property frequency_max

	This property queries the maximum frequency that can be set to the
output waveform.

	
property frequency_min

	This property queries the minimum frequency that can be set to the
output waveform.

	
property load_impedance

	This property sets the output load impedance for the specified
channel. The specified value is used for amplitude, offset, and
high/low level settings. You can set the impedance to any value from
1 Ω to 1 MΩ. The default value is 50 Ω.

	
property output_impedance

	This property sets the instrument output impedance, the possible
values are: 5 Ohm or 50 Ohm (default).

	
property phase

	This property sets or queries the phase of the output waveform for
the specified channel. The value is in degrees.(dynamic)

	
property phase_max

	This property queries the maximum phase that can be set to the
output waveform.

	
property phase_min

	This property queries the minimum phase that can be set to the
output waveform.

	
property shape

	This property sets or queries the shape of the carrier waveform.
Allowed choices depends on the choosen modality, please refer on
instrument manual. When you set this property with a different value,
if the instrument is running it will be stopped.
Can be set to: SIN<USOID>, SQU<ARE>, PULS<E>, RAMP, PRN<OISE>, DC,
SINC, GAUS<SIAN>, LOR<ENTZ>, ERIS<E>, EDEC<AY>, HAV<ERSINE>, ARBB,
EFIL<E>, DOUBLEPUL<SE>

	
property voltage_amplitude

	This property sets or queries the output amplitude for the specified
channel. The measurement unit of amplitude depends on the selection
operated using the voltage_unit property. If the carrier is Noise the
amplitude is Vpk instead of Vpp. If the carrier is DC level this
command causes an error. The range of the amplitude setting could be
limited by the frequency and offset parameter of the carrier waveform.
(dynamic)

	
property voltage_amplitude_max

	This property queries the maximum amplitude voltage level that can
be set to the output waveform.

	
property voltage_amplitude_min

	This property queries the minimum amplitude voltage level that can
be set to the output waveform.

	
property voltage_high

	This property sets or queries the high level of the waveform. The
high level could be limited by noise level to not exceed the maximum
amplitude. If the carrier is Noise or DC level, this command and this
query cause an error.(dynamic)

	
property voltage_high_max

	This property queries the maximum high voltage level that can be set
to the output waveform.

	
property voltage_high_min

	This property queries the minimum high voltage level that can be set
to the output waveform.

	
property voltage_low

	This property sets or queries the low level of the waveform. The
low level could be limited by noise level to not exceed the maximum
amplitude. If the carrier is Noise or DC level, this command and this
query cause an error.(dynamic)

	
property voltage_low_max

	This property queries the maximum low voltage level that can be set
to the output waveform.

	
property voltage_low_min

	This property queries the minimum low voltage level that can be set
to the output waveform.

	
property voltage_offset

	This property sets or queries the offset level for the specified
channel. The offset range setting depends on the amplitude parameter.
(dynamic)

	
property voltage_offset_max

	This property queries the maximum offset voltage level that can be
set to the output waveform.

	
property voltage_offset_min

	This property queries the minimum offset voltage level that can be
set to the output waveform.

	
property voltage_unit

	This property sets or queries the units of output amplitude, the
possible choices are: VPP, VRMS, DBM. This command does not affect the
offset, high level, or low level of output.

Advantest

This section contains specific documentation on the Advantest instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Advantest R3767CG Vector Network Analyzer
	AdvantestR3767CG

	Advantest R6245/R6246 DC Voltage/Current Sources/Monitors
	Main Classes

	General Information

	Examples

Advantest R3767CG Vector Network Analyzer

	
class pymeasure.instruments.advantest.advantestR3767CG.AdvantestR3767CG(adapter, name='Advantest R3767CG', **kwargs)

	Bases: Instrument

Represents the Advantest R3767CG VNA. Implements controls to change the analysis
range and to retreve the data for the trace.

	
property center_frequency

	Center Frequency in Hz

	
property id

	Reads the instrument identification

	
property span_frequency

	Span Frequency in Hz

	
property start_frequency

	Starting frequency in Hz

	
property stop_frequency

	Stoping frequency in Hz

	
property trace_1

	Reads the Data array from trace 1 after formatting

Advantest R6245/R6246 DC Voltage/Current Sources/Monitors

Main Classes

	
class pymeasure.instruments.advantest.advantestR624X.AdvantestR6245(adapter, name='Advantest R6245 SourceMeter', **kwargs)

	Bases: AdvantestR624X

Main instrument class for Advantest R6245 DC Voltage/Current Source/Monitor

	
ch_A

	
	Channel

	SMUChannel

	
ch_B

	
	Channel

	SMUChannel

	
class pymeasure.instruments.advantest.advantestR624X.AdvantestR6246(adapter, name='Advantest R6246 SourceMeter', **kwargs)

	Bases: AdvantestR624X

Main instrument class for Advantest R6246 DC Voltage/Current Source/Monitor

	
ch_A

	
	Channel

	SMUChannel

	
ch_B

	
	Channel

	SMUChannel

	
class pymeasure.instruments.advantest.advantestR624X.AdvantestR624X(adapter, name='R624X Source meter Base Class', **kwargs)

	Bases: Instrument

Represents the Advantest R624X series (channel A and B) SourceMeter and provides a
high-level interface for interacting with the instrument.

This is the base class for both AdvantestR6245 and AdvantestR6246 devices. It’s not
necessary to instantiate this class directly instead create an instance of the
AdvantestR6245 or AdvantestR6246 class as shown in the following example:

smu = AdvantestR6246("GPIB::1")
smu.reset() # Set default parameters
smu.ch_A.current_source(source_range = CurrentRange.FIXED_60mA,
 source_value = 0, # Source current at 0 A
 voltage_compliance = 10) # Voltage compliance at 10 V
smu.ch_A.enable_source() # Enables the source output
smu.ch_A.measure_voltage()
smu.ch_A.current_change_source = 5e-3 # Change to 5mA
print(smu.read_measurement()) # Read and print the voltage
smu.ch_A.standby() # Put channel A in standby

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument

	kwargs – Keyword arguments for the adapter.

	
check_errors()

	Read all errors from the instrument and log them.

	Returns

	List of error entries.

	
enable_source()

	Put channel A & B into the operating state (CN).

Note

When the ‘interlock control’ of the ‘SCT’ command is ‘2’ and the
clock signal is ‘HI’, it will not enter the operating state.

	
standby()

	Put channel A & B in standby mode (CL).

	
clear_status_register()

	Clears the Standard Event Status Register (SESR) and
related queues (excluding output queues) (*CLS).

	
property srq_enabled

	Set a boolean that controls whether the GPIB SRQ feature is
enabled, takes values of True or False (S0/S1).

	Type

	bool

The SRQ feature of the GPIB bus provides hardware handshaking between
the GPIB controller card in the PC and the instrument. This allows
synchronization between moving data to the PC with the state of the
instrument without the need to use time delay functions.

	
trigger()

	Outputs the trigger signal or the start of sweep and
search measurement to both A and B channels and the trigger link (XE).

Note

	When both A channel and B channel are waiting for a trigger,
both channels are triggered.

	When either channel A or B is waiting for a trigger,
only the channel that is waiting for a trigger is triggered.

	When both A channel and B channel are waiting for sweep start,
this will apply sweep start to both channels.

	When either channel A or B is in the sweep start waiting state,
only the channel in the sweep start waiting state is started.

	When either channel A or B is waiting for a trigger and the
other is waiting for a sweep start, trigger and sweep start
are applied, respectively.

	When the trigger link is ON and this is the master unit,
set the *TRG signal on the trigger link bus to TRUE.

	When the trigger link is ON and the master unit,
the trigger link is activated.

	
stop()

	Stops the sweep when the sweep is started by
the XE command or the trigger input signal (SP).

	
set_digital_output(values)

	Outputs a 16-bit signal from the DIGITAL OUT output terminal
on the rear panel. You can set up to 9 output data (DIOS).
If there are multiple values specified, the data is output at
intervals of about 2ms and fixed as the final data.

	Parameters

	values (int or list) – Digital out bit values

Note

The output of digital data to the DIGITAL OUT pin is only the bits
specified by the DIOE command. Bits that are not specified will
result in alarm output or unused, and no digital data will be output.

	
property sweep_delay_time

	Set the sweep delay time (Ta) or generation / delay time (Ta)
of the master channel and slave channel during delayed sweep operation
or synchronous operation between pulse measurements (GDLY).

	Type

	float

Note

If the sweep delay time does not meet (Ta<Tw and Ta<Td+Tit),
an execution error will occur and it will not be set:

Tw: Pulse width
Td: Major delay time
Tit: Integration time

	
init_sequence()

	This function starts the redirection of write()
to store_sequence_command() to automatically create a sequence program.

	
start_sequence(repeat=1)

	This function starts the sequence program which is
initiated by init_sequence() and ended by end_sequence().

	
end_sequence()

	This function ends the sequence program which is
initiated by init_sequence().

	
sequence_wait(wait_mode, wait_value)

	Waits for program execution and is used only for sequence programs (WAIT).

	Parameters

	
	wait_mode (int) – Whether wait time (1) or trigger input count (2) is specified

	wait_value (float) – Wait time or trigger input count as specified by wait_mode

This command has the following functions:

	Make the execution of the next program wait for the specified time.

	Makes the next program execution wait until the specified number of triggers is input.

Regardless of the wait mode, if the wait data is 0, the wait operation is not performed.
When the wait mode is “2”, the following commands and signals can be used as trigger inputs:

	XE (XE 0, XE 1, XE 2)

	*TRG

	GET command (group execute trigger)

	Trigger input signal on rear panel

	
start_sequence_program(start, stop, repeat)

	Starts from the program number until the stop of the sequence program (RU).
Executes sequentially up to the program number, and repeats for the number of times of
specified.

	Parameters

	
	start (int) – Number of the program to start from ranging 1 to 100

	stop (int) – Number of the program to stop at ranging from 1 to 100

	repeat (int) – Number of times repeated from 1 to 100

	
store_sequence_command(line, command)

	Stores the program to be executed in the sequence program (ST).
If the program already exists, it is replaced with the new sequence.

	Parameters

	
	line (int) – Line number specified of memory location

	command (str) – Command(s) specified to be stored delimited by a semicolon (;)

	
interrupt_sequence_command(action)

	Interrupts the sequence program executed
by the start_sequence_program() command (SQSP).

	Parameters

	action (SequenceInterruptionType) – Specifies sequence interruption setup

	
property sequence_program_number

	Measure the amount of program sequences stored in the sequence memory (LNUB?).

	
sequence_program_listing(line)

	This is a query command to know the command list stored in the
program number of the sequence program memory (LST?).

	Parameters

	action (int) – Specifying the memory location for reading the commands

	Returns

	Commands stored in sequence memory

	Return type

	str

	
trigger_output_signal(trigger_output, alarm_output, scanner_output)

	Directly output the trigger output signal, alarm output signal,
scanner (start/stop) output signal from GPIB (OSIG).

	Parameters

	
	trigger_output (int) – Number specifying type of trigger output

	alarm_output (int) – Number specifying type of alaram output

	scanner_output (int) – Number specifying the type of scanner output

Trigger output:

	Do not output to trigger output.

	Output a negative pulse to the trigger output.

Alarm output:

	Finish output GO, LO.HI both set to HI level. (reset)

	Finish output Set GO to LO level.

	Set home output LO to LO level.

	Terminate output HI to LO level.

Scanner - (start/stop) output:

	Set the scanner scoot output to HI level. Output a negative pulse to the stop output.

	Make the scanner start output low.

	Output a HI level for the scanner start output and a negative pulse for the stop output.

	
set_output_format(delimiter_format, block_delimiter, terminator)

	Sets the format and terminator of the output data output by GPIB (FMT).

	Parameters

	
	delimiter_format (int) – Type of delimiter format

	block_delimiter (int) – Type of block delimiter

	terminator (int) – Type of termination character

The output of <EOI> (End or Identify) is output at the following timing:
1,2: Simultaneously with LF
4: Simultaneously with the last output data

If the output data format is specified as binary format,
the terminator is fixed to <EOI> only and the terminator selection is ignored.

delimiter_format:

	ASCII format with header

	No header, ASCII format

	Binary format

block_delimiter:

	Make it the same as the terminator.

	Use semicolon ;

	Use comma ,

terminator:

	CR, LF<EOI>

	LF<EOI>

	LF

	<EOI>

	1st character header:

	
	

	Normal measurement data

	
	

	Measurement data during overrange

	
	

	Compliance (limiter) is working.

	
	

	Oscillation detection is working.

	
	

	[Indicates the generated data]

	
	

	Measurement data when an error occurs in the search measurement

	
	

	Measurement data is not stored in the buffer memory.

	2nd character header:

	
	

	A-channel data during asynchronous operation (A-channel generation data)

	
	

	B-channel data during asynchronous operation (B channel generation data)

	
	

	A-channel data for synchronous, sweeping, delayed sweep, and double synchronous
sweep operations.

	
	

	B-channel data for synchronous, sweeping, delayed sweep, and double synchronous
sweep operations.

	3rd character header:

	
	

	Current generation, voltage measurement (ISVM) [Current generation]

	
	

	Voltage generation, current measurement (VSIM) [Voltage generation]

	
	

	Current generation, current measurement (ISIM)

	
	

	Voltage generation, voltage measurement (VSVM)

	
	

	Current generation, external voltage measurement (IS, EXT, VM)

	
	

	Voltage generation, external current measurement (VS, EXT, IM)

	
	

	Current generation, external current measurement (IS, EXT. IM)

	
	

	Voltage generation, external voltage measurement (VS, EXT, VM)

	
	

	The measurement data is not stored in the buffer memory.

	4th character header:

	
	

	No operation (fixed to A)

	
	

	Null operation result

	
	

	The result of the comparison operation is GO.

	
	

	The result of the comparison operation is LO.

	
	

	The result of the comparison operation is HI.

	
	

	The result of null operation + comparison operation is GO.

	
	

	The result of null operation + comparison operation is LO.

	
	

	The result of null operation + comparison operation is HI.

	
	

	Measurement data is not stored in the buffer memory.

	
property service_request_enable_register

	Control the contents of the service request enable register (SRER)
in the form of a SRER IntFlag (*SRE).

Note

Bits other than the RQS bit are not cleared by serial polling.
When power_on_clear() is set, status byte enable register,
SESER, device operation enable register, channel operation,
the enable register is cleared and no SRQ is issued.

	
property event_status_enable

	Control the standard event status enable. (*ESE)

	
property power_on_clear

	Control the power on clear flag, takes
values True or False. (*PSC)

	
property device_operation_enable_register

	Control the device operation output enable register (DOER) (DOE?).

	
property digital_out_enable_data

	Control the contents of digital out enable data set (DIOE).

	
property status_byte_register

	Measure the contents of the status byte register and MSS bits without
using a serial poll (*STB?).

The Status Byte Register has a hierarchical structure. ERR, DOP, ESB,
and COP bits, except RQS and MAV, have lower-level status registers.
Each register is paired with an enable register that can be selected
to output to the Status Byte register or not. The status byte register
also has an enable register, which allows you to select whether or
not to issue a service request SRQ.

Note

*STB? command can read bit 6 as MSS (logical OR of other bits).

	
property event_status_register

	Measure the contents of the standard event status register (SESR) in
the form of a SESR IntFlag (*ESR?).

Note

SESR is cleared after being read.

	
property device_operation_register

	Measure the contents of the device operations register (DOR)
in the form of a DOR IntFlag (DOC?).

	
property error_register

	Measure the contents of the error register (ERR?).

	
property self_test

	A query command that runs a self-test and reads the result (*TST?).

	
property trigger_link_function_enabled

	Set a boolean that controls whether the trigger link function is
enabled, takes values of True or False. (TLNK)

	Type

	bool

	
property display_enabled

	Set a boolean that controls whether the display is
on or off, takes values of True or False. (DISP)

	Type

	bool

	
property line_frequency

	Set the used power supply frequency (LF) to 50 or 60hz.
With this command, the integration time per PLC for the measurement
will be one cycle of the power supply frequency you are using.

	Type

	int

	
property store_config

	Set the memory area for the config to be stored at (SAV).
There are five memory areas from 0 to 4 for storing.

	Type

	int

	
property load_config

	Set the memory area for the config to be loaded from (RCL).
There are five areas (0~4) where parameters can be loaded by the RCL command.

	Type

	int

	
set_lo_common_connection_relay(enable, lo_relay=None)

	Turn the connection relay on/off between the A channel
LO (internal analog common) and the LO (internal analog common)
of the B channel (LTL).

	Parameters

	
	enable (bool) – A boolean property that controls whether or not the
connection relay is enabled. Valid values are True and False.

	lo_relay (bool, optional) – A boolean property that controls whether or not the internal
analog common relay is enabled. Valid values are True,
False and None (don’t change lo relay setting).

	
read_measurement()

	Reads the triggered value, for example triggered by the external input.

	
class pymeasure.instruments.advantest.advantestR624X.SMUChannel(parent, id, voltage_range, current_range)

	Bases: Channel

Instantiated by main instrument class for every SMUChannel

	
insert_id(command)

	Insert the channel id in a command replacing placeholder.

Subclass this method if you want to do something else,
like always prepending the channel id.

	
clear_measurement_buffer()

	Clears the measurement data buffer (MBC).

	
set_output_type(output_type, measurement_type)

	Sets the output method and type of the GPIB output (OFM).

	Parameters

	
	output_type (int or OutputType) – A property that controls the type of output

	measurement_type (int or MeasurementType) – A property that controls the measurement type

Note

For the format of the output data, refer to AdvantestR624X.set_output_format().
For DC and pulse measurements, the output method is fixed to ‘1’ (real-time output).
When the output method ‘3’ (buffering output) is specified, the measured data is not
stored in memory.

	
property analog_input

	Set the analog input terminal (ANALOG INPUT) on the rear panel ON or OFF (FL).

	Type

	int

	Turn off the analog input.

	Analog input ON, gain x1.

	Analog input ON, gain x2.5.

	
property trigger_output_timing

	Set the timing of the trigger output signal
output from TRIGGER OUT on the rear panel (TOT).
the status in the form of a TriggerOutputSignalTiming IntFlag.

	Type

	TriggerOutputSignalTiming

	
set_scanner_control(output, interlock)

	Sets the SCANNER CONTROL (START, STOP)
output signal and INTERLOCK input signal on the rear panel (SCT).

	Parameters

	
	output (int) – A property that controls the scanner output

	interlock (int) – A property that controls the scanner interlock type

output:

	Scanner, Turn off the control signal output.

	Output to the scanner control signal at the start / stop of the sweep.

	Operate / Standby Scanner, Output to the control signal.

interlock:

	Turn off the interlock signal input.

	Set as a stamper when the interlock signal input is HI.

	When the interlock signal input is HI, it is on standby, and when it is LO, it is
operated.

	
property trigger_input

	Set the type of trigger input (TJM).

	Type

	TriggerInputType

	Trigger input types

	1

	2

	3

	*TRG

	O

	O

	X

	XE 0

	O

	O

	X

	XE Channel

	O

	O

	O

	GET

	O

	O

	X

	Trigger input signal

	O

	X

	X

O can be used, X cannot be used

Note

The sweep operation cannot be started by the trigger input signal.
Be sure to start it with the ‘XE’ command. Once started, it is
possible to advance the sweep with a trigger input signal.

	
property fast_mode_enabled

	Set the channel response mode to fast or slow,
takes values of True or False (FL).

	Type

	bool

	
property sample_hold_mode

	Set the integration time of the measurement (MST).

	Type

	SampleHold

Note

	Valid only for pulse measurement and pulse sweep measurement.

	In sample hold mode, the AD transformation is just before the fall
of the pulse width.

	The sample hold mode cannot be set during DC measurement and DC sweep
measurement. When set to sample-and-hold mode, the integration time is 100 µs.
However, in 2-channel synchronous operation, if one channel is in pulse
generation and the other is in sample-and-hold mode, the DC measurement
side also operates in sample-and-hold mode.

	When performing pulse measurement and pulse sweep measurement, it
is necessary to satisfy the restrictions on the pulse width (Tw),
pulse period (Tp), and measure delay time (Td) of the WT command.
If the constraint is not satisfied, the integration time is unchanged.
To lengthen the integration time, first change the pulse width (Tw)
and pulse period (Tp). When shortening the pulse width and pulse
cycle, shorten the integration time first.

	
set_sample_mode(mode, auto_sampling=True)

	Sets synchronous, asynchronous, tracking operation
and search measurement between channels (JM).

	Parameters

	
	mode (SampleMode) – Sample Mode

	auto_sampling (bool, optional) – Whether or not auto sampling is enabled, defaults to True

	
set_timing_parameters(hold_time, measurement_delay, pulsed_width, pulsed_period)

	Set the hold time, measuring time, pulse width and the pulse period (WT).

	Parameters

	
	hold_time (float) – total amount of time for the complete pulse, until next pulse comes

	measurement_delay (float) – time between measurements

	pulsed_width (float) – Time specifying the pulse width

	pulsed_period (float) – Time specifying the pulse period

Note

Pulse measurement has the following restrictions depending on the pulse period (Tp)
setting. (For pulse sweep measurements, there are no restrictions.)

	Tp < 2ms : Not measured.

	2ms <= Tp < 10ms : Measure once every 5 ~ 20ms.

	10ms <= Tp: Measured at each pulse generation.

	
select_for_output()

	This is a query command to select a channel and to
output the measurement data (FCH?). When the output channel is selected
by the FCH command, the measured data of the same channel is
returned until the output channel is changed by the next FCH command.

Note

Reading measurements with the RMM command does not affect channel
specification with the FCH command. In the default state,
the measurement data of channel A is output.

	
trigger()

	Measurement trigger command for sweep, start search measurement or sweep step action
(XE).

	
measure_voltage(enable=True, internal_measurement=True, voltage_range=VoltageRange.AUTO)

	Sets the voltage measurement ON/OFF, measurement input, and
voltage measurement range as parameters (RV).

	Parameters

	
	enable (bool, optional) – boolean property that enables or disables voltage measurement.
Valid values are True (Measure the voltage flowing at the OUTPUT terminal)
and False (Measure the voltage from the rear panel -ANALOG COMMON).

	internal_measurement (bool, optional) – A boolean property that enables or disables the internal
measurement.

	voltage_range (VoltageRange, optional) – Specifying voltage range

	
voltage_source(source_range, source_value, current_compliance)

	Sets the source range, source value and the current compliance
for the DC (constant voltage) measurement (DV).

	Parameters

	
	source_range (VoltageRange) – Specifying source range

	source_value (float) – A number specifying the source voltage value

	current_compliance (float) – A number specifying the current compliance

Note

Regardless of the specified current compliance polarity, both polarities (+ and -) are
set.
The current compliance range is automatically set to the minimum range that includes the
set value.

	
voltage_pulsed_source(source_range, pulse_value, base_value, current_compliance)

	Sets the source range, pulse value, base value and the current compliance
of the pulse (voltage) measurement (PV).

Note

Regardless of the specified current compliance polarity, both polarities (+ and -) are
set.
The current compliance range is automatically set to the minimum range that includes the
set value.

	
property change_source_voltage

	Set new target voltage (SPOT).

	Type

	float

Note

Only the DC action source value and pulse action pulse value
are changed using the currently set DC action and pulse action parameters.
Measure after the change and set the channel to output the measured data
to the specified ch. In other words, it’s the same as running the following
commands:

	DV/DI/PV/PI

	XE xx

	FCH xx

	
voltage_fixed_level_sweep(voltage_range, voltage_level, measurement_count, current_compliance, bias=0)

	Sets the fixed level sweep (voltage) generation range, level value,
current compliance and the bias value (FXV).

Note

Regardless of the specified current compliance polarity, both polarities (+ and -) are
set.
The current compliance range is automatically set to the minimum range that includes the
set value.

	
voltage_fixed_pulsed_sweep(voltage_range, pulse, base, measurement_count, current_compliance, bias=0)

	Sets the fixed pulse (voltage) sweep generation range,
pulse value, base value, number of measurements, current compliance and the bias value
(PXV).

Note

Regardless of the specified current compliance polarity, both polarities (+ and -) are
set.
The current compliance range is automatically set to the minimum range that includes the
set value.

	
voltage_sweep(sweep_mode, repeat, voltage_range, start_value, stop_value, steps, current_compliance, bias=0)

	Sets the sweep mode, number of repeats, source range,
start value, stop value, number of steps, current compliance,
and the bias value for staircase (linear/log) voltage sweep (WV).

Note

	Sweep mode, number of repeats, and number of steps are subject to the following
restrictions.

	Let N = number of steps, m = l (one-way sweep), m = 2 (round-trip sweep).

	When the OFM command sets the output data output method to 1 or 2 m x number
of refreshes x N <= 2048

	m x N <= 2048 when the OFM command sets the output data output method to 3.

	Regardless of the specified current compliance polarity, both polarities (+ and -) are
set.

	The current compliance range is automatically set to the minimum range that includes
the set value.

	
voltage_pulsed_sweep(sweep_mode, repeat, voltage_range, base, start_value, stop_value, steps, current_compliance, bias=0)

	Sets the sweep mode, repeat count, generation range,
base value, start value, stop value, number of steps, current compliance
and the bias value for a pulse wave (linear/log) voltage sweep (PWV).

Note

	The sweep mode, number of refreshes, and number of steps are subject to the following
restrictions:

	Let N = number of steps, m = l (one-way sweep), m = 2 (round-trip sweep).

	When the OFM command sets the output data output method to 1 or 2 m x number
of refreshes x N <= 2048

	m x N <= 2048 when the OFM command sets the output data output method to 3.

	For the current compliance polarity, regardless of the specified current compliance
polarity, the compliance of both polarities (+ and -) is set.

	The current compliance range is automatically set to the minimum range that includes
the set value.

	
voltage_random_sweep(sweep_mode, repeat, start_address, stop_address, current_compliance, bias=0)

	Sets the sweep mode, repeat count, start address, stop address,
current compliance and the bias value of constant voltage random sweep (MDWV).

Note

	Sweep mode, number of repeats, start address and stop address are subject to the
following restrictions:

	Start address < Stop address

	Let N = number of steps, m = l (one-way sweep), m = 2 (round-trip sweep).

	When the OFM command sets the output data output method to 1 or 2 m x number of
refreshes x N <= 2048

	m x N <= 2048 when the OFM command sets the output data output method to 3.

	Regardless of the specified current compliance polarity, both polarities (+ and -) are
set.

	The current compliance range is automatically set to the minimum range that includes the
set value.

	
voltage_random_pulsed_sweep(sweep_mode, repeat, start_address, stop_address, current_compliance, bias=0)

	Sets the sweep mode, repeat count, base value, start address,
stop address, current compliance and the bias value of the constant voltage random pulse
sweep (MPWV).

Note

	Sweep mode, number of repeats, start address and stop address are subject to the
following restrictions:

	Start address < Stop address

	Let N = number of steps, m = l (one-way sweep), m = 2 (round-trip sweep).

	When the OFM command sets the output data output method to 1 or 2 m x number of
refreshes x N <= 2048

	m x N <= 2048 when the OFM command sets the output data output method to 3.

	Regardless of the specified current compliance polarity, both polarities (+ and -) are
set.

	The current compliance range is automatically set to the minimum range that includes the
set value.

	
voltage_set_random_memory(address, voltage_range, output, current_compliance)

	The command stores the specified value to the randomly generated data memory (RMS).

Stored generated values are swept within the specified memory
address range by the MDWV, MDWI, MPWV, MPWI commands.

	
current_source(source_range, source_value, voltage_compliance)

	Sets the source range, source value, voltage compliance
of the DC (constant current) measurement (DI).

	Parameters

	
	source_range (CurrentRange) – Specifying source range

	source_value (float) – A number specifying the source current value

	voltage_compliance (float) – A number specifying the voltage compliance

Note

Regardless of the specified voltage compliance polarity, both polarities (+ and -) are
set.
The voltage compliance range is automatically set to the minimum range that includes the
set value.

	
current_pulsed_source(source_range, pulse_value, base_value, voltage_compliance)

	Sets the source range, pulse value, base value and the voltage compliance
of the pulse (current) measurement (PI).

Note

Regardless of the specified voltage compliance polarity, both polarities (+ and -) are
set.
The voltage compliance range is automatically set to the minimum range that includes the
set value.

	
property change_source_current

	Set new target current (SPOT).

	Type

	float

Note

Only the DC action source value and pulse action pulse value
are changed using the currently set DC action and pulse action parameters.
Measure after the change and set the channel to output the measured data
to the specified ch. In other words, it’s the same as running the following
commands:

	DV/DI/PV/PI

	XE xx

	FCH xx

	
current_fixed_level_sweep(current_range, current_level, measurement_count, voltage_compliance, bias=0)

	Sets the fixed level sweep (current) generation range, level value,
voltage compliance and the bias value (FXI).

Note

Regardless of the specified voltage compliance polarity, both polarities (+ and -) are
set.
The voltage compliance range is automatically set to the minimum range that includes the
set value.

	
current_fixed_pulsed_sweep(current_range, pulse, base, measurement_count, voltage_compliance, bias=0)

	Sets the fixed pulse (current) sweep generation range,
pulse value, base value, number of measurements, voltage compliance and the bias value
(PXI).

Note

Regardless of the specified voltage compliance polarity, both polarities of + and - are
set.
The voltage compliance range is automatically set to the minimum range that includes the
set value.

	
current_sweep(sweep_mode, repeat, current_range, start_value, stop_value, steps, voltage_compliance, bias=0)

	Sets the sweep mode, number of repeats, source range,
start value, stop value, number of steps, voltage compliance
and bias value for the staircase (linear/log) current sweep (WI).

Note

	The sweep mode, number of refreshes, and number of steps are subject to the following
restrictions:

	Let N = number of steps, m = l (one-way sweep), m = 2 (round-trip sweep).

	When the OFM command sets the output data output method to 1 or 2, m x number
of repeats x N <= 2048.

	m x N <= 2048 when the OFM command sets the output data output method to 3.

	Regardless of the specified voltage compliance polarity, both polarities (+ and -) are
set.

	The voltage compliance range is automatically set to the minimum range that includes
the set value.

	
current_pulsed_sweep(sweep_mode, repeat, current_range, base, start_value, stop_value, steps, voltage_compliance, bias=0)

	Sets the sweep mode, repeat count, generation range,
base value, start value, stop value, number of steps, voltage compliance
and the bias value for a pulse wave (linear/log) current sweep (PWI).

Note

	The sweep mode, number of refreshes, and number of steps are subject to the following
restrictions:

	Let N = number of steps, m = l (one-way sweep), m = 2 (round-trip sweep).

	When the OFM command sets the output data output method to 1 or 2, m x number
of repeats x N <= 2048.

	m x N <= 2048 when the OFM command sets the output data output method to 3.

	Regardless of the specified voltage compliance polarity, both polarities (+ and -) are
set.

	The voltage compliance range is automatically set to the minimum range that includes
the set value.

	
measure_current(enable=True, internal_measurement=True, current_range=CurrentRange.AUTO)

	Set the current measurement ON/OFF, measurement input, and current measurement range as
parameters (RI).

	Parameters

	
	enable (bool, optional) – boolean property that enables or disables current measurement.
Valid values are True (Measure the current flowing at the OUTPUT terminal) and False
(Measure the current from the rear panel -ANALOG COMMON).

	internal_measurement (bool, optional) – A boolean property that enables or disables the internal
measurement.

	current_range (CurrentRange, optional) – Specifying voltage range

	
current_random_sweep(sweep_mode, repeat, start_address, stop_address, current_compliance, bias=0)

	Sets the sweep mode, repeat count, start address,
stop address, voltage compliance and the bias value of constant current random sweep
(MDWI).

Note

	Sweep mode, number of repeats, start address and stop address are subject to the
following restrictions:

	Start address < Stop address

	Let N = (stop number 1 - start number + 1), m = 1 (one-way sweep), m = 2
(round-trip sweep).

	When the output data output method is set to 1 or 2 with the OFM command m x
number of repeats x N <= 2048

	When the output data output method is set to 3 with the OFM command m x N <=
2048

	For the voltage compliance polarity, regardless of the specified voltage compliance
polarity, both polarities of + and – are set.

	The voltage compliance range is automatically set to the minimum range that includes
the set value.

	
current_random_pulsed_sweep(sweep_mode, repeat, start_address, stop_address, current_compliance, bias=0)

	Sets the sweep mode, repeat count, base value, start address,
stop address, voltage compliance and the bias value of constant current random pulse sweep
(MPWI).

Note

	Sweep mode, number of repeats, start address and stop address are subject to the
following restrictions:

	Start address < Stop address

	Let N = (stop number 1 - start number + 1), m = 1 (one-way sweep), m = 2
(round-trip sweep).

	When the output data output method is set to 1 or 2 with the OFM command m x
number of repeats x N <= 2048

	When the output data output method is set to 3 with the OFM command m x N <=
2048

	For the voltage compliance polarity, regardless of the specified voltage compliance
polarity, both polarities of + and – are set.

	The voltage compliance range is automatically set to the minimum range that includes
the set value.

	
current_set_random_memory(address, current_range, output, voltage_compliance)

	Store the current parameters to randomly generated data memory (RMS).

Stored generated values are swept within the specified memory
address range by the MDWV, MDWI, MPWV, MPWI commands.

	
read_random_memory(address)

	Return memory specified by address location (RMS?).

	Parameters

	address (int) – Adress to specify memory location.

	Returns

	Set values returned by the device from the specified address location.

	Return type

	str

	
enable_source()

	Put the specified channel into an operating state (CN).

	
standby()

	Put the specified channel into standby state (CL).

	
stop()

	Stops the sweep when the sweep is started by the
XE command or the trigger input signal (SP).

	
output_all_measurements()

	Output all measurements in the measurement
data buffer of the specified channel (RMM?).

Note

For the output format, refer to AdvantestR624X.set_output_format().
When a memory address where no measurement data is stored is read, 999.999E+99 will be
returned.

	
read_measurement_from_addr(addr)

	Output only one measurement at the specified
memory address from the measurement data buffer of the specified channel.

	Parameters

	addr (int) – Specifies the address to read from.

	Returns

	float Measurement data

Note

For the output format, refer to AdvantestR624X.set_output_format().
When a memory address where no measurement data is stored is read, 999.999E+99 will be
returned.

	
property measurement_count

	Measaure the number of measurements contained in the measurement
data buffer (NUB?).

	
property null_operation_enabled

	Set a boolean that controls whether the null operation
is enabled, takes values of True or False (NUG).

	Type

	bool

Note

	Null data is not rewritten even if the null operation is disabled.

	Null data is rewritten only when null operation is changed from OFF to ON or
initialized in case of DC operation or pulse operation.

	
set_wire_mode(four_wire, lo_guard=True)

	Used to switch remote sense and to set the LO-GUARD relay ON/OFF.
It operates regardless of operating state or standby state (OSL).

	Parameters

	
	four_wire (bool) – A boolean property that enables or disables four wire measurements.
Valid values are True (enables 4-wire sensing) and False (enables two-terminal sensing).

	lo_guard (bool) – A boolean property that enables or disables the LO-GUARD relay.

	
property auto_zero_enabled

	Set the auto zero option to ON or OFF. Valid values are
True (enabled) and False (disabled) (CM).

	Type

	bool

This command sets auto zero (automatically calibrate the
zero point of the measured value operation.

	Periodically perform auto zero.

	Auto zero once, no periodic auto zeros thereafter.

When the auto zero mode is set to True, the following operations are performed.

	For DC operation and pulse operation:

	At the end of one sweep, if he has exceeded the last autozero by more than 10 seconds,
he will do one autozero.

	If sweep start is specified during auto zero, the sweep will start after auto zero
ends.

	Sweep operation

	Auto zero is performed once every 10 seconds.

	If measurement or pulse output is specified during auto zero, it will be executed
after auto zero ends.

	
set_comparison_limits(comparison, voltage_value, upper_limit, lower_limit)

	Sets the channel ON/OFF based on the measurement comparison
and the data of the upper and lower limits to be compared (CMD).

	Parameters

	
	comparison (bool) – A boolean property that controls whether or not
the comparison function is enabled. Valid values are True or False.

	voltage_value (bool) – A boolean property that controls whether or not
voltage or current values are passed. Valid values are True or False.

	upper_limit (float) – Number specifying the upper comparison limit

	lower_limit (float) – Number specifying the lower comparison limit

	
property relay_mode

	Set the HI/LO relays for standby mode.
This command does not operate the Operate Relay (OPM).

	Type

	int

	When executing an operation only the HI side turns ON, in standby both HI and LO are
turned OFF.

	When executing an operation only the LO side turns ON, in standby both HI and LO are
turned OFF.

	When executing an operation both HI and LO turn ON, in standby both HI and LO are turned
OFF.

	When executing an operation only the HI side turns ON, in standby only the HI side is
turned OFF.

	
property operation_register

	Measure the contents of the Channel Operations Register (COR)
in the form of a COR IntFlag (COC?).

	
property output_enable_register

	Control the settings of the channel operation output enable
register (COER) in the form of a COR IntFlag ?(COE?).

	
calibration_init()

	Initialize the calibration data (CINI).

	
calibration_store_factor()

	Store the calibration factor
in the non-volatile memory (EEPROM) (CSRT).

	
property calibration_measured_value

	Set the measured value measured by an external standard
for the generated value of this instrument and start calibration (STD).

	Type

	float

	
property calibration_generation_factor

	Set the increment or decrement for the generation
calibration factor of the current generation range (CCS). It is used when
the generated value deviates from the true value.

	Type

	float

	
property calibration_factor

	Set the increment of the measurement calibration
factor of the current measurement range (CCM).

	Type

	float

	
class pymeasure.instruments.advantest.advantestR624X.SampleHold(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntEnum

	
class pymeasure.instruments.advantest.advantestR624X.SampleMode(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntEnum

	
class pymeasure.instruments.advantest.advantestR624X.VoltageRange(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntEnum

	
class pymeasure.instruments.advantest.advantestR624X.CurrentRange(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntEnum

	
class pymeasure.instruments.advantest.advantestR624X.SweepMode(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntEnum

	
class pymeasure.instruments.advantest.advantestR624X.OutputType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntEnum

	
class pymeasure.instruments.advantest.advantestR624X.TriggerInputType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntEnum

	
class pymeasure.instruments.advantest.advantestR624X.MeasurementType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntEnum

	
class pymeasure.instruments.advantest.advantestR624X.SequenceInterruptionType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntEnum

	Release pause state is a valid command only in the
sequence program pause state. otherwise it is ignored.

	Pause state enters the pause state when the currently
executing program ends.

	Abort sequence program stops the sequence program when
the currently executing program ends. If the currently running program
is a sweep operation, interrupt the sweep operation and stop the sequence
program. The output value will be the bias value.

	
class pymeasure.instruments.advantest.advantestR624X.DOR(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntFlag

bit assigment for the Device Operation Register (DOR):

	Bit (dec)

	Description

	13

	Indicates that the fast tokens program is running.

	12

	Error in search measurement

	11

	End of sequence program/high-speed sequence program execution

	10

	Sequence program Pause state

	9

	Fan stop detection

	8

	Self-test error occurred (logic part)

	7

	Trigger wait state in trigger link master operation

	6

	Calibration mode status

	5

	Trigger link ON state

	4

	Trigger link bus error

	3

	Sequence program/high-speed sequence 1 program/add/de) waiting

	2

	Wait for sequence program wait time

	1

	Sequence program running

	0

	Synchronous operation state

	
class pymeasure.instruments.advantest.advantestR624X.COR(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntFlag

bit assigment for the Channel Operations Register (COR):

	Bit (dec)

	Description

	14

	The result of the comparison operation is HI

	13

	The result of the comparison operation is GO

	12

	The result of the comparison operation is LO

	11

	Overheat detection

	10

	Overload detection

	9

	Oscillation detection

	8

	Compliance detection

	7

	Synchronous operation master channel

	6

	Measurement data output specification

	5

	There is measurement data

	4

	Self-test error occurrence (analog part)

	3

	Measurement data buffer full

	2

	Waiting for trigger

	1

	End of sweep

	0

	Operated state

	
class pymeasure.instruments.advantest.advantestR624X.SRER(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntFlag

bit assigment for the Service Request Enable Register (SRER):

	Bit (dec)

	Description

	0

	none

	1

	ERR Set when any of QYE, DDE, EXE, or CME in
the Standard Event Status Register (SESR) is set.

	2

	DOP Set when a bit in the device operation register
for which the enable register is set to enabled is set.
Cleared by reading the device operation register.

	3

	none

	4

	MAV Set when output data is set in the output queue.
Cleared when output data is read.

	5

	ESB Set when a bit in the Standard Event Status Register
(SESR) is set and the enable register is set to Enabled.
Cleared by reading SESR.

	6

	RQS (MSS) Set when bit O to bit 5 and bit 7 of the
Status Byte register are set. (this bit is read-only)

	7

	COP Set when a bit in the Channel Operations Register
is set with the Enable Register set to Enable.
Cleared by reading the Channel Operations Register.

	
class pymeasure.instruments.advantest.advantestR624X.SESR(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntFlag

bit assigment for the Standard Event Status Register (SESR):

	Bit (dec)

	Description

	0

	OPC (Operation Complete) not used

	1

	RQC unused

	2

	QYE (Query Error) Set when the output queue
overflows when reading without output data.

	3

	DDE (Device Dependent Error) Set when an
error occurs in the self-test.

	4

	EXE (Execution Error) Set when the input
data is outside the range set internally,
or when the command cannot be executed.

	5

	CME (Command Error) Set when an undefined header
or data format is wrong, or when there is a
syntax error in the command.

	6

	URQ unused

	7

	PON Set when power is switched from OFF to ON.

	
class pymeasure.instruments.advantest.advantestR624X.TriggerOutputSignalTiming(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntFlag

bit assigment for the timing of the trigger output signal
output from TRIGGER OUT on the rear panel:

	Bit (dec)

	Description

	5

	At the end of the sweep

	4

	At the end of the pulse width

	3

	At the end of the pulse cycle

	2

	At the end of measurement

	1

	At the start of measurement

	0

	At the start of occurrence

Contents

	Advantest R6245/R6246 DC Voltage/Current Sources/Monitors

	Main Classes

	General Information

	Examples

	Initialization of the Instrument

	Simple dual channel measurement example

	Program example for DC measurement

	Program example for DC measurement (with external trigger)

	Program example for pulse measurement

	Fixed Level Sweep Program Example

General Information

The R6245/6246 Series are DC voltage/current sources and monitors having
source measurement units (SMUs) with 2 isolated channels. The series covers
wide source and measurement ranges. It is ideal for measurement of DC characteristics
of items ranging from separate semiconductors such as bipolar transistors, MOSFETs
and GaAsFETs, to ICs and power devices. Further, due to the increased measuring speed
and synchronized 2-channel measurement function, device I/O characteristics can be
measured with precise timing at high speed which was previously difficult to accomplish.
Due to features such as the trigger link function and the sequence programming function
which automatically performs a series of evaluation tests automatically, the R6245/6246
enable much more efficient evaluation tests.

There is a total of 99 commands, the majority of commands have been implemented. Device
documentation is in Japanese, and the device options are enormous. The implementation is
based on 6245S-GPIB-B-FHJ-8335160E01.pdf, which can be downloaded from the ADCMT website.

Examples

Initialization of the Instrument

from pymeasure.instruments.advantest import AdvantestR6246
from pymeasure.instruments.advantest.advantestR624X import *

smu = AdvantestR6246("GPIB::1")

Simple dual channel measurement example

	Measurement characteristics:
	Channel A: Vce = 20V
Channel B: Ib = 10uA - 60uA

smu = AdvantestR6246("GPIB::1")
smu.reset() # Set default parameters
smu.ch_A.set_sample_mode(SampleMode.PULSED_SYNC) # Pulsed synchronized
smu.ch_A.voltage_source(source_range = VoltageRange.AUTO,
 source_value = 20,
 current_compliance = 0.06)
smu.ch_A.measure_current()
smu.ch_B.current_source(source_range = CurrentRange.AUTO,
 source_value = 1E-5, # Source current at 10 uA
 voltage_compliance = 5) # Voltage compliance at 5 V
smu.ch_B.measure_voltage()
smu.enable_source() # Enables source A & B

for i in range(10, 60):
 k = i * 0.000001
 smu.ch_B.current_change_source = k # Set current from 10 uA to 60 uA

 smu.trigger() # Trigger measurement
 smu.ch_A.select_for_output()
 Ic = smu.read_measurement() # Read channel A measurement
 smu.ch_B.select_for_output()
 Vbe = smu.read_measurement() # Read channel B measurement
 print(f'Ic={Ic}, Vbe={Vbe}') # Print measurements

smu.standby() # Put channel A & B in standby

Program example for DC measurement

	Measurement characteristics:
	Function: VSIM - Source voltage and measure current
Trigger voltage: 10V
Current compliance: 0.5A
Measurement delay time: 1ms
Integration time: 1 PLC
Response: Fast

After operating, the measurement is repeated 10 times with a trigger command and he prints out the results.

smu = AdvantestR6246("GPIB::1")
smu.reset() # Set default parameters
smu.ch_A.set_sample_mode(SampleMode.ASYNC, False) # Asynchronous operation and single shot sampling by trigger and command
smu.ch_A.voltage_source(source_range = VoltageRange.FIXED_BEST,
 source_value = 10,
 current_compliance = 0.5) # compliance of 0.5A
smu.ch_A.measure_current() # Measure current
smu.ch_A.set_timing_parameters(hold_time = 0, # 0 sec hold time
 measurement_delay = 1E-3, # 1ms delay between measurements
 pulsed_width = 5E-3, # 5ms pulse width
 pulsed_period = 10E-3) # 10ms pulse period
smu.ch_A.sample_hold_mode = SampleHold.MODE_1PLC # Sample at 1 power line cycle
smu.ch_A.fast_mode_enabled = True # Set channel response to fast
smu.ch_A.enable_source() # Set channel in operating state
smu.ch_A.select_for_output() # Select channel for measurement output

for i in range(1, 10):
 smu.ch_A.trigger() # Trigger a measurement
 measurement = smu.read_measurement()
 print(f"NO {i} {measurement}")

smu.ch_A.standby() # Put channel A in standby mode

Program example for DC measurement (with external trigger)

	Measurement characteristics:
	Function: VSIM - Source voltage and measure current
Source voltage: 10 V
Base voltage 1 V
Current compliance: 0.5 A
Pulse width: 5 ms
Pulse period: 10 ms
Measurement delay time: 1 ms
Integration time: 1 ms
Response: Fast

After operating, an external trigger input signal is pulsed to measure the channel operation register.
Reads the fixed end bit, captures the measurement data, and prints out the measurement result.

smu = AdvantestR6246("GPIB::1")
smu.reset() # Set default parameters

smu.ch_A.auto_zero_enabled = False
smu.ch_A.set_sample_mode(SampleMode.ASYNC, False) # Asynchronous operation and single shot sampling by trigger and command
smu.ch_A.voltage_pulsed_source(
 source_range = VoltageRange.FIXED_BEST,
 pulse_value = 10,
 base_value = 1,
 current_compliance = 0.5)
smu.ch_A.measure_current() # Measure current
smu.ch_A.fast_mode_enabled = True # Set channel response to fast
smu.ch_A.sample_hold_mode = SampleHold.MODE_1mS # Sample at 1mS
smu.ch_A.set_timing_parameters(hold_time = 0, # 0 sec hold time
 measurement_delay = 1E-3, # 1ms delay between measurements
 pulsed_width = 5E-3, # 5ms pulse width
 pulsed_period = 10E-3) # 10ms pulse period
smu.ch_A.trigger_input = TriggerInputType.ALL # Mode 1 enables the trigger input signal
smu.ch_A.output_enable_register = COR.HAS_MEASUREMENT_DATA # Measurement data available
smu.service_request_enable_register = SRER.COP # COP Set when a bit in the Channel Operations Register is set with the Enable Register set to Enable.
smu.ch_A.enable_source() # Set channel in operating state
smu.ch_A.select_for_output() # Select channel for measurement output

for i in range(1, 10):
 while not smu.ch_A.operation_register & COR.HAS_MEASUREMENT_DATA:
 pass

 measurement = smu.read_measurement()
 print(f"NO {i} {measurement}")

 while not smu.ch_A.operation_register & COR.WAITING_FOR_TRIGGER:
 pass

smu.ch_A.standby() # Put channel A in standby mode

Program example for pulse measurement

	Measurement characteristics:
	Function: ISVM - Source current and measure voltage
Pulse generation current: 100mA
Base current: 1mA
Voltage compliance: 5V
Pulse width: 0
Pulse period : 0
Measurement delay time: 0
Integration time: 1ms
Response: Fast

After the operation, repeat the measurement 10 times with the trigger command and print out the measurement results.

smu = AdvantestR6246("GPIB::1")
smu.reset() # Set default parameters
smu.ch_A.set_sample_mode(SampleMode.ASYNC, auto_sampling = False)
smu.ch_A.current_pulsed_source(
 source_range = CurrentRange.FIXED_600mA,
 pulse_value = 0.1, # 100mA
 base_value = 1E-3, # 1mA
 voltage_compliance = 5) # 5V
smu.ch_A.measure_voltage(voltage_range = VoltageRange.FIXED_BEST)
smu.ch_A.fast_mode_enabled = True # Set channel response to fast
smu.ch_A.sample_hold_mode = SampleHold.MODE_1mS # Sample at 1mS
smu.ch_A.set_timing_parameters(hold_time = 0, # 0 sec hold time
 measurement_delay = 0, # 0 sec delay between measurements
 pulsed_width = 0, # 0 sec pulse width
 pulsed_period = 0) # 0 sec pulse period
smu.ch_A.enable_source() # Set channel in operating state
smu.ch_A.select_for_output() # Select channel for measurement output

for i in range(1, 10):
 smu.ch_A.trigger() # Trigger measurement

 measurement = smu.read_measurement()
 print(f"NO {i} {measurement}")

 while not smu.ch_A.operation_register & COR.WAITING_FOR_TRIGGER:
 pass

smu.ch_A.standby() # Put channel A in standby mode

Fixed Level Sweep Program Example

	Measurement characteristics:
	function: VSVM - Voltage source and voltage measurement
Level value: 15V
Bias value: 0V
Number of measurements: 20 times
Compliance: 6mA
Measuring range: Best fixed range (=60V range)
Integration time: 100us
Measurement delay time: 0
Hold time: 1ms
Sampling mode: automatic sweep
Measurement data output method: Buffering output (output of specified data)

After operating, make 20 measurements in fixed sweep. Detect the end of sweep
by looking at the Channel Operation Register (COR). After the sweep is finished,
read the measured data from 1 to 2 using the RMM command.

smu = AdvantestR6246("GPIB::1")

First we setup our main parameters
smu.reset() # Set default parameters

smu.ch_A.set_output_type(output_type = OutputType.BUFFERING_OUTPUT_SPECIFIED,
 measurement_type = MeasurementType.MEASURE_DATA)

smu.set_output_format(delimiter_format = 2, # No header, ASCII format
 block_delimiter = 1, # Make it the same as the terminator
 terminator = 1) # CR, LF<EOI>

smu.ch_A.analog_input = 1 # Turn off the analog input.

smu.set_lo_common_connection_relay(enable = True) # Turns the connection relay on

smu.ch_A.set_wire_mode(four_wire = False, # disable four wire measurements
 lo_guard = True) # enable the LO-GUARD relay.

smu.ch_A.auto_zero_enabled = False
smu.ch_A.trigger_input = TriggerInputType.ALL # Mode 1 enables the trigger input signal

Now we set measurement specific variables
smu.ch_A.clear_measurement_buffer()
smu.ch_A.set_sample_mode(SampleMode.ASYNC, auto_sampling = True)
smu.ch_A.voltage_fixed_level_sweep(voltage_range = VoltageRange.FIXED_60V,
 voltage_level = 15,
 measurement_count = 20, # 20 measurements
 current_compliance = 6E-3, # compliance at 6mA
 bias = 0)
smu.ch_A.measure_voltage(voltage_range = VoltageRange.FIXED_BEST)
smu.ch_A.sample_hold_mode = SampleHold.MODE_100uS
smu.ch_A.set_timing_parameters(hold_time = 1E-3, # 1ms sec hold time
 measurement_delay = 0, # 0 sec delay between measurements
 pulsed_width = 0, # 0 sec pulse width
 pulsed_period = 0) # 0 sec pulse period

smu.ch_A.enable_source() # Set channel in operating state
smu.ch_A.trigger() # Start the sweep

while not smu.ch_A.operation_register & COR.END_OF_SWEEP: # Wait until the sweep is done
 pass

Read measurements
for i in range(1, 20):
 measurement = smu.ch_A.read_measurement_from_addr(i)
 print(i, measurement)

smu.ch_A.standby() # Put channel A in standby mode

Agilent

This section contains specific documentation on the Agilent instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Agilent 8257D Signal Generator
	Agilent8257D

	Agilent 8722ES Vector Network Analyzer
	Agilent8722ES

	Agilent E4408B Spectrum Analyzer
	AgilentE4408B

	Agilent E4980 LCR Meter
	AgilentE4980

	Agilent 34410A Multimeter
	Agilent34410A

	HP/Agilent/Keysight 34450A Digital Multimeter
	Agilent34450A

	Agilent 4155/4156 Semiconductor Parameter Analyzer
	Agilent4156

	SMU

	VAR1

	VAR2

	VARD

	VARX

	VMU

	VSU

	Agilent 33220A Arbitrary Waveform Generator
	Agilent33220A

	Agilent 33500 Function/Arbitrary Waveform Generator Family
	Agilent33500

	Agilent 33521A Function/Arbitrary Waveform Generator
	Agilent33521A

	Agilent33500Channel

	Agilent B1500 Semiconductor Parameter Analyzer
	General Information

	Examples

	Main Classes

	Supporting Classes

Agilent 8257D Signal Generator

	
class pymeasure.instruments.agilent.Agilent8257D(adapter, name='Agilent 8257D RF Signal Generator', **kwargs)

	Bases: Instrument

Represents the Agilent 8257D Signal Generator and
provides a high-level interface for interacting with
the instrument.

generator = Agilent8257D("GPIB::1")

generator.power = 0 # Sets the output power to 0 dBm
generator.frequency = 5 # Sets the output frequency to 5 GHz
generator.enable() # Enables the output

	
property amplitude_depth

	A floating point property that controls the amplitude modulation
in precent, which can take values from 0 to 100 %.

	
property amplitude_source

	A string property that controls the source of the amplitude modulation
signal, which can take the values: ‘internal’, ‘internal 2’, ‘external’, and
‘external 2’.

	
property center_frequency

	A floating point property that represents the center frequency
in Hz. This property can be set.

	
config_amplitude_modulation(frequency=1000.0, depth=100.0, shape='sine')

	Configures the amplitude modulation of the output signal.

	Parameters

	
	frequency – A modulation frequency for the internal oscillator

	depth – A linear depth precentage

	shape – A string that describes the shape for the internal oscillator

	
config_low_freq_out(source='internal', amplitude=3)

	Configures the low-frequency output signal.

	Parameters

	
	source – The source for the low-frequency output signal.

	amplitude – Amplitude of the low-frequency output

	
config_pulse_modulation(frequency=1000.0, input='square')

	Configures the pulse modulation of the output signal.

	Parameters

	
	frequency – A pulse rate frequency in Hertz

	input – A string that describes the internal pulse input

	
config_step_sweep()

	Configures a step sweep through frequency

	
disable()

	Disables the output of the signal.

	
disable_amplitude_modulation()

	Disables amplitude modulation of the output signal.

	
disable_low_freq_out()

	Disables low frequency output

	
disable_modulation()

	Disables the signal modulation.

	
disable_pulse_modulation()

	Disables pulse modulation of the output signal.

	
property dwell_time

	A floating point property that represents the settling time
in seconds at the current frequency or power setting.
This property can be set.

	
enable()

	Enables the output of the signal.

	
enable_amplitude_modulation()

	Enables amplitude modulation of the output signal.

	
enable_low_freq_out()

	Enables low frequency output

	
enable_pulse_modulation()

	Enables pulse modulation of the output signal.

	
property frequency

	A floating point property that represents the output frequency
in Hz. This property can be set.

	
property has_amplitude_modulation

	Reads a boolean value that is True if the amplitude modulation is enabled.

	
property has_modulation

	Reads a boolean value that is True if the modulation is enabled.

	
property has_pulse_modulation

	Reads a boolean value that is True if the pulse modulation is enabled.

	
property internal_frequency

	A floating point property that controls the frequency of the internal
oscillator in Hertz, which can take values from 0.5 Hz to 1 MHz.

	
property internal_shape

	A string property that controls the shape of the internal oscillations,
which can take the values: ‘sine’, ‘triangle’, ‘square’, ‘ramp’, ‘noise’,
‘dual-sine’, and ‘swept-sine’.

	
property is_enabled

	Reads a boolean value that is True if the output is on.

	
property low_freq_out_amplitude

	A floating point property that controls the peak voltage (amplitude) of the
low frequency output in volts, which can take values from 0-3.5V

	
property low_freq_out_source

	A string property which controls the source of the low frequency output, which
can take the values ‘internal [2]’ for the inernal source, or ‘function [2]’ for an internal
function generator which can be configured.

	
property power

	A floating point property that represents the output power
in dBm. This property can be set.

	
property pulse_frequency

	A floating point property that controls the pulse rate frequency in Hertz,
which can take values from 0.1 Hz to 10 MHz.

	
property pulse_input

	A string property that controls the internally generated modulation
input for the pulse modulation, which can take the values: ‘square’, ‘free-run’,
‘triggered’, ‘doublet’, and ‘gated’.

	
property pulse_source

	A string property that controls the source of the pulse modulation
signal, which can take the values: ‘internal’, ‘external’, and
‘scalar’.

	
shutdown()

	Shuts down the instrument by disabling any modulation
and the output signal.

	
property start_frequency

	A floating point property that represents the start frequency
in Hz. This property can be set.

	
property start_power

	A floating point property that represents the start power
in dBm. This property can be set.

	
start_step_sweep()

	Starts a step sweep.

	
property step_points

	An integer number of points in a step sweep. This property
can be set.

	
property stop_frequency

	A floating point property that represents the stop frequency
in Hz. This property can be set.

	
property stop_power

	A floating point property that represents the stop power
in dBm. This property can be set.

	
stop_step_sweep()

	Stops a step sweep.

Agilent 8722ES Vector Network Analyzer

	
class pymeasure.instruments.agilent.Agilent8722ES(adapter, name='Agilent 8722ES Vector Network Analyzer', **kwargs)

	Bases: Instrument

Represents the Agilent8722ES Vector Network Analyzer
and provides a high-level interface for taking scans of the
scattering parameters.

	
property averages

	An integer representing the number of averages to take. Note that
averaging must be enabled for this to take effect. This property can be set.

	
property averaging_enabled

	A bool that indicates whether or not averaging is enabled. This property
can be set.

	
property data

	Returns the real and imaginary data from the last scan

	
property data_complex

	Returns the complex power from the last scan

	
property data_log_magnitude

	Returns the absolute magnitude values in dB from the last scan

	
property data_magnitude

	Returns the absolute magnitude values from the last scan

	
property data_phase

	Returns the phase in degrees from the last scan

	
disable_averaging()

	Disables averaging

	
enable_averaging()

	Enables averaging

	
property frequencies

	Returns a list of frequencies from the last scan

	
is_averaging()

	Returns True if averaging is enabled

	
log_magnitude(real, imaginary)

	Returns the magnitude in dB from a real and imaginary
number or numpy arrays

	
magnitude(real, imaginary)

	Returns the magnitude from a real and imaginary
number or numpy arrays

	
phase(real, imaginary)

	Returns the phase in degrees from a real and imaginary
number or numpy arrays

	
scan(averages=None, blocking=None, timeout=None, delay=None)

	Initiates a scan with the number of averages specified and
blocks until the operation is complete.

	
scan_continuous()

	Initiates a continuous scan

	
property scan_points

	Gets the number of scan points

	
scan_single()

	Initiates a single scan

	
set_IF_bandwidth(bandwidth)

	Sets the resolution bandwidth (IF bandwidth)

	
set_averaging(averages)

	Sets the number of averages and enables/disables averaging. Should be
between 1 and 999

	
set_fixed_frequency(frequency)

	Sets the scan to be of only one frequency in Hz

	
property start_frequency

	A floating point property that represents the start frequency
in Hz. This property can be set.

	
property stop_frequency

	A floating point property that represents the stop frequency
in Hz. This property can be set.

	
property sweep_time

	A floating point property that represents the sweep time
in seconds. This property can be set.

Agilent E4408B Spectrum Analyzer

	
class pymeasure.instruments.agilent.AgilentE4408B(adapter, name='Agilent E4408B Spectrum Analyzer', **kwargs)

	Bases: Instrument

Represents the AgilentE4408B Spectrum Analyzer
and provides a high-level interface for taking scans of
high-frequency spectrums

	
property center_frequency

	A floating point property that represents the center frequency
in Hz. This property can be set.

	
property frequencies

	Returns a numpy array of frequencies in Hz that
correspond to the current settings of the instrument.

	
property frequency_points

	An integer property that represents the number of frequency
points in the sweep. This property can take values from 101 to 8192.

	
property frequency_step

	A floating point property that represents the frequency step
in Hz. This property can be set.

	
property start_frequency

	A floating point property that represents the start frequency
in Hz. This property can be set.

	
property stop_frequency

	A floating point property that represents the stop frequency
in Hz. This property can be set.

	
property sweep_time

	A floating point property that represents the sweep time
in seconds. This property can be set.

	
trace(number=1)

	Returns a numpy array of the data for a particular trace
based on the trace number (1, 2, or 3).

	
trace_df(number=1)

	Returns a pandas DataFrame containing the frequency
and peak data for a particular trace, based on the
trace number (1, 2, or 3).

Agilent E4980 LCR Meter

	
class pymeasure.instruments.agilent.AgilentE4980(adapter, name='Agilent E4980A/AL LCR meter', **kwargs)

	Bases: Instrument

Represents LCR meter E4980A/AL

	
property ac_current

	AC current level, in Amps

	
property ac_voltage

	AC voltage level, in Volts

	
aperture(time=None, averages=1)

	Set and get aperture.

	Parameters

	
	time – integration time as string: SHORT, MED, LONG (case insensitive);
if None, get values

	averages – number of averages, numeric

	
freq_sweep(freq_list, return_freq=False)

	Run frequency list sweep using sequential trigger.

	Parameters

	
	freq_list – list of frequencies

	return_freq – if True, returns the frequencies read from the instrument

Returns values as configured with mode

	
property frequency

	AC frequency (range depending on model), in Hertz

	
property impedance

	Measured data A and B, according to mode

	
property mode

	Select quantities to be measured:

	CPD: Parallel capacitance [F] and dissipation factor [number]

	CPQ: Parallel capacitance [F] and quality factor [number]

	CPG: Parallel capacitance [F] and parallel conductance [S]

	CPRP: Parallel capacitance [F] and parallel resistance [Ohm]

	CSD: Series capacitance [F] and dissipation factor [number]

	CSQ: Series capacitance [F] and quality factor [number]

	CSRS: Series capacitance [F] and series resistance [Ohm]

	LPD: Parallel inductance [H] and dissipation factor [number]

	LPQ: Parallel inductance [H] and quality factor [number]

	LPG: Parallel inductance [H] and parallel conductance [S]

	LPRP: Parallel inductance [H] and parallel resistance [Ohm]

	LSD: Series inductance [H] and dissipation factor [number]

	LSQ: Seriesinductance [H] and quality factor [number]

	LSRS: Series inductance [H] and series resistance [Ohm]

	RX: Resitance [Ohm] and reactance [Ohm]

	ZTD: Impedance, magnitude [Ohm] and phase [deg]

	ZTR: Impedance, magnitude [Ohm] and phase [rad]

	GB: Conductance [S] and susceptance [S]

	YTD: Admittance, magnitude [Ohm] and phase [deg]

	YTR: Admittance magnitude [Ohm] and phase [rad]

	
property trigger_source

	
	Select trigger source; accept the values:
	
	HOLD: manual

	INT: internal

	BUS: external bus (GPIB/LAN/USB)

	EXT: external connector

Agilent 34410A Multimeter

	
class pymeasure.instruments.agilent.Agilent34410A(adapter, name='HP/Agilent/Keysight 34410A Multimeter', **kwargs)

	Bases: Instrument

Represent the HP/Agilent/Keysight 34410A and related multimeters.

Implemented measurements: voltage_dc, voltage_ac, current_dc, current_ac, resistance,
resistance_4w

	
property current_ac

	AC current, in Amps

	
property current_dc

	DC current, in Amps

	
property resistance

	Resistance, in Ohms

	
property resistance_4w

	Four-wires (remote sensing) resistance, in Ohms

	
property voltage_ac

	AC voltage, in Volts

	
property voltage_dc

	DC voltage, in Volts

HP/Agilent/Keysight 34450A Digital Multimeter

	
class pymeasure.instruments.agilent.Agilent34450A(adapter, name='HP/Agilent/Keysight 34450A Multimeter', **kwargs)

	Bases: Instrument

Represent the HP/Agilent/Keysight 34450A and related multimeters.

dmm = Agilent34450A("USB0::...")
dmm.reset()
dmm.configure_voltage()
print(dmm.voltage)
dmm.shutdown()

	
beep()

	Sounds a system beep.

	
property capacitance

	Reads a capacitance measurement in Farads, based on the active mode.

	
property capacitance_auto_range

	A boolean property that toggles auto ranging for capacitance.

	
property capacitance_range

	A property that controls the capacitance range
in Farads, which can take values 1E-9, 10E-9, 100E-9, 1E-6, 10E-6, 100E-6,
1E-3, 10E-3, as well as “MIN”, “MAX”, or “DEF” (1E-6).
Auto-range is disabled when this property is set.

	
configure_capacitance(capacitance_range='AUTO')

	Configures the instrument to measure capacitance.

	Parameters

	capacitance_range – A capacitance in Farads to set the capacitance range, can be
1E-9, 10E-9, 100E-9, 1E-6, 10E-6, 100E-6, 1E-3, 10E-3,
as well as “MIN”, “MAX”, “DEF” (1E-6), or “AUTO”.

	
configure_continuity()

	Configures the instrument to measure continuity.

	
configure_current(current_range='AUTO', ac=False, resolution='DEF')

	Configures the instrument to measure current.

	Parameters

	
	current_range – A current in Amps to set the current range.
DC values can be 100E-6, 1E-3, 10E-3, 100E-3, 1, 10, as well as “MIN”,
“MAX”, “DEF” (100 mA), or “AUTO”. AC values can be 10E-3, 100E-3, 1, 10,
as well as “MIN”, “MAX”, “DEF” (100 mA), or “AUTO”.

	ac – False for DC current, and True for AC current

	resolution – Desired resolution, can be 3.00E-5, 2.00E-5, 1.50E-6 (5 1/2 digits),
as well as “MIN”, “MAX”, or “DEF” (1.50E-6).

	
configure_diode()

	Configures the instrument to measure diode voltage.

	
configure_frequency(measured_from='voltage_ac', measured_from_range='AUTO', aperture='DEF')

	Configures the instrument to measure frequency.

	Parameters

	
	measured_from – “voltage_ac” or “current_ac”

	measured_from_range – range of measured_from. AC voltage can have ranges 100E-3,
1, 10, 100, 750, as well as “MIN”, “MAX”, “DEF” (10 V),
or “AUTO”. AC current can have ranges 10E-3, 100E-3, 1, 10,
as well as “MIN”, “MAX”, “DEF” (100 mA), or “AUTO”.

	aperture – Aperture time in Seconds, can be 100 ms, 1 s, as well as “MIN”, “MAX”,
or “DEF” (1 s).

	
configure_resistance(resistance_range='AUTO', wires=2, resolution='DEF')

	Configures the instrument to measure resistance.

	Parameters

	
	resistance_range – A resistance in Ohms to set the resistance range, can be 100,
1E3, 10E3, 100E3, 1E6, 10E6, 100E6, as well as “MIN”, “MAX”, “DEF” (1E3), or “AUTO”.

	wires – Number of wires used for measurement, can be 2 or 4.

	resolution – Desired resolution, can be 3.00E-5, 2.00E-5, 1.50E-6 (5 1/2 digits),
as well as “MIN”, “MAX”, or “DEF” (1.50E-6).

	
configure_temperature()

	Configures the instrument to measure temperature.

	
configure_voltage(voltage_range='AUTO', ac=False, resolution='DEF')

	Configures the instrument to measure voltage.

	Parameters

	
	voltage_range – A voltage in Volts to set the voltage range.
DC values can be 100E-3, 1, 10, 100, 1000, as well as “MIN”, “MAX”,
“DEF” (10 V), or “AUTO”. AC values can be 100E-3, 1, 10, 100, 750,
as well as “MIN”, “MAX”, “DEF” (10 V), or “AUTO”.

	ac – False for DC voltage, True for AC voltage

	resolution – Desired resolution, can be 3.00E-5, 2.00E-5,
1.50E-6 (5 1/2 digits), as well as “MIN”, “MAX”, or “DEF” (1.50E-6).

	
property continuity

	Reads a continuity measurement in Ohms,
based on the active mode.

	
property current

	Reads a DC current measurement in Amps, based on the
active mode.

	
property current_ac

	Reads an AC current measurement in Amps, based on the
active mode.

	
property current_ac_auto_range

	A boolean property that toggles auto ranging for AC current.

	
property current_ac_range

	A property that controls the AC current range in Amps, which can take
values 10E-3, 100E-3, 1, 10, as well as “MIN”, “MAX”, or “DEF” (100 mA).
Auto-range is disabled when this property is set.

	
property current_ac_resolution

	An property that controls the resolution in the AC current
readings, which can take values 3.00E-5, 2.00E-5, 1.50E-6 (5 1/2 digits),
as well as “MIN”, “MAX”, or “DEF” (1.50E-6).

	
property current_auto_range

	A boolean property that toggles auto ranging for DC current.

	
property current_range

	A property that controls the DC current range in
Amps, which can take values 100E-6, 1E-3, 10E-3, 100E-3, 1, 10,
as well as “MIN”, “MAX”, or “DEF” (100 mA).
Auto-range is disabled when this property is set.

	
property current_resolution

	A property that controls the resolution in the DC current
readings, which can take values 3.00E-5, 2.00E-5, 1.50E-6 (5 1/2 digits),
as well as “MIN”, “MAX”, and “DEF” (3.00E-5).

	
property diode

	Reads a diode measurement in Volts, based on the active mode.

	
property frequency

	Reads a frequency measurement in Hz, based on the
active mode.

	
property frequency_aperture

	A property that controls the frequency aperture in seconds,
which sets the integration period and measurement speed. Takes values
100 ms, 1 s, as well as “MIN”, “MAX”, or “DEF” (1 s).

	
property frequency_current_auto_range

	Boolean property that toggles auto ranging for AC current in frequency measurements.

	
property frequency_current_range

	A property that controls the current range in Amps for frequency on AC current
measurements, which can take values 10E-3, 100E-3, 1, 10, as well as “MIN”,
“MAX”, or “DEF” (100 mA).
Auto-range is disabled when this property is set.

	
property frequency_voltage_auto_range

	Boolean property that toggles auto ranging for AC voltage in frequency measurements.

	
property frequency_voltage_range

	A property that controls the voltage range in Volts for frequency on AC voltage
measurements, which can take values 100E-3, 1, 10, 100, 750,
as well as “MIN”, “MAX”, or “DEF” (10 V).
Auto-range is disabled when this property is set.

	
property resistance

	Reads a resistance measurement in Ohms for 2-wire
configuration, based on the active
mode.

	
property resistance_4w

	Reads a resistance measurement in Ohms for
4-wire configuration, based on the active
mode.

	
property resistance_4w_auto_range

	A boolean property that toggles auto ranging for 4-wire resistance.

	
property resistance_4w_range

	A property that controls the 4-wire resistance range
in Ohms, which can take values 100, 1E3, 10E3, 100E3, 1E6, 10E6, 100E6,
as well as “MIN”, “MAX”, or “DEF” (1E3).
Auto-range is disabled when this property is set.

	
property resistance_4w_resolution

	A property that controls the resolution in the 4-wire
resistance readings, which can take values 3.00E-5, 2.00E-5, 1.50E-6 (5 1/2 digits),
as well as “MIN”, “MAX”, or “DEF” (1.50E-6).

	
property resistance_auto_range

	A boolean property that toggles auto ranging for 2-wire resistance.

	
property resistance_range

	A property that controls the 2-wire resistance range in Ohms, which can
take values 100, 1E3, 10E3, 100E3, 1E6, 10E6, 100E6, as well as “MIN”, “MAX”,
or “DEF” (1E3).
Auto-range is disabled when this property is set.

	
property resistance_resolution

	A property that controls the resolution in the 2-wire
resistance readings, which can take values 3.00E-5, 2.00E-5, 1.50E-6 (5 1/2 digits),
as well as “MIN”, “MAX”, or “DEF” (1.50E-6).

	
property temperature

	Reads a temperature measurement in Celsius, based on the active mode.

	
property voltage

	Reads a DC voltage measurement in Volts, based on the
active mode.

	
property voltage_ac

	Reads an AC voltage measurement in Volts, based on the
active mode.

	
property voltage_ac_auto_range

	A boolean property that toggles auto ranging for AC voltage.

	
property voltage_ac_range

	A property that controls the AC voltage range in Volts, which can
take values 100E-3, 1, 10, 100, 750, as well as “MIN”, “MAX”, or “DEF”
(10 V).
Auto-range is disabled when this property is set.

	
property voltage_ac_resolution

	A property that controls the resolution in the AC voltage readings,
which can take values 3.00E-5, 2.00E-5, 1.50E-6 (5 1/2 digits),
as well as “MIN”, “MAX”, or “DEF” (1.50E-6).

	
property voltage_auto_range

	A boolean property that toggles auto ranging for DC voltage.

	
property voltage_range

	A property that controls the DC voltage range in Volts, which
can take values 100E-3, 1, 10, 100, 1000, as well as “MIN”, “MAX”, or
“DEF” (10 V). Auto-range is disabled when this property is set.

	
property voltage_resolution

	A property that controls the resolution in the DC voltage
readings, which can take values 3.00E-5, 2.00E-5, 1.50E-6 (5 1/2 digits),
as well as “MIN”, “MAX”, or “DEF” (1.50E-6).

Agilent 4155/4156 Semiconductor Parameter Analyzer

	
class pymeasure.instruments.agilent.agilent4156.Agilent4156(adapter, name='Agilent 4155/4156 Semiconductor Parameter Analyzer', **kwargs)

	Bases: Instrument

Represents the Agilent 4155/4156 Semiconductor Parameter Analyzer
and provides a high-level interface for taking current-voltage (I-V) measurements.

from pymeasure.instruments.agilent import Agilent4156

explicitly define r/w terminations; set sufficiently large timeout or None.
smu = Agilent4156("GPIB0::25", read_termination = '\n', write_termination = '\n',
 timeout=None)

reset the instrument
smu.reset()

define configuration file for instrument and load config
smu.configure("configuration_file.json")

save data variables, some or all of which are defined in the json config file.
smu.save(['VC', 'IC', 'VB', 'IB'])

take measurements
status = smu.measure()

measured data is a pandas dataframe and can be exported to csv.
data = smu.get_data(path='./t1.csv')

The JSON file is an ascii text configuration file that defines the settings of each channel
on the instrument. The JSON file is used to configure the instrument using the convenience
function configure() as shown in the example above. For example, the
instrument setup for a bipolar transistor measurement is shown below.

{
 "SMU1": {
 "voltage_name" : "VC",
 "current_name" : "IC",
 "channel_function" : "VAR1",
 "channel_mode" : "V",
 "series_resistance" : "0OHM"
 },

 "SMU2": {
 "voltage_name" : "VB",
 "current_name" : "IB",
 "channel_function" : "VAR2",
 "channel_mode" : "I",
 "series_resistance" : "0OHM"
 },

 "SMU3": {
 "voltage_name" : "VE",
 "current_name" : "IE",
 "channel_function" : "CONS",
 "channel_mode" : "V",
 "constant_value" : 0,
 "compliance" : 0.1
 },

 "SMU4": {
 "voltage_name" : "VS",
 "current_name" : "IS",
 "channel_function" : "CONS",
 "channel_mode" : "V",
 "constant_value" : 0,
 "compliance" : 0.1
 },

 "VAR1": {
 "start" : 1,
 "stop" : 2,
 "step" : 0.1,
 "spacing" : "LINEAR",
 "compliance" : 0.1
 },

 "VAR2": {
 "start" : 0,
 "step" : 10e-6,
 "points" : 3,
 "compliance" : 2

 }
 }

	
property analyzer_mode

	A string property that controls the instrument operating mode.

	Values: SWEEP, SAMPLING

smu.analyzer_mode = "SWEEP"

	
configure(config_file)

	Configure the channel setup and sweep using a JSON configuration file.

(JSON is the JavaScript Object Notation [https://www.json.org/])

	Parameters

	config_file – JSON file to configure instrument channels.

instr.configure('config.json')

	
property data_variables

	Get a string list of data variables for which measured data is available.

This looks for all the variables saved by the save() and
save_var() methods and returns it. This is useful for creation
of dataframe headers.

	Returns

	List

header = instr.data_variables

	
property delay_time

	A floating point property that measurement delay time in seconds,
which can take the values from 0 to 65s in 0.1s steps.

instr.delay_time = 1 # delay time of 1-sec

	
disable_all()

	Disables all channels in the instrument.

instr.disable_all()

	
get_data(path=None)

	Get the measurement data from the instrument after completion.

If the measurement period is set to INF in the measure()
method, then the measurement must be stopped using stop() before
getting valid data.

	Parameters

	path – Path for optional data export to CSV.

	Returns

	Pandas Dataframe

df = instr.get_data(path='./datafolder/data1.csv')

	
property hold_time

	A floating point property that measurement hold time in seconds,
which can take the values from 0 to 655s in 1s steps.

instr.hold_time = 2 # hold time of 2-secs.

	
property integration_time

	A string property that controls the integration time.

	Values: SHORT, MEDIUM, LONG

instr.integration_time = "MEDIUM"

	
measure(period='INF', points=100)

	Performs a single measurement and waits for completion in sweep mode.
In sampling mode, the measurement period and number of points can be specified.

	Parameters

	
	period – Period of sampling measurement from 6E-6 to 1E11 seconds.
Default setting is INF.

	points – Number of samples to be measured, from 1 to 10001.
Default setting is 100.

	
save(trace_list)

	Save the voltage or current in the instrument display list

	Parameters

	trace_list – A list of channel variables whose measured data should be saved.
A maximum of 8 variables are allowed. If only one variable is being saved, a string
can be specified.

instr.save(['IC', 'IB', 'VC', 'VB']) #for list of variables
instr.save('IC') #for single variable

	
save_var(trace_list)

	Save the voltage or current in the instrument variable list.

This is useful if one or two more variables need to be saved in addition to the 8
variables allowed by save().

	Parameters

	trace_list – A list of channel variables whose measured data should be saved.
A maximum of 2 variables are allowed. If only one variable is being saved, a string
can be specified.

instr.save_var(['VA', 'VB'])

	
stop()

	Stops the ongoing measurement

instr.stop()

	
class pymeasure.instruments.agilent.agilent4156.SMU(adapter, channel, **kwargs)

	Bases: Instrument

	
property channel_function

	A string property that controls the SMU<n> channel function.

	Values: VAR1, VAR2, VARD or CONS.

instr.smu1.channel_function = "VAR1"

	
property channel_mode

	A string property that controls the SMU<n> channel mode.

	Values: V, I or COMM

VPULSE AND IPULSE are not yet supported.

instr.smu1.channel_mode = "V"

	
property compliance

	Sets the constant compliance value of SMU<n>.

If the SMU channel is setup as a variable (VAR1, VAR2, VARD) then compliance limits are
set by the variable definition.

	Value: Voltage in (-200V, 200V) and current in (-1A, 1A) based
on channel_mode().

instr.smu1.compliance = 0.1

	
property constant_value

	Set the constant source value of SMU<n>.

You use this command only if channel_function()
is CONS and also channel_mode() should not be COMM.

	Parameters

	const_value – Voltage in (-200V, 200V) and current in (-1A, 1A). Voltage or current
depends on if channel_mode() is set to V or I.

instr.smu1.constant_value = 1

	
property current_name

	Define the current name of the channel.

If input is greater than 6 characters long or starts with a number,
the name is autocorrected and prepended with ‘a’. Event is logged.

instr.smu1.current_name = "Ibase"

	
property disable

	Deletes the settings of SMU<n>.

instr.smu1.disable()

	
property series_resistance

	Controls the series resistance of SMU<n>.

	Values: 0OHM, 10KOHM, 100KOHM, or 1MOHM

instr.smu1.series_resistance = "10KOHM"

	
property voltage_name

	Define the voltage name of the channel.

If input is greater than 6 characters long or starts with a number,
the name is autocorrected and prepended with ‘a’. Event is logged.

instr.smu1.voltage_name = "Vbase"

	
class pymeasure.instruments.agilent.agilent4156.VAR1(adapter, **kwargs)

	Bases: VARX

Class to handle all the specific definitions needed for VAR1.
Most common methods are inherited from base class.

	
property spacing

	Selects the sweep type of VAR1.

	Values: LINEAR, LOG10, LOG25, LOG50.

	
class pymeasure.instruments.agilent.agilent4156.VAR2(adapter, **kwargs)

	Bases: VARX

Class to handle all the specific definitions needed for VAR2.
Common methods are imported from base class.

	
property points

	Sets the number of sweep steps of VAR2.
You use this command only if there is an SMU or VSU
whose function (FCTN) is VAR2.

instr.var2.points = 10

	
class pymeasure.instruments.agilent.agilent4156.VARD(adapter, **kwargs)

	Bases: Instrument

Class to handle all the definitions needed for VARD.
VARD is always defined in relation to VAR1.

	
property compliance

	Sets the sweep COMPLIANCE value of VARD.

instr.vard.compliance = 0.1

	
property offset

	Sets the OFFSET value of VARD.
For each step of sweep, the output values of VAR1’ are determined by the
following equation: VARD = VAR1 X RATio + OFFSet
You use this command only if there is an SMU or VSU whose function is VARD.

instr.vard.offset = 1

	
property ratio

	Sets the RATIO of VAR1’.
For each step of sweep, the output values of VAR1’ are determined by the
following equation: VAR1’ = VAR1 * RATio + OFFSet
You use this command only if there is an SMU or VSU whose function
(FCTN) is VAR1’.

instr.vard.ratio = 1

	
class pymeasure.instruments.agilent.agilent4156.VARX(adapter, var_name, **kwargs)

	Bases: Instrument

Base class to define sweep variable settings

	
property compliance

	Sets the sweep COMPLIANCE value.

instr.var1.compliance = 0.1

	
property start

	Sets the sweep START value.

instr.var1.start = 0

	
property step

	Sets the sweep STEP value.

instr.var1.step = 0.1

	
property stop

	Sets the sweep STOP value.

instr.var1.stop = 3

	
class pymeasure.instruments.agilent.agilent4156.VMU(adapter, channel, **kwargs)

	Bases: Instrument

	
property channel_mode

	A string property that controls the VMU<n> channel mode.

	Values: V, DVOL

	
property disable

	Disables the settings of VMU<n>.

instr.vmu1.disable()

	
property voltage_name

	Define the voltage name of the VMU channel.

If input is greater than 6 characters long or starts with a number,
the name is autocorrected and prepended with ‘a’. Event is logged.

instr.vmu1.voltage_name = "Vanode"

	
class pymeasure.instruments.agilent.agilent4156.VSU(adapter, channel, **kwargs)

	Bases: Instrument

	
property channel_function

	A string property that controls the VSU channel function.

	Value: VAR1, VAR2, VARD or CONS.

	
property channel_mode

	Get channel mode of VSU<n>.

	
property constant_value

	Sets the constant source value of VSU<n>.

instr.vsu1.constant_value = 0

	
property disable

	Deletes the settings of VSU<n>.

instr.vsu1.disable()

	
property voltage_name

	Define the voltage name of the VSU channel

If input is greater than 6 characters long or starts with a number,
the name is autocorrected and prepended with ‘a’. Event is logged.

instr.vsu1.voltage_name = "Ve"

Agilent 33220A Arbitrary Waveform Generator

	
class pymeasure.instruments.agilent.Agilent33220A(adapter, name='Agilent 33220A Arbitrary Waveform generator', **kwargs)

	Bases: Instrument

Represents the Agilent 33220A Arbitrary Waveform Generator.

Default channel for the Agilent 33220A
wfg = Agilent33220A("GPIB::10")

wfg.shape = "SINUSOID" # Sets a sine waveform
wfg.frequency = 4.7e3 # Sets the frequency to 4.7 kHz
wfg.amplitude = 1 # Set amplitude of 1 V
wfg.offset = 0 # Set the amplitude to 0 V

wfg.burst_state = True # Enable burst mode
wfg.burst_ncycles = 10 # A burst will consist of 10 cycles
wfg.burst_mode = "TRIGGERED" # A burst will be applied on a trigger
wfg.trigger_source = "BUS" # A burst will be triggered on TRG*

wfg.output = True # Enable output of waveform generator
wfg.trigger() # Trigger a burst
wfg.wait_for_trigger() # Wait until the triggering is finished
wfg.beep() # "beep"

print(wfg.check_errors()) # Get the error queue

	
property amplitude

	A floating point property that controls the voltage amplitude of the
output waveform in V, from 10e-3 V to 10 V. Can be set.

	
property amplitude_unit

	A string property that controls the units of the amplitude. Valid
values are Vpp (default), Vrms, and dBm. Can be set.

	
beep()

	Causes a system beep.

	
property beeper_state

	A boolean property that controls the state of the beeper. Can
be set.

	
property burst_mode

	A string property that controls the burst mode. Valid values
are: TRIG<GERED>, GAT<ED>. This setting can be set.

	
property burst_ncycles

	An integer property that sets the number of cycles to be output
when a burst is triggered. Valid values are 1 to 50000. This can be
set.

	
property burst_state

	A boolean property that controls whether the burst mode is on
(True) or off (False). Can be set.

	
property frequency

	A floating point property that controls the frequency of the output
waveform in Hz, from 1e-6 (1 uHz) to 20e+6 (20 MHz), depending on the
specified function. Can be set.

	
property offset

	A floating point property that controls the voltage offset of the
output waveform in V, from 0 V to 4.995 V, depending on the set
voltage amplitude (maximum offset = (10 - voltage) / 2). Can be set.

	
property output

	A boolean property that turns on (True) or off (False) the output
of the function generator. Can be set.

	
property pulse_dutycycle

	A floating point property that controls the duty cycle of a pulse
waveform function in percent. Can be set.

	
property pulse_hold

	A string property that controls if either the pulse width or the
duty cycle is retained when changing the period or frequency of the
waveform. Can be set to: WIDT<H> or DCYC<LE>.

	
property pulse_period

	A floating point property that controls the period of a pulse
waveform function in seconds, ranging from 200 ns to 2000 s. Can be set
and overwrites the frequency for all waveforms. If the period is
shorter than the pulse width + the edge time, the edge time and pulse
width will be adjusted accordingly.

	
property pulse_transition

	A floating point property that controls the the edge time in
seconds for both the rising and falling edges. It is defined as the
time between 0.1 and 0.9 of the threshold. Valid values are between
5 ns to 100 ns. The transition time has to be smaller than
0.625 * the pulse width. Can be set.

	
property pulse_width

	A floating point property that controls the width of a pulse
waveform function in seconds, ranging from 20 ns to 2000 s, within a
set of restrictions depending on the period. Can be set.

	
property ramp_symmetry

	A floating point property that controls the symmetry percentage
for the ramp waveform. Can be set.

	
property remote_local_state

	A string property that controls the remote/local state of the
function generator. Valid values are: LOC<AL>, REM<OTE>, RWL<OCK>.
This setting can only be set.

	
property shape

	A string property that controls the output waveform. Can be set to:
SIN<USOID>, SQU<ARE>, RAMP, PULS<E>, NOIS<E>, DC, USER.

	
property square_dutycycle

	A floating point property that controls the duty cycle of a square
waveform function in percent. Can be set.

	
trigger()

	Send a trigger signal to the function generator.

	
property trigger_source

	A string property that controls the trigger source. Valid values
are: IMM<EDIATE> (internal), EXT<ERNAL> (rear input), BUS (via trigger
command). This setting can be set.

	
property trigger_state

	A boolean property that controls whether the output is triggered
(True) or not (False). Can be set.

	
property voltage_high

	A floating point property that controls the upper voltage of the
output waveform in V, from -4.990 V to 5 V (must be higher than low
voltage). Can be set.

	
property voltage_low

	A floating point property that controls the lower voltage of the
output waveform in V, from -5 V to 4.990 V (must be lower than high
voltage). Can be set.

	
wait_for_trigger(timeout=3600, should_stop=<function Agilent33220A.<lambda>>)

	Wait until the triggering has finished or timeout is reached.

	Parameters

	
	timeout – The maximum time the waiting is allowed to take. If
timeout is exceeded, a TimeoutError is raised. If
timeout is set to zero, no timeout will be used.

	should_stop – Optional function (returning a bool) to allow the
waiting to be stopped before its end.

Agilent 33500 Function/Arbitrary Waveform Generator Family

	
class pymeasure.instruments.agilent.Agilent33500(adapter, name='Agilent 33500 Function/Arbitrary Waveform generator family', **kwargs)

	Bases: Instrument

Represents the Agilent 33500 Function/Arbitrary Waveform Generator family.

Individual devices are represented by subclasses.
User can specify a channel to control, if no channel specified, a default channel
is picked based on the device e.g. For Agilent33500B the default channel
is channel 1. See reference manual for your device

generator = Agilent33500("GPIB::1")

generator.shape = 'SIN' # Sets default channel output signal shape to sine
generator.ch_1.shape = 'SIN' # Sets channel 1 output signal shape to sine
generator.frequency = 1e3 # Sets default channel output frequency to 1 kHz
generator.ch_1.frequency = 1e3 # Sets channel 1 output frequency to 1 kHz
generator.ch_2.amplitude = 5 # Sets channel 2 output amplitude to 5 Vpp
generator.ch_2.output = 'on' # Enables channel 2 output

generator.ch_1.shape = 'ARB' # Set channel 1 shape to arbitrary
generator.ch_1.arb_srate = 1e6 # Set channel 1 sample rate to 1MSa/s

generator.ch_1.data_volatile_clear() # Clear channel 1 volatile internal memory
generator.ch_1.data_arb(# Send data of arbitrary waveform to channel 1
 'test',
 range(-10000, 10000, +20), # In this case a simple ramp
 data_format='DAC' # Data format is set to 'DAC'
)
generator.ch_1.arb_file = 'test' # Select the transmitted waveform 'test'

	
ch_1

	
	Channel

	Agilent33500Channel

	
ch_2

	
	Channel

	Agilent33500Channel

	
property amplitude

	A floating point property that controls the voltage amplitude of the
output waveform in V, from 10e-3 V to 10 V. Depends on the output
impedance.

	
property amplitude_unit

	A string property that controls the units of the amplitude. Valid
values are VPP (default), VRMS, and DBM.

	
property arb_advance

	A string property that selects how the device advances from data point
to data point. Can be set to ‘TRIG<GER>’ or ‘SRAT<E>’ (default).

	
property arb_file

	A string property that selects the arbitrary signal from the volatile
memory of the device. String has to match an existing arb signal in volatile
memory (set by data_arb()).

	
property arb_filter

	A string property that selects the filter setting for arbitrary signals.
Can be set to ‘NORM<AL>’, ‘STEP’ and ‘OFF’.

	
property arb_srate

	An floating point property that sets the sample rate of the currently selected
arbitrary signal. Valid values are 1 µSa/s to 250 MSa/s (maximum range, can be lower
depending on your device).

	
beep()

	Causes a system beep.

	
property burst_mode

	A string property that controls the burst mode. Valid values
are: TRIG<GERED>, GAT<ED>.

	
property burst_ncycles

	An integer property that sets the number of cycles to be output
when a burst is triggered. Valid values are 1 to 100000. This can be
set.

	
property burst_period

	A floating point property that controls the period of subsequent bursts.
Has to follow the equation burst_period > (burst_ncycles / frequency) + 1 µs.
Valid values are 1 µs to 8000 s.

	
property burst_state

	A boolean property that controls whether the burst mode is on
(True) or off (False).

	
clear_display()

	Removes a text message from the display.

	
data_arb(arb_name, data_points, data_format='DAC')

	Uploads an arbitrary trace into the volatile memory of the device.

The data_points can be given as:
comma separated 16 bit DAC values (ranging from -32767 to +32767),
as comma separated floating point values (ranging from -1.0 to +1.0)
or as a binary data stream.
Check the manual for more information.
The storage depends on the device type and ranges
from 8 Sa to 16 MSa (maximum).

	Parameters

	
	arb_name – The name of the trace in the volatile memory. This is used to access the
trace.

	data_points – Individual points of the trace. The format depends on the format
parameter.
format = ‘DAC’ (default): Accepts list of integer values ranging from
-32767 to +32767. Minimum of 8 a maximum of 65536 points.
format = ‘float’: Accepts list of floating point values ranging from
-1.0 to +1.0. Minimum of 8 a maximum of 65536 points.
format = ‘binary’: Accepts a binary stream of 8 bit data.

	data_format – Defines the format of data_points. Can be ‘DAC’ (default), ‘float’ or
‘binary’. See documentation on parameter data_points above.

	
data_volatile_clear()

	Clear all arbitrary signals from volatile memory.

This should be done if the same name is used continuously to load
different arbitrary signals into the memory, since an error
will occur if a trace is loaded which already exists in the memory.

	
property display

	A string property which is displayed on the front panel of
the device.

	
property ext_trig_out

	A boolean property that controls whether the trigger out signal is
active (True) or not (False). This signal is output from the Ext Trig
connector on the rear panel in Burst and Wobbel mode.

	
property frequency

	A floating point property that controls the frequency of the output
waveform in Hz, from 1 uHz to 120 MHz (maximum range, can be lower depending
on your device), depending on the specified function.

	
property offset

	A floating point property that controls the voltage offset of the
output waveform in V, from 0 V to 4.995 V, depending on the set
voltage amplitude (maximum offset = (Vmax - voltage) / 2).

	
property output

	A boolean property that turns on (True, ‘on’) or off (False, ‘off’)
the output of the function generator.

	
property output_load

	Sets the expected load resistance (should be the load impedance connected
to the output. The output impedance is always 50 Ohm, this setting can be used
to correct the displayed voltage for loads unmatched to 50 Ohm.
Valid values are between 1 and 10 kOhm or INF for high impedance.
No validator is used since both numeric and string inputs are accepted,
thus a value outside the range will not return an error.

	
property phase

	A floating point property that controls the phase of the output
waveform in degrees, from -360 degrees to 360 degrees. Not available
for arbitrary waveforms or noise.

	
phase_sync()

	Synchronize the phase of all channels.

	
property pulse_dutycycle

	A floating point property that controls the duty cycle of a pulse
waveform function in percent, from 0% to 100%.

	
property pulse_hold

	A string property that controls if either the pulse width or the
duty cycle is retained when changing the period or frequency of the
waveform. Can be set to: WIDT<H> or DCYC<LE>.

	
property pulse_period

	A floating point property that controls the period of a pulse
waveform function in seconds, ranging from 33 ns to 1e6 s. Can be set
and overwrites the frequency for all waveforms. If the period is
shorter than the pulse width + the edge time, the edge time and pulse
width will be adjusted accordingly.

	
property pulse_transition

	A floating point property that controls the edge time in
seconds for both the rising and falling edges. It is defined as the
time between the 10% and 90% thresholds of the edge.
Valid values are between 8.4 ns to 1 µs.

	
property pulse_width

	A floating point property that controls the width of a pulse
waveform function in seconds, ranging from 16 ns to 1 Ms, within a
set of restrictions depending on the period.

	
property ramp_symmetry

	A floating point property that controls the symmetry percentage
for the ramp waveform, from 0.0% to 100.0%.

	
property shape

	A string property that controls the output waveform. Can be set to:
SIN<USOID>, SQU<ARE>, TRI<ANGLE>, RAMP, PULS<E>, PRBS, NOIS<E>, ARB, DC.

	
property square_dutycycle

	A floating point property that controls the duty cycle of a square
waveform function in percent, from 0.01% to 99.98%.
The duty cycle is limited by the frequency and the minimal pulse width of
16 ns. See manual for more details.

	
trigger()

	Send a trigger signal to the function generator.

	
property trigger_source

	A string property that controls the trigger source. Valid values
are: IMM<EDIATE> (internal), EXT<ERNAL> (rear input), BUS (via trigger
command).

	
property voltage_high

	A floating point property that controls the upper voltage of the
output waveform in V, from -4.999 V to 5 V (must be higher than low
voltage by at least 1 mV).

	
property voltage_low

	A floating point property that controls the lower voltage of the
output waveform in V, from -5 V to 4.999 V (must be lower than high
voltage by at least 1 mV).

	
wait_for_trigger(timeout=3600, should_stop=<function Agilent33500.<lambda>>)

	Wait until the triggering has finished or timeout is reached.

	Parameters

	
	timeout – The maximum time the waiting is allowed to take. If
timeout is exceeded, a TimeoutError is raised. If
timeout is set to zero, no timeout will be used.

	should_stop – Optional function (returning a bool) to allow the
waiting to be stopped before its end.

Agilent 33521A Function/Arbitrary Waveform Generator

	
class pymeasure.instruments.agilent.Agilent33521A(adapter, **kwargs)

	Bases: Agilent33500

Represents the Agilent 33521A Function/Arbitrary Waveform Generator.

This documentation page shows only methods different from the parent class
Agilent33500.

	
ch_1

	
	Channel

	Agilent33500Channel

	
ch_2

	
	Channel

	Agilent33500Channel

	
property arb_srate

	An floating point property that sets the sample rate of the currently selected
arbitrary signal. Valid values are 1 µSa/s to 250 MSa/s. This can be set.

	
property frequency

	A floating point property that controls the frequency of the output
waveform in Hz, from 1 uHz to 30 MHz, depending on the specified function.
Can be set.

	
class pymeasure.instruments.agilent.agilent33500.Agilent33500Channel(parent, id)

	Bases: Channel

Implementation of a base Agilent 33500 channel

	
property amplitude

	A floating point property that controls the voltage amplitude of the
output waveform in V, from 10e-3 V to 10 V. Depends on the output
impedance.

	
property amplitude_unit

	A string property that controls the units of the amplitude. Valid
values are VPP (default), VRMS, and DBM.

	
property arb_advance

	A string property that selects how the device advances from data point
to data point. Can be set to ‘TRIG<GER>’ or ‘SRAT<E>’ (default).

	
property arb_file

	A string property that selects the arbitrary signal from the volatile
memory of the device. String has to match an existing arb signal in volatile
memory (set by data_arb()).

	
property arb_filter

	A string property that selects the filter setting for arbitrary signals.
Can be set to ‘NORM<AL>’, ‘STEP’ and ‘OFF’.

	
property arb_srate

	An floating point property that sets the sample rate of the currently selected
arbitrary signal. Valid values are 1 µSa/s to 250 MSa/s (maximum range, can be lower
depending on your device).

	
property burst_mode

	A string property that controls the burst mode. Valid values
are: TRIG<GERED>, GAT<ED>.

	
property burst_ncycles

	An integer property that sets the number of cycles to be output
when a burst is triggered. Valid values are 1 to 100000. This can be
set.

	
property burst_period

	A floating point property that controls the period of subsequent bursts.
Has to follow the equation burst_period > (burst_ncycles / frequency) + 1 µs.
Valid values are 1 µs to 8000 s.

	
property burst_state

	A boolean property that controls whether the burst mode is on
(True) or off (False).

	
data_arb(arb_name, data_points, data_format='DAC')

	Uploads an arbitrary trace into the volatile memory of the device for a given channel.

The data_points can be given as:
comma separated 16 bit DAC values (ranging from -32767 to +32767),
as comma separated floating point values (ranging from -1.0 to +1.0),
or as a binary data stream.
Check the manual for more information. The storage depends on the device type and ranges
from 8 Sa to 16 MSa (maximum).

	Parameters

	
	arb_name – The name of the trace in the volatile memory. This is used to access the
trace.

	data_points – Individual points of the trace. The format depends on the format
parameter.

format = ‘DAC’ (default): Accepts list of integer values ranging from
-32767 to +32767. Minimum of 8 a maximum of 65536 points.

format = ‘float’: Accepts list of floating point values ranging from
-1.0 to +1.0. Minimum of 8 a maximum of 65536 points.

format = ‘binary’: Accepts a binary stream of 8 bit data.

	data_format – Defines the format of data_points. Can be ‘DAC’ (default), ‘float’ or
‘binary’. See documentation on parameter data_points above.

	
data_volatile_clear()

	Clear all arbitrary signals from volatile memory for a given channel.

This should be done if the same name is used continuously to load
different arbitrary signals into the memory, since an error will occur
if a trace is loaded which already exists in memory.

	
property frequency

	A floating point property that controls the frequency of the output
waveform in Hz, from 1 uHz to 120 MHz (maximum range, can be lower depending
on your device), depending on the specified function.

	
property offset

	A floating point property that controls the voltage offset of the
output waveform in V, from 0 V to 4.995 V, depending on the set
voltage amplitude (maximum offset = (Vmax - voltage) / 2).

	
property output

	A boolean property that turns on (True, ‘on’) or off (False, ‘off’)
the output of the function generator.

	
property output_load

	Sets the expected load resistance (should be the load impedance connected
to the output. The output impedance is always 50 Ohm, this setting can be used
to correct the displayed voltage for loads unmatched to 50 Ohm.
Valid values are between 1 and 10 kOhm or INF for high impedance.
No validator is used since both numeric and string inputs are accepted,
thus a value outside the range will not return an error.

	
property phase

	A floating point property that controls the phase of the output
waveform in degrees, from -360 degrees to 360 degrees. Not available
for arbitrary waveforms or noise.

	
property pulse_dutycycle

	A floating point property that controls the duty cycle of a pulse
waveform function in percent, from 0% to 100%.

	
property pulse_hold

	A string property that controls if either the pulse width or the
duty cycle is retained when changing the period or frequency of the
waveform. Can be set to: WIDT<H> or DCYC<LE>.

	
property pulse_period

	A floating point property that controls the period of a pulse
waveform function in seconds, ranging from 33 ns to 1 Ms. Can be set
and overwrites the frequency for all waveforms. If the period is
shorter than the pulse width + the edge time, the edge time and pulse
width will be adjusted accordingly.

	
property pulse_transition

	A floating point property that controls the edge time in
seconds for both the rising and falling edges. It is defined as the
time between the 10% and 90% thresholds of the edge.
Valid values are between 8.4 ns to 1 µs.

	
property pulse_width

	A floating point property that controls the width of a pulse
waveform function in seconds, ranging from 16 ns to 1e6 s, within a
set of restrictions depending on the period.

	
property ramp_symmetry

	A floating point property that controls the symmetry percentage
for the ramp waveform, from 0.0% to 100.0%.

	
property shape

	A string property that controls the output waveform. Can be set to:
SIN<USOID>, SQU<ARE>, TRI<ANGLE>, RAMP, PULS<E>, PRBS, NOIS<E>, ARB, DC.

	
property square_dutycycle

	A floating point property that controls the duty cycle of a square
waveform function in percent, from 0.01% to 99.98%.
The duty cycle is limited by the frequency and the minimal pulse width of
16 ns. See manual for more details.

	
property voltage_high

	A floating point property that controls the upper voltage of the
output waveform in V, from -4.999 V to 5 V (must be higher than low
voltage by at least 1 mV).

	
property voltage_low

	A floating point property that controls the lower voltage of the
output waveform in V, from -5 V to 4.999 V (must be lower than high
voltage by at least 1 mV).

Agilent B1500 Semiconductor Parameter Analyzer

Contents

	Agilent B1500 Semiconductor Parameter Analyzer

	General Information

	Command Translation

	Examples

	Initialization of the Instrument

	IV measurement with 4 SMUs

	Sampling measurement with 4 SMUs

	Main Classes

	Supporting Classes

	Enumerations

General Information

This instrument driver does not support all configuration options
of the B1500 mainframe yet.
So far, it is possible to interface multiple SMU modules and source/measure
currents and voltages, perform sampling and staircase sweep measurements.
The implementation of further measurement functionalities
is highly encouraged.
Meanwhile the model is managed by Keysight,
see the corresponding “Programming Guide”
for details on the control methods and their parameters

Command Translation

Alphabetical list of implemented B1500 commands and their corresponding
method/attribute names in this instrument driver.

	Command

	Property/Method

	AAD

	SMU.adc_type()

	AB

	abort()

	AIT

	adc_setup()

	AV

	adc_averaging()

	AZ

	adc_auto_zero

	BC

	clear_buffer()

	CL

	SMU.disable()

	CM

	auto_calibration

	CMM

	SMU.meas_op_mode()

	CN

	SMU.enable()

	DI

	SMU.force() mode: 'CURRENT'

	DV

	SMU.force() mode: 'VOLTAGE'

	DZ

	force_gnd(), SMU.force_gnd()

	ERRX?

	check_errors()

	FL

	SMU.filter

	FMT

	data_format()

	*IDN?

	id()

	*LRN?

	query_learn(),
multiple methods to read/format settings directly

 AJA International

AJA International

This section contains specific documentation on the AJA International instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	AJA DCXS-750 or 1500 DC magnetron sputtering power supply
	DCXS

 AJA DCXS-750 or 1500 DC magnetron sputtering power supply

AJA DCXS-750 or 1500 DC magnetron sputtering power supply

	
class pymeasure.instruments.aja.DCXS(adapter, name='AJA DCXS sputtering power supply', **kwargs)

	Bases: Instrument

AJA DCXS-750 or 1500 DC magnetron sputtering power supply with multiple outputs

Connection to the device is made through an RS232 serial connection.
The communication settings are fixed in the device at 38400, one stopbit, no parity.
The communication protocol of the device uses single character commands and fixed length replys,
both without any terminator.

	Parameters

	
	adapter – pyvisa resource name of the instrument or adapter instance

	name (string) – The name of the instrument.

	kwargs – Any valid key-word argument for Instrument

	
property active_gun

	Control the active gun number.

	
ask(command, query_delay=0, **kwargs)

	Write a command to the instrument and return the read response.

	Parameters

	
	command – Command string to be sent to the instrument.

	query_delay – Delay between writing and reading in seconds.

	**kwargs – Keyword arguments passed to the read method.

	Returns

	String returned by the device without read_termination.

	
property current

	Measure the output current in mA.

	
property deposition_time_min

	Control the minutes part of deposition time. Can be set only when ‘enabled’ is False.

	
property deposition_time_sec

	Control the seconds part of deposition time. Can be set only when ‘enabled’ is False.

	
property enabled

	Control the on/off state of the power supply

	
property fault_code

	Get the error code from the power supply.

	
property id

	Get the power supply type identifier.

	
property material

	Control the material name of the sputter target.

	
property power

	Measure the actual output power in W.

	
property ramp_time

	Control the ramp time in seconds. Can be set only when ‘enabled’ is False.

	
read(reply_length=-1, **kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

	
property regulation_mode

	Control the regulation mode of the power supply.

	
property remaining_deposition_time_min

	Get the minutes part of remaining deposition time.

	
property remaining_deposition_time_sec

	Get the seconds part of remaining deposition time.

	
property setpoint

	Control the setpoint value. Units are determined by regulation mode
(power -> W, voltage -> V, current -> mA).

	
property shutter_delay

	Control the shutter delay in seconds. Can be set only when ‘enabled’ is False.

	
property shutter_state

	Get the status of the gun shutters. 0 for closed and 1 for open shutters.

	
property software_version

	Get the software revision of the power supply firmware.

	
property voltage

	Measure the output voltage in V.

 Ametek

Ametek

This section contains specific documentation on the Ametek instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Ametek 7270 DSP Lockin Amplifier
	Ametek7270

 Ametek 7270 DSP Lockin Amplifier

Ametek 7270 DSP Lockin Amplifier

	
class pymeasure.instruments.ametek.Ametek7270(adapter, name='Ametek DSP 7270', read_termination='\x00', write_termination='\x00', **kwargs)

	Bases: Instrument

This is the class for the Ametek DSP 7270 lockin amplifier

In this instrument, some measurements are defined only for specific modes,
called Reference modes, see set_reference_mode() and will raise errors
if called incorrectly

	
property adc1

	Reads the input value of ADC1 in Volts

	
property adc2

	Reads the input value of ADC2 in Volts

	
property adc3

	Reads the input value of ADC3 in Volts

	
property adc4

	Reads the input value of ADC4 in Volts

	
ask(command, query_delay=0)

	Send a command and read the response, stripping white spaces.

Usually the properties use the
values()
method that adds a strip call, however several methods use directly the result from ask to
be cast into some other types. It should therefore also add the strip here, as all responses
end with a newline character.

	
check_set_errors()

	mandatory to be used for property setter

The Ametek protocol expect the default null character to be read to check the property
has been correctly set. With default termination character set as Null character,
this turns out as an empty string to be read.

	
property dac1

	A floating point property that represents the output
value on DAC1 in Volts. This property can be set.

	
property dac2

	A floating point property that represents the output
value on DAC2 in Volts. This property can be set.

	
property dac3

	A floating point property that represents the output
value on DAC3 in Volts. This property can be set.

	
property dac4

	A floating point property that represents the output
value on DAC4 in Volts. This property can be set.

	
property frequency

	A floating point property that represents the lock-in
frequency in Hz. This property can be set.

	
property harmonic

	An integer property that represents the reference
harmonic mode control, taking values from 1 to 127.
This property can be set.

	
property id

	Get the instrument ID and firmware version

	
property mag

	Reads the magnitude in Volts

	
property phase

	A floating point property that represents the reference
harmonic phase in degrees. This property can be set.

	
property sensitivity

	A floating point property that controls the sensitivity
range in Volts, which can take discrete values from 2 nV to
1 V. This property can be set. (dynamic)

	
set_channel_A_mode()

	Sets instrument to channel A mode – assuming it is in voltage mode

	
set_current_mode(low_noise=False)

	Sets instrument to current control mode with either low noise or high bandwidth

	
set_differential_mode(lineFiltering=True)

	Sets instrument to differential mode – assuming it is in voltage mode

	
set_reference_mode(mode: int = 0)

	Set the instrument in Single, Dual or harmonic mode.

	Parameters

	mode – the integer specifying the mode: 0 for Single, 1 for Dual harmonic, and 2 for
Dual reference.

	
set_voltage_mode()

	Sets instrument to voltage control mode

	
shutdown()

	Ensures the instrument in a safe state

	
property slope

	A integer property that controls the filter slope in
dB/octave, which can take the values 6, 12, 18, or 24 dB/octave.
This property can be set.

	
property theta

	Reads the signal phase in degrees

	
property time_constant

	A floating point property that controls the time constant
in seconds, which takes values from 10 microseconds to 100,000
seconds. This property can be set.

	
property voltage

	A floating point property that represents the voltage
in Volts. This property can be set.

	
property x

	Reads the X value in Volts

	
property x1

	Reads the first harmonic X value in Volts

	
property x2

	Reads the second harmonic X value in Volts

	
property xy

	Reads both the X and Y values in Volts

	
property y

	Reads the Y value in Volts

	
property y1

	Reads the first harmonic Y value in Volts

	
property y2

	Reads the second harmonic Y value in Volts

 AMI

AMI

This section contains specific documentation on the AMI instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	AMI 430 Power Supply
	AMI430

 AMI 430 Power Supply

AMI 430 Power Supply

	
class pymeasure.instruments.ami.AMI430(adapter, name='AMI superconducting magnet power supply.', **kwargs)

	Bases: Instrument

Represents the AMI 430 Power supply
and provides a high-level for interacting with the instrument.

magnet = AMI430("TCPIP::web.address.com::7180::SOCKET")

magnet.coilconst = 1.182 # kGauss/A
magnet.voltage_limit = 2.2 # Sets the voltage limit in V

magnet.target_current = 10 # Sets the target current to 10 A
magnet.target_field = 1 # Sets target field to 1 kGauss

magnet.ramp_rate_current = 0.0357 # Sets the ramp rate in A/s
magnet.ramp_rate_field = 0.0422 # Sets the ramp rate in kGauss/s
magnet.ramp # Initiates the ramping
magnet.pause # Pauses the ramping
magnet.status # Returns the status of the magnet

magnet.ramp_to_current(5) # Ramps the current to 5 A

magnet.shutdown() # Ramps the current to zero and disables output

	
property coilconst

	A floating point property that sets the coil contant
in kGauss/A.

	
disable_persistent_switch()

	Disables the persistent switch.

	
enable_persistent_switch()

	Enables the persistent switch.

	
property field

	Reads the field in kGauss of the magnet.

	
has_persistent_switch_enabled()

	Returns a boolean if the persistent switch is enabled.

	
property magnet_current

	Reads the current in Amps of the magnet.

	
pause()

	Pauses the ramping of the magnetic field.

	
ramp()

	Initiates the ramping of the magnetic field to set
current/field with ramping rate previously set.

	
property ramp_rate_current

	A floating point property that sets the current ramping
rate in A/s.

	
property ramp_rate_field

	A floating point property that sets the field ramping
rate in kGauss/s.

	
ramp_to_current(current, rate)

	Heats up the persistent switch and
ramps the current with set ramp rate.

	
ramp_to_field(field, rate)

	Heats up the persistent switch and
ramps the current with set ramp rate.

	
shutdown(ramp_rate=0.0357)

	Turns on the persistent switch,
ramps down the current to zero, and turns off the persistent switch.

	
property state

	Reads the field in kGauss of the magnet.

	
property supply_current

	Reads the current in Amps of the power supply.

	
property target_current

	A floating point property that sets the target current
in A for the magnet.

	
property target_field

	A floating point property that sets the target field
in kGauss for the magnet.

	
property voltage_limit

	A floating point property that sets the voltage limit
for charging/discharging the magnet.

	
wait_for_holding(should_stop=<function AMI430.<lambda>>, timeout=800, interval=0.1)

	

	
zero()

	Initiates the ramping of the magnetic field to zero
current/field with ramping rate previously set.

 Anaheim Automation

Anaheim Automation

This section contains specific documentation on the Anaheim Automation instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	DP-Series Step Motor Controller
	DPSeriesMotorController

 DP-Series Step Motor Controller

DP-Series Step Motor Controller

The DPSeriesMotorController class implements a base driver class for Anaheim-Automation DP Series stepper motor controllers. There are many controllers sold in this series, all of which implement the same core command set. Some controllers, like the DPY50601, implement additional functionality that is not included in this driver. If these additional features are desired, they should be implemented in a subclass.

	
class pymeasure.instruments.anaheimautomation.DPSeriesMotorController(adapter, name='Anaheim Automation Stepper Motor Controller', address=0, encoder_enabled=False, **kwargs)

	Bases: Instrument

Base class to interface with Anaheim Automation DP series stepper motor controllers.

This driver has been tested with the DPY50601 and DPE25601 motor controllers.

	
property absolute_position

	Float property representing the value of the motor position measured in absolute units.
Note that in DP series motor controller instrument manuals, ‘absolute position’ refers to
the step_position property rather than this property. Also note that use of this
property relies on steps_to_absolute() and absolute_to_steps()
being implemented in a subclass. In this way, the user can define the conversion from a
motor step position into any desired absolute unit. Absolute units could be the position in
meters of a linear stage or the angular position of a gimbal mount, etc. This property can
be set.

	
absolute_to_steps(pos)

	Convert an absolute position to a number of steps to move. This must be implemented in
subclasses.

	Parameters

	pos – Absolute position in the units determined by the subclassed
absolute_to_steps() method.

	
property address

	Integer property representing the address that the motor controller uses for serial
communications.

	
property basespeed

	Integer property that represents the motor controller’s starting/homing speed. This
property can be set.

	
property busy

	Query to see if the controller is currently moving a motor.

	
check_errors()

	Method to read the error codes register and log when an error is detected.

	Return error_code

	one byte with the error codes register contents

	
property direction

	A string property that represents the direction in which the stepper motor will rotate
upon subsequent step commands. This property can be set. ‘CW’ corresponds to clockwise
rotation and ‘CCW’ corresponds to counter-clockwise rotation.

	
property encoder_autocorrect

	A boolean property to enable or disable the encoder auto correct function. This property
can be set.

	
property encoder_delay

	An integer property that represents the wait time in ms. after a move is finished before
the encoder is read for a potential encoder auto-correct action to take place. This
property can be set.

	
property encoder_enabled

	A boolean property to represent whether an external encoder is connected and should be
used to set the step_position property.

	
property encoder_motor_ratio

	An integer property that represents the ratio of the number of encoder pulses per motor
step. This property can be set.

	
property encoder_retries

	An integer property that represents the number of times the motor controller will try the
encoder auto correct function before setting an error flag. This property can be set.

	
property encoder_window

	An integer property that represents the allowable error in encoder pulses from the
desired position before the encoder auto-correct function runs. This property can be set.

	
property error_reg

	Reads the current value of the error codes register.

	
home(home_mode)

	Send command to the motor controller to ‘home’ the motor.

	Parameters

	home_mode – 0 or 1 specifying which homing mode to run.

0 will perform a homing operation where the controller moves the motor until a soft
limit is reached, then will ramp down to base speed and continue motion until a home
limit is reached.

In mode 1, the controller will move the motor until a limit is reached, then will ramp
down to base speed, change direction, and run until the limit is released.

	
property maxspeed

	Integer property that represents the motor controller’s maximum (running) speed.
This property can be set.

	
move(direction)

	Move the stepper motor continuously in the given direction until a stop command is sent
or a limit switch is reached. This method corresponds to the ‘slew’ command in the DP
series instrument manuals.

	Parameters

	direction – value to set on the direction property before moving the motor.

	
reset_position()

	Reset position as counted by the motor controller and an externally connected encoder to 0.

	
property step_position

	Integer property representing the value of the motor position measured in steps counted
by the motor controller or, if encoder_enabled is set, the steps counted by an
externally connected encoder. Note that in the DP series motor controller instrument
manuals, this property would be referred to as the ‘absolute position’ while this
driver implements a conversion between steps and absolute units for the
absolute_position property. This property can be set.

	
steps_to_absolute(steps)

	Convert a position measured in steps to an absolute position.

	Parameters

	steps – Position in steps to be converted to an absolute position.

	
stop()

	Method that stops all motion on the motor controller.

	
wait_for_completion(interval=0.5)

	Block until the controller is not “busy” (i.e. block until the motor is no longer moving.)

	Parameters

	interval – (float) seconds between queries to the “busy” flag.

	Returns

	None

	
write(command)

	Override the instrument base write method to add the motor controller’s address to the
command string.

	Parameters

	command – command string to be sent to the motor controller.

 Anapico

Anapico

This section contains specific documentation on the Anapico instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Anapico APSIN12G Signal Generator
	APSIN12G

 Anapico APSIN12G Signal Generator

Anapico APSIN12G Signal Generator

	
class pymeasure.instruments.anapico.APSIN12G(adapter, name='Anapico APSIN12G Signal Generator', **kwargs)

	Bases: Instrument

Represents the Anapico APSIN12G Signal Generator with option 9K,
HP and GPIB.

	
property blanking

	A string property that represents the blanking of output power
when frequency is changed. ON makes the output to be blanked (off) while
changing frequency. This property can be set.

	
disable_rf()

	Disables the RF output.

	
enable_rf()

	Enables the RF output.

	
property frequency

	A floating point property that represents the output frequency
in Hz. This property can be set.

	
property power

	A floating point property that represents the output power
in dBm. This property can be set.

	
property reference_output

	A string property that represents the 10MHz reference output from
the synth. This property can be set.

 Andeen Hagerling

Andeen Hagerling

This section contains specific documentation on the Andeen Hagerling instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Andeen Hagerling AH2500A capacitance bridge
	AH2500A

	Andeen Hagerling AH2700A capacitance bridge
	AH2700A

 Andeen Hagerling AH2500A capacitance bridge

Andeen Hagerling AH2500A capacitance bridge

	
class pymeasure.instruments.andeenhagerling.AH2500A(adapter, name=None, timeout=3000, write_termination='\n', read_termination='\n', **kwargs)

	Bases: Instrument

Andeen Hagerling 2500A Precision Capacitance Bridge implementation

	
property caplossvolt

	Perform a single capacitance, loss measurement and return the
values in units of pF and nS. The used measurement voltage is returned
as third value.

	
property config

	Read out configuration

	
trigger()

	Triggers a new measurement without blocking and waiting for the return
value.

	
triggered_caplossvolt()

	reads the measurement value after the device was triggered by the
trigger function.

	
property vhighest

	maximum RMS value of the used measurement voltage. Values of up to
15 V are allowed. The device will select the best suiting range below
the given value.

 Andeen Hagerling AH2700A capacitance bridge

Andeen Hagerling AH2700A capacitance bridge

	
class pymeasure.instruments.andeenhagerling.AH2700A(adapter, name='Andeen Hagerling 2700A Precision Capacitance Bridge', timeout=5000, **kwargs)

	Bases: AH2500A

Andeen Hagerling 2700A Precision Capacitance Bridge implementation

	
property caplossvolt

	Perform a single capacitance, loss measurement and return the
values in units of pF and nS. The used measurement voltage is returned
as third value.

	
check_errors()

	Read all errors from the instrument and log them.

	Returns

	List of error entries.

	
check_get_errors()

	Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
clear()

	Clears the instrument status byte

	
property complete

	Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation
Complete query places an ASCII character 1 into the device’s Output Queue when all pending
selected device operations have been finished.

	
property config

	Read out configuration

	
property frequency

	test frequency used for the measurements. Allowed are values between
50 and 20000 Hz. The device selects the closest possible frequency to
the given value.

	
property id

	Reads the instrument identification

	
property options

	Get the device options installed.

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

	
read_binary_values(**kwargs)

	Read binary values from the device.

	
read_bytes(count, **kwargs)

	Read a certain number of bytes from the instrument.

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read the whole read buffer.

	kwargs – Keyword arguments for the adapter.

	Returns bytes

	Bytes response of the instrument (including termination).

	
reset()

	Resets the instrument.

	
shutdown()

	Brings the instrument to a safe and stable state

	
property status

	Get the status byte and Master Summary Status bit.

	
trigger()

	Triggers a new measurement without blocking and waiting for the return
value.

	
triggered_caplossvolt()

	reads the measurement value after the device was triggered by the
trigger function.

	
property vhighest

	maximum RMS value of the used measurement voltage. Values of up to
15 V are allowed. The device will select the best suiting range below
the given value.

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument

	kwargs – Keyword arguments for the adapter.

	
write_binary_values(command, values, *args, **kwargs)

	Write binary values to the device.

	Parameters

	
	command – Command to send.

	values – The values to transmit.

	**kwargs (*args,) – Further arguments to hand to the Adapter.

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

 Anritsu

Anritsu

This section contains specific documentation on the Anritsu instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Anritsu MG3692C Signal Generator
	AnritsuMG3692C

	Anritsu MS9710C Optical Spectrum Analyzer
	AnritsuMS9710C

	Anritsu MS9740A Optical Spectrum Analyzer
	AnritsuMS9740A

	Anritsu MS2090A Handheld Spectrum Analyzer
	AnritsuMS2090A

	Anritsu MS464xB Vector Network Analyzer
	AnritsuMS4642B

	AnritsuMS4644B

	AnritsuMS4645B

	AnritsuMS4647B

	AnritsuMS464xB

	MeasurementChannel

	Trace

	Port

 Anritsu MG3692C Signal Generator

Anritsu MG3692C Signal Generator

	
class pymeasure.instruments.anritsu.AnritsuMG3692C(adapter, name='Anritsu MG3692C Signal Generator', **kwargs)

	Bases: Instrument

Represents the Anritsu MG3692C Signal Generator

	
disable()

	Disables the signal output.

	
enable()

	Enables the signal output.

	
property frequency

	A floating point property that represents the output frequency
in Hz. This property can be set.

	
property output

	A boolean property that represents the signal output state.
This property can be set to control the output.

	
property power

	A floating point property that represents the output power
in dBm. This property can be set.

	
shutdown()

	Shuts down the instrument, putting it in a safe state.

 Anritsu MS9710C Optical Spectrum Analyzer

Anritsu MS9710C Optical Spectrum Analyzer

	
class pymeasure.instruments.anritsu.AnritsuMS9710C(adapter, name='Anritsu MS9710C Optical Spectrum Analyzer', **kwargs)

	Bases: Instrument

Anritsu MS9710C Optical Spectrum Analyzer.

	
property analysis

	Analysis Control

	
property analysis_result

	Read back anaysis result from current scan.

	
property average_point

	Number of averages to take on each point (2-1000), or OFF

	
property average_sweep

	Number of averages to make on a sweep (2-1000) or OFF

	
center_at_peak(**kwargs)

	Center the spectrum at the measured peak.

	
property data_memory_a_condition

	Returns the data condition of data memory register A.
Starting wavelength, and a sampling point (l1, l2, n).

	
property data_memory_a_size

	Returns the number of points sampled in data memory register A.

	
property data_memory_a_values

	Reads the binary data from memory register A.

	
property data_memory_b_condition

	Returns the data condition of data memory register B.
Starting wavelength, and a sampling point (l1, l2, n).

	
property data_memory_b_size

	Returns the number of points sampled in data memory register B.

	
property data_memory_b_values

	Reads the binary data from memory register B.

	
property data_memory_select

	Memory Data Select.

	
property dip_search

	Dip Search Mode

	
property ese2

	Extended Event Status Enable Register 2

	
property esr2

	Extended Event Status Register 2

	
property level_lin

	Level Linear Scale (/div)

	
property level_log

	Level Log Scale (/div)

	
property level_opt_attn

	Optical Attenuation Status (ON/OFF)

	
property level_scale

	Current Level Scale

	
property measure_mode

	Returns the current Measure Mode the OSA is in.

	
measure_peak()

	Measure the peak and return the trace marker.

	
property peak_search

	Peak Search Mode

	
read_memory(slot='A')

	Read the scan saved in a memory slot.

	
property resolution

	Resolution (nm)

	
property resolution_actual

	Resolution Actual (ON/OFF)

	
property resolution_vbw

	Video Bandwidth Resolution

	
property sampling_points

	Number of sampling points

	
single_sweep(**kwargs)

	Perform a single sweep and wait for completion.

	
property trace_marker

	Sets the trace marker with a wavelength. Returns the trace wavelength and power.

	
property trace_marker_center

	Trace Marker at Center. Set to 1 or True to initiate command

	
wait(n=3, delay=1)

	Query OPC Command and waits for appropriate response.

	
wait_for_sweep(n=20, delay=0.5)

	Wait for a sweep to stop.

This is performed by checking bit 1 of the ESR2.

	
property wavelength_center

	Center Wavelength of Spectrum Scan in nm.

	
property wavelength_marker_value

	Wavelength Marker Value (wavelength or freq.?)

	
property wavelength_span

	Wavelength Span of Spectrum Scan in nm.

	
property wavelength_start

	Wavelength Start of Spectrum Scan in nm.

	
property wavelength_stop

	Wavelength Stop of Spectrum Scan in nm.

	
property wavelength_value_in

	Wavelength value in Vacuum or Air

	
property wavelengths

	Return a numpy array of the current wavelengths of scans.

 Anritsu MS9740A Optical Spectrum Analyzer

Anritsu MS9740A Optical Spectrum Analyzer

	
class pymeasure.instruments.anritsu.AnritsuMS9740A(adapter, name='Anritsu MS9740A Optical Spectrum Analyzer', **kwargs)

	Bases: AnritsuMS9710C

Anritsu MS9740A Optical Spectrum Analyzer.

	
property average_sweep

	Nr. of averages to make on a sweep (1-1000), with 1 being a single (non-averaged) sweep

	
property data_memory_select

	Memory Data Select.

	
repeat_sweep(n=20, delay=0.5)

	Perform a single sweep and wait for completion.

	
property resolution

	Resolution (nm)

	
property resolution_vbw

	Video Bandwidth Resolution

	
property sampling_points

	Number of sampling points

 Anritsu MS2090A Handheld Spectrum Analyzer

Anritsu MS2090A Handheld Spectrum Analyzer

	
class pymeasure.instruments.anritsu.AnritsuMS2090A(adapter, name='Anritsu MS2090A Handheld Spectrum Analyzer', **kwargs)

	Bases: Instrument

Anritsu MS2090A Handheld Spectrum Analyzer.

	
abort()

	Initiate a sweep/measurement.

	
property active_state

	The “set” state indicates that the instrument is used by someone.

	
property external_current

	This command queries the actual bias current in A

	
property fetch_control

	Returns the Control Channel measurement in json format.

	
property fetch_density

	Returns the most recent channel density measurement

	
property fetch_eirpower

	Returns the current EIRP, Max EIRP, Horizontal EIRP, Vertical and Sum EIRP results in dBm.

	
property fetch_eirpower_data

	This command returns the current EIRP measurement result in dBm.

	
property fetch_eirpower_max

	This command returns the Max EIRP measurement result in dBm.

	
property fetch_emf

	Return the current EMF measurement data. JSON format.

	
property fetch_emf_meter

	Return the live EMF measurement data. JSON format.

	
property fetch_emf_meter_sample

	Return the EMF measurement data for a specified sample number. JSON format.

	
property fetch_interference_power

	Fetch Interference Finder Integrated Power.

	
property fetch_mimo_antenas

	Returns the sync power measurement in json format.

	
property fetch_ocupied_bw

	Returns the different set of measurement information depending on the suffix.

	
property fetch_ota_mapping

	Returns the most recent Coverage Mapping measurement result.

	
property fetch_pan

	Return the current Pulse Analyzer measurement data. JSON format

	
property fetch_pbch_constellation

	Get the latest Physical Broadcast Channel constellation hitmap

	
property fetch_pci

	Returns PCI measurements

	
property fetch_pdsch

	Returns the Data Channel Measurements in JSON format.

	
property fetch_pdsch_constellation

	Get the latest Physical Downlink Shared Channel constellation

	
property fetch_peak

	Returns a pair of peak amplitude in current sweep.

	
property fetch_power

	Returns the most recent channel power measurement.

	
property fetch_rrm

	Returns the Radio Resource Management in JSON format.

	
property fetch_scan

	Returns the cell scanner measurements in JSON format

	
property fetch_semask

	This command returns the current Spectral Emission Mask measurement result.

	
property fetch_ssb

	Returns the SSB measurement

	
property fetch_sync_evm

	Returns the Sync EVM measurement in JSON format.

	
property fetch_sync_power

	Returns the sync power measurements in JSON format

	
property fetch_tae

	Returns the Time Alignment Error in JSON format.

	
property frequency_center

	Sets the center frequency in Hz

	
property frequency_offset

	Sets the frequency offset in Hz

	
property frequency_span

	Sets the frequency span in Hz

	
property frequency_span_full

	Sets the frequency span to full span

	
property frequency_span_last

	Sets the frequency span to the previous span value.

	
property frequency_start

	Sets the start frequency in Hz

	
property frequency_step

	Set or query the step size to gradually increase or decrease frequency values in Hz

	
property frequency_stop

	Sets the start frequency in Hz

	
property gps

	Returns the timestamp, latitude, and longitude of the device.

	
property gps_all

	Returns the fix timestamp, latitude, longitude, altitude and information on the sat used.

	
property gps_full

	Returns the timestamp, latitude, longitude, altitude, and satellite count of the device.

	
property gps_last

	Returns the timestamp, latitude, longitude, and altitude of the last fixed GPS result.

	
init_all_sweep()

	Initiate all sweep/measurement.

	
property init_continuous

	Specified whether the sweep/measurement is triggered continuously

	
property init_spa_self

	Perform a self-test and return the results.

	
init_sweep()

	Initiate a sweep/measurement.

	
property meas_acpower

	Sets the active measurement to adjacent channel power ratio, sets the default
measurement parameters, triggers a new measurement and returns the main channel
power, lower adjacent, upper adjacent, lower alternate and upper alternate channel
power results.

	
property meas_emf_meter_clear_all

	Clear the EMF measurement data of all samples.
Sampling state will be turned off if it was on.

	
property meas_emf_meter_clear_sample

	Clear the EMF measurement data for a specified sample number.
Sampling state will be turned off if the specified sample is currently active.

	
property meas_emf_meter_sample

	Start or Stop applying the measurement results to the currently selected sample

	
property meas_int_power

	Sets the active measurement to interference finder, sets the default measurement
parameters, triggers a new measurement and returns integrated power as the result. It
is a combination of the commands :CONFigure:INTerference;
:READ:INTerference:POWer?

	
property meas_iq_capture

	This set command is used to start the IQ capture measurement.

	
property meas_iq_capture_fail

	Sets or queries whether the instrument will automatically save an IQ capture when
losing sync

	
property meas_ota_mapp

	Sets the active measurement to OTA Coverage Mapping, sets the default measurement
parameters, triggers a new measurement, and returns the measured values.

	
property meas_ota_run

	Turn on/off OTA Coverage Mapping Data Collection. The instrument must be in
Coverage Mapping measurement for the command to be effective

	
property meas_power

	Sets the active measurement to channel power, sets the default measurement
parameters, triggers a new measurement and returns channel power as the result. It is a
combination of the commands :CONFigure:CHPower; :READ:CHPower:CHPower?

	
property meas_power_all

	Sets the active measurement to channel power, sets the default measurement
parameters, triggers a new measurement and returns the channel power and channel
power density results. It is a combination of the commands :CONFigure:CHPower;
:READ:CHPower?

	
property power_density

	Sets the active measurement to channel power, sets the default measurement
parameters, triggers a new measurement and returns channel power density as the
result. It is a combination of the commands :CONFigure:CHPower;
:READ:CHPower:DENSity?

	
property preamp

	Sets the state of the preamp. Note that this may cause a change in the reference level
and/or attenuation.

	
property sense_mode

	Set the operational mode of the Spa app.

	
property view_sense_modes

	Returns a list of available modes for the Spa application. The response is a
comma-separated list of mode names. See command [:SENSe]:MODE for the mode name
specification.

 Anritsu MS464xB Vector Network Analyzer

Anritsu MS464xB Vector Network Analyzer

	
class pymeasure.instruments.anritsu.AnritsuMS4642B(adapter, name='Anritsu MS464xB Vector Network Analyzer', active_channels=16, installed_ports=4, traces_per_channel=None, **kwargs)

	Bases: AnritsuMS464xB

A class representing the Anritsu MS4642B Vector Network Analyzer (VNA).

This VNA has a frequency range from 10 MHz to 20 GHz and is part of the
AnritsuMS464xB family of instruments; for documentation, for documentation refer to
this base class.

	
class pymeasure.instruments.anritsu.AnritsuMS4644B(adapter, name='Anritsu MS464xB Vector Network Analyzer', active_channels=16, installed_ports=4, traces_per_channel=None, **kwargs)

	Bases: AnritsuMS464xB

A class representing the Anritsu MS4644B Vector Network Analyzer (VNA).

This VNA has a frequency range from 10 MHz to 40 GHz and is part of the
AnritsuMS464xB family of instruments; for documentation, for documentation refer to
this base class.

	
class pymeasure.instruments.anritsu.AnritsuMS4645B(adapter, name='Anritsu MS464xB Vector Network Analyzer', active_channels=16, installed_ports=4, traces_per_channel=None, **kwargs)

	Bases: AnritsuMS464xB

A class representing the Anritsu MS4645B Vector Network Analyzer (VNA).

This VNA has a frequency range from 10 MHz to 50 GHz and is part of the
AnritsuMS464xB family of instruments; for documentation, for documentation refer to
this base class.

	
class pymeasure.instruments.anritsu.AnritsuMS4647B(adapter, name='Anritsu MS464xB Vector Network Analyzer', active_channels=16, installed_ports=4, traces_per_channel=None, **kwargs)

	Bases: AnritsuMS464xB

A class representing the Anritsu MS4647B Vector Network Analyzer (VNA).

This VNA has a frequency range from 10 MHz to 70 GHz and is part of the
AnritsuMS464xB family of instruments; for documentation, for documentation refer to
this base class.

	
class pymeasure.instruments.anritsu.AnritsuMS464xB(adapter, name='Anritsu MS464xB Vector Network Analyzer', active_channels=16, installed_ports=4, traces_per_channel=None, **kwargs)

	Bases: Instrument

A class representing the Anritsu MS464xB Vector Network Analyzer (VNA) series.

This familly consists of the MS4642B, MS4644B, MS4645B, and MS4647B, which are represented in
their respective classes (AnritsuMS4642B, AnritsuMS4644B,
AnritsuMS4645B, AnritsuMS4647B), that only differ in the available
frequency range.

They can contain up to 16 instances of MeasurementChannel (depending on the
configuration of the instrument), that are accessible via the channels dict or directly via
ch_ + the channel number.

	Parameters

	
	active_channels (int (1-16) or str ("auto")) – defines the number of active channels (default=16); if active_channels
is “auto”, the instrument will be queried for the number of active channels.

	installed_ports (int (1-4) or str ("auto")) – defines the number of installed ports (default=4); if “auto” is
provided, the instrument will be queried for the number of ports

	traces_per_channel (int (1-16) or str ("auto") or None) – defines the number of traces that is assumed for each channel
(between 1 and 16); if not provided, the maximum number is assumed; “auto” is provided,
the instrument will be queried for the number of traces of each channel.

	
property active_channel

	Control the active channel.

	
property bandwidth_enhancer_enabled

	Control the state of the IF bandwidth enhancer.

	
property binary_data_byte_order

	Control the binary numeric I/O data byte order.

valid values are:

	value

	description

	NORM

	The most significant byte (MSB) is first

	SWAP

	The least significant byte (LSB) is first

	
check_errors()

	Read all errors from the instrument.

	Returns

	list of error entries

	
copy_data_file(from_filename, to_filename)

	Copy a file on the VNA HDD.

	Parameters

	
	from_filename (str) – full filename including pat

	to_filename (str) – full filename including path

	
create_directory(dir_name)

	Create a directory on the VNA HDD.

	Parameters

	dir_name (str) – directory name

	
property data_drawing_enabled

	Control whether data drawing is enabled (True) or not (False).

	
property datablock_header_format

	Control the way the arbitrary block header for output data is formed.

Valid values are:

	value

	description

	0

	A block header with arbitrary length will be sent.

	1

	The block header will have a fixed length of 11 characters.

	2

	No block header will be sent. Not IEEE 488.2 compliant.

	
property datablock_numeric_format

	Control format for numeric I/O data representation.

Valid values are:

	value

	description

	ASCII

	An ASCII number of 20 or 21 characters long with floating point notation.

	8byte

	8 bytes of binary floating point number representation limited to 64 bits.

	4byte

	4 bytes of floating point number representation.

	
property datafile_frequency_unit

	Control the frequency unit displayed in a SNP data file.

Valid values are HZ, KHZ, MHZ, GHZ.

	
property datafile_include_heading

	Control whether a heading is included in the data files.

	
property datafile_parameter_format

	Control the parameter format displayed in an SNP data file.

Valid values are:

	value

	description

	LINPH

	Linear and Phase.

	LOGPH

	Log and Phase.

	REIM

	Real and Imaginary Numbers.

	
delete_data_file(filename)

	Delete a file on the VNA HDD.

	Parameters

	filename (str) – full filename including path

	
delete_directory(dir_name)

	Delete a directory on the VNA HDD.

	Parameters

	dir_name (str) – directory name

	
property display_layout

	Control the channel display layout in a Row-by-Column format.

Valid values are: R1C1, R1C2, R2C1, R1C3, R3C1, R2C2C1, R2C1C2, C2R2R1, C2R1R2, R1C4, R4C1, R2C2, R2C3, R3C2, R2C4, R4C2, R3C3, R5C2, R2C5, R4C3, R3C4, R4C4. The number following the R indicates the number of rows, following the
C the number of columns; e.g. R2C2 results in a 2-by-2 layout. The options that contain two
C’s or R’s result in asymmetric layouts; e.g. R2C1C2 results in a layout with 1 channel on
top and two channels side-by-side on the bottom row.

	
property event_status_enable_bits

	Control the Standard Event Status Enable Register bits.

The register can be queried using the query_event_status_register() method. Valid
values are between 0 and 255. Refer to the instrument manual for an explanation of the bits.

	
property external_trigger_delay

	Control the delay time of the external trigger in seconds.

Valid values are between 0 [s] and 10 [s] in steps of 1e-9 [s] (i.e. 1 ns).

	
property external_trigger_edge

	Control the edge type of the external trigger.

Valid values are POS (for positive or leading edge) or NEG (for negative or trailing edge).

	
property external_trigger_handshake

	Control status of the external trigger handshake.

	
property external_trigger_type

	Control the type of trigger that will be associated with the external trigger.

Valid values are POIN (for point), SWE (for sweep), CHAN (for channel), and ALL.

	
property hold_function_all_channels

	Control the hold function of all channels.

Valid values are:

	value

	description

	CONT

	Perform continuous sweeps on all channels

	HOLD

	Hold the sweep on all channels

	SING

	Perform a single sweep and then hold all channels

	
load_data_file(filename)

	Load a data file from the VNA HDD into the VNA memory.

	Parameters

	filename (str) – full filename including path

	
load_data_file_to_memory(filename)

	Load a data file to a memory trace.

	Parameters

	filename (str) – full filename including path

	
property manual_trigger_type

	Control the type of trigger that will be associated with the manual trigger.

Valid values are POIN (for point), SWE (for sweep), CHAN (for channel), and ALL.

	
property max_number_of_points

	Control the maximum number of points the instrument can measure in a sweep.

Note that when this value is changed, the instrument will be rebooted.
Valid values are 25000 and 100000. When 25000 points is selected, the instrument supports 16
channels with 16 traces each; when 100000 is selected, the instrument supports 1 channel
with 16 traces.

	
property number_of_channels

	Control the number of displayed (and therefore accessible) channels.

When the system is in 25000 points mode, the number of channels can be 1, 2, 3, 4, 6, 8, 9,
10, 12, or 16; when the system is in 100000 points mode, the system only supports 1 channel.
If a value is provided that is not valid in the present mode, the instrument is set to the
next higher channel number.

	
property number_of_ports

	Get the number of instrument test ports.

	
query_event_status_register()

	Query the value of the Standard Event Status Register.

Note that querying this value, clears the register. Refer to the instrument manual for an
explanation of the returned value.

	
read_datafile(channel, sweep_points, datafile_freq, datafile_par, filename)

	Read a data file from the VNA.

	Parameters

	
	channel (int) – Channel Index

	sweep_points (int) – number of sweep point as an integer

	datafile_freq (DataFileFrequencyUnits) – Data file frequency unit

	datafile_par (DataFileParameter) – Data file parameter format

	filename (str) – full path of the file to be saved

	
property remote_trigger_type

	Control the type of trigger that will be associated with the remote trigger.

Valid values are POIN (for point), SWE (for sweep), CHAN (for channel), and ALL.

	
return_to_local()

	Returns the instrument to local operation.

	
property service_request_enable_bits

	Control the Service Request Enable Register bits.

Valid values are between 0 and 255; setting 0 performs a register reset. Refer to the
instrument manual for an explanation of the bits.

	
store_image(filename)

	Capture a screenshot to the file specified.

	Parameters

	filename (str) – full filename including path

	
trigger()

	Trigger a continuous sweep from the remote interface.

	
trigger_continuous()

	Trigger a continuous sweep from the remote interface.

	
trigger_single()

	Trigger a single sweep with synchronization from the remote interface.

	
property trigger_source

	Control the source of the sweep/measurement triggering.

Valid values are:

	value

	description

	AUTO

	Automatic triggering

	MAN

	Manual triggering

	EXTT

	Triggering from rear panel BNC via the GPIB parser

	EXT

	External triggering port

	REM

	Remote triggering

	
update_channels(number_of_channels=None, **kwargs)

	Create or remove channels to be correct with the actual number of channels.

	Parameters

	number_of_channels (int) – optional, if given, defines the desired number of channels.

	
class pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel(*args, frequency_range=None, traces=None, **kwargs)

	Bases: Channel

Represents a channel of Anritsu MS464xB VNA.

Contains 4 instances of Port (accessible via the ports dict or directly pt_ + the
port number) and up to 16 instances of Trace (accessible via the traces dict or
directly tr_ + the trace number).

	Parameters

	
	frequency_range (list of floats) – defines the number of installed ports (default=4).

	traces (int (1-16) or str ("auto") or None) – defines the number of traces that is assumed for the channel
(between 1 and 16); if not provided, the maximum number is assumed; “auto” is provided,
the instrument will be queried for the number of traces.

	
activate()

	Set the indicated channel as the active channel.

	
property active_trace

	Set the active trace on the indicated channel.

	
property application_type

	Control the application type of the specified channel.

Valid values are TRAN (for transmission/reflection), NFIG (for noise figure measurement),
PULS (for PulseView).

	
property average_count

	Control the averaging count for the indicated channel.

The channel must be turned on. Valid values are between 1 and 1024.

	
property average_sweep_count

	Get the averaging sweep count for the indicated channel.

	
property average_type

	Control the averaging type to for the indicated channel.

Valid values are POIN (point-by-point) or SWE (sweep-by-sweep)

	
property averaging_enabled

	Control whether the averaging is turned on for the indicated channel.

	
property bandwidth

	Control the IF bandwidth for the indicated channel.

Valid values are between 1 [Hz] and 1E6 [Hz] (i.e. 1 MHz). The system will automatically
select the closest IF bandwidth from the available options (1, 3, 10 … 1E5, 3E5, 1E6).

	
property calibration_enabled

	Control whether the RF correction (calibration) is enabled for indicated channel.

	
check_errors()

	Read all errors from the instrument and log them.

	Returns

	List of error entries.

	
clear_average_count()

	Clear and restart the averaging sweep count of the indicated channel.

	
property cw_mode_enabled

	Control the state of the CW sweep mode of the indicated channel.

	
property cw_number_of_points

	Control the CW sweep mode number of points of the indicated channel.

Valid values are between 1 and 25000 or 100000 depending on the maximum points setting.

	
property display_layout

	Control the trace display layout in a Row-by-Column format for the indicated channel.

Valid values are: R1C1, R1C2, R2C1, R1C3, R3C1, R2C2C1, R2C1C2, C2R2R1, C2R1R2, R1C4, R4C1, R2C2, R2C3, R3C2, R2C4, R4C2, R3C3, R5C2, R2C5, R4C3, R3C4, R4C4. The number following the R indicates the number of rows, following the
C the number of columns; e.g. R2C2 results in a 2-by-2 layout. The options that contain two
C’s or R’s result in asymmetric layouts; e.g. R2C1C2 results in a layout with 1 trace on top
and two traces side-by-side on the bottom row.

	
property frequency_CW

	Control the CW frequency of the indicated channel in hertz.

Valid values are between 1E7 [Hz] (i.e. 10 MHz) and 4E10 [Hz] (i.e. 40 GHz).
(dynamic)

	
property frequency_center

	Control the center value of the sweep range of the indicated channel in hertz.

Valid values are between 1E7 [Hz] (i.e. 10 MHz) and 4E10 [Hz] (i.e. 40 GHz).
(dynamic)

	
property frequency_span

	Control the span value of the sweep range of the indicated channel in hertz.

Valid values are between 2 [Hz] and 4E10 [Hz] (i.e. 40 GHz).
(dynamic)

	
property frequency_start

	Control the start value of the sweep range of the indicated channel in hertz.

Valid values are between 1E7 [Hz] (i.e. 10 MHz) and 4E10 [Hz] (i.e. 40 GHz).
(dynamic)

	
property frequency_stop

	Control the stop value of the sweep range of the indicated channel in hertz.

Valid values are between 1E7 [Hz] (i.e. 10 MHz) and 4E10 [Hz] (i.e. 40 GHz).
(dynamic)

	
property hold_function

	Control the hold function of the specified channel.

valid values are:

	value

	description

	CONT

	Perform continuous sweeps on all channels

	HOLD

	Hold the sweep on all channels

	SING

	Perform a single sweep and then hold all channels

	
property number_of_points

	Control the number of measurement points in a frequency sweep of the indicated channel.

Valid values are between 1 and 25000 or 100000 depending on the maximum points setting.

	
property number_of_traces

	Control the number of traces on the specified channel

Valid values are between 1 and 16.

	
property sweep_mode

	Control the sweep mode for Spectrum Analysis on the indicated channel.

Valid options are VNA (for a VNA-like mode where the instrument will only measure at points
in the frequency list) or CLAS (for a classical mode, where the instrument will scan all
frequencies in the range).

	
property sweep_time

	Control the sweep time of the indicated channel.

Valid values are between 2 and 100000.

	
property sweep_type

	Control the sweep type of the indicated channel.

Valid options are:

	value

	description

	LIN

	Frequency-based linear sweep

	LOG

	Frequency-based logarithmic sweep

	FSEGM

	Segment-based sweep with frequency-based segments

	ISEGM

	Index-based sweep with frequency-based segments

	POW

	Power-based sweep with either a CW frequency or swept-frequency

	MFGC

	Multiple frequency gain compression

	
update_frequency_range(frequency_range)

	Update the values-attribute of the frequency-related dynamic properties.

	Parameters

	frequency_range (list) – the frequency range that the instrument is capable of.

	
update_traces(number_of_traces=None)

	Create or remove traces to be correct with the actual number of traces.

	Parameters

	number_of_traces (int) – optional, if given defines the desired number of traces.

	
class pymeasure.instruments.anritsu.anritsuMS464xB.Trace(parent, id)

	Bases: Channel

Represents a trace within a MeasurementChannel of the Anritsu MS464xB VNA.

	
activate()

	Set the indicated trace as the active one.

	
property measurement_parameter

	Control the measurement parameter of the indicated trace.

Valid values are any S-parameter (e.g. S11, S12, S41) for 4 ports, or one of the
following:

	value

	description

	Sxx

	S-parameters (1-4 for both x)

	MIX

	Response Mixed Mode

	NFIG

	Noise Figure trace response (only with option 41 or 48)

	NPOW

	Noise Power trace response (only with option 41 or 48)

	NTEMP

	Noise Temperature trace response (only with option 41 or 48)

	AGA

	Noise Figure Available Gain trace response (only with option 48)

	IGA

	Noise Figure Insertion Gain trace response (only with option 48)

	
class pymeasure.instruments.anritsu.anritsuMS464xB.Port(parent, id)

	Bases: Channel

Represents a port within a MeasurementChannel of the Anritsu MS464xB VNA.

	
property power_level

	Control the power level (in dBm) of the indicated port on the indicated channel.

 Attocube

Attocube

This section contains specific documentation on the Attocube instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Attocube ANC300 Motion Controller
	ANC300Controller

	Axis

 Attocube ANC300 Motion Controller

Attocube ANC300 Motion Controller

	
class pymeasure.instruments.attocube.anc300.ANC300Controller(adapter=None, name='attocube ANC300 Piezo Controller', axisnames='', passwd='', query_delay=0.05, **kwargs)

	Bases: Instrument

Attocube ANC300 Piezo stage controller with several axes

	Parameters

	
	adapter – The VISA resource name of the controller
(e.g. “TCPIP::<address>::<port>::SOCKET”) or a created Adapter.
The instruments default communication port is 7230.

	axisnames – a list of axis names which will be used to create
properties with these names

	passwd – password for the attocube standard console

	query_delay – delay between sending and reading (default 0.05 sec)

	host – host address of the instrument (e.g. 169.254.0.1)

Deprecated since version 0.11.2: The ‘host’ argument is deprecated. Use ‘adapter’ argument instead.

	kwargs – Any valid key-word argument for VISAAdapter

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

	Returns

	List of error entries.

	
property controllerBoardVersion

	Get the serial number of the controller board.

	
ground_all()

	Grounds all axis of the controller.

	
handle_deprecated_host_arg(adapter, kwargs)

	This function formats user input to the __init__ function to be compatible with the
current definition of the __init__ function. This is used to support outdated (deprecated)
code. and separated out to make it easier to remove in the future. To whoever removes this:
This function should be removed and the adapter argument in the __init__ method should
be made non-optional.

	Parameters

	kwargs (dict) – keyword arguments passed to the __init__ function,
including the deprecated host argument.

	Return str

	resource string for the VISAAdapter

	
read()

	Read after setting a value.

	
stop_all()

	Stop all movements of the axis.

	
property version

	Get the version number and instrument identification.

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
class pymeasure.instruments.attocube.anc300.Axis(parent, id)

	Bases: Channel

Represents a single open loop axis of the Attocube ANC350

	Parameters

	
	axis – axis identifier, integer from 1 to 7

	controller – ANC300Controller instance used for the communication

	
property capacity

	Measure the saved capacity value in nF of the axis.

	
property frequency

	Control the frequency of the stepping motion in Hertz from 1 to 10000 Hz.

	
insert_id(command)

	Insert the channel id in a command replacing placeholder.

Add axis id to a command string at the correct position after the
initial command, but before a potential value.

	
measure_capacity()

	Obtains a new measurement of the capacity. The mode of the axis
returns to ‘gnd’ after the measurement.

	Returns capacity

	the freshly measured capacity in nF.

	
property mode

	Control axis mode. This can be ‘gnd’, ‘inp’, ‘cap’, ‘stp’, ‘off’,
‘stp+’, ‘stp-’. Available modes depend on the actual axis model.

	
move(steps, gnd=True)

	Move ‘steps’ steps in the direction given by the sign of the
argument. This method will change the mode of the axis automatically
and ground the axis on the end if ‘gnd’ is True. The method is blocking
and returns only when the movement is finished.

	Parameters

	
	steps – finite integer value of steps to be performed. A positive
sign corresponds to upwards steps, a negative sign to downwards
steps.

	gnd – bool, flag to decide if the axis should be grounded after
completion of the movement

	
move_raw(steps)

	Move ‘steps’ steps in the direction given by the sign of the
argument. This method assumes the mode of the axis is set to ‘stp’ and
it is non-blocking, i.e. it will return immediately after sending the
command.

	Parameters

	steps – integer value of steps to be performed. A positive
sign corresponds to upwards steps, a negative sign to downwards
steps. The values of +/-inf trigger a continuous movement. The axis
can be halted by the stop method.

	
property offset_voltage

	Control offset voltage in Volts from 0 to 150 V.

	
property output_voltage

	Measure the output voltage in volts.

	
property pattern_down

	Control step down pattern of the piezo drive. 256 values ranging from 0
to 255 representing the the sequence of output voltages within one
step of the piezo drive. This property can be set, the set value
needs to be an array with 256 integer values.

	
property pattern_up

	Control step up pattern of the piezo drive. 256 values ranging from 0
to 255 representing the the sequence of output voltages within one
step of the piezo drive. This property can be set, the set value
needs to be an array with 256 integer values.

	
property serial_nr

	Get the serial number of the axis.

	
property stepd

	Set the steps downwards for N steps. Mode must be ‘stp’ and N must be
positive. 0 causes a continous movement until stop is called.

Deprecated since version 0.13.0: Use meth:move_raw instead.

	
property stepu

	Set the steps upwards for N steps. Mode must be ‘stp’ and N must be
positive. 0 causes a continous movement until stop is called.

Deprecated since version 0.13.0: Use meth:move_raw instead.

	
stop()

	Stop any motion of the axis

	
property voltage

	Control the amplitude of the stepping voltage in volts from 0 to 150 V.

 BK Precision

BK Precision

This section contains specific documentation on the BK Precision instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	BK Precision 9130B DC Power Supply
	BKPrecision9130B

 BK Precision 9130B DC Power Supply

BK Precision 9130B DC Power Supply

	
class pymeasure.instruments.bkprecision.BKPrecision9130B(adapter, name='BK Precision 9130B Source', **kwargs)

	Bases: Instrument

Represents the BK Precision 9130B DC Power Supply interface for interacting with
the instrument.

	
property channel

	Control which channel is selected. Can only take
values [1, 2, 3]. (int)

	
property current

	Control the current of the selected channel. (float)

	
property source_enabled

	Control whether the source is enabled. (bool)

	
property voltage

	Control voltage of the selected channel. (float)

 Danfysik

Danfysik

This section contains specific documentation on the Danfysik instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Danfysik 8500 Power Supply
	Danfysik8500

 Danfysik 8500 Power Supply

Danfysik 8500 Power Supply

	
class pymeasure.instruments.danfysik.Danfysik8500(adapter, name='Danfysik 8500 Current Supply', **kwargs)

	Bases: Instrument

Represents the Danfysik 8500 Electromanget Current Supply
and provides a high-level interface for interacting with the
instrument

To allow user access to the Prolific Technology PL2303 Serial port adapter
in Linux, create the file:
/etc/udev/rules.d/50-danfysik.rules, with contents:

SUBSYSTEMS=="usb",ATTRS{idVendor}=="067b",ATTRS{idProduct}=="2303",MODE="0666",SYMLINK+="danfysik"

Then reload the udev rules with:

sudo udevadm control --reload-rules
sudo udevadm trigger

The device will be accessible through the port /dev/danfysik.

	
add_ramp_step(current)

	Adds a current step to the ramp set.

	Parameters

	current – A current in Amps

	
clear_ramp_set()

	Clears the ramp set.

	
clear_sequence(stack)

	Clears the sequence by the stack number.

	Parameters

	stack – A stack number between 0-15

	
property current

	The actual current in Amps. This property can be set through
current_ppm.

	
property current_ppm

	The current in parts per million. This property can be set.

	
property current_setpoint

	The setpoint for the current, which can deviate from the actual current
(current) while the supply is in the process of setting the value.

	
disable()

	Disables the flow of current.

	
enable()

	Enables the flow of current.

	
property id

	Reads the idenfitication information.

	
is_current_stable()

	Returns True if the current is within 0.02 A of the
setpoint value.

	
is_enabled()

	Returns True if the current supply is enabled.

	
is_ready()

	Returns True if the instrument is in the ready state.

	
is_sequence_running(stack)

	Returns True if a sequence is running with a given stack number

	Parameters

	stack – A stack number between 0-15

	
local()

	Sets the instrument in local mode, where the front
panel can be used.

	
property polarity

	The polarity of the current supply, being either
-1 or 1. This property can be set by suppling one of
these values.

	
ramp_to_current(current, points, delay_time=1)

	Executes set_ramp_to_current() and starts the ramp.

	
read()

	Read the device and raise exceptions if errors are reported by the instrument.

	Returns

	String ASCII response of the instrument

	Raises

	An Exception if the Danfysik raises an error

	
remote()

	Sets the instrument in remote mode, where the the
front panel is disabled.

	
reset_interlocks()

	Resets the instrument interlocks.

	
set_ramp_delay(time)

	Sets the ramp delay time in seconds.

	Parameters

	time – The time delay time in seconds

	
set_ramp_to_current(current, points, delay_time=1)

	Sets up a linear ramp from the initial current to a different
current, with a number of points, and delay time.

	Parameters

	
	current – The final current in Amps

	points – The number of linear points to traverse

	delay_time – A delay time in seconds

	
set_sequence(stack, currents, times, multiplier=999999)

	Sets up an arbitrary ramp profile with a list of currents (Amps)
and a list of interval times (seconds) on the specified stack number
(0-15)

	
property slew_rate

	The slew rate of the current sweep.

	
start_ramp()

	Starts the current ramp.

	
start_sequence(stack)

	Starts a sequence by the stack number.

	Parameters

	stack – A stack number between 0-15

	
property status

	A list of human-readable strings that contain
the instrument status information, based on status_hex.

	
property status_hex

	The status in hexadecimal. This value is parsed in
status into a human-readable list.

	
stop_ramp()

	Stops the current ramp.

	
stop_sequence()

	Stops the currently running sequence.

	
sync_sequence(stack, delay=0)

	Arms the ramp sequence to be triggered by a hardware
input to pin P33 1&2 (10 to 24 V) or a TS command. If a
delay is provided, the sequence will start after the delay.

	Parameters

	
	stack – A stack number between 0-15

	delay – A delay time in seconds

	
wait_for_current(has_aborted=<function Danfysik8500.<lambda>>, delay=0.01)

	Blocks the process until the current has stabilized. A
provided function has_aborted can be supplied, which
is checked after each delay time (in seconds) in addition to the
stability check. This allows an abort feature to be integrated.

	Parameters

	
	has_aborted – A function that returns True if the process should stop waiting

	delay – The delay time in seconds between each check for stability

	
wait_for_ready(has_aborted=<function Danfysik8500.<lambda>>, delay=0.01)

	Blocks the process until the instrument is ready. A
provided function has_aborted can be supplied, which
is checked after each delay time (in seconds) in addition to the
readiness check. This allows an abort feature to be integrated.

	Parameters

	
	has_aborted – A function that returns True if the process should stop waiting

	delay – The delay time in seconds between each check for readiness

 Delta Elektronika

Delta Elektronika

This section contains specific documentation on the Delta Elektronika instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Delta Elektronica SM7045D Power source
	SM7045D

 Delta Elektronica SM7045D Power source

Delta Elektronica SM7045D Power source

	
class pymeasure.instruments.deltaelektronika.SM7045D(adapter, name='Delta Elektronika SM 70-45 D', **kwargs)

	Bases: Instrument

This is the class for the SM 70-45 D power supply.

source = SM7045D("GPIB::8")

source.ramp_to_zero(1) # Set output to 0 before enabling
source.enable() # Enables the output
source.current = 1 # Sets a current of 1 Amps

	
property current

	A floating point property that represents the output current of
the power supply in Amps. This property can be set.

	
disable()

	Enables remote shutdown, hence input will be disabled.

	
enable()

	Disable remote shutdown, hence output will be enabled.

	
property max_current

	A floating point property that represents the maximum output
current of the power supply in Amps. This property can be set.

	
property max_voltage

	A floating point property that represents the maximum output
voltage of the power supply in Volts. This property can be set.

	
property measure_current

	Measures the actual output current of the power supply in
Amps.

	
property measure_voltage

	Measures the actual output voltage of the power supply in
Volts.

	
ramp_to_current(target_current, current_step=0.1)

	Gradually increase/decrease current to target current.

	Parameters

	
	target_current – Float that sets the target current (in A)

	current_step – Optional float that sets the current steps
/ ramp rate (in A/s)

	
ramp_to_zero(current_step=0.1)

	Gradually decrease the current to zero.

	Parameters

	current_step – Optional float that sets the current steps
/ ramp rate (in A/s)

	
property rsd

	Check whether remote shutdown is enabled/disabled and thus if the
output of the power supply is disabled/enabled.

	
shutdown()

	Set the current to 0 A and disable the output of the power source.

	
property voltage

	A floating point property that represents the output voltage
setting of the power supply in Volts. This property can be set.

 Edwards

Edwards

This section contains specific documentation on the Edwards instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Edwards nxds vacuum pump
	Nxds

 Edwards nxds vacuum pump

Edwards nxds vacuum pump

	
class pymeasure.instruments.edwards.Nxds(adapter, name='Edwards NXDS Vacuum Pump', **kwargs)

	Bases: Instrument

Represents the Edwards nXDS (10i) Vacuum Pump
and provides a low-level interaction with the instrument.
This could potentially work with Edwards pump that has a RS232 interface.
This instrument is constructed to only start and stop pump.

	
property enable

	Set the pump enabled state with default settings.

 EURO TEST

EURO TEST

This section contains specific documentation on the EURO TEST instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Euro Test HPP120256 High Voltage Power Supply
	EurotestHPP120256

 Euro Test HPP120256 High Voltage Power Supply

Euro Test HPP120256 High Voltage Power Supply

	
class pymeasure.instruments.eurotest.EurotestHPP120256(adapter, name='Euro Test High Voltage DC Source model HPP-120-256', query_delay=0.1, write_delay=0.4, timeout=5000, **kwargs)

	Bases: Instrument

Represents the Euro Test High Voltage DC Source model HPP-120-256
and provides a high-level interface for interacting with the instrument using the
Euro Test command set (Not SCPI command set).

hpp120256 = EurotestHPP120256("GPIB0::20::INSTR")

print(hpp120256.id)
print(hpp120256.lam_status)
print(hpp120256.status)

hpp120256.ramp_to_zero(100.0)

hpp120256.voltage_ramp = 50.0 # V/s
hpp120256.current_limit = 2.0 # mA
inst.kill_enabled = True # Enable over-current protection
time.sleep(1.0) # Give time to enable kill
inst.output_enabled = True
time.sleep(1.0) # Give time to output on

abs_output_voltage_error = 0.02 # kV

hpp120256.wait_for_output_voltage_reached(abs_output_voltage_error, 1.0, 40.0)

Here voltage HV output should be at 0.0 kV

print("Setting the output voltage to 1.0kV...")
hpp120256.voltage_setpoint = 1.0 # kV

Now HV output should be rising to reach the 1.0kV at 50.0 V/s

hpp120256.wait_for_output_voltage_reached(abs_output_voltage_error, 1.0, 40.0)

Here voltage HV output should be at 1.0 kV

hpp120256.shutdown()

hpp120256.wait_for_output_voltage_reached(abs_output_voltage_error, 1.0, 60.0)

Here voltage HV output should be at 0.0 kV

inst.output_enabled = False

Now the HV voltage source is in safe state

	
class EurotestHPP120256Status(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntFlag

Auxiliary class create for translating the instrument 16bits_status_string into
an Enum_IntFlag that will help to the user to understand such status.

	
ask(command)

	Overrides Instrument ask method for including query_delay time on parent call.
:param command: Command string to be sent to the instrument.
:returns: String returned by the device without read_termination.

	
property current

	Measure the actual output current in mAmps (float).

	
property current_limit

	Control the current limit in mAmps (float strictly from 0 to 25).

	
property current_range

	Measure the actual output current range in mAmps (float).

	
emergency_off()

	The output of the HV source will be switched OFF permanently and the values
of the voltage and current settings set to zero

	
property id

	Get the identification of the instrument (string)

	
property kill_enabled

	Control the instrument kill enable (boolean).

	
property lam_status

	Get the instrument lam status (string).

	
property output_enabled

	Control the instrument output enable (boolean).

	
ramp_to_zero(voltage_rate=200.0)

	Sets the voltage output setting to zero and the ramp setting
to a value determined by the voltage_rate parameter.
In summary, the method conducts (ramps) the voltage output to zero
at a determinated voltage changing rate (ramp in V/s).
:param voltage_rate: Is the changing rate (ramp in V/s) for the ramp setting

	
shutdown(voltage_rate=200.0)

	Change the output voltage setting (V) to zero and
the ramp speed - voltage_rate (V/s) of the output voltage.
After calling shutdown, if the HV voltage output > 0
it should drop to zero at a certain rate given by the voltage_rate parameter.
:param voltage_rate: indicates the changing rate (V/s) of the voltage output

	
property status

	Get the instrument status (EurotestHPP120256Status).

	
property voltage

	Measure the actual output voltage in kVolts (float).

	
property voltage_ramp

	Control the voltage ramp in Volts/second (int strictly from 10 to 3000).

	
property voltage_range

	Measure the actual output voltage range in kVolts (float).

	
property voltage_setpoint

	Control the voltage set-point in kVolts (float strictly from 0 to 12).

	
wait_for_output_voltage_reached(voltage_setpoint, abs_output_voltage_error=0.03, check_period=1.0, timeout=60.0)

	Wait until HV voltage output reaches the voltage setpoint.

Checks the voltage output every check_period seconds and raises an exception
if the voltage output doesn’t reach the voltage setting until the timeout time.
:param voltage_setpoint: the voltage in kVolts setted in the HV power supply which
should be present at the output after some time (depends on the ramp setting).
:param abs_output_voltage_error: absolute error in kVolts for being considered
an output voltage reached.
:param check_period: voltage output will be measured every check_period (seconds) time.
:param timeout: time (seconds) give to the voltage output to reach the voltage setting.
:return: None
:raises: Exception if the voltage output can’t reach the voltage setting
before the timeout completes (seconds).

	
write(command, **kwargs)

	Overrides Instrument write method for including write_delay time after the parent call.

	Parameters

	command – command string to be sent to the instrument

 Fluke

Fluke

This section contains specific documentation on the Fluke instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Fluke 7341 Temperature bath
	Fluke7341

 Fluke 7341 Temperature bath

Fluke 7341 Temperature bath

	
class pymeasure.instruments.fluke.Fluke7341(adapter, name='Fluke 7341', **kwargs)

	Bases: Instrument

Represents the compact constant temperature bath from Fluke.

	
property id

	Get the instrument model.

	
read()

	Read up to (excluding) read_termination or the whole read buffer.

Extract the value from the response string.

Responses are in the format “type: value optional information”.
Optional information is for example the unit (degree centigrade or Fahrenheit).

	
property set_point

	Control the temperature setpoint (float from -40 to 150 °C)
The unit is as defined in property unit.

	
property temperature

	Measure the current bath temperature.
The unit is as defined in property unit.

	
property unit

	Control the temperature unit: c for Celsius and f for Fahrenheit`.

 F.W. Bell

F.W. Bell

This section contains specific documentation on the F.W. Bell instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	F.W. Bell 5080 Handheld Gaussmeter
	FWBell5080

 F.W. Bell 5080 Handheld Gaussmeter

F.W. Bell 5080 Handheld Gaussmeter

	
class pymeasure.instruments.fwbell.FWBell5080(adapter, name='F.W. Bell 5080 Handheld Gaussmeter', **kwargs)

	Bases: Instrument

Represents the F.W. Bell 5080 Handheld Gaussmeter and
provides a high-level interface for interacting with the
instrument

	Parameters

	port – The serial port of the instrument

meter = FWBell5080('/dev/ttyUSB0') # Connects over serial port /dev/ttyUSB0 (Linux)

meter.units = 'gauss' # Sets the measurement units to Gauss
meter.range = 1 # Sets the range to 3 kG
print(meter.field) # Reads and prints a field measurement in G

fields = meter.fields(100) # Samples 100 field measurements
print(fields.mean(), fields.std()) # Prints the mean and standard deviation of the samples

	
auto_range()

	Enables the auto range functionality.

	
check_errors()

	Read all errors from the instrument and log them.

	Returns

	List of error entries.

	
check_get_errors()

	Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
clear()

	Clears the instrument status byte

	
property complete

	Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation
Complete query places an ASCII character 1 into the device’s Output Queue when all pending
selected device operations have been finished.

	
property field

	Measure the field in the appropriate units (float).

	
fields(samples=1)

	Returns a numpy array of field samples for a given sample number.

	Parameters

	samples – The number of samples to preform

	
property id

	Get the identification of the instrument.

	
property options

	Get the device options installed.

	
property range

	Control the maximum field range in the active units (int).
The range unit is dependent on the current units mode (gauss, tesla, amp-meter). Value
sets an equivalent range across units that increases in magnitude (1, 10, 100).

	Value

	gauss

	tesla

	amp-meter

	0

	300 G

	30 mT

	23.88 kAm

	1

	3 kG

	300 mT

	238.8 kAm

	2

	30 kG

	3 T

	2388 kAm

	
read()

	Overwrites the Instrument.read
method to remove semicolons and replace spaces with colons.

	
read_binary_values(**kwargs)

	Read binary values from the device.

	
read_bytes(count, **kwargs)

	Read a certain number of bytes from the instrument.

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read the whole read buffer.

	kwargs – Keyword arguments for the adapter.

	Returns bytes

	Bytes response of the instrument (including termination).

	
reset()

	Resets the instrument.

	
shutdown()

	Brings the instrument to a safe and stable state

	
property status

	Get the status byte and Master Summary Status bit.

	
property units

	Get the field units (str), which can take the
values: ‘gauss’, ‘gauss ac’, ‘tesla’, ‘tesla ac’, ‘amp-meter’, and
‘amp-meter ac’. The AC versions configure the instrument to measure AC.

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument

	kwargs – Keyword arguments for the adapter.

	
write_binary_values(command, values, *args, **kwargs)

	Write binary values to the device.

	Parameters

	
	command – Command to send.

	values – The values to transmit.

	**kwargs (*args,) – Further arguments to hand to the Adapter.

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

 Heidenhain

Heidenhain

This section contains specific documentation on the Heidenhain instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Heidenhain ND287 Position Display Unit
	ND287

 Heidenhain ND287 Position Display Unit

Heidenhain ND287 Position Display Unit

	
class pymeasure.instruments.heidenhain.ND287(adapter, name='Heidenhain ND287', units='mm', **kwargs)

	Bases: Instrument

Represents the Heidenhain ND287 position display unit used to readout and display
absolute position measured by Heidenhain encoders.

	
check_errors()

	Method to read an error status message and log when an error is detected.

	Returns

	String with the error message as its contents.

	
property id

	Get the string identification property for the device.

	
property position

	Measure the encoder’s current position (float).
Note that the get_process performs a mapping from the returned
value to a float measured in the units specified by ND287.units.
The get_process is modified dynamically as this mapping changes slightly
between different units.(dynamic)

	
property status

	Get the encoder’s status bar

	
property units

	Control the unit of measure set on the device.
Valid values are ‘mm’ and ‘inch’ Note that this parameter can only be set
manually on the device. So this argument only ensures that the instance units
and physical device settings match. I.e., this property does not change any
physical device setting.

 HC Photonics

HC Photonics

This section contains specific documentation on the HC Photonics instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	HCP TC038 crystal oven
	TC038

	HCP TC038D crystal oven
	TC038D

 HCP TC038 crystal oven

HCP TC038 crystal oven

	
class pymeasure.instruments.hcp.TC038(adapter, name='TC038', address=1, timeout=1000, includeSCPI=False, **kwargs)

	Bases: Instrument

Communication with the HCP TC038 oven.

This is the older version with an AC power supply and AC heater.

It has parity or framing errors from time to time. Handle them in your
application.

The oven always responds with an “OK” to all valid requests or commands.

	Parameters

	
	adapter (str) – Name of the COM-Port.

	address (int) – Address of the device. Should be between 1 and 99.

	timeout (int) – Timeout in ms.

	
check_set_errors()

	Check for errors after having set a property.

Called if check_set_errors=True is set for that property.

	
property information

	Get the information about the device and its capabilites.

	
property monitored_value

	Measure the currently monitored value. For default it is the current
temperature in °C.

	
read()

	Do error checking on reading.

	
set_monitored_quantity(quantity='temperature')

	Configure the oven to monitor a certain quantity.

quantity may be any key of registers. Default is the current
temperature in °C.

	
property setpoint

	Control the setpoint of the temperature controller in °C.

	
property temperature

	Measure the current temperature in °C.

	
write(command)

	Send a command in its own protocol.

 HCP TC038D crystal oven

HCP TC038D crystal oven

	
class pymeasure.instruments.hcp.TC038D(adapter, name='TC038D', address=1, timeout=1000, **kwargs)

	Bases: Instrument

Communication with the HCP TC038D oven.

This is the newer version with DC heating.

The oven expects raw bytes written, no ascii code, and sends raw bytes.
For the variables are two or four-byte modes available. We use the
four-byte mode addresses. In that case element count has to be
double the variables read.

	
check_set_errors()

	Check for errors after having set a property.

Called if check_set_errors=True is set for that property.

	
ping(test_data=0)

	Test the connection sending an integer up to 65535, checks the response.

	
read()

	Read response and interpret the number, returning it as a string.

	
property setpoint

	Control the setpoint of the oven in °C.

	
property temperature

	Measure the current oven temperature in °C.

	
write(command)

	Write a command to the device.

	Parameters

	command (str) – comma separated string of:
- the function: read (‘R’) or write (‘W’) or ‘echo’,
- the address to write to (e.g. ‘0x106’ or ‘262’),
- the values (comma separated) to write
- or the number of elements to read (defaults to 1).

 Hewlett Packard

Hewlett Packard

This section contains specific documentation on the Hewlett Packard instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	HP 33120A Arbitrary Waveform Generator
	HP33120A

	HP 34401A Multimeter
	HP34401A

	HP 3437A System-Voltmeter
	HP3437A

	HP 3478A Multimeter
	HP3478A

	HP 8116A 50 MHz Pulse/Function Generator
	HP8116A

	HP 8560A / 8561B Spectrum Analyzer
	Generic Specific Attributes & Methods

	HP8560A Specific Attributes & Methods

	HP8561B Specific Attributes & Methods

	Enumerations

	HP Signal generator HP8657B
	HP8657B

	Support class for HP legacy devices
	HPLegacyInstrument

	HP System Power Supplies HP663XA
	HP6632A

	HP6633A

	HP6634A

 HP 33120A Arbitrary Waveform Generator

HP 33120A Arbitrary Waveform Generator

	
class pymeasure.instruments.hp.HP33120A(adapter, name='Hewlett Packard 33120A Function Generator', **kwargs)

	Bases: Instrument

Represents the Hewlett Packard 33120A Arbitrary Waveform
Generator and provides a high-level interface for interacting
with the instrument.

	
property amplitude

	A floating point property that controls the voltage amplitude of the
output signal. The default units are in peak-to-peak Volts, but can be
controlled by amplitude_units. The allowed range depends
on the waveform shape and can be queried with max_amplitude
and min_amplitude.

	
property amplitude_units

	A string property that controls the units of the amplitude,
which can take the values Vpp, Vrms, dBm, and default.

	
beep()

	Causes a system beep.

	
property frequency

	A floating point property that controls the frequency of the
output in Hz. The allowed range depends on the waveform shape
and can be queried with max_frequency and
min_frequency.

	
property max_amplitude

	Reads the maximum amplitude in Volts for the given shape

	
property max_frequency

	Reads the maximum frequency in Hz for the given shape

	
property max_offset

	Reads the maximum offset in Volts for the given shape

	
property min_amplitude

	Reads the minimum amplitude in Volts for the given shape

	
property min_frequency

	Reads the minimum frequency in Hz for the given shape

	
property min_offset

	Reads the minimum offset in Volts for the given shape

	
property offset

	A floating point property that controls the amplitude voltage offset
in Volts. The allowed range depends on the waveform shape and can be
queried with max_offset and min_offset.

	
property shape

	A string property that controls the shape of the wave,
which can take the values: sinusoid, square, triangle, ramp,
noise, dc, and user.

 HP 34401A Multimeter

HP 34401A Multimeter

	
class pymeasure.instruments.hp.HP34401A(adapter, name='HP 34401A', **kwargs)

	Bases: Instrument

Represents the HP / Agilent / Keysight 34401A Multimeter and
provides a high-level interface for interacting with the instrument.

dmm = HP34401A("GPIB::1")
dmm.function_ = "DCV"
print(dmm.reading) # -> Single float reading

dmm.nplc = 0.02
dmm.autozero_enabled = False
dmm.trigger_count = 100
dmm.trigger_delay = "MIN"
print(dmm.reading) # -> Array of 100 very fast readings

	
property auto_input_impedance_enabled

	Control if automatic input resistance mode is enabled.

Only valid for dc voltage measurements.
When disabled (default), the input resistance is fixed
at 10 MOhms for all ranges. With AUTO ON, the input resistance is set to
>10 GOhms for the 100 mV, 1 V, and 10 V ranges.

	
property autorange

	Control the autorange state for the currently active function.

	
property autozero_enabled

	Control the autozero state.

	
beep()

	This command causes the multimeter to beep once.

	
property beeper_enabled

	Control whether the beeper is enabled.

	
property current_ac

	AC current, in Amps

Deprecated since version 0.12: Use the function_ and reading properties instead.

	
property current_dc

	DC current, in Amps

Deprecated since version 0.12: Use the function_ and reading properties instead.

	
property detector_bandwidth

	Control the lowest frequency expected in the input signal in Hertz.

Valid values: 3, 20, 200, “MIN”, “MAX”.

	
property display_enabled

	Control the display state.

	
property displayed_text

	Control the text displayed on the multimeter’s display.

The text can be up to 12 characters long;
any additional characters are truncated my the multimeter.

	
property function_

	Control the measurement function.

Allowed values: “DCV”, “DCV_RATIO”, “ACV”, “DCI”, “ACI”,
“R2W”, “R4W”, “FREQ”, “PERIOD”, “CONTINUITY”, “DIODE”.

	
property gate_time

	Control the gate time (or aperture time) for frequency or period measurements.

Valid values: 0.01, 0.1, 1, “MIN”, “MAX”.
Specifically: 10 ms (4.5 digits), 100 ms (default; 5.5 digits),
or 1 second (6.5 digits).

	
init_trigger()

	Set the state of the triggering system to “wait-for-trigger”.

Measurements will begin when the specified trigger conditions
are satisfied after this command is received.

	
property nplc

	Control the integration time in number of power line cycles (NPLC).

Valid values: 0.02, 0.2, 1, 10, 100, “MIN”, “MAX”.
This command is valid only for dc volts, ratio, dc current,
2-wire ohms, and 4-wire ohms.

	
property range_

	Control the range for the currently active function.

For frequency and period measurements, ranging applies to
the signal’s input voltage, not its frequency

	
property reading

	Take a measurement of the currently selected function.

Reading this property is equivalent to calling init_trigger(),
waiting for completion and fetching the reading(s).

	
property resistance

	Resistance, in Ohms

Deprecated since version 0.12: Use the function_ and reading properties instead.

	
property resistance_4w

	Four-wires (remote sensing) resistance, in Ohms

Deprecated since version 0.12: Use the function_ and reading properties instead.

	
property resolution

	Control the resolution of the measurements.

Not valid for frequency, period, or ratio.
Specify the resolution in the same units as the
measurement function, not in number of digits.
Results in a “Settings Conflict” error if autorange is enabled.
MIN selects the smallest value accepted, which gives the most resolution.
MAX selects the largest value accepted which gives the least resolution.

	
property sample_count

	Controls the number of samples per trigger event.

Valid values: 1 to 50000, “MIN”, “MAX”.

	
property scpi_version

	The SCPI version of the multimeter.

	
property self_test_result

	Initiate a self-test of the multimeter and return the result.

Be sure to set an appropriate connection timeout,
otherwise the command will fail.

	
property stored_reading

	Measure the reading(s) currently stored in the multimeter’s internal memory.

Reading this property will NOT initialize a trigger.
If you need that, use the reading property instead.

	
property stored_readings_count

	The number of readings currently stored in the internal memory.

	
property terminals_used

	Query the multimeter to determine if the front or rear input terminals
are selected.

Returns “FRONT” or “REAR”.

	
property trigger_auto_delay_enabled

	Control the automatic trigger delay state.

If enabled, the delay is determined by function, range, integration time,
and ac filter setting. Selecting a specific trigger delay value
automatically turns off the automatic trigger delay.

	
property trigger_count

	Control the number of triggers accepted before returning to the “idle” state.

Valid values: 1 to 50000, “MIN”, “MAX”, “INF”.
The INFinite parameter instructs the multimeter to continuously accept triggers
(you must send a device clear to return to the “idle” state).

	
property trigger_delay

	Control the trigger delay in seconds.

Valid values (incl. floats): 0 to 3600 seconds, “MIN”, “MAX”.

	
trigger_single_autozero()

	Trigger an autozero measurement.

Consequent autozero measurements are disabled.

	
property trigger_source

	Control the trigger source.

Valid values: “IMM”, “BUS”, “EXT”
The multimeter will accept a software (bus) trigger,
an immediate internal trigger (this is the default source),
or a hardware trigger from the rear-panel
Ext Trig (external trigger) terminal.

	
property voltage_ac

	AC voltage, in Volts

Deprecated since version 0.12: Use the function_ and reading properties instead.

	
write(command)

	Write a command to the instrument.

 HP 3437A System-Voltmeter

HP 3437A System-Voltmeter

	
class pymeasure.instruments.hp.HP3437A(adapter, name='Hewlett-Packard HP3437A', **kwargs)

	Bases: HPLegacyInstrument

Represents the Hewlett Packard 3737A system voltmeter
and provides a high-level interface for interacting
with the instrument.

	
class SRQ(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntFlag

Enum element for SRQ mask bit decoding

	
property SRQ_mask

	Return current SRQ mask, this property can be set,

bit assigment for SRQ:

	Bit (dec)

	Description

	1

	SRQ when invalid program

	2

	SRQ when trigger is ignored

	4

	SRQ when data ready

	
check_errors()

	As this instrument does not have a error indication bit,
this function alwyas returns an empty list.

	
property delay

	Return the value (float) for the delay between two measurements,
this property can be set,

valid range: 100ns - 0.999999s

	
property number_readings

	Return value (int) for the number of consecutive measurements,
this property can be set,
valid range: 0 - 9999

	
pb_desc

	alias of PackedBits

	
property range

	Return the current measurement voltage range.

This property can be set, valid values: 0.1, 1, 10 (V).

Note

This instrument does not have autorange capability.

Overrange will be in indicated as 0.99,9.99 or 99.9

	
read_data()

	Reads measured data from instrument, returns a np.array.

(This function also takes care of unpacking the data if required)

	Return data

	np.array containing the data

	
status_desc

	alias of Status

	
property talk_ascii

	A boolean property, True if the instrument is set to ASCII-based communication.
This property can be set.

	
property trigger

	Return current selected trigger mode, this property can be set,

Possibe values are:

	Value

	Explanation

	internal

	automatic trigger (internal)

	external

	external trigger (connector on back or GET)

	hold/manual

	holds the measurement/issues a manual trigger

 HP 3478A Multimeter

HP 3478A Multimeter

	
class pymeasure.instruments.hp.HP3478A(adapter, name='Hewlett-Packard HP3478A', **kwargs)

	Bases: HPLegacyInstrument

Represents the Hewlett Packard 3478A 5 1/2 digit multimeter
and provides a high-level interface for interacting
with the instrument.

	
class ERRORS(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntFlag

Enum element for errror bit decoding

	
property SRQ_mask

	Return current SRQ mask, this property can be set,

bit assigment for SRQ:

	Bit (dec)

	Description

	1

	SRQ when Data ready

	4

	SRQ when Syntax error

	8

	SRQ when internal error

	16

	front panel SQR button

	32

	SRQ by invalid calibration

	
property active_connectors

	Return selected connectors (“front”/”back”), based on front-panel selector switch

	
property auto_range_enabled

	Property describing the auto-ranging status

	Value

	Status

	True

	auto-range function activated

	False

	manual range selection / auto-range disabled

The range can be set with the range property

	
property auto_zero_enabled

	Return auto-zero status, this property can be set

	Value

	Status

	True

	auto-zero active

	False

	auto-zero disabled

	
property calibration_data

	Read or write the calibration data as an array of 256 values between 0 and 15.

The calibration data of an HP 3478A is stored in a 256x4 SRAM that is
permanently powered by a 3v Lithium battery. When the battery runs
out, the calibration data is lost, and recalibration is required.

When read, this property fetches and returns the calibration data so that it can be
backed up.

When assigned a value, it similarly expects an array of 256 values between 0 and 15,
and writes the values back to the instrument.

When writing, exceptions are raised for the following conditions:

	The CAL ENABLE switch at the front of the instrument is not set to ON.

	The array with values does not contain exactly 256 elements.

	The array with values does not pass a verification check.

IMPORTANT: changing the calibration data results in permanent loss of
the previous data. Use with care!

	
property calibration_enabled

	Return calibration enable switch setting,
based on front-panel selector switch

	Value

	Status

	True

	calbration possible

	False

	calibration locked

	
check_errors()

	Method to read the error status register

	Return error_status

	one byte with the error status register content

	Rtype error_status

	int

	
display_reset()

	Reset the display of the instrument.

	
property display_text

	Displays up to 12 upper-case ASCII characters on the display.

	
property display_text_no_symbol

	Displays up to 12 upper-case ASCII characters on the display and
disables all symbols on the display.

	
property error_status

	Checks the error status register

	
property measure_ACI

	Returns the measured value for AC current as a float in A.

	
property measure_ACV

	Returns the measured value for AC Voltage as a float in V.

	
property measure_DCI

	Returns the measured value for DC current as a float in A.

	
property measure_DCV

	Returns the measured value for DC Voltage as a float in V.

	
property measure_R2W

	Returns the measured value for 2-wire resistance as a float in Ohm.

	
property measure_R4W

	Returns the measured value for 4-wire resistance as a float in Ohm.

	
property measure_Rext

	Returns the measured value for extended resistance mode (>30M, 2-wire)
resistance as a float in Ohm.

	
property mode

	Return current selected measurement mode, this propery can be set.
Allowed values are

	Mode

	Function

	ACI

	AC current

	ACV

	AC voltage

	DCI

	DC current

	DCV

	DC voltage

	R2W

	2-wire resistance

	R4W

	4-wire resistance

	Rext

	extended resistance method (requires additional 10 M resistor)

	
property range

	Returns the current measurement range, this property can be set.

Valid values are :

	Mode

	Range

	ACI

	0.3, 3, auto

	ACV

	0.3, 3, 30, 300, auto

	DCI

	0.3, 3, auto

	DCV

	0.03, 0.3, 3, 30, 300, auto

	R2W

	30, 300, 3000, 3E4, 3E5, 3E6, 3E7, auto

	R4W

	30, 300, 3000, 3E4, 3E5, 3E6, 3E7, auto

	Rext

	3E7, auto

	
property resolution

	Returns current selected resolution, this property can be set.

Possible values are 3,4 or 5 (for 3 1/2, 4 1/2 or 5 1/2 digits of resolution)

	
status_desc

	alias of Status

	
property trigger

	Return current selected trigger mode, this property can be set

Possibe values are:

	Value

	Meaning

	auto

	automatic trigger (internal)

	internal

	automatic trigger (internal)

	external

	external trigger (connector on back or GET)

	hold

	holds the measurement

	fast

	fast trigger for AC measurements

	
verify_calibration_data(cal_data)

	Verify the checksums of all calibration entries.

Expects an array of 256 values with calibration data.

	Return calibration_correct

	True when all checksums are correct.

	Rtype calibration_correct

	boolean

	
verify_calibration_entry(cal_data, entry_nr)

	Verify the checksum of one calibration entry.

Expects an array of 256 values with calibration data, and an entry
number from 0 to 18.

Returns True when the checksum of the specified calibration entry
is correct.

	
write_calibration_data(cal_data, verify_calibration_data=True)

	Method to write calibration data.

The cal_data parameter format is the same as the calibration_data property.

Verification of the cal_data array can be bypassed by setting
verify_calibration_data to False.

 HP 8116A 50 MHz Pulse/Function Generator

HP 8116A 50 MHz Pulse/Function Generator

	
class pymeasure.instruments.hp.HP8116A(adapter, name='Hewlett-Packard 8116A', **kwargs)

	Bases: Instrument

Represents the Hewlett-Packard 8116A 50 MHz Pulse/Function Generator
and provides a high-level interface for interacting with the instrument.
The resolution for all floating point instrument parameters is 3 digits.

	
class Digit(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: Enum

Enum of the digits used with the autovernier
(see HP8116A.start_autovernier()).

	
class Direction(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: Enum

Enum of the directions used with the autovernier
(see HP8116A.start_autovernier()).

	
GPIB_trigger()

	Initate trigger via low-level GPIB-command (aka GET - group execute trigger).

	
property amplitude

	A floating point value that controls the amplitude of the
output in V. The allowed amplitude range generally is 10 mV to 16 V,
but it is also limited by the current offset.

	
ask(command, num_bytes=None)

	Write a command to the instrument, read the response, and return the response as ASCII text.

	Parameters

	
	command – The command to send to the instrument.

	num_bytes – The number of bytes to read from the instrument. If not specified,
the number of bytes is automatically determined by the command.

	
property autovernier_enabled

	A boolean property that controls whether the autovernier is enabled.

	
property burst_number

	An integer value that controls the number of periods generated in a burst.
The allowed range is 1 to 1999. It is only valid for units with Option 001
in one of the burst modes.

	
check_errors()

	Check for errors in the 8116A.

	Returns

	list of error entries or empty list if no error occurred.

	
property complement_enabled

	A boolean property that controls whether the complement
of the signal is generated.

	
property complete

	Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation
Complete query places an ASCII character 1 into the device’s Output Queue when all pending
selected device operations have been finished.

	
property control_mode

	A string property that controls the control mode of the instrument.
Possible values are ‘off’, ‘FM’, ‘AM’, ‘PWM’, ‘VCO’.

	
property duty_cycle

	An integer value that controls the duty cycle of the output in percent.
The allowed range generally is 10 % to 90 %, but it also depends on the current frequency.
It is valid for all shapes except ‘pulse’, where pulse_width is used instead.

	
property frequency

	A floating point value that controls the frequency of the
output in Hz. The allowed frequency range is 1 mHz to 52.5 MHz.

	
property haversine_enabled

	A boolean property that controls whether a haversine/havertriangle signal
is generated when in ‘triggered’, ‘internal_burst’ or ‘external_burst’ operating mode.

	
property high_level

	A floating point value that controls the high level of the
output in V. The allowed high level range generally is -7.9 V to 8 V,
but it must be at least 10 mV greater than the low level.

	
property limit_enabled

	A boolean property that controls whether parameter limiting is enabled.

	
property low_level

	A floating point value that controls the low level of the
output in V. The allowed low level range generally is -8 V to 7.9 V,
but it must be at least 10 mV less than the high level.

	
property offset

	A floating point value that controls the offset of the
output in V. The allowed offset range generally is -7.95 V to 7.95 V,
but it is also limited by the amplitude.

	
property operating_mode

	A string property that controls the operating mode of the instrument.
Possible values (without Option 001) are: ‘normal’, ‘triggered’, ‘gate’, ‘external_width’.
With Option 001, ‘internal_sweep’, ‘external_sweep’, ‘external_width’, ‘external_pulse’
are also available.

	
property options

	Return the device options installed. The only possible option is 001.

	
property output_enabled

	A boolean property that controls whether the output is enabled.

	
property pulse_width

	A floating point value that controls the pulse width.
The allowed pulse width range is 8 ns to 999 ms.
The pulse width may not be larger than the period.

	
property repetition_rate

	A floating point value that controls the repetition rate (= the time between bursts)
in ‘internal_burst’ mode. The allowed range is 20 ns to 999 ms.

	
reset()

	Initatiate a reset (like a power-on reset) of the 8116A.

	
property shape

	A string property that controls the shape of the output waveform.
Possible values are: ‘dc’, ‘sine’, ‘triangle’, ‘square’, ‘pulse’.

	
shutdown()

	Gracefully close the connection to the 8116A.

	
start_autovernier(control, digit, direction, start_value=None)

	Start the autovernier on the specified control.

	Parameters

	
	control – The control to change, pass as HP8116A.some_control. Allowed
controls are frequency, amplitude, offset, duty_cycle, and pulse_width

	digit – The digit to change, type: HP8116A.Digit.

	direction – The direction in which to change the control,
type: HP8116A.Direction.

	start_value – An optional value to start the autovernier at. If not specified,
the current value of the control is used.

	
property status

	Returns the status byte of the 8116A as an IntFlag-type enum.

	
property sweep_marker_frequency

	A floating point value that controls the frequency marker in both sweep modes.
At this frequency, the marker output switches from low to high.
The allowed range is 1 mHz to 52.5 MHz.

	
property sweep_start

	A floating point value that controls the start frequency in both sweep modes.
The allowed range is 1 mHz to 52.5 MHz.

	
property sweep_stop

	A floating point value that controls the stop frequency in both sweep modes.
The allowed range is 1 mHz to 52.5 MHz.

	
property sweep_time

	A floating point value that controls the sweep time per decade in both sweep modes.
The sweep time is selectable in a 1-2-5 sequence between 10 ms and 500 s.

	
property trigger_slope

	A string property that controls the slope the trigger triggers on.
Possible values are: ‘off’, ‘positive’, ‘negative’.

	
write(command)

	Write a command to the instrument and wait until the 8116A has interpreted it.

 HP 8560A / 8561B Spectrum Analyzer

HP 8560A / 8561B Spectrum Analyzer

Every unit is used in the base unit, so for time it is s (Seconds), frequency in Hz (Hertz) etc…

Generic Specific Attributes & Methods

Content

	General

	Demodulation

	Frequency

	Resolution Bandwidth

	Video

	FFT & Measurements

	Trace

	Marker

	Diagnostic Values

	Sweep

	Normalization

	Open/Short Calibration (Reflection)

	Thru Calibration

General

	
HP856Xx.preset()

	Set the spectrum analyzer to a known, predefined state.

‘preset’ does not affect the contents of any data or trace
registers or stored preselector data. ‘preset’ does not clear
the input or output data buffers;

	
HP856Xx.attenuation

	Control the input attenuation in decade steps from 10 to 70 db (type ‘int’) or set to
‘AUTO’ and ‘MAN’(ual)

Type: str, int

instr.attenuation = 'AUTO'
instr.attenuation = 60

	
HP856Xx.amplitude_unit

	Control the amplitude unit with a selection of the following parameters: string
‘DBM’, ‘DBMV’, ‘DBUV’, ‘V’, ‘W’, ‘AUTO’, ‘MAN’ or use the enum AmplitudeUnits

Type: str

instr.amplitude_unit = 'dBmV'
instr.amplitude_unit = AmplitudeUnits.dBmV

	
HP856Xx.trigger_mode

	Control the trigger mode. Selected trigger conditions must be met in order for
a sweep to occur. For the available modes refer to TriggerMode.
When any trigger mode other than free run is selected,
a “T” appears on the left edge of the display.

	
HP856Xx.detector_mode

	Control the IF detector used for acquiring measurement data.
This is normally a coupled function, in which the spectrum analyzer selects the
appropriate detector mode. Four modes are available: normal, positive, negative, and sample.

Type: str

Takes a representation of the detector mode, either from DetectionModes or
use ‘NEG’, ‘NRM’, ‘POS’, ‘SMP’

instr.detector_mode = DetectionModes.SMP
instr.detector_mode = 'NEG'

if instr.detector_mode == DetectionModes.SMP:
 pass

	
HP856Xx.coupling

	Control the input coupling of the spectrum analyzer.
AC coupling protects the input of the analyzer from damaging dc signals, while limiting
the lower frequency-range to 100 kHz (although the analyzer will tune down to 0 Hz with
signal attenuation).

Type: str

Takes a representation of the coupling mode, either from CouplingMode or
use ‘AC’ / ‘DC’

instr.coupling = 'AC'
instr.coupling = CouplingMode.DC

if instr.coupling == CouplingMode.DC:
 pass

	
HP856Xx.set_auto_couple()

	Set the video bandwidth, resolution bandwidth, input attenuation,
sweep time, and center frequency step-size to coupled mode.

These functions can be recoupled individually or all at once.
The spectrum analyzer chooses appropriate values for these
functions. The video bandwidth and resolution bandwidth are set
according to the coupled ratios stored under resolution_bandwidth_to_span_ratio
and video_bandwidth_to_resolution_bandwidth. If
no ratios are chosen, default ratios (1.0 and 0.011,
respectively) are used instead.

	
HP856Xx.set_linear_scale()

	Set the spectrum analyzers display to linear amplitude scale.

Measurements made on a linear scale can be read out in any
units.

	
HP856Xx.logarithmic_scale

	Control the logarithmic amplitude scale. When in linear
mode, querying ‘logarithmic_scale’ returns a “0”.
Allowed values are 0, 1, 2, 5, 10

Type: int

if instr.logarithmic_scale:
 pass

set the scale to 10 db per division
instr.logarithmic_scale = 10

	
HP856Xx.threshold

	Control the minimum amplitude level and clips data at this value. Default
value is -90 dBm. See also - marker_threshold does not clip data below its threshold

Type: str, float range -200 to 30

Note

When a trace is in max-hold mode, if the threshold is raised above any of the
trace data, the data below the threshold will be permanently lost.

	
HP856Xx.set_title(string)

	Sets character data in the title area of the display, which is in
the upper-right corner.

A title can be up to two rows of sixteen characters each, Carriage
return and line feed characters are not allowed.

	
HP856Xx.status

	Get the decimal equivalent of the bits set in the
status byte (see the RQS and SRQ commands). STB is equivalent to a serial poll command.
The RQS and associated bits are cleared in the same way that a serial poll command would
clear them.

	
HP856Xx.check_done()

	Return when all commands in a command string
entered before :meth:’check_done’ has been completed. Sending a trigger_sweep()
command before ‘check_done’ ensures that the spectrum analyzer will complete a full sweep
before continuing on in a program. Depending on the timeout a timeout error from the
adapter will raise before the spectrum analyzer can finish due to an extreme long sweep
time.

instr.trigger_sweep()

wait for a full sweep and than 'do_something'
instr.check_done()
do_something()

	
HP856Xx.request_service(input)

	Triggers a service request. This command allows you to force a
service request and test a program designed to handle service requests.
However, the service request can be triggered only if it is first
masked using the request_service_conditions command.

	Parameters

	input (StatusRegister) – Bits to emulate a service request

	
HP856Xx.errors

	Get a list of errors present (of type ErrorCode). An empty list means there
are no errors. Reading ‘errors’ clears all HP-IB errors. For best results, enter error
data immediately after querying for errors.

Type: ErrorCode

errors = instr.errors
if len(errors) > 0:
 print(errors[0].code)

for error in errors:
 print(error)

if ErrorCode(112) in errors:
 print("yeah")

Example result of this python snippet:

112
ErrorCode("??CMD?? - Unrecognized command")
ErrorCode("NOP NUM - Command cannot have numeric units")
yeah

	
HP856Xx.save_state(inp)

	Saves the currently displayed instrument state in the specified
state register.

	Parameters

	
	inp – State to be recalled: either storage slot 0 … 9 or ‘LAST’ or ‘PWRON’

	inp – str, int

instr.preset()
instr.center_frequency = 300e6
instr.span = 20e6
instr.save_state("PWRON")

	
HP856Xx.recall_state(inp)

	Set to the display a previously saved instrument state. See
save_state().

	Parameters

	
	inp – State to be recalled: either storage slot 0 … 9 or ‘LAST’ or ‘PWRON’

	inp – str, int

instr.save_state(7)
instr.preset()
instr.recall_state(7)

	
HP856Xx.request_service_conditions

	Control a bit mask that specifies which service requests can interrupt
a program sequence.

instr.request_service_conditions = StatusRegister.ERROR_PRESENT | StatusRegister.TRIGGER

print(instr.request_service_conditions)
StatusRegister.ERROR_PRESENT|TRIGGER

	
HP856Xx.set_maximum_hold = <function HP856Xx.set_maximum_hold>

	

	
HP856Xx.set_minimum_hold = <function HP856Xx.set_minimum_hold>

	

	
HP856Xx.reference_level_calibration

	Control the calibration of the reference level remotely and retuns the
current calibration. To calibrate the reference level, connect the 300 MHz calibration
signal to the RF input. Set the center frequency to 300 MHz, the frequency span to 20
MHz, and the reference level to -10 dBm. Use the RLCAL command to move the input signal
to the reference level. When the signal peak falls directly on the reference-level line,
the reference level is calibrated. Storing this value in the analyzer in EEROM can be
done only from the front panel. The RLCAL command, when queried, returns the current value.

Type: float

connect cal signal to rf input
instr.preset()
instr.amplitude_unit = AmplitudeUnits.DBM
instr.center_frequency = 300e6
instr.span = 100e3
instr.reference_level = 0
instr.trigger_sweep()

instr.peak_search(PeakSearchMode.High)
level = instr.marker_amplitude
rlcal = instr.reference_level_calibration - int((level + 10) / 0.17)
instr.reference_level_calibration = rlcal

	
HP856Xx.reference_offset

	Control an offset applied to all amplitude readouts (for example, the
reference level and marker amplitude). The offset is in dB, regardless of the selected scale
and units. The offset can be useful to account for gains of losses in accessories connected
to the input of the analyzer. When this function is active, an “R” appears on the left
edge of the display.

Type: int

	
HP856Xx.reference_level

	Control the reference level, or range level when in normalized mode. (Range level
functions the same as reference level.) The reference level is the top horizontal line on
the graticule. For best measurement accuracy, place the peak of a signal of interest on the
reference-level line. The spectrum analyzer input attenuator is coupled to the reference
level and automatically adjusts to avoid compression of the input signal. Refer also to
amplitude_unit. Minimum reference level is -120.0 dBm or 2.2 uV

Type: float

	
HP856Xx.display_line

	Control the horizontal display line for use as a visual aid or for
computational purposes. The default value is 0 dBm.

Type: float, str

Takes a value with the unit of amplitude_unit or ‘ON’ / ‘OFF’

instr.display_line = 'ON'
instr.display_line = -10

if instr.detector_mode == 0:
 pass

	
HP856Xx.protect_state_enabled

	Control the storing of any new data in the state or trace registers.
If set to ‘True’, the registers are “locked”; the data in them cannot be erased or
overwritten, although the data can be recalled. To “unlock” the registers, and store new
data, set ‘protect_state_enabled’ to off by selecting ‘False’ as the parameter.

Type: bool

	
HP856Xx.mixer_level

	Control the maximum signal level that is at the input mixer. The
attenuator automatically adjusts to ensure that this level is not exceeded for signals less
than the reference level. From -80 to -10 DB.

Type: int

	
HP856Xx.frequency_counter_mode_enabled

	Set the device into a frequency counter mode that counts the frequency of the active
marker or the difference in frequency between two markers. If no marker
is active, ‘frequency_counter_mode_enabled’ places a marker at the center of
the trace and counts that marker frequency. The frequency counter
provides a more accurate frequency reading; it pauses at the marker,
counts the value, then continues the sweep. To adjust the frequency
counter resolution, use the ‘frequency_counter_resolution’ command. To
return the counter value, use the ‘marker_frequency’ command.

instr.frequency_counter_mode_enabled = True

	
HP856Xx.frequency_counter_resolution

	Control the resolution of the frequency counter. Refer to the ‘frequency_counter_mode’
command. The default value is 10 kHz.

Type int

activate frequency counter mode
instr.frequency_counter_mode = True

adjust resolution to 1 Hz
instr.frequency_counter_resolution = 1

if instr.frequency_counter_resolution:
 pass

	
HP856Xx.adjust_all()

	Activate the local oscillator (LO) and intermediate frequency (IF)
alignment routines. These are the same routines that occur when is switched on.
Commands following ‘adjust_all’ are not executed until after the analyzer has finished the
alignment routines.

	
HP856Xx.adjust_if

	Control the automatic IF adjustment. This function is normally
on. Because the IF is continuously adjusting, executing the IF alignment routine is seldom
necessary. When the IF adjustment is not active, an “A” appears on the left side of the
display.

	“FULL” IF adjustment is done for all IF settings.

	“CURR” IF adjustment is done only for the IF settings currently displayed.

	False turns the continuous IF adjustment off.

	True reactivates the continuous IF adjustment.

Type: bool, str

	
HP856Xx.hold()

	Freeze the active function at its current value.

If no function is active, no operation takes place.

	
HP856Xx.annotation_enabled

	Set the display annotation off or on.

Type: bool

	
HP856Xx.set_crt_adjustment_pattern()

	Activate a CRT adjustment pattern, shown in Figure 5-3. Use the
X POSN, Y POSN, and TRACE ALIGN adjustments (available from the rear panel) to
align the display. Use X POSN and Y POSN to move the display horizontally and vertically,
respectively. Use TRACE ALIGN to straighten a tilted display. To remove the pattern from
the screen, execute the preset() command.

	
HP856Xx.display_parameters

	Get the location of the lower left (P1) and upper right (P2) vertices as a tuple of
the display window.

Type: tuple

repr(instr.display_parameters)
(72, 16, 712, 766)

	
HP856Xx.firmware_revision

	Get the revision date code of the spectrum analyzer firmware.

Type: datetime.date

	
HP856Xx.graticule_enabled

	Control the display graticule. Switch it either on or off.

Type: bool

instr.graticule = True

if instr.graticule:
 pass

	
HP856Xx.serial_number

	Get the spectrum analyzer serial number.

	
HP856Xx.id

	Get the identification of the device with software and hardware revision (e.g. HP8560A,002,
H03)

Type: str

print(instr.id)
HP8560A,002,H02

	
HP856Xx.elapsed_time

	Get the elapsed time (in hours) of analyzer operation.
This value can be reset only by Hewlett-Packard.

Type: int

print(elapsed_time)
1998

Demodulation

	
HP856Xx.demodulation_mode

	Control the demodulation mode of the spectrum analyzer. Either AM or FM demodulation,
or turns the demodulation — off.
Place a marker on a desired signal and then set demodulation_mode;
demodulation takes place on this signal. If no marker is on, demodulation_mode
automatically places a marker at the center of the trace and demodulates the frequency at
that marker position. Use the volume and squelch controls to adjust the speaker and listen.

Type: str

Takes a representation of the demodulation mode, either from DemodulationMode or
use ‘OFF’, ‘AM’, ‘FM’

instr.demodulation_mode = 'AC'
instr.demodulation_mode = DemodulationMode.AM

if instr.demodulation_mode == DemodulationMode.FM:
 instr.demodulation_mode = Demodulation.OFF

	
HP856Xx.demodulation_agc_enabled

	Control the demodulation automatic gain control (AGC).
The AGC keeps the volume of the speaker relatively constant during AM demodulation. AGC
is available only during AM demodulation and when the frequency span is greater than 0 Hz.

Type: bool

instr.demodulation_agc = True

if instr.demodulation_agc:
 instr.demodulation_agc = False

	
HP856Xx.demodulation_time

	Control the amount of time that the sweep pauses at the marker to
demodulate a signal. The default value is 1 second. When the frequency span equals 0 Hz,
demodulation is continuous, except when between sweeps. For truly continuous demodulation,
set the frequency span to 0 Hz and the trigger mode to single sweep (see TM).
Minimum 100 ms to maximum 60 s

Type: float

set the demodulation time to 1.2 seconds
instr.demodulation_time = 1.2

if instr.demodulation_time == 10:
 pass

	
HP856Xx.squelch

	Control the squelch level for demodulation. When this function is
on, a dashed line indicating the squelch level appears on the display.
A marker must be active and above the squelch line for demodulation to occur. Refer to
the demodulation_mode command. The default value is -120 dBm.

Type: str,int

instr.preset()
instr.start_frequency = 88e6
instr.stop_frequency = 108e6

instr.peak_search(PeakSearchMode.High)
instr.demodulation_time = 10

instr.squelch = -60
instr.demodulation_mode = DemodulationMode.FM

Frequency

	
HP856Xx.start_frequency

	Control the start frequency and set the spectrum analyzer to start-frequency/
stop-frequency mode. If the start frequency exceeds the stop frequency, the stop frequency
increases to equal the start frequency plus 100 Hz. The center frequency and span change
with changes in the start frequency.

Type: float

instr.start_frequency = 300.5e6
if instr.start_frequency == 200e3:
 print("Correct frequency")

(dynamic)

	
HP856Xx.stop_frequency

	Control the stop frequency and set the spectrum analyzer to start-frequency/
stop-frequency mode. If the stop frequency is less than the start frequency, the start
frequency decreases to equal the stop frequency minus 100 Hz. The center frequency and
span change with changes in the stop frequency.

Type: float

instr.stop_frequency = 300.5e6
if instr.stop_frequency == 200e3:
 print("Correct frequency")

(dynamic)

	
HP856Xx.center_frequency

	Control the center frequency in hertz and sets the spectrum analyzer to center
frequency / span mode.

The span remains constant; the start and stop frequencies change as
the center frequency changes.

Type: float

instr.center_frequency = 300.5e6
if instr.center_frequency == 200e3:
 print("Correct frequency")

(dynamic)

	
HP856Xx.frequency_offset

	Control an offset added to the displayed absolute-frequency values,
including marker-frequency values.

It does not affect the frequency range of the sweep, nor
does it affect relative frequency readouts. When this function is active, an “F” appears on
the left side of the display.
Changes all the following frequency measurements.

Type: float

instr.frequency_offset = 2e6
if instr.frequency_offset == 2e6:
 print("Correct frequency")

(dynamic)

	
HP856Xx.frequency_reference_source

	Control the frequency reference source.
Select either the internal frequency reference (INT) or supply your own external
reference (EXT). An external reference must be 10 MHz (+100 Hz) at a minimum amplitude of
0 dBm. Connect the external reference to J9 (10 MHz REF IN/OUT) on the rear panel. When
the external mode is selected, an “X” appears on the left edge of the display.

Type: str

Takes element of FrequencyReference or use ‘INT’, ‘EXT’

instr.frequency_reference_source = 'INT'
instr.frequency_reference_source = FrequencyReference.EXT

if instr.frequency_reference_source == FrequencyReference.INT:
 instr.frequency_reference_source = FrequencyReference.EXT

	
HP856Xx.span

	Control the frequency span. The center frequency does not change with
changes in the frequency span; start and stop frequencies do change. Setting the frequency
span to 0 Hz effectively allows an amplitude-versus-time mode in which to view signals. This
is especially useful for viewing modulation. Querying SP will leave the analyzer in center
frequency /span mode.

	
HP856Xx.set_full_span()

	Set the spectrum analyzer to the full frequency span as defined by
the instrument.

The full span is 2.9 GHz for the HP 8560A. For the HP 8561B, the
full span is 6.5 GHz.

	
HP856Xx.frequency_display_enabled

	Get the state of all annotations that describes the spectrum analyzer frequency.
returns ‘False’ if no annotations are shown and vice versa ‘True’. This includes the start
and stop frequencies, the center frequency, the frequency span, marker readouts, the center
frequency step-size, and signal identification to center frequency. To retrieve the
frequency data, query the spectrum analyzer.

Type: bool

if instr.frequency_display:
 print("Frequencies get displayed")

Resolution Bandwidth

	
HP856Xx.resolution_bandwidth

	Control the resolution bandwidth. This is normally a coupled function that
is selected according to the ratio selected by the RBR command. If no ratio is selected, a
default ratio (0.011) is used. The bandwidth, which ranges from 10 Hz to 2 MHz, may also be
selected manually.

Type: str, dec

	
HP856Xx.resolution_bandwidth_to_span_ratio

	Control the coupling ratio between the resolution bandwidth and the
frequency span. When the frequency span is changed, the resolution bandwidth is changed
to satisfy the selected ratio. The ratio ranges from 0.002 to 0.10. The “UP” and “DN”
parameters adjust the ratio in a 1, 2, 5 sequence. The default ratio is 0.011.

Video

	
HP856Xx.video_trigger_level

	Control the video trigger level when the trigger mode is set to VIDEO (refer
to the trigger_mode command). A dashed line appears on the display to indicate the
level. The default value is 0 dBm. Range -220 to 30.

Type: float

	
HP856Xx.video_bandwidth_to_resolution_bandwidth

	Control the coupling ratio between the video bandwidth and the
resolution bandwidth. Thus, when the resolution bandwidth is changed, the video bandwidth
changes to satisfy the ratio. The ratio ranges from 0.003 to 3 in a 1, 3, 10 sequence. The
default ratio is 1. When a new ratio is selected, the video bandwidth changes to satisfy the
new ratio—the resolution bandwidth does not change value.

	
HP856Xx.video_bandwidth

	Control the video bandwidth. This is normally a coupled function that
is selected according to the ratio selected by the VBR command. (If no ratio is selected,
a default ratio, 1.0, is used instead.) Video bandwidth filters (or smooths) post-detected
video information. The bandwidth, which ranges from 1 Hz to 3 MHz, may also be selected
manually. If the specified video bandwidth is less than 300 Hz and the resolution bandwidth
is greater than or equal to 300 Hz, the IF detector is set to sample mode. Reducing the
video bandwidth or increasing the number of video averages will usually smooth the trace
by about as much for the same total measurement time. Reducing the video bandwidth to
one-third or less of the resolution bandwidth is desirable when the number of video
averages is above 25. For the case where the number of video averages is very large, and
the video bandwidth is equal to the resolution bandwidth, internal mathematical limitations
allow about 0.4 dB overresponse to noise on the logarithmic scale. The overresponse is
negligible (less than 0.1 dB) for narrower video bandwidths.

Type: int

	
HP856Xx.video_average

	Control the video averaging function. Video averaging smooths the
displayed trace without using a narrow bandwidth. ‘video_average’ sets the IF detector to
sample mode (see the DET command) and smooths the trace by averaging successive traces
with each other. If desired, you can change the detector mode during video averaging.
Video averaging is available only for trace A, and trace A must be in clear-write mode for
‘video_average’ to operate. After ‘video_average’ is executed, the number of sweeps that
have been averaged appears at the top of the analyzer screen. Using video averaging
allows you to view changes to the entire trace much faster than using narrow video
filters. Narrow video filters require long sweep times, which may not be desired. Video
averaging, though requiring more sweeps, uses faster sweep times; in some cases, it can
produce a smooth trace as fast as a video filter.

Type: str, int

FFT & Measurements

	
HP856Xx.create_fft_trace_window(trace, window_mode)

	Creates a window trace array for the fast Fourier transform (FFT) function.

The trace-window function creates a trace array according to three built-in
algorithms: UNIFORM, HANNING, and FLATTOP. When used with the FFT command,
the three algorithms give resultant passband shapes that represent a compromise among
amplitude uncertainty, sensitivity, and frequency resolution. Refer to the FFT command
description for more information.

	Parameters

	
	trace (str) – A representation of the trace, either from Trace or
use ‘TRA’ for Trace A or ‘TRB’ for Trace B

	window_mode (str) – A representation of the window mode, either from WindowType or
use ‘HANNING’, ‘FLATTOP’ or ‘UNIFORM’

	
HP856Xx.get_power_bandwidth(trace, percent)

	Measure the combined power of all signal responses contained in a
trace array. The command then computes the bandwidth equal to a
percentage of the total power. For example, if 100% is specified, the
power bandwidth equals the current frequency span. If 50% is specified,
trace elements are eliminated from either end of the array, until the
combined power of the remaining trace elements equals half of the total
power computed. The frequency span of these remaining trace elements is
the power bandwidth output to the controller.

	Parameters

	
	trace (str) – A representation of the trace, either from Trace or
use ‘TRA’ for Trace A or ‘TRB’ for Trace B

	percent (float) – Percentage of total power 0 … 100 %

reset spectrum analyzer
instr.preset()

set to single sweep mode
instr.sweep_single()

instr.center_frequency = 300e6
instr.span = 1e6

instr.maximum_hold()

instr.trigger_sweep()

if instr.done:
 pbw = instr.power_bandwidth(Trace.A, 99.0)
 print("The power bandwidth at 99 percent is %f kHz" % (pbw / 1e3))

	
HP856Xx.do_fft(source, destination, window)

	Calculate and show a discrete Fourier transform.

The FFT command performs a discrete Fourier transform on the source
trace array and stores the logarithms of the magnitudes of the results
in the destination array. The maximum length of any of the traces is
601 points. FFT is designed to be used in transforming zero-span
amplitude-modulation information into the frequency domain. Performing
an FFT on a frequency sweep will not provide time-domain results. The
FFT results are displayed on the spectrum analyzer in a logarithmic
amplitude scale. For the horizontal dimension, the frequency at the
left side of the graph is 0 Hz, and at the right side is Finax- Fmax is
equal to 300 divided by sweep time. As an example, if the sweep time of
the analyzer is 60 ms, Fmax equals 5 kHz. The FFT algorithm assumes
that the sampled signal is periodic with an integral number of periods
within the time-record length (that is, the sweep time of the
analyzer). Given this assumption, the transform computed is that of a
time waveform of infinite duration, formed of concatenated time
records. In actual measurements, the number of periods of the sampled
signal within the time record may not be integral. In this case, there
is a step discontinuity at the intersections of the concatenated time
records in the assumed time waveform of infinite duration. This step
discontinuity causes measurement errors, both amplitude uncertainty
(where the signal level appears to vary with small changes in
frequency) and frequency resolution (due to filter shape factor and
sidelobes). Windows are weighting functions that are applied to the
input data to force the ends of that data smoothly to zero, thus
reducing the step discontinuity and reducing measuremen errors.

	Parameters

	
	source (str) – A representation of the trace, either from Trace or
use ‘TRA’ for Trace A or ‘TRB’ for Trace B

	destination (str) – A representation of the trace, either from Trace or
use ‘TRA’ for Trace A or ‘TRB’ for Trace B

	window (str) – A representation of the trace, either from Trace or
use ‘TRA’ for Trace A or ‘TRB’ for Trace B

Trace

	
HP856Xx.view_trace(trace)

	Display the current contents of the selected trace, but does not update
the contents. View mode may be executed before a sweep is complete when sweep_single()
and trigger_sweep() are not used.

	Parameters

	trace (str) – A representation of the trace, either from Trace or
use ‘TRA’ for Trace A or ‘TRB’ for Trace B

	Raises

	
	TypeError – Type isn’t ‘string’

	ValueError – Value is ‘TRA’ nor ‘TRB’

	
HP856Xx.get_trace_data_a()

	Get the data of trace A as a list.

The function returns the 601 data points as a list in the amplitude format.
Right now it doesn’t support the linear scaling due to the manual just being wrong.

	
HP856Xx.get_trace_data_b()

	Get the data of trace B as a list.

The function returns the 601 data points as a list in the amplitude format.
Right now it doesn’t support the linear scaling due to the manual just being wrong.

	
HP856Xx.set_trace_data_a

	Set the trace data of trace A.

Warning

The string based method this attribute is using takes its time. Something around 5000ms
timeout at the adapter seems to work well.

	
HP856Xx.set_trace_data_b

	Set the trace data of trace B also allows to write the data.

Warning

The string based method this attribute is using takes its time. Something around 5000ms
timeout at the adapter seems to work well.

	
HP856Xx.trace_data_format

	Control the format used to input and output trace data (see the
TRA/TRB command, You must specify the desired format when
transferring data from the spectrum analyzer to a computer; this is optional when
transferring data to the analyzer.

Type: str or TraceDataFormat

Warning

Only needed for manual read out of trace data. Don’t use this if you don’t know what
You are doing.

	
HP856Xx.save_trace(trace, number)

	Saves the selected trace in the specified trace register.

	Parameters

	
	trace (str) – A representation of the trace, either from Trace or
use ‘TRA’ for Trace A or ‘TRB’ for Trace B

	number (int) – Storage location from 0 … 7 where to store the trace

instr.preset()
instr.center_frequency = 300e6
instr.span = 20e6

instr.save_trace(Trace.A, 7)
instr.preset()

reload - at 7 stored trace - to Trace B
instr.recall_trace(Trace.B, 7)

	
HP856Xx.recall_trace(trace, number)

	Recalls previously saved trace data to the display. See
save_trace(). Either as Trace A or Trace B.

	Parameters

	
	trace (str) – A representation of the trace, either from Trace or
use ‘TRA’ for Trace A or ‘TRB’ for Trace B

	number (int) – Storage location from 0 … 7 where to store the trace

instr.preset()
instr.center_frequency = 300e6
instr.span = 20e6

instr.save_trace(Trace.A, 7)
instr.preset()

reload - at 7 stored trace - to Trace B
instr.recall_trace(Trace.B, 7)

	
HP856Xx.clear_write_trace(trace)

	Set the chosen trace to clear-write mode. This mode sets each
element of the chosen trace to the bottom-screen value; then new data
from the detector is put in the trace with each sweep.

instr.clear_write_trace('TRA')
instr.clear_write_trace(Trace.A)

	Parameters

	trace (str) – A representation of the trace, either from Trace or
use ‘TRA’ for Trace A or ‘TRB’ for Trace B

	Raises

	
	TypeError – Type isn’t ‘string’

	ValueError – Value is ‘TRA’ nor ‘TRB’

	
HP856Xx.subtract_display_line_from_trace_b()

	Subtract the display line from trace B and places the result in dBm
(when in log mode) in trace B, which is then set to view mode.

In linear mode, the results are in volts.

	
HP856Xx.exchange_traces()

	Exchange the contents of trace A with those of trace B.

If the traces are in clear-write or max-hold mode, the mode is
changed to view. Otherwise, the traces remain in their initial
mode.

	
HP856Xx.blank_trace(trace)

	Blank the chosen trace from the display. The current contents of the
trace remain in the trace but are not updated.

instr.blank_trace('TRA')
instr.blank_trace(Trace.A)

	Parameters

	trace (str) – A representation of the trace, either from Trace or
use ‘TRA’ for Trace A or ‘TRB’ for Trace B

	Raises

	
	TypeError – Type isn’t ‘string’

	ValueError – Value is ‘TRA’ nor ‘TRB’

	
HP856Xx.trace_a_minus_b_plus_dl_enabled

	Control subtraction of trace B from trace A and addition to the display line,
and stores the result in dBm (when in log mode) in trace A. When in linear
mode, the result is in volts. If trace A is in clear-write or max-hold mode, this function
is continuous. When this function is active, an “M” appears on the left side of the display.

Type: bool

Warning

The displayed amplitude of each trace element falls in one of 600 data points.
There are 10 points of overrange, which corresponds to one-sixth of a division
Kg of overrange. When adding or subtracting trace data, any results exceeding
this limit are clipped at the limit.

	
HP856Xx.trace_a_minus_b_enabled

	Control subtraction of the contents of trace B from trace A.
It places the result, in dBm (when in log mode), in trace A. When in linear mode,
the result is in volts. If trace A is in clear-write or max-hold mode, this function is
continuous. When AMB is active, an “M” appears on the left side of the display.
trace_a_minus_b_plus_dl overrides AMB.

Type: bool

Warning

The displayed amplitude of each trace element falls in one of 600 data points.
There are 10 points of overrange, which corresponds to one-sixth of a division
Kg of overrange. When adding or subtracting trace data, any results exceeding
this limit are clipped at the limit.

Marker

	
HP856Xx.search_peak(mode)

	Place a marker on the highest point on a trace, the next-highest
point, the next-left peak, or the next-right peak. The default is ‘HI’
(highest point). The trace peaks must meet the criteria of the marker
threshold and peak excursion functions in order for a peak to be found.
See also the peak_threshold and peak_excursion
commands.

	Parameters

	mode (str) – Takes ‘HI’, ‘NH’, ‘NR’, ‘NL’ or the enumeration PeakSearchMode

instr.search_peak('NL')
instr.search_peak(PeakSearchMode.NextHigh)

	
HP856Xx.marker_amplitude

	Get the amplitude of the active marker. If no marker is active, MKA
places a marker at the center of the trace and returns that amplitude value.
In the amplitude_unit() unit.

Type: float

level = instr.marker_amplitude
unit = instr.amplitude_unit
print("Level: %f %s" % (level, unit))

	
HP856Xx.set_marker_to_center_frequency()

	Set the center frequency to the frequency value of an active
marker.

	
HP856Xx.marker_delta

	Control a second marker on the trace. The parameter value specifies the distance
in frequency or time (when in zero span) between the two markers.
If queried - returns the frequency or time of the second marker.

Type: float

place second marker 1 MHz apart from the first marker
instr.marker_delta = 1e6

print frequency of second marker in case it got moved automatically
print(instr.marker_delta)

	
HP856Xx.marker_frequency

	Control the frequency of the active marker.
Default units are in Hertz.

Type: float

place marker no. 1 at 100 MHz
instr.marker_frequency = 100e6

print frequency of the marker in case it got moved automatically
print(instr.marker_frequency)

(dynamic)

	
HP856Xx.set_marker_minimum()

	Place an active marker on the minimum signal detected on a trace.

	
HP856Xx.marker_noise_mode_enabled

	Control the detector mode to sample and compute the average of 32 data points (16 points
on one side of the marker, the marker itself, and 15 points on the other side of the
marker). This average is corrected for effects of the log or linear amplifier, bandwidth
shape factor, IF detector, and resolution bandwidth. If two markers are on (whether in
‘marker_delta’ mode or 1/marker delta mode), ‘marker_noise_mode_enabled’ works on the active
marker and not on the anchor marker. This allows you to measure signal-to-noise density
directly. To query the value, use the ‘marker_amplitude’ command.

Type: bool

activate signal-to-noise density mode
instr.marker_noise_mode_enabled = True

get noise density by `marker_amplitude`
print("Signal-to-noise density: %d dbm / Hz" % instr.marker_amplitude)

	
HP856Xx.deactivate_marker(all_markers=False)

	Turn off the active marker or, if specified, turn off all markers.

	Parameters

	all_markers (bool) – If True the call deactivates all markers, if false only the currently
active marker (optional)

place first marker at 300 MHz
instr.marker_frequency = 300e6

place second marker 2 MHz apart from first
instr.marker_delta = 2e6

deactivate active marker (delta marker)
instr.deactivate_marker()

deactivate all markers
instr.deactivate_marker(all_markers=True)

	
HP856Xx.marker_threshold

	Control the minimum amplitude level from which a peak on the trace can
be detected. The default value is -130 dBm. See also the peak_excursion command.
Any portion of a peak that falls below the peak threshold is used to satisfy the peak
excursion criteria. For example, a peak that is equal to 3 dB above the threshold when
the peak excursion is equal to 6 dB will be found if the peak extends an additional 3 dB
or more below the threshold level. Maximum 30 db to minimum -200 db.

Type: signed int

instr.marker_threshold = -70
if instr.marker_threshold > -80:
 pass

	
HP856Xx.peak_excursion

	Control what constitutes a peak on a trace. The chosen value specifies
the amount that a trace must increase monotonically, then decrease monotonically, in order
to be a peak. For example, if the peak excursion is 10 dB, the amplitude of the sides of a
candidate peak must descend at least 10 dB in order to be considered a peak (see Figure 5-4)
The default value is 6 dB. In linear mode, enter the marker peak excursion as a unit-less
number.
Any portion of a peak that falls below the peak threshold is also used to satisfy the peak
excursion criteria. For example, a peak that is equal to 3 dB above the threshold when the
peak excursion is equal to 6 dB will be found if the peak extends an additional 3 dB or more
below the threshold level.

Type: float

instr.peak_excursion = 2
if instr.peak_excursion == 2:
 pass

	
HP856Xx.set_marker_to_reference_level()

	Set the reference level to the amplitude of an active marker.

If no marker is active, ‘marker_to_reference_level’ places a
marker at the center of the trace and uses that marker amplitude
to set the reference level.

	
HP856Xx.set_marker_delta_to_span()

	Set the frequency span equal to the frequency difference between two
markers on a trace.

The start frequency is set equal to the frequency of the left-
most marker and the stop frequency is set equal to the frequency
of the right-most marker.

	
HP856Xx.set_marker_to_center_frequency_step_size()

	Set the center frequency step-size equal to the frequency value of
the active marker.

	
HP856Xx.marker_time

	Control the marker’s time value. Default units are seconds.

Type: float

set marker at sweep time corresponding second two
instr.marker_time = 2

if instr.marker_time == 2:
 pass

	
HP856Xx.marker_signal_tracking_enabled

	Control whether the center frequency follows the active marker.

This is done after every sweep, thus maintaining the marker value at the
center frequency. This allows you to “zoom in” quickly from a wide span to a narrow one,
without losing the signal from the screen. Or, use ‘marker_signal_tracking_enabled’ to keep
a slowly drifting signal centered on the display. When this function is active,
a “K” appears on the left edge of the display.

Type: bool

Diagnostic Values

	
HP856Xx.sampling_frequency

	Get the sampling oscillator frequency corresponding to the current start
frequency.
Diagnostic Attribute

Type: float

	
HP856Xx.lo_frequency

	Get the first local oscillator frequency corresponding to the current start
frequency.
Diagnostic Attribute

Type: float

	
HP856Xx.mroll_frequency

	Get the main roller oscillator frequency corresponding to the current start
frequency, except then the resolution bandwidth is less than or equal to 100 Hz.

Diagnostic Attribute

Type: float

	
HP856Xx.oroll_frequency

	Get the offset roller oscillator frequency corresponding to the current start
frequency, except when the resolution bandwidth is less than or equal to 100 Hz.

Diagnostic Attribute

Type: float

	
HP856Xx.xroll_frequency

	Get the transfer roller oscillator frequency corresponding to the current start
frequency, except when the resolution bandwidth is less than or equal to 100 Hz.

Diagnostic Attribute

Type: float

	
HP856Xx.sampler_harmonic_number

	Get the sampler harmonic number corresponding to the current start
frequency.

Diagnostic Attribute

Type: int

Sweep

	
HP856Xx.sweep_single = <function HP856Xx.sweep_single>

	

	
HP856Xx.sweep_time

	Control the sweep time. This is normally a coupled function which is
automatically set to the optimum value allowed by the current instrument settings.
Alternatively, you may specify the sweep time. Note that when the specified sweep time is
too fast for the current instrument settings, the instrument is no longer calibrated and the
message ‘MEAS UNCAL’ appears on the display. The sweep time cannot be adjusted when the
resolution bandwidth is set to 10 Hz, 30 Hz, or 100 Hz.

Type: str, float

Real from 50E—3 to 100 when the span is greater than 0 Hz; 50E—6 to 60 when
the span equals 0 Hz. When the resolution bandwidth is <100 Hz, the sweep time
cannot be adjusted.

	
HP856Xx.sweep_couple

	Control the sweep couple mode which is either a stimulus-response or spectrum-analyzer
auto-coupled sweep time. In stimulus-response mode, auto-coupled sweep times are usually
much faster for swept-response measurements. Stimulus-response auto-coupled sweep times
are typicallly valid in stimulus-response measurements when the system’s frequency span is
less than 20 times the bandwidth of the device under test.

Type: str or SweepCoupleMode

	
HP856Xx.sweep_output

	Control the sweep-related signal that is available from J8 on the rear
panel. FAV provides a dc ramp of 0.5V/GHz. RAMP provides a 0—10 V ramp corresponding
to the sweep ramp that tunes the first local oscillator (LO). For the HP 8561B, in multiband
sweeps one ramp is provided for each frequency band.

Type: str or SweepOut

	
HP856Xx.set_continuous_sweep = <function HP856Xx.set_continuous_sweep>

	

	
HP856Xx.trigger_sweep()

	Command the spectrum analyzer to take one full sweep across the trace display.
Commands following TS are not executed until after the analyzer has finished the trace
sweep. This ensures that the instrument is set to a known condition before subsequent
commands are executed.

Normalization

	
HP856Xx.normalize_trace_data_enabled

	Control the normalization routine for
stimulus-response measurements. This function subtracts trace B from trace A, offsets the
result by the value of the normalized reference position
(normalized_reference_level), and displays the result in trace A.
‘normalize_trace_data_enabled’ is intended for use with the store_open() and
store_short() or store_thru() commands. These functions are used to store a
reference trace into trace B.
Refer to the respective command descriptions for more information.
Accurate normalization occurs only if the reference trace and the measured trace are
on-screen. If any of these traces are off-screen, an error message will be displayed.
If the error message ERR 903 A > DLMT is displayed, the range level (RL) can be adjusted
to move the measured response within the displayed measurement range of the analyzer. If
ERR 904 B > DLMT is displayed, the calibration is invalid and a thru or open/short
calibration must be performed.
If active (ON), the ‘normalize_trace_data’ command is automatically turned off with an
instrument preset (IP) or at power on.

Type: bool

	
HP856Xx.normalized_reference_level

	Control the normalized reference level. It is intended to be used with the
normalize_trace_data command. When using ‘normalized_reference_level’, the input
attenuator and IF step gains are not affected. This function is a trace-offset function
enabling the user to offset the displayed trace without introducing hardware-switching
errors into the stimulus-response measurement. The unit of measure for
‘normalized_reference_level’ is dB. In absolute power mode (dBm), reference level (
reference_level) affects the gain and RF attenuation settings of the instrument,
which affects the measurement or dynamic range. In normalized mode
(relative power or dB-measurement mode), NRL offsets the trace data on-screen and does
not affect the instrument gain or attenuation settings. This allows the displayed
normalized trace to be moved without decreasing the measurement accuracy due to changes
in gain or RF attenuation. If the measurement range must be changed to bring trace data
on-screen, then the range level should be adjusted. Adjusting the range-level normalized
mode has the same effect on the instrument settings as does reference level in absolute
power mode (normalize off).

Type: int

reference level in case of normalization to -30 DB
instr.normalized_reference_level = -30

if instr.normalized_reference_level == -30:
 pass

	
HP856Xx.normalized_reference_position

	Control the normalized reference-position that corresponds to the
position on the graticule where the difference between the measured and calibrated traces
resides. The dB value of the normalized reference-position is equal to the normalized
reference level. The normalized reference-position may be adjusted between 0.0 and 10.0,
corresponding to the bottom and top graticule lines, respectively.

Type: float

instr.normalized_reference_position = 5.5

if instr.normalized_reference_position == 5.5:
 pass

Open/Short Calibration (Reflection)

	
HP856Xx.recall_open_short_average()

	Set the internally stored open/short average reference trace into
trace B. The instrument state is also set to the stored open/short
reference state.

instr.preset()
instr.sweep_single()
instr.start_frequency = 300e3
instr.stop_frequency = 1e9

instr.source_power = "ON"
instr.sweep_couple = SweepCoupleMode.StimulusResponse
instr.source_peak_tracking()

input("CONNECT OPEN. PRESS CONTINUE WHEN READY TO STORE.")
instr.trigger_sweep()
instr.done()
instr.store_open()

input("CONNECT SHORT. PRESS CONTINUE WHEN READY TO STORE AND AVERAGE.")
instr.trigger_sweep()
instr.done()
instr.store_short()

input("RECONNECT DUT. PRESS CONTINUE WHEN READY.")
instr.trigger_sweep()
instr.done()

instr.normalize = True

instr.trigger_sweep()
instr.done()

instr.normalized_reference_position = 8
instr.trigger_sweep()

instr.preset()
demonstrate recall of open/short average trace
instr.recall_open_short_average()
instr.trigger_sweep()

	
HP856Xx.store_open()

	Save the current instrument state and trace A into nonvolatile
memory.

This command must be used in conjunction with the
store_short() command and must precede the
store_short() command. The data obtained during the store
open procedure is averaged with the data obtained during the
store_short() procedure to provide an open/short
calibration. The instrument state (that is, instrument settings)
must not change between the store_open() and
store_short() operations in order for the open/short
calibration to be valid. Refer to the store_short()
command description for more information.

	
HP856Xx.store_short()

	Take currently displayed trace A data and averages this data with
previously stored open data, and stores it in trace B.

This command is used in conjunction with the store_open()
command and must be preceded by it for proper operation. Refer
to the store_open() command description for more
information. The state of the open/short average trace is stored
in state register #8.

Thru Calibration

	
HP856Xx.store_thru()

	Store a thru-calibration trace into trace B and into the nonvolatile
memory of the spectrum analyzer.

The state of the thru information is stored in state register
#9.

	
HP856Xx.recall_thru()

	Recalls the internally stored thru-reference trace into trace B.

The instrument state is also set to the stored thru-reference
state.

HP8560A Specific Attributes & Methods

	
class pymeasure.instruments.hp.HP8560A(adapter, name='Hewlett-Packard HP8560A', **kwargs)

	Bases: HP856Xx

Represents the HP 8560A Spectrum Analyzer and provides a high-level
interface for interacting with the instrument.

from pymeasure.instruments.hp import HP8560A
from pymeasure.instruments.hp.hp856Xx import AmplitudeUnits

sa = HP8560A("GPIB::1")

sa.amplitude_unit = AmplitudeUnits.DBUV
sa.start_frequency = 299.5e6
sa.stop_frequency = 300.5e6

print(sa.marker_amplitude)

	
activate_source_peak_tracking()

	Activate a routine which automatically adjusts both the coarse and
fine-tracking adjustments to obtain the peak response of the tracking
generator on the spectrum-analyzer display. Tracking peak is not
necessary for resolution bandwidths greater than or equal to 300 kHz. A
thru connection should be made prior to peaking in order to ensure
accuracy.

Note

Only available with an HP 8560A Option 002.

	
property source_leveling_control

	Control if internal or external leveling is used with the
built-in tracking generator.
Takes either ‘INT’, ‘EXT’ or members of enumeration SourceLevelingControlMode

Type: str

instr.preset()
instr.sweep_single()
instr.center_frequency = 300e6
instr.span = 1e6

instr.source_power = -5

instr.trigger_sweep()
instr.source_leveling_control = SourceLevelingControlMode.External

if ErrorCode(900) in instr.errors:
 print("UNLEVELED CONDITION. CHECK LEVELING LOOP.")

Note

Only available with an HP 8560A Option 002.

	
property source_power

	Control the built-in tracking generator on and off and adjusts the
output power.

Type: str, float

Note

Only available with an HP 8560A Option 002.

	
property source_power_offset

	Control the offset of the displayed power of the built-in tracking generator so that
it is equal to the measured power at the input of the spectrum analyzer. This function may
be used to take into account system losses (for example, cable loss) or gains (for example,
preamplifier gain) reflecting the actual power delivered to the device under test.

Type: int

Note

Only available with an HP 8560A Option 002.

	
property source_power_step

	Control the step size of the source power level, source power offset, and
power-sweep range functions. Range: 0.1 … 12.75 DB with 0.05 steps.

Type: float

Note

Only available with an HP 8560A Option 002.

	
property source_power_sweep

	Control the power-sweep function, where the
output power of the tracking generator is swept over the power-sweep range chosen. The
starting source power level is set using the source_power command. The output power
of the tracking generator is swept according to the sweep rate of the spectrum analyzer.

Type: str, float

Note

Only available with an HP 8560A Option 002.

	
property tracking_adjust_coarse

	Control the coarse adjustment to the frequency of the built-in
tracking-generator oscillator. Once enabled, this adjustment is made in
digital-to-analogconverter (DAC) values from 0 to 255. For fine adjustment, refer to the
tracking_adjust_fine command description.

Type: int

Note

Only available with an HP 8560A Option 002.

	
property tracking_adjust_fine

	Control the fine adjustment of the frequency of the built-in
tracking-generator oscillator. Once enabled, this adjustment is made in
digital-to-analogconverter (DAC) values from 0 to 255. For coarse adjustment, refer to
the tracking_adjust_coarse command description.

Type: int

Note

Only available with an HP 8560A Option 002.

HP8561B Specific Attributes & Methods

	
class pymeasure.instruments.hp.HP8561B(adapter, name='Hewlett-Packard HP8561B', **kwargs)

	Bases: HP856Xx

Represents the HP 8561B Spectrum Analyzer and provides a high-level
interface for interacting with the instrument.

from pymeasure.instruments.hp import 8561B
from pymeasure.instruments.hp.hp856Xx import AmplitudeUnits

sa = HP8560A("GPIB::1")

sa.amplitude_unit = AmplitudeUnits.DBUV
sa.start_frequency = 6.4e9
sa.stop_frequency = 6.5e9

print(sa.marker_amplitude)

	
property conversion_loss

	Control the compensation for losses outside the instrument when in external
mixer mode (such as losses within connector cables, external mixers, etc.).
‘conversion_loss’ specifies the mean conversion loss for the current harmonic band.
In a full frequency band (such as band K), the mean conversion loss is defined as the
minimum loss plus the maximum loss for that band divided by two.
Adjusting for conversion loss allows the system to remain
calibrated (that is, the displayed amplitude values have the conversion loss incorporated
into them). The default value for any band is 30 dB. The spectrum analyzer must be in
external-mixer mode in order for this command to work. When in internal-mixer mode,
querying ‘conversion_loss’ returns a zero.

	
property harmonic_number_lock

	Control the lock to a chosen harmonic so only that harmonic is used to sweep
an external frequency band. To select a frequency band, use the ‘fullband’ command; it
selects an appropriate harmonic for the desired band. To change the harmonic number, use
‘harmonic_number_lock’.
Note that ‘harmonic_number_lock’ also works in internal-mixing modes.
Once ‘fullband’ or ‘harmonic_number_lock’ are set, only center frequencies and spans that
fall within the frequency band of the current harmonic may be entered. When the
‘set_full_span’ command is activated, the span is limited to the frequency band of the
selected harmonic.

	
property mixer_bias

	Set the bias for an external mixer that requires diode bias for efficient
mixer operation. The bias, which is provided on the center conductor of the IF input, is
activated when MBIAS is executed. A “+” or “—” appears on the left edge of the spectrum
analyzer display, indicating that positive or negative bias is on. When the bias is
turned off, MBIAS is set to 0. Default units are in milliamps.

	
property mixer_mode

	Control the mixer mode. Select either the internal mixer
or supply an external mixer. Takes enum ‘MixerMode’ or string ‘INT’, ‘EXT’

	
peak_preselector()

	Peaks the preselector in the HP 8561B Spectrum Analyzer.

Make sure the entire frequency span is in high band, set the
desired trace to clear-write mode, place a marker on a desired
signal, then execute PP. The peaking routine zooms to zero span,
peaks the preselector tracking, then returns to the original
position. To read the new preselector peaking number, use the
PSDAC command. Commands following PP are not executed until
after the analyzer has finished peaking the preselector.

	
property preselector_dac_number

	Control the preselector peak DAC number. For use with an
HP 8561B Spectrum Analyzer.

Type: int

	
set_fullband(band)

	Select a commonly-used, external-mixer frequency band, as shown in
the table. The harmonic lock function harmonic_number_lock is
also set; this locks the harmonic of the chosen band. External-mixing
functions are not available with an HP 8560A Option 002. Takes
frequency band letter as string.

Title

	Frequency Band

	Frequency Range (GHz)

	Mixing Harmonic

	Conversion Loss

	K

	18.0 — 26.5

	6

	30 dB

	A

	26.5 — 40.0

	8

	30 dB

	Q

	33.0—50.0

	10

	30 dB

	U

	40.0—60.0

	10

	30 dB

	V

	50.0—75.0

	14

	30 dB

	E

	60.0—-90.0

	16

	30 dB

	W

	75.0—110.0

	18

	30 dB

	F

	90.0—140.0

	24

	30 dB

	D

	110.0—170.0

	30

	30 dB

	G

	140.0—220.0

	36

	30 dB

	Y

	170.0—260.0

	44

	30 dB

	J

	220.0—325.0

	54

	30 dB

	
set_signal_identification_to_center_frequency()

	Set the center frequency to the frequency obtained from the command
SIGID.

SIGID must be in AUTO mode and have found a valid result for
this command to execute properly. Use SIGID on signals greater
than 18 GHz {i.e., in external mixing mode). SIGID and IDCF may
also be used on signals less than 6.5 GHz in an HP 8561B.

	
property signal_identification

	Control the signal identification for identifying signals for the external
mixing frequency bands.
Two signal identification methods are available. AUTO employs the image response method
for locating correct mixer responses. Place a marker on the desired signal, then activate
signal_identification = ‘AUTO’. The frequency of a correct response appears in the active
function block. Use this mode before executing the
signal_identification_to_center_frequency() command. The second method of signal
identification, ‘MAN’, shifts responses both horizontally and vertically. A correct
response is shifted horizontally by less than 80 kHz. To ensure accuracy in MAN mode,
limit the frequency span to less than 20 MHz.
Where True = manual mode is active and False = auto mode is active or
‘signal_identification’ is off.

	
property signal_identification_frequency

	Measure the frequency of the last identified signal. After an instrument preset or an
invalid signal identification, IDFREQ returns a “0”.

	
unlock_harmonic_number()

	Unlock the harmonic number, allowing you to select frequencies and
spans outside the range of the locked harmonic number.

Also, when HNUNLK is executed, more than one harmonic can then
be used to sweep across a desired span. For example, sweep a
span from 18 GHz to 40 GHz. In this case, the analyzer will
automatically sweep first using 6—, then using 8—.

Enumerations

	
class pymeasure.instruments.hp.hp856Xx.AmplitudeUnits(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: StrEnum

Enumeration to represent the amplitude units.

	
AUTO = 'AUTO'

	Automatic Unit (Usually derives to ‘DBM’)

	
DBM = 'DBM'

	DB over millit Watt

	
DBMV = 'DBMV'

	DB over milli Volt

	
DBUV = 'DBUV'

	DB over micro Volt

	
MANUAL = 'MAN'

	Manual Mode

	
V = 'V'

	Volts

	
W = 'W'

	Watt

	
class pymeasure.instruments.hp.hp856Xx.MixerMode(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: StrEnum

Enumeration to represent the Mixer Mode of the HP8561B.

	
External = 'EXT'

	Mixer Mode External

	
Internal = 'INT'

	Mixer Mode Internal

	
class pymeasure.instruments.hp.hp856Xx.Trace(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: StrEnum

Enumeration to represent either Trace A or Trace B.

	
A = 'TRA'

	Trace A

	
B = 'TRB'

	Trace B

	
class pymeasure.instruments.hp.hp856Xx.CouplingMode(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: StrEnum

Enumeration to represent the Coupling Mode.

	
AC = 'AC'

	AC

	
DC = 'DC'

	DC

	
class pymeasure.instruments.hp.hp856Xx.DemodulationMode(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: StrEnum

Enumeration to represent the Demodulation Mode.

	
Amplitude = 'AM'

	Amplitude Modulation

	
Frequency = 'FM'

	Frequency Modulation

	
Off = 'OFF'

	Demodulation Off

	
class pymeasure.instruments.hp.hp856Xx.DetectionModes(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: StrEnum

Enumeration to represent the Detection Modes.

	
NegativePeak = 'NEG'

	Negative Peak Detection

	
Normal = 'NRM'

	Normal Peak Detection

	
PositivePeak = 'POS'

	Positive Peak Detection

	
Sample = 'SMP'

	Sampl Mode Detection

	
class pymeasure.instruments.hp.hp856Xx.ErrorCode(code)

	Bases: object

Class to decode error codes from the spectrum analyzer.

	
class pymeasure.instruments.hp.hp856Xx.FrequencyReference(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: StrEnum

Enumeration to represent the frequency reference source.

	
External = 'EXT'

	External Frequency Standard

	
Internal = 'INT'

	Internal Frequency Reference

	
class pymeasure.instruments.hp.hp856Xx.PeakSearchMode(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: StrEnum

Enumeration to represent the Marker Peak Search Mode.

	
High = 'HI'

	Place marker to the highest value on the trace

	
NextHigh = 'NH'

	Place marker to the next highest value on the trace

	
NextLeft = 'NL'

	Place marker to the next peak to the left

	
NextRight = 'NR'

	Place marker to the next peak to the right

	
class pymeasure.instruments.hp.hp856Xx.SourceLevelingControlMode(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: StrEnum

Enumeration to represent the Source Leveling Control Mode of the
HP8560A.

	
External = 'EXT'

	Source Leveling Control Mode External

	
Internal = 'INT'

	Source Leveling Control Mode Internal

	
class pymeasure.instruments.hp.hp856Xx.StatusRegister(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntFlag

Enumeration to represent the Status Register.

	
COMMAND_COMPLETE = 16

	Any command is completed

	
END_OF_SWEEP = 4

	Set when any sweep is completed

	
ERROR_PRESENT = 32

	Set when error present

	
MESSAGE = 2

	Set when display message appears

	
NA = 8

	Unused but sometimes set

	
NONE = 0

	No Interrupts can interrupt the program sequence

	
RQS = 64

	Request Service

	
TRIGGER = 1

	Trigger is activated

	
class pymeasure.instruments.hp.hp856Xx.SweepCoupleMode(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: StrEnum

Enumeration.

	
SpectrumAnalyzer = 'SA'

	Stimulus Response

	
StimulusResponse = 'SR'

	Spectrum Analyeze

	
class pymeasure.instruments.hp.hp856Xx.SweepOut(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: StrEnum

Enumeration.

	
Fav = 'FAV'

	DC Ramp 0.5V / GHz

	
Ramp = 'RAMP'

	0 - 10V Ramp

	
class pymeasure.instruments.hp.hp856Xx.TriggerMode(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: StrEnum

Enumeration to represent the different trigger modes

	
External = 'EXT'

	External Mode

	
Free = 'FREE'

	Free Running

	
Line = 'LINE'

	Line Mode

	
Video = 'VID'

	Video Mode

	
class pymeasure.instruments.hp.hp856Xx.WindowType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: StrEnum

Enumeration to represent the different window mode for FFT functions

	
Flattop = 'FLATTOP'

	Flattop provides optimum amplitude accuracy

	
Hanning = 'HANNING'

	Hanning provides an amplitude accuracy/frequency resolution compromise

	
Uniform = 'UNIFORM'

	Uniform provides equal weighting of the time record for measuring transients.

 HP Signal generator HP8657B

HP Signal generator HP8657B

	Note:
	
	This instrument does not support reading back values, as it is a listen-only GPIB device.

	Other instruments of this family could be implemented using the dynamic ranges feature.

	Optional pulse modulation feature is not supported yet.

	Glossary:
	

	Abbreviation

	Explanation

	AM

	Amplitude Modulation

	FM

	Frequency Modulation

	dBm

	power level in dB referenced to 1mW

	
class pymeasure.instruments.hp.HP8657B(adapter, name='Hewlett-Packard HP8657B', **kwargs)

	Bases: Instrument

Represents the Hewlett Packard 8657B signal generator
and provides a high-level interface for interacting
with the instrument.

	
class Modulation(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntEnum

IntEnum for the different modulation sources

	
property am_depth

	Set the modulation depth for AM,
usable range 0-99.9%

	
property am_source

	Set the source for the AM function with Modulation enumeration.

	Value

	Meaning

	OFF

	no modulation active

	INT_400HZ

	internal 400 Hz modulation source

	INT_1000HZ

	internal 1000 Hz modulation source

	EXTERNAL

	External source, AC coupling

	Note:
	
	AM & FM can be active at the same time

	only one internal source can be active at the time

	use “OFF” to deactivate AM

usage example:

sig_gen = HP8657B("GPIB::7")
...
sig_gen.am_source = sig_gen.Modulation.INT_400HZ # Enable int. 400 Hz source for AM
sig_gen.am_depth = 50 # Set AM modulation depth to 50%
...
sig_gen.am_source = sig_gen.Modulation.OFF # Turn AM off

	
check_errors()

	Method to read the error status register
as the 8657B does not support any readout of values, this will return 0 and log a warning

	
clear()

	Reset the instrument to power-on default settings

	
property fm_deviation

	Set the peak deviation in kHz for the FM function,
useable range 0.1 - 400 kHz

	NOTE:
	the maximum usable deviation is depending on the output frequency, refer to the
instrument documentation for further detail.

	
property fm_source

	Set the source for the FM function with Modulation enumeration.

	Value

	Meaning

	OFF

	no modulation active

	INT_400HZ

	internal 400 Hz modulation source

	INT_1000HZ

	internal 1000 Hz modulation source

	EXTERNAL

	External source, AC coupling

	DC_FM

	External source, DC coupling (FM only)

	Note:
	
	AM & FM can be active at the same time

	only one internal source can be active at the time

	use “OFF” to deactivate FM

	refer to the documentation rearding details on use of DC FM mode

usage example:

sig_gen = HP8657B("GPIB::7")
...
sig_gen.fm_source = sig_gen.Modulation.EXTERNAL # Enable external source for FM
sig_gen.fm_deviation = 15 # Set FM peak deviation to 15 kHz
...
sig_gen.fm_source = sig_gen.Modulation.OFF # Turn FM off

	
property frequency

	Set the output frequency of the instrument in Hz.

For the 8567B the valid range is 100 kHz to 2060 MHz.

	
id = 'HP,8657B,N/A,N/A'

	Manual ID entry

	
property level

	Set the output level in dBm.

For the 8657B the range is -143.5 to +17 dBm/

	
property level_offset

	Set the output offset in dB, usable range -199 to +199 dB.

	
property output_enabled

	Control whether the output is enabled.

	
reset()

	Resets the instrument.

	
shutdown()

	Brings the instrument to a safe and stable state

 Support class for HP legacy devices

Support class for HP legacy devices

Currently this implementation is used for the following instruments which do not support SCPI:

	HP3437A System-Voltmeter

	HP3478A Digital Multimeter

	HP6632/33/34A System power supply

	
class pymeasure.instruments.hp.HPLegacyInstrument(adapter, name='HP legacy instrument', **kwargs)

	Bases: Instrument

Class for legacy HP instruments from the era before SPCI, based on pymeasure.Instrument

	
GPIB_trigger()

	Initate trigger via low-level GPIB-command (aka GET - group execute trigger)

	
reset()

	Initatiates a reset (like a power-on reset) of the HP3478A

	
shutdown()

	provides a way to gracefully close the connection to the HP3478A

	
property status

	Get an object representing the current status of the unit.

	
status_desc

	alias of StatusBitsBase

	
values(command, **kwargs)

	Write a command to the instrument and return a list of formatted
values from the result.

	Parameters

	
	command – SCPI command to be sent to the instrument.

	preprocess_reply – Optional callable used to preprocess the string
received from the instrument, before splitting it.
The callable returns the processed string.

	separator – A separator character to split the string returned by
the device into a list.

	maxsplit – The string returned by the device is splitted at most maxsplit times.
-1 (default) indicates no limit.

	cast – A type to cast each element of the splitted string.

	**kwargs – Keyword arguments to be passed to the ask() method.

	Returns

	A list of the desired type, or strings where the casting fails.

	
write(command)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument

	kwargs – Keyword arguments for the adapter.

 HP System Power Supplies HP663XA

HP System Power Supplies HP663XA

Currently supported models are:

	Model

	Voltage

	Current

	Power

	6632A

	0..20 V

	0..5.0 A

	100 W

	6633A

	0..50 V

	0..2.5 A

	100 W

	6634A

	0..100 V

	0..1.0 A

	100 W

	Note:
	
	The multi-channel system power supplies HP 6621A, 6622A, 6623A, 6624A, 6625A, 6626A, 6627A & 6628A
share some of the command syntax and could probably be incorporated in this implementation

	The B-version of these models (6632B, 6633B & 6634B) are SPCI-compliant and
could be implemented in a similiar manner

	
class pymeasure.instruments.hp.HP6632A(adapter, name='Hewlett-Packard HP6632A', **kwargs)

	Bases: HPLegacyInstrument

Represents the Hewlett Packard 6632A system power supply
and provides a high-level interface for interacting
with the instrument.

	
class ERRORS(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: Enum

Enum class for error messages

	
property OCP_enabled

	A bool property which controls if the OCP (OverCurrent Protection) is enabled

	
property SRQ_enabled

	A bool property which controls if the SRQ (ServiceReQuest) is enabled

	
class ST_ERRORS(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: Enum

Enum class for selftest errors

	
check_errors()

	Method to read the error status register

	Return error_status

	one byte with the error status register content

	Rtype error_status

	int

	
check_selftest_errors()

	Method to read the error status register

	Return error_status

	one byte with the error status register content

	Rtype error_status

	int

	
clear()

	Resets the instrument to power-on default settings

	
property current

	A floating point property that controls the output current of the device.

(dynamic)

	
property delay

	A float propery that changes the reprogamming delay
Default values:
8 ms in FAST mode
80 ms in NORM mode

Values will be rounded to the next 4 ms by the instrument

	
property display_active

	A boot property which controls if the display is enabled

	
property id

	Reads the ID of the instrument and returns this value for now

	
property output_enabled

	A bool property which controls if the output is enabled

	
property over_voltage_limit

	A floationg point property that sets the OVP threshold.

(dynamic)

	
reset_OVP_OCP()

	Resets Overvoltage and Overcurrent protections

	
property rom_version

	Reads the ROM id (software version) of the instrument and returns this value for now

	
property status

	Returns an object representing the current status of the unit.

	
status_desc

	alias of Status

	
property voltage

	A floating point proptery that controls the output voltage of the device.

(dynamic)

	
class pymeasure.instruments.hp.HP6633A(adapter, name='Hewlett Packard HP6633A', **kwargs)

	Bases: HP6632A

Represents the Hewlett Packard 6633A system power supply
and provides a high-level interface for interacting
with the instrument.

	
class pymeasure.instruments.hp.HP6634A(adapter, name='Hewlett Packard HP6634A', **kwargs)

	Bases: HP6632A

Represents the Hewlett Packard 6634A system power supply
and provides a high-level interface for interacting
with the instrument.

 IPG Photonics

IPG Photonics

This section contains specific documentation on the IPG Photonics instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	YAR fiber amplifier series
	YAR

 YAR fiber amplifier series

YAR fiber amplifier series

	
class pymeasure.instruments.ipgphotonics.yar.YAR(adapter, name='YAR fiber amplifier', **kwargs)

	Bases: Instrument

Communication with the YAR fiber amplifier series by IPG Photonics.

This is the RS232 command set. GPIB has different commands.

	
class Status(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntFlag

	
check_set_errors()

	Check for errors after having set a property.

Called if check_set_errors=True is set for that property.

	
clear()

	Reset all errors.

	
property current

	Measure the diode current in A.

	
property emission_enabled

	Control emission of the amplifier (bool).

	
property firmware

	Get firmware version

	
property id

	Get the model number.

	
property maximum_case_temperature

	Measure the maximum temperature for the optical module in °C.

	
property minimum_display_power

	Measure the minimum displayable output power in W.

	
property power

	Measure current output power in W.(dynamic)

	
property power_range

	Get the power limits in W.

	
property power_setpoint

	Control output power setpoint in W.(dynamic)

	
read()

	Read an instrument answer and check whether it is an error.

	
property status

	Get the current status.

	
property temperature

	Measure case temperature in °C.

	
property temperature_seed

	Measure current seed temperature in °C

	
property wavelength_temperature

	Control temperature in °C for seed wavelength control.

 Keithley

Keithley

This section contains specific documentation on the Keithley instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Keithley 2000 Multimeter
	Keithley2000

	Keithley 2260B DC Power Supply
	Keithley2260B

	Keithley 2306 Dual Channel Battery/Charger Simulator
	Keithley2306

	Keithley 2400 SourceMeter
	Keithley2400

	Keithley 2450 SourceMeter
	Keithley2450

	Keithley 2700 MultiMeter/Switch System
	Keithley2700

	Keithley 6221 AC and DC Current Source
	Keithley6221

	Keithley 6517B Electrometer
	Keithley6517B

	Keithley 2750 Multimeter/Switch System
	Keithley2750

	Keithley 2600 SourceMeter
	Keithley2600

	Keithley 2200 Series Power Supplies
	Keithley2200

	PSChannel

 Keithley 2000 Multimeter

Keithley 2000 Multimeter

	
class pymeasure.instruments.keithley.Keithley2000(adapter, name='Keithley 2000 Multimeter', **kwargs)

	Bases: KeithleyBuffer, Instrument

Represents the Keithley 2000 Multimeter and provides a high-level
interface for interacting with the instrument.

meter = Keithley2000("GPIB::1")
meter.measure_voltage()
print(meter.voltage)

	
acquire_reference(mode=None)

	Sets the active value as the reference for the active mode,
or can set another mode by its name.

	Parameters

	mode – A valid mode name, or None for the active mode

	
auto_range(mode=None)

	Sets the active mode to use auto-range,
or can set another mode by its name.

	Parameters

	mode – A valid mode name, or None for the active mode

	
beep(frequency, duration)

	Sounds a system beep.

	Parameters

	
	frequency – A frequency in Hz between 65 Hz and 2 MHz

	duration – A time in seconds between 0 and 7.9 seconds

	
property beep_state

	A string property that enables or disables the system status beeper,
which can take the values: enabled and disabled.

	
property buffer_data

	Returns a numpy array of values from the buffer.

	
property buffer_points

	An integer property that controls the number of buffer points. This
does not represent actual points in the buffer, but the configuration
value instead.

	
check_errors()

	Read all errors from the instrument and log them.

	Returns

	List of error entries.

	
check_get_errors()

	Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
clear()

	Clears the instrument status byte

	
property complete

	Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation
Complete query places an ASCII character 1 into the device’s Output Queue when all pending
selected device operations have been finished.

	
config_buffer(points=64, delay=0)

	Configures the measurement buffer for a number of points, to be
taken with a specified delay.

	Parameters

	
	points – The number of points in the buffer.

	delay – The delay time in seconds.

	
property current

	Reads a DC or AC current measurement in Amps, based on the
active mode.

	
property current_ac_bandwidth

	A floating point property that sets the AC current detector
bandwidth in Hz, which can take the values 3, 30, and 300 Hz.

	
property current_ac_digits

	An integer property that controls the number of digits in the AC current
readings, which can take values from 4 to 7.

	
property current_ac_nplc

	A floating point property that controls the number of power line cycles
(NPLC) for the AC current measurements, which sets the integration period
and measurement speed. Takes values from 0.01 to 10, where 0.1, 1, and 10 are
Fast, Medium, and Slow respectively.

	
property current_ac_range

	A floating point property that controls the AC current range in
Amps, which can take values from 0 to 3.1 A.
Auto-range is disabled when this property is set.

	
property current_ac_reference

	A floating point property that controls the AC current reference
value in Amps, which can take values from -3.1 to 3.1 A.

	
property current_digits

	An integer property that controls the number of digits in the DC current
readings, which can take values from 4 to 7.

	
property current_nplc

	A floating point property that controls the number of power line cycles
(NPLC) for the DC current measurements, which sets the integration period
and measurement speed. Takes values from 0.01 to 10, where 0.1, 1, and 10 are
Fast, Medium, and Slow respectively.

	
property current_range

	A floating point property that controls the DC current range in
Amps, which can take values from 0 to 3.1 A.
Auto-range is disabled when this property is set.

	
property current_reference

	A floating point property that controls the DC current reference
value in Amps, which can take values from -3.1 to 3.1 A.

	
disable_buffer()

	Disables the connection between measurements and the
buffer, but does not abort the measurement process.

	
disable_filter(mode=None)

	Disables the averaging filter for the active mode,
or can set another mode by its name.

	Parameters

	mode – A valid mode name, or None for the active mode

	
disable_reference(mode=None)

	Disables the reference for the active mode,
or can set another mode by its name.

	Parameters

	mode – A valid mode name, or None for the active mode

	
enable_filter(mode=None, type='repeat', count=1)

	Enables the averaging filter for the active mode,
or can set another mode by its name.

	Parameters

	
	mode – A valid mode name, or None for the active mode

	type – The type of averaging filter, either ‘repeat’ or ‘moving’.

	count – A number of averages, which can take take values from 1 to 100

	
enable_reference(mode=None)

	Enables the reference for the active mode,
or can set another mode by its name.

	Parameters

	mode – A valid mode name, or None for the active mode

	
property frequency

	Reads a frequency measurement in Hz, based on the
active mode.

	
property frequency_aperature

	A floating point property that controls the frequency aperature in seconds,
which sets the integration period and measurement speed. Takes values
from 0.01 to 1.0 s.

	
property frequency_digits

	An integer property that controls the number of digits in the frequency
readings, which can take values from 4 to 7.

	
property frequency_reference

	A floating point property that controls the frequency reference
value in Hz, which can take values from 0 to 15 MHz.

	
property frequency_threshold

	A floating point property that controls the voltage signal threshold
level in Volts for the frequency measurement, which can take values
from 0 to 1010 V.

	
property id

	Get the identification of the instrument.

	
is_buffer_full()

	Returns True if the buffer is full of measurements.

	
local()

	Returns control to the instrument panel, and enables
the panel if disabled.

	
measure_continuity()

	Configures the instrument to perform continuity testing.

	
measure_current(max_current=0.01, ac=False)

	Configures the instrument to measure current,
based on a maximum current to set the range, and
a boolean flag to determine if DC or AC is required.

	Parameters

	
	max_current – A current in Volts to set the current range

	ac – False for DC current, and True for AC current

	
measure_diode()

	Configures the instrument to perform diode testing.

	
measure_frequency()

	Configures the instrument to measure the frequency.

	
measure_period()

	Configures the instrument to measure the period.

	
measure_resistance(max_resistance=10000000.0, wires=2)

	Configures the instrument to measure voltage,
based on a maximum voltage to set the range, and
a boolean flag to determine if DC or AC is required.

	Parameters

	
	max_voltage – A voltage in Volts to set the voltage range

	ac – False for DC voltage, and True for AC voltage

	
measure_temperature()

	Configures the instrument to measure the temperature.

	
measure_voltage(max_voltage=1, ac=False)

	Configures the instrument to measure voltage,
based on a maximum voltage to set the range, and
a boolean flag to determine if DC or AC is required.

	Parameters

	
	max_voltage – A voltage in Volts to set the voltage range

	ac – False for DC voltage, and True for AC voltage

	
property mode

	A string property that controls the configuration mode for measurements,
which can take the values: current (DC), current ac,
voltage (DC), voltage ac, resistance (2-wire),
resistance 4W (4-wire), period,
temperature, diode, and frequency.

	
property options

	Get the device options installed.

	
property period

	Reads a period measurement in seconds, based on the
active mode.

	
property period_aperature

	A floating point property that controls the period aperature in seconds,
which sets the integration period and measurement speed. Takes values
from 0.01 to 1.0 s.

	
property period_digits

	An integer property that controls the number of digits in the period
readings, which can take values from 4 to 7.

	
property period_reference

	A floating point property that controls the period reference value
in seconds, which can take values from 0 to 1 s.

	
property period_threshold

	A floating point property that controls the voltage signal threshold
level in Volts for the period measurement, which can take values
from 0 to 1010 V.

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

	
read_binary_values(**kwargs)

	Read binary values from the device.

	
read_bytes(count, **kwargs)

	Read a certain number of bytes from the instrument.

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read the whole read buffer.

	kwargs – Keyword arguments for the adapter.

	Returns bytes

	Bytes response of the instrument (including termination).

	
remote()

	Places the instrument in the remote state, which is
does not need to be explicity called in general.

	
remote_lock()

	Disables and locks the front panel controls to prevent
changes during remote operations. This is disabled by
calling local().

	
reset()

	Resets the instrument state.

	
reset_buffer()

	Resets the buffer.

	
property resistance

	Reads a resistance measurement in Ohms for both 2-wire and 4-wire
configurations, based on the active mode.

	
property resistance_4W_digits

	An integer property that controls the number of digits in the 4-wire
resistance readings, which can take values from 4 to 7.

	
property resistance_4W_nplc

	A floating point property that controls the number of power line cycles
(NPLC) for the 4-wire resistance measurements, which sets the integration period
and measurement speed. Takes values from 0.01 to 10, where 0.1, 1, and 10 are
Fast, Medium, and Slow respectively.

	
property resistance_4W_range

	A floating point property that controls the 4-wire resistance range
in Ohms, which can take values from 0 to 120 MOhms.
Auto-range is disabled when this property is set.

	
property resistance_4W_reference

	A floating point property that controls the 4-wire resistance
reference value in Ohms, which can take values from 0 to 120 MOhms.

	
property resistance_digits

	An integer property that controls the number of digits in the 2-wire
resistance readings, which can take values from 4 to 7.

	
property resistance_nplc

	A floating point property that controls the number of power line cycles
(NPLC) for the 2-wire resistance measurements, which sets the integration period
and measurement speed. Takes values from 0.01 to 10, where 0.1, 1, and 10 are
Fast, Medium, and Slow respectively.

	
property resistance_range

	A floating point property that controls the 2-wire resistance range
in Ohms, which can take values from 0 to 120 MOhms.
Auto-range is disabled when this property is set.

	
property resistance_reference

	A floating point property that controls the 2-wire resistance
reference value in Ohms, which can take values from 0 to 120 MOhms.

	
shutdown()

	Brings the instrument to a safe and stable state

	
start_buffer()

	Starts the buffer.

	
property status

	Get the status byte and Master Summary Status bit.

	
stop_buffer()

	Aborts the buffering measurement, by stopping the measurement
arming and triggering sequence. If possible, a Selected Device
Clear (SDC) is used.

	
property temperature

	Reads a temperature measurement in Celsius, based on the
active mode.

	
property temperature_digits

	An integer property that controls the number of digits in the temperature
readings, which can take values from 4 to 7.

	
property temperature_nplc

	A floating point property that controls the number of power line cycles
(NPLC) for the temperature measurements, which sets the integration period
and measurement speed. Takes values from 0.01 to 10, where 0.1, 1, and 10 are
Fast, Medium, and Slow respectively.

	
property temperature_reference

	A floating point property that controls the temperature reference value
in Celsius, which can take values from -200 to 1372 C.

	
property trigger_count

	An integer property that controls the trigger count,
which can take values from 1 to 9,999.

	
property trigger_delay

	A floating point property that controls the trigger delay
in seconds, which can take values from 1 to 9,999,999.999 s.

	
property voltage

	Reads a DC or AC voltage measurement in Volts, based on the
active mode.

	
property voltage_ac_bandwidth

	A floating point property that sets the AC voltage detector
bandwidth in Hz, which can take the values 3, 30, and 300 Hz.

	
property voltage_ac_digits

	An integer property that controls the number of digits in the AC voltage
readings, which can take values from 4 to 7.

	
property voltage_ac_nplc

	A floating point property that controls the number of power line cycles
(NPLC) for the AC voltage measurements, which sets the integration period
and measurement speed. Takes values from 0.01 to 10, where 0.1, 1, and 10 are
Fast, Medium, and Slow respectively.

	
property voltage_ac_range

	A floating point property that controls the AC voltage range in
Volts, which can take values from 0 to 757.5 V.
Auto-range is disabled when this property is set.

	
property voltage_ac_reference

	A floating point property that controls the AC voltage reference
value in Volts, which can take values from -757.5 to 757.5 Volts.

	
property voltage_digits

	An integer property that controls the number of digits in the DC voltage
readings, which can take values from 4 to 7.

	
property voltage_nplc

	A floating point property that controls the number of power line cycles
(NPLC) for the DC voltage measurements, which sets the integration period
and measurement speed. Takes values from 0.01 to 10, where 0.1, 1, and 10 are
Fast, Medium, and Slow respectively.

	
property voltage_range

	A floating point property that controls the DC voltage range in
Volts, which can take values from 0 to 1010 V.
Auto-range is disabled when this property is set.

	
property voltage_reference

	A floating point property that controls the DC voltage reference
value in Volts, which can take values from -1010 to 1010 V.

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
wait_for_buffer(should_stop=<function KeithleyBuffer.<lambda>>, timeout=60, interval=0.1)

	Blocks the program, waiting for a full buffer. This function
returns early if the should_stop function returns True or
the timeout is reached before the buffer is full.

	Parameters

	
	should_stop – A function that returns True when this function should return early

	timeout – A time in seconds after which this function should return early

	interval – A time in seconds for how often to check if the buffer is full

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument

	kwargs – Keyword arguments for the adapter.

	
write_binary_values(command, values, *args, **kwargs)

	Write binary values to the device.

	Parameters

	
	command – Command to send.

	values – The values to transmit.

	**kwargs (*args,) – Further arguments to hand to the Adapter.

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

 Keithley 2260B DC Power Supply

Keithley 2260B DC Power Supply

	
class pymeasure.instruments.keithley.Keithley2260B(adapter, name='Keithley 2260B DC Power Supply', read_termination='\n', **kwargs)

	Bases: Instrument

Represents the Keithley 2260B Power Supply (minimal implementation)
and provides a high-level interface for interacting with the instrument.

For a connection through tcpip, the device only accepts
connections at port 2268, which cannot be configured otherwise.
example connection string: ‘TCPIP::xxx.xxx.xxx.xxx::2268::SOCKET’
the read termination for this interface is

source = Keithley2260B("GPIB::1")
source.voltage = 1
print(source.voltage)
print(source.current)
print(source.power)
print(source.applied)

	
property applied

	Simultaneous control of voltage (volts) and current (amps).
Values need to be supplied as tuple of (voltage, current). Depending on
whether the instrument is in constant current or constant voltage mode,
the values achieved by the instrument will differ from the ones set.

	
check_errors()

	Logs any system errors reported by the instrument.

	
check_get_errors()

	Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
clear()

	Clears the instrument status byte

	
property complete

	Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation
Complete query places an ASCII character 1 into the device’s Output Queue when all pending
selected device operations have been finished.

	
property current

	Reads the current (in Ampere) the dc power supply is putting out.

	
property current_limit

	A floating point property that controls the source current
in amps. This is not checked against the allowed range. Depending on
whether the instrument is in constant current or constant voltage mode,
this might differ from the actual current achieved.

	
property error

	Returns a tuple of an error code and message from a
single error.

	
property id

	Get the identification of the instrument.

	
property options

	Get the device options installed.

	
property output_enabled

	A boolean property that controls whether the source is enabled, takes
values True or False.

	
property power

	Reads the power (in Watt) the dc power supply is putting out.

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

	
read_binary_values(**kwargs)

	Read binary values from the device.

	
read_bytes(count, **kwargs)

	Read a certain number of bytes from the instrument.

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read the whole read buffer.

	kwargs – Keyword arguments for the adapter.

	Returns bytes

	Bytes response of the instrument (including termination).

	
reset()

	Resets the instrument.

	
shutdown()

	Disable output, call parent function

	
property status

	Get the status byte and Master Summary Status bit.

	
property voltage

	Reads the voltage (in Volt) the dc power supply is putting out.

	
property voltage_setpoint

	A floating point property that controls the source voltage
in volts. This is not checked against the allowed range. Depending on
whether the instrument is in constant current or constant voltage mode,
this might differ from the actual voltage achieved.

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument

	kwargs – Keyword arguments for the adapter.

	
write_binary_values(command, values, *args, **kwargs)

	Write binary values to the device.

	Parameters

	
	command – Command to send.

	values – The values to transmit.

	**kwargs (*args,) – Further arguments to hand to the Adapter.

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

 Keithley 2306 Dual Channel Battery/Charger Simulator

Keithley 2306 Dual Channel Battery/Charger Simulator

	
class pymeasure.instruments.keithley.Keithley2306(adapter, name='Keithley 2306', **kwargs)

	Bases: Instrument

Represents the Keithley 2306 Dual Channel Battery/Charger Simulator.

	
property both_channels_enabled

	A boolean setting that controls whether both channel outputs are
enabled, takes values of True or False.

	
ch(channel_number)

	Get a channel from this instrument.

	Param

	channel_number:
int: the number of the channel to be selected

	Type

	Keithley2306Channel

	
check_errors()

	Read all errors from the instrument and log them.

	Returns

	List of error entries.

	
check_get_errors()

	Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
clear()

	Clears the instrument status byte

	
property complete

	Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation
Complete query places an ASCII character 1 into the device’s Output Queue when all pending
selected device operations have been finished.

	
property display_brightness

	A floating point property that controls the display brightness,
takes values beteween 0.0 and 1.0. A blank display is 0.0,
1/4 brightness is for values less or equal to 0.25, otherwise 1/2
brightness for values less than or equal to 0.5, otherwise 3/4
brightness for values less than or equal to 0.75, otherwise full
brightness.

	
property display_channel

	An integer property that controls the display channel, takes
values 1 or 2.

	
property display_enabled

	A boolean property that controls whether the display is enabled,
takes values True or False.

	
property display_text_data

	A string property that control text to be displayed, takes strings
up to 32 characters.

	
property display_text_enabled

	A boolean property that controls whether display text is enabled,
takes values True or False.

	
property id

	Get the identification of the instrument.

	
property options

	Get the device options installed.

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

	
read_binary_values(**kwargs)

	Read binary values from the device.

	
read_bytes(count, **kwargs)

	Read a certain number of bytes from the instrument.

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read the whole read buffer.

	kwargs – Keyword arguments for the adapter.

	Returns bytes

	Bytes response of the instrument (including termination).

	
relay(relay_number)

	Get a relay channel from this instrument.

	Param

	relay_number:
int: the number of the relay to be selected

	Type

	Relay

	
reset()

	Resets the instrument.

	
shutdown()

	Brings the instrument to a safe and stable state

	
property status

	Get the status byte and Master Summary Status bit.

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument

	kwargs – Keyword arguments for the adapter.

	
write_binary_values(command, values, *args, **kwargs)

	Write binary values to the device.

	Parameters

	
	command – Command to send.

	values – The values to transmit.

	**kwargs (*args,) – Further arguments to hand to the Adapter.

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

 Keithley 2400 SourceMeter

Keithley 2400 SourceMeter

	
class pymeasure.instruments.keithley.Keithley2400(adapter, name='Keithley 2400 SourceMeter', **kwargs)

	Bases: KeithleyBuffer, Instrument

Represents the Keithley 2400 SourceMeter and provides a
high-level interface for interacting with the instrument.

keithley = Keithley2400("GPIB::1")

keithley.apply_current() # Sets up to source current
keithley.source_current_range = 10e-3 # Sets the source current range to 10 mA
keithley.compliance_voltage = 10 # Sets the compliance voltage to 10 V
keithley.source_current = 0 # Sets the source current to 0 mA
keithley.enable_source() # Enables the source output

keithley.measure_voltage() # Sets up to measure voltage

keithley.ramp_to_current(5e-3) # Ramps the current to 5 mA
print(keithley.voltage) # Prints the voltage in Volts

keithley.shutdown() # Ramps the current to 0 mA and disables output

	
apply_current(current_range=None, compliance_voltage=0.1)

	Configures the instrument to apply a source current, and
uses an auto range unless a current range is specified.
The compliance voltage is also set.

	Parameters

	
	compliance_voltage – A float in the correct range for a
compliance_voltage

	current_range – A current_range value or None

	
apply_voltage(voltage_range=None, compliance_current=0.1)

	Configures the instrument to apply a source voltage, and
uses an auto range unless a voltage range is specified.
The compliance current is also set.

	Parameters

	
	compliance_current – A float in the correct range for a
compliance_current

	voltage_range – A voltage_range value or None

	
property auto_output_off

	A boolean property that enables or disables the auto output-off.
Valid values are True (output off after measurement) and False (output
stays on after measurement).

	
auto_range_source()

	Configures the source to use an automatic range.

	
property auto_zero

	A property that controls the auto zero option. Valid values are
True (enabled) and False (disabled) and ‘ONCE’ (force immediate).

	
beep(frequency, duration)

	Sounds a system beep.

	Parameters

	
	frequency – A frequency in Hz between 65 Hz and 2 MHz

	duration – A time in seconds between 0 and 7.9 seconds

	
property buffer_data

	Returns a numpy array of values from the buffer.

	
property buffer_points

	An integer property that controls the number of buffer points. This
does not represent actual points in the buffer, but the configuration
value instead.

	
check_errors()

	Logs any system errors reported by the instrument.

	
check_get_errors()

	Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
clear()

	Clears the instrument status byte

	
property complete

	Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation
Complete query places an ASCII character 1 into the device’s Output Queue when all pending
selected device operations have been finished.

	
property compliance_current

	A floating point property that controls the compliance current
in Amps.

	
property compliance_voltage

	A floating point property that controls the compliance voltage
in Volts.

	
config_buffer(points=64, delay=0)

	Configures the measurement buffer for a number of points, to be
taken with a specified delay.

	Parameters

	
	points – The number of points in the buffer.

	delay – The delay time in seconds.

	
property current

	Reads the current in Amps, if configured for this reading.

	
property current_nplc

	A floating point property that controls the number of power line cycles
(NPLC) for the DC current measurements, which sets the integration period
and measurement speed. Takes values from 0.01 to 10, where 0.1, 1, and 10 are
Fast, Medium, and Slow respectively.

	
property current_range

	A floating point property that controls the measurement current
range in Amps, which can take values between -1.05 and +1.05 A.
Auto-range is disabled when this property is set.

	
disable_buffer()

	Disables the connection between measurements and the
buffer, but does not abort the measurement process.

	
disable_output_trigger()

	Disables the output trigger for the Trigger layer

	
disable_source()

	Disables the source of current or voltage depending on the
configuration of the instrument.

	
property display_enabled

	A boolean property that controls whether or not the display of the
sourcemeter is enabled. Valid values are True and False.

	
enable_source()

	Enables the source of current or voltage depending on the
configuration of the instrument.

	
property error

	Returns a tuple of an error code and message from a
single error.

	
property filter_count

	A integer property that controls the number of readings that are
acquired and stored in the filter buffer for the averaging

	
property filter_state

	A string property that controls if the filter is active.

	
property filter_type

	A String property that controls the filter’s type.
REP : Repeating filter
MOV : Moving filter

	
property id

	Get the identification of the instrument.

	
is_buffer_full()

	Returns True if the buffer is full of measurements.

	
property line_frequency

	An integer property that controls the line frequency in Hertz.
Valid values are 50 and 60.

	
property line_frequency_auto

	A boolean property that enables or disables auto line frequency.
Valid values are True and False.

	
property max_current

	Returns the maximum current from the buffer

	
property max_resistance

	Returns the maximum resistance from the buffer

	
property max_voltage

	Returns the maximum voltage from the buffer

	
property maximums

	Returns the calculated maximums for voltage, current, and
resistance from the buffer data as a list.

	
property mean_current

	Returns the mean current from the buffer

	
property mean_resistance

	Returns the mean resistance from the buffer

	
property mean_voltage

	Returns the mean voltage from the buffer

	
property means

	Reads the calculated means (averages) for voltage,
current, and resistance from the buffer data as a list.

	
property measure_concurent_functions

	A boolean property that enables or disables the ability to measure
more than one function simultaneously. When disabled, volts function
is enabled. Valid values are True and False.

	
measure_current(nplc=1, current=0.000105, auto_range=True)

	Configures the measurement of current.

	Parameters

	
	nplc – Number of power line cycles (NPLC) from 0.01 to 10

	current – Upper limit of current in Amps, from -1.05 A to 1.05 A

	auto_range – Enables auto_range if True, else uses the set current

	
measure_resistance(nplc=1, resistance=210000.0, auto_range=True)

	Configures the measurement of resistance.

	Parameters

	
	nplc – Number of power line cycles (NPLC) from 0.01 to 10

	resistance – Upper limit of resistance in Ohms, from -210 MOhms to 210 MOhms

	auto_range – Enables auto_range if True, else uses the set resistance

	
measure_voltage(nplc=1, voltage=21.0, auto_range=True)

	Configures the measurement of voltage.

	Parameters

	
	nplc – Number of power line cycles (NPLC) from 0.01 to 10

	voltage – Upper limit of voltage in Volts, from -210 V to 210 V

	auto_range – Enables auto_range if True, else uses the set voltage

	
property min_current

	Returns the minimum current from the buffer

	
property min_resistance

	Returns the minimum resistance from the buffer

	
property min_voltage

	Returns the minimum voltage from the buffer

	
property minimums

	Returns the calculated minimums for voltage, current, and
resistance from the buffer data as a list.

	
property options

	Get the device options installed.

	
property output_off_state

	Select the output-off state of the SourceMeter.
HIMP : output relay is open, disconnects external circuitry.
NORM : V-Source is selected and set to 0V, Compliance is set to 0.5%
full scale of the present current range.
ZERO : V-Source is selected and set to 0V, compliance is set to the
programmed Source I value or to 0.5% full scale of the present current
range, whichever is greater.
GUAR : I-Source is selected and set to 0A

	
output_trigger_on_external(line=1, after='DEL')

	Configures the output trigger on the specified trigger link
line number, with the option of supplying the part of the
measurement after which the trigger should be generated
(default to delay, which is right before the measurement)

	Parameters

	
	line – A trigger line from 1 to 4

	after – An event string that determines when to trigger

	
ramp_to_current(target_current, steps=30, pause=0.02)

	Ramps to a target current from the set current value over
a certain number of linear steps, each separated by a pause duration.

	Parameters

	
	target_current – A current in Amps

	steps – An integer number of steps

	pause – A pause duration in seconds to wait between steps

	
ramp_to_voltage(target_voltage, steps=30, pause=0.02)

	Ramps to a target voltage from the set voltage value over
a certain number of linear steps, each separated by a pause duration.

	Parameters

	
	target_voltage – A voltage in Amps

	steps – An integer number of steps

	pause – A pause duration in seconds to wait between steps

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

	
read_binary_values(**kwargs)

	Read binary values from the device.

	
read_bytes(count, **kwargs)

	Read a certain number of bytes from the instrument.

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read the whole read buffer.

	kwargs – Keyword arguments for the adapter.

	Returns bytes

	Bytes response of the instrument (including termination).

	
reset()

	Resets the instrument and clears the queue.

	
reset_buffer()

	Resets the buffer.

	
property resistance

	Reads the resistance in Ohms, if configured for this reading.

	
property resistance_nplc

	A floating point property that controls the number of power line cycles
(NPLC) for the 2-wire resistance measurements, which sets the integration period
and measurement speed. Takes values from 0.01 to 10, where 0.1, 1, and 10 are
Fast, Medium, and Slow respectively.

	
property resistance_range

	A floating point property that controls the resistance range
in Ohms, which can take values from 0 to 210 MOhms.
Auto-range is disabled when this property is set.

	
sample_continuously()

	Causes the instrument to continuously read samples
and turns off any buffer or output triggering

	
set_timed_arm(interval)

	Sets up the measurement to be taken with the internal
trigger at a variable sampling rate defined by the interval
in seconds between sampling points

	
set_trigger_counts(arm, trigger)

	Sets the number of counts for both the sweeps (arm) and the
points in those sweeps (trigger), where the total number of
points can not exceed 2500

	
shutdown()

	Ensures that the current or voltage is turned to zero
and disables the output.

	
property source_current

	A floating point property that controls the source current
in Amps.

	
property source_current_range

	A floating point property that controls the source current
range in Amps, which can take values between -1.05 and +1.05 A.
Auto-range is disabled when this property is set.

	
property source_delay

	A floating point property that sets a manual delay for the source
after the output is turned on before a measurement is taken. When this
property is set, the auto delay is turned off. Valid values are
between 0 [seconds] and 999.9999 [seconds].

	
property source_delay_auto

	A boolean property that enables or disables auto delay. Valid
values are True and False.

	
property source_enabled

	A boolean property that controls whether the source is enabled, takes
values True or False. The convenience methods enable_source() and
disable_source() can also be used.

	
property source_mode

	A string property that controls the source mode, which can
take the values ‘current’ or ‘voltage’. The convenience methods
apply_current() and apply_voltage()
can also be used.

	
property source_voltage

	A floating point property that controls the source voltage
in Volts.

	
property source_voltage_range

	A floating point property that controls the source voltage
range in Volts, which can take values from -210 to 210 V.
Auto-range is disabled when this property is set.

	
property standard_devs

	Returns the calculated standard deviations for voltage,
current, and resistance from the buffer data as a list.

	
start_buffer()

	Starts the buffer.

	
status()

	Get the status byte and Master Summary Status bit.

	
property std_current

	Returns the current standard deviation from the buffer

	
property std_resistance

	Returns the resistance standard deviation from the buffer

	
property std_voltage

	Returns the voltage standard deviation from the buffer

	
stop_buffer()

	Aborts the buffering measurement, by stopping the measurement
arming and triggering sequence. If possible, a Selected Device
Clear (SDC) is used.

	
triad(base_frequency, duration)

	Sounds a musical triad using the system beep.

	Parameters

	
	base_frequency – A frequency in Hz between 65 Hz and 1.3 MHz

	duration – A time in seconds between 0 and 7.9 seconds

	
trigger()

	Executes a bus trigger, which can be used when
trigger_on_bus() is configured.

	
property trigger_count

	An integer property that controls the trigger count,
which can take values from 1 to 9,999.

	
property trigger_delay

	A floating point property that controls the trigger delay
in seconds, which can take values from 0 to 999.9999 s.

	
trigger_immediately()

	Configures measurements to be taken with the internal
trigger at the maximum sampling rate.

	
trigger_on_bus()

	Configures the trigger to detect events based on the bus
trigger, which can be activated by trigger().

	
trigger_on_external(line=1)

	Configures the measurement trigger to be taken from a
specific line of an external trigger

	Parameters

	line – A trigger line from 1 to 4

	
use_front_terminals()

	Enables the front terminals for measurement, and
disables the rear terminals.

	
use_rear_terminals()

	Enables the rear terminals for measurement, and
disables the front terminals.

	
property voltage

	Reads the voltage in Volts, if configured for this reading.

	
property voltage_nplc

	A floating point property that controls the number of power line cycles
(NPLC) for the DC voltage measurements, which sets the integration period
and measurement speed. Takes values from 0.01 to 10, where 0.1, 1, and 10 are
Fast, Medium, and Slow respectively.

	
property voltage_range

	A floating point property that controls the measurement voltage
range in Volts, which can take values from -210 to 210 V.
Auto-range is disabled when this property is set.

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
wait_for_buffer(should_stop=<function KeithleyBuffer.<lambda>>, timeout=60, interval=0.1)

	Blocks the program, waiting for a full buffer. This function
returns early if the should_stop function returns True or
the timeout is reached before the buffer is full.

	Parameters

	
	should_stop – A function that returns True when this function should return early

	timeout – A time in seconds after which this function should return early

	interval – A time in seconds for how often to check if the buffer is full

	
property wires

	An integer property that controls the number of wires in
use for resistance measurements, which can take the value of
2 or 4.

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument

	kwargs – Keyword arguments for the adapter.

	
write_binary_values(command, values, *args, **kwargs)

	Write binary values to the device.

	Parameters

	
	command – Command to send.

	values – The values to transmit.

	**kwargs (*args,) – Further arguments to hand to the Adapter.

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

 Keithley 2450 SourceMeter

Keithley 2450 SourceMeter

	
class pymeasure.instruments.keithley.Keithley2450(adapter, name='Keithley 2450 SourceMeter', **kwargs)

	Bases: KeithleyBuffer, Instrument

Represents the Keithley 2450 SourceMeter and provides a
high-level interface for interacting with the instrument.

keithley = Keithley2450("GPIB::1")

keithley.apply_current() # Sets up to source current
keithley.source_current_range = 10e-3 # Sets the source current range to 10 mA
keithley.compliance_voltage = 10 # Sets the compliance voltage to 10 V
keithley.source_current = 0 # Sets the source current to 0 mA
keithley.enable_source() # Enables the source output

keithley.measure_voltage() # Sets up to measure voltage

keithley.ramp_to_current(5e-3) # Ramps the current to 5 mA
print(keithley.voltage) # Prints the voltage in Volts

keithley.shutdown() # Ramps the current to 0 mA and disables output

	
apply_current(current_range=None, compliance_voltage=0.1)

	Configures the instrument to apply a source current, and
uses an auto range unless a current range is specified.
The compliance voltage is also set.

	Parameters

	
	compliance_voltage – A float in the correct range for a
compliance_voltage

	current_range – A current_range value or None

	
apply_voltage(voltage_range=None, compliance_current=0.1)

	Configures the instrument to apply a source voltage, and
uses an auto range unless a voltage range is specified.
The compliance current is also set.

	Parameters

	
	compliance_current – A float in the correct range for a
compliance_current

	voltage_range – A voltage_range value or None

	
auto_range_source()

	Configures the source to use an automatic range.

	
beep(frequency, duration)

	Sounds a system beep.

	Parameters

	
	frequency – A frequency in Hz between 65 Hz and 2 MHz

	duration – A time in seconds between 0 and 7.9 seconds

	
property buffer_data

	Returns a numpy array of values from the buffer.

	
property buffer_points

	An integer property that controls the number of buffer points. This
does not represent actual points in the buffer, but the configuration
value instead.

	
check_errors()

	Logs any system errors reported by the instrument.

	
check_get_errors()

	Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
clear()

	Clears the instrument status byte

	
property complete

	Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation
Complete query places an ASCII character 1 into the device’s Output Queue when all pending
selected device operations have been finished.

	
property compliance_current

	A floating point property that controls the compliance current
in Amps.

	
property compliance_voltage

	A floating point property that controls the compliance voltage
in Volts.

	
config_buffer(points=64, delay=0)

	Configures the measurement buffer for a number of points, to be
taken with a specified delay.

	Parameters

	
	points – The number of points in the buffer.

	delay – The delay time in seconds.

	
property current

	Reads the current in Amps, if configured for this reading.

	
property current_filter_count

	A integer property that controls the number of readings that are
acquired and stored in the filter buffer for the averaging

	
property current_filter_state

	A string property that controls if the filter is active.

	
property current_filter_type

	A String property that controls the filter’s type for the current.
REP : Repeating filter
MOV : Moving filter

	
property current_nplc

	A floating point property that controls the number of power line cycles
(NPLC) for the DC current measurements, which sets the integration period
and measurement speed. Takes values from 0.01 to 10, where 0.1, 1, and 10 are
Fast, Medium, and Slow respectively.

	
property current_output_off_state

	Select the output-off state of the SourceMeter.
HIMP : output relay is open, disconnects external circuitry.
NORM : V-Source is selected and set to 0V, Compliance is set to 0.5%
full scale of the present current range.
ZERO : V-Source is selected and set to 0V, compliance is set to the
programmed Source I value or to 0.5% full scale of the present current
range, whichever is greater.
GUAR : I-Source is selected and set to 0A

	
property current_range

	A floating point property that controls the measurement current
range in Amps, which can take values between -1.05 and +1.05 A.
Auto-range is disabled when this property is set.

	
disable_buffer()

	Disables the connection between measurements and the
buffer, but does not abort the measurement process.

	
disable_source()

	Disables the source of current or voltage depending on the
configuration of the instrument.

	
enable_source()

	Enables the source of current or voltage depending on the
configuration of the instrument.

	
property error

	Returns a tuple of an error code and message from a
single error.

	
property id

	Get the identification of the instrument.

	
is_buffer_full()

	Returns True if the buffer is full of measurements.

	
property max_current

	Returns the maximum current from the buffer

	
property max_resistance

	Returns the maximum resistance from the buffer

	
property max_voltage

	Returns the maximum voltage from the buffer

	
property maximums

	Returns the calculated maximums for voltage, current, and
resistance from the buffer data as a list.

	
property mean_current

	Returns the mean current from the buffer

	
property mean_resistance

	Returns the mean resistance from the buffer

	
property mean_voltage

	Returns the mean voltage from the buffer

	
property means

	Reads the calculated means (averages) for voltage,
current, and resistance from the buffer data as a list.

	
measure_current(nplc=1, current=0.000105, auto_range=True)

	Configures the measurement of current.

	Parameters

	
	nplc – Number of power line cycles (NPLC) from 0.01 to 10

	current – Upper limit of current in Amps, from -1.05 A to 1.05 A

	auto_range – Enables auto_range if True, else uses the set current

	
measure_resistance(nplc=1, resistance=210000.0, auto_range=True)

	Configures the measurement of resistance.

	Parameters

	
	nplc – Number of power line cycles (NPLC) from 0.01 to 10

	resistance – Upper limit of resistance in Ohms, from -210 MOhms to 210 MOhms

	auto_range – Enables auto_range if True, else uses the set resistance

	
measure_voltage(nplc=1, voltage=21.0, auto_range=True)

	Configures the measurement of voltage.

	Parameters

	
	nplc – Number of power line cycles (NPLC) from 0.01 to 10

	voltage – Upper limit of voltage in Volts, from -210 V to 210 V

	auto_range – Enables auto_range if True, else uses the set voltage

	
property min_current

	Returns the minimum current from the buffer

	
property min_resistance

	Returns the minimum resistance from the buffer

	
property min_voltage

	Returns the minimum voltage from the buffer

	
property minimums

	Returns the calculated minimums for voltage, current, and
resistance from the buffer data as a list.

	
property options

	Get the device options installed.

	
ramp_to_current(target_current, steps=30, pause=0.02)

	Ramps to a target current from the set current value over
a certain number of linear steps, each separated by a pause duration.

	Parameters

	
	target_current – A current in Amps

	steps – An integer number of steps

	pause – A pause duration in seconds to wait between steps

	
ramp_to_voltage(target_voltage, steps=30, pause=0.02)

	Ramps to a target voltage from the set voltage value over
a certain number of linear steps, each separated by a pause duration.

	Parameters

	
	target_voltage – A voltage in Amps

	steps – An integer number of steps

	pause – A pause duration in seconds to wait between steps

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

	
read_binary_values(**kwargs)

	Read binary values from the device.

	
read_bytes(count, **kwargs)

	Read a certain number of bytes from the instrument.

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read the whole read buffer.

	kwargs – Keyword arguments for the adapter.

	Returns bytes

	Bytes response of the instrument (including termination).

	
reset()

	Resets the instrument and clears the queue.

	
reset_buffer()

	Resets the buffer.

	
property resistance

	Reads the resistance in Ohms, if configured for this reading.

	
property resistance_nplc

	A floating point property that controls the number of power line cycles
(NPLC) for the 2-wire resistance measurements, which sets the integration period
and measurement speed. Takes values from 0.01 to 10, where 0.1, 1, and 10 are
Fast, Medium, and Slow respectively.

	
property resistance_range

	A floating point property that controls the resistance range
in Ohms, which can take values from 0 to 210 MOhms.
Auto-range is disabled when this property is set.

	
shutdown()

	Ensures that the current or voltage is turned to zero
and disables the output.

	
property source_current

	A floating point property that controls the source current
in Amps.

	
property source_current_delay

	A floating point property that sets a manual delay for the source
after the output is turned on before a measurement is taken. When this
property is set, the auto delay is turned off. Valid values are
between 0 [seconds] and 999.9999 [seconds].

	
property source_current_delay_auto

	A boolean property that enables or disables auto delay. Valid
values are True and False.

	
property source_current_range

	A floating point property that controls the source current
range in Amps, which can take values between -1.05 and +1.05 A.
Auto-range is disabled when this property is set.

	
property source_enabled

	Reads a boolean value that is True if the source is enabled.

	
property source_mode

	A string property that controls the source mode, which can
take the values ‘current’ or ‘voltage’. The convenience methods
apply_current() and apply_voltage()
can also be used.

	
property source_voltage

	A floating point property that controls the source voltage
in Volts.

	
property source_voltage_delay

	A floating point property that sets a manual delay for the source
after the output is turned on before a measurement is taken. When this
property is set, the auto delay is turned off. Valid values are
between 0 [seconds] and 999.9999 [seconds].

	
property source_voltage_delay_auto

	A boolean property that enables or disables auto delay. Valid
values are True and False.

	
property source_voltage_range

	A floating point property that controls the source voltage
range in Volts, which can take values from -210 to 210 V.
Auto-range is disabled when this property is set.

	
property standard_devs

	Returns the calculated standard deviations for voltage,
current, and resistance from the buffer data as a list.

	
start_buffer()

	Starts the buffer.

	
property status

	Get the status byte and Master Summary Status bit.

	
property std_current

	Returns the current standard deviation from the buffer

	
property std_resistance

	Returns the resistance standard deviation from the buffer

	
property std_voltage

	Returns the voltage standard deviation from the buffer

	
stop_buffer()

	Aborts the buffering measurement, by stopping the measurement
arming and triggering sequence. If possible, a Selected Device
Clear (SDC) is used.

	
triad(base_frequency, duration)

	Sounds a musical triad using the system beep.

	Parameters

	
	base_frequency – A frequency in Hz between 65 Hz and 1.3 MHz

	duration – A time in seconds between 0 and 7.9 seconds

	
trigger()

	Executes a bus trigger.

	
use_front_terminals()

	Enables the front terminals for measurement, and
disables the rear terminals.

	
use_rear_terminals()

	Enables the rear terminals for measurement, and
disables the front terminals.

	
property voltage

	Reads the voltage in Volts, if configured for this reading.

	
property voltage_filter_count

	A integer property that controls the number of readings that are
acquired and stored in the filter buffer for the averaging

	
property voltage_filter_type

	A String property that controls the filter’s type for the current.
REP : Repeating filter
MOV : Moving filter

	
property voltage_nplc

	A floating point property that controls the number of power line cycles
(NPLC) for the DC voltage measurements, which sets the integration period
and measurement speed. Takes values from 0.01 to 10, where 0.1, 1, and 10 are
Fast, Medium, and Slow respectively.

	
property voltage_output_off_state

	Select the output-off state of the SourceMeter.
HIMP : output relay is open, disconnects external circuitry.
NORM : V-Source is selected and set to 0V, Compliance is set to 0.5%
full scale of the present current range.
ZERO : V-Source is selected and set to 0V, compliance is set to the
programmed Source I value or to 0.5% full scale of the present current
range, whichever is greater.
GUAR : I-Source is selected and set to 0A

	
property voltage_range

	A floating point property that controls the measurement voltage
range in Volts, which can take values from -210 to 210 V.
Auto-range is disabled when this property is set.

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
wait_for_buffer(should_stop=<function KeithleyBuffer.<lambda>>, timeout=60, interval=0.1)

	Blocks the program, waiting for a full buffer. This function
returns early if the should_stop function returns True or
the timeout is reached before the buffer is full.

	Parameters

	
	should_stop – A function that returns True when this function should return early

	timeout – A time in seconds after which this function should return early

	interval – A time in seconds for how often to check if the buffer is full

	
property wires

	An integer property that controls the number of wires in
use for resistance measurements, which can take the value of
2 or 4.

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument

	kwargs – Keyword arguments for the adapter.

	
write_binary_values(command, values, *args, **kwargs)

	Write binary values to the device.

	Parameters

	
	command – Command to send.

	values – The values to transmit.

	**kwargs (*args,) – Further arguments to hand to the Adapter.

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

 Keithley 2700 MultiMeter/Switch System

Keithley 2700 MultiMeter/Switch System

	
class pymeasure.instruments.keithley.Keithley2700(adapter, name='Keithley 2700 MultiMeter/Switch System', **kwargs)

	Bases: KeithleyBuffer, Instrument

Represents the Keithley 2700 Multimeter/Switch System and provides a
high-level interface for interacting with the instrument.

keithley = Keithley2700("GPIB::1")

	
beep(frequency, duration)

	Sounds a system beep.

	Parameters

	
	frequency – A frequency in Hz between 65 Hz and 2 MHz

	duration – A time in seconds between 0 and 7.9 seconds

	
property buffer_data

	Returns a numpy array of values from the buffer.

	
property buffer_points

	An integer property that controls the number of buffer points. This
does not represent actual points in the buffer, but the configuration
value instead.

	
channels_from_rows_columns(rows, columns, slot=None)

	Determine the channel numbers between column(s) and row(s) of the
7709 connection matrix. Returns a list of channel numbers.
Only one of the parameters ‘rows’ or ‘columns’ can be “all”

	Parameters

	
	rows – row number or list of numbers; can also be “all”

	columns – column number or list of numbers; can also be “all”

	slot – slot number (1 or 2) of the 7709 card to be used

	
check_errors()

	Logs any system errors reported by the instrument.

	
check_get_errors()

	Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
clear()

	Clears the instrument status byte

	
close_rows_to_columns(rows, columns, slot=None)

	Closes (connects) the channels between column(s) and row(s)
of the 7709 connection matrix.
Only one of the parameters ‘rows’ or ‘columns’ can be “all”

	Parameters

	
	rows – row number or list of numbers; can also be “all”

	columns – column number or list of numbers; can also be “all”

	slot – slot number (1 or 2) of the 7709 card to be used

	
property closed_channels

	Parameter that controls the opened and closed channels.
All mentioned channels are closed, other channels will be opened.

	
property complete

	Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation
Complete query places an ASCII character 1 into the device’s Output Queue when all pending
selected device operations have been finished.

	
config_buffer(points=64, delay=0)

	Configures the measurement buffer for a number of points, to be
taken with a specified delay.

	Parameters

	
	points – The number of points in the buffer.

	delay – The delay time in seconds.

	
determine_valid_channels()

	Determine what cards are installed into the Keithley 2700
and from that determine what channels are valid.

	
disable_buffer()

	Disables the connection between measurements and the
buffer, but does not abort the measurement process.

	
display_closed_channels()

	Show the presently closed channels on the display of the Keithley
2700.

	
property display_text

	A string property that controls the text shown on the display of
the Keithley 2700. Text can be up to 12 ASCII characters and must be
enabled to show.

	
property error

	Returns a tuple of an error code and message from a
single error.

	
get_state_of_channels(channels)

	Get the open or closed state of the specified channels

	Parameters

	channels – a list of channel numbers, or single channel number

	
property id

	Get the identification of the instrument.

	
is_buffer_full()

	Returns True if the buffer is full of measurements.

	
open_all_channels()

	Open all channels of the Keithley 2700.

	
property open_channels

	A parameter that opens the specified list of channels. Can only
be set.

	
open_rows_to_columns(rows, columns, slot=None)

	Opens (disconnects) the channels between column(s) and row(s)
of the 7709 connection matrix.
Only one of the parameters ‘rows’ or ‘columns’ can be “all”

	Parameters

	
	rows – row number or list of numbers; can also be “all”

	columns – column number or list of numbers; can also be “all”

	slot – slot number (1 or 2) of the 7709 card to be used

	
property options

	Property that lists the installed cards in the Keithley 2700.
Returns a dict with the integer card numbers on the position.

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

	
read_binary_values(**kwargs)

	Read binary values from the device.

	
read_bytes(count, **kwargs)

	Read a certain number of bytes from the instrument.

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read the whole read buffer.

	kwargs – Keyword arguments for the adapter.

	Returns bytes

	Bytes response of the instrument (including termination).

	
reset()

	Resets the instrument and clears the queue.

	
reset_buffer()

	Resets the buffer.

	
shutdown()

	Brings the instrument to a safe and stable state

	
start_buffer()

	Starts the buffer.

	
property status

	Get the status byte and Master Summary Status bit.

	
stop_buffer()

	Aborts the buffering measurement, by stopping the measurement
arming and triggering sequence. If possible, a Selected Device
Clear (SDC) is used.

	
property text_enabled

	A boolean property that controls whether a text message can be
shown on the display of the Keithley 2700.

	
triad(base_frequency, duration)

	Sounds a musical triad using the system beep.

	Parameters

	
	base_frequency – A frequency in Hz between 65 Hz and 1.3 MHz

	duration – A time in seconds between 0 and 7.9 seconds

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
wait_for_buffer(should_stop=<function KeithleyBuffer.<lambda>>, timeout=60, interval=0.1)

	Blocks the program, waiting for a full buffer. This function
returns early if the should_stop function returns True or
the timeout is reached before the buffer is full.

	Parameters

	
	should_stop – A function that returns True when this function should return early

	timeout – A time in seconds after which this function should return early

	interval – A time in seconds for how often to check if the buffer is full

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument

	kwargs – Keyword arguments for the adapter.

	
write_binary_values(command, values, *args, **kwargs)

	Write binary values to the device.

	Parameters

	
	command – Command to send.

	values – The values to transmit.

	**kwargs (*args,) – Further arguments to hand to the Adapter.

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

 Keithley 6221 AC and DC Current Source

Keithley 6221 AC and DC Current Source

	
class pymeasure.instruments.keithley.Keithley6221(adapter, name='Keithley 6221 SourceMeter', **kwargs)

	Bases: KeithleyBuffer, Instrument

Represents the Keithley 6221 AC and DC current source and provides a
high-level interface for interacting with the instrument.

keithley = Keithley6221("GPIB::1")
keithley.clear()

Use the keithley as an AC source
keithley.waveform_function = "square" # Set a square waveform
keithley.waveform_amplitude = 0.05 # Set the amplitude in Amps
keithley.waveform_offset = 0 # Set zero offset
keithley.source_compliance = 10 # Set compliance (limit) in V
keithley.waveform_dutycycle = 50 # Set duty cycle of wave in %
keithley.waveform_frequency = 347 # Set the frequency in Hz
keithley.waveform_ranging = "best" # Set optimal output ranging
keithley.waveform_duration_cycles = 100 # Set duration of the waveform

Link end of waveform to Service Request status bit
keithley.operation_event_enabled = 128 # OSB listens to end of wave
keithley.srq_event_enabled = 128 # SRQ listens to OSB

keithley.waveform_arm() # Arm (load) the waveform

keithley.waveform_start() # Start the waveform

keithley.adapter.wait_for_srq() # Wait for the pulse to finish

keithley.waveform_abort() # Disarm (unload) the waveform

keithley.shutdown() # Disables output

	
beep(frequency, duration)

	Sounds a system beep.

	Parameters

	
	frequency – A frequency in Hz between 65 Hz and 2 MHz

	duration – A time in seconds between 0 and 7.9 seconds

	
property buffer_data

	Returns a numpy array of values from the buffer.

	
property buffer_points

	An integer property that controls the number of buffer points. This
does not represent actual points in the buffer, but the configuration
value instead.

	
check_errors()

	Logs any system errors reported by the instrument.

	
check_get_errors()

	Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
clear()

	Clears the instrument status byte

	
property complete

	Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation
Complete query places an ASCII character 1 into the device’s Output Queue when all pending
selected device operations have been finished.

	
config_buffer(points=64, delay=0)

	Configures the measurement buffer for a number of points, to be
taken with a specified delay.

	Parameters

	
	points – The number of points in the buffer.

	delay – The delay time in seconds.

	
define_arbitary_waveform(datapoints, location=1)

	Define the data points for the arbitrary waveform and copy the
defined waveform into the given storage location.

	Parameters

	
	datapoints – a list (or numpy array) of the data points; all
values have to be between -1 and 1; 100 points maximum.

	location – integer storage location to store the waveform in.
Value must be in range 1 to 4.

	
disable_buffer()

	Disables the connection between measurements and the
buffer, but does not abort the measurement process.

	
disable_output_trigger()

	Disables the output trigger for the Trigger layer

	
disable_source()

	Disables the source of current or voltage depending on the
configuration of the instrument.

	
property display_enabled

	A boolean property that controls whether or not the display of the
sourcemeter is enabled. Valid values are True and False.

	
enable_source()

	Enables the source of current or voltage depending on the
configuration of the instrument.

	
property error

	Returns a tuple of an error code and message from a
single error.

	
property id

	Get the identification of the instrument.

	
is_buffer_full()

	Returns True if the buffer is full of measurements.

	
property measurement_event_enabled

	An integer value that controls which measurement events are
registered in the Measurement Summary Bit (MSB) status bit. Refer to
the Model 6220/6221 Reference Manual for more information about
programming the status bits.

	
property measurement_events

	An integer value that reads which measurement events have been
registered in the Measurement event registers. Refer to the Model
6220/6221 Reference Manual for more information about programming
the status bits. Reading this value clears the register.

	
property operation_event_enabled

	An integer value that controls which operation events are
registered in the Operation Summary Bit (OSB) status bit. Refer to
the Model 6220/6221 Reference Manual for more information about
programming the status bits.

	
property operation_events

	An integer value that reads which operation events have been
registered in the Operation event registers. Refer to the Model
6220/6221 Reference Manual for more information about programming
the status bits. Reading this value clears the register.

	
property options

	Get the device options installed.

	
property output_low_grounded

	A boolean property that controls whether the low output of the triax
connection is connected to earth ground (True) or is floating (False).

	
output_trigger_on_external(line=1, after='DEL')

	Configures the output trigger on the specified trigger link
line number, with the option of supplying the part of the
measurement after which the trigger should be generated
(default to delay, which is right before the measurement)

	Parameters

	
	line – A trigger line from 1 to 4

	after – An event string that determines when to trigger

	
property questionable_event_enabled

	An integer value that controls which questionable events are
registered in the Questionable Summary Bit (QSB) status bit. Refer to
the Model 6220/6221 Reference Manual for more information about
programming the status bits.

	
property questionable_events

	An integer value that reads which questionable events have been
registered in the Questionable event registers. Refer to the Model
6220/6221 Reference Manual for more information about programming
the status bits. Reading this value clears the register.

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

	
read_binary_values(**kwargs)

	Read binary values from the device.

	
read_bytes(count, **kwargs)

	Read a certain number of bytes from the instrument.

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read the whole read buffer.

	kwargs – Keyword arguments for the adapter.

	Returns bytes

	Bytes response of the instrument (including termination).

	
reset()

	Resets the instrument and clears the queue.

	
reset_buffer()

	Resets the buffer.

	
set_timed_arm(interval)

	Sets up the measurement to be taken with the internal
trigger at a variable sampling rate defined by the interval
in seconds between sampling points

	
shutdown()

	Disables the output.

	
property source_auto_range

	A boolean property that controls the auto range of the current source.
Valid values are True or False.

	
property source_compliance

	A floating point property that controls the compliance of the current
source in Volts. valid values are in range 0.1 [V] to 105 [V].

	
property source_current

	A floating point property that controls the source current
in Amps.

	
property source_delay

	A floating point property that sets a manual delay for the source
after the output is turned on before a measurement is taken. When this
property is set, the auto delay is turned off. Valid values are
between 1e-3 [seconds] and 999999.999 [seconds].

	
property source_enabled

	A boolean property that controls whether the source is enabled, takes
values True or False. The convenience methods enable_source() and
disable_source() can also be used.

	
property source_range

	A floating point property that controls the source current
range in Amps, which can take values between -0.105 A and +0.105 A.
Auto-range is disabled when this property is set.

	
property srq_event_enabled

	An integer value that controls which event registers trigger the
Service Request (SRQ) status bit. Refer to the Model 6220/6221
Reference Manual for more information about programming the status
bits.

	
property standard_event_enabled

	An integer value that controls which standard events are
registered in the Event Summary Bit (ESB) status bit. Refer to
the Model 6220/6221 Reference Manual for more information about
programming the status bits.

	
property standard_events

	An integer value that reads which standard events have been
registered in the Standard event registers. Refer to the Model
6220/6221 Reference Manual for more information about programming
the status bits. Reading this value clears the register.

	
start_buffer()

	Starts the buffer.

	
property status

	Get the status byte and Master Summary Status bit.

	
stop_buffer()

	Aborts the buffering measurement, by stopping the measurement
arming and triggering sequence. If possible, a Selected Device
Clear (SDC) is used.

	
triad(base_frequency, duration)

	Sounds a musical triad using the system beep.

	Parameters

	
	base_frequency – A frequency in Hz between 65 Hz and 1.3 MHz

	duration – A time in seconds between 0 and 7.9 seconds

	
trigger()

	Executes a bus trigger, which can be used when
trigger_on_bus() is configured.

	
trigger_immediately()

	Configures measurements to be taken with the internal
trigger at the maximum sampling rate.

	
trigger_on_bus()

	Configures the trigger to detect events based on the bus
trigger, which can be activated by trigger().

	
trigger_on_external(line=1)

	Configures the measurement trigger to be taken from a
specific line of an external trigger

	Parameters

	line – A trigger line from 1 to 4

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
wait_for_buffer(should_stop=<function KeithleyBuffer.<lambda>>, timeout=60, interval=0.1)

	Blocks the program, waiting for a full buffer. This function
returns early if the should_stop function returns True or
the timeout is reached before the buffer is full.

	Parameters

	
	should_stop – A function that returns True when this function should return early

	timeout – A time in seconds after which this function should return early

	interval – A time in seconds for how often to check if the buffer is full

	
waveform_abort()

	Abort the waveform output and disarm the waveform function.

	
property waveform_amplitude

	A floating point property that controls the (peak) amplitude of the
waveform in Amps. Valid values are in range 2e-12 to 0.105.

	
waveform_arm()

	Arm the current waveform function.

	
property waveform_duration_cycles

	A floating point property that controls the duration of the
waveform in cycles. Valid values are in range 1e-3 to 99999999900.

	
waveform_duration_set_infinity()

	Set the waveform duration to infinity.

	
property waveform_duration_time

	A floating point property that controls the duration of the
waveform in seconds. Valid values are in range 100e-9 to 999999.999.

	
property waveform_dutycycle

	A floating point property that controls the duty-cycle of the
waveform in percent for the square and ramp waves. Valid values are in
range 0 to 100.

	
property waveform_frequency

	A floating point property that controls the frequency of the
waveform in Hertz. Valid values are in range 1e-3 to 1e5.

	
property waveform_function

	A string property that controls the selected wave function. Valid
values are “sine”, “ramp”, “square”, “arbitrary1”, “arbitrary2”,
“arbitrary3” and “arbitrary4”.

	
property waveform_offset

	A floating point property that controls the offset of the waveform
in Amps. Valid values are in range -0.105 to 0.105.

	
property waveform_phasemarker_line

	A numerical property that controls the line of the phase marker.

	
property waveform_phasemarker_phase

	A numerical property that controls the phase of the phase marker.

	
property waveform_ranging

	A string property that controls the source ranging of the
waveform. Valid values are “best” and “fixed”.

	
waveform_start()

	Start the waveform output. Must already be armed

	
property waveform_use_phasemarker

	A boolean property that controls whether the phase marker option
is turned on or of. Valid values True (on) or False (off). Other
settings for the phase marker have not yet been implemented.

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument

	kwargs – Keyword arguments for the adapter.

	
write_binary_values(command, values, *args, **kwargs)

	Write binary values to the device.

	Parameters

	
	command – Command to send.

	values – The values to transmit.

	**kwargs (*args,) – Further arguments to hand to the Adapter.

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

 Keithley 6517B Electrometer

Keithley 6517B Electrometer

	
class pymeasure.instruments.keithley.Keithley6517B(adapter, name='Keithley 6517B Electrometer/High Resistance Meter', **kwargs)

	Bases: KeithleyBuffer, Instrument

Represents the Keithley 6517B ElectroMeter and provides a
high-level interface for interacting with the instrument.

keithley = Keithley6517B("GPIB::1")

keithley.apply_voltage() # Sets up to source current
keithley.source_voltage_range = 200 # Sets the source voltage
 # range to 200 V
keithley.source_voltage = 20 # Sets the source voltage to 20 V
keithley.enable_source() # Enables the source output

keithley.measure_resistance() # Sets up to measure resistance

keithley.ramp_to_voltage(50) # Ramps the voltage to 50 V
print(keithley.resistance) # Prints the resistance in Ohms

keithley.shutdown() # Ramps the voltage to 0 V
 # and disables output

	
apply_voltage(voltage_range=None)

	Configures the instrument to apply a source voltage, and
uses an auto range unless a voltage range is specified.

	Parameters

	voltage_range – A voltage_range value
or None (activates auto range)

	
auto_range_source()

	Configures the source to use an automatic range.

	
property buffer_data

	Returns a numpy array of values from the buffer.

	
property buffer_points

	An integer property that controls the number of buffer points. This
does not represent actual points in the buffer, but the configuration
value instead.

	
check_errors()

	Logs any system errors reported by the instrument.

	
check_get_errors()

	Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
clear()

	Clears the instrument status byte

	
property complete

	Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation
Complete query places an ASCII character 1 into the device’s Output Queue when all pending
selected device operations have been finished.

	
config_buffer(points=64, delay=0)

	Configures the measurement buffer for a number of points, to be
taken with a specified delay.

	Parameters

	
	points – The number of points in the buffer.

	delay – The delay time in seconds.

	
property current

	Reads the current in Amps, if configured for this reading.

	
property current_nplc

	A floating point property that controls the number of power
line cycles (NPLC) for the DC current measurements, which sets the
integration period and measurement speed. Takes values from 0.01 to
10, where 0.1, 1, and 10 are Fast, Medium, and Slow respectively.

	
property current_range

	A floating point property that controls the measurement current
range in Amps, which can take values between -20 and +20 mA.
Auto-range is disabled when this property is set.

	
disable_buffer()

	Disables the connection between measurements and the
buffer, but does not abort the measurement process.

	
disable_source()

	Disables the source of current or voltage depending on the
configuration of the instrument.

	
enable_source()

	Enables the source of current or voltage depending on the
configuration of the instrument.

	
property error

	Returns a tuple of an error code and message from a
single error.

	
static extract_value(result)

	extracts the physical value from a result object returned
by the instrument

	
property id

	Get the identification of the instrument.

	
is_buffer_full()

	Returns True if the buffer is full of measurements.

	
measure_current(nplc=1, current=0.000105, auto_range=True)

	Configures the measurement of current.

	Parameters

	
	nplc – Number of power line cycles (NPLC) from 0.01 to 10

	current – Upper limit of current in Amps, from -21 mA to 21 mA

	auto_range – Enables auto_range if True, else uses the
current_range attribut

	
measure_resistance(nplc=1, resistance=210000.0, auto_range=True)

	Configures the measurement of resistance.

	Parameters

	
	nplc – Number of power line cycles (NPLC) from 0.01 to 10

	resistance – Upper limit of resistance in Ohms,
from -210 POhms to 210 POhms

	auto_range – Enables auto_range if True, else uses the
resistance_range attribut

	
measure_voltage(nplc=1, voltage=21.0, auto_range=True)

	Configures the measurement of voltage.

	Parameters

	
	nplc – Number of power line cycles (NPLC) from 0.01 to 10

	voltage – Upper limit of voltage in Volts, from -1000 V to 1000 V

	auto_range – Enables auto_range if True, else uses the
voltage_range attribut

	
property options

	Get the device options installed.

	
ramp_to_voltage(target_voltage, steps=30, pause=0.02)

	Ramps to a target voltage from the set voltage value over
a certain number of linear steps, each separated by a pause duration.

	Parameters

	
	target_voltage – A voltage in Volts

	steps – An integer number of steps

	pause – A pause duration in seconds to wait between steps

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

	
read_binary_values(**kwargs)

	Read binary values from the device.

	
read_bytes(count, **kwargs)

	Read a certain number of bytes from the instrument.

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read the whole read buffer.

	kwargs – Keyword arguments for the adapter.

	Returns bytes

	Bytes response of the instrument (including termination).

	
reset()

	Resets the instrument and clears the queue.

	
reset_buffer()

	Resets the buffer.

	
property resistance

	Reads the resistance in Ohms, if configured for this reading.

	
property resistance_nplc

	A floating point property that controls the number of power line cycles
(NPLC) for the 2-wire resistance measurements, which sets the
integration period and measurement speed. Takes values from 0.01
to 10, where 0.1, 1, and 10 are Fast, Medium, and Slow respectively.

	
property resistance_range

	A floating point property that controls the resistance range
in Ohms, which can take values from 0 to 100e18 Ohms.
Auto-range is disabled when this property is set.

	
shutdown()

	Ensures that the current or voltage is turned to zero
and disables the output.

	
property source_current_resistance_limit

	Boolean property which enables or disables resistance
current limit

	
property source_enabled

	Reads a boolean value that is True if the source is enabled.

	
property source_voltage

	A floating point property that controls the source voltage
in Volts.

	
property source_voltage_range

	A floating point property that controls the source voltage
range in Volts, which can take values from -1000 to 1000 V.
Auto-range is disabled when this property is set.

	
start_buffer()

	Starts the buffer.

	
property status

	Get the status byte and Master Summary Status bit.

	
stop_buffer()

	Aborts the buffering measurement, by stopping the measurement
arming and triggering sequence. If possible, a Selected Device
Clear (SDC) is used.

	
trigger()

	Executes a bus trigger, which can be used when
trigger_on_bus() is configured.

	
trigger_immediately()

	Configures measurements to be taken with the internal
trigger at the maximum sampling rate.

	
trigger_on_bus()

	Configures the trigger to detect events based on the bus
trigger, which can be activated by trigger().

	
property voltage

	Reads the voltage in Volts, if configured for this reading.

	
property voltage_nplc

	A floating point property that controls the number of power
line cycles (NPLC) for the DC voltage measurements, which sets the
integration period and measurement speed. Takes values from 0.01 to
10, where 0.1, 1, and 10 are Fast, Medium, and Slow respectively.

	
property voltage_range

	A floating point property that controls the measurement voltage
range in Volts, which can take values from -1000 to 1000 V.
Auto-range is disabled when this property is set.

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
wait_for_buffer(should_stop=<function KeithleyBuffer.<lambda>>, timeout=60, interval=0.1)

	Blocks the program, waiting for a full buffer. This function
returns early if the should_stop function returns True or
the timeout is reached before the buffer is full.

	Parameters

	
	should_stop – A function that returns True when this function should return early

	timeout – A time in seconds after which this function should return early

	interval – A time in seconds for how often to check if the buffer is full

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument

	kwargs – Keyword arguments for the adapter.

	
write_binary_values(command, values, *args, **kwargs)

	Write binary values to the device.

	Parameters

	
	command – Command to send.

	values – The values to transmit.

	**kwargs (*args,) – Further arguments to hand to the Adapter.

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

 Keithley 2750 Multimeter/Switch System

Keithley 2750 Multimeter/Switch System

	
class pymeasure.instruments.keithley.Keithley2750(adapter, name='Keithley 2750 Multimeter/Switch System', **kwargs)

	Bases: Instrument

Represents the Keithley2750 multimeter/switch system and provides a high-level interface for
interacting with the instrument.

	
check_errors()

	Read all errors from the instrument and log them.

	Returns

	List of error entries.

	
check_get_errors()

	Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
clear()

	Clears the instrument status byte

	
close(channel)

	Closes (connects) the specified channel.

	Parameters

	channel (int) – 3-digit number for the channel

	Returns

	None

	
property closed_channels

	Reads the list of closed channels

	
property complete

	Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation
Complete query places an ASCII character 1 into the device’s Output Queue when all pending
selected device operations have been finished.

	
property id

	Get the identification of the instrument.

	
open(channel)

	Opens (disconnects) the specified channel.

	Parameters

	channel (int) – 3-digit number for the channel

	Returns

	None

	
open_all()

	Opens (disconnects) all the channels on the switch matrix.

	Returns

	None

	
property options

	Get the device options installed.

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

	
read_binary_values(**kwargs)

	Read binary values from the device.

	
read_bytes(count, **kwargs)

	Read a certain number of bytes from the instrument.

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read the whole read buffer.

	kwargs – Keyword arguments for the adapter.

	Returns bytes

	Bytes response of the instrument (including termination).

	
reset()

	Resets the instrument.

	
shutdown()

	Brings the instrument to a safe and stable state

	
property status

	Get the status byte and Master Summary Status bit.

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument

	kwargs – Keyword arguments for the adapter.

	
write_binary_values(command, values, *args, **kwargs)

	Write binary values to the device.

	Parameters

	
	command – Command to send.

	values – The values to transmit.

	**kwargs (*args,) – Further arguments to hand to the Adapter.

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

 Keithley 2600 SourceMeter

Keithley 2600 SourceMeter

	
class pymeasure.instruments.keithley.Keithley2600(adapter, name='Keithley 2600 SourceMeter', **kwargs)

	Bases: Instrument

Represents the Keithley 2600 series (channel A and B) SourceMeter

	
check_errors()

	Logs any system errors reported by the instrument.

	
check_get_errors()

	Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
clear()

	Clears the instrument status byte

	
property complete

	Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation
Complete query places an ASCII character 1 into the device’s Output Queue when all pending
selected device operations have been finished.

	
property error

	Returns a tuple of an error code and message from a
single error.

	
property id

	Get the identification of the instrument.

	
property options

	Get the device options installed.

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

	
read_binary_values(**kwargs)

	Read binary values from the device.

	
read_bytes(count, **kwargs)

	Read a certain number of bytes from the instrument.

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read the whole read buffer.

	kwargs – Keyword arguments for the adapter.

	Returns bytes

	Bytes response of the instrument (including termination).

	
reset()

	Resets the instrument.

	
shutdown()

	Brings the instrument to a safe and stable state

	
property status

	Get the status byte and Master Summary Status bit.

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument

	kwargs – Keyword arguments for the adapter.

	
write_binary_values(command, values, *args, **kwargs)

	Write binary values to the device.

	Parameters

	
	command – Command to send.

	values – The values to transmit.

	**kwargs (*args,) – Further arguments to hand to the Adapter.

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

 Keithley 2200 Series Power Supplies

Keithley 2200 Series Power Supplies

	
class pymeasure.instruments.keithley.Keithley2200(adapter, name='Keithley2200', **kwargs)

	Bases: Instrument

Represents the Keithley 2200 Power Supply.

	
ch_1

	
	Channel

	PSChannel

	
ch_2

	
	Channel

	PSChannel

	
ch_3

	
	Channel

	PSChannel

	
class BaseChannelCreator(cls, **kwargs)

	Bases: object

Base class for ChannelCreator and MultiChannelCreator.

	Parameters

	
	cls – Class for all children or tuple/list of classes, one for each child.

	**kwargs – Keyword arguments for all children.

	
class ChannelCreator(cls, id=None, **kwargs)

	Bases: BaseChannelCreator

Add a single channel to the parent class.

The child will be added to the parent instance at instantiation with
CommonBase.add_child(). The attribute name that ChannelCreator was assigned
to in the Instrument class will be the name of the channel interface.

class Extreme5000(Instrument):
 # Two output channels, accessible by their property names
 # and both are accessible through the 'channels' collection
 output_A = Instrument.ChannelCreator(Extreme5000Channel, "A")
 output_B = Instrument.ChannelCreator(Extreme5000Channel, "B")
 # A channel without a channel accessible through the 'motor' collection
 motor = Instrument.ChannelCreator(MotorControl)

inst = SomeInstrument()
Set the extreme_temp for channel A of Extreme5000 instrument
inst.output_A.extreme_temp = 42

	Parameters

	
	cls – Channel class for channel interface

	id – The id of the channel on the instrument, integer or string.

	**kwargs – Keyword arguments for all children.

	
class MultiChannelCreator(cls, id=None, prefix='ch_', **kwargs)

	Bases: BaseChannelCreator

Add channels to the parent class.

The children will be added to the parent instance at instantiation with
CommonBase.add_child(). The attribute name (e.g. channels) will be
used as the collection of the children. You may define the attribute
prefix. If there are no other pressing reasons, use channels as the attribute name
and leave the prefix at the default "ch_".

class Extreme5000(Instrument):
 # Three channels of the same type: 'ch_A', 'ch_B', 'ch_C'
 # and add them to the 'channels' collection
 channels = Instrument.MultiChannelCreator(Extreme5000Channel, ["A", "B", "C"])
 # Two channel interfaces of different types: 'fn_power', 'fn_voltage'
 # and add them to the 'functions' collection
 functions = Instrument.MultiChannelCreator((PowerChannel, VoltageChannel),
 ["power", "voltage"], prefix="fn_")

	Parameters

	
	cls – Class for all children or tuple/list of classes, one for each child.

	id – tuple/list of ids of the channels on the instrument.

	prefix – Collection prefix for the attributes, e.g. “ch_”
creates attribute self.ch_A. If prefix evaluates False,
the child will be added directly under the variable name. Required if id is tuple/list.

	**kwargs – Keyword arguments for all children.

	
add_child(cls, id=None, collection='channels', prefix='ch_', attr_name='', **kwargs)

	Add a child to this instance and return its index in the children list.

The newly created child may be accessed either by the id in the
children dictionary or by the created attribute, e.g. the fifth channel of instrument
with id “F” has two access options:
instrument.channels["F"] == instrument.ch_F

Note

Do not change the default collection or prefix parameter, unless
you have to distinguish several collections of different children,
e.g. different channel types (analog and digital).

	Parameters

	
	cls – Class of the channel.

	id – Child id how it is used in communication, e.g. “A”.

	collection – Name of the collection of children, used for dictionary access to the
channel interfaces.

	prefix – For creating multiple channel interfaces, the prefix e.g. “ch_”
is prepended to the attribute name of the channel interface self.ch_A.
If prefix evaluates False, the child will be added directly under the collection name.

	attr_name – For creating a single channel interface, the attr_name argument is used
when setting the attribute name of the channel interface.

	**kwargs – Keyword arguments for the channel creator.

	Returns

	Instance of the created child.

	
binary_values(command, query_delay=0, **kwargs)

	Write a command to the instrument and return a numpy array of the binary data.

	Parameters

	
	command – Command to be sent to the instrument.

	query_delay – Delay between writing and reading in seconds.

	kwargs – Arguments for read_binary_values().

	Returns

	NumPy array of values.

	
check_errors()

	Read all errors from the instrument and log them.

	Returns

	List of error entries.

	
check_get_errors()

	Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
property complete

	Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation
Complete query places an ASCII character 1 into the device’s Output Queue when all pending
selected device operations have been finished.

	
property display_enabled

	Control whether the display is enabled.

	
property display_text_data

	Control text to be displayed(32 characters).

	
static get_channel_pairs(cls)

	Return a list of all the Instrument’s channel pairs

	
static get_channels(cls)

	Return a list of all the Instrument’s ChannelCreator and MultiChannelCreator instances

	
property id

	Get the identification of the instrument.

	
property options

	Get the device options installed.

	
read_binary_values(**kwargs)

	Read binary values from the device.

	
read_bytes(count, **kwargs)

	Read a certain number of bytes from the instrument.

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read the whole read buffer.

	kwargs – Keyword arguments for the adapter.

	Returns bytes

	Bytes response of the instrument (including termination).

	
remove_child(child)

	Remove the child from the instrument and the corresponding collection.

	Parameters

	child – Instance of the child to delete.

	
reset()

	Resets the instrument.

	
shutdown()

	Brings the instrument to a safe and stable state

	
property status

	Get the status byte and Master Summary Status bit.

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
write_binary_values(command, values, *args, **kwargs)

	Write binary values to the device.

	Parameters

	
	command – Command to send.

	values – The values to transmit.

	**kwargs (*args,) – Further arguments to hand to the Adapter.

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

	
class pymeasure.instruments.keithley.keithley2200.PSChannel(parent, id)

	Bases: Channel

Implementation of a Keithley 2200 channel.

	
property current

	Measure the current in Amps.

	
property current_limit

	Control output current in Amps.

	
insert_id(command)

	Insert the channel id in a command replacing placeholder.

Subclass this method if you want to do something else,
like always prepending the channel id.

	
property output_enabled

	Control the output state.

	
property power

	Measure the power in watts.

	
property voltage

	Measure the voltage in Volts.

	
property voltage_limit

	Control the maximum voltage that can be set.

	
property voltage_limit_enabled

	Control whether the maximum voltage limit is enabled.

	
property voltage_setpoint

	Control output voltage in Volts.

 Keysight

Keysight

This section contains specific documentation on the keysight instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Keysight DSOX1102G Oscilloscope
	KeysightDSOX1102G

	Keysight N5767A Power Supply
	KeysightN5767A

	Keysight N5776C Power Supply
	KeysightN7776C

	Keysight E36312A Triple Output Power Supply
	KeysightE36312A

	VoltageChannel

 Keysight DSOX1102G Oscilloscope

Keysight DSOX1102G Oscilloscope

	
class pymeasure.instruments.keysight.KeysightDSOX1102G(adapter, name='Keysight DSOX1102G Oscilloscope', **kwargs)

	Bases: Instrument

Represents the Keysight DSOX1102G Oscilloscope interface for interacting
with the instrument.

Refer to the Keysight DSOX1102G Oscilloscope Programmer’s Guide for further details about
using the lower-level methods to interact directly with the scope.

scope = KeysightDSOX1102G(resource)
scope.autoscale()
ch1_data_array, ch1_preamble = scope.download_data(source="channel1", points=2000)
...
scope.shutdown()

Known issues:

	The digitize command will be completed before the operation is. May lead to
VI_ERROR_TMO (timeout) occuring when sending commands immediately after digitize.
Current fix: if deemed necessary, add delay between digitize and follow-up command
to scope.

	
property acquisition_mode

	A string parameter that sets the acquisition mode. Can be “realtime” or “segmented”.

	
property acquisition_type

	A string parameter that sets the type of data acquisition. Can be “normal”, “average”,
“hresolution”, or “peak”.

	
autoscale()

	Autoscale displayed channels.

	
clear_status()

	Clear device status.

	
default_setup()

	Default setup, some user settings (like preferences) remain unchanged.

	
digitize(source: str)

	Acquire waveforms according to the settings of the :ACQuire commands. Ensure a delay
between the digitize operation and further commands, as timeout may be reached before
digitize has completed.
:param source: “channel1”, “channel2”, “function”, “math”, “fft”, “abus”, or “ext”.

	
download_data(source, points=62500)

	Get data from specified source of oscilloscope. Returned objects are a np.ndarray of
data values (no temporal axis) and a dict of the waveform preamble, which can be used to
build the corresponding time values for all data points.

Multimeter will be stopped for proper acquisition.

	Parameters

	
	source – measurement source, can be “channel1”, “channel2”, “function”, “fft”,
“wmemory1”, “wmemory2”, or “ext”.

	points – integer number of points to acquire. Note that oscilloscope may return fewer
points than specified, this is not an issue of this library. Can be 100, 250, 500, 1000,
2000, 5000, 10000, 20000, 50000, or 62500.

	Return data_ndarray, waveform_preamble_dict

	see waveform_preamble property for dict
format.

	
download_image(format_='png', color_palette='color')

	Get image of oscilloscope screen in bytearray of specified file format.

	Parameters

	
	format – “bmp”, “bmp8bit”, or “png”

	color_palette – “color” or “grayscale”

	
factory_reset()

	Factory default setup, no user settings remain unchanged.

	
run()

	Starts repetitive acquisitions.

This is the same as pressing the Run key on the front panel.

	
single()

	Causes the instrument to acquire a single trigger of data.
This is the same as pressing the Single key on the front panel.

	
stop()

	Stops the acquisition. This is the same as pressing the Stop key on the front panel.

	
property system_setup

	A string parameter that sets up the oscilloscope. Must be in IEEE 488.2 format.
It is recommended to only set a string previously obtained from this command.

	
property timebase

	Read timebase setup as a dict containing the following keys:
- “REF”: position on screen of timebase reference (str)
- “MAIN:RANG”: full-scale timebase range (float)
- “POS”: interval between trigger and reference point (float)
- “MODE”: mode (str)

	
property timebase_mode

	A string parameter that sets the current time base. Can be “main”,
“window”, “xy”, or “roll”.

	
property timebase_offset

	A float parameter that sets the time interval in seconds between the trigger
event and the reference position (at center of screen by default).

	
property timebase_range

	A float parameter that sets the full-scale horizontal time in seconds for the
main window.

	
property timebase_scale

	A float parameter that sets the horizontal scale (units per division) in seconds
for the main window.

	
timebase_setup(mode=None, offset=None, horizontal_range=None, scale=None)

	Set up timebase. Unspecified parameters are not modified. Modifying a single parameter
might impact other parameters. Refer to oscilloscope documentation and make multiple
consecutive calls to channel_setup if needed.

	Parameters

	
	mode – Timebase mode, can be “main”, “window”, “xy”, or “roll”.

	offset – Offset in seconds between trigger and center of screen.

	horizontal_range – Full-scale range in seconds.

	scale – Units-per-division in seconds.

	
property waveform_data

	Get the binary block of sampled data points transmitted using the IEEE 488.2 arbitrary
block data format.

	
property waveform_format

	A string parameter that controls how the data is formatted when sent from the
oscilloscope. Can be “ascii”, “word” or “byte”. Words are transmitted in big endian by
default.

	
property waveform_points

	An integer parameter that sets the number of waveform points to be transferred with
the waveform_data method. Can be any of the following values:
100, 250, 500, 1000, 2 000, 5 000, 10 000, 20 000, 50 000, 62 500.

Note that the oscilloscope may provide less than the specified nb of points.

	
property waveform_points_mode

	A string parameter that sets the data record to be transferred with the waveform_data
method. Can be “normal”, “maximum”, or “raw”.

	
property waveform_preamble

	Get preamble information for the selected waveform source as a dict with the following keys:
- “format”: byte, word, or ascii (str)
- “type”: normal, peak detect, or average (str)
- “points”: nb of data points transferred (int)
- “count”: always 1 (int)
- “xincrement”: time difference between data points (float)
- “xorigin”: first data point in memory (float)
- “xreference”: data point associated with xorigin (int)
- “yincrement”: voltage difference between data points (float)
- “yorigin”: voltage at center of screen (float)
- “yreference”: data point associated with yorigin (int)

	
property waveform_source

	A string parameter that selects the analog channel, function, or reference waveform
to be used as the source for the waveform methods. Can be “channel1”, “channel2”,
“function”, “fft”, “wmemory1”, “wmemory2”, or “ext”.

 Keysight N5767A Power Supply

Keysight N5767A Power Supply

	
class pymeasure.instruments.keysight.KeysightN5767A(adapter, name='Keysight N5767A power supply', **kwargs)

	Bases: Instrument

Represents the Keysight N5767A Power supply
interface for interacting with the instrument.

	
property current

	Reads a setting current in Amps.

	
property current_range

	A floating point property that controls the DC current range in
Amps, which can take values from 0 to 25 A.
Auto-range is disabled when this property is set.

	
disable()

	Disables the flow of current.

	
enable()

	Enables the flow of current.

	
is_enabled()

	Returns True if the current supply is enabled.

	
property voltage

	Reads a DC voltage measurement in Volts.

	
property voltage_range

	A floating point property that controls the DC voltage range in
Volts, which can take values from 0 to 60 V.
Auto-range is disabled when this property is set.

 Keysight N5776C Power Supply

Keysight N5776C Power Supply

	
class pymeasure.instruments.keysight.KeysightN7776C(adapter, name='N7776C Tunable Laser Source', **kwargs)

	Bases: Instrument

This represents the Keysight N7776C Tunable Laser Source interface.

laser = N7776C(address)
laser.sweep_wl_start = 1550
laser.sweep_wl_stop = 1560
laser.sweep_speed = 1
laser.sweep_mode = 'CONT'
laser.output_enabled = 1
while laser.sweep_state == 1:
 log.info('Sweep in progress.')
laser.output_enabled = 0

	
close()

	Fully closes the connection to the instrument through the adapter connection.

	
get_wl_data()

	Function returning the wavelength data logged in the internal memory of the laser

	
property locked

	Boolean property controlling the lock state (True/False) of the laser source

	
next_step()

	Performs the next sweep step in stepped sweep if it is paused or in manual mode.

	
property output_enabled

	Boolean Property that controls the state (on/off) of the laser source

	
previous_step()

	Performs one sweep step backwards in stepped sweep if its paused or in manual mode.

	
property sweep_mode

	Sweep mode of the swept laser source

	
property sweep_points

	Returns the number of datapoints that the :READout:DATA?
command will return.

	
property sweep_speed

	Speed of the sweep (in nanometers per second).

	
property sweep_state

	State of the wavelength sweep. Stops, starts, pauses
or continues a wavelength sweep. Possible state values are
0 (not running),
1 (running) and
2 (paused).
Refer to the N7776C user manual for exact usage of the
paused option.

	
property sweep_step

	Step width of the sweep (in nanometers).

	
property sweep_twoway

	Sets the repeat mode. Applies in stepped,continuous and
manual sweep mode.

	
property sweep_wl_start

	Start Wavelength (in nanometers) for a sweep.

	
property sweep_wl_stop

	End Wavelength (in nanometers) for a sweep.

	
property trigger_in

	Sets the incoming trigger response and arms the module.

	
property trigger_out

	Specifies if and at which point in a sweep cycle an output trigger
is generated and arms the module.

	
property wavelength

	Absolute wavelength of the output light (in nanometers)

	
property wl_logging

	State (on/off) of the lambda logging feature of the
laser source.

 Keysight E36312A Triple Output Power Supply

Keysight E36312A Triple Output Power Supply

	
class pymeasure.instruments.keysight.KeysightE36312A(adapter, name='Keysight E36312A', **kwargs)

	Bases: Instrument

Represents the Keysight E36312A Power supply
interface for interacting with the instrument.

supply = KeysightE36312A(resource)
supply.ch_1.voltage_setpoint=10
supply.ch_1.current_setpoint=0.1
supply.ch_1.output_enabled=True
print(supply.ch_1.voltage)

	
ch_1

	
	Channel

	VoltageChannel

	
ch_2

	
	Channel

	VoltageChannel

	
ch_3

	
	Channel

	VoltageChannel

	
class BaseChannelCreator(cls, **kwargs)

	Bases: object

Base class for ChannelCreator and MultiChannelCreator.

	Parameters

	
	cls – Class for all children or tuple/list of classes, one for each child.

	**kwargs – Keyword arguments for all children.

	
class ChannelCreator(cls, id=None, **kwargs)

	Bases: BaseChannelCreator

Add a single channel to the parent class.

The child will be added to the parent instance at instantiation with
CommonBase.add_child(). The attribute name that ChannelCreator was assigned
to in the Instrument class will be the name of the channel interface.

class Extreme5000(Instrument):
 # Two output channels, accessible by their property names
 # and both are accessible through the 'channels' collection
 output_A = Instrument.ChannelCreator(Extreme5000Channel, "A")
 output_B = Instrument.ChannelCreator(Extreme5000Channel, "B")
 # A channel without a channel accessible through the 'motor' collection
 motor = Instrument.ChannelCreator(MotorControl)

inst = SomeInstrument()
Set the extreme_temp for channel A of Extreme5000 instrument
inst.output_A.extreme_temp = 42

	Parameters

	
	cls – Channel class for channel interface

	id – The id of the channel on the instrument, integer or string.

	**kwargs – Keyword arguments for all children.

	
class MultiChannelCreator(cls, id=None, prefix='ch_', **kwargs)

	Bases: BaseChannelCreator

Add channels to the parent class.

The children will be added to the parent instance at instantiation with
CommonBase.add_child(). The attribute name (e.g. channels) will be
used as the collection of the children. You may define the attribute
prefix. If there are no other pressing reasons, use channels as the attribute name
and leave the prefix at the default "ch_".

class Extreme5000(Instrument):
 # Three channels of the same type: 'ch_A', 'ch_B', 'ch_C'
 # and add them to the 'channels' collection
 channels = Instrument.MultiChannelCreator(Extreme5000Channel, ["A", "B", "C"])
 # Two channel interfaces of different types: 'fn_power', 'fn_voltage'
 # and add them to the 'functions' collection
 functions = Instrument.MultiChannelCreator((PowerChannel, VoltageChannel),
 ["power", "voltage"], prefix="fn_")

	Parameters

	
	cls – Class for all children or tuple/list of classes, one for each child.

	id – tuple/list of ids of the channels on the instrument.

	prefix – Collection prefix for the attributes, e.g. “ch_”
creates attribute self.ch_A. If prefix evaluates False,
the child will be added directly under the variable name. Required if id is tuple/list.

	**kwargs – Keyword arguments for all children.

	
add_child(cls, id=None, collection='channels', prefix='ch_', attr_name='', **kwargs)

	Add a child to this instance and return its index in the children list.

The newly created child may be accessed either by the id in the
children dictionary or by the created attribute, e.g. the fifth channel of instrument
with id “F” has two access options:
instrument.channels["F"] == instrument.ch_F

Note

Do not change the default collection or prefix parameter, unless
you have to distinguish several collections of different children,
e.g. different channel types (analog and digital).

	Parameters

	
	cls – Class of the channel.

	id – Child id how it is used in communication, e.g. “A”.

	collection – Name of the collection of children, used for dictionary access to the
channel interfaces.

	prefix – For creating multiple channel interfaces, the prefix e.g. “ch_”
is prepended to the attribute name of the channel interface self.ch_A.
If prefix evaluates False, the child will be added directly under the collection name.

	attr_name – For creating a single channel interface, the attr_name argument is used
when setting the attribute name of the channel interface.

	**kwargs – Keyword arguments for the channel creator.

	Returns

	Instance of the created child.

	
ask(command, query_delay=0)

	Write a command to the instrument and return the read response.

	Parameters

	
	command – Command string to be sent to the instrument.

	query_delay – Delay between writing and reading in seconds.

	Returns

	String returned by the device without read_termination.

	
binary_values(command, query_delay=0, **kwargs)

	Write a command to the instrument and return a numpy array of the binary data.

	Parameters

	
	command – Command to be sent to the instrument.

	query_delay – Delay between writing and reading in seconds.

	kwargs – Arguments for read_binary_values().

	Returns

	NumPy array of values.

	
check_errors()

	Read all errors from the instrument and log them.

	Returns

	List of error entries.

	
check_get_errors()

	Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
clear()

	Clears the instrument status byte

	
property complete

	Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation
Complete query places an ASCII character 1 into the device’s Output Queue when all pending
selected device operations have been finished.

	
static control(get_command, set_command, docs, validator=<function CommonBase.<lambda>>, values=(), map_values=False, get_process=<function CommonBase.<lambda>>, set_process=<function CommonBase.<lambda>>, command_process=None, check_set_errors=False, check_get_errors=False, dynamic=False, preprocess_reply=None, separator=', ', maxsplit=-1, cast=<class 'float'>, values_kwargs=None, **kwargs)

	Return a property for the class based on the supplied
commands. This property may be set and read from the
instrument. See also measurement() and setting().

	Parameters

	
	get_command – A string command that asks for the value, set to None
if get is not supported (see also setting()).

	set_command – A string command that writes the value, set to None
if set is not supported (see also measurement()).

	docs – A docstring that will be included in the documentation

	validator – A function that takes both a value and a group of valid values
and returns a valid value, while it otherwise raises an exception

	values – A list, tuple, range, or dictionary of valid values, that can be used
as to map values if map_values is True.

	map_values – A boolean flag that determines if the values should be
interpreted as a map

	get_process – A function that take a value and allows processing
before value mapping, returning the processed value

	set_process – A function that takes a value and allows processing
before value mapping, returning the processed value

	command_process – A function that takes a command and allows processing
before executing the command

Deprecated since version 0.12: Use a dynamic property instead.

	check_set_errors – Toggles checking errors after setting

	check_get_errors – Toggles checking errors after getting

	dynamic – Specify whether the property parameters are meant to be changed in
instances or subclasses.

	preprocess_reply – Optional callable used to preprocess the string
received from the instrument, before splitting it.
The callable returns the processed string.

	separator – A separator character to split the string returned by
the device into a list.

	maxsplit – The string returned by the device is splitted at most maxsplit times.
-1 (default) indicates no limit.

	cast – A type to cast each element of the splitted string.

	values_kwargs (dict) – Further keyword arguments for values().

	**kwargs – Keyword arguments for values().

Deprecated since version 0.12: Use values_kwargs dictionary parameter instead.

Example of usage of dynamic parameter is as follows:

class GenericInstrument(Instrument):
 center_frequency = Instrument.control(
 ":SENS:FREQ:CENT?;", ":SENS:FREQ:CENT %e GHz;",
 " A floating point property that represents the frequency ... ",
 validator=strict_range,
 # Redefine this in subclasses to reflect actual instrument value:
 values=(1, 20),
 dynamic=True # enable changing property parameters on-the-fly
)

class SpecificInstrument(GenericInstrument):
 # Identical to GenericInstrument, except for frequency range
 # Override the "values" parameter of the "center_frequency" property
 center_frequency_values = (1, 10) # Redefined at subclass level

instrument = SpecificInstrument()
instrument.center_frequency_values = (1, 6e9) # Redefined at instance level

Warning

Unexpected side effects when using dynamic properties

Users must pay attention when using dynamic properties, since definition of class and/or
instance attributes matching specific patterns could have unwanted side effect.
The attribute name pattern property_param, where property is the name of the dynamic
property (e.g. center_frequency in the example) and param is any of this method
parameters name except dynamic and docs (e.g. values in the example) has to be
considered reserved for dynamic property control.

	
static get_channel_pairs(cls)

	Return a list of all the Instrument’s channel pairs

	
static get_channels(cls)

	Return a list of all the Instrument’s ChannelCreator and MultiChannelCreator instances

	
property id

	Get the identification of the instrument.

	
static measurement(get_command, docs, values=(), map_values=None, get_process=<function CommonBase.<lambda>>, command_process=None, check_get_errors=False, dynamic=False, preprocess_reply=None, separator=', ', maxsplit=-1, cast=<class 'float'>, values_kwargs=None, **kwargs)

	Return a property for the class based on the supplied
commands. This is a measurement quantity that may only be
read from the instrument, not set.

	Parameters

	
	get_command – A string command that asks for the value

	docs – A docstring that will be included in the documentation

	values – A list, tuple, range, or dictionary of valid values, that can be used
as to map values if map_values is True.

	map_values – A boolean flag that determines if the values should be
interpreted as a map

	get_process – A function that take a value and allows processing
before value mapping, returning the processed value

	command_process – A function that take a command and allows processing
before executing the command, for getting

Deprecated since version 0.12: Use a dynamic property instead.

	check_get_errors – Toggles checking errors after getting

	dynamic – Specify whether the property parameters are meant to be changed in
instances or subclasses. See control() for an usage example.

	preprocess_reply – Optional callable used to preprocess the string
received from the instrument, before splitting it.
The callable returns the processed string.

	separator – A separator character to split the string returned by
the device into a list.

	maxsplit – The string returned by the device is splitted at most maxsplit times.
-1 (default) indicates no limit.

	cast – A type to cast each element of the splitted string.

	values_kwargs (dict) – Further keyword arguments for values().

	**kwargs – Keyword arguments for values().

Deprecated since version 0.12: Use values_kwargs dictionary parameter instead.

	
property options

	Get the device options installed.

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

	
read_binary_values(**kwargs)

	Read binary values from the device.

	
read_bytes(count, **kwargs)

	Read a certain number of bytes from the instrument.

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read the whole read buffer.

	kwargs – Keyword arguments for the adapter.

	Returns bytes

	Bytes response of the instrument (including termination).

	
remove_child(child)

	Remove the child from the instrument and the corresponding collection.

	Parameters

	child – Instance of the child to delete.

	
reset()

	Resets the instrument.

	
static setting(set_command, docs, validator=<function CommonBase.<lambda>>, values=(), map_values=False, set_process=<function CommonBase.<lambda>>, check_set_errors=False, dynamic=False)

	Return a property for the class based on the supplied
commands. This property may be set, but raises an exception
when being read from the instrument.

	Parameters

	
	set_command – A string command that writes the value

	docs – A docstring that will be included in the documentation

	validator – A function that takes both a value and a group of valid values
and returns a valid value, while it otherwise raises an exception

	values – A list, tuple, range, or dictionary of valid values, that can be used
as to map values if map_values is True.

	map_values – A boolean flag that determines if the values should be
interpreted as a map

	set_process – A function that takes a value and allows processing
before value mapping, returning the processed value

	check_set_errors – Toggles checking errors after setting

	dynamic – Specify whether the property parameters are meant to be changed in
instances or subclasses. See control() for an usage example.

	
shutdown()

	Brings the instrument to a safe and stable state

	
property status

	Get the status byte and Master Summary Status bit.

	
values(command, separator=', ', cast=<class 'float'>, preprocess_reply=None, maxsplit=-1, **kwargs)

	Write a command to the instrument and return a list of formatted
values from the result.

	Parameters

	
	command – SCPI command to be sent to the instrument.

	preprocess_reply – Optional callable used to preprocess the string
received from the instrument, before splitting it.
The callable returns the processed string.

	separator – A separator character to split the string returned by
the device into a list.

	maxsplit – The string returned by the device is splitted at most maxsplit times.
-1 (default) indicates no limit.

	cast – A type to cast each element of the splitted string.

	**kwargs – Keyword arguments to be passed to the ask() method.

	Returns

	A list of the desired type, or strings where the casting fails.

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument

	kwargs – Keyword arguments for the adapter.

	
write_binary_values(command, values, *args, **kwargs)

	Write binary values to the device.

	Parameters

	
	command – Command to send.

	values – The values to transmit.

	**kwargs (*args,) – Further arguments to hand to the Adapter.

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

	
class pymeasure.instruments.keysight.keysightE36312A.VoltageChannel(parent, id)

	Bases: Channel

	
property current

	Measure the actual current of this channel.

	
property current_limit

	Control the current limit of this channel, range depends on channel.(dynamic)

	
property output_enabled

	Control whether the channel output is enabled (boolean).

	
property voltage

	Measure actual voltage of this channel.

	
property voltage_setpoint

	Control the output voltage of this channel, range depends on channel.(dynamic)

 Lake Shore Cryogenics

Lake Shore Cryogenics

This section contains specific documentation on the Lake Shore Cryogenics instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Lake Shore 211 Temperature Monitor
	LakeShore211

	Lake Shore 224 Temperature Monitor
	LakeShore224

	Lake Shore 331 Temperature Controller
	LakeShore331

	Lake Shore 421 Gaussmeter
	LakeShore421

	Lake Shore 425 Gaussmeter
	LakeShore425

LakeShore Channel Classes

Several Lakeshore instruments are channel based and make use of the Channel Interface. For temperature monitoring and controller instruments the
following common Channel Classes are utilized:

	
class pymeasure.instruments.lakeshore.lakeshore_base.LakeShoreTemperatureChannel(parent, id)

	Bases: Channel

Temperature input channel on a lakeshore temperature monitor. Reads the temperature in
kelvin, celcius, or sensor units. Also provides a method to block the program until a given
stable temperature is reached.

	
property celcius

	Read the temperature in celcius from a channel.

	
property kelvin

	Read the temperature in kelvin from a channel.

	
property sensor

	Read the temperature in sensor units from a channel.

	
wait_for_temperature(target, unit='kelvin', accuracy=0.1, interval=1, timeout=360, should_stop=<function LakeShoreTemperatureChannel.<lambda>>)

	Blocks the program, waiting for the temperature to reach the target
within the accuracy (%), checking this each interval time in seconds.

	Parameters

	
	target – Target temperature in kelvin, celcius, or sensor units.

	unit – ‘kelvin’, ‘celcius’, or ‘sensor’ specifying the unit
for queried temperature values.

	accuracy – An acceptable percentage deviation between the
target and temperature.

	interval – Interval time in seconds between queries.

	timeout – A timeout in seconds after which an exception is raised

	should_stop – A function that returns True if waiting should stop, by
default this always returns False

	
class pymeasure.instruments.lakeshore.lakeshore_base.LakeShoreHeaterChannel(parent, id)

	Bases: Channel

Heater output channel on a lakeshore temperature controller. Provides properties to query
the output power in percent of the max, set the manual output power, heater range, and PID
temperature setpoint.

	
property mout

	Manual heater output in percent.

	
property output

	Query the heater output in percent of the max.

	
property range

	String property controlling heater range, which can take the
values: off, low, medium, and high.

	
property setpoint

	A floating point property that control the setpoint temperature
in the preferred units of the control loop sensor.

 Lake Shore 211 Temperature Monitor

Lake Shore 211 Temperature Monitor

	
class pymeasure.instruments.lakeshore.LakeShore211(adapter, name='Lake Shore 211 Temperature Monitor', **kwargs)

	Bases: Instrument

Represents the Lake Shore 211 Temperature Monitor and provides
a high-level interface for interacting with the instrument.

Untested properties and methods will be noted in their docstrings.

controller = LakeShore211("GPIB::1")

print(controller.temperature_celsius) # Print the sensor temperature in celsius

	
class AnalogMode(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntEnum

	
class AnalogRange(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntEnum

	
class RelayMode(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntEnum

	
class RelayNumber(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntEnum

	
property analog_configuration

	Control the analog mode and analog range.
Values need to be supplied as a tuple of (analog mode, analog range)
Analog mode can be 0 or 1

	setting

	mode

	0

	voltage

	1

	current

Analog range can be 0 through 5

	setting

	range

	0

	0 – 20 K

	1

	0 – 100 K

	2

	0 – 200 K

	3

	0 – 325 K

	4

	0 – 475 K

	5

	0 – 1000 K

	
property analog_out

	Measure the percentage of output of the analog output.

	
configure_alarm(on=True, high_value=270.0, low_value=0.0, deadband=0, latch=False)

	Configures the alarm parameters for the input.

	Parameters

	
	on – Boolean setting of alarm, default True

	high_value – High value the temperature is checked against to activate the alarm

	low_value – Low value the temperature is checked against to activate the alarm

	deadband – Value that the temperature must change outside of an alarm condition

	latch – Specifies if the alarm should latch or not

	
configure_relay(relay, mode)

	Configure the relay mode of a relay

Property is UNTESTED

	Parameters

	
	relay (RelayNumber) – Specify which relay to configure

	mode (RelayMode) – Specify which mode to assign

	
property display_units

	Control the input data to display. Valid entries:

	setting

	units

	‘kelvin’

	Kelvin

	‘celsius’

	Celsius

	‘sensor’

	Sensor Units

	‘fahrenheit’

	Fahrenheit

	
get_alarm_status()

	Query the current alarm status

	Returns

	Dictionary of current status [on, high_value, low_value, deadband, latch]

	
get_relay_mode(relay)

	Get the status of a relay

Property is UNTESTED

	Parameters

	relay (RelayNumber) – Specify which relay to query

	Returns

	Current RelayMode of queried relay

	
reset_alarm()

	Resets the alarm of the Lakeshore 211

	
property temperature_celsius

	Measure the temperature of the sensor in celsius

	
property temperature_fahrenheit

	Measure the temperature of the sensor in fahrenheit

	
property temperature_kelvin

	Measure the temperature of the sensor in kelvin

	
property temperature_sensor

	Measure the temperature of the sensor in sensor units

 Lake Shore 224 Temperature Monitor

Lake Shore 224 Temperature Monitor

	
class pymeasure.instruments.lakeshore.LakeShore224(adapter, name='Lakeshore Model 224 Temperature Controller', **kwargs)

	Bases: Instrument

Represents the Lakeshore 224 Temperature monitor and provides a high-level interface
for interacting with the instrument. Note that the 224 provides 12 temperature input channels
(A, B, C1-5, D1-5). This driver makes use of the LakeShore Channel Classes

monitor = LakeShore224('GPIB::1')

print(monitor.input_A.kelvin) # Print the temperature in kelvin on sensor A
monitor.input_A.wait_for_temperature() # Wait for the temperature on sensor A to stabilize.

	
input_0

	
	Channel

	LakeShoreTemperatureChannel

	
input_A

	
	Channel

	LakeShoreTemperatureChannel

	
input_B

	
	Channel

	LakeShoreTemperatureChannel

	
input_C1

	
	Channel

	LakeShoreTemperatureChannel

	
input_C2

	
	Channel

	LakeShoreTemperatureChannel

	
input_C3

	
	Channel

	LakeShoreTemperatureChannel

	
input_C4

	
	Channel

	LakeShoreTemperatureChannel

	
input_C5

	
	Channel

	LakeShoreTemperatureChannel

	
input_D1

	
	Channel

	LakeShoreTemperatureChannel

	
input_D2

	
	Channel

	LakeShoreTemperatureChannel

	
input_D3

	
	Channel

	LakeShoreTemperatureChannel

	
input_D4

	
	Channel

	LakeShoreTemperatureChannel

	
input_D5

	
	Channel

	LakeShoreTemperatureChannel

 Lake Shore 331 Temperature Controller

Lake Shore 331 Temperature Controller

	
class pymeasure.instruments.lakeshore.LakeShore331(adapter, name='Lakeshore Model 336 Temperature Controller', **kwargs)

	Bases: Instrument

Represents the Lake Shore 331 Temperature Controller and provides
a high-level interface for interacting with the instrument. Note that the
331 provides two input channels (A and B) and two output channels (1 and 2).
This driver makes use of the LakeShore Channel Classes.

controller = LakeShore331("GPIB::1")

print(controller.output_1.setpoint) # Print the current setpoint for loop 1
controller.output_1.setpoint = 50 # Change the loop 1 setpoint to 50 K
controller.output_1.heater_range = 'low' # Change the heater range to low.
controller.input_A.wait_for_temperature() # Wait for the temperature to stabilize.
print(controller.input_A.temperature) # Print the temperature at sensor A.

	
input_A

	
	Channel

	LakeShoreTemperatureChannel

	
input_B

	
	Channel

	LakeShoreTemperatureChannel

	
output_1

	
	Channel

	LakeShoreHeaterChannel

	
output_2

	
	Channel

	LakeShoreHeaterChannel

 Lake Shore 421 Gaussmeter

Lake Shore 421 Gaussmeter

	
class pymeasure.instruments.lakeshore.LakeShore421(adapter, name='Lake Shore 421 Gaussmeter', baud_rate=9600, **kwargs)

	Bases: Instrument

Represents the Lake Shore 421 Gaussmeter and provides a high-level interface for interacting
with the instrument.

gaussmeter = LakeShore421("COM1")
gaussmeter.unit = "T" # Set units to Tesla
gaussmeter.auto_range = True # Turn on auto-range
gaussmeter.fast_mode = True # Turn on fast-mode

A delay of 50 ms is ensured between subsequent writes, as the instrument cannot correctly
handle writes any faster.

	
property alarm_active

	A boolean property that returns whether the alarm is triggered.

	
property alarm_audible

	A boolean property that enables or disables the audible alarm
beeper.

	
property alarm_high

	Property that controls the upper setpoint for the alarm mode in the
current units. This takes into account the field multiplier.

	
property alarm_high_multiplier

	Returns the multiplier for the upper alarm setpoint field.

	
property alarm_high_raw

	ALMH %g

	
property alarm_in_out

	A string property that controls whether an active alarm is caused
when the field reading is inside (“Inside”) or outside (“Outside”) of
the high and low setpoint values.

	
property alarm_low

	Property that controls the lower setpoint for the alarm mode in the
current units. This takes into account the field multiplier.

	
property alarm_low_multiplier

	Returns the multiplier for the lower alarm setpoint field.

	
property alarm_low_raw

	ALML %g

	
property alarm_mode_enabled

	A boolean property that enables or disables the alarm mode.

	
property alarm_sort_enabled

	A boolean property that enables or disables the alarm Sort Pass/Fail
function.

	
property auto_range

	A boolean property that controls the auto-range option of the
meter. Valid values are True and False. Note that the auto-range is
relatively slow and might not suffice for rapid measurements.

	
property display_filter_enabled

	A boolean property that controls the display filter to make it
more readable when the probe is exposed to a noisy field. The filter
function makes a linear average of 8 readings and settles in
approximately 2 seconds.

	
property fast_mode

	A boolean property that controls the fast-mode option of the
meter. Valid values are True and False. When enabled, the relative
mode, Max Hold mode, alarms, and autorange are disabled.

	
property field

	Returns the field in the current units. This property takes into
account the field multiplier. Returns np.nan if field is out of range.

	
property field_mode

	A string property that controls whether the gaussmeter measures
AC or DC magnetic fields. Valid values are “AC” and “DC”.

	
property field_multiplier

	Returns the field multiplier for the returned magnetic field.

	
property field_range

	A floating point property that controls the field range of the
meter in the current unit (G or T). Valid values are 30e3, 3e3, 300,
30 (when in Gauss), or 0.003, 0.03, 0.3, and 3 (when in Tesla).

	
property field_range_raw

	A integer property that controls the field range of the
meter. Valid values are 0 (highest) to 3 (lowest).

	
property field_raw

	Returns the field in the current units and multiplier

	
property front_panel_brightness

	An integer property that controls the brightness of the from panel
display. Valid values are 0 (dimmest) to 7 (brightest).

	
property front_panel_locked

	A boolean property that locks or unlocks all front panel entries
except pressing the Alarm key to silence alarms.

	
property max_hold_enabled

	A boolean property that enables or disables the Max Hold function to
store the largest field since the last reset (with max_hold_reset).

	
property max_hold_field

	Returns the largest field since the last reset in the current units.
This property takes into account the field multiplier. Returns np.nan if
field is out of range.

	
property max_hold_field_raw

	Returns the largest field since the last reset in the current units
and multiplier.

	
property max_hold_multiplier

	Returns the multiplier for the returned max hold field.

	
max_hold_reset()

	Clears the stored Max Hold value.

	
property probe_type

	Returns type of field-probe used with the gaussmeter. Possible
values are High Sensitivity, High Stability, or Ultra-High Sensitivity.

	
property relative_field

	Returns the relative field in the current units. This property
takes into account the field multiplier. Returns np.nan if field is
out of range.

	
property relative_field_raw

	Returns the relative field in the current units and the current
multiplier.

	
property relative_mode_enabled

	A boolean property that enables or disables the relative mode to
see small variations with respect to a given setpoint.

	
property relative_multiplier

	Returns the relative field multiplier for the returned magnetic
field.

	
property relative_setpoint

	Property that controls the setpoint for the relative field mode in
the current units. This takes into account the field multiplier.

	
property relative_setpoint_multiplier

	Returns the multiplier for the setpoint field.

	
property relative_setpoint_raw

	Property that controls the setpoint for the relative field mode in
the current units and multiplier.

	
property serial_number

	Returns the serial number of the probe.

	
shutdown()

	Closes the serial connection to the system.

	
property unit

	A string property that controls the units used by the gaussmeter.
Valid values are G (Gauss), T (Tesla).

	
write(command)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument

	kwargs – Keyword arguments for the adapter.

	
zero_probe(wait=True)

	Reset the probe value to 0. It is normally used with a zero gauss
chamber, but may also be used with an open probe to cancel the Earth
magnetic field. To cancel larger magnetic fields, the relative mode
should be used.

	Parameters

	wait (bool) – Wait for 20 seconds after issuing the command to allow the
resetting to finish.

 Lake Shore 425 Gaussmeter

Lake Shore 425 Gaussmeter

	
class pymeasure.instruments.lakeshore.LakeShore425(adapter, name='LakeShore 425 Gaussmeter', **kwargs)

	Bases: Instrument

Represents the LakeShore 425 Gaussmeter and provides
a high-level interface for interacting with the instrument

To allow user access to the LakeShore 425 Gaussmeter in Linux,
create the file:
/etc/udev/rules.d/52-lakeshore425.rules, with contents:

SUBSYSTEMS=="usb",ATTRS{idVendor}=="1fb9",ATTRS{idProduct}=="0401",MODE="0666",SYMLINK+="lakeshore425"

Then reload the udev rules with:

sudo udevadm control --reload-rules
sudo udevadm trigger

The device will be accessible through /dev/lakeshore425.

	
ac_mode(wideband=True)

	Sets up a measurement of an oscillating (AC) field

	
auto_range()

	Sets the field range to automatically adjust

	
dc_mode(wideband=True)

	Sets up a steady-state (DC) measurement of the field

	
property field

	Returns the field in the current units

	
measure(points, has_aborted=<function LakeShore425.<lambda>>, delay=0.001)

	Returns the mean and standard deviation of a given number
of points while blocking

	
property range

	A floating point property that controls the field range in
units of Gauss, which can take the values 35, 350, 3500, and
35,000 G.

	
property unit

	A string property that controls the units of the instrument,
which can take the values of G, T, Oe, or A/m.

	
zero_probe()

	Initiates the zero field sequence to calibrate the probe

 LeCroy

LeCroy

This section contains specific documentation on the LeCroy instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

If the instrument you are looking for is not here, also check Teledyne for newer instruments.

	LeCroy T3DSO1204 Oscilloscope
	LeCroyT3DSO1204

	LeCroyT3DSO1204Channel

 LeCroy T3DSO1204 Oscilloscope

LeCroy T3DSO1204 Oscilloscope

	
class pymeasure.instruments.lecroy.LeCroyT3DSO1204(adapter, name='LeCroy T3DSO1204 Oscilloscope', **kwargs)

	Bases: TeledyneOscilloscope

Represents the LeCroy T3DSO1204 Oscilloscope interface for interacting with the instrument.

Refer to the LeCroy T3DSO1204 Oscilloscope Programmer’s Guide for further details about
using the lower-level methods to interact directly with the scope.

This implementation is based on the shared base class TeledyneOscilloscope.

Attributes:

WRITE_INTERVAL_S: minimum time between two commands. If a command is received less than
WRITE_INTERVAL_S after the previous one, the code blocks until at least WRITE_INTERVAL_S
seconds have passed.
Because the oscilloscope takes a non-negligible time to perform some operations, it might
be needed for the user to tweak the sleep time between commands.
The WRITE_INTERVAL_S is set to 10ms as default however its optimal value heavily depends
on the actual commands and on the connection type, so it is impossible to give a unique
value to fit all cases. An interval between 10ms and 500ms second proved to be good,
depending on the commands and connection latency.

scope = LeCroyT3DSO1204(resource)
scope.autoscale()
ch1_data_array, ch1_preamble = scope.download_waveform(source="C1", points=2000)
...
scope.shutdown()

	
ch_1

	
	Channel

	LeCroyT3DSO1204Channel

	
ch_2

	
	Channel

	LeCroyT3DSO1204Channel

	
ch_3

	
	Channel

	LeCroyT3DSO1204Channel

	
ch_4

	
	Channel

	LeCroyT3DSO1204Channel

	
class BaseChannelCreator(cls, **kwargs)

	Bases: object

Base class for ChannelCreator and MultiChannelCreator.

	Parameters

	
	cls – Class for all children or tuple/list of classes, one for each child.

	**kwargs – Keyword arguments for all children.

	
class ChannelCreator(cls, id=None, **kwargs)

	Bases: BaseChannelCreator

Add a single channel to the parent class.

The child will be added to the parent instance at instantiation with
CommonBase.add_child(). The attribute name that ChannelCreator was assigned
to in the Instrument class will be the name of the channel interface.

class Extreme5000(Instrument):
 # Two output channels, accessible by their property names
 # and both are accessible through the 'channels' collection
 output_A = Instrument.ChannelCreator(Extreme5000Channel, "A")
 output_B = Instrument.ChannelCreator(Extreme5000Channel, "B")
 # A channel without a channel accessible through the 'motor' collection
 motor = Instrument.ChannelCreator(MotorControl)

inst = SomeInstrument()
Set the extreme_temp for channel A of Extreme5000 instrument
inst.output_A.extreme_temp = 42

	Parameters

	
	cls – Channel class for channel interface

	id – The id of the channel on the instrument, integer or string.

	**kwargs – Keyword arguments for all children.

	
class MultiChannelCreator(cls, id=None, prefix='ch_', **kwargs)

	Bases: BaseChannelCreator

Add channels to the parent class.

The children will be added to the parent instance at instantiation with
CommonBase.add_child(). The attribute name (e.g. channels) will be
used as the collection of the children. You may define the attribute
prefix. If there are no other pressing reasons, use channels as the attribute name
and leave the prefix at the default "ch_".

class Extreme5000(Instrument):
 # Three channels of the same type: 'ch_A', 'ch_B', 'ch_C'
 # and add them to the 'channels' collection
 channels = Instrument.MultiChannelCreator(Extreme5000Channel, ["A", "B", "C"])
 # Two channel interfaces of different types: 'fn_power', 'fn_voltage'
 # and add them to the 'functions' collection
 functions = Instrument.MultiChannelCreator((PowerChannel, VoltageChannel),
 ["power", "voltage"], prefix="fn_")

	Parameters

	
	cls – Class for all children or tuple/list of classes, one for each child.

	id – tuple/list of ids of the channels on the instrument.

	prefix – Collection prefix for the attributes, e.g. “ch_”
creates attribute self.ch_A. If prefix evaluates False,
the child will be added directly under the variable name. Required if id is tuple/list.

	**kwargs – Keyword arguments for all children.

	
property acquisition_average

	Control the averaging times of average acquisition.

	
acquisition_sample_size(source)

	Get acquisition sample size for a certain channel. Used mainly for waveform acquisition.
If the source is MATH, the SANU? MATH query does not seem to work, so I return the memory
size instead.

	Parameters

	source – channel number of channel name.

	Returns

	acquisition sample size of that channel.

	
property acquisition_sample_size_c1

	Get the number of data points that the hardware
will acquire from the input signal of channel 1.
Note.
Channel 2 and channel 1 share the same ADC, so the sample is the same too.

	
property acquisition_sample_size_c2

	Get the number of data points that the hardware
will acquire from the input signal of channel 2.
Note.
Channel 2 and channel 1 share the same ADC, so the sample is the same too.

	
property acquisition_sample_size_c3

	Get the number of data points that the hardware
will acquire from the input signal of channel 3.
Note.
Channel 3 and channel 4 share the same ADC, so the sample is the same too.

	
property acquisition_sample_size_c4

	Get the number of data points that the hardware
will acquire from the input signal of channel 4.
Note.
Channel 3 and channel 4 share the same ADC, so the sample is the same too.

	
property acquisition_sampling_rate

	Get the sample rate of the scope.

	
property acquisition_status

	Get the acquisition status of the scope.

	
property acquisition_type

	Control the type of data acquisition.

Can be ‘normal’, ‘peak’, ‘average’, ‘highres’.

	
add_child(cls, id=None, collection='channels', prefix='ch_', attr_name='', **kwargs)

	Add a child to this instance and return its index in the children list.

The newly created child may be accessed either by the id in the
children dictionary or by the created attribute, e.g. the fifth channel of instrument
with id “F” has two access options:
instrument.channels["F"] == instrument.ch_F

Note

Do not change the default collection or prefix parameter, unless
you have to distinguish several collections of different children,
e.g. different channel types (analog and digital).

	Parameters

	
	cls – Class of the channel.

	id – Child id how it is used in communication, e.g. “A”.

	collection – Name of the collection of children, used for dictionary access to the
channel interfaces.

	prefix – For creating multiple channel interfaces, the prefix e.g. “ch_”
is prepended to the attribute name of the channel interface self.ch_A.
If prefix evaluates False, the child will be added directly under the collection name.

	attr_name – For creating a single channel interface, the attr_name argument is used
when setting the attribute name of the channel interface.

	**kwargs – Keyword arguments for the channel creator.

	Returns

	Instance of the created child.

	
ask(command, query_delay=0)

	Write a command to the instrument and return the read response.

	Parameters

	
	command – Command string to be sent to the instrument.

	query_delay – Delay between writing and reading in seconds.

	Returns

	String returned by the device without read_termination.

	
autoscale()

	Autoscale displayed channels.

	
binary_values(command, query_delay=0, **kwargs)

	Write a command to the instrument and return a numpy array of the binary data.

	Parameters

	
	command – Command to be sent to the instrument.

	query_delay – Delay between writing and reading in seconds.

	kwargs – Arguments for read_binary_values().

	Returns

	NumPy array of values.

	
property bwlimit

	Set the internal low-pass filter for all channels.(dynamic)

	
center_trigger()

	Set the trigger levels to center of the trigger source waveform.

	
ch(source)

	Get channel object from its index or its name. Or if source is “math”, just return the
scope object.

	Parameters

	source – can be 1, 2, 3, 4 or C1, C2, C3, C4, MATH

	Returns

	handle to the selected source.

	
check_errors()

	Read all errors from the instrument and log them.

	Returns

	List of error entries.

	
check_get_errors()

	Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
clear()

	Clears the instrument status byte

	
property complete

	Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation
Complete query places an ASCII character 1 into the device’s Output Queue when all pending
selected device operations have been finished.

	
static control(get_command, set_command, docs, validator=<function CommonBase.<lambda>>, values=(), map_values=False, get_process=<function CommonBase.<lambda>>, set_process=<function CommonBase.<lambda>>, command_process=None, check_set_errors=False, check_get_errors=False, dynamic=False, preprocess_reply=None, separator=', ', maxsplit=-1, cast=<class 'float'>, values_kwargs=None, **kwargs)

	Return a property for the class based on the supplied
commands. This property may be set and read from the
instrument. See also measurement() and setting().

	Parameters

	
	get_command – A string command that asks for the value, set to None
if get is not supported (see also setting()).

	set_command – A string command that writes the value, set to None
if set is not supported (see also measurement()).

	docs – A docstring that will be included in the documentation

	validator – A function that takes both a value and a group of valid values
and returns a valid value, while it otherwise raises an exception

	values – A list, tuple, range, or dictionary of valid values, that can be used
as to map values if map_values is True.

	map_values – A boolean flag that determines if the values should be
interpreted as a map

	get_process – A function that take a value and allows processing
before value mapping, returning the processed value

	set_process – A function that takes a value and allows processing
before value mapping, returning the processed value

	command_process – A function that takes a command and allows processing
before executing the command

Deprecated since version 0.12: Use a dynamic property instead.

	check_set_errors – Toggles checking errors after setting

	check_get_errors – Toggles checking errors after getting

	dynamic – Specify whether the property parameters are meant to be changed in
instances or subclasses.

	preprocess_reply – Optional callable used to preprocess the string
received from the instrument, before splitting it.
The callable returns the processed string.

	separator – A separator character to split the string returned by
the device into a list.

	maxsplit – The string returned by the device is splitted at most maxsplit times.
-1 (default) indicates no limit.

	cast – A type to cast each element of the splitted string.

	values_kwargs (dict) – Further keyword arguments for values().

	**kwargs – Keyword arguments for values().

Deprecated since version 0.12: Use values_kwargs dictionary parameter instead.

Example of usage of dynamic parameter is as follows:

class GenericInstrument(Instrument):
 center_frequency = Instrument.control(
 ":SENS:FREQ:CENT?;", ":SENS:FREQ:CENT %e GHz;",
 " A floating point property that represents the frequency ... ",
 validator=strict_range,
 # Redefine this in subclasses to reflect actual instrument value:
 values=(1, 20),
 dynamic=True # enable changing property parameters on-the-fly
)

class SpecificInstrument(GenericInstrument):
 # Identical to GenericInstrument, except for frequency range
 # Override the "values" parameter of the "center_frequency" property
 center_frequency_values = (1, 10) # Redefined at subclass level

instrument = SpecificInstrument()
instrument.center_frequency_values = (1, 6e9) # Redefined at instance level

Warning

Unexpected side effects when using dynamic properties

Users must pay attention when using dynamic properties, since definition of class and/or
instance attributes matching specific patterns could have unwanted side effect.
The attribute name pattern property_param, where property is the name of the dynamic
property (e.g. center_frequency in the example) and param is any of this method
parameters name except dynamic and docs (e.g. values in the example) has to be
considered reserved for dynamic property control.

	
default_setup()

	Set up the oscilloscope for remote operation.

The COMM_HEADER command controls the
way the oscilloscope formats response to queries. This command does not affect the
interpretation of messages sent to the oscilloscope. Headers can be sent in their long or
short form regardless of the CHDR setting.
By setting the COMM_HEADER to OFF, the instrument is going to reply with minimal
information, and this makes the response message much easier to parse.
The user should not be fiddling with the COMM_HEADER during operation, because
if the communication header is anything other than OFF, the whole driver breaks down.

	
display_parameter(parameter, channel)

	Same as the display_parameter method in the Channel subclass.

	
download_image()

	Get a BMP image of oscilloscope screen in bytearray of specified file format.

	
download_waveform(source, requested_points=None, sparsing=None)

	Get data points from the specified source of the oscilloscope.

The returned objects are two np.ndarray of data and time points and a dict with the
waveform preamble, that contains metadata about the waveform.

	Parameters

	
	source – measurement source. It can be “C1”, “C2”, “C3”, “C4”, “MATH”.

	requested_points – number of points to acquire. If None the number of points
requested in the previous call will be assumed, i.e. the value of the number of
points stored in the oscilloscope memory. If 0 the maximum number of points will
be returned.

	sparsing – interval between data points. For example if sparsing = 4, only one
point every 4 points is read. If 0 or None the sparsing of the previous call is
assumed, i.e. the value of the sparsing stored in the oscilloscope memory.

	Returns

	data_ndarray, time_ndarray, waveform_preamble_dict: see waveform_preamble
property for dict format.

	
static get_channel_pairs(cls)

	Return a list of all the Instrument’s channel pairs

	
static get_channels(cls)

	Return a list of all the Instrument’s ChannelCreator and MultiChannelCreator instances

	
property grid_display

	Control the type of the grid which is used to display (FULL, HALF, OFF).

	
property id

	Get the identification of the instrument.

	
property intensity

	Set the intensity level of the grid or the trace in percent

	
property math_define

	Control the desired waveform math operation between two channels.

Three parameters must be passed as a tuple:

	source1 : source channel on the left

	operation : operator must be “*”, “/”, “+”, “-”

	source2 : source channel on the right

	
property math_vdiv

	Control the vertical scale of the selected math operation.

This command is only valid in add, subtract, multiply and divide operation.
Note: legal values for the scale depend on the selected operation.

	
property math_vpos

	Control the vertical position of the math waveform with specified source.

Note: the point represents the screen pixels and is related to the screen center. For
example, if the point is 50. The math waveform will be displayed 1 grid above the vertical
center of the screen. Namely one grid is 50.

	
property measure_delay

	Control measurement delay.

The MEASURE_DELY command places the instrument in the continuous measurement mode and
starts a type of delay measurement.
The MEASURE_DELY? query returns the measured value of delay type.
The command accepts three arguments with the following syntax:

measure_delay = (<type>,<sourceA>,<sourceB>)

<type> := {PHA,FRR,FRF,FFR,FFF,LRR,LRF,LFR,LFF,SKEW}

<sourceA>,<sourceB> := {C1,C2,C3,C4} where if sourceA=CX and sourceB=CY, then X < Y

	Type

	Description

	PHA

	The phase difference between two channels. (rising edge - rising edge)

	FRR

	Delay between two channels. (first rising edge - first rising edge)

	FRF

	Delay between two channels. (first rising edge - first falling edge)

	FFR

	Delay between two channels. (first falling edge - first rising edge)

	FFF

	Delay between two channels. (first falling edge - first falling edge)

	LRR

	Delay between two channels. (first rising edge - last rising edge)

	LRF

	Delay between two channels. (first rising edge - last falling edge)

	LFR

	Delay between two channels. (first falling edge - last rising edge)

	LFF

	Delay between two channels. (first falling edge - last falling edge)

	Skew

	Delay between two channels. (edge – edge of the same type)

	
measure_parameter(parameter, channel)

	Same as the measure_parameter method in the Channel subclass

	
static measurement(get_command, docs, values=(), map_values=None, get_process=<function CommonBase.<lambda>>, command_process=None, check_get_errors=False, dynamic=False, preprocess_reply=None, separator=', ', maxsplit=-1, cast=<class 'float'>, values_kwargs=None, **kwargs)

	Return a property for the class based on the supplied
commands. This is a measurement quantity that may only be
read from the instrument, not set.

	Parameters

	
	get_command – A string command that asks for the value

	docs – A docstring that will be included in the documentation

	values – A list, tuple, range, or dictionary of valid values, that can be used
as to map values if map_values is True.

	map_values – A boolean flag that determines if the values should be
interpreted as a map

	get_process – A function that take a value and allows processing
before value mapping, returning the processed value

	command_process – A function that take a command and allows processing
before executing the command, for getting

Deprecated since version 0.12: Use a dynamic property instead.

	check_get_errors – Toggles checking errors after getting

	dynamic – Specify whether the property parameters are meant to be changed in
instances or subclasses. See control() for an usage example.

	preprocess_reply – Optional callable used to preprocess the string
received from the instrument, before splitting it.
The callable returns the processed string.

	separator – A separator character to split the string returned by
the device into a list.

	maxsplit – The string returned by the device is splitted at most maxsplit times.
-1 (default) indicates no limit.

	cast – A type to cast each element of the splitted string.

	values_kwargs (dict) – Further keyword arguments for values().

	**kwargs – Keyword arguments for values().

Deprecated since version 0.12: Use values_kwargs dictionary parameter instead.

	
property memory_size

	Control the maximum depth of memory.

<size>:={7K,70K,700K,7M} for non-interleaved mode. Non-interleaved means a single channel is
active per A/D converter. Most oscilloscopes feature two channels per A/D converter.

<size>:={14K,140K,1.4M,14M} for interleave mode. Interleave mode means multiple active
channels per A/D converter.

	
property menu

	Control the bottom menu enabled state (strict bool).

	
property options

	Get the device options installed.

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

	
read_binary_values(**kwargs)

	Read binary values from the device.

	
read_bytes(count, **kwargs)

	Read a certain number of bytes from the instrument.

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read the whole read buffer.

	kwargs – Keyword arguments for the adapter.

	Returns bytes

	Bytes response of the instrument (including termination).

	
remove_child(child)

	Remove the child from the instrument and the corresponding collection.

	Parameters

	child – Instance of the child to delete.

	
reset()

	Resets the instrument.

	
run()

	Starts repetitive acquisitions.

This is the same as pressing the Run key on the front panel.

	
static setting(set_command, docs, validator=<function CommonBase.<lambda>>, values=(), map_values=False, set_process=<function CommonBase.<lambda>>, check_set_errors=False, dynamic=False)

	Return a property for the class based on the supplied
commands. This property may be set, but raises an exception
when being read from the instrument.

	Parameters

	
	set_command – A string command that writes the value

	docs – A docstring that will be included in the documentation

	validator – A function that takes both a value and a group of valid values
and returns a valid value, while it otherwise raises an exception

	values – A list, tuple, range, or dictionary of valid values, that can be used
as to map values if map_values is True.

	map_values – A boolean flag that determines if the values should be
interpreted as a map

	set_process – A function that takes a value and allows processing
before value mapping, returning the processed value

	check_set_errors – Toggles checking errors after setting

	dynamic – Specify whether the property parameters are meant to be changed in
instances or subclasses. See control() for an usage example.

	
shutdown()

	Brings the instrument to a safe and stable state

	
single()

	Causes the instrument to acquire a single trigger of data.

This is the same as pressing the Single key on the front panel.

	
property status

	Get the status byte and Master Summary Status bit.

	
stop()

	Stops the acquisition. This is the same as pressing the Stop key on the front panel.

	
property timebase

	Get timebase setup as a dict containing the following keys:

	“timebase_scale”: horizontal scale in seconds/div (float)

	“timebase_offset”: interval in seconds between the trigger and the reference
position (float)

	“timebase_hor_magnify”: horizontal scale in the zoomed window in seconds/div (float)

	“timebase_hor_position”: horizontal position in the zoomed window in seconds
(float)

	
property timebase_hor_magnify

	Control the zoomed (delayed) window horizontal scale (seconds/div).

The main sweep scale determines the range for this command.

	
property timebase_hor_position

	Control the horizontal position in the zoomed (delayed) view of the main sweep.

The main sweep range and the main sweep horizontal position determine
the range for this command. The value for this command must keep the zoomed view window
within the main sweep range.

	
property timebase_offset

	Control the time interval in seconds between the trigger event and the reference
position (at center of screen by default).

	
property timebase_scale

	Control the horizontal scale (units per division) in seconds for the main
window (float).

	
timebase_setup(scale=None, offset=None, hor_magnify=None, hor_position=None)

	Set up timebase. Unspecified parameters are not modified. Modifying a single parameter
might impact other parameters. Refer to oscilloscope documentation and make multiple
consecutive calls to timebase_setup if needed.

	Parameters

	
	scale – interval in seconds between the trigger event and the reference position.

	offset – horizontal scale per division in seconds/div.

	hor_magnify – horizontal scale in the zoomed window in seconds/div.

	hor_position – horizontal position in the zoomed window in seconds.

	
property trigger

	Get trigger setup as a dict containing the following keys:

	“mode”: trigger sweep mode [auto, normal, single, stop]

	“trigger_type”: condition that will trigger the acquisition of waveforms [edge,
slew,glit,intv,runt,drop]

	“source”: trigger source [c1,c2,c3,c4]

	“hold_type”: hold type (refer to page 172 of programing guide)

	“hold_value1”: hold value1 (refer to page 172 of programing guide)

	“hold_value2”: hold value2 (refer to page 172 of programing guide)

	“coupling”: input coupling for the selected trigger sources

	“level”: trigger level voltage for the active trigger source

	“level2”: trigger lower level voltage for the active trigger source (only slew/runt
trigger)

	“slope”: trigger slope of the specified trigger source

	
property trigger_mode

	Control the trigger sweep mode (string).

<mode>:= {AUTO,NORM,SINGLE,STOP}

	auto : When AUTO sweep mode is selected, the oscilloscope begins to search for the
trigger signal that meets the conditions.
If the trigger signal is satisfied, the running state on the top left corner of
the user interface shows Trig’d, and the interface shows stable waveform.
Otherwise, the running state always shows Auto, and the interface shows unstable
waveform.

	normal : When NORMAL sweep mode is selected, the oscilloscope enters the wait trigger
state and begins to search for trigger signals that meet the conditions.
If the trigger signal is satisfied, the running state shows Trig’d, and the interface
shows stable waveform.
Otherwise, the running state shows Ready, and the interface displays the last
triggered waveform (previous trigger) or does not display the waveform (no
previous trigger).

	single : When SINGLE sweep mode is selected, the backlight of SINGLE key lights up,
the oscilloscope enters the waiting trigger state and begins to search for the
trigger signal that meets the conditions.
If the trigger signal is satisfied, the running state shows Trig’d, and the interface
shows stable waveform.
Then, the oscilloscope stops scanning, the RUN/STOP key is red light,
and the running status shows Stop.
Otherwise, the running state shows Ready, and the interface does not display the waveform.

	stopped : STOP is a part of the option of this command, but not a trigger mode of the
oscilloscope.

	
property trigger_select

	Control the condition that will trigger the acquisition of waveforms (string).

Depending on the trigger type, additional parameters must be specified. These additional
parameters are grouped in pairs. The first in the pair names the variable to be modified,
while the second gives the new value to be assigned. Pairs may be given in any order and
restricted to those variables to be changed.

There are five parameters that can be specified. Parameters 1. 2. 3. are always mandatory.
Parameters 4. 5. are required only for certain combinations of the previous parameters.

	<trig_type>:={edge, slew, glit, intv, runt, drop}

	<source>:={c1, c2, c3, c4, line}

	<hold_type>:=

	{ti, off} for edge trigger.

	{ti} for drop trigger.

	{ps, pl, p2, p1} for glit/runt trigger.

	{is, il, i2, i1} for slew/intv trigger.

	<hold_value1>:= a time value with unit.

	<hold_value2>:= a time value with unit.

Note:

	“line” can only be selected when the trigger type is “edge”.

	All time arguments should be given in multiples of seconds. Use the scientific notation
if necessary.

	The range of hold_values varies from trigger types. [80nS, 1.5S] for “edge” trigger,
and [2nS, 4.2S] for others.

	The trigger_select command is switched automatically between the short, normal and
extended version depending on the number of expected parameters.

	
trigger_setup(mode=None, source=None, trigger_type=None, hold_type=None, hold_value1=None, hold_value2=None, coupling=None, level=None, level2=None, slope=None)

	Set up trigger.

Unspecified parameters are not modified. Modifying a single parameter
might impact other parameters. Refer to oscilloscope documentation and make multiple
consecutive calls to trigger_setup and channel_setup if needed.

	Parameters

	
	mode – trigger sweep mode [auto, normal, single, stop]

	source – trigger source [c1, c2, c3, c4, line]

	trigger_type – condition that will trigger the acquisition of waveforms
[edge,slew,glit,intv,runt,drop]

	hold_type – hold type (refer to page 172 of programing guide)

	hold_value1 – hold value1 (refer to page 172 of programing guide)

	hold_value2 – hold value2 (refer to page 172 of programing guide)

	coupling – input coupling for the selected trigger sources

	level – trigger level voltage for the active trigger source

	level2 – trigger lower level voltage for the active trigger source (only slew/runt
trigger)

	slope – trigger slope of the specified trigger source

	
values(command, separator=', ', cast=<class 'float'>, preprocess_reply=None, maxsplit=-1, **kwargs)

	Write a command to the instrument and return a list of formatted
values from the result.

	Parameters

	
	command – SCPI command to be sent to the instrument.

	preprocess_reply – Optional callable used to preprocess the string
received from the instrument, before splitting it.
The callable returns the processed string.

	separator – A separator character to split the string returned by
the device into a list.

	maxsplit – The string returned by the device is splitted at most maxsplit times.
-1 (default) indicates no limit.

	cast – A type to cast each element of the splitted string.

	**kwargs – Keyword arguments to be passed to the ask() method.

	Returns

	A list of the desired type, or strings where the casting fails.

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
property waveform_first_point

	Control the address of the first data point to be sent (int).
For waveforms acquired in sequence mode, this refers to the relative address in the
given segment. The first data point starts at zero and is strictly positive.

	
property waveform_points

	Control the number of waveform points to be transferred with
the digitize method (int). NP = 0 sends all data points.

Note that the oscilloscope may provide less than the specified nb of points.

	
property waveform_preamble

	Get preamble information for the selected waveform source as a dict with the
following keys:

	“type”: normal, peak detect, average, high resolution (str)

	“requested_points”: number of data points requested by the user (int)

	“sampled_points”: number of data points sampled by the oscilloscope (int)

	“transmitted_points”: number of data points actually transmitted (optional) (int)

	“memory_size”: size of the oscilloscope internal memory in bytes (int)

	“sparsing”: sparse point. It defines the interval between data points. (int)

	“first_point”: address of the first data point to be sent (int)

	“source”: source of the data : “C1”, “C2”, “C3”, “C4”, “MATH”.

	“unit”: Physical units of the Y-axis

	“type”: type of data acquisition. Can be “normal”, “peak”, “average”, “highres”

	“average”: average times of average acquisition

	“sampling_rate”: sampling rate (it is a read-only property)

	“grid_number”: number of horizontal grids (it is a read-only property)

	“status”: acquisition status of the scope. Can be “stopped”, “triggered”, “ready”,
“auto”, “armed”

	“xdiv”: horizontal scale (units per division) in seconds

	“xoffset”: time interval in seconds between the trigger event and the reference position

	“ydiv”: vertical scale (units per division) in Volts

	“yoffset”: value that is represented at center of screen in Volts

	
property waveform_sparsing

	Control the interval between data points (integer). For example:

SP = 0 sends all data points.
SP = 4 sends 1 point every 4 data points.

	
write(command, **kwargs)

	Write the command to the instrument through the adapter.

Note: if the last command was sent less than WRITE_INTERVAL_S before, this method blocks for
the remaining time so that commands are never sent with rate more than 1/WRITE_INTERVAL_S
Hz.

	Parameters

	command – command string to be sent to the instrument

	
write_binary_values(command, values, *args, **kwargs)

	Write binary values to the device.

	Parameters

	
	command – Command to send.

	values – The values to transmit.

	**kwargs (*args,) – Further arguments to hand to the Adapter.

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

	
class pymeasure.instruments.lecroy.lecroyT3DSO1204.LeCroyT3DSO1204Channel(parent, id)

	Bases: TeledyneOscilloscopeChannel

Implementation of a LeCroy T3DSO1204 Oscilloscope channel.

Implementation modeled on Channel object of Keysight DSOX1102G instrument.

	
property bwlimit

	Control the 20 MHz internal low-pass filter (strict bool).

This oscilloscope only has one frequency available for this filter.

	
property invert

	Control the inversion of the input signal (strict bool).

	
property skew_factor

	Control the channel-to-channel skew factor for the specified channel.
Each analog channel can be adjusted + or -100 ns for a total of 200 ns difference
between channels. You can use the oscilloscope’s skew control to remove cable-delay
errors between channels.

	
property trigger_level2

	Control the lower trigger level voltage for the specified source (float).
Higher and lower trigger levels are used with runt/slope triggers.
When setting the trigger level it must be divided by the probe attenuation. This is
not documented in the datasheet and it is probably a bug of the scope firmware.
An out-of-range value will be adjusted to the closest legal value.

	
property unit

	Control the unit of the specified trace. Measurement results, channel sensitivity, and
trigger level will reflect the measurement units you select. (“A” for Amperes, “V” for
Volts).

 MKS Instruments

MKS Instruments

This section contains specific documentation on the MKS Instruments devices that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	MKS Instruments 937B Vacuum Gauge Controller
	MKS937B

	IonGaugeAndPressureChannel

	PressureChannel

 MKS Instruments 937B Vacuum Gauge Controller

MKS Instruments 937B Vacuum Gauge Controller

	
class pymeasure.instruments.mksinst.mks937b.MKS937B(adapter, name='MKS 937B vacuum gauge controller', address=253, **kwargs)

	Bases: Instrument

MKS 937B vacuum gauge controller

Connection to the device is made through an RS232/RS485 serial connection.
The communication protocol of this device is as follows:

Query: ‘@<aaa><Command>?;FF’ with the response ‘@<aaa>ACK<Response>;FF’
Set command: ‘@<aaa><Command>!<parameter>;FF’ with the response ‘@<aaa>ACK<Response>;FF’
Above <aaa> is an address from 001 to 254 which can be specified upon
initialization. Since ‘;FF’ is not supported by pyvisa as terminator this
class overloads the device communication methods.

	Parameters

	
	adapter – pyvisa resource name of the instrument or adapter instance

	name (string) – The name of the instrument.

	address – device address included in every message to the instrument
(default=253)

	kwargs – Any valid key-word argument for Instrument

	
ch_1

	
	Channel

	IonGaugeAndPressureChannel

	
ch_2

	
	Channel

	PressureChannel

	
ch_3

	
	Channel

	IonGaugeAndPressureChannel

	
ch_4

	
	Channel

	PressureChannel

	
ch_5

	
	Channel

	IonGaugeAndPressureChannel

	
ch_6

	
	Channel

	PressureChannel

	
property all_pressures

	Read pressures on all channels in selected units

	
check_set_errors()

	Check reply string for acknowledgement string.

	
property combined_pressure1

	Read pressure on channel 1 and its combination sensor

	
property combined_pressure2

	Read pressure on channel 2 and its combination sensor

	
read()

	Reads from the instrument including the correct termination characters

	
property serial

	Serial number of the instrument

	
property unit

	Pressure unit used for all pressure readings from the instrument

	
write(command)

	Write to the instrument including the device address.

	Parameters

	command – command string to be sent to the instrument

	
class pymeasure.instruments.mksinst.mks937b.IonGaugeAndPressureChannel(parent, id)

	Bases: PressureChannel

Channel having both a pressure and an ion gauge sensor

	
property ion_gauge_status

	Ion gauge status of the channel

	
class pymeasure.instruments.mksinst.mks937b.PressureChannel(parent, id)

	Bases: Channel

	
property power_enabled

	Power status of the channel

	
property pressure

	Pressure on the channel in units selected on the device

 Newport

Newport

This section contains specific documentation on the Newport instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	ESP 300 Motion Controller
	ESP300

	Axis

	AxisError

	GeneralError

 ESP 300 Motion Controller

ESP 300 Motion Controller

	
class pymeasure.instruments.newport.ESP300(adapter, name='Newport ESP 300 Motion Controller', **kwargs)

	Bases: Instrument

Represents the Newport ESP 300 Motion Controller
and provides a high-level for interacting with the instrument.

By default this instrument is constructed with x, y, and phi
attributes that represent axes 1, 2, and 3. Custom implementations
can overwrite this depending on the avalible axes. Axes are controlled
through an Axis
class.

	
property axes

	Get a list of the Axis
objects that are present.

	
clear_errors()

	Clears the error messages by checking until a 0 code is
recived.

	
disable()

	Disables all of the axes associated with this controller.

	
enable()

	Enables all of the axes associated with this controller.

	
property error

	Get an error code from the motion controller.

	
property errors

	Get a list of error Exceptions that can be later raised, or
used to diagnose the situation.

	
shutdown()

	Shuts down the controller by disabling all of the axes.

	
class pymeasure.instruments.newport.esp300.Axis(axis, controller)

	Bases: object

Represents an axis of the Newport ESP300 Motor Controller,
which can have independent parameters from the other axes.

	
define_position(position)

	Overwrites the value of the current position with the given
value.

	
disable()

	Disables motion for the axis.

	
enable()

	Enables motion for the axis.

	
property enabled

	Returns a boolean value that is True if the motion for
this axis is enabled.

	
home(type=1)

	Drives the axis to the home position, which may be the negative
hardware limit for some actuators (e.g. LTA-HS).
type can take integer values from 0 to 6.

	
property left_limit

	A floating point property that controls the left software
limit of the axis.

	
property motion_done

	Returns a boolean that is True if the motion is finished.

	
property position

	A floating point property that controls the position
of the axis. The units are defined based on the actuator.
Use the wait_for_stop() method to ensure the position
is stable.

	
property right_limit

	A floating point property that controls the right software
limit of the axis.

	
property units

	A string property that controls the displacement units of the
axis, which can take values of: enconder count, motor step, millimeter,
micrometer, inches, milli-inches, micro-inches, degree, gradient, radian,
milliradian, and microradian.

	
wait_for_stop(delay=0, interval=0.05)

	Blocks the program until the motion is completed. A further
delay can be specified in seconds.

	
zero()

	Resets the axis position to be zero at the current poisiton.

	
class pymeasure.instruments.newport.esp300.AxisError(code)

	Bases: Exception

Raised when a particular axis causes an error for
the Newport ESP300.

	
class pymeasure.instruments.newport.esp300.GeneralError(code)

	Bases: Exception

Raised when the Newport ESP300 has a general error.

 National Instruments

National Instruments

This section contains specific documentation on the National Instruments instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	NI Virtual Bench
	General Information

	Examples

	Instrument Class

 NI Virtual Bench

NI Virtual Bench

General Information

The armstrap/pyvirtualbench [https://github.com/armstrap/armstrap-pyvirtualbench]
Python wrapper for the VirtualBench C-API is required.
This Instrument driver only interfaces the pyvirtualbench Python wrapper.

Examples

To be documented. Check the examples in the pyvirtualbench repository to get an idea.

Simple Example to switch digital lines of the DIO module.

from pymeasure.instruments.ni import VirtualBench

vb = VirtualBench(device_name='VB8012-3057E1C')
line = 'dig/2' # may be list of lines
initialize DIO module -> available via vb.dio
vb.acquire_digital_input_output(line, reset=False)

vb.dio.write(self.line, {True})
sleep(1000)
vb.dio.write(self.line, {False})

vb.shutdown()

Instrument Class

	
class pymeasure.instruments.ni.virtualbench.VirtualBench(device_name='', name='VirtualBench')

	Bases: object

Represents National Instruments Virtual Bench main frame.

Subclasses implement the functionalities of the different modules:

	Mixed-Signal-Oscilloscope (MSO)

	Digital Input Output (DIO)

	Function Generator (FGEN)

	Power Supply (PS)

	Serial Peripheral Interface (SPI) -> not implemented
for pymeasure yet

	Inter Integrated Circuit (I2C) -> not implemented for pymeasure yet

For every module exist methods to save/load the configuration to file.
These methods are not wrapped so far, checkout the pyvirtualbench file.

All calibration methods and classes are not wrapped so far, since these
are not required on a very regular basis. Also the connections via network
are not yet implemented.
Check the pyvirtualbench file, if you need the functionality.

	Parameters

	
	device_name (str) – Full unique device name

	name (str) – Name for display in pymeasure

	
class DigitalInputOutput(virtualbench, lines, reset, vb_name='')

	Bases: VirtualBenchInstrument

Represents Digital Input Output (DIO) Module of Virtual Bench
device. Allows to read/write digital channels and/or set channels
to export the start signal of FGEN module or trigger of MSO module.

	
export_signal(line, digitalSignalSource)

	Exports a signal to the specified line.

	Parameters

	
	line (str) – Line string

	digitalSignalSource (int) – 0 for FGEN start or 1
for MSO trigger

	
query_export_signal(line)

	Indicates the signal being exported on the specified line.

	Parameters

	line (str) – Line string

	Returns

	Exported signal (FGEN start or MSO trigger)

	Return type

	enum

	
query_line_configuration()

	Indicates the current line configurations. Tristate Lines,
Static Lines, and Export Lines contain comma-separated
range_data and/or colon-delimited lists of all acquired lines

	
read(lines)

	Reads the current state of the specified lines.

	Parameters

	lines (str) – Line string, requires full name specification e.g.
'VB8012-xxxxxxx/dig/0:7' since instrument_handle
is not required (only library_handle)

	Returns

	List of line states (HIGH/LOW)

	Return type

	list

	
reset_instrument()

	Resets the session configuration to default values, and
resets the device and driver software to a known state.

	
shutdown()

	Removes the session and deallocates any resources acquired
during the session. If output is enabled on any channels, they
remain in their current state.

	
tristate_lines(lines)

	Sets all specified lines to a high-impedance state. (Default)

	
validate_lines(lines, return_single_lines=False, validate_init=False)

	Validate lines string
Allowed patterns (case sensitive):

	'VBxxxx-xxxxxxx/dig/0:7'

	'VBxxxx-xxxxxxx/dig/0'

	'dig/0'

	'VBxxxx-xxxxxxx/trig'

	'trig'

Allowed Line Numbers: 0-7 or trig

	Parameters

	
	lines (str) – Line string to test

	return_single_lines (bool, optional) – Return list of line numbers as well,
defaults to False

	validate_init (bool, optional) – Check if lines are initialized (in
self._line_numbers),
defaults to False

	Returns

	Line string, optional list of single line numbers

	Return type

	str, optional (str, list)

	
write(lines, data)

	Writes data to the specified lines.

	Parameters

	
	lines (str) – Line string

	data (list or tuple) – List of data, (True = High, False = Low)

	
class DigitalMultimeter(virtualbench, reset, vb_name='')

	Bases: VirtualBenchInstrument

Represents Digital Multimeter (DMM) Module of Virtual Bench
device. Allows to measure either DC/AC voltage or current,
Resistance or Diodes.

	
configure_ac_current(auto_range_terminal)

	Configure auto rage terminal for AC current measurement

	Parameters

	auto_range_terminal – Terminal to perform auto ranging
('LOW' or 'HIGH')

	
configure_dc_current(auto_range_terminal)

	Configure auto rage terminal for DC current measurement

	Parameters

	auto_range_terminal – Terminal to perform auto ranging
('LOW' or 'HIGH')

	
configure_dc_voltage(dmm_input_resistance)

	Configure DC voltage input resistance

	Parameters

	dmm_input_resistance (int or str) – Input resistance ('TEN_MEGA_OHM'
or 'TEN_GIGA_OHM')

	
configure_measurement(dmm_function, auto_range=True, manual_range=1.0)

	Configure Instrument to take a DMM measurement

	Parameters

	
	name (dmm_function:DMM function index or) –
	'DC_VOLTS', 'AC_VOLTS'

	'DC_CURRENT', 'AC_CURRENT'

	'RESISTANCE'

	'DIODE'

	auto_range (bool) – Enable/Disable auto ranging

	manual_range (float) – Manually set measurement range

	
query_ac_current()

	Indicates auto range terminal for AC current measurement

	
query_dc_current()

	Indicates auto range terminal for DC current measurement

	
query_dc_voltage()

	Indicates input resistance setting for DC voltage measurement

	
query_measurement()

	Query DMM measurement settings from the instrument

	Returns

	Auto range, range data

	Return type

	(bool, float)

	
read()

	Read measurement value from the instrument

	Returns

	Measurement value

	Return type

	float

	
reset_instrument()

	Reset the DMM module to defaults

	
shutdown()

	Removes the session and deallocates any resources acquired
during the session. If output is enabled on any channels, they
remain in their current state.

	
validate_auto_range_terminal(auto_range_terminal)

	Check value for choosing the auto range terminal for
DC current measurement

	Parameters

	auto_range_terminal (int or str) – Terminal to perform
auto ranging ('LOW'
or 'HIGH')

	Returns

	Auto range terminal to pass to the instrument

	Return type

	int

	
validate_dmm_function(dmm_function)

	Check if DMM function dmm_function exists

	Parameters

	dmm_function (int or str) – DMM function index or name:

	'DC_VOLTS', 'AC_VOLTS'

	'DC_CURRENT', 'AC_CURRENT'

	'RESISTANCE'

	'DIODE'

	Returns

	DMM function index to pass to the instrument

	Return type

	int

	
static validate_range(dmm_function, range)

	Checks if range is valid for the chosen dmm_function

	Parameters

	
	dmm_function (int) – DMM Function

	range (int or float) – Range value, e.g. maximum value to measure

	Returns

	Range value to pass to instrument

	Return type

	int

	
class FunctionGenerator(virtualbench, reset, vb_name='')

	Bases: VirtualBenchInstrument

Represents Function Generator (FGEN) Module of Virtual
Bench device.

	
configure_arbitrary_waveform(waveform, sample_period)

	Configures the instrument to output a waveform. The waveform is
output either after the end of the current waveform if output
is enabled, or immediately after output is enabled.

	Parameters

	
	waveform (list) – Waveform as list of values

	sample_period (float) – Time between two waveform points
(maximum of 125MS/s, which equals 80ns)

	
configure_arbitrary_waveform_gain_and_offset(gain, dc_offset)

	Configures the instrument to output an arbitrary waveform with
a specified gain and offset value. The waveform is output either
after the end of the current waveform if output is enabled, or
immediately after output is enabled.

	Parameters

	
	gain (float) – Gain, multiplier of waveform values

	dc_offset (float) – DC offset in volts

	
configure_standard_waveform(waveform_function, amplitude, dc_offset, frequency, duty_cycle)

	Configures the instrument to output a standard waveform.
Check instrument manual for maximum ratings which depend on load.

	Parameters

	
	waveform_function (int or str) – Waveform function ("SINE", "SQUARE",
"TRIANGLE/RAMP", "DC")

	amplitude (float) – Amplitude in volts

	dc_offset (float) – DC offset in volts

	frequency (float) – Frequency in Hz

	duty_cycle (int) – Duty cycle in %

	
property filter

	Enables or disables the filter on the instrument.

	Parameters

	enable_filter (bool) – Enable/Disable filter

	
query_arbitrary_waveform()

	Returns the samples per second for arbitrary waveform
generation.

	Returns

	Samples per second

	Return type

	int

	
query_arbitrary_waveform_gain_and_offset()

	Returns the settings for arbitrary waveform generation that
includes gain and offset settings.

	Returns

	Gain, DC offset

	Return type

	(float, float)

	
query_generation_status()

	Returns the status of waveform generation on the instrument.

	Returns

	Status

	Return type

	enum

	
query_standard_waveform()

	Returns the settings for a standard waveform generation.

	Returns

	Waveform function, amplitude, dc_offset, frequency,
duty_cycle

	Return type

	(enum, float, float, float, int)

	
query_waveform_mode()

	Indicates whether the waveform output by the instrument is a
standard or arbitrary waveform.

	Returns

	Waveform mode

	Return type

	enum

	
reset_instrument()

	Resets the session configuration to default values, and resets
the device and driver software to a known state.

	
run()

	Transitions the session from the Stopped state to the Running
state.

	
self_calibrate()

	Performs offset nulling calibration on the device. You must run
FGEN Initialize prior to running this method.

	
shutdown()

	Removes the session and deallocates any resources acquired
during the session. If output is enabled on any channels, they
remain in their current state.

	
stop()

	Transitions the acquisition from either the Triggered or
Running state to the Stopped state.

	
class MixedSignalOscilloscope(virtualbench, reset, vb_name='')

	Bases: VirtualBenchInstrument

Represents Mixed Signal Oscilloscope (MSO) Module of Virtual Bench
device. Allows to measure oscilloscope data from analog and digital
channels.

Methods from pyvirtualbench not implemented in pymeasure yet:

	enable_digital_channels

	configure_digital_threshold

	configure_advanced_digital_timing

	configure_state_mode

	configure_digital_edge_trigger

	configure_digital_pattern_trigger

	configure_digital_glitch_trigger

	configure_digital_pulse_width_trigger

	query_digital_channel

	query_enabled_digital_channels

	query_digital_threshold

	query_advanced_digital_timing

	query_state_mode

	query_digital_edge_trigger

	query_digital_pattern_trigger

	query_digital_glitch_trigger

	query_digital_pulse_width_trigger

	read_digital_u64

	
auto_setup()

	Automatically configure the instrument

	
configure_analog_channel(channel, enable_channel, vertical_range, vertical_offset, probe_attenuation, vertical_coupling)

	Configure analog measurement channel

	Parameters

	
	channel (str) – Channel string

	enable_channel (bool) – Enable/Disable channel

	vertical_range (float) – Vertical measurement range (0V - 20V),
the instrument discretizes to these ranges:
[20, 10, 5, 2, 1, 0.5, 0.2, 0.1, 0.05]
which are 5x the values shown in the native UI.

	vertical_offset (float) – Vertical offset to correct for
(inverted compared to VB native UI,
-20V - +20V, resolution 0.1mV)

	probe_attenuation (int or str) – Probe attenuation ('ATTENUATION_10X'
or 'ATTENUATION_1X')

	vertical_coupling (int or str) – Vertical coupling ('AC' or 'DC')

	
configure_analog_channel_characteristics(channel, input_impedance, bandwidth_limit)

	Configure electrical characteristics of the specified channel

	Parameters

	
	channel (str) – Channel string

	input_impedance (int or str) – Input Impedance ('ONE_MEGA_OHM' or
'FIFTY_OHMS')

	bandwidth_limit (int) – Bandwidth limit (100MHz or 20MHz)

	
configure_analog_edge_trigger(trigger_source, trigger_slope, trigger_level, trigger_hysteresis, trigger_instance)

	Configures a trigger to activate on the specified source when
the analog edge reaches the specified levels.

	Parameters

	
	trigger_source (str) – Channel string

	trigger_slope (int or str) – Trigger slope ('RISING', 'FALLING'
or 'EITHER')

	trigger_level (float) – Trigger level

	trigger_hysteresis (float) – Trigger hysteresis

	trigger_instance (int or str) – Trigger instance

	
configure_analog_pulse_width_trigger(trigger_source, trigger_polarity, trigger_level, comparison_mode, lower_limit, upper_limit, trigger_instance)

	Configures a trigger to activate on the specified source when
the analog edge reaches the specified levels within a specified
window of time.

	Parameters

	
	trigger_source (str) – Channel string

	trigger_polarity (int or str) – Trigger slope ('POSITIVE' or
'NEGATIVE')

	trigger_level (float) – Trigger level

	comparison_mode (int or str) – Mode of compariosn (
'GREATER_THAN_UPPER_LIMIT',
'LESS_THAN_LOWER_LIMIT',
'INSIDE_LIMITS' or
'OUTSIDE_LIMITS')

	lower_limit (float) – Lower limit

	upper_limit (float) – Upper limit

	trigger_instance (int or str) – Trigger instance

	
configure_immediate_trigger()

	Configures a trigger to immediately activate on the specified
channels after the pretrigger time has expired.

	
configure_timing(sample_rate, acquisition_time, pretrigger_time, sampling_mode)

	Configure timing settings of the MSO

	Parameters

	
	sample_rate (int) – Sample rate (15.26kS - 1GS)

	acquisition_time (float) – Acquisition time (1ns - 68.711s)

	pretrigger_time (float) – Pretrigger time (0s - 10s)

	sampling_mode – Sampling mode ('SAMPLE' or
'PEAK_DETECT')

	
configure_trigger_delay(trigger_delay)

	Configures the amount of time to wait after a trigger condition
is met before triggering.

	param float trigger_delay

	Trigger delay (0s - 17.1799s)

	
force_trigger()

	Causes a software-timed trigger to occur after the pretrigger
time has expired.

	
query_acquisition_status()

	Returns the status of a completed or ongoing acquisition.

	
query_analog_channel(channel)

	Indicates the vertical configuration of the specified channel.

	Returns

	Channel enabled, vertical range, vertical offset,
probe attenuation, vertical coupling

	Return type

	(bool, float, float, enum, enum)

	
query_analog_channel_characteristics(channel)

	Indicates the properties that control the electrical
characteristics of the specified channel.
This method returns an error if too much power is
applied to the channel.

	return

	Input impedance, bandwidth limit

	rtype

	(enum, float)

	
query_analog_edge_trigger(trigger_instance)

	Indicates the analog edge trigger configuration of the
specified instance.

	Returns

	Trigger source, trigger slope, trigger level, trigger
hysteresis

	Return type

	(str, enum, float, float)

	
query_analog_pulse_width_trigger(trigger_instance)

	Indicates the analog pulse width trigger configuration of the
specified instance.

	Returns

	Trigger source, trigger polarity, trigger level,
comparison mode, lower limit, upper limit

	Return type

	(str, enum, float, enum, float, float)

	
query_enabled_analog_channels()

	Returns String of enabled analog channels.

	Returns

	Enabled analog channels

	Return type

	str

	
query_timing()

	Indicates the timing configuration of the MSO.
Call directly before measurement to read the actual timing
configuration and write it to the corresponding class variables.
Necessary to interpret the measurement data, since it contains no
time information.

	Returns

	Sample rate, acquisition time, pretrigger time,
sampling mode

	Return type

	(float, float, float, enum)

	
query_trigger_delay()

	Indicates the trigger delay setting of the MSO.

	Returns

	Trigger delay

	Return type

	float

	
query_trigger_type(trigger_instance)

	Indicates the trigger type of the specified instance.

	Parameters

	trigger_instance – Trigger instance ('A' or 'B')

	Returns

	Trigger type

	Return type

	str

	
read_analog_digital_dataframe()

	Transfers data from the instrument and returns a pandas
dataframe of the analog measurement data, including time
coordinates

	Returns

	Dataframe with time and measurement data

	Return type

	pd.DataFrame

	
read_analog_digital_u64()

	Transfers data from the instrument as long as the acquisition
state is Acquisition Complete. If the state is either Running or
Triggered, this method will wait until the state transitions to
Acquisition Complete. If the state is Stopped, this method
returns an error.

	Returns

	Analog data out, analog data stride, analog t0,
digital data out, digital timestamps out, digital t0,
trigger timestamp, trigger reason

	Return type

	(list, int, pyvb.Timestamp, list, list, pyvb.Timestamp,
pyvb.Timestamp, enum)

	
reset_instrument()

	Resets the session configuration to default values, and resets
the device and driver software to a known state.

	
run(autoTrigger=True)

	Transitions the acquisition from the Stopped state to the
Running state. If the current state is Triggered, the
acquisition is first transitioned to the Stopped state before
transitioning to the Running state. This method returns an
error if too much power is applied to any enabled channel.

	Parameters

	autoTrigger (bool) – Enable/Disable auto triggering

	
shutdown()

	Removes the session and deallocates any resources acquired
during the session. If output is enabled on any channels, they
remain in their current state.

	
stop()

	Transitions the acquisition from either the Triggered or
Running state to the Stopped state.

	
validate_channel(channel)

	Check if channel is a correct specification

	Parameters

	channel (str) – Channel string

	Returns

	Channel string

	Return type

	str

	
static validate_trigger_instance(trigger_instance)

	Check if trigger_instance is a valid choice

	Parameters

	trigger_instance (int or str) – Trigger instance ('A' or 'B')

	Returns

	Trigger instance

	Return type

	int

	
class PowerSupply(virtualbench, reset, vb_name='')

	Bases: VirtualBenchInstrument

Represents Power Supply (PS) Module of Virtual Bench device

	
configure_current_output(channel, current_level, voltage_limit)

	Configures a current output on the specified channel. This
method should be called once for every channel you want to
configure to output current.

	
configure_voltage_output(channel, voltage_level, current_limit)

	Configures a voltage output on the specified channel. This
method should be called once for every channel you want to
configure to output voltage.

	
property outputs_enabled

	Enables or disables all outputs on all channels of the
instrument.

	Parameters

	enable_outputs (bool) – Enable/Disable outputs

	
query_current_output(channel)

	Indicates the current output settings on the specified channel.

	
query_voltage_output(channel)

	Indicates the voltage output settings on the specified channel.

	
read_output(channel)

	Reads the voltage and current levels and outout mode of the
specified channel.

	
reset_instrument()

	Resets the session configuration to default values, and resets
the device and driver software to a known state.

	
shutdown()

	Removes the session and deallocates any resources acquired
during the session. If output is enabled on any channels, they
remain in their current state.

	
property tracking

	Enables or disables tracking between the positive and negative
25V channels. If enabled, any configuration change on the
positive 25V channel is mirrored to the negative 25V channel,
and any writes to the negative 25V channel are ignored.

	Parameters

	enable_tracking (bool) – Enable/Disable tracking

	
validate_channel(channel, current=False, voltage=False)

	Check if channel string is valid and if output current/voltage
are within the output ranges of the channel

	Parameters

	
	channel (str) – Channel string ("ps/+6V","ps/+25V","ps/-25V")

	current (bool, optional) – Current output, defaults to False

	voltage (bool, optional) – Voltage output, defaults to False

	Returns

	channel or channel, current & voltage

	Return type

	str or (str, float, float)

	
acquire_digital_input_output(lines, reset=False)

	Establishes communication with the DIO module. This method should
be called once per session.

	Parameters

	
	lines (str) – Lines to acquire, reading is possible on all lines

	reset (bool, optional) – Reset DIO module, defaults to False

	
acquire_digital_multimeter(reset=False)

	Establishes communication with the DMM module. This method should
be called once per session.

	Parameters

	reset (bool, optional) – Reset the DMM module, defaults to False

	
acquire_function_generator(reset=False)

	Establishes communication with the FGEN module. This method should
be called once per session.

	Parameters

	reset (bool, optional) – Reset the FGEN module, defaults to False

	
acquire_mixed_signal_oscilloscope(reset=False)

	Establishes communication with the MSO module. This method should
be called once per session.

	Parameters

	reset (bool, optional) – Reset the MSO module, defaults to False

	
acquire_power_supply(reset=False)

	Establishes communication with the PS module. This method should be
called once per session.

	Parameters

	reset (bool, optional) – Reset the PS module, defaults to False

	
collapse_channel_string(names_in)

	Collapses a channel string into a comma and colon-delimited
equivalent. Last element is the number of channels.

	Parameters

	names_in (str) – Channel string

	Returns

	Channel string with colon notation where possible,
number of channels

	Return type

	(str, int)

	
convert_timestamp_to_values(timestamp)

	Converts a timestamp to seconds and fractional seconds

	Parameters

	timestamp (pyvb.Timestamp) – VirtualBench timestamp

	Returns

	(seconds_since_1970, fractional seconds)

	Return type

	(int, float)

	
convert_values_to_datetime(timestamp)

	Converts timestamp to datetime object

	Parameters

	timestamp (pyvb.Timestamp) – VirtualBench timestamp

	Returns

	Timestamp as DateTime object

	Return type

	DateTime

	
convert_values_to_timestamp(seconds_since_1970, fractional_seconds)

	Converts seconds and fractional seconds to a timestamp

	Parameters

	
	seconds_since_1970 (int) – Date/Time in seconds since 1970

	fractional_seconds (float) – Fractional seconds

	Returns

	VirtualBench timestamp

	Return type

	pyvb.Timestamp

	
expand_channel_string(names_in)

	Expands a channel string into a comma-delimited (no colon)
equivalent. Last element is the number of channels.
'dig/0:2' -> ('dig/0, dig/1, dig/2',3)

	Parameters

	names_in (str) – Channel string

	Returns

	Channel string with all channels separated by comma,
number of channels

	Return type

	(str, int)

	
get_calibration_information()

	Returns calibration information for the specified device,
including the last calibration date and calibration interval.

	Returns

	Calibration date, recommended calibration interval in months,
calibration interval in months

	Return type

	(pyvb.Timestamp, int, int)

	
get_library_version()

	Return the version of the VirtualBench runtime library

	
shutdown()

	Finalize the VirtualBench library.

	
class pymeasure.instruments.ni.virtualbench.VirtualBench_Direct(*args: Any, **kwargs: Any)

	Bases: PyVirtualBench

Represents National Instruments Virtual Bench main frame.
This class provides direct access to the armstrap/pyvirtualbench
Python wrapper.

 Novanta Photonics

Novanta Photonics

This section contains specific documentation on the Novanta photonics instruments that are implemented.
Novanta contains also Lasers developed by Laserquantum.
If you are interested in an instrument not included, please consider adding the instrument.

	Novanta FPU60 laser power supply unit
	Fpu60

 Novanta FPU60 laser power supply unit

Novanta FPU60 laser power supply unit

	
class pymeasure.instruments.novanta.Fpu60(adapter, name='Laserquantum fpu60 power supply unit', **kwargs)

	Bases: Instrument

Represents a fpu60 power supply unit for the finesse laser series by Laserquantum,
a Novanta company.

The instrument responds to every command sent.

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

	Returns

	List of error entries.

	
property current

	Measure the diode current in percent (float).

	
disable_emission()

	Disable emission and unlock the button afterwards.

You have to press the physical button to enable emission again.

	
property emission_enabled

	Measure the emission status (bool).

	
get_operation_times()

	Get the operation times in minutes as a dictionary.

	
property head_temperature

	Measure the laser head temperature in °C (float).

	
property interlock_enabled

	Get the interlock enabled status (bool).

	
property power

	Measure current output power in Watts (float).

	
property power_setpoint

	Control the output power setpoint in Watts (float).

	
property psu_temperature

	Measure the power supply unit temperature in °C (float).

	
property serial_number

	Get the serial number (str).

	
property shutter_open

	Control whether the shutter is open (bool).

	
property software_version

	Get the software version (str).

 Oxford Instruments

Oxford Instruments

This section contains specific documentation on the Oxford Instruments instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Oxford Instruments Base Instrument
	OxfordInstrumentsBase

	OxfordVISAError

	Oxford Instruments Intelligent Temperature Controller 503
	ITC503

	Oxford Instruments Intelligent Power Supply 120-10 for superconducting magnets
	IPS120_10

	MagnetError

	SwitchHeaterError

	Oxford Instruments Power Supply 120-10 for superconducting magnets
	PS120_10

 Oxford Instruments Base Instrument

Oxford Instruments Base Instrument

	
class pymeasure.instruments.oxfordinstruments.base.OxfordInstrumentsBase(adapter, name='OxfordInstruments Base', max_attempts=5, **kwargs)

	Bases: Instrument

Base instrument for devices from Oxford Instruments.

Checks the replies from instruments for validity.

	Parameters

	
	adapter – A string, integer, or Adapter subclass object

	name (string) – The name of the instrument. Often the model designation by default.

	max_attempts – Integer that sets how many attempts at getting a
valid response to a query can be made

	**kwargs – In case adapter is a string or integer, additional arguments passed on
to VISAAdapter (check there for details).
Discarded otherwise.

	
ask(command)

	Write the command to the instrument and return the resulting ASCII response. Also check
the validity of the response before returning it; if the response is not valid, another
attempt is made at getting a valid response, until the maximum amount of attempts is
reached.

	Parameters

	command – ASCII command string to be sent to the instrument

	Returns

	String ASCII response of the instrument

	Raises

	OxfordVISAError if the maximum number of attempts is surpassed without
getting a valid response

	
is_valid_response(response, command)

	Check if the response received from the instrument after a command is valid and
understood by the instrument.

	Parameters

	
	response – String ASCII response of the device

	command – command used in the initial query

	Returns

	True if the response is valid and the response indicates the instrument
recognised the command

	
write(command)

	Write command to instrument and check whether the reply indicates that the given command
was not understood.
The devices from Oxford Instruments reply with ‘?xxx’ to a command ‘xxx’ if this command is
not known, and replies with ‘x’ if the command is understood.
If the command starts with an “$” the instrument will not reply at all; hence in that case
there will be done no checking for a reply.

	Raises

	OxfordVISAError if the instrument does not recognise the supplied
command or if the response of the instrument is not understood

	
class pymeasure.instruments.oxfordinstruments.base.OxfordVISAError

	Bases: Exception

 Oxford Instruments Intelligent Temperature Controller 503

Oxford Instruments Intelligent Temperature Controller 503

	
class pymeasure.instruments.oxfordinstruments.ITC503(adapter, name='Oxford ITC503', clear_buffer=True, min_temperature=0, max_temperature=1677.7, **kwargs)

	Bases: OxfordInstrumentsBase

Represents the Oxford Intelligent Temperature Controller 503.

itc = ITC503("GPIB::24") # Default channel for the ITC503

itc.control_mode = "RU" # Set the control mode to remote
itc.heater_gas_mode = "AUTO" # Turn on auto heater and flow
itc.auto_pid = True # Turn on auto-pid

print(itc.temperature_setpoint) # Print the current set-point
itc.temperature_setpoint = 300 # Change the set-point to 300 K
itc.wait_for_temperature() # Wait for the temperature to stabilize
print(itc.temperature_1) # Print the temperature at sensor 1

	
class FLOW_CONTROL_STATUS(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntFlag

IntFlag class for decoding the flow control status. Contains the following
flags:

	bit

	flag

	meaning

	4

	HEATER_ERROR_SIGN

	Sign of heater-error; True means negative

	3

	TEMPERATURE_ERROR_SIGN

	Sign of temperature-error; True means negative

	2

	SLOW_VALVE_ACTION

	Slow valve action occurring

	1

	COOLDOWN_TERMINATION

	Cooldown-termination occurring

	0

	FAST_COOLDOWN

	Fast-cooldown occurring

	
property auto_pid

	A boolean property that sets the Auto-PID mode on (True) or off (False).

	
property auto_pid_table

	A property that controls values in the auto-pid table. Relies on
ITC503.x_pointer and ITC503.y_pointer (or
ITC503.pointer) to point at the location in the table that
is to be set or read.

The x-pointer selects the table entry (1 to 16); the y-pointer
selects the parameter:

	y-pointer

	parameter

	1

	upper temperature limit

	2

	proportional band

	3

	integral action time

	4

	derivative action time

	
property control_mode

	A string property that sets the ITC in local or remote and locked
or unlocked, locking the LOC/REM button. Allowed values are:

	value

	state

	LL

	local & locked

	RL

	remote & locked

	LU

	local & unlocked

	RU

	remote & unlocked

	
property derivative_action_time

	A floating point property that controls the derivative action time
for the PID controller in minutes. Can be set if the PID controller
is in manual mode. Valid values are 0 [min.] to 273 [min.].

	
property front_panel_display

	A string property that controls what value is displayed on
the front panel of the ITC. Valid values are:
‘temperature setpoint’, ‘temperature 1’, ‘temperature 2’,
‘temperature 3’, ‘temperature error’, ‘heater’, ‘heater voltage’,
‘gasflow’, ‘proportional band’, ‘integral action time’,
‘derivative action time’, ‘channel 1 freq/4’, ‘channel 2 freq/4’,
‘channel 3 freq/4’.

	
property gasflow

	A floating point property that controls gas flow when in manual
mode. The value is expressed as a percentage of the maximum gas flow.
Valid values are in range 0 [off] to 99.9 [%].

	
property gasflow_configuration_parameter

	A property that controls the gas flow configuration parameters.
Relies on the ITC503.x_pointer to select which parameter
is set or read:

	x-pointer

	parameter

	1

	valve gearing

	2

	target table & features configuration

	3

	gas flow scaling

	4

	temperature error sensitivity

	5

	heater voltage error sensitivity

	6

	minimum gas valve in auto

	
property gasflow_control_status

	A property that reads the gas-flow control status. Returns
the status in the form of a ITC503.FLOW_CONTROL_STATUS
IntFlag.

	
property heater

	A floating point property that represents the heater output power
as a percentage of the maximum voltage. Can be set if the heater is in
manual mode. Valid values are in range 0 [off] to 99.9 [%].

	
property heater_gas_mode

	A string property that sets the heater and gas flow control to
auto or manual. Allowed values are:

	value

	state

	MANUAL

	heater & gas manual

	AM

	heater auto, gas manual

	MA

	heater manual, gas auto

	AUTO

	heater & gas auto

	
property heater_voltage

	A floating point property that represents the heater output power
in volts. For controlling the heater, use the ITC503.heater
property.

	
property integral_action_time

	A floating point property that controls the integral action time
for the PID controller in minutes. Can be set if the PID controller
is in manual mode. Valid values are 0 [min.] to 140 [min.].

	
property pointer

	A tuple property to set pointers into tables for loading and
examining values in the table, of format (x, y). The significance
and valid values for the pointer depends on what property is to be
read or set. The value for x and y can be in the range 0 to 128.

	
program_sweep(temperatures, sweep_time, hold_time, steps=None)

	Program a temperature sweep in the controller. Stops any running sweep.
After programming the sweep, it can be started using
OxfordITC503.sweep_status = 1.

	Parameters

	
	temperatures – An array containing the temperatures for the sweep

	sweep_time – The time (or an array of times) to sweep to a
set-point in minutes (between 0 and 1339.9).

	hold_time – The time (or an array of times) to hold at a
set-point in minutes (between 0 and 1339.9).

	steps – The number of steps in the sweep, if given, the
temperatures, sweep_time and hold_time will be
interpolated into (approximately) equal segments

	
property proportional_band

	A floating point property that controls the proportional band
for the PID controller in Kelvin. Can be set if the PID controller
is in manual mode. Valid values are 0 [K] to 1677.7 [K].

	
property sweep_status

	An integer property that sets the sweep status. Values are:

	value

	meaning

	0

	Sweep not running

	1

	Start sweep / sweeping to first set-point

	2P - 1

	Sweeping to set-point P

	2P

	Holding at set-point P

	
property sweep_table

	A property that controls values in the sweep table. Relies on
ITC503.x_pointer and ITC503.y_pointer (or
ITC503.pointer) to point at the location in the table that is
to be set or read.

The x-pointer selects the step of the sweep (1 to 16); the y-pointer
selects the parameter:

	y-pointer

	parameter

	1

	set-point temperature

	2

	sweep-time to set-point

	3

	hold-time at set-point

	
property target_voltage

	A float property that reads the current heater target voltage
with which the actual heater voltage is being compared. Only valid
if gas-flow in auto mode.

	
property target_voltage_table

	A property that controls values in the target heater voltage table.
Relies on the ITC503.x_pointer to select the entry in the table
that is to be set or read (1 to 64).

	
property temperature_1

	Reads the temperature of the sensor 1 in Kelvin.

	
property temperature_2

	Reads the temperature of the sensor 2 in Kelvin.

	
property temperature_3

	Reads the temperature of the sensor 3 in Kelvin.

	
property temperature_error

	Reads the difference between the set-point and the measured
temperature in Kelvin. Positive when set-point is larger than
measured.

	
property temperature_setpoint

	A floating point property that controls the temperature set-point of
the ITC in kelvin. (dynamic)

	
property valve_scaling

	A float property that reads the valve scaling parameter. Only
valid if gas-flow in auto mode.

	
property version

	A string property that returns the version of the IPS.

	
wait_for_temperature(error=0.01, timeout=3600, check_interval=0.5, stability_interval=10, thermalize_interval=300, should_stop=<function ITC503.<lambda>>)

	Wait for the ITC to reach the set-point temperature.

	Parameters

	
	error – The maximum error in Kelvin under which the temperature
is considered at set-point

	timeout – The maximum time the waiting is allowed to take. If
timeout is exceeded, a TimeoutError is raised. If
timeout is None, no timeout will be used.

	check_interval – The time between temperature queries to the ITC.

	stability_interval – The time over which the temperature_error is
to be below error to be considered stable.

	thermalize_interval – The time to wait after stabilizing for the
system to thermalize.

	should_stop – Optional function (returning a bool) to allow the
waiting to be stopped before its end.

	
wipe_sweep_table()

	Wipe the currently programmed sweep table.

	
property x_pointer

	An integer property to set pointers into tables for loading and
examining values in the table. The significance and valid values for
the pointer depends on what property is to be read or set.

	
property y_pointer

	An integer property to set pointers into tables for loading and
examining values in the table. The significance and valid values for
the pointer depends on what property is to be read or set.

 Oxford Instruments Intelligent Power Supply 120-10 for superconducting magnets

Oxford Instruments Intelligent Power Supply 120-10 for superconducting magnets

	
class pymeasure.instruments.oxfordinstruments.IPS120_10(adapter, name='Oxford IPS', clear_buffer=True, switch_heater_heating_delay=None, switch_heater_cooling_delay=None, field_range=None, **kwargs)

	Bases: OxfordInstrumentsBase

Represents the Oxford Superconducting Magnet Power Supply IPS 120-10.

ips = IPS120_10("GPIB::25") # Default channel for the IPS

ips.enable_control() # Enables the power supply and remote control

ips.train_magnet([# Train the magnet after it has been cooled-down
 (11.8, 1.0),
 (13.9, 0.4),
 (14.9, 0.2),
 (16.0, 0.1),
])

ips.set_field(12) # Bring the magnet to 12 T. The switch heater will
 # be turned off when the field is reached and the
 # current is ramped back to 0 (i.e. persistent mode).

print(self.field) # Print the current field (whether in persistent or
 # non-persistent mode)

ips.set_field(0) # Bring the magnet to 0 T. The persistent mode will be
 # turned off first (i.e. current back to set-point and
 # switch-heater on); afterwards the switch-heater will
 # again be turned off.

ips.disable_control() # Disables the control of the supply, turns off the
 # switch-heater and clamps the output.

	Parameters

	
	clear_buffer – A boolean property that controls whether the instrument
buffer is clear upon initialisation.

	switch_heater_heating_delay – The time in seconds (default is 20s) to wait after
the switch-heater is turned on before the heater is expected to be heated.

	switch_heater_cooling_delay – The time in seconds (default is 20s) to wait after
the switch-heater is turned off before the heater is expected to be cooled down.

	field_range – A numeric value or a tuple of two values to indicate the
lowest and highest allowed magnetic fields. If a numeric value is provided
the range is expected to be from -field_range to +field_range.
The default range is -7 to +7 Tesla.

	
property activity

	A string property that controls the activity of the IPS. Valid values
are “hold”, “to setpoint”, “to zero” and “clamp”

	
property control_mode

	A string property that sets the IPS in local or remote and locked
or unlocked, locking the LOC/REM button. Allowed values are:

	value

	state

	LL

	local & locked

	RL

	remote & locked

	LU

	local & unlocked

	RU

	remote & unlocked

	
property current_measured

	A floating point property that returns the measured magnet current of
the IPS in amps. (dynamic)

	
property current_setpoint

	A floating point property that controls the magnet current set-point of
the IPS in ampere. (dynamic)

	
property demand_current

	A floating point property that returns the demand magnet current of
the IPS in amps. (dynamic)

	
property demand_field

	A floating point property that returns the demand magnetic field of
the IPS in Tesla. (dynamic)

	
disable_control()

	Disable active control of the IPS (if at 0T) by turning off the switch heater,
clamping the output and setting control to local.
Raise a MagnetError if field not at 0T.

	
disable_persistent_mode()

	Disable the persistent magnetic field mode.
Raise a MagnetError if the magnet is not at rest.

	
enable_control()

	Enable active control of the IPS by setting control to remote and
turning off the clamp.

	
enable_persistent_mode()

	Enable the persistent magnetic field mode.
Raise a MagnetError if the magnet is not at rest.

	
property field

	Property that returns the current magnetic field value in Tesla.

	
property field_setpoint

	A floating point property that controls the magnetic field set-point of
the IPS in Tesla. (dynamic)

	
property persistent_field

	A floating point property that returns the persistent magnetic field of
the IPS in Tesla. (dynamic)

	
set_field(field, sweep_rate=None, persistent_mode_control=True)

	Change the applied magnetic field to a new specified magnitude.
If allowed (via persistent_mode_control) the persistent mode will be turned off
if needed and turned on when the magnetic field is reached.
When the new field set-point is 0, the set-point of the instrument will not be changed
but rather the to zero functionality will be used. Also, the persistent mode will not
turned on upon reaching the 0T field in this case.

	Parameters

	
	field – The new set-point for the magnetic field in Tesla.

	sweep_rate – A numeric value that controls the rate with which to change
the magnetic field in Tesla/minute.

	persistent_mode_control – A boolean that controls whether the persistent mode
may be turned off (if needed before sweeping) and on (when the field is reached);
if set to False but the system is in persistent mode, a MagnetError
will be raised and the magnetic field will not be changed.

	
property sweep_rate

	A floating point property that controls the sweep-rate of
the IPS in Tesla/minute. (dynamic)

	
property sweep_status

	A string property that returns the current sweeping mode of the IPS.

	
property switch_heater_enabled

	A boolean property that controls whether the switch heater
is enabled or not. When the switch heater is enabled (True), the
switch is closed and the switch is open and the current in the
magnet can be controlled; when the switch heater is disabled
(False) the switch is closed and the current in the magnet cannot
be controlled.

When turning on the switch heater with True, the switch heater is
only activated if the current of the power supply matches the last
recorded current in the magnet.

Warning

These checks can be omitted by using "Force" in stead of
True. Caution: Not performing these checks can cause serious
damage to both the power supply and the magnet.

After turning on the switch heater it is necessary to wait several
seconds for the switch the respond.

Raises a SwitchHeaterError if the system reports a ‘heater fault’
or if no switch is fitted on the system upon getting the status.

	
property switch_heater_status

	An integer property that returns the switch heater status of
the IPS. Use the switch_heater_enabled property for controlling
and reading the switch heater. When using this property, the user
is referred to the IPS120-10 manual for the meaning of the integer
values.

	
train_magnet(training_scheme)

	Train the magnet after cooling down. Afterwards, set the field
back to 0 tesla (at last-used ramp-rate).

	Parameters

	training_scheme – The training scheme as a list of tuples; each
tuple should consist of a (field [T], ramp-rate [T/min]) pair.

	
property version

	A string property that returns the version of the IPS.

	
wait_for_idle(delay=1, max_wait_time=None, should_stop=<function IPS120_10.<lambda>>)

	Wait until the system is at rest (i.e. current of field not ramping).

	Parameters

	
	delay – Time in seconds between each query into the state of the instrument.

	max_wait_time – Maximum time in seconds to wait before is at rest. If the system is
not at rest within this time a TimeoutError is raised. None is
interpreted as no maximum time.

	should_stop – A function that returns True when this function should return
early.

	
class pymeasure.instruments.oxfordinstruments.ips120_10.MagnetError

	Bases: ValueError

Exception that is raised for issues regarding the state of the magnet or power supply.

	
class pymeasure.instruments.oxfordinstruments.ips120_10.SwitchHeaterError

	Bases: ValueError

Exception that is raised for issues regarding the state of the superconducting switch.

 Oxford Instruments Power Supply 120-10 for superconducting magnets

Oxford Instruments Power Supply 120-10 for superconducting magnets

	
class pymeasure.instruments.oxfordinstruments.PS120_10(adapter, name='Oxford PS', **kwargs)

	Bases: IPS120_10

Represents the Oxford Superconducting Magnet Power Supply PS 120-10.

ps = PS120_10("GPIB::25") # Default channel for the IPS

ps.enable_control() # Enables the power supply and remote control

ps.train_magnet([# Train the magnet after it has been cooled-down
 (11.8, 1.0),
 (13.9, 0.4),
 (14.9, 0.2),
 (16.0, 0.1),
])

ps.set_field(12) # Bring the magnet to 12 T. The switch heater will
 # be turned off when the field is reached and the
 # current is ramped back to 0 (i.e. persistent mode).

print(self.field) # Print the current field (whether in persistent or
 # non-persistent mode)

ps.set_field(0) # Bring the magnet to 0 T. The persistent mode will be
 # turned off first (i.e. current back to set-point and
 # switch-heater on); afterwards the switch-heater will
 # again be turned off.

ps.disable_control() # Disables the control of the supply, turns off the
 # switch-heater and clamps the output.

	Parameters

	
	clear_buffer – A boolean property that controls whether the instrument
buffer is clear upon initialisation.

	switch_heater_heating_delay – The time in seconds (default is 20s) to wait after
the switch-heater is turned on before the heater is expected to be heated.

	switch_heater_cooling_delay – The time in seconds (default is 20s) to wait after
the switch-heater is turned off before the heater is expected to be cooled down.

	field_range – A numeric value or a tuple of two values to indicate the
lowest and highest allowed magnetic fields. If a numeric value is provided
the range is expected to be from -field_range to +field_range.

	
class pymeasure.instruments.oxfordinstruments.ips120_10.MagnetError

	Bases: ValueError

Exception that is raised for issues regarding the state of the magnet or power supply.

	
class pymeasure.instruments.oxfordinstruments.ips120_10.SwitchHeaterError

	Bases: ValueError

Exception that is raised for issues regarding the state of the superconducting switch.

 Parker

Parker

This section contains specific documentation on the Parker instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Parker GV6 Servo Motor Controller
	ParkerGV6

 Parker GV6 Servo Motor Controller

Parker GV6 Servo Motor Controller

	
class pymeasure.instruments.parker.ParkerGV6(adapter, name='Parker GV6 Motor Controller', **kwargs)

	Bases: Instrument

Represents the Parker Gemini GV6 Servo Motor Controller
and provides a high-level interface for interacting with
the instrument

	
property angle

	Returns the angle in degrees based on the position
and whether relative or absolute positioning is enabled,
returning None on error

	
property angle_error

	Returns the angle error in degrees based on the
position error, or returns None on error

	
disable()

	Disables the motor from moving

	
enable()

	Enables the motor to move

	
is_moving()

	Returns True if the motor is currently moving

	
kill()

	Stops the motor

	
move()

	Initiates the motor to move to the setpoint

	
property position

	Returns an integer number of counts that correspond to
the angular position where 1 revolution equals 4000 counts

	
property position_error

	Returns the error in the number of counts that corresponds
to the error in the angular position where 1 revolution equals
4000 counts

	
read()

	Overwrites the Instrument.read command to provide the correct
functionality

	
reset()

	Resets the motor controller while blocking and
(CAUTION) resets the absolute position value of the motor

	
set_defaults()

	Sets up the default values for the motor, which
is run upon construction

	
set_hardware_limits(positive=True, negative=True)

	Enables (True) or disables (False) the hardware
limits for the motor

	
set_software_limits(positive, negative)

	Sets the software limits for motion based on
the count unit where 4000 counts is 1 revolution

	
property status

	Returns a list of the motor status in readable format

	
stop()

	Stops the motor during movement

	
use_absolute_position()

	Sets the motor to accept setpoints from an absolute
zero position

	
use_relative_position()

	Sets the motor to accept setpoints that are relative
to the last position

 Pendulum

Pendulum

This section contains specific documentation on the Pendulum instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Pendulum CNT91 frequency counter
	CNT91

 Pendulum CNT91 frequency counter

Pendulum CNT91 frequency counter

	
class pymeasure.instruments.pendulum.cnt91.CNT91(adapter, name='Pendulum CNT-91', **kwargs)

	Bases: Instrument

Represents a Pendulum CNT-91 frequency counter.

	
property batch_size

	Maximum number of buffer entries that can be transmitted at once.

	
buffer_frequency_time_series(channel, n_samples, sample_rate, trigger_source=None)

	Record a time series to the buffer and read it out after completion.

	Parameters

	
	channel – Channel that should be used

	n_samples – The number of samples

	sample_rate – Sample rate in Hz

	trigger_source – Optionally specify a trigger source to start the
measurement

	
configure_frequency_array_measurement(n_samples, channel)

	Configure the counter for an array of measurements.

	Parameters

	
	n_samples – The number of samples

	channel – Measurment channel (A, B, C, E, INTREF)

	
property continuous

	Controls whether to perform continuous measurements.

	
property external_arming_start_slope

	Set slope for the start arming condition.

	
property external_start_arming_source

	Select arming input or switch off the start arming function.
Options are ‘A’, ‘B’ and ‘E’ (rear). ‘IMM’ turns trigger off.

	
property format

	Reponse format (ASCII or REAL).

	
property interpolator_autocalibrated

	Controls if interpolators should be calibrated automatically.

	
property measurement_time

	Gate time for one measurement in s.

	
read_buffer(expected_length=0)

	Read out the entire buffer.

	Parameters

	expected_length – The expected length of the buffer. If more
data is read, values at the end are removed. Defaults to 0,
which means that the entire buffer is returned independent of its
length.

	Returns

	Frequency values from the buffer.

 Razorbill

Razorbill

This section contains specific documentation on the Razorbill instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Razorbill RP100 custrom power supply for Razorbill Instrums stress & strain cells
	razorbillRP100

 Razorbill RP100 custrom power supply for Razorbill Instrums stress & strain cells

Razorbill RP100 custrom power supply for Razorbill Instrums stress & strain cells

	
class pymeasure.instruments.razorbill.razorbillRP100(adapter, name='Razorbill RP100 Piezo Stack Powersupply', **kwargs)

	Bases: Instrument

Represents Razorbill RP100 strain cell controller

scontrol = razorbillRP100("ASRL/dev/ttyACM0::INSTR")

scontrol.output_1 = True # turns output on
scontrol.slew_rate_1 = 1 # sets slew rate to 1V/s
scontrol.voltage_1 = 10 # sets voltage on output 1 to 10V

	
property contact_current_1

	Returns the current in amps present at the front panel output of channel 1

	
property contact_current_2

	Returns the current in amps present at the front panel output of channel 2

	
property contact_voltage_1

	Returns the Voltage in volts present at the front panel output of channel 1

	
property contact_voltage_2

	Returns the Voltage in volts present at the front panel output of channel 2

	
property instant_voltage_1

	Returns the instantaneous output of source one in volts

	
property instant_voltage_2

	Returns the instanteneous output of source two in volts

	
property output_1

	Turns output of channel 1 on or off

	
property output_2

	Turns output of channel 2 on or off

	
property slew_rate_1

	Sets or queries the source slew rate in volts/sec of channel 1

	
property slew_rate_2

	Sets or queries the source slew rate in volts/sec of channel 2

	
property voltage_1

	Sets or queries the output voltage of channel 1

	
property voltage_2

	Sets or queries the output voltage of channel 2

 Rohde & Schwarz

Rohde & Schwarz

This section contains specific documentation on the Rohde & Schwarz instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	R&S SFM TV test transmitter
	SFM

	Sound_Channel

	R&S FSL spectrum analyzer
	Connecting to the instrument via network

	Getting and setting parameters

	Reading a trace

	Markers

	Example program

	R&S HMP4040 Power Supply
	HMP4040

 R&S SFM TV test transmitter

R&S SFM TV test transmitter

	
class pymeasure.instruments.rohdeschwarz.sfm.SFM(adapter, name='Rohde&Schwarz SFM', **kwargs)

	Bases: Instrument

Represents the Rohde&Schwarz SFM TV test transmitter
interface for interacting with the instrument.

Note

The current implementation only works with the first system in this unit.

Further source extension for system 2-6 would be required.

The intermodulation subsystem is also not yet implmented.

	
property R75_out

	A bool property that controls the use of the 75R output (if installed)

	Value

	Meaning

	False

	50R output active (N)

	True

	75R output active (BNC)

refer also to chapter 3.6.5 of the manual

	
property TV_country

	A string property that controls the country specifics of the
video/sound system to be used

Possible values are:

	Value

	Meaning

	BG_G

	BG General

	DK_G

	DK General

	I_G

	I General

	L_G

	L General

	GERM

	Germany

	BELG

	Belgium

	NETH

	Netherlands

	FIN

	Finland

	AUST

	Australia

	BG_T

	BG Th

	DENM

	Denmark

	NORW

	Norway

	SWED

	Sweden

	GUS

	Russia

	POL1

	Poland

	POL2

	Poland

	HUNG

	Hungary

	CHEC

	Czech Republic

	CHINA1

	China

	CHINA2

	China

	GRE

	Great Britain

	SAFR

	South Africa

	FRAN

	France

	USA

	United States

	KOR

	Korea

	JAP

	Japan

	CAN

	Canada

	SAM

	South America

Please confirm with the manual about the details for these settings.

	
property TV_standard

	A string property that controls the type of video standard

Possible values are:

	Value

	Lines

	System

	BG

	625

	PAL

	DK

	625

	SECAM

	I

	625

	PAL

	K1

	625

	SECAM

	L

	625

	SECAM

	M

	525

	NTSC

	N

	625

	NTSC

Please confirm with the manual about the details for these settings.

	
property basic_info

	A String property containing infomation about the hardware modules installed in the unit

	
property beeper_enabled

	A bool property that controls the beeper status,

refer also to chapter 3.6.8 of the manual

	
calibration(number=1, subsystem=None)

	Function to either calibrate the whole modulator, when subsystem parameter is omitted,
or calibrate a subsystem of the modulator.

Valid subsystem selections: “NICam, VISion, SOUNd1, SOUNd2, CODer”

	
channel_down_relative()

	Decreases the output frequency to the next low channel/special channel
based on the current country settings

	
property channel_sweep_start

	A float property controlling the start frequency for channel sweep in Hz

	Minimum 5 MHz

	Maximum 1 GHz

	
property channel_sweep_step

	A float property controlling the start frequency for channel sweep in Hz

	Minimum 5 MHz

	Maximum 1 GHz

	
property channel_sweep_stop

	A float property controlling the start frequency for channel sweep in Hz

	Minimum 5 MHz

	Maximum 1 GHz

	
property channel_table

	A string property controlling which channel table is used

Possible selections are:

	Value

	Meaning

	DEF

	Default channel table

	USR1

	User table No. 1

	USR2

	User table No. 2

	USR3

	User table No. 3

	USR4

	User table No. 4

	USR5

	User table No. 5

refer also to chapter 3.6.6.1 of the manual

	
channel_up_relative()

	Increases the output frequency to the next higher channel/special channel
based on the current country settings

	
coder_adjust()

	Starts the automatic setting of the differential deviation

refer also to chapter 3.6.6.4 of the manual

	
property coder_id_frequency

	A int property that controls the frequency of the identification of the coder

valid range 0 .. 200 Hz

	
property coder_modulation_degree

	A float property that controls the modulation degree of the identification of the coder

valid range: 0 .. 0.9

	
property coder_pilot_deviation

	A int property that controls deviation of the pilot frequency of the coder

valid range: 1 .. 4 kHz

	
property coder_pilot_frequency

	A int property that controls the pilot frequency of the coder

valid range: 40 .. 60 kHz

	
property cw_frequency

	A float property controlling the CW-frequency in Hz

	Minimum 5 MHz

	Maximum 1 GHz

	
property date

	A list property for the date of the RTC in the unit

	
property event_reg

	Content of the event register of the Status Operation Register
refer also to chapter 3.6.7 of the manual

	
property ext_ref_base_unit

	A bool property for the external reference for the basic unit

	Value

	Meaning

	False

	Internal 10 MHz is used

	True

	External 10 MHz is used

	
property ext_ref_extension

	A bool property for the external reference for the extension frame

	Value

	Meaning

	False

	Internal 10 MHz is used

	True

	External 10 MHz is used

	
property ext_vid_connector

	A string property controlling which connector is used as the input of the video source

Possible selections are:

	Value

	Meaning

	HIGH

	Front connector - Hi-Z

	LOW

	Front connector - 75R

	REAR1

	Rear connector 1

	REAR2

	Rear connector 2

	AUTO

	Automatic assignment

	
property external_modulation_frequency

	A int property that controls the setting for the external modulator frequency

valid range: 32 .. 46 MHz

	
property external_modulation_power

	A int property that controls the setting for the external modulator output power

valid range: -7..0 dBm

refer also to chapter 3.6.6.5 of the manual

	
property external_modulation_source

	A bool property for the modulation source selection

refer also to chapter 3.6.6.8 of the manual

	
property frequency

	A float property controlling the frequency in Hz

	Minimum 5 MHz

	Maximum 1 GHz

	
property frequency_mode

	A string property controlling which the unit is used in

Possible selections are:

	Value

	Meaning

	CW

	Continous wave mode

	FIXED

	fixed frequency mode

	CHSW

	Channel sweep

	RFSW

	Frequency sweep

Note

selecting the sweep mode, will start the sweep imemdiately!

	
property gpib_address

	A int property that controls the GPIB address of the unit

valid range: 0..30

	
property high_frequency_resolution

	A property that controls the frequency resolution,

Possible selections are:

	Value

	Meaning

	False

	Low resolution (1000Hz)

	True

	High resolution (1Hz)

	
property level

	A float property controlling the output level in dBm,

	Minimum -99dBm

	Maximum 10dBm (depending on output mode)

refer also to chapter 3.6.6.2 of the manual

	
property level_mode

	A string property controlling the output attenuator and linearity mode

Possible selections are:

	Value

	Meaning

	max. output level

	NORM

	Normal mode

	+6 dBm

	LOWN

	low noise mode

	+10 dBm

	CONT

	continous mode

	+10 dBm

	LOWD

	low distortion mode

	+0 dBm

Contiuous mode allows up to 14 dB of level setting without use of the mechanical attenuator.

	
property lower_sideband_enabled

	A bool property that controls the use of the lower sideband

refer also to chapter 3.6.6.10 of the manual

	
property modulation_enabled

	A bool property that controls the modulation status

	
property nicam_IQ_inverted

	A bool property that controls if the NICAM IQ signals are inverted or not

	Value

	Meaning

	False

	normal (IQ)

	True

	inverted (QI)

	
property nicam_additional_bits

	A int property that controls the additional data in the NICAM modulator

valid range: 0 .. 2047

	
property nicam_audio_frequency

	A int property that controls the frequency of the internal sound generator

valid range: 0 Hz .. 15 kHz

	
property nicam_audio_volume

	A float property that controls the audio volume in the NICAM modulator in dB

valid range: 0..60 dB

	
property nicam_bit_error_enabled

	A bool property that controls the status of an artifical bit error rate to be applied

	
property nicam_bit_error_rate

	A float property that controls the artifical bit error rate.

valid range: 1.2E-7 .. 2E-3

	
property nicam_carrier_enabled

	A bool property that controls if the NICAM carrier is switched on or off

	
property nicam_carrier_frequency

	A float property that controls the frequency of the NICAM carrier

valid range: 33.05 MHz +/- 0.2 Mhz

	
property nicam_carrier_level

	A float property that controls the value of the NICAM carrier

valid range: -40 .. -13 dB

	
property nicam_control_bits

	A int property that controls the additional data in the NICAM modulator

valid range: 0 .. 3

	
property nicam_data

	A int property that controls the data in the NICAM modulator

valid range: 0 .. 2047

	
property nicam_intercarrier_frequency

	A float property that controls the inter-carrier frequency of the NICAM carrier

valid range: 5 .. 9 MHz

	
property nicam_mode

	A string property that controls the signal type to be sent via NICAM

Possible values are:

	Value

	Meaning

	MON

	Mono sound + NICAM data

	STER

	Stereo sound

	DUAL

	Dual channel sound

	DATA

	NICAM data only

refer also to chapter 3.6.6.6 of the manual

	
property nicam_preemphasis_enabled

	A bool property that controls the status of the J17 preemphasis

	
property nicam_source

	A string property that controls the signal source for NICAM

Possible values are:

	Value

	Meaning

	INT

	Internal audio generator(s)

	EXT

	External audio source

	CW

	Continous wave signal

	RAND

	Random data stream

	TEST

	Test signal

	
property nicam_test_signal

	A int property that controls the selection of the test signal applied

	Value

	Meaning

	1

	Test signal 1 (91 kHz square wave, I&Q 90deg apart)

	2

	Test signal 2 (45.5 kHz square wave, I&Q 90deg apart)

	3

	Test signal 3 (182 kHz sine wave, I&Q in phase)

	
property normal_channel

	A int property controlling the current selected regular/normal channel number
valid selections are based on the country settings.

	
property operation_enable_reg

	Content of the enable register of the Status Operation Register

Valid range: 0…32767

	
property output_voltage

	A float property controlling the output level in Volt,

Minimum 2.50891e-6, Maximum 0.707068 (depending on output mode)
refer also to chapter 3.6.6.12 of the manual

	
property questionable_event_reg

	Content of the event register of the Status Questionable Operation Register

	
property questionable_operation_enable_reg

	Content of the enable register of the Status Questionable Operation Register

Valid range 0…32767

	
property questionanble_status_reg

	Content of the condition register of the Status Questionable Operation Register

	
property remote_interfaces

	A string property controlling the selection of interfaces for remote control

Possible selections are:

	Value

	Meaning

	OFF

	no remote control

	GPIB

	GPIB only enabled

	SER

	RS232 only enabled

	BOTH

	GPIB & RS232 enabled

	
property rf_out_enabled

	A bool property that controls the status of the RF-output

	
property rf_sweep_center

	A float property controlling the center frequency for sweep in Hz

	Minimum 5 MHz

	Maximum 1 GHz

	
property rf_sweep_span

	A float property controlling the sweep span in Hz,

	Minimum 1 kHz

	Maximum 1 GHz

	
property rf_sweep_start

	A float property controlling the start frequency for sweep in Hz

	Minimum 5 MHz

	Maximum 1 GHz

	
property rf_sweep_step

	A float property controlling the stepwidth for sweep in Hz,

	Minimum 1 kHz

	Maximum 1 GHz

	
property rf_sweep_stop

	A float property controlling the stop frequency for sweep in Hz

	Minimum 5 MHz

	Maximum 1 GHz

	
property scale_volt

	A string property that controls the unit to be used for voltage entries on the unit

Possible values are:
AV,FV, PV, NV, UV, MV, V, KV, MAV, GV, TV, PEV, EV,
DBAV, DBFV, DBPV, DBNV, DBUV, DBMV, DBV, DBKV, DBMAv, DBGV, DBTV, DBPEv, DBEV

refer also to chapter 3.6.9 of the manual

	
property serial_baud

	A int property that controls the serial communication speed ,

Possible values are: 110,300,600,1200,4800,9600,19200

	
property serial_bits

	A int property that controls the number of bits used in serial communication

Possible values are: 7 or 8

	
property serial_flowcontrol

	A string property that controls the serial handshake type used in serial communication

Possible values are:

	Value

	Meaning

	NONE

	no flow-control/handshake

	XON

	XON/XOFF flow-control

	ACK

	hardware handshake with RTS&CTS

	
property serial_parity

	A string property that controls the parity type used for serial communication

Possible values are:

	Value

	Meaning

	NONE

	no parity

	EVEN

	even parity

	ODD

	odd parity

	ONE

	parity bit fixed to 1

	ZERO

	parity bit fixed to 0

	
property serial_stopbits

	A int property that controls the number of stop-bits used in serial communication,

Possible values are: 1 or 2

	
property sound_mode

	A string property that controls the type of audio signal

Possible values are:

	Value

	Meaning

	MONO

	MOnoaural sound

	PIL

	pilot-carrier + mono

	BTSC

	BTSC + mono

	STER

	Stereo sound

	DUAL

	Dual channel sound

	NIC

	NICAM + Mono

	
property special_channel

	A int property controlling the current selected special channel number
valid selections are based on the country settings.

	
property status_info_shown

	A bool property that controls if the display shows infomation during remote control

	
status_preset()

	partly resets the SCPI status reporting structures

	
property status_reg

	Content of the condition register of the Status Operation Register

	
property subsystem_info

	A String property containing infomation about the system configuration

	
property system_number

	A int property for the selected systems (if more than 1 available)

	Minimum 1

	Maximum 6

	
property time

	A list property for the time of the RTC in the unit

	
property vision_average_enabled

	A bool property that controls the average mode for the vision system

	
property vision_balance

	A float property that controls the balance of the vision modulator

valid range: -0.5 .. 0.5

	
property vision_carrier_enabled

	A bool property that controls the vision carrier status

refer also to chapter 3.6.6.9 of the manual

	
property vision_carrier_frequency

	A float property that controls the frequency of the vision carrier

valid range: 32 .. 46 MHz

	
property vision_clamping_average

	A float property that controls the operation point of the vision modulator

valid range: -0.5 .. 0.5

	
property vision_clamping_enabled

	A bool property that controls the clamping behavior of the vision modulator

	
property vision_clamping_mode

	A string property that controls the clamping mode of the vision modulator

Possible selections are HARD or SOFT

	
property vision_precorrection_enabled

	A bool property that controls the precorrection behavior of the vision modulator

	
property vision_residual_carrier_level

	A float property that controls the value of the residual carrier

valid range: 0 .. 0.3 (30%)

	
property vision_sideband_filter_enabled

	A bool property that controls the use of the VSBF (vestigal sideband filter)
in the vision modulator

	
property vision_videosignal_enabled

	A bool property that controls if the video signal is switched on or off

	
class pymeasure.instruments.rohdeschwarz.sfm.Sound_Channel(instrument, number)

	Bases: object

Class object for the two sound channels

refere also to chapter 3.6.6.7 of the user manual

	
property carrier_enabled

	A bool property that controls if the audio carrier is switched on or off

	
property carrier_frequency

	A float property that controls the frequency of the sound carrier

valid range: 32 .. 46 MHz

	
property carrier_level

	A float property that controls the level of the audio carrier in dB
relative to the vision carrier (0dB)

valid range: -34 .. -6 dB

	
property deviation

	A int property that controls deviation of the selected audio signal

valid range: 0 .. 110 kHz

	
property frequency

	A int property that controls the frequency of the internal sound generator

valid range: 300 Hz .. 15 kHz

	
property modulation_degree

	A float property that controls the modulation depth for the audio signal
(Note: only for the use of AM in Standard L)

valid range: 0 .. 1 (100%)

	
property modulation_enabled

	A bool property that controls the audio modulation status

	Value

	Meaning

	False

	modulation disabled

	True

	modulation enabled

	
property preemphasis_enabled

	A bool property that controls if the preemphasis for the audio is switched on or off

	
property preemphasis_time

	A int property that controls if the mode of the preemphasis for the audio signal

	Value

	Meaning

	50

	50 us preemphasis

	75

	75 us preemphasis

	
property use_external_source

	A bool property for the audio source selection

	Value

	Meaning

	False

	Internal audio generator(s)

	True

	External signal source

	
values(command, **kwargs)

	Reads a set of values from the instrument through the adapter,
passing on any keyword arguments.

 R&S FSL spectrum analyzer

R&S FSL spectrum analyzer

Connecting to the instrument via network

Once connected to the network, the instrument’s IP address can be found by
clicking the “Setup” button and navigating to “General Settings” -> “Network
Address”.

It can then be connected like this:

from pymeasure.instruments.rohdeschwarz import FSL
fsl = FSL("TCPIP::192.168.1.123::INSTR")

Getting and setting parameters

Most parameters are implemented as properties, which means they can be read and
written (getting and setting) in a consistent and simple way. If numerical
values are provided, base units are used (s, Hz, dB, …).
Alternatively, the values can also be provided with a unit, e.g. "1.5 GHz"
or "1.5GHz". Return values are always numerical.

Getting the current center frequency
fsl.freq_center

9000000000.0

Changing it to 10 MHz by providing the numerical value
fsl.freq_center = 10e6

Verifying:
fsl.freq_center

10000000.0

Changing it to 9 GHz by providing a string and verifying the result
fsl.freq_center = '9GHz'
fsl.freq_center

9000000000.0

Setting the span to maximum
fsl.freq_span = '7 GHz'

Reading a trace

We will read the current trace

x, y = fsl.read_trace()

Markers

Markers are implemented as their own class. You can create them like
this:

m1 = fsl.create_marker()

Set peak exursion:

m1.peak_excursion = 3

Set marker to a specific position:

m1.x = 10e9

Find the next peak to the left and get the level:

m1.to_next_peak('left')
m1.y

-34.9349060059

Delta markers

Delta markers can be created by setting the appropriate keyword.

d2 = fsl.create_marker(is_delta_marker=True)
d2.name

'DELT2'

Example program

Here is an example of a simple script for recording the peak of a signal.

m1 = fsl.create_marker() # create marker 1

Set standard settings, set to full span
fsl.continuous_sweep = False
fsl.freq_span = '18 GHz'
fsl.res_bandwidth = "AUTO"
fsl.video_bandwidth = "AUTO"
fsl.sweep_time = "AUTO"

Perform a sweep on full span, set the marker to the peak and some to that marker
fsl.single_sweep()
m1.to_peak()
m1.zoom('20 MHz')

take data from the zoomed-in region
fsl.single_sweep()
x, y = fsl.read_trace()

	
class pymeasure.instruments.rohdeschwarz.fsl.FSL(adapter, name='Rohde&Schwarz FSL', **kwargs)

	Bases: Instrument

Represents a Rohde&Schwarz FSL spectrum analyzer.

All physical values that can be set can either be as a string of a value
and a unit (e.g. “1.2 GHz”) or as a float value in the base units (Hz,
dBm, etc.).

	
property attenuation

	Attenuation in dB.

	
continue_single_sweep()

	Continue with single sweep with synchronization.

	
property continuous_sweep

	Continuous (True) or single sweep (False)

	
create_marker(num=1, is_delta_marker=False)

	Create a marker.

	Parameters

	
	num – The marker number (1-4)

	is_delta_marker – True if the marker is a delta marker, default
is False.

	Returns

	The marker object.

	
property freq_center

	Center frequency in Hz.

	
property freq_span

	Frequency span in Hz.

	
property freq_start

	Start frequency in Hz.

	
property freq_stop

	Stop frequency in Hz.

	
read_trace(n_trace=1)

	Read trace data.

	Parameters

	n_trace – The trace number (1-6). Default is 1.

	Returns

	2d numpy array of the trace data, [[frequency], [amplitude]].

	
property res_bandwidth

	Resolution bandwidth in Hz. Can be set to ‘AUTO’

	
single_sweep()

	Perform a single sweep with synchronization.

	
property sweep_time

	Sweep time in s. Can be set to ‘AUTO’.

	
property trace_mode

	Trace mode (‘WRIT’, ‘MAXH’, ‘MINH’, ‘AVER’ or ‘VIEW’)

	
property video_bandwidth

	Video bandwidth in Hz. Can be set to ‘AUTO’

 R&S HMP4040 Power Supply

R&S HMP4040 Power Supply

	
class pymeasure.instruments.rohdeschwarz.hmp.HMP4040(adapter, **kwargs)

	Bases: Instrument

Represents a Rohde&Schwarz HMP4040 power supply.

	
beep()

	Emit a single beep from the instrument.

	
clear_sequence(channel)

	Clear the sequence of the selected channel.

	
property control_method

	Enables manual front panel (‘LOC’), remote (‘REM’) or manual/remote
control(‘MIX’) control or locks the the front panel control (‘RWL’).

	
property current

	Output current in A. Range depends on instrument type.

	
property current_step

	Current step in A.

	
current_to_max()

	Set current of the selected channel to its maximum value.

	
current_to_min()

	Set current of the selected channel to its minimum value.

	
load_sequence(slot)

	Load a saved waveform from internal memory (slot 1, 2 or 3).

	
property max_current

	Maximum current in A.

	
property max_voltage

	Maximum voltage in V.

	
property measured_current

	Measured current in A.

	
property measured_voltage

	Measured voltage in V.

	
property min_current

	Minimum current in A.

	
property min_voltage

	Minimum voltage in V.

	
property output_enabled

	Set the output on or off or check the output status.

	
property repetitions

	Number of repetitions (0…255). If 0 is entered, the sequence isrepeated indefinitely.

	
save_sequence(slot)

	Save the sequence defined in the sequence property to internal memory
(slot 1, 2 or 3).

	
property selected_channel

	Selected channel.

	
property selected_channel_active

	Set the selected channel to active or inactive or check its status.

	
property sequence

	Define sequence of triplets of voltage (V), current (A) and dwell time (s).

	
set_channel_state(channel, state)

	Set the state of the channel to active or inactive.

	Parameters

	
	channel (int) – Channel number to set the state of.

	state (bool) – State of the channel, i.e. True for active, False for
inactive.

	
start_sequence(channel)

	Start the sequence of the selected channel.

	
step_current_down()

	Decreases current by one step.

	
step_current_up()

	Increase current by one step.

	
step_voltage_down()

	Decrease voltage by one step.

	
step_voltage_up()

	Increase voltage by one step.

	
stop_sequence(channel)

	Stop the sequence defined in the sequence property of the selected
channel.

	
transfer_sequence(channel)

	Transfer the sequence defined in the sequence property to the selected
channel.

	
property version

	The SCPI version the instrument’s command set complies with.

	
property voltage

	Output voltage in V. Increment 0.001 V.

	
property voltage_and_current

	Output voltage (V) and current (A).

	
property voltage_step

	Voltage step in V. Default 1 V.

	
voltage_to_max()

	Set voltage of the selected channel to its maximum value.

	
voltage_to_min()

	Set voltage of the selected channel to its minimum value.

 Siglent Technologies

Siglent Technologies

This section contains specific documentation on the Siglent Technologies instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Siglent Technologies Base Class
	SPDBase

	SPDSingleChannelBase

	SPDChannel

	SystemStatusCode

	Siglent SPD1168X Power Supply
	SPD1168X

	Siglent SPD1305X Power Supply
	SPD1305X

 Siglent Technologies Base Class

Siglent Technologies Base Class

	
class pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDBase(adapter, name='Siglent SPDxxxxX instrument Base Class', **kwargs)

	Bases: Instrument

The base class for Siglent SPDxxxxX instruments.

Uses SPDChannel for measurement channels.

	
enable_local_interface(enable: bool = True)

	Configure the availability of the local interface.

	Type

	bool
True: enables the local interface
False: disables it.

	
property error

	Read the error code and information of the instrument.

	Type

	string

	
property fw_version

	Read the software version of the instrument.

	Type

	string

	
recall_config(index)

	Recall a config from memory.

	Parameters

	index – int: index of the location from which to recall the configuration

	
save_config(index)

	Save the current config to memory.

	Parameters

	index – int: index of the location to save the configuration

	
property selected_channel

	Control the selected channel of the instrument.

:type : int
(dynamic)

	
shutdown()

	Ensure that the voltage is turned to zero
and disable the output.

	
property system_status_code

	Read the system status register.

	Type

	SystemStatusCode

	
class pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDSingleChannelBase(adapter, name='Siglent SPDxxxxX instrument Base Class', **kwargs)

	Bases: SPDBase

	
enable_4W_mode(enable: bool = True)

	Enable 4-wire mode.

	Type

	bool
True: enables 4-wire mode
False: disables it.

	
class pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDChannel(parent, id, voltage_range: list = [0, 16], current_range: list = [0, 8])

	Bases: Channel

The channel class for Siglent SPDxxxxX instruments.

	
configure_timer(step, voltage, current, duration)

	Configure the timer step.

	Parameters

	
	step – int: index of the step to save the configuration

	voltage – float: voltage setpoint of the step

	current – float: current limit of the step

	duration – int: duration of the step in seconds

	
property current

	Measure the channel output current.

	Type

	float

	
property current_limit

	Control the output current configuration of the channel.

:type : float
(dynamic)

	
enable_output(enable: bool = True)

	Enable the channel output.

	Type

	bool
True: enables the output
False: disables it

	
enable_timer(enable: bool = True)

	Enable the channel timer.

	Type

	bool
True: enables the timer
False: disables it

	
property power

	Measure the channel output power.

	Type

	float

	
property voltage

	Measure the channel output voltage.

	Type

	float

	
property voltage_setpoint

	Control the output voltage configuration of the channel.

:type : float
(dynamic)

	
class pymeasure.instruments.siglenttechnologies.siglent_spdbase.SystemStatusCode(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	System status enums based on IntFlag

Used in conjunction with system_status_code.

	Value

	Enum

	256

	WAVEFORM_DISPLAY

	64

	TIMER_ENABLED

	32

	FOUR_WIRE

	16

	OUTPUT_ENABLED

	1

	CONSTANT_CURRENT

	0

	CONSTANT_VOLTAGE

 Siglent SPD1168X Power Supply

Siglent SPD1168X Power Supply

	
class pymeasure.instruments.siglenttechnologies.SPD1168X(adapter, name='Siglent Technologies SPD1168X Power Supply', **kwargs)

	Bases: SPDSingleChannelBase

Represent the Siglent SPD1168X Power Supply.

	
ch_1

	
	Channel

	SPDChannel

 Siglent SPD1305X Power Supply

Siglent SPD1305X Power Supply

	
class pymeasure.instruments.siglenttechnologies.SPD1305X(adapter, name='Siglent Technologies SPD1305X Power Supply', **kwargs)

	Bases: SPDSingleChannelBase

Represent the Siglent SPD1305X Power Supply.

	
ch_1

	
	Channel

	SPDChannel

 Signal Recovery

Signal Recovery

This section contains specific documentation on the Signal Recovery instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	DSP 7225 Lock-in Amplifier
	DSP7225

	DSP 7265 Lock-in Amplifier
	DSP7265

 DSP 7225 Lock-in Amplifier

DSP 7225 Lock-in Amplifier

	
class pymeasure.instruments.signalrecovery.DSP7225(adapter, name='Signal Recovery DSP 7225', **kwargs)

	Bases: DSPBase

Represents the Signal Recovery DSP 7225 lock-in amplifier.

Class inherits commands from the DSPBase parent class and utilizes dynamic
properties for various properties.

lockin7225 = DSP7225("GPIB0::12::INSTR")
lockin7225.imode = "voltage mode" # Set to measure voltages
lockin7225.reference = "internal" # Use internal oscillator
lockin7225.fet = 1 # Use FET pre-amp
lockin7225.shield = 0 # Ground shields
lockin7225.coupling = 0 # AC input coupling
lockin7225.time_constant = 0.10 # Filter time set to 100 ms
lockin7225.sensitivity = 2E-3 # Sensitivity set to 2 mV
lockin7225.frequency = 100 # Set oscillator frequency to 100 Hz
lockin7225.voltage = 1 # Set oscillator amplitude to 1 V
lockin7225.gain = 20 # Set AC gain to 20 dB
print(lockin7225.x) # Measure X channel voltage
lockin7225.shutdown() # Instrument shutdown

	
property adc1

	Measure the voltage of the ADC1 input on the rear panel.

Returned value is a floating point number in volts.

	
property adc2

	Measure the voltage of the ADC2 input on the rear panel.

Returned value is a floating point number in volts.

	
property auto_gain

	Control lock-in amplifier for automatic AC gain.

	
auto_phase()

	Adjusts the reference absolute phase to maximize the X channel
output and minimize the Y channel output signals.

	
auto_sensitivity()

	Adjusts the full-scale sensitivity so signal’s magnitude lies
between 30 - 90 % of full-scale.

	
buffer_to_float(buffer_data, sensitivity=None, sensitivity2=None, raise_error=True)

	Converts fixed-point buffer data to floating point data.

The provided data is converted as much as possible, but there are some
requirements to the data if all provided columns are to be converted;
if a key in the provided data cannot be converted it will be omitted in
the returned data or an exception will be raised, depending on the
value of raise_error.

The requirements for converting the data are as follows:

	Converting X, Y, magnitude and noise requires sensitivity data, which
can either be part of the provided data or can be provided via the
sensitivity argument

	The same holds for X2, Y2 and magnitude2 with sensitivity2.

	Converting the frequency requires both ‘frequency part 1’ and
‘frequency part 2’.

	Parameters

	
	buffer_data (dict) – The data to be converted. Must be in the format as returned by the
get_buffer method: a dict of numpy arrays.

	sensitivity – If provided, the sensitivity used to convert X, Y, magnitude and
noise. Can be provided as a float or as an array that matches the
length of elements in buffer_data. If both a sensitivity is
provided and present in the buffer_data, the provided value is used
for the conversion, but the sensitivity in the buffer_data is
stored in the returned dict.

	sensitivity2 – Same as the first sensitivity argument, but for X2, Y2, magnitude2
and noise2.

	raise_error (bool) – Determines whether an exception is raised in case not all keys
provided in buffer_data can be converted. If False, the columns
that cannot be converted are omitted in the returned dict.

	Returns

	Floating-point buffer data

	Return type

	dict

	
check_errors()

	Read all errors from the instrument and log them.

	Returns

	List of error entries.

	
check_get_errors()

	Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
clear()

	Clears the instrument status byte

	
property complete

	Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation
Complete query places an ASCII character 1 into the device’s Output Queue when all pending
selected device operations have been finished.

	
property coupling

	Control the input coupling mode.

Valid values are 0 for AC coupling mode or 1 for DC coupling mode.

	
property curve_buffer_bits

	Control which data outputs are stored in the curve buffer.

Valid values are values are integers between 1 and 65,535 (or 2,097,151
in dual reference mode).
(dynamic)

	
property curve_buffer_interval

	Control the time interval between the collection of successive
points in the curve buffer.

Valid values to the the time interval are integers in ms with a
resolution of 5 ms; input values are rounded up to a multiple of 5.
Valid values are values between 0 and 1,000,000,000 (corresponding to
12 days). The interval may be set to 0, which sets the rate of data
storage to the curve buffer to 1.25 ms/point (800 Hz). However this
only allows storage of the X and Y channel outputs. There is no need to
issue a CBD 3 command to set this up since it happens automatically
when acquisition starts.

	
property curve_buffer_length

	Control the length of the curve buffer.

Valid values are integers between 1 and 32,768, but the actual maximum
amount of points is determined by the amount of curves that are stored,
as set via the curve_buffer_bits property (32,768 / n).

	
property curve_buffer_status

	Measure the status of the curve buffer acquisition.

Command returns four values:
First value - Curve Acquisition Status: Number with 5 possibilities:
0: no activity
1: acquisition via TD command running
2: acquisition by a TDC command running
5: acquisition via TD command halted
6: acquisition bia TDC command halted
Second value - Number of Sweeps Acquired: Number of sweeps already
acquired.
Third value - Status Byte: Decimal representation of the status byte
(the same response as the ST command
Fourth value - Number of Points Acquired: Number of points acquired
in the curve buffer.

	
property dac1

	Control the voltage of the DAC1 output on the rear panel.

Valid values are floating point numbers between -12 to 12 V.

	
property dac2

	Control the voltage of the DAC2 output on the rear panel.

Valid values are floating point numbers between -12 to 12 V.

	
property fet

	Control the voltage preamplifier transistor type.

Valid values are 0 for bipolar or 1 for FET.

	
property frequency

	Control the oscillator frequency.

Valid values are floating point numbers representing the frequency in Hz.
(dynamic)

	
property gain

	Control the AC gain of signal channel amplifier.

	
get_buffer(quantity=None, convert_to_float=True, wait_for_buffer=True)

	Retrieves the buffer after it has been filled. The data retrieved
from the lock-in is in a fixed-point format, which requires translation
before it can be interpreted as meaningful data. When
convert_to_float is True the conversion is performed (if possible)
before returning the data.

	Parameters

	
	quantity (str) – If provided, names the quantity that is to be retrieved from the
curve buffer; can be any of:
‘x’, ‘y’, ‘magnitude’, ‘phase’, ‘sensitivity’, ‘adc1’, ‘adc2’,
‘adc3’, ‘dac1’, ‘dac2’, ‘noise’, ‘ratio’, ‘log ratio’, ‘event’,
‘frequency part 1’ and ‘frequency part 2’;
for both dual modes, additional options are:
‘x2’, ‘y2’, ‘magnitude2’, ‘phase2’, ‘sensitivity2’.
If no quantity is provided, all available data is retrieved.

	convert_to_float (bool) – Bool that determines whether to convert the fixed-point buffer-data
to meaningful floating point values via the buffer_to_float
method. If True, this method tries to convert all the available
data to meaningful values; if this is not possible, an exception
will be raised. If False, this conversion is not performed and the
raw buffer-data is returned.

	wait_for_buffer (bool) – Bool that determines whether to wait for the data acquisition to
finished if this method is called before the acquisition is
finished. If True, the method waits until the buffer is filled
before continuing; if False, the method raises an exception if the
acquisition is not finished when the method is called.

	
property harmonic

	Control the reference harmonic mode.

Valid values are integers.
(dynamic)

	
property id

	Measure the model number of the instrument.

Returned value is an integer.

	
property imode

	Control the lock-in amplifier to detect a voltage or current
signal.

Valid values are voltage mode, ``current mode, or low noise current mode.

	
init_curve_buffer()

	Initializes the curve storage memory and status variables. All
record of previously taken curves is removed.

	
property log_ratio

	Measure the log (base 10) of the ratio between the X channel and ADC1.

Returned value is a unitless floating point number equivalent to the
mathematical expression log(X/ADC1).

	
property mag

	Measure the magnitude of the signal.

Returned value is a floating point number in volts.

	
property options

	Get the device options installed.

	
property phase

	Measure the signal’s absolute phase angle.

Returned value is a floating point number in degrees.

	
property ratio

	Measure the ratio between the X channel and ADC1.

Returned value is a unitless floating point number equivalent to the
mathematical expression X/ADC1.

	
read(**kwargs)

	Read the response and remove extra unicode character from instrument readings.

	
read_binary_values(**kwargs)

	Read binary values from the device.

	
read_bytes(count, **kwargs)

	Read a certain number of bytes from the instrument.

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read the whole read buffer.

	kwargs – Keyword arguments for the adapter.

	Returns bytes

	Bytes response of the instrument (including termination).

	
property reference

	Control the oscillator reference input mode.

Valid values are internal, external rear or external front.

	
property reference_phase

	Control the reference absolute phase angle.

Valid values are floating point numbers between 0 - 360 degrees.

	
reset()

	Resets the instrument.

	
property sensitivity

	Control the signal’s measurement sensitivity range.

When in voltage measurement mode, valid values are discrete values from
2 nV to 1 V. When in current measurement mode, valid values are
discrete values from 2 fA to 1 µA (for normal current mode) or up to
10 nA (for low noise current mode).

	
setChannelAMode()

	Sets lock-in amplifier to measure a voltage signal only from the A
input connector.

	
setDifferentialMode(lineFiltering=True)

	Sets lock-in amplifier to differential mode, measuring A-B.

	
set_buffer(points, quantities=None, interval=0.01)

	Prepares the curve buffer for a measurement.

	Parameters

	
	points (int) – Number of points to be recorded in the curve buffer

	quantities (list) – List containing the quantities (strings) that are to be
recorded in the curve buffer, can be any of:
‘x’, ‘y’, ‘magnitude’, ‘phase’, ‘sensitivity’, ‘adc1’, ‘adc2’,
‘adc3’, ‘dac1’, ‘dac2’,
‘noise’, ‘ratio’, ‘log ratio’, ‘event’, ‘frequency’
(or ‘frequency part 1’ and ‘frequency part 2’);
for both dual modes, additional options are:
‘x2’, ‘y2’, ‘magnitude2’, ‘phase2’, ‘sensitivity2’.
Default is ‘x’ and ‘y’.

	interval (float) – The interval between two subsequent points stored in the
curve buffer in s. Default is 10 ms.

	
set_voltage_mode()

	Sets lock-in amplifier to measure a voltage signal.

	
property shield

	Control the input connector shield state.

Valid values are 0 to have shields grounded or 1 to have the shields
floating (i.e., connected to ground via a 1 kOhm resistor).

	
shutdown()

	Safely shutdown the lock-in amplifier.

Sets oscillator amplitude to 0 V and AC gain to 0 dB.

	
property slope

	Control the low-pass filter roll-off.

Valid values are the integers 6, 12, 18, or 24, which represents the
slope of the low-pass filter in dB/octave.

	
start_buffer()

	Initiates data acquisition. Acquisition starts at the current
position in the curve buffer and continues at the rate set by the STR
command until the buffer is full.

	
property status

	Get the status byte and Master Summary Status bit.

	
property time_constant

	Control the filter time constant.

Valid values are a strict set of time constants from 10 us to 50,000 s.
Returned values are floating point numbers in seconds.

	
property voltage

	Control the oscillator amplitude.

Valid values are floating point numbers between 0 to 5 V.

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
wait_for_buffer(timeout=None, delay=0.1)

	Method that waits until the curve buffer is filled

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument

	kwargs – Keyword arguments for the adapter.

	
write_binary_values(command, values, *args, **kwargs)

	Write binary values to the device.

	Parameters

	
	command – Command to send.

	values – The values to transmit.

	**kwargs (*args,) – Further arguments to hand to the Adapter.

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

	
property x

	Measure the output signal’s X channel.

Returned value is a floating point number in volts.

	
property xy

	Measure both the X and Y channels.

Returned values are floating point numbers in volts.

	
property y

	Measure the output signal’s Y channel.

Returned value is a floating point number in volts.

 DSP 7265 Lock-in Amplifier

DSP 7265 Lock-in Amplifier

	
class pymeasure.instruments.signalrecovery.DSP7265(adapter, name='Signal Recovery DSP 7265', **kwargs)

	Bases: DSPBase

Represents the Signal Recovery DSP 7265 lock-in amplifier.

Class inherits commands from the DSPBase parent class and utilizes dynamic
properties for various properties and includes additional functionality.

lockin7265 = DSP7265("GPIB0::12::INSTR")
lockin7265.imode = "voltage mode" # Set to measure voltages
lockin7265.reference = "internal" # Use internal oscillator
lockin7265.fet = 1 # Use FET pre-amp
lockin7265.shield = 0 # Ground shields
lockin7265.coupling = 0 # AC input coupling
lockin7265.time_constant = 0.10 # Filter time set to 100 ms
lockin7265.sensitivity = 2E-3 # Sensitivity set to 2 mV
lockin7265.frequency = 100 # Set oscillator frequency to 100 Hz
lockin7265.voltage = 1 # Set oscillator amplitude to 1 V
lockin7265.gain = 20 # Set AC gain to 20 dB
print(lockin7265.x) # Measure X channel voltage
lockin7265.shutdown() # Instrument shutdown

	
property adc1

	Measure the voltage of the ADC1 input on the rear panel.

Returned value is a floating point number in volts.

	
property adc2

	Measure the voltage of the ADC2 input on the rear panel.

Returned value is a floating point number in volts.

	
property adc3

	Measure the ADC3 input voltage.

	
property adc3_time

	Control the ADC3 sample time in seconds.

	
property auto_gain

	Control lock-in amplifier for automatic AC gain.

	
auto_phase()

	Adjusts the reference absolute phase to maximize the X channel
output and minimize the Y channel output signals.

	
auto_sensitivity()

	Adjusts the full-scale sensitivity so signal’s magnitude lies
between 30 - 90 % of full-scale.

	
buffer_to_float(buffer_data, sensitivity=None, sensitivity2=None, raise_error=True)

	Converts fixed-point buffer data to floating point data.

The provided data is converted as much as possible, but there are some
requirements to the data if all provided columns are to be converted;
if a key in the provided data cannot be converted it will be omitted in
the returned data or an exception will be raised, depending on the
value of raise_error.

The requirements for converting the data are as follows:

	Converting X, Y, magnitude and noise requires sensitivity data, which
can either be part of the provided data or can be provided via the
sensitivity argument

	The same holds for X2, Y2 and magnitude2 with sensitivity2.

	Converting the frequency requires both ‘frequency part 1’ and
‘frequency part 2’.

	Parameters

	
	buffer_data (dict) – The data to be converted. Must be in the format as returned by the
get_buffer method: a dict of numpy arrays.

	sensitivity – If provided, the sensitivity used to convert X, Y, magnitude and
noise. Can be provided as a float or as an array that matches the
length of elements in buffer_data. If both a sensitivity is
provided and present in the buffer_data, the provided value is used
for the conversion, but the sensitivity in the buffer_data is
stored in the returned dict.

	sensitivity2 – Same as the first sensitivity argument, but for X2, Y2, magnitude2
and noise2.

	raise_error (bool) – Determines whether an exception is raised in case not all keys
provided in buffer_data can be converted. If False, the columns
that cannot be converted are omitted in the returned dict.

	Returns

	Floating-point buffer data

	Return type

	dict

	
check_errors()

	Read all errors from the instrument and log them.

	Returns

	List of error entries.

	
check_get_errors()

	Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
clear()

	Clears the instrument status byte

	
property complete

	Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation
Complete query places an ASCII character 1 into the device’s Output Queue when all pending
selected device operations have been finished.

	
property coupling

	Control the input coupling mode.

Valid values are 0 for AC coupling mode or 1 for DC coupling mode.

	
property curve_buffer_bits

	Control which data outputs are stored in the curve buffer.

Valid values are values are integers between 1 and 65,535 (or 2,097,151
in dual reference mode).
(dynamic)

	
property curve_buffer_interval

	Control the time interval between the collection of successive
points in the curve buffer.

Valid values to the the time interval are integers in ms with a
resolution of 5 ms; input values are rounded up to a multiple of 5.
Valid values are values between 0 and 1,000,000,000 (corresponding to
12 days). The interval may be set to 0, which sets the rate of data
storage to the curve buffer to 1.25 ms/point (800 Hz). However this
only allows storage of the X and Y channel outputs. There is no need to
issue a CBD 3 command to set this up since it happens automatically
when acquisition starts.

	
property curve_buffer_length

	Control the length of the curve buffer.

Valid values are integers between 1 and 32,768, but the actual maximum
amount of points is determined by the amount of curves that are stored,
as set via the curve_buffer_bits property (32,768 / n).

	
property curve_buffer_status

	Measure the status of the curve buffer acquisition.

Command returns four values:
First value - Curve Acquisition Status: Number with 5 possibilities:
0: no activity
1: acquisition via TD command running
2: acquisition by a TDC command running
5: acquisition via TD command halted
6: acquisition bia TDC command halted
Second value - Number of Sweeps Acquired: Number of sweeps already
acquired.
Third value - Status Byte: Decimal representation of the status byte
(the same response as the ST command
Fourth value - Number of Points Acquired: Number of points acquired
in the curve buffer.

	
property dac1

	Control the voltage of the DAC1 output on the rear panel.

Valid values are floating point numbers between -12 to 12 V.

	
property dac2

	Control the voltage of the DAC2 output on the rear panel.

Valid values are floating point numbers between -12 to 12 V.

	
property dac3

	Control the voltage of the DAC3 output on the rear panel.

Valid values are floating point numbers between -12 to 12 V.

	
property dac4

	Control the voltage of the DAC4 output on the rear panel.

Valid values are floating point numbers between -12 to 12 V.

	
property fet

	Control the voltage preamplifier transistor type.

Valid values are 0 for bipolar or 1 for FET.

	
property frequency

	Control the oscillator frequency.

Valid values are floating point numbers representing the frequency in Hz.
(dynamic)

	
property gain

	Control the AC gain of signal channel amplifier.

	
get_buffer(quantity=None, convert_to_float=True, wait_for_buffer=True)

	Retrieves the buffer after it has been filled. The data retrieved
from the lock-in is in a fixed-point format, which requires translation
before it can be interpreted as meaningful data. When
convert_to_float is True the conversion is performed (if possible)
before returning the data.

	Parameters

	
	quantity (str) – If provided, names the quantity that is to be retrieved from the
curve buffer; can be any of:
‘x’, ‘y’, ‘magnitude’, ‘phase’, ‘sensitivity’, ‘adc1’, ‘adc2’,
‘adc3’, ‘dac1’, ‘dac2’, ‘noise’, ‘ratio’, ‘log ratio’, ‘event’,
‘frequency part 1’ and ‘frequency part 2’;
for both dual modes, additional options are:
‘x2’, ‘y2’, ‘magnitude2’, ‘phase2’, ‘sensitivity2’.
If no quantity is provided, all available data is retrieved.

	convert_to_float (bool) – Bool that determines whether to convert the fixed-point buffer-data
to meaningful floating point values via the buffer_to_float
method. If True, this method tries to convert all the available
data to meaningful values; if this is not possible, an exception
will be raised. If False, this conversion is not performed and the
raw buffer-data is returned.

	wait_for_buffer (bool) – Bool that determines whether to wait for the data acquisition to
finished if this method is called before the acquisition is
finished. If True, the method waits until the buffer is filled
before continuing; if False, the method raises an exception if the
acquisition is not finished when the method is called.

	
property harmonic

	Control the reference harmonic mode.

Valid values are integers.
(dynamic)

	
property id

	Measure the model number of the instrument.

Returned value is an integer.

	
property imode

	Control the lock-in amplifier to detect a voltage or current
signal.

Valid values are voltage mode, ``current mode, or low noise current mode.

	
init_curve_buffer()

	Initializes the curve storage memory and status variables. All
record of previously taken curves is removed.

	
property log_ratio

	Measure the log (base 10) of the ratio between the X channel and ADC1.

Returned value is a unitless floating point number equivalent to the
mathematical expression log(X/ADC1).

	
property mag

	Measure the magnitude of the signal.

Returned value is a floating point number in volts.

	
property options

	Get the device options installed.

	
property phase

	Measure the signal’s absolute phase angle.

Returned value is a floating point number in degrees.

	
property ratio

	Measure the ratio between the X channel and ADC1.

Returned value is a unitless floating point number equivalent to the
mathematical expression X/ADC1.

	
read(**kwargs)

	Read the response and remove extra unicode character from instrument readings.

	
read_binary_values(**kwargs)

	Read binary values from the device.

	
read_bytes(count, **kwargs)

	Read a certain number of bytes from the instrument.

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read the whole read buffer.

	kwargs – Keyword arguments for the adapter.

	Returns bytes

	Bytes response of the instrument (including termination).

	
property reference

	Control the oscillator reference input mode.

Valid values are internal, external rear or external front.

	
property reference_phase

	Control the reference absolute phase angle.

Valid values are floating point numbers between 0 - 360 degrees.

	
reset()

	Resets the instrument.

	
property sensitivity

	Control the signal’s measurement sensitivity range.

When in voltage measurement mode, valid values are discrete values from
2 nV to 1 V. When in current measurement mode, valid values are
discrete values from 2 fA to 1 µA (for normal current mode) or up to
10 nA (for low noise current mode).

	
setChannelAMode()

	Sets lock-in amplifier to measure a voltage signal only from the A
input connector.

	
setDifferentialMode(lineFiltering=True)

	Sets lock-in amplifier to differential mode, measuring A-B.

	
set_buffer(points, quantities=None, interval=0.01)

	Prepares the curve buffer for a measurement.

	Parameters

	
	points (int) – Number of points to be recorded in the curve buffer

	quantities (list) – List containing the quantities (strings) that are to be
recorded in the curve buffer, can be any of:
‘x’, ‘y’, ‘magnitude’, ‘phase’, ‘sensitivity’, ‘adc1’, ‘adc2’,
‘adc3’, ‘dac1’, ‘dac2’,
‘noise’, ‘ratio’, ‘log ratio’, ‘event’, ‘frequency’
(or ‘frequency part 1’ and ‘frequency part 2’);
for both dual modes, additional options are:
‘x2’, ‘y2’, ‘magnitude2’, ‘phase2’, ‘sensitivity2’.
Default is ‘x’ and ‘y’.

	interval (float) – The interval between two subsequent points stored in the
curve buffer in s. Default is 10 ms.

	
set_voltage_mode()

	Sets lock-in amplifier to measure a voltage signal.

	
property shield

	Control the input connector shield state.

Valid values are 0 to have shields grounded or 1 to have the shields
floating (i.e., connected to ground via a 1 kOhm resistor).

	
shutdown()

	Safely shutdown the lock-in amplifier.

Sets oscillator amplitude to 0 V and AC gain to 0 dB.

	
property slope

	Control the low-pass filter roll-off.

Valid values are the integers 6, 12, 18, or 24, which represents the
slope of the low-pass filter in dB/octave.

	
start_buffer()

	Initiates data acquisition. Acquisition starts at the current
position in the curve buffer and continues at the rate set by the STR
command until the buffer is full.

	
property status

	Get the status byte and Master Summary Status bit.

	
property time_constant

	Control the filter time constant.

Valid values are a strict set of time constants from 10 us to 50,000 s.
Returned values are floating point numbers in seconds.

	
property voltage

	Control the oscillator amplitude.

Valid values are floating point numbers between 0 to 5 V.

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
wait_for_buffer(timeout=None, delay=0.1)

	Method that waits until the curve buffer is filled

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument

	kwargs – Keyword arguments for the adapter.

	
write_binary_values(command, values, *args, **kwargs)

	Write binary values to the device.

	Parameters

	
	command – Command to send.

	values – The values to transmit.

	**kwargs (*args,) – Further arguments to hand to the Adapter.

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

	
property x

	Measure the output signal’s X channel.

Returned value is a floating point number in volts.

	
property xy

	Measure both the X and Y channels.

Returned values are floating point numbers in volts.

	
property y

	Measure the output signal’s Y channel.

Returned value is a floating point number in volts.

 Stanford Research Systems

Stanford Research Systems

This section contains specific documentation on the Stanford Research Systems (SRS) instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	SR510 Lock-in Amplifier
	SR510

	SR570 Lock-in Amplifier
	SR570

	SR830 Lock-in Amplifier
	SR830

	SR860 Lock-in Amplifier
	SR860

 SR510 Lock-in Amplifier

SR510 Lock-in Amplifier

	
class pymeasure.instruments.srs.SR510(adapter, name='Stanford Research Systems SR510 Lock-in amplifier', **kwargs)

	Bases: Instrument

	
property frequency

	A float property representing the SR510 input reference frequency

	
property output

	A float property that represents the SR510 output voltage in Volts.

	
property phase

	A float property that represents the SR510 reference to input
phase offset in degrees. Queries return values between -180 and
180 degrees. This property can be set with a range of values
between -999 to 999 degrees. Set values are mapped internal in the
lockin to -180 and 180 degrees.

	
property sensitivity

	A float property that represents the SR510 sensitivity value.
This property can be set.

	
property status

	A string property representing the bits set within the SR510 status byte

	
property time_constant

	A float property that represents the SR510 PRE filter time constant.
This property can be set.

 SR570 Lock-in Amplifier

SR570 Lock-in Amplifier

	
class pymeasure.instruments.srs.SR570(adapter, name='Stanford Research Systems SR570 Lock-in amplifier', **kwargs)

	Bases: Instrument

	
property bias_enabled

	Boolean that turns the bias on or off.
Allowed values are: True (bias on) and False (bias off)

	
property bias_level

	A floating point value in V that sets the bias voltage level of the
amplifier, in the [-5V,+5V] limits.
The values are up to 1 mV precision level.

	
blank_front()

	“Blanks the frontend output of the device

	
clear_overload()

	“Reset the filter capacitors to clear an overload condition

	
disable_bias()

	Turns the bias voltage off

	
disable_offset_current()

	“Disables the offset current

	
enable_bias()

	Turns the bias voltage on

	
enable_offset_current()

	“Enables the offset current

	
property filter_type

	A string that sets the filter type.
Allowed values are: [‘6dB Highpass’, ‘12dB Highpass’, ‘6dB Bandpass’, ‘6dB Lowpass’, ‘12dB Lowpass’, ‘none’]

	
property front_blanked

	Boolean that blanks(True) or un-blanks (False) the front panel

	
property gain_mode

	A string that sets the gain mode.
Allowed values are: [‘Low Noise’, ‘High Bandwidth’, ‘Low Drift’]

	
property high_freq

	A floating point value that sets the highpass frequency of the
amplifier, which takes a discrete value in a 1-3 sequence.
Values are truncated to the closest allowed value if not exact.
Allowed values range from 0.03 Hz to 1 MHz.

	
property invert_signal_sign

	An boolean sets the signal invert sense.
Allowed values are: True (inverted) and False (not inverted).

	
property low_freq

	A floating point value that sets the lowpass frequency of the
amplifier, which takes a discrete value in a 1-3 sequence.
Values are truncated to the closest allowed value if not exact.
Allowed values range from 0.03 Hz to 1 MHz.

	
property offset_current

	A floating point value in A that sets the absolute value
of the offset current of the amplifier, in the [1pA,5mA] limits.
The offset current takes discrete values in a 1-2-5 sequence.
Values are truncated to the closest allowed value if not exact.

	
property offset_current_enabled

	Boolean that turns the offset current on or off.
Allowed values are: True (current on) and False (current off).

	
property offset_current_sign

	An string that sets the offset current sign.
Allowed values are: ‘positive’ and ‘negative’.

	
property sensitivity

	A floating point value that sets the sensitivity of the
amplifier, which takes discrete values in a 1-2-5 sequence.
Values are truncated to the closest allowed value if not exact.
Allowed values range from 1 pA/V to 1 mA/V.

	
property signal_inverted

	Boolean that inverts the signal if True

	
unblank_front()

	Un-blanks the frontend output of the device

 SR830 Lock-in Amplifier

SR830 Lock-in Amplifier

	
class pymeasure.instruments.srs.SR830(adapter, name='Stanford Research Systems SR830 Lock-in amplifier', **kwargs)

	Bases: Instrument

	
property adc1

	Reads the Aux input 1 value in Volts with 1/3 mV resolution.

	
property adc2

	Reads the Aux input 2 value in Volts with 1/3 mV resolution.

	
property adc3

	Reads the Aux input 3 value in Volts with 1/3 mV resolution.

	
property adc4

	Reads the Aux input 4 value in Volts with 1/3 mV resolution.

	
auto_offset(channel)

	Offsets the channel (X, Y, or R) to zero

	
property aux_in_1

	Reads the Aux input 1 value in Volts with 1/3 mV resolution.

	
property aux_in_2

	Reads the Aux input 2 value in Volts with 1/3 mV resolution.

	
property aux_in_3

	Reads the Aux input 3 value in Volts with 1/3 mV resolution.

	
property aux_in_4

	Reads the Aux input 4 value in Volts with 1/3 mV resolution.

	
property aux_out_1

	A floating point property that controls the output of Aux output 1 in
Volts, taking values between -10.5 V and +10.5 V.
This property can be set.

	
property aux_out_2

	A floating point property that controls the output of Aux output 2 in
Volts, taking values between -10.5 V and +10.5 V.
This property can be set.

	
property aux_out_3

	A floating point property that controls the output of Aux output 3 in
Volts, taking values between -10.5 V and +10.5 V.
This property can be set.

	
property aux_out_4

	A floating point property that controls the output of Aux output 4 in
Volts, taking values between -10.5 V and +10.5 V.
This property can be set.

	
property channel1

	A string property that represents the type of Channel 1,
taking the values X, R, X Noise, Aux In 1, or Aux In 2.
This property can be set.

	
property channel2

	A string property that represents the type of Channel 2,
taking the values Y, Theta, Y Noise, Aux In 3, or Aux In 4.
This property can be set.

	
property dac1

	A floating point property that controls the output of Aux output 1 in
Volts, taking values between -10.5 V and +10.5 V.
This property can be set.

	
property dac2

	A floating point property that controls the output of Aux output 2 in
Volts, taking values between -10.5 V and +10.5 V.
This property can be set.

	
property dac3

	A floating point property that controls the output of Aux output 3 in
Volts, taking values between -10.5 V and +10.5 V.
This property can be set.

	
property dac4

	A floating point property that controls the output of Aux output 4 in
Volts, taking values between -10.5 V and +10.5 V.
This property can be set.

	
property err_status

	Reads the value of the lockin error (ERR) status byte. Returns an IntFlag type with
positions within the string corresponding to different error flags:

	Bit

	Status

	0

	unused

	1

	backup error

	2

	RAM error

	3

	unused

	4

	ROM error

	5

	GPIB error

	6

	DSP error

	7

	DSP error

	
property filter_slope

	An integer property that controls the filter slope, which
can take on the values 6, 12, 18, and 24 dB/octave. Values are
truncated to the next highest level if they are not exact.

	
property filter_synchronous

	A boolean property that controls the synchronous filter.
This property can be set. Allowed values are: True or False

	
property frequency

	A floating point property that represents the lock-in frequency
in Hz. This property can be set.

	
get_buffer(channel=1, start=0, end=None)

	Aquires the 32 bit floating point data through binary transfer

	
get_scaling(channel)

	Returns the offset precent and the exapnsion term
that are used to scale the channel in question

	
property harmonic

	An integer property that controls the harmonic that is measured.
Allowed values are 1 to 19999. Can be set.

	
property input_config

	An string property that controls the input configuration. Allowed
values are: [‘A’, ‘A - B’, ‘I (1 MOhm)’, ‘I (100 MOhm)’]

	
property input_coupling

	An string property that controls the input coupling. Allowed
values are: [‘AC’, ‘DC’]

	
property input_grounding

	An string property that controls the input shield grounding. Allowed
values are: [‘Float’, ‘Ground’]

	
property input_notch_config

	An string property that controls the input line notch filter
status. Allowed values are: [‘None’, ‘Line’, ‘2 x Line’, ‘Both’]

	
is_out_of_range()

	Returns True if the magnitude is out of range

	
property lia_status

	Reads the value of the lockin amplifier (LIA) status byte. Returns a binary string with
positions within the string corresponding to different status flags:

	Bit

	Status

	0

	Input/Amplifier overload

	1

	Time constant filter overload

	2

	Output overload

	3

	Reference unlock

	4

	Detection frequency range switched

	5

	Time constant changed indirectly

	6

	Data storage triggered

	7

	unused

	
property magnitude

	Reads the magnitude in Volts.

	
output_conversion(channel)

	Returns a function that can be used to determine
the signal from the channel output (X, Y, or R)

	
property phase

	A floating point property that represents the lock-in phase
in degrees. This property can be set.

	
quick_range()

	While the magnitude is out of range, increase
the sensitivity by one setting

	
property reference_source

	An string property that controls the reference source. Allowed
values are: [‘External’, ‘Internal’]

	
property reference_source_trigger

	A string property that controls the reference source triggering. Allowed
values are: [‘SINE’, ‘POS EDGE’, ‘NEG EDGE’]

	
property sample_frequency

	Gets the sample frequency in Hz

	
property sensitivity

	A floating point property that controls the sensitivity in Volts,
which can take discrete values from 2 nV to 1 V. Values are truncated
to the next highest level if they are not exact.

	
set_scaling(channel, precent, expand=0)

	Sets the offset of a channel (X=1, Y=2, R=3) to a
certain precent (-105% to 105%) of the signal, with
an optional expansion term (0, 10=1, 100=2)

	
property sine_voltage

	A floating point property that represents the reference sine-wave
voltage in Volts. This property can be set.

	
snap(val1='X', val2='Y', *vals)

	Method that records and retrieves 2 to 6 parameters at a single
instant. The parameters can be one of: X, Y, R, Theta, Aux In 1,
Aux In 2, Aux In 3, Aux In 4, Frequency, CH1, CH2.
Default is “X” and “Y”.

	Parameters

	
	val1 – first parameter to retrieve

	val2 – second parameter to retrieve

	vals – other parameters to retrieve (optional)

	
property theta

	Reads the theta value in degrees.

	
property time_constant

	A floating point property that controls the time constant
in seconds, which can take discrete values from 10 microseconds
to 30,000 seconds. Values are truncated to the next highest
level if they are not exact.

	
wait_for_buffer(count, has_aborted=<function SR830.<lambda>>, timeout=60, timestep=0.01)

	Wait for the buffer to fill a certain count

	
property x

	Reads the X value in Volts.

	
property xy

	Reads the X and Y values in Volts.

	
property y

	Reads the Y value in Volts.

 SR860 Lock-in Amplifier

SR860 Lock-in Amplifier

	
class pymeasure.instruments.srs.SR860(adapter, name='Stanford Research Systems SR860 Lock-in amplifier', **kwargs)

	Bases: Instrument

	
property adc1

	Reads the Aux input 1 value in Volts with 1/3 mV resolution.

	
property adc2

	Reads the Aux input 2 value in Volts with 1/3 mV resolution.

	
property adc3

	Reads the Aux input 3 value in Volts with 1/3 mV resolution.

	
property adc4

	Reads the Aux input 4 value in Volts with 1/3 mV resolution.

	
property aux_in_1

	Reads the Aux input 1 value in Volts with 1/3 mV resolution.

	
property aux_in_2

	Reads the Aux input 2 value in Volts with 1/3 mV resolution.

	
property aux_in_3

	Reads the Aux input 3 value in Volts with 1/3 mV resolution.

	
property aux_in_4

	Reads the Aux input 4 value in Volts with 1/3 mV resolution.

	
property aux_out_1

	A floating point property that controls the output of Aux output 1 in
Volts, taking values between -10.5 V and +10.5 V.
This property can be set.

	
property aux_out_2

	A floating point property that controls the output of Aux output 2 in
Volts, taking values between -10.5 V and +10.5 V.
This property can be set.

	
property aux_out_3

	A floating point property that controls the output of Aux output 3 in
Volts, taking values between -10.5 V and +10.5 V.
This property can be set.

	
property aux_out_4

	A floating point property that controls the output of Aux output 4 in
Volts, taking values between -10.5 V and +10.5 V.
This property can be set.

	
property dac1

	A floating point property that controls the output of Aux output 1 in
Volts, taking values between -10.5 V and +10.5 V.
This property can be set.

	
property dac2

	A floating point property that controls the output of Aux output 2 in
Volts, taking values between -10.5 V and +10.5 V.
This property can be set.

	
property dac3

	A floating point property that controls the output of Aux output 3 in
Volts, taking values between -10.5 V and +10.5 V.
This property can be set.

	
property dac4

	A floating point property that controls the output of Aux output 4 in
Volts, taking values between -10.5 V and +10.5 V.
This property can be set.

	
property dcmode

	A string property that represents the sine out dc mode.
This property can be set. Allowed values are:[‘COM’, ‘DIF’, ‘common’, ‘difference’]

	
property detectedfrequency

	Returns the actual detected frequency in HZ.

	
property extfreqency

	Returns the external frequency in Hz.

	
property filer_synchronous

	A string property that represents the synchronous filter.
This property can be set. Allowed values are:[‘Off’, ‘On’]

	
property filter_advanced

	A string property that represents the advanced filter.
This property can be set. Allowed values are:[‘Off’, ‘On’]

	
property filter_slope

	A integer property that sets the filter slope to 6 dB/oct(i=0), 12 DB/oct(i=1),
18 dB/oct(i=2), 24 dB/oct(i=3).

	
property frequency

	A floating point property that represents the lock-in frequency
in Hz. This property can be set.

	
property frequencypreset1

	A floating point property that represents the preset frequency for the F1 preset button.
This property can be set.

	
property frequencypreset2

	A floating point property that represents the preset frequency for the F2 preset button.
This property can be set.

	
property frequencypreset3

	A floating point property that represents the preset frequency for the F3 preset button.
This property can be set.

	
property frequencypreset4

	A floating point property that represents the preset frequency for the F4 preset button.
This property can be set.

	
property front_panel

	Turns the front panel blanking on(i=0) or off(i=1).

	
property get_noise_bandwidth

	Returns the equivalent noise bandwidth, in hertz.

	
property get_signal_strength_indicator

	Returns the signal strength indicator.

	
property gettimebase

	Returns the current 10 MHz timebase source.

	
property harmonic

	An integer property that controls the harmonic that is measured.
Allowed values are 1 to 99. Can be set.

	
property harmonicdual

	An integer property that controls the harmonic in dual reference mode that is measured.
Allowed values are 1 to 99. Can be set.

	
property horizontal_time_div

	A integer property for the horizontal time/div according to the following table:[‘0=0.5s’, ‘1=1s’, ‘2=2s’, ‘3=5s’, ‘4=10s’, ‘5=30s’, ‘6=1min’, ‘7=2min’, ‘8=5min’, ‘9=10min’, ‘10=30min’, ‘11=1hour’, ‘12=2hour’, ‘13=6hour’, ‘14=12hour’, ‘15=1day’, ‘16=2days’]

	
property input_coupling

	A string property that represents the input coupling.
This property can be set. Allowed values are:[‘AC’, ‘DC’]

	
property input_current_gain

	A string property that represents the current input gain.
This property can be set. Allowed values are:[‘1MEG’, ‘100MEG’]

	
property input_range

	A string property that represents the input range.
This property can be set. Allowed values are:[‘1V’, ‘300M’, ‘100M’, ‘30M’, ‘10M’]

	
property input_shields

	A string property that represents the input shield grounding.
This property can be set. Allowed values are:[‘Float’, ‘Ground’]

	
property input_signal

	A string property that represents the signal input.
This property can be set. Allowed values are:[‘VOLT’, ‘CURR’, ‘voltage’, ‘current’]

	
property input_voltage_mode

	A string property that represents the voltage input mode.
This property can be set. Allowed values are:[‘A’, ‘A-B’]

	
property internalfrequency

	A floating property that represents the internal lock-in frequency in Hz
This property can be set.

	
property magnitude

	Reads the magnitude in Volts.

	
property parameter_DAT1

	A integer property that assigns a parameter to data channel 1(green).
This parameters can be set. Allowed values are:[‘i=’, ‘0=Xoutput’, ‘1=Youtput’, ‘2=Routput’, ‘Thetaoutput’, ‘4=Aux IN1’, ‘5=Aux IN2’, ‘6=Aux IN3’, ‘7=Aux IN4’, ‘8=Xnoise’, ‘9=Ynoise’, ‘10=AUXOut1’, ‘11=AuxOut2’, ‘12=Phase’, ‘13=Sine Out amplitude’, ‘14=DCLevel’, ‘15I=nt.referenceFreq’, ‘16=Ext.referenceFreq’]

	
property parameter_DAT2

	A integer property that assigns a parameter to data channel 2(blue).
This parameters can be set. Allowed values are:[‘i=’, ‘0=Xoutput’, ‘1=Youtput’, ‘2=Routput’, ‘Thetaoutput’, ‘4=Aux IN1’, ‘5=Aux IN2’, ‘6=Aux IN3’, ‘7=Aux IN4’, ‘8=Xnoise’, ‘9=Ynoise’, ‘10=AUXOut1’, ‘11=AuxOut2’, ‘12=Phase’, ‘13=Sine Out amplitude’, ‘14=DCLevel’, ‘15I=nt.referenceFreq’, ‘16=Ext.referenceFreq’]

	
property parameter_DAT3

	A integer property that assigns a parameter to data channel 3(yellow).
This parameters can be set. Allowed values are:[‘i=’, ‘0=Xoutput’, ‘1=Youtput’, ‘2=Routput’, ‘Thetaoutput’, ‘4=Aux IN1’, ‘5=Aux IN2’, ‘6=Aux IN3’, ‘7=Aux IN4’, ‘8=Xnoise’, ‘9=Ynoise’, ‘10=AUXOut1’, ‘11=AuxOut2’, ‘12=Phase’, ‘13=Sine Out amplitude’, ‘14=DCLevel’, ‘15I=nt.referenceFreq’, ‘16=Ext.referenceFreq’]

	
property parameter_DAT4

	A integer property that assigns a parameter to data channel 3(orange).
This parameters can be set. Allowed values are:[‘i=’, ‘0=Xoutput’, ‘1=Youtput’, ‘2=Routput’, ‘Thetaoutput’, ‘4=Aux IN1’, ‘5=Aux IN2’, ‘6=Aux IN3’, ‘7=Aux IN4’, ‘8=Xnoise’, ‘9=Ynoise’, ‘10=AUXOut1’, ‘11=AuxOut2’, ‘12=Phase’, ‘13=Sine Out amplitude’, ‘14=DCLevel’, ‘15I=nt.referenceFreq’, ‘16=Ext.referenceFreq’]

	
property phase

	A floating point property that represents the lock-in phase
in degrees. This property can be set.

	
property reference_externalinput

	A string property that represents the external reference input.
This property can be set. Allowed values are:[‘50OHMS’, ‘1MEG’]

	
property reference_source

	A string property that represents the reference source.
This property can be set. Allowed values are:[‘INT’, ‘EXT’, ‘DUAL’, ‘CHOP’]

	
property reference_triggermode

	A string property that represents the external reference trigger mode.
This property can be set. Allowed values are:[‘SIN’, ‘POS’, ‘NEG’, ‘POSTTL’, ‘NEGTTL’]

	
property screen_layout

	A integer property that Sets the screen layout to trend(i=0), full strip chart
history(i=1), half strip chart history(i=2), full FFT(i=3), half FFT(i=4) or big
numerical(i=5).

	
screenshot()

	Take screenshot on device
The DCAP command saves a screenshot to a USB memory stick.
This command is the same as pressing the [Screen Shot] key.
A USB memory stick must be present in the front panel USB port.

	
property sensitvity

	A floating point property that controls the sensitivity in Volts,
which can take discrete values from 2 nV to 1 V. Values are truncated
to the next highest level if they are not exact.

	
property sine_amplitudepreset1

	Floating point property representing the preset sine out amplitude, for the A1 preset button.
This property can be set.

	
property sine_amplitudepreset2

	Floating point property representing the preset sine out amplitude, for the A2 preset button.
This property can be set.

	
property sine_amplitudepreset3

	Floating point property representing the preset sine out amplitude, for the A3 preset button.
This property can be set.

	
property sine_amplitudepreset4

	Floating point property representing the preset sine out amplitude, for the A3 preset button.
This property can be set.

	
property sine_dclevelpreset1

	A floating point property that represents the preset sine out dc level for the L1 button.
This property can be set.

	
property sine_dclevelpreset2

	A floating point property that represents the preset sine out dc level for the L2 button.
This property can be set.

	
property sine_dclevelpreset3

	A floating point property that represents the preset sine out dc level for the L3 button.
This property can be set.

	
property sine_dclevelpreset4

	A floating point property that represents the preset sine out dc level for the L4 button.
This property can be set.

	
property sine_voltage

	A floating point property that represents the reference sine-wave
voltage in Volts. This property can be set.

	
snap(val1='X', val2='Y', val3=None)

	retrieve 2 or 3 parameters at once
parameters can be chosen by index, or enumeration as follows:

	index

	enumeration

	parameter

	0

	X

	X output

	1

	Y

	Y output

	2

	R

	R output

	3

	THeta

	θ output

	4

	IN1

	Aux In1

	5

	IN2

	Aux In2

	6

	IN3

	Aux In3

	7

	IN4

	Aux In4

	8

	XNOise

	Xnoise

	9

	YNOise

	Ynoise

	10

	OUT1

	Aux Out1

	11

	OUT2

	Aux Out2

	12

	PHAse

	Reference Phase

	13

	SAMp

	Sine Out Amplitude

	14

	LEVel

	DC Level

	15

	FInt

	Int. Ref. Frequency

	16

	FExt

	Ext. Ref. Frequency

	Parameters

	
	val1 – parameter enumeration/index

	val2 – parameter enumeration/index

	val3 – parameter enumeration/index (optional)

	Defaults:
	val1 = “X”
val2 = “Y”
val3 = None

	
property strip_chart_dat1

	A integer property that turns the strip chart graph of data channel 1 off(i=0) or on(i=1).

	
property strip_chart_dat2

	A integer property that turns the strip chart graph of data channel 2 off(i=0) or on(i=1).

	
property strip_chart_dat3

	A integer property that turns the strip chart graph of data channel 1 off(i=0) or on(i=1).

	
property strip_chart_dat4

	A integer property that turns the strip chart graph of data channel 4 off(i=0) or on(i=1).

	
property theta

	Reads the theta value in degrees.

	
property time_constant

	A floating point property that controls the time constant
in seconds, which can take discrete values from 10 microseconds
to 30,000 seconds. Values are truncated to the next highest
level if they are not exact.

	
property timebase

	Sets the external 10 MHZ timebase to auto(i=0) or internal(i=1).

	
property x

	Reads the X value in Volts

	
property y

	Reads the Y value in Volts

 T&C Power Conversion

T&C Power Conversion

This section contains specific documentation on the instruments from T&C Power Conversion that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	T&C Power Conversion AG Series Plasma Generator CXN
	CXN

	PresetChannel

 T&C Power Conversion AG Series Plasma Generator CXN

T&C Power Conversion AG Series Plasma Generator CXN

	
class pymeasure.instruments.tcpowerconversion.CXN(adapter, name='T&C RF sputtering power supply', address=0, **kwargs)

	Bases: Instrument

T&C Power Conversion AG Series Plasma Generator CXN
(also rebranded by AJA International Inc as 0113 GTC or 0313 GTC)

Connection to the device is made through an RS232 serial connection.
The communication settings are fixed in the device at 38400, stopbit one,
parity none. The device uses a command response system where every receipt
of a command is acknowledged by returning a ‘*’. A ‘?’ is returned to
indicates the command was not recognized by the device.

A command messages always consists of the following bytes (B):
1B - header (always ‘C’),
1B - address (ignored),
2B - command id,
2B - parameter 1,
2B - parameter,
2B - checksum

A response message always consists of:
1B - header (always ‘R’),
1B - address of the device,
2B - length of the data package,
variable length data,
2B - checksum
response messages are received after the acknowledge byte.

	Parameters

	
	adapter – pyvisa resource name of the instrument or adapter instance

	name (string) – Name of the instrument.

	kwargs – Any valid key-word argument for Instrument

Note

In order to enable setting any parameters one has to request control
and periodically (at least once per 2s) poll any value from the device.
Failure to do so will mean loss of control and the device will reset
certain parameters (setpoint, disable RF, …). If no value should be polled
but control should remain active one can also use the ping method.

	
preset_1

	
	Channel

	PresetChannel

	
preset_2

	
	Channel

	PresetChannel

	
preset_3

	
	Channel

	PresetChannel

	
preset_4

	
	Channel

	PresetChannel

	
preset_5

	
	Channel

	PresetChannel

	
preset_6

	
	Channel

	PresetChannel

	
preset_7

	
	Channel

	PresetChannel

	
preset_8

	
	Channel

	PresetChannel

	
preset_9

	
	Channel

	PresetChannel

	
class Status(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntFlag

IntFlag type used to represent the CXN status.

The used bits correspond to:
bit 14: Analog interface enabled,
bit 11: Interlock open,
bit 10: Over temperature,
bit 9: Reverse power limit,
bit 8: Forward power limit,
bit 6: MCG mode active,
bit 5: load power leveling active,
bit 4, External RF source active,
bit 0: RF power on.

	
property dc_voltage

	Get the DC voltage in volts.

	
property firmware_version

	Get the UI-processor and RF-processor firmware version numbers.

	
property frequency

	Get operating frequency in Hz.

	
property id

	Get the device identification string.

	
property load_capacity

	Control the percentage of full-scale value of the load capacity.
It can be set only when manual_mode is True.

	
property manual_mode

	Control the manual tuner mode.

	
property operation_mode

	Control the operation mode.

	
ping()

	Send a ping to the instrument.

	
property power

	Get power readings for forward/reverse/load power in watts.

	
property power_limit

	Get maximum power of the power supply.

	
property preset_slot

	Control which preset slot will be used for auto-tune mode.
Valid values are 0 to 9. 0 means no preset will be used

	
property pulse_params

	Get pulse on/off time of the pulse waveform.

	
property ramp_rate

	Control the ramp rate in watts/second.

	
property ramp_start_power

	Control the ramp starting power in watts.

	
read()

	Reads a response message from the instrument.

This method determines the length of the message from the automatically
by reading the message header and also checks for a correct checksum.

	Returns

	the data fields

	Return type

	bytes

	Raises

	ValueError – if a checksum error is detected

	
release_control()

	Release instrument control.

This will reset certain properties to safe defaults and disable the RF
output.

	
request_control()

	Request control of the instrument.

This is required to be able to set any properties.

	
property reverse_power_limit

	Get maximum reverse power.

	
property rf_enabled

	Control the RF output.

	
property serial

	Get the serial number of the instrument.

	
property setpoint

	Control the setpoint power level in watts.

	
property status

	Get status field. The return value is represented by the IntFlag
type Status.

	
property temperature

	Get heat sink temperature in deg Celsius.

	
property tune_capacity

	Control the percentage of full-scale value of the tune capacity.
It can be set only when manual_mode is True.

	
property tuner

	Get type of the used tuner.

	
values(command, cast=<class 'int'>, separator=', ', preprocess_reply=None, **kwargs)

	Write a command to the instrument and return a list of formatted
values from the result.

This is derived from CommonBase.values and adapted here for use with bytes
communication messages (no str conversion and strip). It is implemented as a
general method to allow using it equally in PresetChannel and CXN. See
Github issue #784 for details.

	Parameters

	
	command – SCPI command to be sent to the instrument

	separator – A separator character to split the string into a list

	cast – A type to cast the result

	preprocess_reply – optional callable used to preprocess values
received from the instrument. The callable returns the processed
string.

	Returns

	A list of the desired type, or strings where the casting fails

	
write(command)

	Writes a command to the instrument and includes needed required
header and address.

	Parameters

	command (str) – command to be sent to the instrument

	
class pymeasure.instruments.tcpowerconversion.tccxn.PresetChannel(parent, id)

	Bases: Channel

	
property load_capacity

	Control the percentage of full-scale value of the load capacity preset.

	
property tune_capacity

	Control the percentage of full-scale value of the tune capacity preset.

	
values(command, cast=<class 'int'>, separator=', ', preprocess_reply=None, **kwargs)

	Write a command to the instrument and return a list of formatted
values from the result.

This is derived from CommonBase.values and adapted here for use with bytes
communication messages (no str conversion and strip). It is implemented as a
general method to allow using it equally in PresetChannel and CXN. See
Github issue #784 for details.

	Parameters

	
	command – SCPI command to be sent to the instrument

	separator – A separator character to split the string into a list

	cast – A type to cast the result

	preprocess_reply – optional callable used to preprocess values
received from the instrument. The callable returns the processed
string.

	Returns

	A list of the desired type, or strings where the casting fails

 TDK Lambda

TDK Lambda

This section contains specific documentation on the TDK Lambda instruments that are implemented. If you are interested
in an instrument not included, please consider adding the instrument.

	TDK Lambda Genesys 40-38 DC power supply
	TDK_Gen40_38

	TDK Lambda Genesys 80-65 DC power supply
	TDK_Gen80_65

 TDK Lambda Genesys 40-38 DC power supply

TDK Lambda Genesys 40-38 DC power supply

	
class pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38(adapter, name='TDK Lambda Gen40-38', address=6, **kwargs)

	Bases: TDK_Lambda_Base

Represents the TDK Lambda Genesys 40-38 DC power supply. Class inherits
commands from the TDK_Lambda_Base parent class and utilizes dynamic
properties adjust valid values on various properties.

psu = TDK_Gen40_38("COM3", 6) # COM port and daisy-chain address
psu.remote = "REM" # PSU in remote mode
psu.output_enabled = True # Turn on output
psu.ramp_to_current(2.0) # Ramp to 2.0 A of current
print(psu.current) # Measure actual PSU current
print(psu.voltage) # Measure actual PSU voltage
psu.shutdown() # Run shutdown command

The initialization of a TDK instrument requires the current address
of the TDK power supply. The default address for the TDK Lambda is 6.

	Parameters

	
	adapter – VISAAdapter instance

	name – Instrument name. Default is “TDK Lambda Gen40-38”

	address – Serial port daisy chain number. Default is 6.

	
property address

	Set the address of the power supply.

Valid values are integers between 0 - 30 (inclusive).

	
property auto_restart_enabled

	Control the auto restart mode, which restores the power supply to the last
output voltage and current settings with output enabled on startup.

Valid values are True to restore output settings with output enabled on startup
and False to disable restoration of settings and output disabled on startup.

	
check_errors()

	Read all errors from the instrument and log them.

	Returns

	List of error entries.

	
check_get_errors()

	Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
check_set_errors()

	Only use this command for setting commands, i.e. non-querying commands.

Any non-querying commands (i.e., a command that does NOT
have the “?” symbol in it like the instrument command “PV 10”) will
automatically return an “OK” reply for valid command or an error code.
This is done to confirm that the instrument has received the command.
Any querying commands (i.e., a command that does have the “?” symbol
in it like the instrument command “PV?”) will return the requested value,
not the confirmation.

	
clear()

	Clear FEVE and SEVE registers to zero.

	
property complete

	Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation
Complete query places an ASCII character 1 into the device’s Output Queue when all pending
selected device operations have been finished.

	
property current

	Measure the actual output current.

Returns a float with five digits of precision.

	
property current_setpoint

	Control the programmed (set) output current.(dynamic)

	
property display

	Get the displayed voltage and current.

Returns a list of floating point numbers in the order of [measured voltage,
programmed voltage, measured current, programmed current, over voltage set point,
under voltage set point].

	
property foldback_delay

	Control the fold back delay.

Adds an additional delay to the standard fold back delay (250 ms) by
multiplying the set value by 0.1. Valid values are integers between
0 to 255.

	
property foldback_enabled

	Control the fold back protection of the power supply.

Valid values are True to arm the fold back protection and False
to cancel the fold back protection.

	
foldback_reset()

	Reset the fold back delay to 0 s, restoring the standard 250 ms
delay.

Property is UNTESTED.

	
property id

	Get the identity of the instrument.

Returns a list of instrument manufacturer and model in the format: ["LAMBDA", "GENX-Y"]

	
property last_test_date

	Get the date of the last test, possibly calibration date.

Returns a string in the format: yyyy/mm/dd.

	
property master_slave_setting

	Get the master and slave settings.

Possible master return values are 1, 2, 3, and 4. The slave value is 0.

Property is UNTESTED.

	
property mode

	Measure the output mode of the power supply.

When power supply is on, the returned value will be either 'CV' for
control voltage or 'CC' for or control current. If the power supply
is off, the returned value will be 'OFF'.

	
property multidrop_capability

	Get whether the multi-drop option is available on the power supply.

If return value is False, the option is not available, if True it is available.

Property is UNTESTED.

	
property options

	Get the device options installed.

	
property output_enabled

	Control the output of the power supply.

Valid values are True to turn output on and False to turn output off, shutting down
any voltage or current.

	
property over_voltage

	Control the over voltage protection.
(dynamic)

	
property pass_filter

	Control the low pass filter frequency of the A to D converter
for voltage and current measurement.

Valid frequency values are 18, 23, or 46 Hz. Default value is 18 Hz.

	
ramp_to_current(target_current, steps=20, pause=0.2)

	Ramps to a target current from the set current value over
a certain number of linear steps, each separated by a pause duration.

	Parameters

	
	target_current – Target current in amps

	steps – Integer number of steps

	pause – Pause duration in seconds to wait between steps

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

	
read_binary_values(**kwargs)

	Read binary values from the device.

	
read_bytes(count, **kwargs)

	Read a certain number of bytes from the instrument.

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read the whole read buffer.

	kwargs – Keyword arguments for the adapter.

	Returns bytes

	Bytes response of the instrument (including termination).

	
recall()

	Recall last saved instrument settings.

	
property remote

	Control the current remote operation of the power supply.

Valid values are 'LOC' for local mode, 'REM' for remote mode,
and 'LLO' for local lockout mode.

	
property repeat

	Measure the last command again.

Returns output of the last command.

	
reset()

	Reset the instrument to default values.

	
save()

	Save current instrument settings.

	
property serial

	Get the serial number of the instrument.

Returns the serial number of of the instrument as an ASCII string.

	
set_max_over_voltage()

	Set the over voltage protection to the maximum level for the power
supply.

	
shutdown()

	Safety shutdown the power supply.

Ramps the power supply down to zero current using the
self.ramp_to_current(0.0) method and turns the output off.

	
property status

	Get the power supply status.

Returns a list in the order of [actual voltage
(MV), the programmed voltage (PV), the actual current (MC), the
programmed current (PC), the status register (SR), and the fault
register (FR)].

	
property under_voltage

	Control the under voltage limit.

Property is UNTESTED.
(dynamic)

	
property version

	Get the software version on instrument.

Returns the software version as an ASCII string.

	
property voltage

	Measure the the actual output voltage.

	
property voltage_setpoint

	Control the programmed (set) output voltage.(dynamic)

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument

	kwargs – Keyword arguments for the adapter.

	
write_binary_values(command, values, *args, **kwargs)

	Write binary values to the device.

	Parameters

	
	command – Command to send.

	values – The values to transmit.

	**kwargs (*args,) – Further arguments to hand to the Adapter.

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

 TDK Lambda Genesys 80-65 DC power supply

TDK Lambda Genesys 80-65 DC power supply

	
class pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65(adapter, name='TDK Lambda Gen80-65', address=6, **kwargs)

	Bases: TDK_Lambda_Base

Represents the TDK Lambda Genesys 80-65 DC power supply. Class inherits
commands from the TDK_Lambda_Base parent class and utilizes dynamic
properties adjust valid values on various properties.

psu = TDK_Gen80_65("COM3", 6) # COM port and daisy-chain address
psu.remote = "REM" # PSU in remote mode
psu.output_enabled = True # Turn on output
psu.ramp_to_current(2.0) # Ramp to 2.0 A of current
print(psu.current) # Measure actual PSU current
print(psu.voltage) # Measure actual PSU voltage
psu.shutdown() # Run shutdown command

The initialization of a TDK instrument requires the current address
of the TDK power supply. The default address for the TDK Lambda is 6.

	Parameters

	
	adapter – VISAAdapter instance

	name – Instrument name. Default is “TDK Lambda Gen80-65”

	address – Serial port daisy chain number. Default is 6.

	
property address

	Set the address of the power supply.

Valid values are integers between 0 - 30 (inclusive).

	
property auto_restart_enabled

	Control the auto restart mode, which restores the power supply to the last
output voltage and current settings with output enabled on startup.

Valid values are True to restore output settings with output enabled on startup
and False to disable restoration of settings and output disabled on startup.

	
check_errors()

	Read all errors from the instrument and log them.

	Returns

	List of error entries.

	
check_get_errors()

	Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
check_set_errors()

	Only use this command for setting commands, i.e. non-querying commands.

Any non-querying commands (i.e., a command that does NOT
have the “?” symbol in it like the instrument command “PV 10”) will
automatically return an “OK” reply for valid command or an error code.
This is done to confirm that the instrument has received the command.
Any querying commands (i.e., a command that does have the “?” symbol
in it like the instrument command “PV?”) will return the requested value,
not the confirmation.

	
clear()

	Clear FEVE and SEVE registers to zero.

	
property complete

	Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation
Complete query places an ASCII character 1 into the device’s Output Queue when all pending
selected device operations have been finished.

	
property current

	Measure the actual output current.

Returns a float with five digits of precision.

	
property current_setpoint

	Control the programmed (set) output current.(dynamic)

	
property display

	Get the displayed voltage and current.

Returns a list of floating point numbers in the order of [measured voltage,
programmed voltage, measured current, programmed current, over voltage set point,
under voltage set point].

	
property foldback_delay

	Control the fold back delay.

Adds an additional delay to the standard fold back delay (250 ms) by
multiplying the set value by 0.1. Valid values are integers between
0 to 255.

	
property foldback_enabled

	Control the fold back protection of the power supply.

Valid values are True to arm the fold back protection and False
to cancel the fold back protection.

	
foldback_reset()

	Reset the fold back delay to 0 s, restoring the standard 250 ms
delay.

Property is UNTESTED.

	
property id

	Get the identity of the instrument.

Returns a list of instrument manufacturer and model in the format: ["LAMBDA", "GENX-Y"]

	
property last_test_date

	Get the date of the last test, possibly calibration date.

Returns a string in the format: yyyy/mm/dd.

	
property master_slave_setting

	Get the master and slave settings.

Possible master return values are 1, 2, 3, and 4. The slave value is 0.

Property is UNTESTED.

	
property mode

	Measure the output mode of the power supply.

When power supply is on, the returned value will be either 'CV' for
control voltage or 'CC' for or control current. If the power supply
is off, the returned value will be 'OFF'.

	
property multidrop_capability

	Get whether the multi-drop option is available on the power supply.

If return value is False, the option is not available, if True it is available.

Property is UNTESTED.

	
property options

	Get the device options installed.

	
property output_enabled

	Control the output of the power supply.

Valid values are True to turn output on and False to turn output off, shutting down
any voltage or current.

	
property over_voltage

	Control the over voltage protection.
(dynamic)

	
property pass_filter

	Control the low pass filter frequency of the A to D converter
for voltage and current measurement.

Valid frequency values are 18, 23, or 46 Hz. Default value is 18 Hz.

	
ramp_to_current(target_current, steps=20, pause=0.2)

	Ramps to a target current from the set current value over
a certain number of linear steps, each separated by a pause duration.

	Parameters

	
	target_current – Target current in amps

	steps – Integer number of steps

	pause – Pause duration in seconds to wait between steps

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

	
read_binary_values(**kwargs)

	Read binary values from the device.

	
read_bytes(count, **kwargs)

	Read a certain number of bytes from the instrument.

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read the whole read buffer.

	kwargs – Keyword arguments for the adapter.

	Returns bytes

	Bytes response of the instrument (including termination).

	
recall()

	Recall last saved instrument settings.

	
property remote

	Control the current remote operation of the power supply.

Valid values are 'LOC' for local mode, 'REM' for remote mode,
and 'LLO' for local lockout mode.

	
property repeat

	Measure the last command again.

Returns output of the last command.

	
reset()

	Reset the instrument to default values.

	
save()

	Save current instrument settings.

	
property serial

	Get the serial number of the instrument.

Returns the serial number of of the instrument as an ASCII string.

	
set_max_over_voltage()

	Set the over voltage protection to the maximum level for the power
supply.

	
shutdown()

	Safety shutdown the power supply.

Ramps the power supply down to zero current using the
self.ramp_to_current(0.0) method and turns the output off.

	
property status

	Get the power supply status.

Returns a list in the order of [actual voltage
(MV), the programmed voltage (PV), the actual current (MC), the
programmed current (PC), the status register (SR), and the fault
register (FR)].

	
property under_voltage

	Control the under voltage limit.

Property is UNTESTED.
(dynamic)

	
property version

	Get the software version on instrument.

Returns the software version as an ASCII string.

	
property voltage

	Measure the the actual output voltage.

	
property voltage_setpoint

	Control the programmed (set) output voltage.(dynamic)

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument

	kwargs – Keyword arguments for the adapter.

	
write_binary_values(command, values, *args, **kwargs)

	Write binary values to the device.

	Parameters

	
	command – Command to send.

	values – The values to transmit.

	**kwargs (*args,) – Further arguments to hand to the Adapter.

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

 Tektronix

Tektronix

This section contains specific documentation on the Tektronix instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	TDS2000 Oscilloscope
	TDS2000

	AFG3152C Arbitrary function generator
	AFG3152C

 TDS2000 Oscilloscope

TDS2000 Oscilloscope

	
class pymeasure.instruments.tektronix.TDS2000(adapter, name='Tektronix TDS 2000 Oscilliscope', **kwargs)

	Bases: Instrument

Represents the Tektronix TDS 2000 Oscilloscope
and provides a high-level for interacting with the instrument

 AFG3152C Arbitrary function generator

AFG3152C Arbitrary function generator

	
class pymeasure.instruments.tektronix.AFG3152C(adapter, name='Tektronix AFG3152C arbitrary function generator', **kwargs)

	Bases: Instrument

Represents the Tektronix AFG 3000 series (one or two channels)
arbitrary function generator and provides a high-level for
interacting with the instrument.

afg=AFG3152C("GPIB::1") # AFG on GPIB 1
afg.reset() # Reset to default
afg.ch1.shape='sinusoidal' # Sinusoidal shape
afg.ch1.unit='VPP' # Sets CH1 unit to VPP
afg.ch1.amp_vpp=1 # Sets the CH1 level to 1 VPP
afg.ch1.frequency=1e3 # Sets the CH1 frequency to 1KHz
afg.ch1.enable() # Enables the output from CH1

 Teledyne

Teledyne

This section contains specific documentation on the Teledyne instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

If the instrument you are looking for is not here, also check LeCroy for older instruments.

	Teledyne T3AFG Arbitrary Waveform Generator

There are shared base classes for Teledyne oscilloscopes.
If your device is missing, the base class might already work well enough.
If adding a new device, these base classes should limit the amount of new code necessary.

	Teledyne Oscilloscope base classes
	Teledyne Oscilloscope

	Teledyne Channel

 Teledyne T3AFG Arbitrary Waveform Generator

Teledyne T3AFG Arbitrary Waveform Generator

	
class pymeasure.instruments.teledyne.TeledyneT3AFG(adapter, name='Teledyne T3AFG', **kwargs)

	Bases: Instrument

Represents the Teledyne T3AFG series of arbitrary waveform
generator interface for interacting with the instrument.

Intially targeting T3AFG80, some features may not be available on
lower end models and features from higher end models are not
included here intially.

Future improvements (help welcomed):
- Add other OUTPut related controls like Load and Polarity
- Add other Basic Waveform related controls like Period
- Add frequency ranges per model
- Add channel coupling control

	
ch_1

	
	Channel

	SignalChannel

	
ch_2

	
	Channel

	SignalChannel

	
check_errors()

	Read all errors from the instrument and log them.

	Returns

	List of error entries.

	
check_get_errors()

	Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
clear()

	Clears the instrument status byte

	
property complete

	Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation
Complete query places an ASCII character 1 into the device’s Output Queue when all pending
selected device operations have been finished.

	
property id

	Get the identification of the instrument.

	
property options

	Get the device options installed.

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

	
read_binary_values(**kwargs)

	Read binary values from the device.

	
read_bytes(count, **kwargs)

	Read a certain number of bytes from the instrument.

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read the whole read buffer.

	kwargs – Keyword arguments for the adapter.

	Returns bytes

	Bytes response of the instrument (including termination).

	
reset()

	Resets the instrument.

	
shutdown()

	Brings the instrument to a safe and stable state

	
property status

	Get the status byte and Master Summary Status bit.

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument

	kwargs – Keyword arguments for the adapter.

	
write_binary_values(command, values, *args, **kwargs)

	Write binary values to the device.

	Parameters

	
	command – Command to send.

	values – The values to transmit.

	**kwargs (*args,) – Further arguments to hand to the Adapter.

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

	
class pymeasure.instruments.teledyne.teledyneT3AFG.SignalChannel(parent, id)

	Bases: Channel

	
property amplitude

	Control the amplitude of waveform to be output in volts peak-to-peak.
Has no effect when WVTP is NOISE or DC.
Max amplitude depends on offset, frequency, and load.
Amplitude is also limited by the channel max output amplitude.(dynamic)

	
property frequency

	Control the frequency of waveform to be output in Hertz.
Has no effect when WVTP is NOISE or DC.(dynamic)

	
property max_output_amplitude

	Control the maximum output amplitude of the channel in volts peak to peak.(dynamic)

	
property offset

	Control the offset of waveform to be output in volts.
Has no effect when WVTP is NOISE.
Max offset depends on amplitude, frequency, and load.
Offset is also limited by the channel max output amplitude.(dynamic)

	
property output_enabled

	Control whether the channel output is enabled (boolean).

	
property wavetype

	Control the type of waveform to be output.
Options are: {‘SINE’, ‘SQUARE’, ‘RAMP’, ‘PULSE’, ‘NOISE’, ‘ARB’, ‘DC’, ‘PRBS’, ‘IQ’}

 Teledyne Oscilloscope base classes

Teledyne Oscilloscope base classes

Teledyne Oscilloscope

	
class pymeasure.instruments.teledyne.TeledyneOscilloscope(adapter, name='Teledyne Oscilloscope', **kwargs)

	Bases: Instrument

A base abstract class for any Teledyne Lecroy oscilloscope.

All Teledyne oscilloscopes have a very similar interface, hence this base class to combine
them. Note that specific models will likely have conflicts in their interface.

	Attributes:
	WRITE_INTERVAL_S: minimum time between two commands. If a command is received less than
WRITE_INTERVAL_S after the previous one, the code blocks until at least WRITE_INTERVAL_S
seconds have passed.
Because the oscilloscope takes a non neglibile time to perform some operations, it might
be needed for the user to tweak the sleep time between commands.
The WRITE_INTERVAL_S is set to 10ms as default however its optimal value heavily depends
on the actual commands and on the connection type, so it is impossible to give a unique
value to fit all cases. An interval between 10ms and 500ms second proved to be good,
depending on the commands and connection latency.

	
ch_1

	
	Channel

	TeledyneOscilloscopeChannel

	
ch_2

	
	Channel

	TeledyneOscilloscopeChannel

	
ch_3

	
	Channel

	TeledyneOscilloscopeChannel

	
ch_4

	
	Channel

	TeledyneOscilloscopeChannel

	
autoscale()

	Autoscale displayed channels.

	
property bwlimit

	Set the internal low-pass filter for all channels.(dynamic)

	
center_trigger()

	Set the trigger levels to center of the trigger source waveform.

	
ch(source)

	Get channel object from its index or its name. Or if source is “math”, just return the
scope object.

	Parameters

	source – can be 1, 2, 3, 4 or C1, C2, C3, C4, MATH

	Returns

	handle to the selected source.

	
default_setup()

	Set up the oscilloscope for remote operation.

The COMM_HEADER command controls the
way the oscilloscope formats response to queries. This command does not affect the
interpretation of messages sent to the oscilloscope. Headers can be sent in their long or
short form regardless of the CHDR setting.
By setting the COMM_HEADER to OFF, the instrument is going to reply with minimal
information, and this makes the response message much easier to parse.
The user should not be fiddling with the COMM_HEADER during operation, because
if the communication header is anything other than OFF, the whole driver breaks down.

	
display_parameter(parameter, channel)

	Same as the display_parameter method in the Channel subclass.

	
download_image()

	Get a BMP image of oscilloscope screen in bytearray of specified file format.

	
download_waveform(source, requested_points=None, sparsing=None)

	Get data points from the specified source of the oscilloscope.

The returned objects are two np.ndarray of data and time points and a dict with the
waveform preamble, that contains metadata about the waveform.

	Parameters

	
	source – measurement source. It can be “C1”, “C2”, “C3”, “C4”, “MATH”.

	requested_points – number of points to acquire. If None the number of points
requested in the previous call will be assumed, i.e. the value of the number of
points stored in the oscilloscope memory. If 0 the maximum number of points will
be returned.

	sparsing – interval between data points. For example if sparsing = 4, only one
point every 4 points is read. If 0 or None the sparsing of the previous call is
assumed, i.e. the value of the sparsing stored in the oscilloscope memory.

	Returns

	data_ndarray, time_ndarray, waveform_preamble_dict: see waveform_preamble
property for dict format.

	
property intensity

	Set the intensity level of the grid or the trace in percent

	
measure_parameter(parameter, channel)

	Same as the measure_parameter method in the Channel subclass

	
property memory_size

	Control the maximum depth of memory (float or string).
Assign for example 500, 100e6, “100K”, “25MA”.

The reply will always be a float.

	
run()

	Starts repetitive acquisitions.

This is the same as pressing the Run key on the front panel.

	
single()

	Causes the instrument to acquire a single trigger of data.

This is the same as pressing the Single key on the front panel.

	
stop()

	Stops the acquisition. This is the same as pressing the Stop key on the front panel.

	
property timebase

	Get timebase setup as a dict containing the following keys:

	“timebase_scale”: horizontal scale in seconds/div (float)

	“timebase_offset”: interval in seconds between the trigger and the reference
position (float)

	
property timebase_offset

	Control the time interval in seconds between the trigger event and the reference
position (at center of screen by default).

	
property timebase_scale

	Control the horizontal scale (units per division) in seconds for the main
window (float).

	
timebase_setup(scale=None, offset=None)

	Set up timebase. Unspecified parameters are not modified. Modifying a single parameter
might impact other parameters. Refer to oscilloscope documentation and make multiple
consecutive calls to timebase_setup if needed.

	Parameters

	
	scale – interval in seconds between the trigger event and the reference position.

	offset – horizontal scale per division in seconds/div.

	
property trigger

	Get trigger setup as a dict containing the following keys:

	“mode”: trigger sweep mode [auto, normal, single, stop]

	“trigger_type”: condition that will trigger the acquisition of waveforms [edge,
slew,glit,intv,runt,drop]

	“source”: trigger source [c1,c2,c3,c4]

	“hold_type”: hold type (refer to page 172 of programing guide)

	“hold_value1”: hold value1 (refer to page 172 of programing guide)

	“hold_value2”: hold value2 (refer to page 172 of programing guide)

	“coupling”: input coupling for the selected trigger sources

	“level”: trigger level voltage for the active trigger source

	“level2”: trigger lower level voltage for the active trigger source (only slew/runt
trigger)

	“slope”: trigger slope of the specified trigger source

	
property trigger_mode

	Control the trigger sweep mode (string).

<mode>:= {AUTO,NORM,SINGLE,STOP}

	auto : When AUTO sweep mode is selected, the oscilloscope begins to search for the
trigger signal that meets the conditions.
If the trigger signal is satisfied, the running state on the top left corner of
the user interface shows Trig’d, and the interface shows stable waveform.
Otherwise, the running state always shows Auto, and the interface shows unstable
waveform.

	normal : When NORMAL sweep mode is selected, the oscilloscope enters the wait trigger
state and begins to search for trigger signals that meet the conditions.
If the trigger signal is satisfied, the running state shows Trig’d, and the interface
shows stable waveform.
Otherwise, the running state shows Ready, and the interface displays the last
triggered waveform (previous trigger) or does not display the waveform (no
previous trigger).

	single : When SINGLE sweep mode is selected, the backlight of SINGLE key lights up,
the oscilloscope enters the waiting trigger state and begins to search for the
trigger signal that meets the conditions.
If the trigger signal is satisfied, the running state shows Trig’d, and the interface
shows stable waveform.
Then, the oscilloscope stops scanning, the RUN/STOP key is red light,
and the running status shows Stop.
Otherwise, the running state shows Ready, and the interface does not display the waveform.

	stopped : STOP is a part of the option of this command, but not a trigger mode of the
oscilloscope.

	
property trigger_select

	Control the condition that will trigger the acquisition of waveforms (string).

Depending on the trigger type, additional parameters must be specified. These additional
parameters are grouped in pairs. The first in the pair names the variable to be modified,
while the second gives the new value to be assigned. Pairs may be given in any order and
restricted to those variables to be changed.

There are five parameters that can be specified. Parameters 1. 2. 3. are always mandatory.
Parameters 4. 5. are required only for certain combinations of the previous parameters.

	<trig_type>:={edge, slew, glit, intv, runt, drop}

	<source>:={c1, c2, c3, c4, line}

	<hold_type>:=

	{ti, off} for edge trigger.

	{ti} for drop trigger.

	{ps, pl, p2, p1} for glit/runt trigger.

	{is, il, i2, i1} for slew/intv trigger.

	<hold_value1>:= a time value with unit.

	<hold_value2>:= a time value with unit.

Note:

	“line” can only be selected when the trigger type is “edge”.

	All time arguments should be given in multiples of seconds. Use the scientific notation
if necessary.

	The range of hold_values varies from trigger types. [80nS, 1.5S] for “edge” trigger,
and [2nS, 4.2S] for others.

	The trigger_select command is switched automatically between the short, normal and
extended version depending on the number of expected parameters.

	
trigger_setup(mode=None, source=None, trigger_type=None, hold_type=None, hold_value1=None, hold_value2=None, coupling=None, level=None, level2=None, slope=None)

	Set up trigger.

Unspecified parameters are not modified. Modifying a single parameter
might impact other parameters. Refer to oscilloscope documentation and make multiple
consecutive calls to trigger_setup and channel_setup if needed.

	Parameters

	
	mode – trigger sweep mode [auto, normal, single, stop]

	source – trigger source [c1, c2, c3, c4, line]

	trigger_type – condition that will trigger the acquisition of waveforms
[edge,slew,glit,intv,runt,drop]

	hold_type – hold type (refer to page 172 of programing guide)

	hold_value1 – hold value1 (refer to page 172 of programing guide)

	hold_value2 – hold value2 (refer to page 172 of programing guide)

	coupling – input coupling for the selected trigger sources

	level – trigger level voltage for the active trigger source

	level2 – trigger lower level voltage for the active trigger source (only slew/runt
trigger)

	slope – trigger slope of the specified trigger source

	
property waveform_first_point

	Control the address of the first data point to be sent (int).
For waveforms acquired in sequence mode, this refers to the relative address in the
given segment. The first data point starts at zero and is strictly positive.

	
property waveform_points

	Control the number of waveform points to be transferred with
the digitize method (int). NP = 0 sends all data points.

Note that the oscilloscope may provide less than the specified nb of points.

	
property waveform_preamble

	Get preamble information for the selected waveform source as a dict with the
following keys:

	“requested_points”: number of data points requested by the user (int)

	“sampled_points”: number of data points sampled by the oscilloscope (int)

	“transmitted_points”: number of data points actually transmitted (optional) (int)

	“memory_size”: size of the oscilloscope internal memory in bytes (int)

	“sparsing”: sparse point. It defines the interval between data points. (int)

	“first_point”: address of the first data point to be sent (int)

	“source”: source of the data : “C1”, “C2”, “C3”, “C4”, “MATH”.

	“grid_number”: number of horizontal grids (it is a read-only property)

	“xdiv”: horizontal scale (units per division) in seconds

	“xoffset”: time interval in seconds between the trigger event and the reference position

	“ydiv”: vertical scale (units per division) in Volts

	“yoffset”: value that is represented at center of screen in Volts

	
property waveform_sparsing

	Control the interval between data points (integer). For example:

SP = 0 sends all data points.
SP = 4 sends 1 point every 4 data points.

	
write(command, **kwargs)

	Write the command to the instrument through the adapter.

Note: if the last command was sent less than WRITE_INTERVAL_S before, this method blocks for
the remaining time so that commands are never sent with rate more than 1/WRITE_INTERVAL_S
Hz.

	Parameters

	command – command string to be sent to the instrument

Teledyne Channel

	
class pymeasure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel(parent, id)

	Bases: Channel

A base abstract class for channel on a TeledyneOscilloscope device.

	
property bwlimit

	Control the internal low-pass filter for this channel.

The current bandwidths can only be read back for all channels at once!
(dynamic)

	
property coupling

	Control the coupling with a string parameter (“ac 1M”, “dc 1M”, “ground”).

	
property current_configuration

	Get channel configuration as a dict containing the following keys:

	“channel”: channel number (int)

	“attenuation”: probe attenuation (float)

	“bandwidth_limit”: bandwidth limiting enabled (bool)

	“coupling”: “ac 1M”, “dc 1M”, “ground” coupling (str)

	“offset”: vertical offset (float)

	“skew_factor”: channel-tochannel skew factor (float)

	“display”: currently displayed (bool)

	“unit”: “A” or “V” units (str)

	“volts_div”: vertical divisions (float)

	“inverted”: inverted (bool)

	“trigger_coupling”: trigger coupling can be “dc” “ac” “highpass” “lowpass” (str)

	“trigger_level”: trigger level (float)

	“trigger_level2”: trigger lower level for SLEW or RUNT trigger (float)

	“trigger_slope”: trigger slope can be “negative” “positive” “window” (str)

	
property display

	Control the display enabled state. (strict bool)

	
property display_parameter

	Set the waveform processing of this channel with the specified algorithm and the result
is displayed on the front panel.

The command accepts the following parameters:

	Parameter

	Description

	PKPK

	vertical peak-to-peak

	MAX

	maximum vertical value

	MIN

	minimum vertical value

	AMPL

	vertical amplitude

	TOP

	waveform top value

	BASE

	waveform base value

	CMEAN

	average value in the first cycle

	MEAN

	average value

	RMS

	RMS value

	CRMS

	RMS value in the first cycle

	OVSN

	overshoot of a falling edge

	FPRE

	preshoot of a falling edge

	OVSP

	overshoot of a rising edge

	RPRE

	preshoot of a rising edge

	PER

	period

	FREQ

	frequency

	PWID

	positive pulse width

	NWID

	negative pulse width

	RISE

	rise-time

	FALL

	fall-time

	WID

	Burst width

	DUTY

	positive duty cycle

	NDUTY

	negative duty cycle

	ALL

	All measurement

	
insert_id(command)

	Insert the channel id in a command replacing placeholder.

Subclass this method if you want to do something else,
like always prepending the channel id.

	
measure_parameter(parameter: str)

	Process a waveform with the selected algorithm and returns the specified measurement.

	Parameters

	parameter – same as the display_parameter property

	
property offset

	Control the center of the screen in Volts by a a float parameter.
The range of legal values varies depending on range and scale. If the specified
value is outside of the legal range, the offset value is automatically set to the nearest
legal value.

	
property probe_attenuation

	Control the probe attenuation. The probe attenuation may be from 0.1 to 10000.

	
property scale

	Control the vertical scale (units per division) in Volts.

	
setup(**kwargs)

	Setup channel. Unspecified settings are not modified.

Modifying values such as probe attenuation will modify offset, range, etc. Refer to
oscilloscope documentation and make multiple consecutive calls to setup() if needed.
See property descriptions for more information.

	Parameters

	
	bwlimit –

	coupling –

	display –

	invert –

	offset –

	skew_factor –

	probe_attenuation –

	scale –

	unit –

	trigger_coupling –

	trigger_level –

	trigger_level2 –

	trigger_slope –

	
property trigger_coupling

	Control the input coupling for the selected trigger sources (string).

	ac: AC coupling block DC component in the trigger path, removing dc offset
voltage from the trigger waveform. Use AC coupling to get a stable edge trigger when
your waveform has a large dc offset.

	dc: DC coupling allows dc and ac signals into the trigger path.

	lowpass: HFREJ coupling places a lowpass filter in the trigger path.

	highpass: LFREJ coupling places a highpass filter in the trigger path.

	
property trigger_level

	Control the trigger level voltage for the active trigger source (float).

When there are two trigger levels to set, this command is used to set the higher
trigger level voltage for the specified source. trigger_level2 is used to set
the lower trigger level voltage.

When setting the trigger level it must be divided by the probe attenuation. This is
not documented in the datasheet and it is probably a bug of the scope firmware.
An out-of-range value will be adjusted to the closest legal value.

	
property trigger_slope

	Control the trigger slope of the specified trigger source (string).

<trig_slope>:={NEG,POS,WINDOW} for edge trigger
<trig_slope>:={NEG,POS} for other trigger

	parameter

	trigger slope

	negative

	Negative slope for edge trigger or other trigger

	positive

	Positive slope for edge trigger or other trigger

	window

	Window slope for edge trigger

(dynamic)

 Temptronic

Temptronic

This section contains specific documentation on the temptronic instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Temptronic Base Class
	ATSBase

	TemperatureStatusCode

	ErrorCode

	Temptronic ATS525 Thermostream
	ATS525

	Temptronic ATS545 Thermostream
	ATS545

	Temptronic ECO560 Thermostream
	ECO560

 Temptronic Base Class

Temptronic Base Class

	
class pymeasure.instruments.temptronic.ATSBase(adapter, name='ATSBase', **kwargs)

	Bases: Instrument

The base class for Temptronic ATSXXX instruments.

	
property air_temperature

	Read air temperature in 0.1 °C increments.

	Type

	float

	
at_temperature()

	
	Returns

	True if at temperature.

	
property auxiliary_condition_code

	Read out auxiliary condition status register.

	Type

	int

Relevant flags are:

	Bit

	Meaning

	10

	None

	9

	Ramp mode

	8

	Mode: 0 programming, 1 manual

	7

	None

	6

	TS status: 0 start-up, 1 ready

	5

	Flow: 0 off, 1 on

	4

	Sense mode: 0 air, 1 DUT

	3

	Compressor: 0 on, 1 off (heating possible)

	2

	Head: 0 lower, upper

	1

	None

	0

	None

Refere to chapter 4 in the manual

	
clear()

	Clear device-specific errors.

See error_code for further information.

	
property compressor_enable

	True enables compressors, False disables it.

	Type

	Boolean

	
configure(temp_window=1, dut_type='T', soak_time=30, dut_constant=100, temp_limit_air_low=-60, temp_limit_air_high=220, temp_limit_air_dut=50, maximum_test_time=1000)

	Convenience method for most relevant configuration properties.

	Parameters

	
	dut_type – string: indicating which DUT type to use

	soak_time – float: elapsed time in soak_window before settling is indicated

	soak_window – float: Soak window size or temperature settlings bounds (K)

	dut_constant – float: time constant of DUT, higher values indicate higher thermal mass

	temp_limit_air_low – float: minimum flow temperature limit (°C)

	temp_limit_air_high – float: maximum flow temperature limit (°C)

	temp_limit_air_dut – float: allowed temperature difference (K) between DUT and Flow

	maximum_test_time – float: maximum test time (seconds) for a single temperature point (safety)

	Returns

	self

	
property copy_active_setup_file

	Copy active setup file (0) to setup n (1 - 12).

	Type

	int

	
property current_cycle_count

	Read the number of cycles to do

	Type

	int

	
property cycling_enable

	CYCL Start/stop cycling.

	Type

	bool

cycling_enable = True (start cycling)
cycling_enable = False (stop cycling)

	
cycling_stopped()

	
	Returns

	True if cycling has stopped.

	
property dut_constant

	Control thermal constant (default 100) of DUT.

	Type

	float

Lower values indicate lower thermal mass, higher values indicate higher
thermal mass respectively.

	
property dut_mode

	On enables DUT mode, OFF enables air mode

	Type

	string

	
property dut_temperature

	Read DUT temperature, in 0.1 °C increments.

	Type

	float

	
property dut_type

	Control DUT sensor type.

	Type

	string

Possible values are:

	String

	Meaning

	‘’

	no DUT

	‘T’

	T-DUT

	‘K’

	K-DUT

Warning: If in DUT mode without DUT being connected, TS flags DUT error

	
property dynamic_temperature_setpoint

	Read the dynamic temperature setpoint.

	Type

	float

	
property enable_air_flow

	Set TS air flow.

True enables air flow, False disables it

	Type

	bool

	
end_of_all_cycles()

	
	Returns

	True if cycling has stopped.

	
end_of_one_cycle()

	
	Returns

	True if TS is at end of one cycle.

	
end_of_test()

	
	Returns

	True if TS is at end of test.

	
enter_cycle()

	Enter Cycle by sending RMPC 1.

	Returns

	self

	
enter_ramp()

	Enter Ramp by sending RMPS 0.

	Returns

	self

	
property error_code

	Read the device-specific error register (16 bits).

	Type

	ErrorCode

	
error_status()

	Returns error status code (maybe used for logging).

	Returns

	ErrorCode

	
property head

	Control TS head position.

	Type

	string

down: transfer head to lower position
up: transfer head to elevated position

	
property learn_mode

	Control DUT automatic tuning (learning).

	Type

	bool
False: off
True: automatic tuning on

	
property load_setup_file

	loads setup file SFIL.

Valid range is between 1 to 12.

	Type

	int

	
property local_lockout

	True disables TS GUI, False enables it.

	
property main_air_flow_rate

	Read main nozzle air flow rate in liters/sec.

	
property maximum_test_time

	Control maximum allowed test time (s).

	Type

	float

This prevents TS from staying at a single temperature forever.
Valid range: 0 to 9999

	
property mode

	Returns a string indicating what the system is doing at the time the query is processed.

	Type

	string

(dynamic)

	
next_setpoint()

	Step to the next setpoint during temperature cycling.

	
not_at_temperature()

	
	Returns

	True if not at temperature.

	
property nozzle_air_flow_rate

	Read main nozzle air flow rate in scfm.

	
property ramp_rate

	Control ramp rate (K / min).

	Type

	float

allowed values:
nn.n: 0 to 99.9 in 0.1 K per minute steps.
nnnn: 100 to 9999 in 1 K per minute steps.

	
property remote_mode

	True disables TS GUI but displays a “Return to local” switch.

	
reset()

	Reset (force) the System to the Operator screen.

	Returns

	self

	
property set_point_number

	Select a setpoint to be the current setpoint.

	Type

	int

Valid range is 0 to 17 when on the Cycle screen or
or 0 to 2 in case of operator screen (0=hot, 1=ambient, 2=cold).

	
set_temperature(set_temp)

	sweep to a specified setpoint.

	Parameters

	set_temp – target temperature for DUT (float)

	Returns

	self

	
shutdown(head=False)

	Turn down TS (flow and remote operation).

	Parameters

	head – Lift head if True

	Returns

	self

	
start(enable_air_flow=True)

	start TS in remote mode.

	Parameters

	enable_air_flow – flow starts if True

	Returns

	self

	
property temperature

	Read current temperature with 0.1 °C resolution.

	Type

	float

Temperature readings origin depends on dut_mode setting.
Reading higher than 400 (°C) indicates invalidity.

	
property temperature_condition_status_code

	Temperature condition status register.

	Type

	TemperatureStatusCode

	
property temperature_event_status

	temperature event status register.

	Type

	TemperatureStatusCode

Hint: Reading will clear register content.

	
property temperature_limit_air_dut

	Air to DUT temperature limit.

	Type

	float

Allowed difference between nozzle air and DUT temperature during
settling. Valid range between 10 to 300 °C in 1 degree increments.

	
property temperature_limit_air_high

	upper air temperature limit.

	Type

	float

Valid range between 25 to 255 (°C). Setpoints above current value cause
“out of range” error in TS.

	
property temperature_limit_air_low

	Control lower air temperature limit.

	Type

	float

Valid range between -99 to 25 (°C). Setpoints below current value cause
“out of range” error in TS.
(dynamic)

	
property temperature_setpoint

	Set or get selected setpoint’s temperature.

	Type

	float

Valid range is -99.9 to 225.0 (°C) or as indicated by
temperature_limit_air_high
and temperature_limit_air_low.
Use convenience function set_temperature()
to prevent unexpected behavior.

	
property temperature_setpoint_window

	Setpoint’s temperature window.

	Type

	float

Valid range is between 0.1 to 9.9 (°C). Temperature status register
flags at temperature in case soak time elapsed while temperature
stays in between bounds given by this value around the current setpoint.

	
property temperature_soak_time

	Set the soak time for the currently selected setpoint.

	Type

	float

Valid range is between 0 to 9999 (s). Lower values shorten cycle times.
Higher values increase cycle times, but may reduce settling errors.
See temperature_setpoint_window for further information.

	
property total_cycle_count

	Set or read current cycle count (1 - 9999).

	Type

	int

Sending 0 will stop cycling

	
wait_for_settling(time_limit=300)

	block script execution until TS is settled.

	Parameters

	time_limit – set the maximum blocking time within TS has to settle (float).

	Returns

	self

Script execution is blocked until either TS has settled
or time_limit has been exceeded (float).

	
class pymeasure.instruments.temptronic.temptronic_base.TemperatureStatusCode(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Temperature status enums based on IntFlag

Used in conjunction with temperature_condition_status_code.

	Value

	Enum

	32

	CYCLING_STOPPED

	16

	END_OF_ALL_CYCLES

	8

	END_OF_ONE_CYCLE

	4

	END_OF_TEST

	2

	NOT_AT_TEMPERATURE

	1

	AT_TEMPERATURE

	0

	NO_STATUS

	
class pymeasure.instruments.temptronic.temptronic_base.ErrorCode(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Error code enums based on IntFlag.

Used in conjunction with error_code.

	Value

	Enum

	16384

	NO_DUT_SENSOR_SELECTED

	4096

	BVRAM_FAULT

	2048

	NVRAM_FAULT

	1024

	NO_LINE_SENSE

	512

	FLOW_SENSOR_HARDWARE_ERROR

	128

	INTERNAL_ERROR

	32

	AIR_SENSOR_OPEN

	16

	LOW_INPUT_AIR_PRESSURE

	8

	LOW_FLOW

	2

	AIR_OPEN_LOOP

	1

	OVERHEAT

	0

	OK

 Temptronic ATS525 Thermostream

Temptronic ATS525 Thermostream

	
class pymeasure.instruments.temptronic.ATS525(adapter, name='Temptronic ATS-525 Thermostream', **kwargs)

	Bases: ATSBase

Represent the TemptronicATS525 instruments.

	
property system_current

	Operating current.

 Temptronic ATS545 Thermostream

Temptronic ATS545 Thermostream

	
class pymeasure.instruments.temptronic.ATS545(adapter, name='Temptronic ATS-545 Thermostream', **kwargs)

	Bases: ATSBase

Represents the TemptronicATS545 instrument.

Coding example

ts = ATS545('ASRL3::INSTR') # replace adapter address
ts.configure() # basic configuration (defaults to T-DUT)
ts.start() # starts flow (head position not changed)
ts.set_temperature(25) # sets temperature to 25 degC
ts.wait_for_settling() # blocks script execution and polls for settling
ts.shutdown(head=False) # disables thermostream, keeps head down

	
next_setpoint()

	not implemented in ATS545

set self.set_point_number instead

 Temptronic ECO560 Thermostream

Temptronic ECO560 Thermostream

	
class pymeasure.instruments.temptronic.ECO560(adapter, name='Temptronic ECO-560 Thermostream', **kwargs)

	Bases: ATSBase

Represent the TemptronicECO560 instruments.

	
copy_active_setup_file = None

	

 TEXIO

TEXIO

This section contains specific documentation on the TEXIO instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	TEXIO PSW-360L30 Power Supply
	TexioPSW360L30

 TEXIO PSW-360L30 Power Supply

TEXIO PSW-360L30 Power Supply

	
class pymeasure.instruments.texio.TexioPSW360L30(adapter, name='TEXIO PSW-360L30 Power Supply', **kwargs)

	Bases: Keithley2260B

Represents the TEXIO PSW-360L30 Power Supply (minimal implementation)
and provides a high-level interface for interacting with the instrument.

For a connection through tcpip, the device only accepts
connections at port 2268, which cannot be configured otherwise.
example connection string: ‘TCPIP::xxx.xxx.xxx.xxx::2268::SOCKET’

For a connection through USB on Linux, the kernel is going to create
a /dev/ttyACMX device automatically. The serial connection properties are
fixed at 9600–8-N-1.

The read termination for this interface is Line-Feed n.

This driver inherits from the Keithley2260B one. All instructions
implemented in the Keithley 2260B driver are also available for the
TEXIO PSW-360L30 power supply.

The only addition is the “output” property that is just an alias for
the “enabled” property of the Keithley 2260B. Calling the output switch
“enabled” is confusing because it is not clear if the whole device is
enabled/disable or only the output.

source = TexioPSW360L30("TCPIP::xxx.xxx.xxx.xxx::2268::SOCKET")
source.voltage = 1
print(source.voltage)
print(source.current)
print(source.power)
print(source.applied)

	
property applied

	Simultaneous control of voltage (volts) and current (amps).
Values need to be supplied as tuple of (voltage, current). Depending on
whether the instrument is in constant current or constant voltage mode,
the values achieved by the instrument will differ from the ones set.

	
check_errors()

	Logs any system errors reported by the instrument.

	
check_get_errors()

	Check for errors after having gotten a property and log them.

Called if check_get_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
clear()

	Clears the instrument status byte

	
property complete

	Get the synchronization bit.

This property allows synchronization between a controller and a device. The Operation
Complete query places an ASCII character 1 into the device’s Output Queue when all pending
selected device operations have been finished.

	
property current

	Reads the current (in Ampere) the dc power supply is putting out.

	
property current_limit

	A floating point property that controls the source current
in amps. This is not checked against the allowed range. Depending on
whether the instrument is in constant current or constant voltage mode,
this might differ from the actual current achieved.

	
property error

	Returns a tuple of an error code and message from a
single error.

	
property id

	Get the identification of the instrument.

	
property options

	Get the device options installed.

	
property output_enabled

	A boolean property that controls whether the source is enabled, takes
values True or False.

	
property power

	Reads the power (in Watt) the dc power supply is putting out.

	
read(**kwargs)

	Read up to (excluding) read_termination or the whole read buffer.

	
read_binary_values(**kwargs)

	Read binary values from the device.

	
read_bytes(count, **kwargs)

	Read a certain number of bytes from the instrument.

	Parameters

	
	count (int) – Number of bytes to read. A value of -1 indicates to
read the whole read buffer.

	kwargs – Keyword arguments for the adapter.

	Returns bytes

	Bytes response of the instrument (including termination).

	
reset()

	Resets the instrument.

	
shutdown()

	Disable output, call parent function

	
property status

	Get the status byte and Master Summary Status bit.

	
property voltage

	Reads the voltage (in Volt) the dc power supply is putting out.

	
property voltage_setpoint

	A floating point property that controls the source voltage
in volts. This is not checked against the allowed range. Depending on
whether the instrument is in constant current or constant voltage mode,
this might differ from the actual voltage achieved.

	
wait_for(query_delay=0)

	Wait for some time. Used by ‘ask’ to wait before reading.

	Parameters

	query_delay – Delay between writing and reading in seconds.

	
write(command, **kwargs)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument

	kwargs – Keyword arguments for the adapter.

	
write_binary_values(command, values, *args, **kwargs)

	Write binary values to the device.

	Parameters

	
	command – Command to send.

	values – The values to transmit.

	**kwargs (*args,) – Further arguments to hand to the Adapter.

	
write_bytes(content, **kwargs)

	Write the bytes content to the instrument.

 Thermotron

Thermotron

This section contains specific documentation on the Thermotron instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Thermotron 3800 Oven
	Thermotron3800

 Thermotron 3800 Oven

Thermotron 3800 Oven

	
class pymeasure.instruments.thermotron.Thermotron3800(adapter, name='Thermotron 3800', **kwargs)

	Bases: Instrument

Represents the Thermotron 3800 Oven.
For now, this driver only supports using Control Channel 1.
There is a 1000ms built in wait time after all write commands.

	
class Thermotron3800Mode(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntFlag

	Bit

	Mode

	0

	Program mode

	1

	Edit mode (controller in stop mode)

	2

	View program mode

	3

	Edit mode (controller in hold mode)

	4

	Manual mode

	5

	Delayed start mode

	6

	Unused

	7

	Calibration mode

	
property id

	Reads the instrument identification

	Returns

	String

	
initalize_oven(wait=True)

	The manufacturer recommends a 3 second wait time after after initializing the oven.
The optional “wait” variable should remain true, unless the 3 second wait time is
taken care of on the user end. The wait time is split up in the following way:
1 second (built into the write function) +
2 seconds (optional wait time from this function (initialize_oven)).

	Returns

	None

	
property mode

	Gets the operating mode of the oven.

	Returns

	Tuple(String, int)

	
run()

	Starts temperature forcing. The oven will ramp to the setpoint.

	Returns

	None

	
property setpoint

	A floating point property that controls the setpoint
of the oven in Celsius. This property can be set.
“setpoint” will not update until the “run()” command is called.
After setpoint is set to a new value, the “run()” command
must be called to tell the oven to run to the new temperature.

	Returns

	None

	
stop()

	Stops temperature forcing on the oven.

	Returns

	None

	
property temperature

	Reads the current temperature of the oven
via built in thermocouple. Default unit is Celsius, unless
changed by the user.

	Returns

	float

	
write(command)

	Write a string command to the instrument appending write_termination.

	Parameters

	
	command – command string to be sent to the instrument

	kwargs – Keyword arguments for the adapter.

 Thorlabs

Thorlabs

This section contains specific documentation on the Thorlabs instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Thorlabs PM100USB Powermeter
	ThorlabsPM100USB

	Thorlabs Pro 8000 modular laser driver
	ThorlabsPro8000

 Thorlabs PM100USB Powermeter

Thorlabs PM100USB Powermeter

	
class pymeasure.instruments.thorlabs.ThorlabsPM100USB(adapter, name='ThorlabsPM100USB powermeter', **kwargs)

	Bases: Instrument

Represents Thorlabs PM100USB powermeter.

	
property energy

	Measure the energy in J.

	
property power

	Measure the power in W.

	
property wavelength

	Control the wavelength in nm.

	
property wavelength_max

	Measure maximum wavelength, in nm

	
property wavelength_min

	Measure minimum wavelength, in nm

 Thorlabs Pro 8000 modular laser driver

Thorlabs Pro 8000 modular laser driver

	
class pymeasure.instruments.thorlabs.ThorlabsPro8000(adapter, name='Thorlabs Pro 8000', **kwargs)

	Bases: Instrument

Represents Thorlabs Pro 8000 modular laser driver

	
property LDCCurrent

	Control laser current.

	
property LDCCurrentLimit

	Set Software current Limit (value must be lower than hardware current limit).

	
property LDCPolarity

	Set laser diode polarity. Allowed values are: [‘AG’, ‘CG’]

	
property LDCStatus

	Set laser diode status. Allowed values are: [‘ON’, ‘OFF’]

	
property TEDSetTemperature

	Control TEC temperature

	
property TEDStatus

	Control TEC status. Allowed values are: [‘ON’, ‘OFF’]

	
property slot

	Control slot selection. Allowed values are: range(1, 9)

 Thyracont

Thyracont

This section contains specific documentation on the Thyracont instruments that are implemented.
If you are interested in an instrument not included, please consider adding the instrument.

	Smartline V1 Transmitter Series
	SmartlineV1

	Smartline V2 Transmitter Series
	SmartlineV2

	VSH

	VSR

 Smartline V1 Transmitter Series

Smartline V1 Transmitter Series

	
class pymeasure.instruments.thyracont.smartline_v1.SmartlineV1(adapter, name='Thyracont Vacuum Gauge V1', address=1, baud_rate=9600, **kwargs)

	Bases: Instrument

Thyracont Vacuum Instruments Smartline gauges with Communication Protocol V1.

Devices using Protocol V1 were manufactured until 2017.

Connection to the device is made through an RS485 serial connection.
The default communication settings are baudrate 9600, 8 data bits, 1 stop bit,
no parity, no handshake.

A communication packages is structured as follows:

Characters 0-2: Address for communication
Character 3: Command character, uppercase letter for reading and lowercase for writing
Characters 4-n: Data for the command, can be empty.
Character n+1: Checksum calculated by: (sum of the decimal value of bytes 0-n) mod 64 + 64
Character n+2: Carriage return

	Parameters

	
	adapter – pyvisa resource name of the instrument or adapter instance

	name (string) – Name of the instrument.

	address (int) – RS485 adddress of the instrument 1-15.

	baud_rate (int) – baudrate used for the communication with the device.

	kwargs – Any valid key-word argument for Instrument

	
property cathode_enabled

	Control the hot/cold cathode state of the pressure gauge.

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

If you override this method, you may choose to raise an Exception for certain errors.

	Returns

	List of error entries.

	
property device_type

	Get the device type.

	
property display_unit

	Control the display’s pressure unit.

	
property pressure

	Get the pressure measurement in mbar.

	
read()

	Reads a response message from the instrument.

This method also checks for a correct checksum.

	Returns

	the data fields

	Return type

	string

	Raises

	ValueError – if a checksum error is detected

	
write(command)

	Writes a command to the instrument.

This method adds the required address and checksum.

	Parameters

	command (str) – command to be sent to the instrument

 Smartline V2 Transmitter Series

Smartline V2 Transmitter Series

	
class pymeasure.instruments.thyracont.smartline_v2.SmartlineV2(adapter, name='Thyracont SmartlineV2 Transmitter', baud_rate=115200, address=1, timeout=250, **kwargs)

	Bases: Instrument

A Thyracont vacuum sensor transmitter of the Smartline V2 series.

You may subclass this Instrument and add the appropriate channels, see the following example.

from pymeasure.instruments import Instrument
from pymeasure.instruments.thyractont import SmartlineV2

PiezoAndPiraniInstrument(SmartlineV2):
 piezo = Instrument.ChannelCreator(Piezo)
 pirani = Instrument.ChannelCreator(Pirani)

	Communication Protocol v2 via RS485:
	
	Everything is sent as ASCII characters

	
	Package (bytes and usage):
	
	0-2 address, 3 access code, 4-5 command, 6-7 data length.

	if data: 8-n data to be sent, n+1 checksum, n+2 carriage return

	if no data: 8 checksum, 9 carriage return

	
	Access codes (request: master->transmitter, response: transmitter->master):
	
	read: 0, 1

	write: 2, 3

	factory default: 4,5

	error: -, 7

	binary 8, 9

	Data length is number of data in bytes (padding with zeroes on left)

	Checksum: Add the decimal numbers of the characters before, mod 64, add 64, show as ASCII.

	Parameters

	adress – The device address in the range 1-16.

	
class Sources(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntEnum

	
property analog_output_setting

	Get current analog output setting. See manual.

	
ask(command_message, query_delay=0)

	Ask for some value and check that the response matches the original command.

	Parameters

	command_message (str) – Access code, command, length, and content.
The command sent is compared to the response command.

	
ask_manually(accessCode, command, data='', query_delay=0)

	Send a message to the transmitter and return its answer.

	Parameters

	
	accessCode – How to access the device.

	command – Command to send to the device.

	data – Data for the command.

	query_delay (int) – Time to wait between writing and reading.

	Return str

	Response from the device after error checking.

	
property baud_rate

	Set the device baud rate.

	
property bootloader_version

	Get the bootloader version.

	
check_set_errors()

	Check the errors after setting a property.

	
property device_address

	Set the device address.

	
property device_serial

	Get the transmitter device serial number.

	
property device_type

	Get the device type, like ‘VSR205’.

	
property device_version

	Get the device hardware version.

	
property display_data

	Control the display data source (strict SOURCES).

	
property display_orientation

	Control the orientation of the display in relation to the pipe (‘top’, ‘bottom’).

	
property display_unit

	Control the unit shown in the display. (‘mbar’, ‘Torr’, ‘hPa’)

	
property firmware_version

	Get the firmware version.

	
get_sensor_transition()

	Get the current sensor transition between sensors.

	return interpretation:
	
	
	direct
	switch at 1 mbar.

	
	continuous
	switch between 5 and 15 mbar.

	
	F[float]T[float]
	switch between low and high value.

	
	D[float]
	switch at value.

	
property operating_hours

	Measure the operating hours.

	
property pressure

	Get the current pressure of the default sensor in mbar

	
property product_name

	Get the product name (article number).

	
property range

	Get the measurement range in mbar.

	
read(command=None)

	Read from the device and do error checking.

	Parameters

	command (str) – Original command sent to the device to compare it with the response.
None deactivates the check.

	
property sensor_serial

	Get the sensor head serial number.

	
set_continuous_sensor_transition(low, high)

	Set the sensor transition mode to “continuous” mode between low and high (floats).

	
set_default_sensor_transition()

	Set the senstor transition mode to the default value, depends on the device.

	
set_direct_sensor_transition(transition_point)

	Set the sensor transition to “direct” mode.

	Parameters

	transition_point (float) – Switch between the sensors at that value.

	
set_high(high='')

	Set the high pressure to high pressure in mbar.

	
set_low(low='')

	Set the low pressure to low pressure in mbar.

	
write(command)

	Write a command to the device.

	
write_composition(accessCode, command, data='')

	Write a command with an accessCode and optional data to the device.

	Parameters

	
	accessCode – How to access the device.

	command – Two char command string to send to the device.

	data – Data for the command.

	
class pymeasure.instruments.thyracont.smartline_v2.VSH(adapter, name='Thyracont SmartlineV2 Transmitter', baud_rate=115200, address=1, timeout=250, **kwargs)

	Bases: SmartlineV2

Vacuum transmitter of VSH series with both a pirani and a hot cathode sensor.

	
hotcathode

	
	Channel

	HotCathode

	
pirani

	
	Channel

	Pirani

	
class pymeasure.instruments.thyracont.smartline_v2.VSR(adapter, name='Thyracont SmartlineV2 Transmitter', baud_rate=115200, address=1, timeout=250, **kwargs)

	Bases: SmartlineV2

Vacuum transmitter of VSR/VCR series with both a piezo and a pirani sensor.

	
piezo

	
	Channel

	Piezo

	
pirani

	
	Channel

	Pirani

 Toptica

Toptica

This section contains specific documentation on the Toptica Photonics instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Toptica IBeam Smart Laser diode
	IBeamSmart

	DriverChannel

 Toptica IBeam Smart Laser diode

Toptica IBeam Smart Laser diode

	
class pymeasure.instruments.toptica.ibeamsmart.IBeamSmart(adapter, name='Toptica IBeam Smart laser diode', baud_rate=115200, **kwargs)

	Bases: Instrument

IBeam Smart laser diode

For the usage of the different diode driver channels, see the manual

laser = IBeamSmart("SomeResourceString")
laser.emission = True
laser.ch_2.power = 1000 # µW
laser.ch_2.enabled = True
laser.shutdown()

	Parameters

	
	adapter – pyvisa resource name or adapter instance.

	baud_rate – The baud rate you have set in the instrument.

	**kwargs – Any valid key-word argument for VISAAdapter.

	
ch_1

	
	Channel

	DriverChannel

	
ch_2

	
	Channel

	DriverChannel

	
ch_3

	
	Channel

	DriverChannel

	
ch_4

	
	Channel

	DriverChannel

	
ch_5

	
	Channel

	DriverChannel

	
property channel1_enabled

	Control status of Channel 1 of the laser (bool).

Deprecated since version 0.12: Use ch_1.enabled instead.

	
property channel2_enabled

	Control status of Channel 2 of the laser (bool).

Deprecated since version 0.12: Use ch_2.enabled instead.

	
check_set_errors()

	Check for errors after having gotten a property and log them.

Checks if the last reply is only ‘[OK]’, otherwise a ValueError is
raised and the read buffer is flushed because one has to assume that
some communication is out of sync.

	
property current

	Measure the laser diode current in mA.

	
disable()

	Shutdown all laser operation.

	
property emission

	Control emission status of the laser diode driver (bool).

	
enable_continous()

	Enable countinous emmission mode.

	
enable_pulsing()

	Enable pulsing mode.

The optical output is controlled by a digital
input signal on a dedicated connnector on the device.

	
property laser_enabled

	Control emission status of the laser diode driver (bool).

Deprecated since version 0.12: Use attr:emission instead.

	
property power

	Control actual output power in µW of the laser system. In pulse mode
this means that the set value might not correspond to the readback
one (float up to 200000).

	
read()

	Read a reply of the instrument and extract the values, if possible.

Reads a reply of the instrument which consists of at least two
lines. The initial ones are the reply to the command while the last one
should be ‘[OK]’ which acknowledges that the device is ready to receive
more commands.

Note: ‘[OK]’ is always returned as last message even in case of an
invalid command, where a message indicating the error is returned
before the ‘[OK]’

Value extraction: extract <value> from ‘name = <value> [unit]’.
If <value> can not be identified the orignal string is returned.

	Returns

	string containing the ASCII response of the instrument (without ‘[OK]’).

	
property serial

	Get Serial number of the laser system.

	
shutdown()

	Brings the instrument to a safe and stable state.

	
property system_temp

	Measure base plate (heatsink) temperature in degree centigrade.

	
property temp

	Measure the temperature of the laser diode in degree centigrade.

	
property version

	Get Firmware version number.

	
class pymeasure.instruments.toptica.ibeamsmart.DriverChannel(parent, id)

	Bases: Channel

A laser diode driver channel for the IBeam Smart laser.

	
property enabled

	Control the enabled state of the driver channel.

	
property power

	Set the output power in µW (float up to 200000).

 Velleman

Velleman

This section contains specific documentation on the Velleman instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Velleman K8090 8-channel relay board
	VellemanK8090

	VellemanK8090Switches

 Velleman K8090 8-channel relay board

Velleman K8090 8-channel relay board

	
class pymeasure.instruments.velleman.VellemanK8090(adapter, name='Velleman K8090', timeout=100, **kwargs)

	Bases: Instrument

For usage with the K8090 relay board, by Velleman.

View the “K8090/VM8090 PROTOCOL MANUAL” for the serial command instructions.

The communication is done by serial USB. The IO settings are fixed:

	Baud rate

	19200

	Data bits

	8

	Parity

	None

	Stop bits

	1

	Flow control

	None

A short timeout is recommended, since the device is not consistent in giving status messages
and serial timeouts will occur also in normal operation.

Use the class like:

from pymeasure.instruments.velleman import VellemanK8090, VellemanK8090Switches as Switches

instrument = VellemanK8090("ASRL1::INSTR")

Get status update from device
last_on, curr_on, time_on = instrument.status

Toggle a selection of channels on
instrument.switch_on = Switches.CH3 | Switches.CH4 | Switches.CH5

	
check_set_errors()

	Check for errors after having set a property and log them.

Called if check_set_errors=True is set for that property.

The K8090 replies with a status after a switch command, but
only after any switch actually changed. In order to guarantee
the buffer is empty, we attempt to read it fully here.
No actual error checking is done here!

	Returns

	List of error entries.

	
id = None

	

	
read(**kwargs)

	The read command specifically for the protocol of the K8090.

This overrides the method from the instrument class.

See write(), replies from the machine use the same format.

A read will return a list of CMD, MASK, PARAM1 and PARAM2.

	
property status

	Get current relay status.
The reply has a different command byte than the request.

Three items (VellemanK8090Switches flags) are returned:

	Previous state: the state of each relay before this event

	Current state: the state of each relay now

	Timer state: the state of each relay timer

	
property switch_off

	Switch off a set of channels. See switch_on for more details.

	
property switch_on

	”
Switch on a set of channels. Other channels are unaffected.
Pass either a list or set of channel numbers (starting at 1), or pass a bitmask.

After switching this waits for a reply from the device. This is only send when
a relay actually toggles, otherwise expect a blocking time equal to the
communication timeout
If speed is important, avoid calling switch_ unnecessarily.

	
property version

	Get firmware version, as (year - 2000, week). E.g. (10, 1)

	
write(command, **kwargs)

	The write command specifically for the protocol of the K8090.

This overrides the method from the Instrument class.

Each packet to the device is 7 bytes:

STX (0x04) - CMD - MASK - PARAM1 - PARAM2 - CHK - ETX (0x0F)

Where CHK is checksum of the package.

	Parameters

	command (str) – String like “CMD[, MASK, PARAM1, PARAM2]” - only CMD is mandatory

	
class pymeasure.instruments.velleman.VellemanK8090Switches(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: IntFlag

Use to identify switch channels.

 Yokogawa

Yokogawa

This section contains specific documentation on the Yokogawa instruments that are implemented. If you are interested in an instrument not included, please consider adding the instrument.

	Yokogawa 7651 Programmable Supply
	Yokogawa7651

	Yokogawa GS200 Source
	YokogawaGS200

 Yokogawa 7651 Programmable Supply

Yokogawa 7651 Programmable Supply

	
class pymeasure.instruments.yokogawa.Yokogawa7651(adapter, name='Yokogawa 7651 Programmable DC Source', **kwargs)

	Bases: Instrument

Represents the Yokogawa 7651 Programmable DC Source
and provides a high-level for interacting with the instrument.

yoko = Yokogawa7651("GPIB::1")

yoko.apply_current() # Sets up to source current
yoko.source_current_range = 10e-3 # Sets the current range to 10 mA
yoko.compliance_voltage = 10 # Sets the compliance voltage to 10 V
yoko.source_current = 0 # Sets the source current to 0 mA

yoko.enable_source() # Enables the current output
yoko.ramp_to_current(5e-3) # Ramps the current to 5 mA

yoko.shutdown() # Ramps the current to 0 mA and disables output

	
apply_current(max_current=0.001, compliance_voltage=1)

	Configures the instrument to apply a source current, which can
take optional parameters that defer to the source_current_range
and compliance_voltage properties.

	
apply_voltage(max_voltage=1, compliance_current=0.01)

	Configures the instrument to apply a source voltage, which can
take optional parameters that defer to the source_voltage_range
and compliance_current properties.

	
property compliance_current

	A floating point property that sets the compliance current
in Amps, which can take values from 5 to 120 mA.

	
property compliance_voltage

	A floating point property that sets the compliance voltage
in Volts, which can take values between 1 and 30 V.

	
disable_source()

	Disables the source of current or voltage depending on the
configuration of the instrument.

	
enable_source()

	Enables the source of current or voltage depending on the
configuration of the instrument.

	
property id

	Returns the identification of the instrument

	
ramp_to_current(current, steps=25, duration=0.5)

	Ramps the current to a value in Amps by traversing a linear spacing
of current steps over a duration, defined in seconds.

	Parameters

	
	steps – A number of linear steps to traverse

	duration – A time in seconds over which to ramp

	
ramp_to_voltage(voltage, steps=25, duration=0.5)

	Ramps the voltage to a value in Volts by traversing a linear spacing
of voltage steps over a duration, defined in seconds.

	Parameters

	
	steps – A number of linear steps to traverse

	duration – A time in seconds over which to ramp

	
shutdown()

	Shuts down the instrument, and ramps the current or voltage to zero
before disabling the source.

	
property source_current

	A floating point property that controls the source current
in Amps, if that mode is active.

	
property source_current_range

	A floating point property that sets the current voltage range
in Amps, which can take values: 1 mA, 10 mA, and 100 mA.
Currents are truncted to an appropriate value if needed.

	
property source_enabled

	Reads a boolean value that is True if the source is enabled,
determined by checking if the 5th bit of the OC flag is a binary 1.

	
property source_mode

	A string property that controls the source mode, which can
take the values ‘current’ or ‘voltage’. The convenience methods
apply_current() and apply_voltage()
can also be used.

	
property source_voltage

	A floating point property that controls the source voltage
in Volts, if that mode is active.

	
property source_voltage_range

	A floating point property that sets the source voltage range
in Volts, which can take values: 10 mV, 100 mV, 1 V, 10 V, and 30 V.
Voltages are truncted to an appropriate value if needed.

 Yokogawa GS200 Source

Yokogawa GS200 Source

	
class pymeasure.instruments.yokogawa.YokogawaGS200(adapter, name='Yokogawa GS200 Source', **kwargs)

	Bases: Instrument

Represents the Yokogawa GS200 source and provides a high-level interface for interacting
with the instrument.

	
property current_limit

	Floating point number that controls the current limit. “Limit” refers to maximum value
of the electrical value that is conjugate to the mode (current is conjugate to voltage,
and vice versa). Thus, current limit is only applicable when in ‘voltage’ mode

	
property source_enabled

	A boolean property that controls whether the source is enabled, takes values
True or False.

	
property source_level

	Floating point number that controls the output level, either a voltage or a current,
depending on the source mode.

	
property source_mode

	String property that controls the source mode. Can be either ‘current’ or ‘voltage’.

	
property source_range

	Floating point number that controls the range (either in voltage or current)
of the output. “Range” refers to the maximum source level.

	
trigger_ramp_to_level(level, ramp_time)

	Ramp the output level from its current value to “level” in time “ramp_time”. This method
will NOT wait until the ramp is finished (thus, it will not block further code evaluation).

	Parameters

	
	level (float) – final output level

	ramp_time (float) – time in seconds to ramp

	Returns

	None

	
property voltage_limit

	Floating point number that controls the voltage limit. “Limit” refers to maximum
value of the electrical value that is conjugate to the mode (current is conjugate to
voltage, and vice versa). Thus, voltage limit is only applicable when in ‘current’ mode

 Contributing

Contributing

Contributions to the instrument repository and the main code base are highly encouraged. This section outlines the basic work-flow for new contributors.

Using the development version

New features are added to the development version of PyMeasure, hosted on GitHub [https://github.com/]. We use Git version control [https://git-scm.com/] to track and manage changes to the source code. On Windows, we recommend using GitHub Desktop [https://git-scm.com/downloads]. Make sure you have an appropriate version of Git (or GitHub Desktop) installed and that you have a GitHub account.

In order to add your feature, you need to first fork [https://help.github.com/articles/fork-a-repo/] PyMeasure. This will create a copy of the repository under your GitHub account.

The instructions below assume that you have set up Anaconda, as described in the Quick Start guide and describe the terminal commands necessary. If you are using GitHub Desktop, take a look through their documentation [https://help.github.com/desktop/] to understand the corresponding steps.

Clone your fork of PyMeasure your-github-username/pymeasure. In the following terminal commands replace your desired path and GitHub username.

cd /path/for/code
git clone https://github.com/your-github-username/pymeasure.git

If you had already installed PyMeasure using pip, make sure to uninstall it before continuing.

pip uninstall pymeasure

Install PyMeasure in the editable mode.

cd /path/for/code/pymeasure
pip install -e .

This will allow you to edit the files of PyMeasure and see the changes reflected. Make sure to reset your notebook kernel or Python console when doing so. Now you have your own copy of the development version of PyMeasure installed!

Working on a new feature

We use branches in Git to allow multiple features to be worked on simultaneously, without causing conflicts. The master branch contains the stable development version. Instead of working on the master branch, you will create your own branch off the master and merge it back into the master when you are finished.

Create a new branch for your feature before editing the code. For example, if you want to add the new instrument “Extreme 5000” you will make a new branch “dev/extreme-5000”.

git branch dev/extreme-5000

You can also make a new branch [https://help.github.com/articles/creating-and-deleting-branches-within-your-repository/] on GitHub. If you do so, you will have to fetch these changes before the branch will show up on your local computer.

git fetch

Once you have created the branch, change your current branch to match the new one.

git checkout dev/extreme-5000

Now you are ready to write your new feature and make changes to the code. To ensure consistency, please follow the coding standards for PyMeasure. Use git status to check on the files that have been changed. As you go, commit your changes and push them to your fork.

git add file-that-changed.py
git commit -m "A short description about what changed"
git push

Making a pull request

While you are working, it is helpful to start a pull request (PR) targeting the master branch of pymeasure/pymeasure. This will allow you to discuss your feature with other contributors. We encourage you to start this pull request already after your first commit.
You may mark a pull request as a draft, if it is in an early state.

Start a pull request [https://help.github.com/articles/using-pull-requests/] on the PyMeasure GitHub page [https://github.com/pymeasure/pymeasure].

There is some automation in place to run the unit tests and check some coding standards. Annotations in the “Files changed” tab indicate problems for you to correct (e.g. linting or docstring warnings).

Your pull-request will be reviewed by the PyMeasure maintainers. Frequently there is some iteration and discussion based on that feedback until a pull request can be merged. This will happen either in the conversation tab or in inline code comments.

Be aware that due to maintainer manpower limitations it might take a long time until PRs get reviewed and/or merged.
In general, review effort scales badly with PR size. Therefore, smaller PRs are much preferred. Try to limit your contribution to one “aspect”, e.g. one instrument (or a few if closely related), one bug fix, or one feature contribution.

If you placed your contribution in a separate branch as suggested above, you can easily use your contribution in the meantime – just check out your feature branch instead of master.

Unit testing

Unit tests are run each time a new commit is made to a branch. The purpose is to catch changes that break the current functionality, by testing each feature unit. PyMeasure relies on pytest [http://pytest.org/latest/] to preform these tests, which are run on TravisCI and Appveyor for Linux/macOS and Windows respectively.

Running the unit tests while you develop is highly encouraged. This will ensure that you have a working contribution when you create a pull request.

pytest

If your feature can be tested, unit tests are required. This will ensure that your features keep working as new features are added.

Now you are familiar with all the pieces of the PyMeasure development work-flow. We look forward to seeing your pull-request!

 Reporting an error

Reporting an error

Please report all errors to the Issues section [https://github.com/pymeasure/pymeasure/issues] of the PyMeasure GitHub repository. Use the search function to determine if there is an existing or resolved issued before posting.

 Adding instruments

Adding instruments

You can make a significant contribution to PyMeasure by adding a new instrument to the pymeasure.instruments package.
Even adding an instrument with a few features can help get the ball rolling, since its likely that others are interested in the same instrument.

Before getting started, become familiar with the contributing work-flow for PyMeasure, which steps through the process of adding a new feature (like an instrument) to the development version of the source code.

Pymeasure instruments communicate with the devices via transfer of bytes or ASCII characters encoded as bytes.
For ease of use, we have property creators to easily create python properties. Similarly, we have creators to easily implement channels. Finally, for a smoother implementation process and better maintenance, we have tests.

The following sections will describe how to lay out your instrument code.

	File structure
	Updating the init file

	Add test files

	Adding documentation

	Instrument file

	Your instrument’s user interface
	Common instrument types

	Managing status codes or other indicator values

	Defining default connection settings
	Single interface

	Multiple interfaces

	Writing properties
	The property factories

	Restricting values with validators

	Mapping values

	Boolean properties

	Processing of set values

	Processing of return values

	Checking the instrument for errors

	Using multiple values

	Dynamic properties

	Instruments with similar features
	Instrument family with different parameter values

	Instruments with similar command syntax

	Instruments with channels
	Adding a channel with ChannelCreator

	Adding multiple channels with MultiChannelCreator

	Advanced channel management

	Advanced communication protocols
	Instrument’s inner workings

	Adding a device address and adding delay

	Bytes communication

	Writing tests
	Protocol tests

	Device tests

	Solutions for implementation challenges
	General issues

	Communication protocol issues

	Channels

 File structure

File structure

Your new instrument should be placed in the directory corresponding to the manufacturer of the instrument. For example, if you are going to add an “Extreme 5000” instrument you should add the following files assuming “Extreme” is the manufacturer. Use lowercase for all filenames to distinguish packages from CamelCase Python classes.

pymeasure/pymeasure/instruments/extreme/
 |--> __init__.py
 |--> extreme5000.py

Updating the init file

The __init__.py file in the manufacturer directory should import all of the instruments that correspond to the manufacturer, to allow the files to be easily imported. For a new manufacturer, the manufacturer should also be added to pymeasure/pymeasure/instruments/__init__.py.

Add test files

Test files (pytest) for each instrument are highly encouraged, as they help verify the code and implement changes. Testing new code parts with a test (Test Driven Development) is a good way for fast and good programming, as you catch errors early on.

pymeasure/tests/instruments/extreme/
 |--> test_extreme5000.py

Adding documentation

Documentation for each instrument is required, and helps others understand the features you have implemented. Add a new reStructuredText file to the documentation.

pymeasure/docs/api/instruments/extreme/
 |--> index.rst
 |--> extreme5000.rst

Copy an existing instrument documentation file, which will automatically generate the documentation for the instrument. The index.rst file should link to the extreme5000 file. For a new manufacturer, the manufacturer should be also linked in pymeasure/docs/api/instruments/index.rst.

Instrument file

All standard instruments should be child class of Instrument. This provides the basic functionality for working with Adapters, which perform the actual communication.

The most basic instrument, for our “Extreme 5000” example starts like this:

#
This file is part of the PyMeasure package.
#
Copyright (c) 2013-2023 PyMeasure Developers
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
#

from pymeasure.instruments import Instrument

This is a minimal instrument definition:

class Extreme5000(Instrument):
 """Control the imaginary Extreme 5000 instrument."""

 def __init__(self, adapter, name="Extreme 5000", **kwargs):
 super().__init__(
 adapter,
 name,
 **kwargs
)

Make sure to include the PyMeasure license to each file, and add yourself as an author to the AUTHORS.txt file.

There is a certain order of elements in an instrument class that is useful to adhere to:

	First, the initializer (the __init__() method), this makes it faster to find when browsing the source code.

	Then class attributes/variables, if you need them.

	Then properties (pymeasure-specific or generic Python variants). This will be the bulk of the implementation.

	Finally, any methods.

Your instrument’s user interface

Your instrument will have a certain set of properties and methods that are available to a user and discoverable via the documentation or their editor’s autocomplete function.

In principle you are free to choose how you do this (with the exception of standard SCPI properties like id).
However, there are a couple of practices that have turned out to be useful to follow:

	Naming things is important. Try to choose clear, expressive, unambiguous names for your instrument’s elements.

	If there are already similar instruments in the same “family” (like a power supply) in pymeasure, try to follow their lead where applicable. It’s better if, e.g., all power supplies have a current_limit instead of an assortment of current_max, Ilim, max_curr, etc.

	If there is already an instrument with a similar command set, check if you can inherit from that one and just tweak a couple of things. This massively reduces code duplication and maintenance effort. The section Instruments with similar features shows how to achieve that.

	The bulk of your instrument’s interface will probably be made up of properties for quantities to set and/or read out. Our custom properties (see Writing properties ff. below) offer some convenience features and are therefore preferable, but plain Python properties are also fine.

	“Actions”, commands or verbs should typically be methods, not properties: recall(), trigger_scan(), prepare_resistance_measurement(), etc.

	This separation between properties and methods also naturally helps with observing the “command-query separation” principle [https://en.wikipedia.org/wiki/Command%E2%80%93query_separation].

	If your instrument has multiple identical channels, see Instruments with channels.

In principle, you are free to write any methods that are necessary for interacting with the instrument. When doing so, make sure to use the self.ask(command), self.write(command), and self.read() methods to issue commands instead of calling the adapter directly. If the communication requires changes to the commands sent/received, you can override these methods in your instrument, for further information see Advanced communication protocols.

In practice, we have developed a number of best practices for making instruments easy to write and maintain. The following sections detail these, which are highly encouraged to follow.

Common instrument types

There are a number of categories that many instruments fit into.
In the future, pymeasure should gain an abstraction layer based on that, see this issue [https://github.com/pymeasure/pymeasure/issues/416].
Until that is ready, here are a couple of guidelines towards a more uniform API.
Note that not all already available instruments follow these, but expect this to be harmonized in the future.

Frequent properties

If your instrument has an output that can be switched on and off, use a boolean property called output_enabled.

Power supplies

PSUs typically can measure the actual current and voltage, as well as have settings for the voltage level and the current limit.
To keep naming clear and avoid confusion, implement the properties current, voltage, voltage_setpoint and current_limit, respectively.

Managing status codes or other indicator values

Often, an instrument features one or more collections of specific values that signal some status, an instrument mode or a number of possible configuration values.
Typically, these are collected in mappings of some sort, as you want to provide a clear and understandable value to the user, while abstracting away the raw data, think ACQUISITION_MODE instead of 0x04.
The mappings normally are kept at module level (i.e. not defined within the instrument class), so that they are available when using the property factories.
This is a small drawback of using Python class attributes.

The easiest way to handle these mappings is a plain dict.
However, there is often a better way, the Python enum.Enum.
To cite the Python documentation [https://docs.python.org/3.11/howto/enum.html],

An Enum is a set of symbolic names bound to unique values. They are similar to global variables, but they offer a more useful repr(), grouping, type-safety, and a few other features.

As our signal values are often integers, the most appropriate enum types are IntEnum and IntFlag.

IntEnum is the same as Enum, but its members are also integers and can be used anywhere that an integer can be used (so their use for composing commands is transparent), but logic/code they appear in is much more legible.
Note that starting from Python version 3.11, the printed format of the IntEnum and IntFlag has been changed to return numeric value; however, the symbolic name can be obtained by printing its repr or the .name property, or returning the value in a REPL.

>>> from enum import IntEnum
>>> class InstrMode(IntEnum):
... WAITING = 0x00
... HEATING = 0x01
... COOLING = 0x05
...
>>> received_from_device = 0x01
>>> current_mode = InstrMode(received_from_device)
>>> if current_mode == InstrMode.WAITING:
... print('Idle')
... else:
... current_mode
... print(repr(current_mode))
... print(f'Mode value: {current_mode}')
...
<InstrMode.HEATING: 1>
<InstrMode.HEATING: 1>
Mode value: 1

IntFlag has the added benefit that it supports bitwise operators and combinations, and as such is a good fit for status bitmasks or error codes that can represent multiple values:

>>> from enum import IntFlag
>>> class ErrorCode(IntFlag):
... TEMP_OUT_OF_RANGE = 8
... TEMPSENSOR_FAILURE = 4
... COOLER_FAILURE = 2
... HEATER_FAILURE = 1
... OK = 0
...
>>> received_from_device = 7
>>> ErrorCode(received_from_device)
<ErrorCode.TEMPSENSOR_FAILURE|COOLER_FAILURE|HEATER_FAILURE: 7>

IntFlags are used by many instruments for the purpose just demonstrated.

The status property could look like this:

status = Instrument.measurement(
 "STB?",
 """Measure the status of the device as enum.""",
 get_process=lambda v: ErrorCode(v),
)

Defining default connection settings

When implementing instruments, it’s sometimes necessary to define default connection settings.
This might be because an instrument connection requires specific non-default settings, or because your instrument actually supports multiple interfaces.

The VISAAdapter class offers a flexible way of dealing with connection settings fully within the initializer of your instrument.

Single interface

The simplest version, suitable when the instrument connection needs default settings, just passes all keywords through to the Instrument initializer, which hands them over to VISAAdapter if adapter is a string or integer.

def __init__(self, adapter, name="Extreme 5000", **kwargs):
 super().__init__(
 adapter,
 name,
 **kwargs
)

If you want to set defaults that should be prominently visible to the user and may be overridden, place them in the signature.
This is suitable when the instrument has one type of interface, or any defaults are valid for all interface types, see the documentation in VISAAdapter for details.

def __init__(self, adapter, name="Extreme 5000", baud_rate=2400, **kwargs):
 super().__init__(
 adapter,
 name,
 baud_rate=baud_rate,
 **kwargs
)

If you want to set defaults, but they don’t need to be prominently exposed for replacement, use this pattern, which sets the value only when there is no entry in kwargs, yet.

def __init__(self, adapter, name="Extreme 5000", **kwargs):
 kwargs.setdefault('timeout', 1500)
 super().__init__(
 adapter,
 name,
 **kwargs
)

Multiple interfaces

Now, if you have instruments with multiple interfaces (e.g. serial, TCPI/IP, USB), things get interesting.
You might have settings common to all interfaces (like timeout), but also settings that are only valid for one interface type, but not others.

The trick is to add keyword arguments that name the interface type, like asrl or gpib, below (see here [https://pyvisa.readthedocs.io/en/latest/api/constants.html#pyvisa.constants.InterfaceType] for the full list).
These then contain a dictionary with the settings specific to the respective interface:

def __init__(self, adapter, name="Extreme 5000", baud_rate=2400, **kwargs):
 kwargs.setdefault('timeout', 1500)
 super().__init__(
 adapter,
 name,
 gpib=dict(enable_repeat_addressing=False,
 read_termination='\r'),
 asrl={'baud_rate': baud_rate,
 'read_termination': '\r\n'},
 **kwargs
)

When the instrument instance is created, the interface-specific settings for the actual interface being used get merged with **kwargs before passing them on to PyVISA, the rest is discarded.
This way, we always pass on a valid set of arguments.
In addition, any entries in **kwargs** take precedence, so if they need to, it is still possible for users to override any defaults you set in the instrument definition.

For many instruments, the simple way presented first is enough, but in case you have a more complex arrangement to implement, see whether Advanced communication protocols fits your bill. If, for some exotic reason, you need a special connection type, which you cannot model with PyVISA, you can write your own Adapter.

 Writing properties

Writing properties

In PyMeasure, Python properties [https://docs.python.org/3/howto/descriptor.html#properties] are the preferred method for dealing with variables that are read or set.

The property factories

PyMeasure comes with three central convenience factory functions for making properties for classes: CommonBase.control, CommonBase.measurement, and CommonBase.setting.
You can call them, however, as Instrument.control, Instrument.measurement, and Instrument.setting.

The Instrument.measurement function returns a property that can only read values from an instrument.
For example, if our “Extreme 5000” has the *IDN? command, we can write the following property to be added after the def __init__ line in our above example class, or added to the class after the fact as in the code here:

Extreme5000.cell_temp = Instrument.measurement(
 ":TEMP?",
 """Measure the temperature of the reaction cell.""",
)

You will notice that a documentation string is required, see Docstrings for details.

When we use this property we will get the temperature of the reaction cell.

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.cell_temp # Sends ":TEMP?" to the device
127.2

The Instrument.control function extends this behavior by creating a property that you can read and set. For example, if our “Extreme 5000” has the :VOLT? and :VOLT <float> commands that are in Volts, we can write the following property.

Extreme5000.voltage = Instrument.control(
 ":VOLT?", ":VOLT %g",
 """Control the voltage in Volts (float)."""
)

You will notice that we use the Python string format [https://docs.python.org/3/library/string.html#format-specification-mini-language] %g to format passed-through values as floating point.

We can use this property to set the voltage to 100 mV, which will send the appropriate command, and then to request the current voltage:

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.voltage = 0.1 # Sends ":VOLT 0.1" to set the voltage to 100 mV
>>> extreme.voltage # Sends ":VOLT?" to query for the current value
0.1

Finally, the Instrument.setting function can only set, but not read values.

Using the Instrument.control, Instrument.measurement, and Instrument.control functions, you can create a number of properties for basic measurements and controls.

The next sections detail additional features of the property factories.
These allow you to write properties that cover specific ranges, or that have to map between a real value to one used in the command. Furthermore it is shown how to perform more complex processing of return values from your device.

Restricting values with validators

Many GPIB/SCPI commands are more restrictive than our basic examples above. The Instrument.control function has the ability to encode these restrictions using validators. A validator is a function that takes a value and a set of values, and returns a valid value or raises an exception. There are a number of pre-defined validators in pymeasure.instruments.validators that should cover most situations. We will cover the four basic types here.

In the examples below we assume you have imported the validators.

In many situations you will also need to process the return string in order to extract the wanted quantity or process a value before sending it to the device. The Instrument.control, Instrument.measurement and Instrument.setting function also provide means to achieve this.

In a restricted range

If you have a property with a restricted range, you can use the strict_range and truncated_range functions.

For example, if our “Extreme 5000” can only support voltages from -1 V to 1 V, we can modify our previous example to use a strict validator over this range.

Extreme5000.voltage = Instrument.control(
 ":VOLT?", ":VOLT %g",
 """Control the voltage in Volts (float strictly from -1 to 1).""",
 validator=strict_range,
 values=[-1, 1]
)

Now our voltage will raise a ValueError if the value is out of the range.

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.voltage = 100
Traceback (most recent call last):
...
ValueError: Value of 100 is not in range [-1,1]

This is useful if you want to alert the programmer that they are using an invalid value. However, sometimes it can be nicer to truncate the value to be within the range.

Extreme5000.voltage = Instrument.control(
 ":VOLT?", ":VOLT %g",
 """Control the voltage in Volts (float from -1 to 1).

 Invalid voltages are truncated.
 """,
 validator=truncated_range,
 values=[-1, 1]
)

Now our voltage will not raise an error, and will truncate the value to the range bounds.

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.voltage = 100 # Executes ":VOLT 1"
>>> extreme.voltage
1.0

In a discrete set

Often a control property should only take a few discrete values. You can use the strict_discrete_set and truncated_discrete_set functions to handle these situations. The strict version raises an error if the value is not in the set, as in the range examples above.

For example, if our “Extreme 5000” has a :RANG <float> command that sets the voltage range that can take values of 10 mV, 100 mV, and 1 V in Volts, then we can write a control as follows.

Extreme5000.voltage = Instrument.control(
 ":RANG?", ":RANG %g",
 """Control the voltage range in Volts (float in 10e-3, 100e-3, 1).""",
 validator=truncated_discrete_set,
 values=[10e-3, 100e-3, 1]
)

Now we can set the voltage range, which will automatically truncate to an appropriate value.

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.voltage = 0.08
>>> extreme.voltage
0.1

Mapping values

Now that you are familiar with the validators, you can additionally use maps to satisfy instruments which require non-physical values. The map_values argument of Instrument.control enables this feature.

If your set of values is a list, then the command will use the index of the list. For example, if our “Extreme 5000” instead has a :RANG <integer>, where 0, 1, and 2 correspond to 10 mV, 100 mV, and 1 V, then we can use the following control.

Extreme5000.voltage = Instrument.control(
 ":RANG?", ":RANG %d",
 """Control the voltage range in Volts (float in 10 mV, 100 mV and 1 V).
 """,
 validator=truncated_discrete_set,
 values=[10e-3, 100e-3, 1],
 map_values=True
)

Now the actual GPIB/SCIP command is “:RANG 1” for a value of 100 mV, since the index of 100 mV in the values list is 1.

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.voltage = 100e-3
>>> extreme.read()
'1'
>>> extreme.voltage = 1
>>> extreme.voltage
1

Dictionaries provide a more flexible method for mapping between real-values and those required by the instrument. If instead the :RANG <integer> took 1, 2, and 3 to correspond to 10 mV, 100 mV, and 1 V, then we can replace our previous control with the following.

Extreme5000.voltage = Instrument.control(
 ":RANG?", ":RANG %d",
 """Control the voltage range in Volts (float in 10 mV, 100 mV and 1 V).
 """,
 validator=truncated_discrete_set,
 values={10e-3:1, 100e-3:2, 1:3},
 map_values=True
)

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.voltage = 10e-3
>>> extreme.read()
'1'
>>> extreme.voltage = 100e-3
>>> extreme.voltage
0.1

The dictionary now maps the keys to specific values. The values and keys can be any type, so this can support properties that use strings:

Extreme5000.channel = Instrument.control(
 ":CHAN?", ":CHAN %d",
 """Control the measurement channel (string strictly in 'X', 'Y', 'Z').""",
 validator=strict_discrete_set,
 values={'X':1, 'Y':2, 'Z':3},
 map_values=True
)

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.channel = 'X'
>>> extreme.read()
'1'
>>> extreme.channel = 'Y'
>>> extreme.channel
'Y'

As you have seen, the Instrument.control function can be significantly extended by using validators and maps.

Boolean properties

The idea of using maps can be leveraged to implement properties where the user-facing values are booleans, so you can interact in a pythonic way using True and False:

Extreme5000.output_enabled = Instrument.control(
 "OUTP?", "OUTP %d",
 """Control the instrument output is enabled (boolean).""",
 validator=strict_discrete_set,
 map_values=True,
 values={True: 1, False: 0}, # the dict values could also be "on" and "off", etc. depending on the device
)

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.output_enabled = True
>>> extreme.read()
'1'
>>> extreme.output_enabled = False
>>> extreme.output_enabled
False
>>> # Invalid input raises an exception
>>> extreme.output_enabled = 34
Traceback (most recent call last):
...
ValueError: Value of 34 is not in the discrete set {True: 1, False: 0}

Good names for boolean properties are chosen such that they could also be a yes/no question: “Is the output enabled?” -> output_enabled, display_active, etc.

Processing of set values

The Instrument.control, and Instrument.setting allow a keyword argument set_process which must be a function that takes a value after validation and performs processing before value mapping. This function must return the processed value. This can be typically used for unit conversions as in the following example:

Extreme5000.current = Instrument.setting(
 ":CURR %g",
 """Set the measurement current in A (float strictly from 0 to 10).""",
 validator=strict_range,
 values=[0, 10],
 set_process=lambda v: 1e3*v, # convert current to mA
)

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.current = 1 # set current to 1000 mA

Processing of return values

Similar to set_process the Instrument.control, and Instrument.measurement functions allow a get_process argument which if specified must be a function that takes a value and performs processing before value mapping. The function must return the processed value. In analogy to the example above this can be used for example for unit conversion:

Extreme5000.current = Instrument.control(
 ":CURR?", ":CURR %g",
 """Control the measurement current in A (float strictly from 0 to 10).""",
 validator=strict_range,
 values=[0, 10],
 set_process=lambda v: 1e3*v, # convert to mA
 get_process=lambda v: 1e-3*v, # convert to A
)

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.current = 3.1
>>> extreme.current
3.1

Another use-case of set-process, get-process is conversion from/to a pint.Quantity. Modifying above example to set or return a quantity, we get:

from pymeasure.units import ureg

Extreme5000.current = Instrument.control(
 ":CURR?", ":CURR %g",
 """Control the measurement current (float).""",
 set_process=lambda v: v.m_as(ureg.mA), # send the value as mA to the device
 get_process=lambda v: ureg.Quantity(v, ureg.mA), # convert to quantity
)

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.current = 3.1 * ureg.A
>>> extreme.current.m_as(ureg.A)
3.1

Note

This is, how quantities can be used in pymeasure instruments right now. Issue 666 [https://github.com/pymeasure/pymeasure/issues/666] develops a more convenient implementation of quantities in the property factories.

get_process can also be used to perform string processing. Let’s say your instrument returns a value with its unit (e.g. 1.23 nF), which has to be removed. This could be achieved by the following code:

Extreme5000.capacity = Instrument.measurement(
 ":CAP?",
 """Measure the capacity in nF (float).""",
 get_process=lambda v: float(v.replace('nF', ''))
)

The same can be also achieved by the preprocess_reply keyword argument to Instrument.control or Instrument.measurement. This function is forwarded to Adapter.values and runs directly after receiving the reply from the device. One can therefore take advantage of the built in casting abilities and simplify the code accordingly:

Extreme5000.capacity = Instrument.measurement(
 ":CAP?",
 """Measure the capacity in nF (float).""",
 preprocess_reply=lambda v: v.replace('nF', '')
 # notice how we don't need to cast to float anymore
)

Checking the instrument for errors

If you need to separately ask your instrument about its error state after getting/setting, use the parameters check_get_errors and check_set_errors of control(), respectively.
If those are enabled, the methods check_get_errors() and check_set_errors(), respectively, will be called be called after device communication has concluded.
In the default implementation, for simplicity both methods call check_errors().
To read the automatic response of instruments that respond to every set command with an acknowledgment or error, override check_set_errors() as needed.

Using multiple values

Seldomly, you might need to send/receive multiple values in one command.
The Instrument.control function can be used with multiple values at one time, passed as a tuple. Say, we may set voltages and frequencies in our “Extreme 5000”, and the the commands for this are :VOLTFREQ? and :VOLTFREQ <float>,<float>, we could use the following property:

Extreme5000.combination = Instrument.control(
 ":VOLTFREQ?", ":VOLTFREQ %g,%g",
 """Simultaneously control the voltage in Volts and the frequency in Hertz (both float).

 This property is set by a tuple.
 """
)

In use, we could set the voltage to 200 mV, and the Frequency to 931 Hz, and read both values immediately afterwards.

>>> extreme = Extreme5000("GPIB::1")
>>> extreme.combination = (0.2, 931) # Executes ":VOLTFREQ 0.2,931"
>>> extreme.combination # Reads ":VOLTFREQ?"
[0.2, 931.0]

This interface is not too convenient, but luckily not often needed.

Dynamic properties

As described in previous sections, Python properties are a very powerful tool to easily code an instrument’s programming interface.
One very interesting feature provided in PyMeasure is the ability to adjust properties’ behaviour in subclasses or dynamically in instances.
This feature allows accomodating some interesting use cases with a very compact syntax.

Dynamic features of a property are enabled by setting its dynamic parameter to True.

Afterwards, creating specifically-named attributes (either in class definitions or on instances) allows modifying the parameters used at the time of property definition.
You need to define an attribute whose name is <property name>_<property_parameter> and assign to it the desired value.
Pay attention not to inadvertently define other class attribute or instance attribute names matching this pattern, since they could unintentionally modify the property behaviour.

Note

To clearly distinguish these special attributes from normal class/instance attributes, they can only be set, not read.

The mechanism works for all the parameters in properties, except dynamic and docs – see Instrument.control, Instrument.measurement, Instrument.setting.

Dynamic validity range

Let’s assume we have an instrument with a command that accepts a different valid range of values depending on its current state.
The code below shows how this can be accomplished with dynamic properties.

Extreme5000.voltage = Instrument.control(
 ":VOLT?", ":VOLT %g",
 """Control the voltage in Volts (float).""",
 validator=strict_range,
 values=[-1, 1],
 dynamic = True,
)
def set_bipolar_mode(self, enabled = True):
 """Safely switch between bipolar/unipolar mode."""

 # some code to switch off the output first
 # ...

 if enabled:
 self.mode = "BIPOLAR"
 # set valid range of "voltage" property
 self.voltage_values = [-1, 1]
 else:
 self.mode = "UNIPOLAR"
 # note the "propertyname_parametername" form of the attribute
 self.voltage_values = [0, 1]

Now our voltage property has a dynamic validity range, either [-1, 1] or [0, 1].
A side effect of this is that the property’s docstring should be less specific, to avoid it containing dynamically changed information (like the admissible value range).
In this example, the property name was voltage and the parameter to adjust was values, so we used self.voltage_values to set our desired values.

Instruments with similar features

When instruments have a similar set of features, it makes sense to use inheritance to obtain most of the functionality from a parent instrument class, instead of copy-pasting code.

Note

Don’t forget to update the instrument’s name attribute accordingly, by either supplying an appropriate argument (if available) during the super().__init__() call, or by setting it anew below that call.

In some cases, one only needs to add additional properties and methods.
In other cases, some of the already present properties/methods need to be completely replaced by defining them again in the derived class.
Often, however, only some details need to be changed.
This can be dealt with efficiently using dynamic properties.

Instrument family with different parameter values

A common case is to have a family of similar instruments with some parameter range different for each family member.
In this case you would update the specific class parameter range without rewriting the entire property:

class FictionalInstrumentFamily(Instrument):
 frequency = Instrument.setting(
 "FREQ %g",
 """Set the frequency (float).""",
 validator=strict_range,
 values=[0, 1e9],
 dynamic=True,
 # ... other possible parameters follow
)
 #
 # ... complete class implementation here
 #

class FictionalInstrument_1GHz(FictionalInstrumentFamily):
 pass

class FictionalInstrument_3GHz(FictionalInstrumentFamily):
 frequency_values = [0, 3e9]

class FictionalInstrument_9GHz(FictionalInstrumentFamily):
 frequency_values = [0, 9e9]

Notice how easily you can derive the different family members from a common class, and the fact that the attribute is now defined at class level and not at instance level.

Instruments with similar command syntax

Another use case involves maintaining compatibility between instruments with commands having different syntax, like in the following example.

class MultimeterA(Instrument):
 voltage = Instrument.measurement(get_command="VOLT?",...)

 # ...full class definition code here

class MultimeterB(MultimeterA):
 # Same as brand A multimeter, but the command to read voltage
 # is slightly different
 voltage_get_command = "VOLTAGE?"

In the above example, MultimeterA and MultimeterB use a different command to read the voltage, but the rest of the behaviour is identical.
MultimeterB can be defined subclassing MultimeterA and just implementing the difference.

 Instruments with channels

Instruments with channels

Some instruments, like oscilloscopes and voltage sources, have channels whose commands differ only in the channel name.
For this case, we have Channel, which is similar to Instrument and its property factories, but does expect an Instrument instance (i.e., a parent instrument) instead of an Adapter as parameter.
All the channel communication is routed through the instrument’s methods (write, read, etc.).
However, Channel.insert_id uses str.format to insert the channel’s id at any occurrence of the class attribute Channel.placeholder, which defaults to "ch", in the written commands.
For example "Ch{ch}:VOLT?" will be sent as "Ch3:VOLT?" to the device, if the channel’s id is “3”.

Please add any created channel classes to the documentation. In the instrument’s documentation file, you may add

.. autoclass:: pymeasure.instruments.MANUFACTURER.INSTRUMENT.CHANNEL
 :members:
 :show-inheritance:

MANUFACTURER is the folder name of the manufacturer and INSTRUMENT the file name of the instrument definition, which contains the CHANNEL class.
You may link in the instrument’s docstring to the channel with :class:`CHANNEL`

To simplify and standardize the creation of channels in an Instrument class, there are two classes that can be used.
For instruments with fewer than 16 channels, ChannelCreator should be used
to explicitly declare each individual channel. For instruments with more than 16 channels, the
MultiChannelCreator can create multiple channels in a single declaration.

Adding a channel with ChannelCreator

For instruments with fewer than 16 channels the class ChannelCreator should be used to assign each channel interface to a class attribute.
ChannelCreator constructor accepts two parameters, the channel class for this channel interface, and the instrument’s channel id for the channel interface.

In this example, we are defining a channel class and an instrument driver class. The VoltageChannel channel class will be used for controlling two channels in our ExtremeVoltage5000 instrument.
In the ExtremeVoltage5000 class we declare two class attributes with ChannelCreator, output_A and output_B, which will become our channel interfaces.

class VoltageChannel(Channel):
 """A channel of the voltage source."""

 voltage = Channel.control(
 "SOURce{ch}:VOLT?", "SOURce{ch}:VOLT %g",
 """Control the output voltage of this channel.""",
)

class ExtremeVoltage5000(Instrument):
 """An instrument with channels."""
 output_A = Instrument.ChannelCreator(VoltageChannel, "A")
 output_B = Instrument.ChannelCreator(VoltageChannel, "B")

At instrument class instantiation, the instrument class will create an instance of the channel class and assign it to the class attribute name.
Additionally the channels will be collected in a dictionary, by default named channels.
We can access the channel interface through that class name:

extreme_inst = ExtremeVoltage5000('COM3')
Set channel A voltage
extreme_inst.output_A.voltage = 50
Read channel B voltage
chan_b_voltage = extreme_inst.output_B.voltage

Or we can access the channel interfaces through the channels collection:

Set channel A voltage
extreme_inst.channels['A'].voltage = 50
Read channel B voltage
chan_b_voltage = extreme_inst.channels['B'].voltage

Adding multiple channels with MultiChannelCreator

For instruments greater than 16 channels the class MultiChannelCreator can be used to easily generate a list of channels from one class attribute declaration.

The MultiChannelCreator constructor accepts a single channel class or list of channel classes, and a list of corresponding channel ids. Instead of lists, you may also use tuples.
If you give a single class and a list of ids, all channels will be of the same class.

At instrument instantiation, the instrument will generate channel interfaces as class attribute names composing of the prefix (default "ch_") and channel id, e.g. the channel with id “A” will be added as attribute ch_A.
While ChannelCreator creates a channel interface for each class attribute, MultiChannelCreator creates a channel collection for the assigned class attribute.
It is recommended you use the class attribute name channels to keep the codebase homogenous.

To modify our example, we will use MultiChannelCreator to generate 24 channels of the VoltageChannel class.

class VoltageChannel(Channel):
 """A channel of the voltage source."""

 voltage = Channel.control(
 "SOURce{ch}:VOLT?", "SOURce{ch}:VOLT %g",
 """Control the output voltage of this channel.""",
)

class MultiExtremeVoltage5000(Instrument):
 """An instrument with channels."""
 channels = Instrument.MultiChannelCreator(VoltageChannel, list(range(1,25)))

We can now access the channel interfaces through the generated class attributes:

extreme_inst = MultiExtremeVoltage5000('COM3')
Set channel 5 voltage
extreme_inst.ch_5.voltage = 50
Read channel 16 voltage
chan_16_voltage = extreme_inst.ch_16.voltage

Because we use channels as the class attribute for MultiChannelCreator, we can access the channel interfaces through the channels collection:

Set channel 10 voltage
extreme_inst.channels[10].voltage = 50
Read channel 22 voltage
chan_b_voltage = extreme_inst.channels[22].voltage

Advanced channel management

Adding / removing channels

In order to add or remove programmatically channels, use the parent’s add_child(), remove_child() methods.

Channels with fixed prefix

If all channel communication is prefixed by a specific command, e.g. "SOURceA:" for channel A, you can override the channel’s insert_id() method.
That is especially useful, if you have only one channel of that type, e.g. because it defines one function of the instrument vs. another one.

class VoltageChannelPrefix(Channel):
 """A channel of a voltage source, every command has the same prefix."""

 def insert_id(self, command):
 return f"SOURce{self.id}:{command}"

 voltage = Channel.control(
 "VOLT?", "VOLT %g",
 """Control the output voltage of this channel.""",
)

This channel class implements the same communication as the previous example, but implements the channel prefix in the insert_id() method and not in the individual property (created by control()).

Collections of different channel types

Some devices have different types of channels. In this case, you can specify a different collection and prefix parameter.

class PowerChannel(Channel):
 """A channel controlling the power."""
 power = Channel.measurement(
 "POWER?", """Measure the currently consumed power.""")

class MultiChannelTypeInstrument(Instrument):
 """An instrument with two different channel types."""
 analog = Instrument.MultiChannelCreator(
 (VoltageChannel, VoltageChannelPrefix),
 ("A", "B"),
 prefix="an_")
 digital = Instrument.MultiChannelCreator(VoltageChannel, (0, 1, 2), prefix="di_")
 power = Instrument.ChannelCreator(PowerChannel)

This instrument has two collections of channels and one single channel.
The first collection in the dictionary analog contains an instance of VoltageChannel with the name an_A and an instance of VoltageChannelPrefix with the name an_B.
The second collection contains three channels of type VoltageChannel with the names di_0, di_1, di_2 in the dictionary digital.
You can address the first channel of the second group either with inst.di_0 or with inst.digital[0].
Finally, the instrument has a single channel with the name power, as it does not have a prefix.

If you have a single channel category, do not change the default parameters of ChannelCreator or add_child(), in order to keep the code base homogeneous.
We expect the default behaviour to be sufficient for most use cases.

 Advanced communication protocols

Advanced communication protocols

Some devices require a more advanced communication protocol, e.g. due to checksums or device addresses. In most cases, it is sufficient to subclass Instrument.write and Instrument.read.

Instrument’s inner workings

In order to adjust an instrument for more complicated protocols, it is key to understand the different parts.

The Adapter exposes write() and read() for strings, write_bytes() and read_bytes() for bytes messages. These are the most basic methods, which log all the traffic going through them. For the actual communication, they call private methods of the Adapter in use, e.g. VISAAdapter._read.
For binary data, like waveforms, the adapter provides also write_binary_values() and read_binary_values(), which use the aforementioned methods.
You do not need to call all these methods directly, instead, you should use the methods of Instrument with the same name. They call the Adapter for you and keep the code tidy.

Now to Instrument. The most important methods are write() and read(), as they are the most basic building blocks for the communication. The pymeasure properties (Instrument.control and its derivatives Instrument.measurement and Instrument.setting) and probably most of your methods and properties will call them. In any instrument, write() should write a general string command to the device in such a way, that it understands it. Similarly, read() should return a string in a general fashion in order to process it further.

The getter of Instrument.control does not call them directly, but via a chain of methods. It calls values() which in turn calls ask() and processes the returned string into understandable values. ask() sends the readout command via write(), waits some time if necessary via wait_for(), and reads the device response via read().

Similarly, Instrument.binary_values sends a command via write(), waits with wait_till_read(), but reads the response via Adapter.read_binary_values.

Adding a device address and adding delay

Let’s look at a simple example for a device, which requires its address as the first three characters and returns the same style. This is straightforward, as write() just prepends the device address to the command, and read() has to strip it again doing some error checking. Similarly, a checksum could be added.
Additionally, the device needs some time after it received a command, before it responds, therefore wait_for() waits always a certain time span.

class ExtremeCommunication(Instrument):
 """Control the ExtremeCommunication instrument.

 :param address: The device address for the communication.
 :param query_delay: Wait time after writing and before reading in seconds.
 """
 def __init__(self, adapter, name="ExtremeCommunication", address=0, query_delay=0.1):
 super().__init__(adapter, name)
 self.address = f"{address:03}"
 self.query_delay = query_delay

 def write(self, command):
 """Add the device address in front of every command before sending it."""
 super().write(self.address + command)

 def wait_for(self, query_delay=0):
 """Wait for some time.

 :param query_delay: override the global query_delay.
 """
 super().wait_for(query_delay or self.query_delay)

 def read(self):
 """Read from the device and check the response.

 Assert that the response starts with the device address.
 """
 got = super().read()
 if got.startswith(self.address):
 return got[3:]
 else:
 raise ConnectionError(f"Expected message address '{self.address}', but read '{got[3:]}' for wrong address '{got[:3]}'.")

 voltage = Instrument.measurement(
 ":VOLT:?", """Measure the voltage in Volts.""")

If the device is initialized with address=12, a request for the voltage would send "012:VOLT:?" to the device and expect a response beginning with "012".

Bytes communication

Some devices do not expect ASCII strings but raw bytes. In those cases, you can call the write_bytes() and read_bytes() in your write() and read() methods. The following example shows an instrument, which has registers to be written and read via bytes sent.

class ExtremeBytes(Instrument):
 """Control the ExtremeBytes instrument with byte-based communication."""
 def __init__(self, adapter, name="ExtremeBytes"):
 super().__init__(adapter, name)

 def write(self, command):
 """Write to the device according to the comma separated command.

 :param command: R or W for read or write, hexadecimal address, and data.
 """
 function, address, data = command.split(",")
 b = [0x03] if function == "R" else [0x10]
 b.extend(int(address, 16).to_bytes(2, byteorder="big"))
 b.extend(int(data).to_bytes(length=8, byteorder="big", signed=True))
 self.write_bytes(bytes(b))

 def read(self):
 """Read the response and return the data as a string, if applicable."""
 response = self.read_bytes(2) # return type and payload
 if response[0] == 0x00:
 raise ConnectionError(f"Device error of type {response[1]} occurred.")
 if response[0] == 0x03:
 # read that many bytes and return them as an integer
 data = self.read_bytes(response[1])
 return str(int.from_bytes(data, byteorder="big", signed=True))
 if response[0] == 0x10 and response[1] != 0x00:
 raise ConnectionError(f"Writing to the device failed with error {response[1]}")

 voltage = Instrument.control(
 "R,0x106,1", "W,0x106,%i",
 """Control the output voltage in mV.""",
)

 Writing tests

Writing tests

Tests are very useful for writing good code.
We have a number of tests checking the correctness of the pymeasure implementation.
Those tests (located in the tests directory) are run automatically on our CI server, but you can also run them locally using pytest.

When adding instruments, your primary concern will be tests for the instrument driver you implement.
We distinguish two groups of tests for instruments: the first group does not rely on a connected instrument.
These tests verify that the implemented instrument driver exchanges the correct messages with a device (for example according to a device manual).
We call those “protocol tests”.
The second group tests the code with a device connected.

Implement device tests by adding files in the tests/instruments/... directory tree, mirroring the structure of the instrument implementations.
There are other instrument tests already available that can serve as inspiration.

Protocol tests

In order to verify the expected working of the device code, it is good to test every part of the written code. The expected_protocol() context manager (using a ProtocolAdapter internally) simulates the communication with a device and verifies that the sent/received messages triggered by the code inside the with statement match the expectation.

import pytest

from pymeasure.test import expected_protocol

from pymeasure.instruments.extreme5000 import Extreme5000

def test_voltage():
 """Verify the communication of the voltage getter."""
 with expected_protocol(
 Extreme5000,
 [(":VOLT 0.345", None),
 (":VOLT?", "0.3000")],
) as inst:
 inst.voltage = 0.345
 assert inst.voltage == 0.3

In the above example, the imports import the pytest package, the expected_protocol and the instrument class to be tested.

The first parameter, Extreme5000, is the class to be tested.

When setting the voltage, the driver sends a message (":VOLT 0.345"), but does not expect a response (None). Getting the voltage sends a query (":VOLT?") and expects a string response ("0.3000").
Therefore, we expect two pairs of send/receive exchange.
The list of those pairs is the second argument, the expected message protocol.

The context manager returns an instance of the class (inst), which is then used to trigger the behaviour corresponding to the message protocol (e.g. by using its properties).

If the communication of the driver does not correspond to the expected messages, an Exception is raised.

Note

The expected messages are without the termination characters, as they depend on the connection type and are handled by the normal adapter (e.g. VISAAdapter).

Some protocol tests in the test suite can serve as examples:

	Testing a simple instrument: tests/instruments/keithley/test_keithley2000.py

	Testing a multi-channel instrument: tests/instruments/tektronix/test_afg3152.py

	Testing instruments using frame-based communication: tests/instruments/hcp/tc038.py

Test generator

In order to facilitate writing tests, if you already have working code and a device at hand, we have a Generator for tests.
You can control your instrument with the TestGenerator as a middle man.
It logs the method calls, the device communication and the return values, if any, and writes tests according to these log entries.

from pymeasure.generator import Generator
from pymeasure.instruments.hcp import TC038

generator = Generator()
inst = generator.instantiate(TC038, adapter, 'hcp', adapter_kwargs={'baud_rate': 9600})

As a first step, this code imports the Generator and generates a middle man instrument.
The instantiate() method creates an instrument instance and logs the communication at startup.
The Generator creates a special adapter for the communication with the device.
It cannot inspect the instrument’s __init__(), however.
Therefore you have to specify the all connection settings via the adapter_kwargs dictionary, even those, which are defined in __init__().
These adapter arguments are not written to tests.
If you have arguments for the instrument itself, e.g. a RS485 address, you may give it as a keyword argument.
These additional keyword arguments are included in the tests.

Now we can use inst as if it were created the normal way, i.e. inst = TC038(adapter), where adapter is some resource string.
Having gotten and set some properties, and called some methods, we can write the tests to a file.

inst.information # returns the 'information' property, e.g. 'UT150333 V01.R001111222233334444'
inst.setpoint = 20
assert inst.setpoint == 20
inst.setpoint = 60

generator.write_file(file)

The following data will be written to file:

import pytest

from pymeasure.test import expected_protocol
from pymeasure.instruments.hcp import TC038

def test_init():
 with expected_protocol(
 TC038,
 [(b'\x0201010WRS01D0002\x03', b'\x020101OK\x03')],
):
 pass # Verify the expected communication.

def test_information_getter():
 with expected_protocol(
 TC038,
 [(b'\x0201010WRS01D0002\x03', b'\x020101OK\x03'),
 (b'\x0201010INF6\x03', b'\x020101OKUT150333 V01.R001111222233334444\x03')],
) as inst:
 assert inst.information == 'UT150333 V01.R001111222233334444'

@pytest.mark.parametrize("comm_pairs, value", (
 ([(b'\x0201010WRS01D0002\x03', b'\x020101OK\x03'),
 (b'\x0201010WWRD0120,01,00C8\x03', b'\x020101OK\x03')],
 20),
 ([(b'\x0201010WRS01D0002\x03', b'\x020101OK\x03'),
 (b'\x0201010WWRD0120,01,0258\x03', b'\x020101OK\x03')],
 60),
))
def test_setpoint_setter(comm_pairs, value):
 with expected_protocol(
 TC038,
 comm_pairs,
) as inst:
 inst.setpoint = value

def test_setpoint_getter():
 with expected_protocol(
 TC038,
 [(b'\x0201010WRS01D0002\x03', b'\x020101OK\x03'),
 (b'\x0201010WRDD0120,01\x03', b'\x020101OK00C8\x03')],
) as inst:
 assert inst.setpoint == 20.0

Device tests

It can be useful as well to test the code against an actual device. The necessary device setup instructions (for example: connect a probe to the test output) should be written in the header of the test file or test methods. There should be the connection configuration (for example serial port), too.
In order to distinguish the test module from protocol tests, the filename should be test_instrumentName_with_device.py, if the device is called instrumentName.

To make it easier for others to run these tests using their own instruments, we recommend to use pytest.fixture to create an instance of the instrument class.
It is important to use the specific argument name connected_device_address and define the scope of the fixture to only establish a single connection to the device.
This ensures two things:
First, it makes it possible to specify the address of the device to be used for the test using the --device-address command line argument.
Second, tests using this fixture, i.e. tests that rely on a device to be connected to the computer are skipped by default when running pytest.
This is done to avoid that tests that require a device are run when none is connected.
It is important that all tests that require a connection to a device either use the connected_device_address fixture or a fixture derived from it as an argument.

A simple example of a fixture that returns a connected instrument instance looks like this:

@pytest.fixture(scope="module")
def extreme5000(connected_device_address):
 instr = Extreme5000(connected_device_address)
 # ensure the device is in a defined state, e.g. by resetting it.
 return instr

Note that this fixture uses connected_device_address as an input argument and will thus be skipped by automatic test runs.
This fixture can then be used in a test functions like this:

def test_voltage(extreme5000):
 extreme5000.voltage = 0.345
 assert extreme5000.voltage == 0.3

Again, by specifying the fixture’s name, in this case extreme5000, invoking pytest will skip these tests by default.

It is also possible to define derived fixtures, for example to put the device into a specific state. Such a fixture would look like this:

@pytest.fixture
def auto_scaled_extreme5000(extreme5000):
 extreme5000.auto_scale()
 return extreme5000

In this case, do not specify the fixture’s scope, so it is called again for every test function using it.

To run the test, specify the address of the device to be used via the --device-address command line argument and limit pytest to the relevant tests.
You can filter tests with the -k option or you can specify the filename.
For example, if your tests are in a file called test_extreme5000_with_device.py, invoke pytest with pytest -k extreme5000 --device-address TCPIP::192.168.0.123::INSTR".

There might also be tests where manual intervention is necessary. In this case, skip the test by prepending the test function with a @pytest.mark.skip(reason="A human needs to press a button.") decorator.

 Solutions for implementation challenges

Solutions for implementation challenges

This is a list of less common challenges, their solutions, and example instruments.

General issues

	Small numbers (<1e-5) are shown as 0 with %f. If an instrument understands exponential notation, you can use %g, which switches between floating point and exponential format, depending on the exponent.

Communication protocol issues

	The instrument answers every message, even a setting command. You can set the setting’s check_set_errors = True parameter and redefine check_set_errors() to read an answer, see hcp.TC038D

	Binary, frame-based communication, see hcp.TC038D

	All replies have the same length, see aja.DCXS

	The device generates garbage messages at startup, cluttering the buffer, see aja.DCXS

	An instrument and its channel need to override values, but it has to use the correct ask method as well, see tcpowerconversion.CXN

Channels

	Not all channels have the same features, see MKS937B

	Channel names in the communication (1, 2, 3) differ from front panel (A, B, C), see AdvantestR624X

	A family of instruments in which a property of the channels is different for different members of the family , see AnritsuMS464xB

 Coding Standards

Coding Standards

In order to maintain consistency across the different instruments in the PyMeasure repository, we enforce the following standards.

Python style guides

The PEP8 style guide [https://www.python.org/dev/peps/pep-0008/] and PEP257 docstring conventions [https://www.python.org/dev/peps/pep-0257/] should be followed.

Function and variable names should be lower case with underscores as needed to separate words. CamelCase should only be used for class names, unless working with Qt, where its use is common.

In addition, there is a configuration for the flake8 [https://flake8.pycqa.org/en/latest/] linter present. Our codebase should not trigger any warnings.
Many editors/IDEs can run this tool in the background while you work, showing results inline. Alternatively, you can run flake8 in the repository root to check for problems. In addition, our automation on Github also runs some checkers. As this results in a much slower feedback loop for you, it’s not recommended to rely only on this.

It is allowed but not required to use the black [https://black.readthedocs.io/en/stable/] code formatter.
To avoid introducing unrelated changes when working on an existing file, it is recommended to use the darker [https://github.com/akaihola/darker] tool instead of black.
This helps to keep the focus on the implementation instead of unrelated formatting, and thereby facilitates code reviews.
darker is compatible with black, but only formats regions that show as changed in Git.
If there are conflicts between black/darker’s output and flake8 (especially related to E203 [https://www.flake8rules.com/rules/E203.html]), flake8 takes precedence. Use #noqa : E203 to disable E203 warnings for a specific line if appropriate.

There are no plans to support type hinting in PyMeasure code. This adds a lot of additional code to manage, without a clear advantage for this project.
Type documentation should be placed in the docstring where not clear from the variable name.

Documentation

PyMeasure documents code using reStructuredText and the Sphinx documentation generator [http://www.sphinx-doc.org/en/stable/]. All functions, classes, and methods should be documented in the code using a docstring, see section Docstrings.

Usage of getter and setter functions

Getter and setter functions are discouraged, since properties provide a more fluid experience.
Given the extensive tools available for defining properties, detailed in the sections starting with Writing properties, these types of properties are prefered.

Docstrings

Descriptive and specific docstrings for your properties and methods are important for your users to quickly glean important information about a property.
It is advisable to follow the PEP257 [https://peps.python.org/pep-0257/] docstring guidelines.
Most importantly:

	Use triple-quoted strings (""") to delimit docstrings.

	One short summary line in imperative voice, with a period at the end.

	Optionally, after a blank line, include more detailed information.

	For functions and methods, you can add documentation on their parameters using the reStructuredText docstring format [https://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#info-field-lists].

Specific to properties, start them with “Control”, “Get”, “Measure”, or “Set” to indicate the kind of property, as it is not visible after import, whether a property is gettable (“Get” or “Measure”), settable (“Set”), or both (“Control”).
In addition, it is useful to add type and information about Restricting values with validators (if applicable) at the end of the summary line, see the docstrings shown in examples throughout the Adding instruments section.
For example a docstring could be """Control the voltage in Volts (float strictly from -1 to 1).""".

The docstring is for information that is relevant for using a property/method.
Therefore, do not add information about internal/hidden details, like the format of commands exchanged with the device.

 Authors

Authors

PyMeasure was started in 2013 by Colin Jermain and Graham Rowlands at Cornell University, when it became apparent that both were working on similar Python packages for scientific measurements. PyMeasure combined these efforts and continues to gain valuable contributions from other scientists who are interested in advancing measurement software.

The following developers have contributed to the PyMeasure package:

Colin Jermain
Graham Rowlands
Minh-Hai Nguyen
Guen Prawiro-Atmodjo
Tim van Boxtel
Davide Spirito
Marcos Guimaraes
Ghislain Antony Vaillant
Ben Feinstein
Neal Reynolds
Christoph Buchner
Julian Dlugosch
Sylvain Karlen
Joseph Mittelstaedt
Troy Fox
Vikram Sekar
Casper Schippers
Sumatran Tiger
Michael Schneider
Dennis Feng
Stefano Pirotta
Moritz Jung
Richard Schlitz
Manuel Zahn
Mikhaël Myara
Domenic Prete
Mathieu Jeannin
Paul Goulain
John McMaster
Dominik Kriegner
Jonathan Larochelle
Dominic Caron
Mathieu Plante
Michele Sardo
Steven Siegl
Benjamin Klebel-Knobloch
Markus Röleke
Demetra Adrahtas
Dan McDonald
Hud Wahab
Nicola Corna
Robert Eckelmann
Sam Condon
Andreas Maeder
Bastian Leykauf
Matthew Delaney
Marco von Rosenberg
Jack Van Sambeek
JC Arbelbide
Florian Jünger
Benedikt Moneke
Asaf Yagoda
Fabio Garzetti
Daniel Schmeer
Mike Manno
David Sanchez Sanchez
Andres Ruz-Nieto
Carlos Martinez
Scott Candey
Tom Verbeure
Max Herbold
Alexander Wichers
Ashok Bruno
Robert Roos
Sebastien Weber
Sebastian Neusch
Ulrich Sauter

 License

License

Copyright (c) 2013-2023 PyMeasure Developers

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 Changelog

Changelog

Version 0.13.1 (2023-10-05)

New release to fix ineffective python version restriction in the project metadata (only affected Python<=3.7 environments installing via pip).

Version 0.13.0 (2023-09-23)

Main items of this new release:

	Dropped support for Python 3.7, added support for Python 3.11.

	Adds a test generator, which observes the communication with an actual device and writes protocol tests accordingly.

	2 new instrument drivers have been added.

Deprecated features

	Attocube ANC300: The stepu and stepd properties are deprecated, use the new move_raw method instead. (@dkriegner, #938)

Instruments

	Adds a test generator (@bmoneke, #882)

	Adds Thyracont Smartline v2 vacuum sensor transmitter (@bmoneke, #940)

	Adds Thyracont Smartline v1 vacuum gauge (@dkriegner, #937)

	AddsTeledyne base classes with most of LeCroyT3DSO1204 functionality (@RobertoRoos, #951)

	Fixes instrument documentation (@mcdo0486, #941, #903, @omahs, #960)

	Fixes Toptica Ibeamsmart’s __init__ (@waveman68, #959)

	Fixes VISAAdapter flush_read_buffer() (@ileu, #968)

	Updates Keithley2306 and AFG3152C to Channels (@bilderbuchi, #953)

GUI

	Adds console mode (@msmttchr, #500)

	Fixes Dock widget (@msmttchr, #961)

Miscellaneous

	Change CI from conda to mamba (@bmoneke, #947)

	Add support for python 3.11 (@CasperSchippers, #896)

New Contributors

@waveman68, @omahs, @ileu

Full Changelog: https://github.com/pymeasure/pymeasure/compare/v0.12.0…v0.13.0 [https://github.com/pymeasure/pymeasure/compare/v0.12.0...v0.13.0]

Version 0.12.0 (2023-07-05)

Main items of this new release:

	A Channel base class has been added for easier implementation of instruments with channels.

	19 new instrument drivers have been added.

	Added tests for some commonalities across all instruments.

	We continue to clean up our API in preparation for a future version 1.0. Deprecations and subsequent removals are listed below.

Deprecated features

	HP 34401A: voltage_ac, current_dc, current_ac, resistance, resistance_4w properties, use function_ and reading properties instead.

	Toptica IBeamSmart: channel1_enabled, use ch_1.enabled property instead (equivalent for channel2). Also laser_enabled is deprecated in favor of emission (@bmoneke, #819).

	TelnetAdapter: use VISAAdapter instead. VISA supports TCPIP connections. Use the resource_name TCPIP[board]::<hostname>::<port>::SOCKET to connect to a server (@Max-Herbold, #835).

	Attocube ANC300: host argument, pass a resource string or adapter as Adapter passed to Instrument. Now communicates through the VISAAdapter rather than deprecated TelnetAdapter. The initializer now accepts name as its second keyword argument so all previous initialization positional arguments (axisnames, passwd, query_delay) should be switched to keyword arguments.

	The property creators control, measurement, and setting do not accept arbitrary keyword arguments anymore. Use the v_kwargs parameter for arguments you want to pass on to values method, instead.

	The property creators control, measurement, and setting do not accept command_process anymore. Use a dynamic property or a Channel instead, as appropriate (@bmoneke, #878).

	See also the next section.

New adapter and instrument mechanics

	All instrument constructors are required to accept a name argument.

	Changed: read_bytes of all Adapters by default does not stop reading on a termination character, unless the new argument break_on_termchar is set to True.

	Channel class added. Instrument.channels and Instrument.ch_X (X is any channel name) are reserved attributes for channel mechanics.

	The parameters check_get_errors and check_set_errors enable calling methods of the same name. This enables more systematically dealing with instruments that acknowledge every “set” command.

	Adds Channel feature to instruments (@bmoneke, mcdo0486, #718, #761, #852, #931)

	Adds maxsplit parameter to values method (@bmoneke, #793)

	Adds (deprecated) global preprocess reply for backward compatibility (@bmoneke, #876)

	Adds fallback version for discarding the read buffer to VISAAdapter (@dkriegner, #836)

	Adds flush_read_buffer to SerialAdapter (@RobertoRoos, #865)

	Adds gpib_read_timeout to PrologixAdapter (@neuschs, #927)

	Adds command line option to pass resource address for instrument tests (@bleykauf, #789)

	Adds “find all instruments” and channels for testing (@bmoneke, #909, @mcdo0486, #911, #912)

	Adds test that an instrument hands kwargs to the adapter (@bmoneke, #814)

	Adds property docstring check (@bmoneke, #895)

	Improves property factories’ docstrings (@bmoneke, #843)

	Improves property factories: do not allow undefined kwargs (@bmoneke, #856)

	Improves property factories: check_set/get_errors argument to call methods of the same name (@bmoneke, #883)

	Improves read_bytes of Adapter (@bmoneke, #839)

	Improves the ProtocolAdapter with a mock connection (@bmoneke, #782), and enable it to have empty messages in the protocol (@bmoneke, #818)

	Improves Prologix adapter documentation (@bmoneke, #813) and configurable settings (@bmoneke, #845)

	Improves behavior of read_bytes(-1) for SerialAdapter (@RobertoRoos, #866)

	Improves all instruments with name kwarg (@bmoneke, #877)

	Improves VisaAdapter: close manager only when using pyvisa-sim (@dkriegner, #900)

	Harmonises instrument name definition pattern, consistently name the instrument connection argument “adapter” (@bmoneke, #659)

	Fixes ProtocolAdapter has list in signature (@bmoneke, #901)

	Fixes VISAAdapter’s read_bytes (@bmoneke, #867)

	Fixes query_delay usage in VISAAdapter (@bmoneke, #765)

	Fixes VisaAdapter: close resource manager only when using pyvisa-sim (@dkriegner, #900)

Instruments

	New Advantest R624X DC Voltage/Current Sources/Monitors (@wichers, #802)

	New AJA International DC sputtering power supply (@dkriegner, #778)

	New Anritus MS2090A (@aruznieto, #787)

	New Anritsu MS4644B (@CasperSchippers, #827)

	New DSP 7225 and new DSPBase instrument (@mcdo0486, #902)

	New HP 8560A / 8561B Spectrum Analyzer (@neuschs, #888)

	New IPG Photonics YAR Amplifier series (@bmoneke, #851)

	New Keysight E36312A power supply (@scandey, #785)

	New Keithley 2200 power supply (@ashokbruno, #806)

	New Lake Shore 211 Temperature Monitor (@mcdo0486, #889)

	New Lake Shore 224 and improves Lakeshore instruments (@samcondon4, #870)

	New MKS Instruments 937B vacuum gauge controller (@dkriegner, @bilderbuchi, #637, #772, #936)

	New Novanta FPU60 laser power supply unit (@bmoneke, #885)

	New TDK Lambda Genesys 80-65 DC and 40-38 DC power supplies (@mcdo0486, 906)

	New Teledyne T3AFG waveform generator instrument (@scandey, #791)

	New Teledyne (LeCroy) T3DSO1204 Oscilloscope (@LastStartDust, #697, @bilderbuchi, #770)

	New T&C Power Conversion RF power supply (@dkriegner, #800)

	New Velleman K8090 relay device (@RobertoRoos, #859)

	Improves Agilent 33500 with the new channel feature (@JCarl-OS, #763, #773)

	Improves HP 3478A with calibration data related functions (@tomverbeure, #777)

	Improves HP 34401A (@CodingMarco, #810)

	Improves the Oxford instruments with the new channel feature (@bmoneke, #844)

	Improves Siglent SPDxxxxX with the new channel feature (@AidenDawn 758)

	Improves Teledyne T3DSO1204 device tests (@LastStarDust, #841)

	Fixes Ametek DSP 7270 lockin amplifier issues (@seb5g, #897)

	Fixes DSP 7265 erroneously using preprocess_reply (@mcdo0486, #873)

	Fixes print statement in DSPBase.sensitivity (@mcdo0486, #915)

	Fixes Fluke bath commands (@bmoneke, #874)

	Fixes a frequency limitation in HP 8657B (@LongnoseRob, #769)

	Fixes Keithley 2600 channel calling parent’s shutdown (@mcdo0486, #795)

Automation

	Adds tolerance for opening result files with missing parameters (@msmttchr, #780)

	Validate DATA_COLUMNS entries earlier, avoid exceptions in a running procedure (@mcdo0486, #796, #934)

GUI

	Adds docking windows (@mcdo0486, #722, #762)

	Adds save plot settings in addition to dock layout (@mcdo0486, #850)

	Adds log widget colouring and format option (@CasperSchippers, #890)

	Adds table widget (@msmttchr, #771)

	New sequencer architecture: decouples it from the graphical tree, adapts it for further expansions (@msmttchr, #518)

	Moves coordinates label to the pyqtgraph PlotItem (@CasperSchippers, #822)

	Fixes crashing ImageWidget at new measurement (@CasperSchippers, #790)

	Fixes checkboxes not working for groups in inputs-widget (@CasperSchippers, #794)

Miscellaneous

	Adds a collection of solutions for instrument implementation challenges (@bmoneke, #853, #861)

	Updates Tutorials/Making_a_measurement/ example_codes (@sansanda, #749)

New Contributors

@JCarl-OS, @aruznieto, @scandey, @tomverbeure, @wichers, @Max-Herbold, @RobertoRoos

Full Changelog: https://github.com/pymeasure/pymeasure/compare/v0.11.1…v0.12.0 [https://github.com/pymeasure/pymeasure/compare/v0.11.1...v0.12.0]

Version 0.11.1 (2022-12-31)

Adapter and instrument mechanics

	Fix broken PrologixAdapter.gpib. Due to a bug in VISAAdapter, you could not get a second adapter with that connection (#765).

Full Changelog: https://github.com/pymeasure/pymeasure/compare/v0.11.0…v0.11.1 [https://github.com/pymeasure/pymeasure/compare/v0.11.0...v0.11.1]

Dependency updates

	Required version of PyQtGraph [https://www.pyqtgraph.org/] is increased from pyqtgraph >= 0.9.10 to pyqtgraph >= 0.12 to support new PyMeasure display widgets.

GUI

	Added ManagedDockWindow [https://pymeasure.readthedocs.io/en/latest/tutorial/graphical.html#using-the-manageddockwindow] to allow multiple dockable plots (@mcdo0486, @CasperSchippers, #722)

	Move coordinates label to the pyqtgraph PlotItem (@CasperSchippers, #822)

	New sequencer architecture (@msmttchr, @CasperSchippers, @mcdo0486, #518)

	Added “Save Dock Layout” functionality to DockWidget context menu. (@mcdo0486, #762)

Version 0.11.0 (2022-11-19)

Main items of this new release:

	11 new instrument drivers have been added

	A method for testing instrument communication without hardware present has been added, see the documentation [https://pymeasure.readthedocs.io/en/latest/dev/adding_instruments.html#protocol-tests].

	The separation between Instrument and Adapter has been improved to make future modifications easier. Adapters now focus on the hardware communication, and the communication protocol should be defined in the Instruments. Details in a section below.

	The GUI is now compatible with Qt6.

	We have started to clean up our API in preparation for a future version 1.0. There will be deprecations and subsequent removals, which will be prominently listed in the changelog.

Deprecated features

In preparation for a stable 1.0 release and a more consistent API, we have now started formally deprecating some features.
You should get warnings if those features are used.

	Adapter methods ask, values, binary_values, use Instrument methods of the same name instead.

	Adapter parameter preprocess_reply, override Instrument.read instead.

	Adapter.query_delay in favor of Instrument.wait_for().

	Keithley 2260B: enabled property, use output_enabled instead.

New adapter and instrument mechanics

	Nothing should have changed for users, this section is mainly interesting for instrument implementors.

	Documentation in ‘Advanced communication protocols’ in ‘Adding instruments’.

	Adapter logs written and read messages.

	Particular adapters (VISAAdapter etc.) implement the actual communication.

	Instrument.control getter calls Instrument.values.

	Instrument.values calls Instrument.ask, which calls Instrument.write, wait_for, and read.

	All protocol quirks of an instrument should be implemented overriding Instrument.write and read.

	Instrument.wait_until_read implements waiting between writing and reading.

	reading/writing binary values is in the Adapter class itself.

	PrologixAdapter is now based on VISAAdapter.

	SerialAdapter improved to be more similar to VISAAdapter: read/write use strings, read/write_bytes bytes. - Support for termination characters added.

Instruments

	New Active Technologies AWG-401x (@garzetti, #649)

	New Eurotest hpp_120_256_ieee (@sansanda, #701)

	New HC Photonics crystal ovens TC038, TC038D (@bmoneke, #621, #706)

	New HP 6632A/6633A/6634A power supplies (@LongnoseRob, #651)

	New HP 8657B RF signal generator (@LongnoseRob, #732)

	New Rohde&Schwarz HMP4040 power supply. (@bleykauf, #582)

	New Siglent SPDxxxxX series Power Supplies (@AidenDawn, #719)

	New Temptronic Thermostream devices (@mroeleke, #368)

	New TEXIO PSW-360L30 Power Supply (@LastStarDust, #698)

	New Thermostream ECO-560 (@AidenDawn, #679)

	New Thermotron 3800 Oven (@jcarbelbide, #606)

	Harmonize instruments’ adapter argument (@bmoneke, #674)

	Harmonize usage of shutdown method (@LongnoseRob, #739)

	Rework Adapter structure (@bmoneke, #660)

	Add Protocol tests without hardware present (@bilderbuchi, #634, @bmoneke, #628, #635)

	Add Instruments and adapter protocol tests for adapter rework (@bmoneke, #665)

	Add SR830 sync filter and reference source trigger (@AsafYagoda, #630)

	Add Keithley6221 phase marker phase and line (@AsafYagoda, #629)

	Add missing docstrings to Keithley 2306 battery simulator (@AidenDawn, #720)

	Fix hcp instruments documentation (@bmoneke, #671)

	Fix HPLegacyInstrument initializer API (@bilderbuchi, #684)

	Fix Fwbell 5080 implementation (@mcdo0486, #714)

	Fix broken documentation example. (@bmoneke, #738)

	Fix typo in Keithley 2600 driver (@mcdo0486, #615)

	Remove dynamic use of docstring from ATS545 and make more generic (@AidenDawn, #685)

Automation

	Add storing unitful experiment results (@bmoneke, #642)

	Add storing conditions in file (@CasperSchippers, #503)

GUI

	Add compatibility with Qt 6 (@CasperSchippers, #688)

	Add spinbox functionality for IntegerParameter and FloatParameter (@jarvas24, #656)

	Add “delete data file” button to the browser_item_menu (@jarvas24, #654)

	Split windows.py into a folder with separate modules (@mcdo0486, #593)

	Remove dependency on matplotlib (@msmttchr, #622)

	Remove deprecated access to QtWidgets through QtGui (@maederan201, #695)

Miscellaneous

	Update and extend documentation (@bilderbuchi, #712, @bmoneke, #655)

	Add PEP517 compatibility & dynamically obtaining a version number (@bilderbuchi, #613)

	Add an example and documentation regarding using a foreign instrument (@bmoneke, #647)

	Add black configuration (@bleykauf, #683)

	Remove VISAAdapter.has_supported_version() as it is not needed anymore.

New Contributors

@jcarbelbide, @mroeleke, @bmoneke, @garzetti, @AsafYagoda, @AidenDawn, @LastStarDust, @sansanda

Full Changelog: https://github.com/pymeasure/pymeasure/compare/v0.10.0…v0.11.0 [https://github.com/pymeasure/pymeasure/compare/v0.10.0...v0.11.0]

Version 0.10.0 (2022-04-09)

Main items of this new release:

	23 new instrument drivers have been added

	New dynamic Instrument properties can change their parameters at runtime

	Communication settings can now be flexibly defined per protocol

	Python 3.10 support was added and Python 3.6 support was removed.

	Many additions, improvements and have been merged

Instruments

	New Agilent B1500 Data Formats and Documentation (@moritzj29)

	New Anaheim Automation stepper motor controllers (@samcondon4)

	New Andeen Hagerling capacitance bridges (@dkriegner)

	New Anritsu MS9740A Optical Spectrum Analyzer (@md12g12)

	New BK Precision 9130B Instrument (@dennisfeng2)

	New Edwards nXDS (10i) Vacuum Pump (@hududed)

	New Fluke 7341 temperature bath instrument (@msmttchr)

	New Heidenhain ND287 Position Display Unit Driver (@samcondon4)

	New HP 3478A (@LongnoseRob)

	New HP 8116A 50 MHz Pulse/Function Generator (@CodingMarco)

	New Keithley 2260B DC Power Supply (@bklebel)

	New Keithley 2306 Dual Channel Battery/Charger Simulator (@mfikes)

	New Keithley 2600 SourceMeter series (@Daivesd)

	New Keysight N7776C Swept Laser Source (@maederan201)

	New Lakeshore 421 (@CasperSchippers)

	New Oxford IPS120-10 (@CasperSchippers)

	New Pendulum CNT-91 frequency counter (@bleykauf)

	New Rohde&Schwarz - SFM TV test transmitter (@LongnoseRob)

	New Rohde&Schwarz FSL spectrum analyzer (@bleykauf)

	New SR570 current amplifier driver (@pyMatJ)

	New Stanford Research Systems SR510 instrument driver (@samcondon4)

	New Toptica Smart Laser diode (@dkriegner)

	New Yokogawa GS200 Instrument (@dennisfeng2)

	Add output low grounded property to Keithley 6221 (@CasperSchippers)

	Add shutdown function for Keithley 2260B (@bklebel)

	Add phase control for Agilent 33500 (@corna)

	Add assigning “ONCE” to auto_zero to Keithley 2400 (@mfikes)

	Add line frequency controls to Keithley 2400 (@mfikes)

	Add LIA and ERR status byte read properties to the SRS Sr830 driver (@samcondon4)

	Add all commands to Oxford Intelligent Temperature Controller 503 (@CasperSchippers)

	Fix DSP 7265 lockin amplifier (@CasperSchippers)

	Fix bug in Keithley 6517B Electrometer (@CasperSchippers)

	Fix Keithley2000 deprecated call to visa.config (@bklebel)

	Fix bug in the Keithley 2700 (@CasperSchippers)

	Fix setting of sensor flags for Thorlabs PM100D (@bleykauf)

	Fix SCPI used for Keithley 2400 voltage NPLC (@mfikes)

	Fix missing return statements in Tektronix AFG3152C (@bleykauf)

	Fix DPSeriesMotorController bug (@samcondon4)

	Fix Keithley2600 error when retrieving error code (@bicarlsen)

	Fix Attocube ANC300 with new SCPI Instrument properties (@dkriegner)

	Fix bug in wait_for_trigger of Agilent33220A (neal-kepler)

GUI

	Add time-estimator widget (@CasperSchippers)

	Add management of progress bar (@msmttchr)

	Remove broken errorbar feature (@CasperSchippers)

	Change of pen width for pyqtgraph (@maederan201)

	Make linewidth changeable (@CasperSchippers)

	Generalise warning in plotter section (@CasperSchippers)

	Implement visibility groups in InputsWidgets (@CasperSchippers)

	Modify navigation of ManagedWindow directory widget (@jarvas24)

	Improve Placeholder logic (@CasperSchippers)

	Breakout widgets into separate modules (@mcdo0486)

	Fix setSizePolicy bug with PySide2 (@msmttchr)

	Fix managed window (@msmttchr)

	Fix ListParameter for numbers (@moritzj29)

	Fix incorrect columns on showing data (@CasperSchippers)

	Fix procedure property issue (@msmttchr)

	Fix pyside2 (@msmttchr)

Miscellaneous

	Improve SCPI property support (@msmttchr)

	Remove broken safeKeyword management (@msmttchr)

	Add dynamic property support (@msmttchr)

	Add flexible API for defining connection configuration (@bilderbuchi)

	Add write_binary_values() to SerialAdapter (@msmttchr)

	Change an outdated pyvisa ask() to query() (@LongnoseRob)

	Fix ZMQ bug (@bilderbuchi)

	Documentation for passing tuples to control property (@bklebel)

	Documentation bugfix (@CasperSchippers)

	Fixed broken links in documentation. (@samcondon4)

	Updated widget documentation (@mcdo0486)

	Fix typo SCIP->SCPI (@mfikes)

	Remove Python 3.6, add Python 3.10 testing (@bilderbuchi)

	Modernise the code base to use Python 3.7 features (@bilderbuchi)

	Added image data generation to Mock Instrument class (@samcondon4)

	Add autodoc warnings to the problem matcher (@bilderbuchi)

	Update CI & annotations (@bilderbuchi)

	Test workers (@mcdo0486)

	Change copyright date to 2022 (@LongnoseRob)

	Removed unused code (@msmttchr)

New Contributors

@LongnoseRob, @neal, @hududed, @corna, @Daivesd, @samcondon4, @maederan201, @bleykauf, @mfikes, @bicarlsen, @md12g12, @CodingMarco, @jarvas24, @mcdo0486!

Full Changelog: https://github.com/pymeasure/pymeasure/compare/v0.9…v0.10.0 [https://github.com/pymeasure/pymeasure/compare/v0.9...v0.10.0]

Version 0.9 – released 2/7/21

	PyMeasure is now officially at github.com/pymeasure/pymeasure

	Python 3.9 is now supported, Python 3.5 removed due to EOL

	Move to GitHub Actions from TravisCI and Appveyor for CI (@bilderbuchi)

	New additions to Oxford Instruments ITC 503 (@CasperSchippers)

	New Agilent 34450A and Keysight DSOX1102G instruments (@theMashUp, @jlarochelle)

	Improvements to NI VirtualBench (@moritzj29)

	New Agilent B1500 instrument (@moritzj29)

	New Keithley 6517B instrument (@wehlgrundspitze)

	Major improvements to PyVISA compatbility (@bilderbuchi, @msmttchr, @CasperSchippers, @cjermain)

	New Anapico APSIN12G instrument (@StePhanino)

	Improvements to Thorelabs Pro 8000 and SR830 (@Mike-HubGit)

	New SR860 instrument (@StevenSiegl, @bklebel)

	Fix to escape sequences (@tirkarthi)

	New directory input for ManagedWindow (@paulgoulain)

	New TelnetAdapter and Attocube ANC300 Piezo controller (@dkriegner)

	New Agilent 34450A (@theMashUp)

	New Razorbill RP100 strain cell controller (@pheowl)

	Fixes to precision and default value of ScientificInput and FloatParameter (@moritzj29)

	Fixes for Keithly 2400 and 2450 controls (@pyMatJ)

	Improvments to Inputs and open_file_externally (@msmttchr)

	Fixes to Agilent 8722ES (@alexmcnabb)

	Fixes to QThread cleanup (@neal-kepler, @msmttchr)

	Fixes to Keyboard interrupt, and parameters (@CasperSchippers)

Version 0.8 – released 3/29/19

	Python 3.8 is now supported

	New Measurement Sequencer allows for running over a large parameter space (@CasperSchippers)

	New image plotting feature for live image measurements (@jmittelstaedt)

	Improvements to VISA adapter (@moritzj29)

	Added Tektronix AFG 3000, Keithley 2750 (@StePhanino, @dennisfeng2)

	Documentation improvements (@mivade)

	Fix to ScientificInput for float strings (@moritzj29)

	New validator: strict_discrete_range (@moritzj29)

	Improvements to Recorder thread joining

	Migrating the ReadtheDocs configuration to version 2

	National Instruments Virtual Bench initial support (@moritzj29)

Version 0.7 – released 8/4/19

	Dropped support for Python 3.4, adding support for Python 3.7

	Significant improvements to CI, dependencies, and conda environment (@bilderbuchi, @cjermain)

	Fix for PyQT issue in ResultsDialog (@CasperSchippers)

	Fix for wire validator in Keithley 2400 (@Fattotora)

	Addition of source_enabled control for Keithley 2400 (@dennisfeng2)

	Time constant fix and input controls for SR830 (@dennisfeng2)

	Added Keithley 2450 and Agilent 33521A (@hlgirard, @Endever42)

	Proper escaping support in CSV headers (@feph)

	Minor updates (@dvase)

Version 0.6.1 – released 4/21/19

	Added Elektronica SM70-45D, Agilent 33220A, and Keysight N5767A instruments
(@CasperSchippers, @sumatrae)

	Fixes for Prologix adapter and Keithley 2400 (@hlgirard, @ronan-sensome)

	Improved support for SRS SR830 (@CasperSchippers)

Version 0.6 – released 1/14/19

	New VXI11 Adapter for ethernet instruments (@chweiser)

	PyQt updates to 5.6.0

	Added SRS SG380, Ametek 7270, Agilent 4156, HP 34401A, Advantest R3767CG, and
Oxford ITC503 instrustruments (@sylkar, @jmittelstaedt, @vik-s, @troylf, @CasperSchippers)

	Updates to Keithley 2000, Agilent 8257D, ESP 300, and Keithley 2400 instruments
(@watersjason, @jmittelstaedt, @nup002)

	Various minor bug fixes (@thosou)

Version 0.5.1 – released 4/14/18

	Minor versions of PyVISA are now properly handled

	Documentation improvements (@Laogeodritt and @ederag)

	Instruments now have set_process capability (@bilderbuchi)

	Plotter now uses threads (@dvspirito)

	Display inputs and PlotItem improvements (@Laogeodritt)

Version 0.5 – released 10/18/17

	Threads are used by default, eliminating multiprocessing issues with spawn

	Enhanced unit tests for threading

	Sphinx Doctests are added to the documentation (@bilderbuchi)

	Improvements to documentation (@JuMaD)

Version 0.4.6 – released 8/12/17

	Reverted multiprocessing start method keyword arguments to fix Unix spawn issues (@ndr37)

	Fixes to regressions in Results writing (@feinsteinben)

	Fixes to TCP support using cloudpickle (@feinsteinben)

	Restructing of unit test framework

Version 0.4.5 – released 7/4/17

	Recorder and Scribe now leverage QueueListener (@feinsteinben)

	PrologixAdapter and SerialAdapter now handle Serial objects as adapters (@feinsteinben)

	Optional TCP support now uses cloudpickle for serialization (@feinsteinben)

	Significant PEP8 review and bug fixes (@feinsteinben)

	Includes docs in the code distribution (@ghisvail)

	Continuous integration support for Python 3.6 (@feinsteinben)

Version 0.4.4 – released 6/4/17

	Fix pip install for non-wheel builds

	Update to Agilent E4980 (@dvspirito)

	Minor fixes for docs, tests, and formatting (@ghisvail, @feinsteinben)

Version 0.4.3 – released 3/30/17

	Added Agilent E4980, AMI 430, Agilent 34410A, Thorlabs PM100, and
Anritsu MS9710C instruments (@TvBMcMaster, @dvspirito, and @mhdg)

	Updates to PyVISA support (@minhhaiphys)

	Initial work on resource manager (@dvspirito)

	Fixes for Prologix adapter that allow read-write delays (@TvBMcMaster)

	Fixes for conda environment on continuous integration

Version 0.4.2 – released 8/23/16

	New instructions for installing with Anaconda and conda-forge package (thanks @melund!)

	Bug-fixes to the Keithley 2000, SR830, and Agilent E4408B

	Re-introduced the Newport ESP300 motion controller

	Major update to the Keithely 2400, 2000 and Yokogawa 7651 to achieve a common interface

	New command-string processing hooks for Instrument property functions

	Updated LakeShore 331 temperature controller with new features

	Updates to the Agilent 8257D signal generator for better feature exposure

Version 0.4.1 – released 7/31/16

	Critical fix in setup.py for importing instruments (also added to documentation)

Version 0.4 – released 7/29/16

	Replaced Instrument add_measurement and add_control with measurement and control functions

	Added validators to allow Instrument.control to match restricted ranges

	Added mapping to Instrument.control to allow more flexible inputs

	Conda is now used to set up the Python environment

	macOS testing in continuous integration

	Major updates to the documentation

Version 0.3 – released 4/8/16

	Added IPython (Jupyter) notebook support with significant features

	Updated set of example scripts and notebooks

	New PyMeasure logo released

	Removed support for Python <3.4

	Changed multiprocessing to use spawn for compatibility

	Significant work on the documentation

	Added initial tests for non-instrument code

	Continuous integration setup for Linux and Windows

Version 0.2 – released 12/16/15

	Python 3 compatibility, removed support for Python 2

	Considerable renaming for better PEP8 compliance

	Added MIT License

	Major restructuring of the package to break it into smaller modules

	Major rewrite of display functionality, introducing new Qt objects for easy extensions

	Major rewrite of procedure execution, now using a Worker process which takes advantage of multi-core CPUs

	Addition of a number of examples

	New methods for listening to Procedures, introducing ZMQ for TCP connectivity

	Updates to Keithley2400 and VISAAdapter

Version 0.1.6 – released 4/19/15

	Renamed the package to PyMeasure from Automate to be more descriptive about its purpose

	Addition of VectorParameter to allow vectors to be input for Procedures

	Minor fixes for the Results and Danfysik8500

Version 0.1.5 – release 10/22/14

	New Manager class for handling Procedures in a queue fashion

	New Browser that works in tandem with the Manager to display the queue

	Bug fixes for Results loading

Version 0.1.4 – released 8/2/14

	Integrated Results class into display and file writing

	Bug fixes for Listener classes

	Bug fixes for SR830

Version 0.1.3 – released 7/20/14

	Replaced logging system with Python logging package

	Added data management (Results) and bug fixes for Procedures and Parameters

	Added pandas v0.14 to requirements for data management

	Added data listeners, Qt4 and PyQtGraph helpers

Version 0.1.2 – released 7/18/14

	Bug fixes to LakeShore 425

	Added new Procedure and Parameter classes for generic experiments

	Added version number in package

Version 0.1.1 – released 7/16/14

	Bug fixes to PrologixAdapter, VISAAdapter, Agilent 8722ES, Agilent 8257D, Stanford SR830, Danfysik8500

	Added Tektronix TDS 2000 with basic functionality

	Fixed Danfysik communication to handle errors properly

Version 0.1.0 – released 7/15/14

	Initial release

 Python Module Index

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pymeasure	

 	
 	
 pymeasure.display.browser	

 	
 	
 pymeasure.display.console	

 	
 	
 pymeasure.display.curves	

 	
 	
 pymeasure.display.inputs	

 	
 	
 pymeasure.display.listeners	

 	
 	
 pymeasure.display.log	

 	
 	
 pymeasure.display.manager	

 	
 	
 pymeasure.display.plotter	

 	
 	
 pymeasure.display.thread	

 	
 	
 pymeasure.display.widgets.browser_widget	

 	
 	
 pymeasure.display.widgets.directory_widget	

 	
 	
 pymeasure.display.widgets.dock_widget	

 	
 	
 pymeasure.display.widgets.estimator_widget	

 	
 	
 pymeasure.display.widgets.image_frame	

 	
 	
 pymeasure.display.widgets.image_widget	

 	
 	
 pymeasure.display.widgets.inputs_widget	

 	
 	
 pymeasure.display.widgets.log_widget	

 	
 	
 pymeasure.display.widgets.plot_frame	

 	
 	
 pymeasure.display.widgets.plot_widget	

 	
 	
 pymeasure.display.widgets.results_dialog	

 	
 	
 pymeasure.display.widgets.sequencer_widget	

 	
 	
 pymeasure.display.widgets.tab_widget	

 	
 	
 pymeasure.display.widgets.table_widget	

 	
 	
 pymeasure.display.windows.managed_dock_window	

 	
 	
 pymeasure.display.windows.managed_image_window	

 	
 	
 pymeasure.display.windows.managed_window	

 	
 	
 pymeasure.display.windows.plotter_window	

 	
 	
 pymeasure.experiment.experiment	

 	
 	
 pymeasure.experiment.listeners	

 	
 	
 pymeasure.experiment.parameters	

 	
 	
 pymeasure.experiment.procedure	

 	
 	
 pymeasure.experiment.results	

 	
 	
 pymeasure.experiment.workers	

 	
 	
 pymeasure.instruments	

 	
 	
 pymeasure.instruments.activetechnologies	

 	
 	
 pymeasure.instruments.advantest	

 	
 	
 pymeasure.instruments.advantest.advantestR3767CG	

 	
 	
 pymeasure.instruments.advantest.advantestR624X	

 	
 	
 pymeasure.instruments.agilent	

 	
 	
 pymeasure.instruments.agilent.agilent4156	

 	
 	
 pymeasure.instruments.agilent.agilentB1500	

 	
 	
 pymeasure.instruments.aja	

 	
 	
 pymeasure.instruments.ametek	

 	
 	
 pymeasure.instruments.ami	

 	
 	
 pymeasure.instruments.anaheimautomation	

 	
 	
 pymeasure.instruments.anapico	

 	
 	
 pymeasure.instruments.andeenhagerling	

 	
 	
 pymeasure.instruments.anritsu	

 	
 	
 pymeasure.instruments.attocube	

 	
 	
 pymeasure.instruments.bkprecision	

 	
 	
 pymeasure.instruments.comedi	

 	
 	
 pymeasure.instruments.danfysik	

 	
 	
 pymeasure.instruments.deltaelektronika	

 	
 	
 pymeasure.instruments.edwards	

 	
 	
 pymeasure.instruments.eurotest	

 	
 	
 pymeasure.instruments.fluke	

 	
 	
 pymeasure.instruments.fwbell	

 	
 	
 pymeasure.instruments.hcp	

 	
 	
 pymeasure.instruments.heidenhain	

 	
 	
 pymeasure.instruments.hp	

 	
 	
 pymeasure.instruments.ipgphotonics	

 	
 	
 pymeasure.instruments.keithley	

 	
 	
 pymeasure.instruments.keysight	

 	
 	
 pymeasure.instruments.lakeshore	

 	
 	
 pymeasure.instruments.lecroy	

 	
 	
 pymeasure.instruments.mksinst	

 	
 	
 pymeasure.instruments.newport	

 	
 	
 pymeasure.instruments.ni	

 	
 	
 pymeasure.instruments.novanta	

 	
 	
 pymeasure.instruments.oxfordinstruments	

 	
 	
 pymeasure.instruments.parker	

 	
 	
 pymeasure.instruments.pendulum	

 	
 	
 pymeasure.instruments.razorbill	

 	
 	
 pymeasure.instruments.rohdeschwarz	

 	
 	
 pymeasure.instruments.siglenttechnologies	

 	
 	
 pymeasure.instruments.signalrecovery	

 	
 	
 pymeasure.instruments.srs	

 	
 	
 pymeasure.instruments.tcpowerconversion	

 	
 	
 pymeasure.instruments.tdk	

 	
 	
 pymeasure.instruments.tektronix	

 	
 	
 pymeasure.instruments.teledyne	

 	
 	
 pymeasure.instruments.temptronic	

 	
 	
 pymeasure.instruments.texio	

 	
 	
 pymeasure.instruments.thermotron	

 	
 	
 pymeasure.instruments.thorlabs	

 	
 	
 pymeasure.instruments.thyracont	

 	
 	
 pymeasure.instruments.toptica	

 	
 	
 pymeasure.instruments.validators	

 	
 	
 pymeasure.instruments.velleman	

 	
 	
 pymeasure.instruments.yokogawa	

 	
 	
 pymeasure.test	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

_

 	
 	__call__() (pymeasure.instruments.agilent.agilentB1500.Ranging method)

 	__str__() (pymeasure.instruments.agilent.agilentB1500.CustomIntEnum method)

 	
 	_format_binary_values() (pymeasure.adapters.PrologixAdapter method)

 	(pymeasure.adapters.SerialAdapter method)

A

 	
 	A (pymeasure.instruments.hp.hp856Xx.Trace attribute)

 	abort() (pymeasure.display.console.ManagedConsole method)

 	(pymeasure.display.manager.BaseManager method)

 	(pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	(pymeasure.instruments.anritsu.AnritsuMS2090A method)

 	absolute_position (pymeasure.instruments.anaheimautomation.DPSeriesMotorController property)

 	absolute_to_steps() (pymeasure.instruments.anaheimautomation.DPSeriesMotorController method)

 	AC (pymeasure.instruments.hp.hp856Xx.CouplingMode attribute)

 	ac_current (pymeasure.instruments.agilent.AgilentE4980 property)

 	ac_mode() (pymeasure.instruments.lakeshore.LakeShore425 method)

 	ac_voltage (pymeasure.instruments.agilent.AgilentE4980 property)

 	acquire_digital_input_output() (pymeasure.instruments.ni.virtualbench.VirtualBench method)

 	acquire_digital_multimeter() (pymeasure.instruments.ni.virtualbench.VirtualBench method)

 	acquire_function_generator() (pymeasure.instruments.ni.virtualbench.VirtualBench method)

 	acquire_mixed_signal_oscilloscope() (pymeasure.instruments.ni.virtualbench.VirtualBench method)

 	acquire_power_supply() (pymeasure.instruments.ni.virtualbench.VirtualBench method)

 	acquire_reference() (pymeasure.instruments.keithley.Keithley2000 method)

 	acquisition_average (pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	acquisition_mode (pymeasure.instruments.keysight.KeysightDSOX1102G property)

 	acquisition_sample_size() (pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	acquisition_sample_size_c1 (pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	acquisition_sample_size_c2 (pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	acquisition_sample_size_c3 (pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	acquisition_sample_size_c4 (pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	acquisition_sampling_rate (pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	acquisition_status (pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	acquisition_type (pymeasure.instruments.keysight.KeysightDSOX1102G property)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	activate() (pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel method)

 	(pymeasure.instruments.anritsu.anritsuMS464xB.Trace method)

 	activate_source_peak_tracking() (pymeasure.instruments.hp.HP8560A method)

 	active_channel (pymeasure.instruments.anritsu.AnritsuMS464xB property)

 	active_connectors (pymeasure.instruments.hp.HP3478A property)

 	active_gun (pymeasure.instruments.aja.DCXS property)

 	active_state (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	active_trace (pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel property)

 	activity (pymeasure.instruments.oxfordinstruments.IPS120_10 property)

 	Adapter (class in pymeasure.adapters)

 	adc1 (pymeasure.instruments.ametek.Ametek7270 property)

 	(pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	(pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	adc2 (pymeasure.instruments.ametek.Ametek7270 property)

 	(pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	(pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	adc3 (pymeasure.instruments.ametek.Ametek7270 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	(pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	adc3_time (pymeasure.instruments.signalrecovery.DSP7265 property)

 	adc4 (pymeasure.instruments.ametek.Ametek7270 property)

 	(pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	adc_auto_zero (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 property)

 	adc_averaging() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	adc_setup() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	adc_type (pymeasure.instruments.agilent.agilentB1500.SMU property)

 	ADCMode (class in pymeasure.instruments.agilent.agilentB1500)

 	ADCType (class in pymeasure.instruments.agilent.agilentB1500)

 	add() (pymeasure.display.browser.Browser method)

 	add_child() (pymeasure.instruments.common_base.CommonBase method)

 	(pymeasure.instruments.keithley.Keithley2200 method)

 	(pymeasure.instruments.keysight.KeysightE36312A method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	add_node() (pymeasure.display.widgets.sequencer_widget.SequencerTreeModel method)

 	add_ramp_step() (pymeasure.instruments.danfysik.Danfysik8500 method)

 	address (pymeasure.instruments.anaheimautomation.DPSeriesMotorController property)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

 	adjust_all() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	adjust_if (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	AdvantestR3767CG (class in pymeasure.instruments.advantest.advantestR3767CG)

 	AdvantestR6245 (class in pymeasure.instruments.advantest.advantestR624X)

 	AdvantestR6246 (class in pymeasure.instruments.advantest.advantestR624X)

 	AdvantestR624X (class in pymeasure.instruments.advantest.advantestR624X)

 	AFG3152C (class in pymeasure.instruments.tektronix)

 	Agilent33220A (class in pymeasure.instruments.agilent)

 	Agilent33500 (class in pymeasure.instruments.agilent)

 	Agilent33500Channel (class in pymeasure.instruments.agilent.agilent33500)

 	Agilent33521A (class in pymeasure.instruments.agilent)

 	Agilent34410A (class in pymeasure.instruments.agilent)

 	Agilent34450A (class in pymeasure.instruments.agilent)

 	Agilent4156 (class in pymeasure.instruments.agilent.agilent4156)

 	Agilent8257D (class in pymeasure.instruments.agilent)

 	Agilent8722ES (class in pymeasure.instruments.agilent)

 	AgilentB1500 (class in pymeasure.instruments.agilent.agilentB1500)

 	AgilentE4408B (class in pymeasure.instruments.agilent)

 	AgilentE4980 (class in pymeasure.instruments.agilent)

 	AH2500A (class in pymeasure.instruments.andeenhagerling)

 	AH2700A (class in pymeasure.instruments.andeenhagerling)

 	air_temperature (pymeasure.instruments.temptronic.ATSBase property)

 	alarm_active (pymeasure.instruments.lakeshore.LakeShore421 property)

 	alarm_audible (pymeasure.instruments.lakeshore.LakeShore421 property)

 	alarm_high (pymeasure.instruments.lakeshore.LakeShore421 property)

 	alarm_high_multiplier (pymeasure.instruments.lakeshore.LakeShore421 property)

 	alarm_high_raw (pymeasure.instruments.lakeshore.LakeShore421 property)

 	alarm_in_out (pymeasure.instruments.lakeshore.LakeShore421 property)

 	alarm_low (pymeasure.instruments.lakeshore.LakeShore421 property)

 	alarm_low_multiplier (pymeasure.instruments.lakeshore.LakeShore421 property)

 	alarm_low_raw (pymeasure.instruments.lakeshore.LakeShore421 property)

 	alarm_mode_enabled (pymeasure.instruments.lakeshore.LakeShore421 property)

 	alarm_sort_enabled (pymeasure.instruments.lakeshore.LakeShore421 property)

 	all_pressures (pymeasure.instruments.mksinst.mks937b.MKS937B property)

 	am_depth (pymeasure.instruments.hp.HP8657B property)

 	am_source (pymeasure.instruments.hp.HP8657B property)

 	Ametek7270 (class in pymeasure.instruments.ametek)

 	AMI430 (class in pymeasure.instruments.ami)

 	amplitude (pymeasure.instruments.agilent.Agilent33220A property)

 	(pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	(pymeasure.instruments.hp.HP33120A property)

 	(pymeasure.instruments.hp.HP8116A property)

 	Amplitude (pymeasure.instruments.hp.hp856Xx.DemodulationMode attribute)

 	amplitude (pymeasure.instruments.teledyne.teledyneT3AFG.SignalChannel property)

 	amplitude_depth (pymeasure.instruments.agilent.Agilent8257D property)

 	amplitude_source (pymeasure.instruments.agilent.Agilent8257D property)

 	amplitude_unit (pymeasure.instruments.agilent.Agilent33220A property)

 	(pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	(pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	amplitude_units (pymeasure.instruments.hp.HP33120A property)

 	AmplitudeUnits (class in pymeasure.instruments.hp.hp856Xx)

 	analog_configuration (pymeasure.instruments.lakeshore.LakeShore211 property)

 	analog_input (pymeasure.instruments.advantest.advantestR624X.SMUChannel property)

 	analog_out (pymeasure.instruments.lakeshore.LakeShore211 property)

 	analog_output_setting (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 property)

 	analysis (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	analysis_result (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	analyzer_mode (pymeasure.instruments.agilent.agilent4156.Agilent4156 property)

 	ANC300Controller (class in pymeasure.instruments.attocube.anc300)

 	
 	angle (pymeasure.instruments.parker.ParkerGV6 property)

 	angle_error (pymeasure.instruments.parker.ParkerGV6 property)

 	annotation_enabled (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	AnritsuMG3692C (class in pymeasure.instruments.anritsu)

 	AnritsuMS2090A (class in pymeasure.instruments.anritsu)

 	AnritsuMS4642B (class in pymeasure.instruments.anritsu)

 	AnritsuMS4644B (class in pymeasure.instruments.anritsu)

 	AnritsuMS4645B (class in pymeasure.instruments.anritsu)

 	AnritsuMS4647B (class in pymeasure.instruments.anritsu)

 	AnritsuMS464xB (class in pymeasure.instruments.anritsu)

 	AnritsuMS9710C (class in pymeasure.instruments.anritsu)

 	AnritsuMS9740A (class in pymeasure.instruments.anritsu)

 	aperture() (pymeasure.instruments.agilent.AgilentE4980 method)

 	append() (pymeasure.display.curves.BufferCurve method)

 	application_type (pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel property)

 	applied (pymeasure.instruments.keithley.Keithley2260B property)

 	(pymeasure.instruments.texio.TexioPSW360L30 property)

 	apply_current() (pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.yokogawa.Yokogawa7651 method)

 	apply_voltage() (pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	(pymeasure.instruments.yokogawa.Yokogawa7651 method)

 	APSIN12G (class in pymeasure.instruments.anapico)

 	arb_advance (pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	arb_file (pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	arb_filter (pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	arb_srate (pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	(pymeasure.instruments.agilent.Agilent33521A property)

 	ask() (pymeasure.adapters.Adapter method)

 	(pymeasure.adapters.FakeAdapter method)

 	(pymeasure.adapters.PrologixAdapter method)

 	(pymeasure.adapters.SerialAdapter method)

 	(pymeasure.adapters.TelnetAdapter method)

 	(pymeasure.adapters.VISAAdapter method)

 	(pymeasure.adapters.VXI11Adapter method)

 	(pymeasure.instruments.agilent.agilentB1500.SMU method)

 	(pymeasure.instruments.aja.DCXS method)

 	(pymeasure.instruments.ametek.Ametek7270 method)

 	(pymeasure.instruments.common_base.CommonBase method)

 	(pymeasure.instruments.eurotest.EurotestHPP120256 method)

 	(pymeasure.instruments.hp.HP8116A method)

 	(pymeasure.instruments.keysight.KeysightE36312A method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.oxfordinstruments.base.OxfordInstrumentsBase method)

 	(pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 method)

 	ask_manually() (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 method)

 	ask_raw() (pymeasure.adapters.VXI11Adapter method)

 	ask_values() (pymeasure.adapters.PrologixAdapter method)

 	(pymeasure.adapters.VISAAdapter method)

 	at_temperature() (pymeasure.instruments.temptronic.ATSBase method)

 	ATS525 (class in pymeasure.instruments.temptronic)

 	ATS545 (class in pymeasure.instruments.temptronic)

 	ATSBase (class in pymeasure.instruments.temptronic)

 	attenuation (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	(pymeasure.instruments.rohdeschwarz.fsl.FSL property)

 	auto (pymeasure.adapters.PrologixAdapter property)

 	AUTO (pymeasure.instruments.agilent.agilentB1500.ADCMode attribute)

 	(pymeasure.instruments.agilent.agilentB1500.AutoManual attribute)

 	(pymeasure.instruments.agilent.agilentB1500.CompliancePolarity attribute)

 	(pymeasure.instruments.hp.hp856Xx.AmplitudeUnits attribute)

 	auto_calibration (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 property)

 	auto_gain (pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	auto_input_impedance_enabled (pymeasure.instruments.hp.HP34401A property)

 	auto_offset() (pymeasure.instruments.srs.SR830 method)

 	auto_output_off (pymeasure.instruments.keithley.Keithley2400 property)

 	auto_phase() (pymeasure.instruments.signalrecovery.DSP7225 method)

 	(pymeasure.instruments.signalrecovery.DSP7265 method)

 	auto_pid (pymeasure.instruments.oxfordinstruments.ITC503 property)

 	auto_pid_table (pymeasure.instruments.oxfordinstruments.ITC503 property)

 	auto_range (pymeasure.instruments.lakeshore.LakeShore421 property)

 	auto_range() (pymeasure.instruments.fwbell.FWBell5080 method)

 	(pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.lakeshore.LakeShore425 method)

 	auto_range_enabled (pymeasure.instruments.hp.HP3478A property)

 	auto_range_source() (pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	auto_restart_enabled (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

 	auto_sensitivity() (pymeasure.instruments.signalrecovery.DSP7225 method)

 	(pymeasure.instruments.signalrecovery.DSP7265 method)

 	auto_setup() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	auto_zero (pymeasure.instruments.keithley.Keithley2400 property)

 	auto_zero_enabled (pymeasure.instruments.advantest.advantestR624X.SMUChannel property)

 	(pymeasure.instruments.hp.HP3478A property)

 	AutoManual (class in pymeasure.instruments.agilent.agilentB1500)

 	autorange (pymeasure.instruments.hp.HP34401A property)

 	autoscale() (pymeasure.instruments.keysight.KeysightDSOX1102G method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope method)

 	autovernier_enabled (pymeasure.instruments.hp.HP8116A property)

 	autozero_enabled (pymeasure.instruments.hp.HP34401A property)

 	aux_in_1 (pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	aux_in_2 (pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	aux_in_3 (pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	aux_in_4 (pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	aux_out_1 (pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	aux_out_2 (pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	aux_out_3 (pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	aux_out_4 (pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	auxiliary_condition_code (pymeasure.instruments.temptronic.ATSBase property)

 	average_count (pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel property)

 	average_point (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	average_sweep (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	(pymeasure.instruments.anritsu.AnritsuMS9740A property)

 	average_sweep_count (pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel property)

 	average_type (pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel property)

 	averages (pymeasure.instruments.agilent.Agilent8722ES property)

 	averaging_enabled (pymeasure.instruments.agilent.Agilent8722ES property)

 	(pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel property)

 	AWG401x_AFG (class in pymeasure.instruments.activetechnologies)

 	AWG401x_AWG (class in pymeasure.instruments.activetechnologies)

 	AWG401x_AWG.DummyEntriesElements (class in pymeasure.instruments.activetechnologies)

 	AWG401x_AWG.WaveformsLazyDict (class in pymeasure.instruments.activetechnologies)

 	axes (pymeasure.instruments.newport.ESP300 property)

 	Axis (class in pymeasure.instruments.attocube.anc300)

 	(class in pymeasure.instruments.newport.esp300)

 	AxisError (class in pymeasure.instruments.newport.esp300)

B

 	
 	B (pymeasure.instruments.hp.hp856Xx.Trace attribute)

 	bandwidth (pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel property)

 	bandwidth_enhancer_enabled (pymeasure.instruments.anritsu.AnritsuMS464xB property)

 	BASE (pymeasure.instruments.agilent.agilentB1500.SamplingPostOutput attribute)

 	BaseBrowserItem (class in pymeasure.display.browser)

 	baseline_offset (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	baseline_offset_max (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	baseline_offset_min (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	BaseManager (class in pymeasure.display.manager)

 	basespeed (pymeasure.instruments.anaheimautomation.DPSeriesMotorController property)

 	basic_info (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	batch_size (pymeasure.instruments.pendulum.cnt91.CNT91 property)

 	baud_rate (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 property)

 	beep() (pymeasure.instruments.agilent.Agilent33220A method)

 	(pymeasure.instruments.agilent.Agilent33500 method)

 	(pymeasure.instruments.agilent.Agilent34450A method)

 	(pymeasure.instruments.hp.HP33120A method)

 	(pymeasure.instruments.hp.HP34401A method)

 	(pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley2700 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.rohdeschwarz.hmp.HMP4040 method)

 	beep_state (pymeasure.instruments.keithley.Keithley2000 property)

 	beeper_enabled (pymeasure.instruments.hp.HP34401A property)

 	(pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	beeper_state (pymeasure.instruments.agilent.Agilent33220A property)

 	BIAS (pymeasure.instruments.agilent.agilentB1500.SamplingPostOutput attribute)

 	bias_enabled (pymeasure.instruments.srs.SR570 property)

 	bias_level (pymeasure.instruments.srs.SR570 property)

 	binary_data_byte_order (pymeasure.instruments.anritsu.AnritsuMS464xB property)

 	binary_values() (pymeasure.adapters.Adapter method)

 	(pymeasure.adapters.FakeAdapter method)

 	(pymeasure.adapters.PrologixAdapter method)

 	(pymeasure.adapters.SerialAdapter method)

 	(pymeasure.adapters.TelnetAdapter method)

 	(pymeasure.adapters.VISAAdapter method)

 	(pymeasure.adapters.VXI11Adapter method)

 	(pymeasure.instruments.common_base.CommonBase method)

 	(pymeasure.instruments.keithley.Keithley2200 method)

 	(pymeasure.instruments.keysight.KeysightE36312A method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	BKPrecision9130B (class in pymeasure.instruments.bkprecision)

 	blank_front() (pymeasure.instruments.srs.SR570 method)

 	
 	blank_trace() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	blanking (pymeasure.instruments.anapico.APSIN12G property)

 	BooleanInput (class in pymeasure.display.inputs)

 	BooleanParameter (class in pymeasure.experiment.parameters)

 	bootloader_version (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 property)

 	both_channels_enabled (pymeasure.instruments.keithley.Keithley2306 property)

 	Browser (class in pymeasure.display.browser)

 	BrowserItem (class in pymeasure.display.browser)

 	BrowserWidget (class in pymeasure.display.widgets.browser_widget)

 	buffer_data (pymeasure.instruments.keithley.Keithley2000 property)

 	(pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.keithley.Keithley2700 property)

 	(pymeasure.instruments.keithley.Keithley6221 property)

 	(pymeasure.instruments.keithley.Keithley6517B property)

 	buffer_frequency_time_series() (pymeasure.instruments.pendulum.cnt91.CNT91 method)

 	buffer_points (pymeasure.instruments.keithley.Keithley2000 property)

 	(pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.keithley.Keithley2700 property)

 	(pymeasure.instruments.keithley.Keithley6221 property)

 	(pymeasure.instruments.keithley.Keithley6517B property)

 	buffer_to_float() (pymeasure.instruments.signalrecovery.DSP7225 method)

 	(pymeasure.instruments.signalrecovery.DSP7265 method)

 	BufferCurve (class in pymeasure.display.curves)

 	burst_count (pymeasure.instruments.activetechnologies.AWG401x_AWG property)

 	burst_count_max (pymeasure.instruments.activetechnologies.AWG401x_AWG property)

 	burst_count_min (pymeasure.instruments.activetechnologies.AWG401x_AWG property)

 	burst_mode (pymeasure.instruments.agilent.Agilent33220A property)

 	(pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	burst_ncycles (pymeasure.instruments.agilent.Agilent33220A property)

 	(pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	burst_number (pymeasure.instruments.hp.HP8116A property)

 	burst_period (pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	burst_state (pymeasure.instruments.agilent.Agilent33220A property)

 	(pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	busy (pymeasure.instruments.anaheimautomation.DPSeriesMotorController property)

 	bwlimit (pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	(pymeasure.instruments.lecroy.lecroyT3DSO1204.LeCroyT3DSO1204Channel property)

 	(pymeasure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel property)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope property)

C

 	
 	calibration() (pymeasure.instruments.rohdeschwarz.sfm.SFM method)

 	calibration_data (pymeasure.instruments.hp.HP3478A property)

 	calibration_enabled (pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel property)

 	(pymeasure.instruments.hp.HP3478A property)

 	calibration_factor (pymeasure.instruments.advantest.advantestR624X.SMUChannel property)

 	calibration_generation_factor (pymeasure.instruments.advantest.advantestR624X.SMUChannel property)

 	calibration_init() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	calibration_measured_value (pymeasure.instruments.advantest.advantestR624X.SMUChannel property)

 	calibration_store_factor() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	capacitance (pymeasure.instruments.agilent.Agilent34450A property)

 	capacitance_auto_range (pymeasure.instruments.agilent.Agilent34450A property)

 	capacitance_range (pymeasure.instruments.agilent.Agilent34450A property)

 	capacity (pymeasure.instruments.attocube.anc300.Axis property)

 	caplossvolt (pymeasure.instruments.andeenhagerling.AH2500A property)

 	(pymeasure.instruments.andeenhagerling.AH2700A property)

 	carrier_enabled (pymeasure.instruments.rohdeschwarz.sfm.Sound_Channel property)

 	carrier_frequency (pymeasure.instruments.rohdeschwarz.sfm.Sound_Channel property)

 	carrier_level (pymeasure.instruments.rohdeschwarz.sfm.Sound_Channel property)

 	cathode_enabled (pymeasure.instruments.thyracont.smartline_v1.SmartlineV1 property)

 	celcius (pymeasure.instruments.lakeshore.lakeshore_base.LakeShoreTemperatureChannel property)

 	center_at_peak() (pymeasure.instruments.anritsu.AnritsuMS9710C method)

 	center_frequency (pymeasure.instruments.advantest.advantestR3767CG.AdvantestR3767CG property)

 	(pymeasure.instruments.agilent.Agilent8257D property)

 	(pymeasure.instruments.agilent.AgilentE4408B property)

 	(pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	center_trigger() (pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope method)

 	ch() (pymeasure.instruments.keithley.Keithley2306 method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope method)

 	ch_1 (pymeasure.instruments.activetechnologies.AWG401x_AFG attribute)

 	(pymeasure.instruments.agilent.Agilent33500 attribute)

 	(pymeasure.instruments.agilent.Agilent33521A attribute)

 	(pymeasure.instruments.keithley.Keithley2200 attribute)

 	(pymeasure.instruments.keysight.KeysightE36312A attribute)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 attribute)

 	(pymeasure.instruments.mksinst.mks937b.MKS937B attribute)

 	(pymeasure.instruments.siglenttechnologies.SPD1168X attribute)

 	(pymeasure.instruments.siglenttechnologies.SPD1305X attribute)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope attribute)

 	(pymeasure.instruments.teledyne.TeledyneT3AFG attribute)

 	(pymeasure.instruments.toptica.ibeamsmart.IBeamSmart attribute)

 	ch_2 (pymeasure.instruments.activetechnologies.AWG401x_AFG attribute)

 	(pymeasure.instruments.agilent.Agilent33500 attribute)

 	(pymeasure.instruments.agilent.Agilent33521A attribute)

 	(pymeasure.instruments.keithley.Keithley2200 attribute)

 	(pymeasure.instruments.keysight.KeysightE36312A attribute)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 attribute)

 	(pymeasure.instruments.mksinst.mks937b.MKS937B attribute)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope attribute)

 	(pymeasure.instruments.teledyne.TeledyneT3AFG attribute)

 	(pymeasure.instruments.toptica.ibeamsmart.IBeamSmart attribute)

 	ch_3 (pymeasure.instruments.keithley.Keithley2200 attribute)

 	(pymeasure.instruments.keysight.KeysightE36312A attribute)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 attribute)

 	(pymeasure.instruments.mksinst.mks937b.MKS937B attribute)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope attribute)

 	(pymeasure.instruments.toptica.ibeamsmart.IBeamSmart attribute)

 	ch_4 (pymeasure.instruments.lecroy.LeCroyT3DSO1204 attribute)

 	(pymeasure.instruments.mksinst.mks937b.MKS937B attribute)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope attribute)

 	(pymeasure.instruments.toptica.ibeamsmart.IBeamSmart attribute)

 	ch_5 (pymeasure.instruments.mksinst.mks937b.MKS937B attribute)

 	(pymeasure.instruments.toptica.ibeamsmart.IBeamSmart attribute)

 	ch_6 (pymeasure.instruments.mksinst.mks937b.MKS937B attribute)

 	ch_A (pymeasure.instruments.advantest.advantestR624X.AdvantestR6245 attribute)

 	(pymeasure.instruments.advantest.advantestR624X.AdvantestR6246 attribute)

 	ch_B (pymeasure.instruments.advantest.advantestR624X.AdvantestR6245 attribute)

 	(pymeasure.instruments.advantest.advantestR624X.AdvantestR6246 attribute)

 	change_source_current (pymeasure.instruments.advantest.advantestR624X.SMUChannel property)

 	change_source_voltage (pymeasure.instruments.advantest.advantestR624X.SMUChannel property)

 	Channel (class in pymeasure.instruments)

 	channel (pymeasure.instruments.bkprecision.BKPrecision9130B property)

 	channel1 (pymeasure.instruments.srs.SR830 property)

 	channel1_enabled (pymeasure.instruments.toptica.ibeamsmart.IBeamSmart property)

 	channel2 (pymeasure.instruments.srs.SR830 property)

 	channel2_enabled (pymeasure.instruments.toptica.ibeamsmart.IBeamSmart property)

 	channel_down_relative() (pymeasure.instruments.rohdeschwarz.sfm.SFM method)

 	channel_function (pymeasure.instruments.agilent.agilent4156.SMU property)

 	(pymeasure.instruments.agilent.agilent4156.VSU property)

 	channel_mode (pymeasure.instruments.agilent.agilent4156.SMU property)

 	(pymeasure.instruments.agilent.agilent4156.VMU property)

 	(pymeasure.instruments.agilent.agilent4156.VSU property)

 	channel_sweep_start (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	channel_sweep_step (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	channel_sweep_stop (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	channel_table (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	channel_up_relative() (pymeasure.instruments.rohdeschwarz.sfm.SFM method)

 	ChannelAFG (class in pymeasure.instruments.activetechnologies.AWG401x)

 	channels_from_rows_columns() (pymeasure.instruments.keithley.Keithley2700 method)

 	check_done() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	check_errors() (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X method)

 	(pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	(pymeasure.instruments.agilent.agilentB1500.SMU method)

 	(pymeasure.instruments.anaheimautomation.DPSeriesMotorController method)

 	(pymeasure.instruments.andeenhagerling.AH2700A method)

 	(pymeasure.instruments.anritsu.AnritsuMS464xB method)

 	(pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel method)

 	(pymeasure.instruments.Channel method)

 	(pymeasure.instruments.common_base.CommonBase method)

 	(pymeasure.instruments.fwbell.FWBell5080 method)

 	(pymeasure.instruments.heidenhain.ND287 method)

 	(pymeasure.instruments.hp.HP3437A method)

 	(pymeasure.instruments.hp.HP3478A method)

 	(pymeasure.instruments.hp.HP6632A method)

 	(pymeasure.instruments.hp.HP8116A method)

 	(pymeasure.instruments.hp.HP8657B method)

 	(pymeasure.instruments.Instrument method)

 	(pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.keithley.Keithley2200 method)

 	(pymeasure.instruments.keithley.Keithley2260B method)

 	(pymeasure.instruments.keithley.Keithley2306 method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley2600 method)

 	(pymeasure.instruments.keithley.Keithley2700 method)

 	(pymeasure.instruments.keithley.Keithley2750 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	(pymeasure.instruments.keysight.KeysightE36312A method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.signalrecovery.DSP7225 method)

 	(pymeasure.instruments.signalrecovery.DSP7265 method)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 method)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 method)

 	(pymeasure.instruments.teledyne.TeledyneT3AFG method)

 	(pymeasure.instruments.texio.TexioPSW360L30 method)

 	check_get_errors() (pymeasure.instruments.andeenhagerling.AH2700A method)

 	(pymeasure.instruments.Channel method)

 	(pymeasure.instruments.common_base.CommonBase method)

 	(pymeasure.instruments.fwbell.FWBell5080 method)

 	(pymeasure.instruments.Instrument method)

 	(pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.keithley.Keithley2200 method)

 	(pymeasure.instruments.keithley.Keithley2260B method)

 	(pymeasure.instruments.keithley.Keithley2306 method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley2600 method)

 	(pymeasure.instruments.keithley.Keithley2700 method)

 	(pymeasure.instruments.keithley.Keithley2750 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	(pymeasure.instruments.keysight.KeysightE36312A method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.signalrecovery.DSP7225 method)

 	(pymeasure.instruments.signalrecovery.DSP7265 method)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 method)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 method)

 	(pymeasure.instruments.teledyne.TeledyneT3AFG method)

 	(pymeasure.instruments.texio.TexioPSW360L30 method)

 	check_get_estimates_signature() (pymeasure.display.widgets.estimator_widget.EstimatorWidget method)

 	check_idle() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	check_parameters() (pymeasure.experiment.procedure.Procedure method)

 	check_selftest_errors() (pymeasure.instruments.hp.HP6632A method)

 	check_set_errors() (pymeasure.instruments.ametek.Ametek7270 method)

 	(pymeasure.instruments.andeenhagerling.AH2700A method)

 	(pymeasure.instruments.attocube.anc300.ANC300Controller method)

 	(pymeasure.instruments.Channel method)

 	(pymeasure.instruments.common_base.CommonBase method)

 	(pymeasure.instruments.fwbell.FWBell5080 method)

 	(pymeasure.instruments.hcp.TC038 method)

 	(pymeasure.instruments.hcp.TC038D method)

 	(pymeasure.instruments.Instrument method)

 	(pymeasure.instruments.ipgphotonics.yar.YAR method)

 	(pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.keithley.Keithley2200 method)

 	(pymeasure.instruments.keithley.Keithley2260B method)

 	(pymeasure.instruments.keithley.Keithley2306 method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley2600 method)

 	(pymeasure.instruments.keithley.Keithley2700 method)

 	(pymeasure.instruments.keithley.Keithley2750 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	(pymeasure.instruments.keysight.KeysightE36312A method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.mksinst.mks937b.MKS937B method)

 	(pymeasure.instruments.novanta.Fpu60 method)

 	(pymeasure.instruments.signalrecovery.DSP7225 method)

 	(pymeasure.instruments.signalrecovery.DSP7265 method)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 method)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 method)

 	(pymeasure.instruments.teledyne.TeledyneT3AFG method)

 	(pymeasure.instruments.texio.TexioPSW360L30 method)

 	(pymeasure.instruments.thyracont.smartline_v1.SmartlineV1 method)

 	(pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 method)

 	(pymeasure.instruments.toptica.ibeamsmart.IBeamSmart method)

 	(pymeasure.instruments.velleman.VellemanK8090 method)

 	check_stop() (pymeasure.display.windows.plotter_window.PlotterWindow method)

 	choices (pymeasure.experiment.parameters.ListParameter property)

 	clear() (pymeasure.display.manager.BaseManager method)

 	(pymeasure.instruments.andeenhagerling.AH2700A method)

 	(pymeasure.instruments.fwbell.FWBell5080 method)

 	(pymeasure.instruments.hp.HP6632A method)

 	(pymeasure.instruments.hp.HP8657B method)

 	(pymeasure.instruments.Instrument method)

 	(pymeasure.instruments.ipgphotonics.yar.YAR method)

 	(pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.keithley.Keithley2260B method)

 	(pymeasure.instruments.keithley.Keithley2306 method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley2600 method)

 	(pymeasure.instruments.keithley.Keithley2700 method)

 	(pymeasure.instruments.keithley.Keithley2750 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	(pymeasure.instruments.keysight.KeysightE36312A method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.signalrecovery.DSP7225 method)

 	(pymeasure.instruments.signalrecovery.DSP7265 method)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 method)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 method)

 	(pymeasure.instruments.teledyne.TeledyneT3AFG method)

 	(pymeasure.instruments.temptronic.ATSBase method)

 	(pymeasure.instruments.texio.TexioPSW360L30 method)

 	clear_average_count() (pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel method)

 	clear_buffer() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	clear_display() (pymeasure.instruments.agilent.Agilent33500 method)

 	clear_errors() (pymeasure.instruments.newport.ESP300 method)

 	clear_measurement_buffer() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	clear_overload() (pymeasure.instruments.srs.SR570 method)

 	clear_plot() (pymeasure.experiment.experiment.Experiment method)

 	clear_ramp_set() (pymeasure.instruments.danfysik.Danfysik8500 method)

 	clear_sequence() (pymeasure.instruments.danfysik.Danfysik8500 method)

 	(pymeasure.instruments.rohdeschwarz.hmp.HMP4040 method)

 	clear_status() (pymeasure.instruments.keysight.KeysightDSOX1102G method)

 	clear_status_register() (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X method)

 	clear_timer() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	clear_widget() (pymeasure.display.widgets.plot_widget.PlotWidget method)

 	(pymeasure.display.widgets.tab_widget.TabWidget method)

 	(pymeasure.display.widgets.table_widget.TableWidget method)

 	clear_write_trace() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	cli_args (pymeasure.experiment.parameters.Parameter property)

 	close() (pymeasure.adapters.Adapter method)

 	(pymeasure.adapters.FakeAdapter method)

 	(pymeasure.adapters.PrologixAdapter method)

 	(pymeasure.adapters.SerialAdapter method)

 	(pymeasure.adapters.TelnetAdapter method)

 	(pymeasure.adapters.VISAAdapter method)

 	(pymeasure.adapters.VXI11Adapter method)

 	(pymeasure.instruments.keithley.Keithley2750 method)

 	(pymeasure.instruments.keysight.KeysightN7776C method)

 	close_rows_to_columns() (pymeasure.instruments.keithley.Keithley2700 method)

 	closed_channels (pymeasure.instruments.keithley.Keithley2700 property)

 	(pymeasure.instruments.keithley.Keithley2750 property)

 	CMU_MEASUREMENT (pymeasure.instruments.agilent.agilentB1500.WaitTimeType attribute)

 	
 	CNT91 (class in pymeasure.instruments.pendulum.cnt91)

 	coder_adjust() (pymeasure.instruments.rohdeschwarz.sfm.SFM method)

 	coder_id_frequency (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	coder_modulation_degree (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	coder_pilot_deviation (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	coder_pilot_frequency (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	coilconst (pymeasure.instruments.ami.AMI430 property)

 	collapse_channel_string() (pymeasure.instruments.ni.virtualbench.VirtualBench method)

 	colormap() (pymeasure.display.curves.ResultsImage method)

 	columnCount() (pymeasure.display.widgets.sequencer_widget.SequencerTreeModel method)

 	(pymeasure.display.widgets.table_widget.PandasModelBase method)

 	combined_pressure1 (pymeasure.instruments.mksinst.mks937b.MKS937B property)

 	combined_pressure2 (pymeasure.instruments.mksinst.mks937b.MKS937B property)

 	ComboBoxDelegate (class in pymeasure.display.widgets.sequencer_widget)

 	COMMAND_COMPLETE (pymeasure.instruments.hp.hp856Xx.StatusRegister attribute)

 	CommonBase (class in pymeasure.instruments.common_base)

 	CommonBase.BaseChannelCreator (class in pymeasure.instruments.common_base)

 	CommonBase.ChannelCreator (class in pymeasure.instruments.common_base)

 	CommonBase.MultiChannelCreator (class in pymeasure.instruments.common_base)

 	complement_enabled (pymeasure.instruments.hp.HP8116A property)

 	complete (pymeasure.instruments.andeenhagerling.AH2700A property)

 	(pymeasure.instruments.fwbell.FWBell5080 property)

 	(pymeasure.instruments.hp.HP8116A property)

 	(pymeasure.instruments.Instrument property)

 	(pymeasure.instruments.keithley.Keithley2000 property)

 	(pymeasure.instruments.keithley.Keithley2200 property)

 	(pymeasure.instruments.keithley.Keithley2260B property)

 	(pymeasure.instruments.keithley.Keithley2306 property)

 	(pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.keithley.Keithley2600 property)

 	(pymeasure.instruments.keithley.Keithley2700 property)

 	(pymeasure.instruments.keithley.Keithley2750 property)

 	(pymeasure.instruments.keithley.Keithley6221 property)

 	(pymeasure.instruments.keithley.Keithley6517B property)

 	(pymeasure.instruments.keysight.KeysightE36312A property)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	(pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

 	(pymeasure.instruments.teledyne.TeledyneT3AFG property)

 	(pymeasure.instruments.texio.TexioPSW360L30 property)

 	compliance (pymeasure.instruments.agilent.agilent4156.SMU property)

 	(pymeasure.instruments.agilent.agilent4156.VARD property)

 	(pymeasure.instruments.agilent.agilent4156.VARX property)

 	COMPLIANCE_AND_FORCE_SIDE (pymeasure.instruments.agilent.agilentB1500.MeasOpMode attribute)

 	compliance_current (pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.yokogawa.Yokogawa7651 property)

 	COMPLIANCE_SIDE (pymeasure.instruments.agilent.agilentB1500.MeasOpMode attribute)

 	compliance_voltage (pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.yokogawa.Yokogawa7651 property)

 	CompliancePolarity (class in pymeasure.instruments.agilent.agilentB1500)

 	compressor_enable (pymeasure.instruments.temptronic.ATSBase property)

 	config (pymeasure.instruments.andeenhagerling.AH2500A property)

 	(pymeasure.instruments.andeenhagerling.AH2700A property)

 	config_amplitude_modulation() (pymeasure.instruments.agilent.Agilent8257D method)

 	config_buffer() (pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley2700 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	config_low_freq_out() (pymeasure.instruments.agilent.Agilent8257D method)

 	config_pulse_modulation() (pymeasure.instruments.agilent.Agilent8257D method)

 	config_step_sweep() (pymeasure.instruments.agilent.Agilent8257D method)

 	configure() (pymeasure.instruments.agilent.agilent4156.Agilent4156 method)

 	(pymeasure.instruments.temptronic.ATSBase method)

 	configure_ac_current() (pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter method)

 	configure_alarm() (pymeasure.instruments.lakeshore.LakeShore211 method)

 	configure_analog_channel() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	configure_analog_channel_characteristics() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	configure_analog_edge_trigger() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	configure_analog_pulse_width_trigger() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	configure_arbitrary_waveform() (pymeasure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator method)

 	configure_arbitrary_waveform_gain_and_offset() (pymeasure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator method)

 	configure_capacitance() (pymeasure.instruments.agilent.Agilent34450A method)

 	configure_continuity() (pymeasure.instruments.agilent.Agilent34450A method)

 	configure_current() (pymeasure.instruments.agilent.Agilent34450A method)

 	configure_current_output() (pymeasure.instruments.ni.virtualbench.VirtualBench.PowerSupply method)

 	configure_dc_current() (pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter method)

 	configure_dc_voltage() (pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter method)

 	configure_diode() (pymeasure.instruments.agilent.Agilent34450A method)

 	configure_frequency() (pymeasure.instruments.agilent.Agilent34450A method)

 	configure_frequency_array_measurement() (pymeasure.instruments.pendulum.cnt91.CNT91 method)

 	configure_immediate_trigger() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	configure_measurement() (pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter method)

 	configure_relay() (pymeasure.instruments.lakeshore.LakeShore211 method)

 	configure_resistance() (pymeasure.instruments.agilent.Agilent34450A method)

 	configure_standard_waveform() (pymeasure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator method)

 	configure_temperature() (pymeasure.instruments.agilent.Agilent34450A method)

 	configure_timer() (pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDChannel method)

 	configure_timing() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	configure_trigger_delay() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	configure_voltage() (pymeasure.instruments.agilent.Agilent34450A method)

 	configure_voltage_output() (pymeasure.instruments.ni.virtualbench.VirtualBench.PowerSupply method)

 	ConsoleArgumentParser (class in pymeasure.display.console)

 	ConsoleBrowserItem (class in pymeasure.display.console)

 	constant_value (pymeasure.instruments.agilent.agilent4156.SMU property)

 	(pymeasure.instruments.agilent.agilent4156.VSU property)

 	contact_current_1 (pymeasure.instruments.razorbill.razorbillRP100 property)

 	contact_current_2 (pymeasure.instruments.razorbill.razorbillRP100 property)

 	contact_voltage_1 (pymeasure.instruments.razorbill.razorbillRP100 property)

 	contact_voltage_2 (pymeasure.instruments.razorbill.razorbillRP100 property)

 	contextMenuEvent() (pymeasure.display.widgets.dock_widget.DockWidget method)

 	continue_single_sweep() (pymeasure.instruments.rohdeschwarz.fsl.FSL method)

 	continuity (pymeasure.instruments.agilent.Agilent34450A property)

 	continuous (pymeasure.instruments.pendulum.cnt91.CNT91 property)

 	continuous_sweep (pymeasure.instruments.rohdeschwarz.fsl.FSL property)

 	control() (pymeasure.instruments.common_base.CommonBase static method)

 	(pymeasure.instruments.fakes.FakeInstrument static method)

 	(pymeasure.instruments.keysight.KeysightE36312A static method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 static method)

 	control_method (pymeasure.instruments.rohdeschwarz.hmp.HMP4040 property)

 	control_mode (pymeasure.instruments.hp.HP8116A property)

 	(pymeasure.instruments.oxfordinstruments.IPS120_10 property)

 	(pymeasure.instruments.oxfordinstruments.ITC503 property)

 	controllerBoardVersion (pymeasure.instruments.attocube.anc300.ANC300Controller property)

 	conversion_loss (pymeasure.instruments.hp.HP8561B property)

 	convert() (pymeasure.experiment.parameters.BooleanParameter method)

 	(pymeasure.experiment.parameters.FloatParameter method)

 	(pymeasure.experiment.parameters.IntegerParameter method)

 	(pymeasure.experiment.parameters.ListParameter method)

 	(pymeasure.experiment.parameters.Parameter method)

 	(pymeasure.experiment.parameters.PhysicalParameter method)

 	(pymeasure.experiment.parameters.VectorParameter method)

 	convert_timestamp_to_values() (pymeasure.instruments.ni.virtualbench.VirtualBench method)

 	convert_values_to_datetime() (pymeasure.instruments.ni.virtualbench.VirtualBench method)

 	convert_values_to_timestamp() (pymeasure.instruments.ni.virtualbench.VirtualBench method)

 	copy_active_setup_file (pymeasure.instruments.temptronic.ATSBase property)

 	(pymeasure.instruments.temptronic.ECO560 attribute)

 	copy_data_file() (pymeasure.instruments.anritsu.AnritsuMS464xB method)

 	COR (class in pymeasure.instruments.advantest.advantestR624X)

 	coupling (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	(pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	(pymeasure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel property)

 	CouplingMode (class in pymeasure.instruments.hp.hp856Xx)

 	create_directory() (pymeasure.instruments.anritsu.AnritsuMS464xB method)

 	create_fft_trace_window() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	create_filename() (in module pymeasure.experiment.experiment)

 	create_marker() (pymeasure.instruments.rohdeschwarz.fsl.FSL method)

 	createEditor() (pymeasure.display.widgets.sequencer_widget.ComboBoxDelegate method)

 	(pymeasure.display.widgets.sequencer_widget.LineEditDelegate method)

 	Crosshairs (class in pymeasure.display.curves)

 	CSVFormatter (class in pymeasure.experiment.results)

 	current (pymeasure.instruments.agilent.Agilent34450A property)

 	CURRENT (pymeasure.instruments.agilent.agilentB1500.MeasOpMode attribute)

 	current (pymeasure.instruments.aja.DCXS property)

 	(pymeasure.instruments.bkprecision.BKPrecision9130B property)

 	(pymeasure.instruments.danfysik.Danfysik8500 property)

 	(pymeasure.instruments.deltaelektronika.SM7045D property)

 	(pymeasure.instruments.eurotest.EurotestHPP120256 property)

 	(pymeasure.instruments.hp.HP6632A property)

 	(pymeasure.instruments.ipgphotonics.yar.YAR property)

 	(pymeasure.instruments.keithley.Keithley2000 property)

 	(pymeasure.instruments.keithley.keithley2200.PSChannel property)

 	(pymeasure.instruments.keithley.Keithley2260B property)

 	(pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.keithley.Keithley6517B property)

 	(pymeasure.instruments.keysight.keysightE36312A.VoltageChannel property)

 	(pymeasure.instruments.keysight.KeysightN5767A property)

 	(pymeasure.instruments.novanta.Fpu60 property)

 	(pymeasure.instruments.rohdeschwarz.hmp.HMP4040 property)

 	(pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDChannel property)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

 	(pymeasure.instruments.texio.TexioPSW360L30 property)

 	(pymeasure.instruments.toptica.ibeamsmart.IBeamSmart property)

 	current_ac (pymeasure.instruments.agilent.Agilent34410A property)

 	(pymeasure.instruments.agilent.Agilent34450A property)

 	(pymeasure.instruments.hp.HP34401A property)

 	current_ac_auto_range (pymeasure.instruments.agilent.Agilent34450A property)

 	current_ac_bandwidth (pymeasure.instruments.keithley.Keithley2000 property)

 	current_ac_digits (pymeasure.instruments.keithley.Keithley2000 property)

 	current_ac_nplc (pymeasure.instruments.keithley.Keithley2000 property)

 	current_ac_range (pymeasure.instruments.agilent.Agilent34450A property)

 	(pymeasure.instruments.keithley.Keithley2000 property)

 	current_ac_reference (pymeasure.instruments.keithley.Keithley2000 property)

 	current_ac_resolution (pymeasure.instruments.agilent.Agilent34450A property)

 	current_auto_range (pymeasure.instruments.agilent.Agilent34450A property)

 	current_configuration (pymeasure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel property)

 	current_cycle_count (pymeasure.instruments.temptronic.ATSBase property)

 	current_dc (pymeasure.instruments.agilent.Agilent34410A property)

 	(pymeasure.instruments.hp.HP34401A property)

 	current_digits (pymeasure.instruments.keithley.Keithley2000 property)

 	current_filter_count (pymeasure.instruments.keithley.Keithley2450 property)

 	current_filter_state (pymeasure.instruments.keithley.Keithley2450 property)

 	current_filter_type (pymeasure.instruments.keithley.Keithley2450 property)

 	current_fixed_level_sweep() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	current_fixed_pulsed_sweep() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	current_limit (pymeasure.instruments.eurotest.EurotestHPP120256 property)

 	(pymeasure.instruments.keithley.keithley2200.PSChannel property)

 	(pymeasure.instruments.keithley.Keithley2260B property)

 	(pymeasure.instruments.keysight.keysightE36312A.VoltageChannel property)

 	(pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDChannel property)

 	(pymeasure.instruments.texio.TexioPSW360L30 property)

 	(pymeasure.instruments.yokogawa.YokogawaGS200 property)

 	current_measured (pymeasure.instruments.oxfordinstruments.IPS120_10 property)

 	current_name (pymeasure.instruments.agilent.agilent4156.SMU property)

 	current_nplc (pymeasure.instruments.keithley.Keithley2000 property)

 	(pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.keithley.Keithley6517B property)

 	current_output_off_state (pymeasure.instruments.keithley.Keithley2450 property)

 	current_ppm (pymeasure.instruments.danfysik.Danfysik8500 property)

 	current_pulsed_source() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	current_pulsed_sweep() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	current_random_pulsed_sweep() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	current_random_sweep() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	current_range (pymeasure.instruments.agilent.Agilent34450A property)

 	(pymeasure.instruments.eurotest.EurotestHPP120256 property)

 	(pymeasure.instruments.keithley.Keithley2000 property)

 	(pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.keithley.Keithley6517B property)

 	(pymeasure.instruments.keysight.KeysightN5767A property)

 	current_reference (pymeasure.instruments.keithley.Keithley2000 property)

 	current_resolution (pymeasure.instruments.agilent.Agilent34450A property)

 	current_set_random_memory() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	current_setpoint (pymeasure.instruments.danfysik.Danfysik8500 property)

 	(pymeasure.instruments.oxfordinstruments.IPS120_10 property)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

 	current_source() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	current_step (pymeasure.instruments.rohdeschwarz.hmp.HMP4040 property)

 	current_sweep() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	current_to_max() (pymeasure.instruments.rohdeschwarz.hmp.HMP4040 method)

 	current_to_min() (pymeasure.instruments.rohdeschwarz.hmp.HMP4040 method)

 	CurrentRange (class in pymeasure.instruments.advantest.advantestR624X)

 	curve_buffer_bits (pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	curve_buffer_interval (pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	curve_buffer_length (pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	curve_buffer_status (pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	CustomIntEnum (class in pymeasure.instruments.agilent.agilentB1500)

 	cw_frequency (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	cw_mode_enabled (pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel property)

 	cw_number_of_points (pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel property)

 	CXN (class in pymeasure.instruments.tcpowerconversion)

 	CXN.Status (class in pymeasure.instruments.tcpowerconversion)

 	cycling_enable (pymeasure.instruments.temptronic.ATSBase property)

 	cycling_stopped() (pymeasure.instruments.temptronic.ATSBase method)

D

 	
 	dac1 (pymeasure.instruments.ametek.Ametek7270 property)

 	(pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	(pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	dac2 (pymeasure.instruments.ametek.Ametek7270 property)

 	(pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	(pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	dac3 (pymeasure.instruments.ametek.Ametek7270 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	(pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	dac4 (pymeasure.instruments.ametek.Ametek7270 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	(pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	Danfysik8500 (class in pymeasure.instruments.danfysik)

 	data (pymeasure.experiment.experiment.Experiment property)

 	(pymeasure.instruments.agilent.Agilent8722ES property)

 	data() (pymeasure.display.widgets.sequencer_widget.SequencerTreeModel method)

 	(pymeasure.display.widgets.table_widget.PandasModelBase method)

 	data_arb() (pymeasure.instruments.agilent.Agilent33500 method)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel method)

 	data_complex (pymeasure.instruments.agilent.Agilent8722ES property)

 	data_drawing_enabled (pymeasure.instruments.anritsu.AnritsuMS464xB property)

 	data_format() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	data_log_magnitude (pymeasure.instruments.agilent.Agilent8722ES property)

 	data_magnitude (pymeasure.instruments.agilent.Agilent8722ES property)

 	data_memory_a_condition (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	data_memory_a_size (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	data_memory_a_values (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	data_memory_b_condition (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	data_memory_b_size (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	data_memory_b_values (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	data_memory_select (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	(pymeasure.instruments.anritsu.AnritsuMS9740A property)

 	data_phase (pymeasure.instruments.agilent.Agilent8722ES property)

 	data_variables (pymeasure.instruments.agilent.agilent4156.Agilent4156 property)

 	data_volatile_clear() (pymeasure.instruments.agilent.Agilent33500 method)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel method)

 	datablock_header_format (pymeasure.instruments.anritsu.AnritsuMS464xB property)

 	datablock_numeric_format (pymeasure.instruments.anritsu.AnritsuMS464xB property)

 	datafile_frequency_unit (pymeasure.instruments.anritsu.AnritsuMS464xB property)

 	datafile_include_heading (pymeasure.instruments.anritsu.AnritsuMS464xB property)

 	datafile_parameter_format (pymeasure.instruments.anritsu.AnritsuMS464xB property)

 	date (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	DBM (pymeasure.instruments.hp.hp856Xx.AmplitudeUnits attribute)

 	DBMV (pymeasure.instruments.hp.hp856Xx.AmplitudeUnits attribute)

 	DBUV (pymeasure.instruments.hp.hp856Xx.AmplitudeUnits attribute)

 	DC (pymeasure.instruments.hp.hp856Xx.CouplingMode attribute)

 	dc_mode() (pymeasure.instruments.lakeshore.LakeShore425 method)

 	dc_voltage (pymeasure.instruments.tcpowerconversion.CXN property)

 	dcmode (pymeasure.instruments.srs.SR860 property)

 	DCXS (class in pymeasure.instruments.aja)

 	deactivate_marker() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	default_setup() (pymeasure.instruments.keysight.KeysightDSOX1102G method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope method)

 	define_arbitary_waveform() (pymeasure.instruments.keithley.Keithley6221 method)

 	define_position() (pymeasure.instruments.newport.esp300.Axis method)

 	delay (pymeasure.instruments.hp.HP3437A property)

 	(pymeasure.instruments.hp.HP6632A property)

 	delay_time (pymeasure.instruments.agilent.agilent4156.Agilent4156 property)

 	delete_data_file() (pymeasure.instruments.anritsu.AnritsuMS464xB method)

 	delete_directory() (pymeasure.instruments.anritsu.AnritsuMS464xB method)

 	demand_current (pymeasure.instruments.oxfordinstruments.IPS120_10 property)

 	demand_field (pymeasure.instruments.oxfordinstruments.IPS120_10 property)

 	demodulation_agc_enabled (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	demodulation_mode (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	demodulation_time (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	DemodulationMode (class in pymeasure.instruments.hp.hp856Xx)

 	deposition_time_min (pymeasure.instruments.aja.DCXS property)

 	deposition_time_sec (pymeasure.instruments.aja.DCXS property)

 	derivative_action_time (pymeasure.instruments.oxfordinstruments.ITC503 property)

 	detectedfrequency (pymeasure.instruments.srs.SR860 property)

 	DetectionModes (class in pymeasure.instruments.hp.hp856Xx)

 	detector_bandwidth (pymeasure.instruments.hp.HP34401A property)

 	detector_mode (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	determine_valid_channels() (pymeasure.instruments.keithley.Keithley2700 method)

 	deviation (pymeasure.instruments.rohdeschwarz.sfm.Sound_Channel property)

 	device_address (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 property)

 	device_operation_enable_register (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X property)

 	device_operation_register (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X property)

 	device_serial (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 property)

 	device_type (pymeasure.instruments.thyracont.smartline_v1.SmartlineV1 property)

 	(pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 property)

 	device_version (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 property)

 	digital_out_enable_data (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X property)

 	digitize() (pymeasure.instruments.keysight.KeysightDSOX1102G method)

 	diode (pymeasure.instruments.agilent.Agilent34450A property)

 	dip_search (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	direction (pymeasure.instruments.anaheimautomation.DPSeriesMotorController property)

 	DirectoryLineEdit (class in pymeasure.display.widgets.directory_widget)

 	disable (pymeasure.instruments.agilent.agilent4156.SMU property)

 	(pymeasure.instruments.agilent.agilent4156.VMU property)

 	(pymeasure.instruments.agilent.agilent4156.VSU property)

 	
 	disable() (pymeasure.instruments.agilent.Agilent8257D method)

 	(pymeasure.instruments.agilent.agilentB1500.SMU method)

 	(pymeasure.instruments.anritsu.AnritsuMG3692C method)

 	(pymeasure.instruments.danfysik.Danfysik8500 method)

 	(pymeasure.instruments.deltaelektronika.SM7045D method)

 	(pymeasure.instruments.keysight.KeysightN5767A method)

 	(pymeasure.instruments.newport.ESP300 method)

 	(pymeasure.instruments.newport.esp300.Axis method)

 	(pymeasure.instruments.parker.ParkerGV6 method)

 	(pymeasure.instruments.toptica.ibeamsmart.IBeamSmart method)

 	disable_all() (pymeasure.instruments.agilent.agilent4156.Agilent4156 method)

 	disable_amplitude_modulation() (pymeasure.instruments.agilent.Agilent8257D method)

 	disable_averaging() (pymeasure.instruments.agilent.Agilent8722ES method)

 	disable_bias() (pymeasure.instruments.srs.SR570 method)

 	disable_buffer() (pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley2700 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	disable_control() (pymeasure.instruments.oxfordinstruments.IPS120_10 method)

 	disable_emission() (pymeasure.instruments.novanta.Fpu60 method)

 	disable_filter() (pymeasure.instruments.keithley.Keithley2000 method)

 	disable_low_freq_out() (pymeasure.instruments.agilent.Agilent8257D method)

 	disable_modulation() (pymeasure.instruments.agilent.Agilent8257D method)

 	disable_offset_current() (pymeasure.instruments.srs.SR570 method)

 	disable_output_trigger() (pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	disable_persistent_mode() (pymeasure.instruments.oxfordinstruments.IPS120_10 method)

 	disable_persistent_switch() (pymeasure.instruments.ami.AMI430 method)

 	disable_pulse_modulation() (pymeasure.instruments.agilent.Agilent8257D method)

 	disable_reference() (pymeasure.instruments.keithley.Keithley2000 method)

 	disable_rf() (pymeasure.instruments.anapico.APSIN12G method)

 	disable_source() (pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	(pymeasure.instruments.yokogawa.Yokogawa7651 method)

 	display (pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

 	(pymeasure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel property)

 	display_active (pymeasure.instruments.hp.HP6632A property)

 	display_brightness (pymeasure.instruments.keithley.Keithley2306 property)

 	display_channel (pymeasure.instruments.keithley.Keithley2306 property)

 	display_closed_channels() (pymeasure.instruments.keithley.Keithley2700 method)

 	display_data (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 property)

 	display_enabled (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X property)

 	(pymeasure.instruments.hp.HP34401A property)

 	(pymeasure.instruments.keithley.Keithley2200 property)

 	(pymeasure.instruments.keithley.Keithley2306 property)

 	(pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley6221 property)

 	display_estimates() (pymeasure.display.widgets.estimator_widget.EstimatorWidget method)

 	display_filter_enabled (pymeasure.instruments.lakeshore.LakeShore421 property)

 	display_layout (pymeasure.instruments.anritsu.AnritsuMS464xB property)

 	(pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel property)

 	display_line (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	display_orientation (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 property)

 	display_parameter (pymeasure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel property)

 	display_parameter() (pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope method)

 	display_parameters (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	display_reset() (pymeasure.instruments.hp.HP3478A method)

 	display_text (pymeasure.instruments.hp.HP3478A property)

 	(pymeasure.instruments.keithley.Keithley2700 property)

 	display_text_data (pymeasure.instruments.keithley.Keithley2200 property)

 	(pymeasure.instruments.keithley.Keithley2306 property)

 	display_text_enabled (pymeasure.instruments.keithley.Keithley2306 property)

 	display_text_no_symbol (pymeasure.instruments.hp.HP3478A property)

 	display_unit (pymeasure.instruments.thyracont.smartline_v1.SmartlineV1 property)

 	(pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 property)

 	display_units (pymeasure.instruments.lakeshore.LakeShore211 property)

 	displayed_text (pymeasure.instruments.hp.HP34401A property)

 	do_fft() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	DockWidget (class in pymeasure.display.widgets.dock_widget)

 	DOR (class in pymeasure.instruments.advantest.advantestR624X)

 	download_data() (pymeasure.instruments.keysight.KeysightDSOX1102G method)

 	download_image() (pymeasure.instruments.keysight.KeysightDSOX1102G method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope method)

 	download_waveform() (pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope method)

 	DPSeriesMotorController (class in pymeasure.instruments.anaheimautomation)

 	DriverChannel (class in pymeasure.instruments.toptica.ibeamsmart)

 	DSP7225 (class in pymeasure.instruments.signalrecovery)

 	DSP7265 (class in pymeasure.instruments.signalrecovery)

 	dut_constant (pymeasure.instruments.temptronic.ATSBase property)

 	dut_mode (pymeasure.instruments.temptronic.ATSBase property)

 	dut_temperature (pymeasure.instruments.temptronic.ATSBase property)

 	dut_type (pymeasure.instruments.temptronic.ATSBase property)

 	duty_cycle (pymeasure.instruments.hp.HP8116A property)

 	dwell_time (pymeasure.instruments.agilent.Agilent8257D property)

 	dynamic_temperature_setpoint (pymeasure.instruments.temptronic.ATSBase property)

E

 	
 	ECO560 (class in pymeasure.instruments.temptronic)

 	elapsed_time (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	emergency_off() (pymeasure.instruments.eurotest.EurotestHPP120256 method)

 	emission (pymeasure.instruments.toptica.ibeamsmart.IBeamSmart property)

 	emission_enabled (pymeasure.instruments.ipgphotonics.yar.YAR property)

 	(pymeasure.instruments.novanta.Fpu60 property)

 	emit() (pymeasure.display.log.LogHandler method)

 	(pymeasure.experiment.workers.Worker method)

 	enable (pymeasure.instruments.edwards.Nxds property)

 	enable() (pymeasure.instruments.agilent.Agilent8257D method)

 	(pymeasure.instruments.agilent.agilentB1500.SMU method)

 	(pymeasure.instruments.anritsu.AnritsuMG3692C method)

 	(pymeasure.instruments.danfysik.Danfysik8500 method)

 	(pymeasure.instruments.deltaelektronika.SM7045D method)

 	(pymeasure.instruments.keysight.KeysightN5767A method)

 	(pymeasure.instruments.newport.ESP300 method)

 	(pymeasure.instruments.newport.esp300.Axis method)

 	(pymeasure.instruments.parker.ParkerGV6 method)

 	enable_4W_mode() (pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDSingleChannelBase method)

 	enable_air_flow (pymeasure.instruments.temptronic.ATSBase property)

 	enable_amplitude_modulation() (pymeasure.instruments.agilent.Agilent8257D method)

 	enable_averaging() (pymeasure.instruments.agilent.Agilent8722ES method)

 	enable_bias() (pymeasure.instruments.srs.SR570 method)

 	enable_continous() (pymeasure.instruments.toptica.ibeamsmart.IBeamSmart method)

 	enable_control() (pymeasure.instruments.oxfordinstruments.IPS120_10 method)

 	enable_filter() (pymeasure.instruments.keithley.Keithley2000 method)

 	enable_local_interface() (pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDBase method)

 	enable_low_freq_out() (pymeasure.instruments.agilent.Agilent8257D method)

 	enable_offset_current() (pymeasure.instruments.srs.SR570 method)

 	enable_output() (pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDChannel method)

 	enable_persistent_mode() (pymeasure.instruments.oxfordinstruments.IPS120_10 method)

 	enable_persistent_switch() (pymeasure.instruments.ami.AMI430 method)

 	enable_pulse_modulation() (pymeasure.instruments.agilent.Agilent8257D method)

 	enable_pulsing() (pymeasure.instruments.toptica.ibeamsmart.IBeamSmart method)

 	enable_reference() (pymeasure.instruments.keithley.Keithley2000 method)

 	enable_rf() (pymeasure.instruments.anapico.APSIN12G method)

 	enable_source() (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X method)

 	(pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	(pymeasure.instruments.yokogawa.Yokogawa7651 method)

 	enable_timer() (pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDChannel method)

 	enabled (pymeasure.instruments.activetechnologies.AWG401x_AFG property)

 	(pymeasure.instruments.activetechnologies.AWG401x_AWG property)

 	(pymeasure.instruments.aja.DCXS property)

 	(pymeasure.instruments.newport.esp300.Axis property)

 	(pymeasure.instruments.toptica.ibeamsmart.DriverChannel property)

 	encoder_autocorrect (pymeasure.instruments.anaheimautomation.DPSeriesMotorController property)

 	encoder_delay (pymeasure.instruments.anaheimautomation.DPSeriesMotorController property)

 	encoder_enabled (pymeasure.instruments.anaheimautomation.DPSeriesMotorController property)

 	encoder_motor_ratio (pymeasure.instruments.anaheimautomation.DPSeriesMotorController property)

 	encoder_retries (pymeasure.instruments.anaheimautomation.DPSeriesMotorController property)

 	encoder_window (pymeasure.instruments.anaheimautomation.DPSeriesMotorController property)

 	end_of_all_cycles() (pymeasure.instruments.temptronic.ATSBase method)

 	end_of_one_cycle() (pymeasure.instruments.temptronic.ATSBase method)

 	END_OF_SWEEP (pymeasure.instruments.hp.hp856Xx.StatusRegister attribute)

 	end_of_test() (pymeasure.instruments.temptronic.ATSBase method)

 	end_sequence() (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X method)

 	energy (pymeasure.instruments.thorlabs.ThorlabsPM100USB property)

 	enter_cycle() (pymeasure.instruments.temptronic.ATSBase method)

 	enter_ramp() (pymeasure.instruments.temptronic.ATSBase method)

 	entry_level_strategy (pymeasure.instruments.activetechnologies.AWG401x_AWG property)

 	
 	eoi (pymeasure.adapters.PrologixAdapter property)

 	eos (pymeasure.adapters.PrologixAdapter property)

 	err_status (pymeasure.instruments.srs.SR830 property)

 	error (pymeasure.instruments.keithley.Keithley2260B property)

 	(pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.keithley.Keithley2600 property)

 	(pymeasure.instruments.keithley.Keithley2700 property)

 	(pymeasure.instruments.keithley.Keithley6221 property)

 	(pymeasure.instruments.keithley.Keithley6517B property)

 	(pymeasure.instruments.newport.ESP300 property)

 	(pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDBase property)

 	(pymeasure.instruments.texio.TexioPSW360L30 property)

 	error_code (pymeasure.instruments.temptronic.ATSBase property)

 	ERROR_PRESENT (pymeasure.instruments.hp.hp856Xx.StatusRegister attribute)

 	error_reg (pymeasure.instruments.anaheimautomation.DPSeriesMotorController property)

 	error_register (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X property)

 	error_status (pymeasure.instruments.hp.HP3478A property)

 	error_status() (pymeasure.instruments.temptronic.ATSBase method)

 	ErrorCode (class in pymeasure.instruments.hp.hp856Xx)

 	(class in pymeasure.instruments.temptronic.temptronic_base)

 	errors (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	(pymeasure.instruments.newport.ESP300 property)

 	ese2 (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	ESP300 (class in pymeasure.instruments.newport)

 	esr2 (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	EstimatorThread (class in pymeasure.display.widgets.estimator_widget)

 	EstimatorWidget (class in pymeasure.display.widgets.estimator_widget)

 	EurotestHPP120256 (class in pymeasure.instruments.eurotest)

 	EurotestHPP120256.EurotestHPP120256Status (class in pymeasure.instruments.eurotest)

 	evaluate_metadata() (pymeasure.experiment.procedure.Procedure method)

 	event_reg (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	event_status_enable (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X property)

 	event_status_enable_bits (pymeasure.instruments.anritsu.AnritsuMS464xB property)

 	event_status_register (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X property)

 	exchange_traces() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	exec() (pymeasure.display.console.ManagedConsole method)

 	execute() (pymeasure.experiment.procedure.Procedure method)

 	expand_channel_string() (pymeasure.instruments.ni.virtualbench.VirtualBench method)

 	expected_protocol() (in module pymeasure.test)

 	Experiment (class in pymeasure.display.manager)

 	(class in pymeasure.experiment.experiment)

 	ExperimentQueue (class in pymeasure.display.manager)

 	export_signal() (pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalInputOutput method)

 	ExpressionValidator (class in pymeasure.display.widgets.sequencer_widget)

 	ext_ref_base_unit (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	ext_ref_extension (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	ext_trig_out (pymeasure.instruments.agilent.Agilent33500 property)

 	ext_vid_connector (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	External (pymeasure.instruments.hp.hp856Xx.FrequencyReference attribute)

 	(pymeasure.instruments.hp.hp856Xx.MixerMode attribute)

 	(pymeasure.instruments.hp.hp856Xx.SourceLevelingControlMode attribute)

 	(pymeasure.instruments.hp.hp856Xx.TriggerMode attribute)

 	external_arming_start_slope (pymeasure.instruments.pendulum.cnt91.CNT91 property)

 	external_current (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	external_modulation_frequency (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	external_modulation_power (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	external_modulation_source (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	external_start_arming_source (pymeasure.instruments.pendulum.cnt91.CNT91 property)

 	external_trigger_delay (pymeasure.instruments.anritsu.AnritsuMS464xB property)

 	external_trigger_edge (pymeasure.instruments.anritsu.AnritsuMS464xB property)

 	external_trigger_handshake (pymeasure.instruments.anritsu.AnritsuMS464xB property)

 	external_trigger_type (pymeasure.instruments.anritsu.AnritsuMS464xB property)

 	extfreqency (pymeasure.instruments.srs.SR860 property)

 	extract_value() (pymeasure.instruments.keithley.Keithley6517B static method)

F

 	
 	factory_reset() (pymeasure.instruments.keysight.KeysightDSOX1102G method)

 	FakeAdapter (class in pymeasure.adapters)

 	FakeInstrument (class in pymeasure.instruments.fakes)

 	fast_mode (pymeasure.instruments.lakeshore.LakeShore421 property)

 	fast_mode_enabled (pymeasure.instruments.advantest.advantestR624X.SMUChannel property)

 	fault_code (pymeasure.instruments.aja.DCXS property)

 	Fav (pymeasure.instruments.hp.hp856Xx.SweepOut attribute)

 	fet (pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	fetch_control (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_density (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_eirpower (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_eirpower_data (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_eirpower_max (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_emf (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_emf_meter (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_emf_meter_sample (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_interference_power (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_mimo_antenas (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_ocupied_bw (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_ota_mapping (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_pan (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_pbch_constellation (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_pci (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_pdsch (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_pdsch_constellation (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_peak (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_power (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_rrm (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_scan (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_semask (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_ssb (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_sync_evm (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_sync_power (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	fetch_tae (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	field (pymeasure.instruments.ami.AMI430 property)

 	(pymeasure.instruments.fwbell.FWBell5080 property)

 	(pymeasure.instruments.lakeshore.LakeShore421 property)

 	(pymeasure.instruments.lakeshore.LakeShore425 property)

 	(pymeasure.instruments.oxfordinstruments.IPS120_10 property)

 	field_mode (pymeasure.instruments.lakeshore.LakeShore421 property)

 	field_multiplier (pymeasure.instruments.lakeshore.LakeShore421 property)

 	field_range (pymeasure.instruments.lakeshore.LakeShore421 property)

 	field_range_raw (pymeasure.instruments.lakeshore.LakeShore421 property)

 	field_raw (pymeasure.instruments.lakeshore.LakeShore421 property)

 	field_setpoint (pymeasure.instruments.oxfordinstruments.IPS120_10 property)

 	fields() (pymeasure.instruments.fwbell.FWBell5080 method)

 	filer_synchronous (pymeasure.instruments.srs.SR860 property)

 	filter (pymeasure.instruments.agilent.agilentB1500.SMU property)

 	(pymeasure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator property)

 	filter_advanced (pymeasure.instruments.srs.SR860 property)

 	filter_count (pymeasure.instruments.keithley.Keithley2400 property)

 	filter_slope (pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	filter_state (pymeasure.instruments.keithley.Keithley2400 property)

 	filter_synchronous (pymeasure.instruments.srs.SR830 property)

 	filter_type (pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.srs.SR570 property)

 	find_img_index() (pymeasure.display.curves.ResultsImage method)

 	firmware (pymeasure.instruments.ipgphotonics.yar.YAR property)

 	firmware_revision (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	firmware_version (pymeasure.instruments.tcpowerconversion.CXN property)

 	(pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 property)

 	flags() (pymeasure.display.widgets.sequencer_widget.SequencerTreeModel method)

 	Flattop (pymeasure.instruments.hp.hp856Xx.WindowType attribute)

 	FloatParameter (class in pymeasure.experiment.parameters)

 	Fluke7341 (class in pymeasure.instruments.fluke)

 	flush_read_buffer() (pymeasure.adapters.Adapter method)

 	(pymeasure.adapters.FakeAdapter method)

 	(pymeasure.adapters.PrologixAdapter method)

 	(pymeasure.adapters.ProtocolAdapter method)

 	(pymeasure.adapters.SerialAdapter method)

 	(pymeasure.adapters.TelnetAdapter method)

 	(pymeasure.adapters.VISAAdapter method)

 	(pymeasure.adapters.VXI11Adapter method)

 	fm_deviation (pymeasure.instruments.hp.HP8657B property)

 	fm_source (pymeasure.instruments.hp.HP8657B property)

 	foldback_delay (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

 	foldback_enabled (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

 	foldback_reset() (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 method)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 method)

 	force() (pymeasure.instruments.agilent.agilentB1500.SMU method)

 	force_gnd() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	(pymeasure.instruments.agilent.agilentB1500.SMU method)

 	FORCE_SIDE (pymeasure.instruments.agilent.agilentB1500.MeasOpMode attribute)

 	force_trigger() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	format (pymeasure.instruments.pendulum.cnt91.CNT91 property)

 	
 	format() (pymeasure.display.widgets.log_widget.HTMLFormatter method)

 	(pymeasure.experiment.results.CSVFormatter method)

 	(pymeasure.experiment.results.Results method)

 	Fpu60 (class in pymeasure.instruments.novanta)

 	frame (pymeasure.instruments.fakes.SwissArmyFake property)

 	frame_format (pymeasure.instruments.fakes.SwissArmyFake property)

 	frame_height (pymeasure.instruments.fakes.SwissArmyFake property)

 	frame_width (pymeasure.instruments.fakes.SwissArmyFake property)

 	Free (pymeasure.instruments.hp.hp856Xx.TriggerMode attribute)

 	freq_center (pymeasure.instruments.rohdeschwarz.fsl.FSL property)

 	freq_span (pymeasure.instruments.rohdeschwarz.fsl.FSL property)

 	freq_start (pymeasure.instruments.rohdeschwarz.fsl.FSL property)

 	freq_stop (pymeasure.instruments.rohdeschwarz.fsl.FSL property)

 	freq_sweep() (pymeasure.instruments.agilent.AgilentE4980 method)

 	frequencies (pymeasure.instruments.agilent.Agilent8722ES property)

 	(pymeasure.instruments.agilent.AgilentE4408B property)

 	frequency (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	(pymeasure.instruments.agilent.Agilent33220A property)

 	(pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	(pymeasure.instruments.agilent.Agilent33521A property)

 	(pymeasure.instruments.agilent.Agilent34450A property)

 	(pymeasure.instruments.agilent.Agilent8257D property)

 	(pymeasure.instruments.agilent.AgilentE4980 property)

 	(pymeasure.instruments.ametek.Ametek7270 property)

 	(pymeasure.instruments.anapico.APSIN12G property)

 	(pymeasure.instruments.andeenhagerling.AH2700A property)

 	(pymeasure.instruments.anritsu.AnritsuMG3692C property)

 	(pymeasure.instruments.attocube.anc300.Axis property)

 	(pymeasure.instruments.hp.HP33120A property)

 	(pymeasure.instruments.hp.HP8116A property)

 	Frequency (pymeasure.instruments.hp.hp856Xx.DemodulationMode attribute)

 	frequency (pymeasure.instruments.hp.HP8657B property)

 	(pymeasure.instruments.keithley.Keithley2000 property)

 	(pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	(pymeasure.instruments.rohdeschwarz.sfm.Sound_Channel property)

 	(pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	(pymeasure.instruments.srs.SR510 property)

 	(pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	(pymeasure.instruments.tcpowerconversion.CXN property)

 	(pymeasure.instruments.teledyne.teledyneT3AFG.SignalChannel property)

 	frequency_aperature (pymeasure.instruments.keithley.Keithley2000 property)

 	frequency_aperture (pymeasure.instruments.agilent.Agilent34450A property)

 	frequency_center (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	(pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel property)

 	frequency_counter_mode_enabled (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	frequency_counter_resolution (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	frequency_current_auto_range (pymeasure.instruments.agilent.Agilent34450A property)

 	frequency_current_range (pymeasure.instruments.agilent.Agilent34450A property)

 	frequency_CW (pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel property)

 	frequency_digits (pymeasure.instruments.keithley.Keithley2000 property)

 	frequency_display_enabled (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	frequency_max (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	frequency_min (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	frequency_mode (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	frequency_offset (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	(pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	frequency_points (pymeasure.instruments.agilent.AgilentE4408B property)

 	frequency_reference (pymeasure.instruments.keithley.Keithley2000 property)

 	frequency_reference_source (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	frequency_span (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	(pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel property)

 	frequency_span_full (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	frequency_span_last (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	frequency_start (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	(pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel property)

 	frequency_step (pymeasure.instruments.agilent.AgilentE4408B property)

 	(pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	frequency_stop (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	(pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel property)

 	frequency_threshold (pymeasure.instruments.keithley.Keithley2000 property)

 	frequency_voltage_auto_range (pymeasure.instruments.agilent.Agilent34450A property)

 	frequency_voltage_range (pymeasure.instruments.agilent.Agilent34450A property)

 	frequencypreset1 (pymeasure.instruments.srs.SR860 property)

 	frequencypreset2 (pymeasure.instruments.srs.SR860 property)

 	frequencypreset3 (pymeasure.instruments.srs.SR860 property)

 	frequencypreset4 (pymeasure.instruments.srs.SR860 property)

 	FrequencyReference (class in pymeasure.instruments.hp.hp856Xx)

 	front_blanked (pymeasure.instruments.srs.SR570 property)

 	front_panel (pymeasure.instruments.srs.SR860 property)

 	front_panel_brightness (pymeasure.instruments.lakeshore.LakeShore421 property)

 	front_panel_display (pymeasure.instruments.oxfordinstruments.ITC503 property)

 	front_panel_locked (pymeasure.instruments.lakeshore.LakeShore421 property)

 	FSL (class in pymeasure.instruments.rohdeschwarz.fsl)

 	function_ (pymeasure.instruments.hp.HP34401A property)

 	fw_version (pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDBase property)

 	FWBell5080 (class in pymeasure.instruments.fwbell)

G

 	
 	gain (pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	gain_mode (pymeasure.instruments.srs.SR570 property)

 	gasflow (pymeasure.instruments.oxfordinstruments.ITC503 property)

 	gasflow_configuration_parameter (pymeasure.instruments.oxfordinstruments.ITC503 property)

 	gasflow_control_status (pymeasure.instruments.oxfordinstruments.ITC503 property)

 	gate_time (pymeasure.instruments.hp.HP34401A property)

 	gen_measurement() (pymeasure.experiment.procedure.Procedure method)

 	GeneralError (class in pymeasure.instruments.newport.esp300)

 	Generator (class in pymeasure.generator)

 	get() (pymeasure.instruments.agilent.agilentB1500.CustomIntEnum class method)

 	get_alarm_status() (pymeasure.instruments.lakeshore.LakeShore211 method)

 	get_array() (in module pymeasure.experiment.experiment)

 	get_array_steps() (in module pymeasure.experiment.experiment)

 	get_array_zero() (in module pymeasure.experiment.experiment)

 	get_buffer() (pymeasure.instruments.signalrecovery.DSP7225 method)

 	(pymeasure.instruments.signalrecovery.DSP7265 method)

 	(pymeasure.instruments.srs.SR830 method)

 	get_calibration_information() (pymeasure.instruments.ni.virtualbench.VirtualBench method)

 	get_channel_pairs() (pymeasure.instruments.common_base.CommonBase static method)

 	(pymeasure.instruments.keithley.Keithley2200 static method)

 	(pymeasure.instruments.keysight.KeysightE36312A static method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 static method)

 	get_channels() (pymeasure.instruments.common_base.CommonBase static method)

 	(pymeasure.instruments.keithley.Keithley2200 static method)

 	(pymeasure.instruments.keysight.KeysightE36312A static method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 static method)

 	get_data() (pymeasure.instruments.agilent.agilent4156.Agilent4156 method)

 	get_estimates() (pymeasure.display.widgets.estimator_widget.EstimatorWidget method)

 	(pymeasure.experiment.procedure.Procedure method)

 	
 	get_filename() (pymeasure.display.console.ManagedConsole method)

 	get_library_version() (pymeasure.instruments.ni.virtualbench.VirtualBench method)

 	get_noise_bandwidth (pymeasure.instruments.srs.SR860 property)

 	get_operation_times() (pymeasure.instruments.novanta.Fpu60 method)

 	get_power_bandwidth() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	get_procedure() (pymeasure.display.widgets.inputs_widget.InputsWidget method)

 	get_relay_mode() (pymeasure.instruments.lakeshore.LakeShore211 method)

 	get_scaling() (pymeasure.instruments.srs.SR830 method)

 	get_sensor_transition() (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 method)

 	get_signal_strength_indicator (pymeasure.instruments.srs.SR860 property)

 	get_state_of_channels() (pymeasure.instruments.keithley.Keithley2700 method)

 	get_trace_data_a() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	get_trace_data_b() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	get_wl_data() (pymeasure.instruments.keysight.KeysightN7776C method)

 	getAI() (in module pymeasure.instruments.comedi)

 	getAO() (in module pymeasure.instruments.comedi)

 	gettimebase (pymeasure.instruments.srs.SR860 property)

 	gpib() (pymeasure.adapters.PrologixAdapter method)

 	gpib_address (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	gpib_read_timeout (pymeasure.adapters.PrologixAdapter property)

 	GPIB_trigger() (pymeasure.instruments.hp.HP8116A method)

 	(pymeasure.instruments.hp.HPLegacyInstrument method)

 	gps (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	gps_all (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	gps_full (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	gps_last (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	graticule_enabled (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	grid_display (pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	ground_all() (pymeasure.instruments.attocube.anc300.ANC300Controller method)

H

 	
 	handle_abort() (pymeasure.experiment.workers.Worker method)

 	handle_deprecated_host_arg() (pymeasure.instruments.attocube.anc300.ANC300Controller method)

 	handle_error() (pymeasure.experiment.workers.Worker method)

 	Hanning (pymeasure.instruments.hp.hp856Xx.WindowType attribute)

 	harmonic (pymeasure.instruments.ametek.Ametek7270 property)

 	(pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	(pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	harmonic_number_lock (pymeasure.instruments.hp.HP8561B property)

 	harmonicdual (pymeasure.instruments.srs.SR860 property)

 	has_amplitude_modulation (pymeasure.instruments.agilent.Agilent8257D property)

 	has_modulation (pymeasure.instruments.agilent.Agilent8257D property)

 	has_next() (pymeasure.display.manager.ExperimentQueue method)

 	has_persistent_switch_enabled() (pymeasure.instruments.ami.AMI430 method)

 	has_pulse_modulation (pymeasure.instruments.agilent.Agilent8257D property)

 	haversine_enabled (pymeasure.instruments.hp.HP8116A property)

 	head (pymeasure.instruments.temptronic.ATSBase property)

 	head_temperature (pymeasure.instruments.novanta.Fpu60 property)

 	header() (pymeasure.experiment.results.Results method)

 	headerData() (pymeasure.display.widgets.sequencer_widget.SequencerTreeModel method)

 	(pymeasure.display.widgets.table_widget.PandasModelBase method)

 	heater (pymeasure.instruments.oxfordinstruments.ITC503 property)

 	heater_gas_mode (pymeasure.instruments.oxfordinstruments.ITC503 property)

 	heater_voltage (pymeasure.instruments.oxfordinstruments.ITC503 property)

 	High (pymeasure.instruments.hp.hp856Xx.PeakSearchMode attribute)

 	high_freq (pymeasure.instruments.srs.SR570 property)

 	high_frequency_resolution (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	high_level (pymeasure.instruments.hp.HP8116A property)

 	HMP4040 (class in pymeasure.instruments.rohdeschwarz.hmp)

 	
 	hold() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	hold_function (pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel property)

 	hold_function_all_channels (pymeasure.instruments.anritsu.AnritsuMS464xB property)

 	hold_time (pymeasure.instruments.agilent.agilent4156.Agilent4156 property)

 	home() (pymeasure.instruments.anaheimautomation.DPSeriesMotorController method)

 	(pymeasure.instruments.newport.esp300.Axis method)

 	horizontal_time_div (pymeasure.instruments.srs.SR860 property)

 	hotcathode (pymeasure.instruments.thyracont.smartline_v2.VSH attribute)

 	HP33120A (class in pymeasure.instruments.hp)

 	HP3437A (class in pymeasure.instruments.hp)

 	HP3437A.SRQ (class in pymeasure.instruments.hp)

 	HP34401A (class in pymeasure.instruments.hp)

 	HP3478A (class in pymeasure.instruments.hp)

 	HP3478A.ERRORS (class in pymeasure.instruments.hp)

 	HP6632A (class in pymeasure.instruments.hp)

 	HP6632A.ERRORS (class in pymeasure.instruments.hp)

 	HP6632A.ST_ERRORS (class in pymeasure.instruments.hp)

 	HP6633A (class in pymeasure.instruments.hp)

 	HP6634A (class in pymeasure.instruments.hp)

 	HP8116A (class in pymeasure.instruments.hp)

 	HP8116A.Digit (class in pymeasure.instruments.hp)

 	HP8116A.Direction (class in pymeasure.instruments.hp)

 	HP8560A (class in pymeasure.instruments.hp)

 	HP8561B (class in pymeasure.instruments.hp)

 	HP8657B (class in pymeasure.instruments.hp)

 	HP8657B.Modulation (class in pymeasure.instruments.hp)

 	HPLegacyInstrument (class in pymeasure.instruments.hp)

 	HRADC (pymeasure.instruments.agilent.agilentB1500.ADCType attribute)

 	HSADC (pymeasure.instruments.agilent.agilentB1500.ADCType attribute)

 	HSADC_PULSED (pymeasure.instruments.agilent.agilentB1500.ADCType attribute)

 	HTMLFormatter (class in pymeasure.display.widgets.log_widget)

I

 	
 	IBeamSmart (class in pymeasure.instruments.toptica.ibeamsmart)

 	id (pymeasure.instruments.advantest.advantestR3767CG.AdvantestR3767CG property)

 	(pymeasure.instruments.aja.DCXS property)

 	(pymeasure.instruments.ametek.Ametek7270 property)

 	(pymeasure.instruments.andeenhagerling.AH2700A property)

 	(pymeasure.instruments.danfysik.Danfysik8500 property)

 	(pymeasure.instruments.eurotest.EurotestHPP120256 property)

 	(pymeasure.instruments.fluke.Fluke7341 property)

 	(pymeasure.instruments.fwbell.FWBell5080 property)

 	(pymeasure.instruments.heidenhain.ND287 property)

 	(pymeasure.instruments.hp.HP6632A property)

 	(pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	(pymeasure.instruments.hp.HP8657B attribute)

 	(pymeasure.instruments.Instrument property)

 	(pymeasure.instruments.ipgphotonics.yar.YAR property)

 	(pymeasure.instruments.keithley.Keithley2000 property)

 	(pymeasure.instruments.keithley.Keithley2200 property)

 	(pymeasure.instruments.keithley.Keithley2260B property)

 	(pymeasure.instruments.keithley.Keithley2306 property)

 	(pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.keithley.Keithley2600 property)

 	(pymeasure.instruments.keithley.Keithley2700 property)

 	(pymeasure.instruments.keithley.Keithley2750 property)

 	(pymeasure.instruments.keithley.Keithley6221 property)

 	(pymeasure.instruments.keithley.Keithley6517B property)

 	(pymeasure.instruments.keysight.KeysightE36312A property)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	(pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	(pymeasure.instruments.tcpowerconversion.CXN property)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

 	(pymeasure.instruments.teledyne.TeledyneT3AFG property)

 	(pymeasure.instruments.texio.TexioPSW360L30 property)

 	(pymeasure.instruments.thermotron.Thermotron3800 property)

 	(pymeasure.instruments.velleman.VellemanK8090 attribute)

 	(pymeasure.instruments.yokogawa.Yokogawa7651 property)

 	ImageFrame (class in pymeasure.display.widgets.image_frame)

 	ImageWidget (class in pymeasure.display.widgets.image_widget)

 	imode (pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	impedance (pymeasure.instruments.agilent.AgilentE4980 property)

 	index() (pymeasure.display.widgets.sequencer_widget.SequencerTreeModel method)

 	information (pymeasure.instruments.hcp.TC038 property)

 	init_all_sweep() (pymeasure.instruments.anritsu.AnritsuMS2090A method)

 	init_continuous (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	init_curve_buffer() (pymeasure.instruments.signalrecovery.DSP7225 method)

 	(pymeasure.instruments.signalrecovery.DSP7265 method)

 	init_sequence() (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X method)

 	init_spa_self (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	init_sweep() (pymeasure.instruments.anritsu.AnritsuMS2090A method)

 	init_trigger() (pymeasure.instruments.hp.HP34401A method)

 	initalize_oven() (pymeasure.instruments.thermotron.Thermotron3800 method)

 	initialize_all_smus() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	initialize_smu() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	Input (class in pymeasure.display.inputs)

 	input_0 (pymeasure.instruments.lakeshore.LakeShore224 attribute)

 	input_A (pymeasure.instruments.lakeshore.LakeShore224 attribute)

 	(pymeasure.instruments.lakeshore.LakeShore331 attribute)

 	input_B (pymeasure.instruments.lakeshore.LakeShore224 attribute)

 	(pymeasure.instruments.lakeshore.LakeShore331 attribute)

 	input_C1 (pymeasure.instruments.lakeshore.LakeShore224 attribute)

 	input_C2 (pymeasure.instruments.lakeshore.LakeShore224 attribute)

 	input_C3 (pymeasure.instruments.lakeshore.LakeShore224 attribute)

 	input_C4 (pymeasure.instruments.lakeshore.LakeShore224 attribute)

 	
 	input_C5 (pymeasure.instruments.lakeshore.LakeShore224 attribute)

 	input_config (pymeasure.instruments.srs.SR830 property)

 	input_coupling (pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	input_current_gain (pymeasure.instruments.srs.SR860 property)

 	input_D1 (pymeasure.instruments.lakeshore.LakeShore224 attribute)

 	input_D2 (pymeasure.instruments.lakeshore.LakeShore224 attribute)

 	input_D3 (pymeasure.instruments.lakeshore.LakeShore224 attribute)

 	input_D4 (pymeasure.instruments.lakeshore.LakeShore224 attribute)

 	input_D5 (pymeasure.instruments.lakeshore.LakeShore224 attribute)

 	input_grounding (pymeasure.instruments.srs.SR830 property)

 	input_notch_config (pymeasure.instruments.srs.SR830 property)

 	input_range (pymeasure.instruments.srs.SR860 property)

 	input_shields (pymeasure.instruments.srs.SR860 property)

 	input_signal (pymeasure.instruments.srs.SR860 property)

 	input_voltage_mode (pymeasure.instruments.srs.SR860 property)

 	InputsWidget (class in pymeasure.display.widgets.inputs_widget)

 	insert_id() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	(pymeasure.instruments.attocube.anc300.Axis method)

 	(pymeasure.instruments.Channel method)

 	(pymeasure.instruments.keithley.keithley2200.PSChannel method)

 	(pymeasure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel method)

 	instant_voltage_1 (pymeasure.instruments.razorbill.razorbillRP100 property)

 	instant_voltage_2 (pymeasure.instruments.razorbill.razorbillRP100 property)

 	instantiate() (pymeasure.generator.Generator method)

 	Instrument (class in pymeasure.instruments)

 	IntegerInput (class in pymeasure.display.inputs)

 	IntegerParameter (class in pymeasure.experiment.parameters)

 	integral_action_time (pymeasure.instruments.oxfordinstruments.ITC503 property)

 	integration_time (pymeasure.instruments.agilent.agilent4156.Agilent4156 property)

 	intensity (pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope property)

 	interlock_enabled (pymeasure.instruments.novanta.Fpu60 property)

 	Internal (pymeasure.instruments.hp.hp856Xx.FrequencyReference attribute)

 	(pymeasure.instruments.hp.hp856Xx.MixerMode attribute)

 	(pymeasure.instruments.hp.hp856Xx.SourceLevelingControlMode attribute)

 	internal_frequency (pymeasure.instruments.agilent.Agilent8257D property)

 	internal_shape (pymeasure.instruments.agilent.Agilent8257D property)

 	internalfrequency (pymeasure.instruments.srs.SR860 property)

 	interpolator_autocalibrated (pymeasure.instruments.pendulum.cnt91.CNT91 property)

 	interrupt_sequence_command() (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X method)

 	invert (pymeasure.instruments.lecroy.lecroyT3DSO1204.LeCroyT3DSO1204Channel property)

 	invert_signal_sign (pymeasure.instruments.srs.SR570 property)

 	ion_gauge_status (pymeasure.instruments.mksinst.mks937b.IonGaugeAndPressureChannel property)

 	IonGaugeAndPressureChannel (class in pymeasure.instruments.mksinst.mks937b)

 	IPS120_10 (class in pymeasure.instruments.oxfordinstruments)

 	is_averaging() (pymeasure.instruments.agilent.Agilent8722ES method)

 	is_buffer_full() (pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley2700 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	is_current_stable() (pymeasure.instruments.danfysik.Danfysik8500 method)

 	is_enabled (pymeasure.instruments.agilent.Agilent8257D property)

 	is_enabled() (pymeasure.instruments.danfysik.Danfysik8500 method)

 	(pymeasure.instruments.keysight.KeysightN5767A method)

 	is_moving() (pymeasure.instruments.parker.ParkerGV6 method)

 	is_out_of_range() (pymeasure.instruments.srs.SR830 method)

 	is_ready() (pymeasure.instruments.danfysik.Danfysik8500 method)

 	is_running() (pymeasure.display.manager.BaseManager method)

 	is_sequence_running() (pymeasure.instruments.danfysik.Danfysik8500 method)

 	is_set() (pymeasure.experiment.parameters.Metadata method)

 	(pymeasure.experiment.parameters.Parameter method)

 	is_valid_response() (pymeasure.instruments.oxfordinstruments.base.OxfordInstrumentsBase method)

 	ITC503 (class in pymeasure.instruments.oxfordinstruments)

 	ITC503.FLOW_CONTROL_STATUS (class in pymeasure.instruments.oxfordinstruments)

J

 	
 	join() (pymeasure.display.thread.StoppableQThread method)

 	(pymeasure.experiment.workers.Worker method)

K

 	
 	Keithley2000 (class in pymeasure.instruments.keithley)

 	Keithley2200 (class in pymeasure.instruments.keithley)

 	Keithley2200.BaseChannelCreator (class in pymeasure.instruments.keithley)

 	Keithley2200.ChannelCreator (class in pymeasure.instruments.keithley)

 	Keithley2200.MultiChannelCreator (class in pymeasure.instruments.keithley)

 	Keithley2260B (class in pymeasure.instruments.keithley)

 	Keithley2306 (class in pymeasure.instruments.keithley)

 	Keithley2400 (class in pymeasure.instruments.keithley)

 	Keithley2450 (class in pymeasure.instruments.keithley)

 	Keithley2600 (class in pymeasure.instruments.keithley)

 	Keithley2700 (class in pymeasure.instruments.keithley)

 	Keithley2750 (class in pymeasure.instruments.keithley)

 	
 	Keithley6221 (class in pymeasure.instruments.keithley)

 	Keithley6517B (class in pymeasure.instruments.keithley)

 	kelvin (pymeasure.instruments.lakeshore.lakeshore_base.LakeShoreTemperatureChannel property)

 	KeysightDSOX1102G (class in pymeasure.instruments.keysight)

 	KeysightE36312A (class in pymeasure.instruments.keysight)

 	KeysightE36312A.BaseChannelCreator (class in pymeasure.instruments.keysight)

 	KeysightE36312A.ChannelCreator (class in pymeasure.instruments.keysight)

 	KeysightE36312A.MultiChannelCreator (class in pymeasure.instruments.keysight)

 	KeysightN5767A (class in pymeasure.instruments.keysight)

 	KeysightN7776C (class in pymeasure.instruments.keysight)

 	kill() (pymeasure.instruments.parker.ParkerGV6 method)

 	kill_enabled (pymeasure.instruments.eurotest.EurotestHPP120256 property)

L

 	
 	labels() (pymeasure.experiment.results.Results method)

 	LakeShore211 (class in pymeasure.instruments.lakeshore)

 	LakeShore211.AnalogMode (class in pymeasure.instruments.lakeshore)

 	LakeShore211.AnalogRange (class in pymeasure.instruments.lakeshore)

 	LakeShore211.RelayMode (class in pymeasure.instruments.lakeshore)

 	LakeShore211.RelayNumber (class in pymeasure.instruments.lakeshore)

 	LakeShore224 (class in pymeasure.instruments.lakeshore)

 	LakeShore331 (class in pymeasure.instruments.lakeshore)

 	LakeShore421 (class in pymeasure.instruments.lakeshore)

 	LakeShore425 (class in pymeasure.instruments.lakeshore)

 	LakeShoreHeaterChannel (class in pymeasure.instruments.lakeshore.lakeshore_base)

 	LakeShoreTemperatureChannel (class in pymeasure.instruments.lakeshore.lakeshore_base)

 	lam_status (pymeasure.instruments.eurotest.EurotestHPP120256 property)

 	laser_enabled (pymeasure.instruments.toptica.ibeamsmart.IBeamSmart property)

 	last_test_date (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

 	LDCCurrent (pymeasure.instruments.thorlabs.ThorlabsPro8000 property)

 	LDCCurrentLimit (pymeasure.instruments.thorlabs.ThorlabsPro8000 property)

 	LDCPolarity (pymeasure.instruments.thorlabs.ThorlabsPro8000 property)

 	LDCStatus (pymeasure.instruments.thorlabs.ThorlabsPro8000 property)

 	learn_mode (pymeasure.instruments.temptronic.ATSBase property)

 	LeCroyT3DSO1204 (class in pymeasure.instruments.lecroy)

 	LeCroyT3DSO1204.BaseChannelCreator (class in pymeasure.instruments.lecroy)

 	LeCroyT3DSO1204.ChannelCreator (class in pymeasure.instruments.lecroy)

 	LeCroyT3DSO1204.MultiChannelCreator (class in pymeasure.instruments.lecroy)

 	LeCroyT3DSO1204Channel (class in pymeasure.instruments.lecroy.lecroyT3DSO1204)

 	left_limit (pymeasure.instruments.newport.esp300.Axis property)

 	level (pymeasure.instruments.hp.HP8657B property)

 	(pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	level_lin (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	level_log (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	level_mode (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	level_offset (pymeasure.instruments.hp.HP8657B property)

 	level_opt_attn (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	level_scale (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	lia_status (pymeasure.instruments.srs.SR830 property)

 	limit_enabled (pymeasure.instruments.hp.HP8116A property)

 	Line (pymeasure.instruments.hp.hp856Xx.TriggerMode attribute)

 	line_frequency (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X property)

 	(pymeasure.instruments.keithley.Keithley2400 property)

 	line_frequency_auto (pymeasure.instruments.keithley.Keithley2400 property)

 	LINEAR (pymeasure.instruments.agilent.agilentB1500.SamplingMode attribute)

 	LINEAR_DOUBLE (pymeasure.instruments.agilent.agilentB1500.SweepMode attribute)

 	LINEAR_SINGLE (pymeasure.instruments.agilent.agilentB1500.SweepMode attribute)

 	LineEditDelegate (class in pymeasure.display.widgets.sequencer_widget)

 	
 	list_files() (pymeasure.instruments.activetechnologies.AWG401x_AWG method)

 	list_resources() (in module pymeasure.instruments)

 	Listener (class in pymeasure.experiment.listeners)

 	ListInput (class in pymeasure.display.inputs)

 	ListParameter (class in pymeasure.experiment.parameters)

 	lo_frequency (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	load() (pymeasure.display.manager.BaseManager method)

 	(pymeasure.display.manager.Manager method)

 	(pymeasure.display.widgets.image_widget.ImageWidget method)

 	(pymeasure.display.widgets.plot_widget.PlotWidget method)

 	(pymeasure.display.widgets.tab_widget.TabWidget method)

 	(pymeasure.display.widgets.table_widget.TableWidget method)

 	(pymeasure.experiment.results.Results static method)

 	load_capacity (pymeasure.instruments.tcpowerconversion.CXN property)

 	(pymeasure.instruments.tcpowerconversion.tccxn.PresetChannel property)

 	load_config (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X property)

 	load_data_file() (pymeasure.instruments.anritsu.AnritsuMS464xB method)

 	load_data_file_to_memory() (pymeasure.instruments.anritsu.AnritsuMS464xB method)

 	load_impedance (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	load_sequence() (pymeasure.display.widgets.sequencer_widget.SequencerWidget method)

 	(pymeasure.instruments.rohdeschwarz.hmp.HMP4040 method)

 	load_setup_file (pymeasure.instruments.temptronic.ATSBase property)

 	local() (pymeasure.instruments.danfysik.Danfysik8500 method)

 	(pymeasure.instruments.keithley.Keithley2000 method)

 	local_lockout (pymeasure.instruments.temptronic.ATSBase property)

 	locked (pymeasure.instruments.keysight.KeysightN7776C property)

 	LOG_10 (pymeasure.instruments.agilent.agilentB1500.SamplingMode attribute)

 	LOG_100 (pymeasure.instruments.agilent.agilentB1500.SamplingMode attribute)

 	LOG_25 (pymeasure.instruments.agilent.agilentB1500.SamplingMode attribute)

 	LOG_250 (pymeasure.instruments.agilent.agilentB1500.SamplingMode attribute)

 	LOG_50 (pymeasure.instruments.agilent.agilentB1500.SamplingMode attribute)

 	LOG_5000 (pymeasure.instruments.agilent.agilentB1500.SamplingMode attribute)

 	LOG_DOUBLE (pymeasure.instruments.agilent.agilentB1500.SweepMode attribute)

 	log_magnitude() (pymeasure.instruments.agilent.Agilent8722ES method)

 	log_ratio (pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	LOG_SINGLE (pymeasure.instruments.agilent.agilentB1500.SweepMode attribute)

 	logarithmic_scale (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	LogHandler (class in pymeasure.display.log)

 	LogHandler.Emitter (class in pymeasure.display.log)

 	LogWidget (class in pymeasure.display.widgets.log_widget)

 	low_freq (pymeasure.instruments.srs.SR570 property)

 	low_freq_out_amplitude (pymeasure.instruments.agilent.Agilent8257D property)

 	low_freq_out_source (pymeasure.instruments.agilent.Agilent8257D property)

 	low_level (pymeasure.instruments.hp.HP8116A property)

 	lower_sideband_enabled (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

M

 	
 	mag (pymeasure.instruments.ametek.Ametek7270 property)

 	(pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	magnet_current (pymeasure.instruments.ami.AMI430 property)

 	MagnetError (class in pymeasure.instruments.oxfordinstruments.ips120_10)

 	magnitude (pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	magnitude() (pymeasure.instruments.agilent.Agilent8722ES method)

 	main_air_flow_rate (pymeasure.instruments.temptronic.ATSBase property)

 	ManagedConsole (class in pymeasure.display.console)

 	ManagedDockWindow (class in pymeasure.display.windows.managed_dock_window)

 	ManagedImageWindow (class in pymeasure.display.windows.managed_image_window)

 	ManagedWindow (class in pymeasure.display.windows.managed_window)

 	ManagedWindowBase (class in pymeasure.display.windows.managed_window)

 	Manager (class in pymeasure.display.manager)

 	MANUAL (pymeasure.instruments.agilent.agilentB1500.ADCMode attribute)

 	(pymeasure.instruments.agilent.agilentB1500.AutoManual attribute)

 	(pymeasure.instruments.agilent.agilentB1500.CompliancePolarity attribute)

 	(pymeasure.instruments.hp.hp856Xx.AmplitudeUnits attribute)

 	manual_mode (pymeasure.instruments.tcpowerconversion.CXN property)

 	manual_trigger_type (pymeasure.instruments.anritsu.AnritsuMS464xB property)

 	marker_amplitude (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	marker_delta (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	marker_frequency (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	marker_noise_mode_enabled (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	marker_signal_tracking_enabled (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	marker_threshold (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	marker_time (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	master_slave_setting (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

 	material (pymeasure.instruments.aja.DCXS property)

 	math_define (pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	math_vdiv (pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	math_vpos (pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	max_amplitude (pymeasure.instruments.hp.HP33120A property)

 	max_current (pymeasure.instruments.deltaelektronika.SM7045D property)

 	(pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.rohdeschwarz.hmp.HMP4040 property)

 	max_frequency (pymeasure.instruments.hp.HP33120A property)

 	max_hold_enabled (pymeasure.instruments.lakeshore.LakeShore421 property)

 	max_hold_field (pymeasure.instruments.lakeshore.LakeShore421 property)

 	max_hold_field_raw (pymeasure.instruments.lakeshore.LakeShore421 property)

 	max_hold_multiplier (pymeasure.instruments.lakeshore.LakeShore421 property)

 	max_hold_reset() (pymeasure.instruments.lakeshore.LakeShore421 method)

 	max_number_of_points (pymeasure.instruments.anritsu.AnritsuMS464xB property)

 	max_offset (pymeasure.instruments.hp.HP33120A property)

 	max_output_amplitude (pymeasure.instruments.teledyne.teledyneT3AFG.SignalChannel property)

 	max_resistance (pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	max_voltage (pymeasure.instruments.deltaelektronika.SM7045D property)

 	(pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.rohdeschwarz.hmp.HMP4040 property)

 	maximum_case_temperature (pymeasure.instruments.ipgphotonics.yar.YAR property)

 	maximum_test_time (pymeasure.instruments.temptronic.ATSBase property)

 	maximums (pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	maxspeed (pymeasure.instruments.anaheimautomation.DPSeriesMotorController property)

 	mean_current (pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	mean_resistance (pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	mean_voltage (pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	means (pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	meas_acpower (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	meas_emf_meter_clear_all (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	meas_emf_meter_clear_sample (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	meas_emf_meter_sample (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	meas_int_power (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	meas_iq_capture (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	meas_iq_capture_fail (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	meas_mode() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	meas_op_mode (pymeasure.instruments.agilent.agilentB1500.SMU property)

 	meas_ota_mapp (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	meas_ota_run (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	meas_power (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	meas_power_all (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	meas_range_current (pymeasure.instruments.agilent.agilentB1500.SMU property)

 	meas_range_current_auto() (pymeasure.instruments.agilent.agilentB1500.SMU method)

 	meas_range_voltage (pymeasure.instruments.agilent.agilentB1500.SMU property)

 	MeasMode (class in pymeasure.instruments.agilent.agilentB1500)

 	MeasOpMode (class in pymeasure.instruments.agilent.agilentB1500)

 	Measurable (class in pymeasure.experiment.parameters)

 	measure() (pymeasure.instruments.agilent.agilent4156.Agilent4156 method)

 	(pymeasure.instruments.lakeshore.LakeShore425 method)

 	measure_ACI (pymeasure.instruments.hp.HP3478A property)

 	measure_ACV (pymeasure.instruments.hp.HP3478A property)

 	measure_capacity() (pymeasure.instruments.attocube.anc300.Axis method)

 	measure_concurent_functions (pymeasure.instruments.keithley.Keithley2400 property)

 	measure_continuity() (pymeasure.instruments.keithley.Keithley2000 method)

 	measure_current (pymeasure.instruments.deltaelektronika.SM7045D property)

 	measure_current() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	(pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	measure_DCI (pymeasure.instruments.hp.HP3478A property)

 	measure_DCV (pymeasure.instruments.hp.HP3478A property)

 	measure_delay (pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	measure_diode() (pymeasure.instruments.keithley.Keithley2000 method)

 	measure_frequency() (pymeasure.instruments.keithley.Keithley2000 method)

 	measure_mode (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	measure_parameter() (pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel method)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope method)

 	measure_peak() (pymeasure.instruments.anritsu.AnritsuMS9710C method)

 	measure_period() (pymeasure.instruments.keithley.Keithley2000 method)

 	measure_R2W (pymeasure.instruments.hp.HP3478A property)

 	measure_R4W (pymeasure.instruments.hp.HP3478A property)

 	measure_resistance() (pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	measure_Rext (pymeasure.instruments.hp.HP3478A property)

 	measure_temperature() (pymeasure.instruments.keithley.Keithley2000 method)

 	measure_voltage (pymeasure.instruments.deltaelektronika.SM7045D property)

 	measure_voltage() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	(pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	measured_current (pymeasure.instruments.rohdeschwarz.hmp.HMP4040 property)

 	measured_voltage (pymeasure.instruments.rohdeschwarz.hmp.HMP4040 property)

 	measurement() (pymeasure.instruments.common_base.CommonBase static method)

 	(pymeasure.instruments.keysight.KeysightE36312A static method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 static method)

 	measurement_count (pymeasure.instruments.advantest.advantestR624X.SMUChannel property)

 	measurement_event_enabled (pymeasure.instruments.keithley.Keithley6221 property)

 	measurement_events (pymeasure.instruments.keithley.Keithley6221 property)

 	measurement_parameter (pymeasure.instruments.anritsu.anritsuMS464xB.Trace property)

 	measurement_time (pymeasure.instruments.pendulum.cnt91.CNT91 property)

 	MeasurementChannel (class in pymeasure.instruments.anritsu.anritsuMS464xB)

 	MeasurementType (class in pymeasure.instruments.advantest.advantestR624X)

 	memory_size (pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope property)

 	menu (pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	
 	MESSAGE (pymeasure.instruments.hp.hp856Xx.StatusRegister attribute)

 	message_waiting() (pymeasure.experiment.listeners.Listener method)

 	Metadata (class in pymeasure.experiment.parameters)

 	metadata() (pymeasure.experiment.results.Results method)

 	metadata_objects() (pymeasure.experiment.procedure.Procedure method)

 	min_amplitude (pymeasure.instruments.hp.HP33120A property)

 	min_current (pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.rohdeschwarz.hmp.HMP4040 property)

 	min_frequency (pymeasure.instruments.hp.HP33120A property)

 	min_offset (pymeasure.instruments.hp.HP33120A property)

 	min_resistance (pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	min_voltage (pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.rohdeschwarz.hmp.HMP4040 property)

 	minimum_display_power (pymeasure.instruments.ipgphotonics.yar.YAR property)

 	minimums (pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	mixer_bias (pymeasure.instruments.hp.HP8561B property)

 	mixer_level (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	mixer_mode (pymeasure.instruments.hp.HP8561B property)

 	MixerMode (class in pymeasure.instruments.hp.hp856Xx)

 	MKS937B (class in pymeasure.instruments.mksinst.mks937b)

 	mode (pymeasure.instruments.agilent.AgilentE4980 property)

 	(pymeasure.instruments.attocube.anc300.Axis property)

 	(pymeasure.instruments.hp.HP3478A property)

 	(pymeasure.instruments.keithley.Keithley2000 property)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

 	(pymeasure.instruments.temptronic.ATSBase property)

 	(pymeasure.instruments.thermotron.Thermotron3800 property)

 	modulation_degree (pymeasure.instruments.rohdeschwarz.sfm.Sound_Channel property)

 	modulation_enabled (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	(pymeasure.instruments.rohdeschwarz.sfm.Sound_Channel property)

 	
 module

 	pymeasure.display.browser

 	pymeasure.display.console

 	pymeasure.display.curves

 	pymeasure.display.inputs

 	pymeasure.display.listeners

 	pymeasure.display.log

 	pymeasure.display.manager

 	pymeasure.display.plotter

 	pymeasure.display.thread

 	pymeasure.display.widgets.browser_widget

 	pymeasure.display.widgets.directory_widget

 	pymeasure.display.widgets.dock_widget

 	pymeasure.display.widgets.estimator_widget

 	pymeasure.display.widgets.image_frame

 	pymeasure.display.widgets.image_widget

 	pymeasure.display.widgets.inputs_widget

 	pymeasure.display.widgets.log_widget

 	pymeasure.display.widgets.plot_frame

 	pymeasure.display.widgets.plot_widget

 	pymeasure.display.widgets.results_dialog

 	pymeasure.display.widgets.sequencer_widget

 	pymeasure.display.widgets.tab_widget

 	pymeasure.display.widgets.table_widget

 	pymeasure.display.windows.managed_dock_window

 	pymeasure.display.windows.managed_image_window

 	pymeasure.display.windows.managed_window

 	pymeasure.display.windows.plotter_window

 	pymeasure.experiment.experiment

 	pymeasure.experiment.listeners

 	pymeasure.experiment.parameters

 	pymeasure.experiment.procedure

 	pymeasure.experiment.results

 	pymeasure.experiment.workers

 	pymeasure.instruments

 	pymeasure.instruments.activetechnologies

 	pymeasure.instruments.advantest

 	pymeasure.instruments.advantest.advantestR3767CG

 	pymeasure.instruments.advantest.advantestR624X

 	pymeasure.instruments.agilent

 	pymeasure.instruments.agilent.agilent4156

 	pymeasure.instruments.agilent.agilentB1500

 	pymeasure.instruments.aja

 	pymeasure.instruments.ametek

 	pymeasure.instruments.ami

 	pymeasure.instruments.anaheimautomation

 	pymeasure.instruments.anapico

 	pymeasure.instruments.andeenhagerling

 	pymeasure.instruments.anritsu

 	pymeasure.instruments.attocube

 	pymeasure.instruments.bkprecision

 	pymeasure.instruments.comedi

 	pymeasure.instruments.danfysik

 	pymeasure.instruments.deltaelektronika

 	pymeasure.instruments.edwards

 	pymeasure.instruments.eurotest

 	pymeasure.instruments.fluke

 	pymeasure.instruments.fwbell

 	pymeasure.instruments.hcp

 	pymeasure.instruments.heidenhain

 	pymeasure.instruments.hp

 	pymeasure.instruments.ipgphotonics

 	pymeasure.instruments.keithley

 	pymeasure.instruments.keysight

 	pymeasure.instruments.lakeshore

 	pymeasure.instruments.lecroy

 	pymeasure.instruments.mksinst

 	pymeasure.instruments.newport

 	pymeasure.instruments.ni

 	pymeasure.instruments.novanta

 	pymeasure.instruments.oxfordinstruments

 	pymeasure.instruments.parker

 	pymeasure.instruments.pendulum

 	pymeasure.instruments.razorbill

 	pymeasure.instruments.rohdeschwarz

 	pymeasure.instruments.siglenttechnologies

 	pymeasure.instruments.signalrecovery

 	pymeasure.instruments.srs

 	pymeasure.instruments.tcpowerconversion

 	pymeasure.instruments.tdk

 	pymeasure.instruments.tektronix

 	pymeasure.instruments.teledyne

 	pymeasure.instruments.temptronic

 	pymeasure.instruments.texio

 	pymeasure.instruments.thermotron

 	pymeasure.instruments.thorlabs

 	pymeasure.instruments.thyracont

 	pymeasure.instruments.toptica

 	pymeasure.instruments.validators

 	pymeasure.instruments.velleman

 	pymeasure.instruments.yokogawa

 	pymeasure.test

 	Monitor (class in pymeasure.display.listeners)

 	(class in pymeasure.experiment.listeners)

 	monitored_value (pymeasure.instruments.hcp.TC038 property)

 	motion_done (pymeasure.instruments.newport.esp300.Axis property)

 	mouseMoved() (pymeasure.display.curves.Crosshairs method)

 	mout (pymeasure.instruments.lakeshore.lakeshore_base.LakeShoreHeaterChannel property)

 	move() (pymeasure.instruments.anaheimautomation.DPSeriesMotorController method)

 	(pymeasure.instruments.attocube.anc300.Axis method)

 	(pymeasure.instruments.parker.ParkerGV6 method)

 	move_raw() (pymeasure.instruments.attocube.anc300.Axis method)

 	mroll_frequency (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	multidrop_capability (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

N

 	
 	NA (pymeasure.instruments.hp.hp856Xx.StatusRegister attribute)

 	ND287 (class in pymeasure.instruments.heidenhain)

 	NegativePeak (pymeasure.instruments.hp.hp856Xx.DetectionModes attribute)

 	new_curve() (pymeasure.display.widgets.dock_widget.DockWidget method)

 	(pymeasure.display.widgets.image_widget.ImageWidget method)

 	(pymeasure.display.widgets.plot_widget.PlotWidget method)

 	(pymeasure.display.widgets.tab_widget.TabWidget method)

 	(pymeasure.display.widgets.table_widget.TableWidget method)

 	next() (pymeasure.display.manager.BaseManager method)

 	(pymeasure.display.manager.ExperimentQueue method)

 	next_setpoint() (pymeasure.instruments.temptronic.ATS545 method)

 	(pymeasure.instruments.temptronic.ATSBase method)

 	next_step() (pymeasure.instruments.keysight.KeysightN7776C method)

 	NextHigh (pymeasure.instruments.hp.hp856Xx.PeakSearchMode attribute)

 	NextLeft (pymeasure.instruments.hp.hp856Xx.PeakSearchMode attribute)

 	NextRight (pymeasure.instruments.hp.hp856Xx.PeakSearchMode attribute)

 	nicam_additional_bits (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	nicam_audio_frequency (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	nicam_audio_volume (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	nicam_bit_error_enabled (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	nicam_bit_error_rate (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	nicam_carrier_enabled (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	nicam_carrier_frequency (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	nicam_carrier_level (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	nicam_control_bits (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	
 	nicam_data (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	nicam_intercarrier_frequency (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	nicam_IQ_inverted (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	nicam_mode (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	nicam_preemphasis_enabled (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	nicam_source (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	nicam_test_signal (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	NONE (pymeasure.instruments.hp.hp856Xx.StatusRegister attribute)

 	Normal (pymeasure.instruments.hp.hp856Xx.DetectionModes attribute)

 	normal_channel (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	normalize_trace_data_enabled (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	normalized_reference_level (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	normalized_reference_position (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	not_at_temperature() (pymeasure.instruments.temptronic.ATSBase method)

 	nozzle_air_flow_rate (pymeasure.instruments.temptronic.ATSBase property)

 	nplc (pymeasure.instruments.hp.HP34401A property)

 	null_operation_enabled (pymeasure.instruments.advantest.advantestR624X.SMUChannel property)

 	num_ch (pymeasure.instruments.activetechnologies.AWG401x_AWG property)

 	num_dch (pymeasure.instruments.activetechnologies.AWG401x_AWG property)

 	number_of_channels (pymeasure.instruments.anritsu.AnritsuMS464xB property)

 	number_of_points (pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel property)

 	number_of_ports (pymeasure.instruments.anritsu.AnritsuMS464xB property)

 	number_of_traces (pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel property)

 	number_readings (pymeasure.instruments.hp.HP3437A property)

 	Nxds (class in pymeasure.instruments.edwards)

O

 	
 	OCP_enabled (pymeasure.instruments.hp.HP6632A property)

 	Off (pymeasure.instruments.hp.hp856Xx.DemodulationMode attribute)

 	offset (pymeasure.instruments.agilent.Agilent33220A property)

 	(pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	(pymeasure.instruments.agilent.agilent4156.VARD property)

 	(pymeasure.instruments.hp.HP33120A property)

 	(pymeasure.instruments.hp.HP8116A property)

 	(pymeasure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel property)

 	(pymeasure.instruments.teledyne.teledyneT3AFG.SignalChannel property)

 	offset_current (pymeasure.instruments.srs.SR570 property)

 	offset_current_enabled (pymeasure.instruments.srs.SR570 property)

 	offset_current_sign (pymeasure.instruments.srs.SR570 property)

 	offset_voltage (pymeasure.instruments.attocube.anc300.Axis property)

 	open() (pymeasure.instruments.keithley.Keithley2750 method)

 	open_all() (pymeasure.instruments.keithley.Keithley2750 method)

 	open_all_channels() (pymeasure.instruments.keithley.Keithley2700 method)

 	open_channels (pymeasure.instruments.keithley.Keithley2700 property)

 	open_file_externally() (pymeasure.display.windows.managed_window.ManagedWindowBase method)

 	open_rows_to_columns() (pymeasure.instruments.keithley.Keithley2700 method)

 	operating_hours (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 property)

 	operating_mode (pymeasure.instruments.hp.HP8116A property)

 	operation_enable_reg (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	operation_event_enabled (pymeasure.instruments.keithley.Keithley6221 property)

 	operation_events (pymeasure.instruments.keithley.Keithley6221 property)

 	operation_mode (pymeasure.instruments.tcpowerconversion.CXN property)

 	operation_register (pymeasure.instruments.advantest.advantestR624X.SMUChannel property)

 	options (pymeasure.instruments.andeenhagerling.AH2700A property)

 	(pymeasure.instruments.fwbell.FWBell5080 property)

 	(pymeasure.instruments.hp.HP8116A property)

 	(pymeasure.instruments.Instrument property)

 	(pymeasure.instruments.keithley.Keithley2000 property)

 	(pymeasure.instruments.keithley.Keithley2200 property)

 	(pymeasure.instruments.keithley.Keithley2260B property)

 	(pymeasure.instruments.keithley.Keithley2306 property)

 	(pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.keithley.Keithley2600 property)

 	(pymeasure.instruments.keithley.Keithley2700 property)

 	(pymeasure.instruments.keithley.Keithley2750 property)

 	(pymeasure.instruments.keithley.Keithley6221 property)

 	(pymeasure.instruments.keithley.Keithley6517B property)

 	(pymeasure.instruments.keysight.KeysightE36312A property)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	(pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

 	(pymeasure.instruments.teledyne.TeledyneT3AFG property)

 	(pymeasure.instruments.texio.TexioPSW360L30 property)

 	
 	oroll_frequency (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	output (pymeasure.instruments.agilent.Agilent33220A property)

 	(pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	(pymeasure.instruments.anritsu.AnritsuMG3692C property)

 	(pymeasure.instruments.lakeshore.lakeshore_base.LakeShoreHeaterChannel property)

 	(pymeasure.instruments.srs.SR510 property)

 	output_1 (pymeasure.instruments.lakeshore.LakeShore331 attribute)

 	(pymeasure.instruments.razorbill.razorbillRP100 property)

 	output_2 (pymeasure.instruments.lakeshore.LakeShore331 attribute)

 	(pymeasure.instruments.razorbill.razorbillRP100 property)

 	output_all_measurements() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	output_conversion() (pymeasure.instruments.srs.SR830 method)

 	output_enable_register (pymeasure.instruments.advantest.advantestR624X.SMUChannel property)

 	output_enabled (pymeasure.instruments.eurotest.EurotestHPP120256 property)

 	(pymeasure.instruments.hp.HP6632A property)

 	(pymeasure.instruments.hp.HP8116A property)

 	(pymeasure.instruments.hp.HP8657B property)

 	(pymeasure.instruments.keithley.keithley2200.PSChannel property)

 	(pymeasure.instruments.keithley.Keithley2260B property)

 	(pymeasure.instruments.keysight.keysightE36312A.VoltageChannel property)

 	(pymeasure.instruments.keysight.KeysightN7776C property)

 	(pymeasure.instruments.rohdeschwarz.hmp.HMP4040 property)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

 	(pymeasure.instruments.teledyne.teledyneT3AFG.SignalChannel property)

 	(pymeasure.instruments.texio.TexioPSW360L30 property)

 	output_impedance (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	output_load (pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	output_low_grounded (pymeasure.instruments.keithley.Keithley6221 property)

 	output_off_state (pymeasure.instruments.keithley.Keithley2400 property)

 	output_trigger_on_external() (pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	output_voltage (pymeasure.instruments.attocube.anc300.Axis property)

 	(pymeasure.instruments.fakes.SwissArmyFake property)

 	(pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	outputs_enabled (pymeasure.instruments.ni.virtualbench.VirtualBench.PowerSupply property)

 	OutputType (class in pymeasure.instruments.advantest.advantestR624X)

 	over_voltage (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

 	over_voltage_limit (pymeasure.instruments.hp.HP6632A property)

 	OxfordInstrumentsBase (class in pymeasure.instruments.oxfordinstruments.base)

 	OxfordVISAError (class in pymeasure.instruments.oxfordinstruments.base)

P

 	
 	pandas_column_count() (pymeasure.display.widgets.table_widget.PandasModelBase method)

 	(pymeasure.display.widgets.table_widget.PandasModelByColumn method)

 	(pymeasure.display.widgets.table_widget.PandasModelByRow method)

 	pandas_row_count() (pymeasure.display.widgets.table_widget.PandasModelBase method)

 	(pymeasure.display.widgets.table_widget.PandasModelByColumn method)

 	(pymeasure.display.widgets.table_widget.PandasModelByRow method)

 	PandasModelBase (class in pymeasure.display.widgets.table_widget)

 	PandasModelByColumn (class in pymeasure.display.widgets.table_widget)

 	PandasModelByRow (class in pymeasure.display.widgets.table_widget)

 	parallel_meas (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 property)

 	Parameter (class in pymeasure.experiment.parameters)

 	parameter (pymeasure.display.inputs.Input property)

 	parameter_DAT1 (pymeasure.instruments.srs.SR860 property)

 	parameter_DAT2 (pymeasure.instruments.srs.SR860 property)

 	parameter_DAT3 (pymeasure.instruments.srs.SR860 property)

 	parameter_DAT4 (pymeasure.instruments.srs.SR860 property)

 	parameter_objects() (pymeasure.experiment.procedure.Procedure method)

 	parameter_values() (pymeasure.experiment.procedure.Procedure method)

 	parameters_are_set() (pymeasure.experiment.procedure.Procedure method)

 	parent() (pymeasure.display.widgets.sequencer_widget.SequencerTreeModel method)

 	ParkerGV6 (class in pymeasure.instruments.parker)

 	parse() (pymeasure.experiment.results.Results method)

 	parse_axis() (pymeasure.display.widgets.plot_frame.PlotFrame method)

 	parse_columns() (pymeasure.experiment.procedure.Procedure static method)

 	parse_header() (pymeasure.experiment.results.Results static method)

 	parse_stream() (pymeasure.generator.Generator method)

 	pass_filter (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

 	pattern_down (pymeasure.instruments.attocube.anc300.Axis property)

 	pattern_up (pymeasure.instruments.attocube.anc300.Axis property)

 	pause() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	(pymeasure.instruments.ami.AMI430 method)

 	pb_desc (pymeasure.instruments.hp.HP3437A attribute)

 	peak_excursion (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	peak_preselector() (pymeasure.instruments.hp.HP8561B method)

 	peak_search (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	PeakSearchMode (class in pymeasure.instruments.hp.hp856Xx)

 	period (pymeasure.instruments.keithley.Keithley2000 property)

 	period_aperature (pymeasure.instruments.keithley.Keithley2000 property)

 	period_digits (pymeasure.instruments.keithley.Keithley2000 property)

 	period_reference (pymeasure.instruments.keithley.Keithley2000 property)

 	period_threshold (pymeasure.instruments.keithley.Keithley2000 property)

 	persistent_field (pymeasure.instruments.oxfordinstruments.IPS120_10 property)

 	phase (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	(pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	(pymeasure.instruments.ametek.Ametek7270 property)

 	(pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	(pymeasure.instruments.srs.SR510 property)

 	(pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	phase() (pymeasure.instruments.agilent.Agilent8722ES method)

 	phase_max (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	phase_min (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	phase_sync() (pymeasure.instruments.agilent.Agilent33500 method)

 	PhysicalParameter (class in pymeasure.experiment.parameters)

 	piezo (pymeasure.instruments.thyracont.smartline_v2.VSR attribute)

 	ping() (pymeasure.instruments.hcp.TC038D method)

 	(pymeasure.instruments.tcpowerconversion.CXN method)

 	pirani (pymeasure.instruments.thyracont.smartline_v2.VSH attribute)

 	(pymeasure.instruments.thyracont.smartline_v2.VSR attribute)

 	PLC (pymeasure.instruments.agilent.agilentB1500.ADCMode attribute)

 	plot() (pymeasure.experiment.experiment.Experiment method)

 	plot_live() (pymeasure.experiment.experiment.Experiment method)

 	PlotFrame (class in pymeasure.display.widgets.plot_frame)

 	Plotter (class in pymeasure.display.plotter)

 	PlotterWindow (class in pymeasure.display.windows.plotter_window)

 	PlotWidget (class in pymeasure.display.widgets.plot_widget)

 	pointer (pymeasure.instruments.oxfordinstruments.ITC503 property)

 	points (pymeasure.instruments.agilent.agilent4156.VAR2 property)

 	polarity (pymeasure.instruments.danfysik.Danfysik8500 property)

 	Port (class in pymeasure.instruments.anritsu.anritsuMS464xB)

 	position (pymeasure.instruments.heidenhain.ND287 property)

 	(pymeasure.instruments.newport.esp300.Axis property)

 	(pymeasure.instruments.parker.ParkerGV6 property)

 	position_error (pymeasure.instruments.parker.ParkerGV6 property)

 	PositivePeak (pymeasure.instruments.hp.hp856Xx.DetectionModes attribute)

 	power (pymeasure.instruments.agilent.Agilent8257D property)

 	(pymeasure.instruments.aja.DCXS property)

 	(pymeasure.instruments.anapico.APSIN12G property)

 	(pymeasure.instruments.anritsu.AnritsuMG3692C property)

 	(pymeasure.instruments.ipgphotonics.yar.YAR property)

 	(pymeasure.instruments.keithley.keithley2200.PSChannel property)

 	(pymeasure.instruments.keithley.Keithley2260B property)

 	(pymeasure.instruments.novanta.Fpu60 property)

 	(pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDChannel property)

 	(pymeasure.instruments.tcpowerconversion.CXN property)

 	(pymeasure.instruments.texio.TexioPSW360L30 property)

 	(pymeasure.instruments.thorlabs.ThorlabsPM100USB property)

 	(pymeasure.instruments.toptica.ibeamsmart.DriverChannel property)

 	(pymeasure.instruments.toptica.ibeamsmart.IBeamSmart property)

 	power_density (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	power_enabled (pymeasure.instruments.mksinst.mks937b.PressureChannel property)

 	power_level (pymeasure.instruments.anritsu.anritsuMS464xB.Port property)

 	power_limit (pymeasure.instruments.tcpowerconversion.CXN property)

 	power_on_clear (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X property)

 	power_range (pymeasure.instruments.ipgphotonics.yar.YAR property)

 	power_setpoint (pymeasure.instruments.ipgphotonics.yar.YAR property)

 	(pymeasure.instruments.novanta.Fpu60 property)

 	preamp (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	preemphasis_enabled (pymeasure.instruments.rohdeschwarz.sfm.Sound_Channel property)

 	preemphasis_time (pymeasure.instruments.rohdeschwarz.sfm.Sound_Channel property)

 	prepare() (pymeasure.display.curves.BufferCurve method)

 	preselector_dac_number (pymeasure.instruments.hp.HP8561B property)

 	preset() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	preset_1 (pymeasure.instruments.tcpowerconversion.CXN attribute)

 	preset_2 (pymeasure.instruments.tcpowerconversion.CXN attribute)

 	preset_3 (pymeasure.instruments.tcpowerconversion.CXN attribute)

 	preset_4 (pymeasure.instruments.tcpowerconversion.CXN attribute)

 	preset_5 (pymeasure.instruments.tcpowerconversion.CXN attribute)

 	preset_6 (pymeasure.instruments.tcpowerconversion.CXN attribute)

 	preset_7 (pymeasure.instruments.tcpowerconversion.CXN attribute)

 	preset_8 (pymeasure.instruments.tcpowerconversion.CXN attribute)

 	preset_9 (pymeasure.instruments.tcpowerconversion.CXN attribute)

 	preset_slot (pymeasure.instruments.tcpowerconversion.CXN property)

 	PresetChannel (class in pymeasure.instruments.tcpowerconversion.tccxn)

 	pressure (pymeasure.instruments.mksinst.mks937b.PressureChannel property)

 	(pymeasure.instruments.thyracont.smartline_v1.SmartlineV1 property)

 	(pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 property)

 	PressureChannel (class in pymeasure.instruments.mksinst.mks937b)

 	preview_widget() (pymeasure.display.widgets.plot_widget.PlotWidget method)

 	(pymeasure.display.widgets.tab_widget.TabWidget method)

 	(pymeasure.display.widgets.table_widget.TableWidget method)

 	previous_step() (pymeasure.instruments.keysight.KeysightN7776C method)

 	probe_attenuation (pymeasure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel property)

 	probe_type (pymeasure.instruments.lakeshore.LakeShore421 property)

 	Procedure (class in pymeasure.experiment.procedure)

 	product_name (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 property)

 	program_sweep() (pymeasure.instruments.oxfordinstruments.ITC503 method)

 	PrologixAdapter (class in pymeasure.adapters)

 	proportional_band (pymeasure.instruments.oxfordinstruments.ITC503 property)

 	protect_state_enabled (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	ProtocolAdapter (class in pymeasure.adapters)

 	PS120_10 (class in pymeasure.instruments.oxfordinstruments)

 	PSChannel (class in pymeasure.instruments.keithley.keithley2200)

 	psu_temperature (pymeasure.instruments.novanta.Fpu60 property)

 	pulse_dutycycle (pymeasure.instruments.agilent.Agilent33220A property)

 	(pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	pulse_frequency (pymeasure.instruments.agilent.Agilent8257D property)

 	pulse_hold (pymeasure.instruments.agilent.Agilent33220A property)

 	(pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	pulse_input (pymeasure.instruments.agilent.Agilent8257D property)

 	pulse_params (pymeasure.instruments.tcpowerconversion.CXN property)

 	pulse_period (pymeasure.instruments.agilent.Agilent33220A property)

 	(pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	pulse_source (pymeasure.instruments.agilent.Agilent8257D property)

 	pulse_transition (pymeasure.instruments.agilent.Agilent33220A property)

 	(pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	pulse_width (pymeasure.instruments.agilent.Agilent33220A property)

 	(pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	(pymeasure.instruments.hp.HP8116A property)

 	
 pymeasure.display.browser

 	module

 	
 pymeasure.display.console

 	module

 	
 pymeasure.display.curves

 	module

 	
 pymeasure.display.inputs

 	module

 	
 pymeasure.display.listeners

 	module

 	
 pymeasure.display.log

 	module

 	
 	
 pymeasure.display.manager

 	module

 	
 pymeasure.display.plotter

 	module

 	
 pymeasure.display.thread

 	module

 	
 pymeasure.display.widgets.browser_widget

 	module

 	
 pymeasure.display.widgets.directory_widget

 	module

 	
 pymeasure.display.widgets.dock_widget

 	module

 	
 pymeasure.display.widgets.estimator_widget

 	module

 	
 pymeasure.display.widgets.image_frame

 	module

 	
 pymeasure.display.widgets.image_widget

 	module

 	
 pymeasure.display.widgets.inputs_widget

 	module

 	
 pymeasure.display.widgets.log_widget

 	module

 	
 pymeasure.display.widgets.plot_frame

 	module

 	
 pymeasure.display.widgets.plot_widget

 	module

 	
 pymeasure.display.widgets.results_dialog

 	module

 	
 pymeasure.display.widgets.sequencer_widget

 	module

 	
 pymeasure.display.widgets.tab_widget

 	module

 	
 pymeasure.display.widgets.table_widget

 	module

 	
 pymeasure.display.windows.managed_dock_window

 	module

 	
 pymeasure.display.windows.managed_image_window

 	module

 	
 pymeasure.display.windows.managed_window

 	module

 	
 pymeasure.display.windows.plotter_window

 	module

 	
 pymeasure.experiment.experiment

 	module

 	
 pymeasure.experiment.listeners

 	module

 	
 pymeasure.experiment.parameters

 	module

 	
 pymeasure.experiment.procedure

 	module

 	
 pymeasure.experiment.results

 	module

 	
 pymeasure.experiment.workers

 	module

 	
 pymeasure.instruments

 	module

 	
 pymeasure.instruments.activetechnologies

 	module

 	
 pymeasure.instruments.advantest

 	module

 	
 pymeasure.instruments.advantest.advantestR3767CG

 	module

 	
 pymeasure.instruments.advantest.advantestR624X

 	module

 	
 pymeasure.instruments.agilent

 	module

 	
 pymeasure.instruments.agilent.agilent4156

 	module

 	
 pymeasure.instruments.agilent.agilentB1500

 	module

 	
 pymeasure.instruments.aja

 	module

 	
 pymeasure.instruments.ametek

 	module

 	
 pymeasure.instruments.ami

 	module

 	
 pymeasure.instruments.anaheimautomation

 	module

 	
 pymeasure.instruments.anapico

 	module

 	
 pymeasure.instruments.andeenhagerling

 	module

 	
 pymeasure.instruments.anritsu

 	module

 	
 pymeasure.instruments.attocube

 	module

 	
 pymeasure.instruments.bkprecision

 	module

 	
 pymeasure.instruments.comedi

 	module

 	
 pymeasure.instruments.danfysik

 	module

 	
 pymeasure.instruments.deltaelektronika

 	module

 	
 pymeasure.instruments.edwards

 	module

 	
 pymeasure.instruments.eurotest

 	module

 	
 pymeasure.instruments.fluke

 	module

 	
 pymeasure.instruments.fwbell

 	module

 	
 pymeasure.instruments.hcp

 	module

 	
 pymeasure.instruments.heidenhain

 	module

 	
 pymeasure.instruments.hp

 	module

 	
 pymeasure.instruments.ipgphotonics

 	module

 	
 pymeasure.instruments.keithley

 	module

 	
 pymeasure.instruments.keysight

 	module

 	
 pymeasure.instruments.lakeshore

 	module

 	
 pymeasure.instruments.lecroy

 	module

 	
 pymeasure.instruments.mksinst

 	module

 	
 pymeasure.instruments.newport

 	module

 	
 pymeasure.instruments.ni

 	module

 	
 pymeasure.instruments.novanta

 	module

 	
 pymeasure.instruments.oxfordinstruments

 	module

 	
 pymeasure.instruments.parker

 	module

 	
 pymeasure.instruments.pendulum

 	module

 	
 pymeasure.instruments.razorbill

 	module

 	
 pymeasure.instruments.rohdeschwarz

 	module

 	
 pymeasure.instruments.siglenttechnologies

 	module

 	
 pymeasure.instruments.signalrecovery

 	module

 	
 pymeasure.instruments.srs

 	module

 	
 pymeasure.instruments.tcpowerconversion

 	module

 	
 pymeasure.instruments.tdk

 	module

 	
 pymeasure.instruments.tektronix

 	module

 	
 pymeasure.instruments.teledyne

 	module

 	
 pymeasure.instruments.temptronic

 	module

 	
 pymeasure.instruments.texio

 	module

 	
 pymeasure.instruments.thermotron

 	module

 	
 pymeasure.instruments.thorlabs

 	module

 	
 pymeasure.instruments.thyracont

 	module

 	
 pymeasure.instruments.toptica

 	module

 	
 pymeasure.instruments.validators

 	module

 	
 pymeasure.instruments.velleman

 	module

 	
 pymeasure.instruments.yokogawa

 	module

 	
 pymeasure.test

 	module

Q

 	
 	QListener (class in pymeasure.display.listeners)

 	query_ac_current() (pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter method)

 	query_acquisition_status() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	query_adc_setup() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	query_analog_channel() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	query_analog_channel_characteristics() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	query_analog_edge_trigger() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	query_analog_pulse_width_trigger() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	query_arbitrary_waveform() (pymeasure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator method)

 	query_arbitrary_waveform_gain_and_offset() (pymeasure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator method)

 	query_current_output() (pymeasure.instruments.ni.virtualbench.VirtualBench.PowerSupply method)

 	query_dc_current() (pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter method)

 	query_dc_voltage() (pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter method)

 	query_enabled_analog_channels() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	query_event_status_register() (pymeasure.instruments.anritsu.AnritsuMS464xB method)

 	query_export_signal() (pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalInputOutput method)

 	query_generation_status() (pymeasure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator method)

 	query_learn() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	(pymeasure.instruments.agilent.agilentB1500.QueryLearn static method)

 	(pymeasure.instruments.agilent.agilentB1500.SMU method)

 	query_learn_header() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	(pymeasure.instruments.agilent.agilentB1500.QueryLearn class method)

 	query_line_configuration() (pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalInputOutput method)

 	query_meas_mode() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	query_meas_op_mode() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	
 	query_meas_range_current_auto() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	query_meas_ranges() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	query_meas_settings() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	query_measurement() (pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter method)

 	query_modules() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	query_sampling_settings() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	query_series_resistor() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	query_staircase_sweep_settings() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	query_standard_waveform() (pymeasure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator method)

 	query_time_stamp_setting() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	query_timing() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	query_trigger_delay() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	query_trigger_type() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	query_voltage_output() (pymeasure.instruments.ni.virtualbench.VirtualBench.PowerSupply method)

 	query_waveform_mode() (pymeasure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator method)

 	QueryLearn (class in pymeasure.instruments.agilent.agilentB1500)

 	questionable_event_enabled (pymeasure.instruments.keithley.Keithley6221 property)

 	questionable_event_reg (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	questionable_events (pymeasure.instruments.keithley.Keithley6221 property)

 	questionable_operation_enable_reg (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	questionanble_status_reg (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	queue() (pymeasure.display.manager.BaseManager method)

 	(pymeasure.display.windows.managed_window.ManagedWindowBase method)

 	queue_sequence() (pymeasure.display.widgets.sequencer_widget.SequencerWidget method)

 	quick_range() (pymeasure.instruments.srs.SR830 method)

R

 	
 	R75_out (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	Ramp (pymeasure.instruments.hp.hp856Xx.SweepOut attribute)

 	ramp() (pymeasure.instruments.ami.AMI430 method)

 	ramp_rate (pymeasure.instruments.tcpowerconversion.CXN property)

 	(pymeasure.instruments.temptronic.ATSBase property)

 	ramp_rate_current (pymeasure.instruments.ami.AMI430 property)

 	ramp_rate_field (pymeasure.instruments.ami.AMI430 property)

 	ramp_source() (pymeasure.instruments.agilent.agilentB1500.SMU method)

 	ramp_start_power (pymeasure.instruments.tcpowerconversion.CXN property)

 	ramp_symmetry (pymeasure.instruments.agilent.Agilent33220A property)

 	(pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	ramp_time (pymeasure.instruments.aja.DCXS property)

 	ramp_to_current() (pymeasure.instruments.ami.AMI430 method)

 	(pymeasure.instruments.danfysik.Danfysik8500 method)

 	(pymeasure.instruments.deltaelektronika.SM7045D method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 method)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 method)

 	(pymeasure.instruments.yokogawa.Yokogawa7651 method)

 	ramp_to_field() (pymeasure.instruments.ami.AMI430 method)

 	ramp_to_voltage() (pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	(pymeasure.instruments.yokogawa.Yokogawa7651 method)

 	ramp_to_zero() (pymeasure.instruments.deltaelektronika.SM7045D method)

 	(pymeasure.instruments.eurotest.EurotestHPP120256 method)

 	range (pymeasure.instruments.fwbell.FWBell5080 property)

 	(pymeasure.instruments.hp.HP3437A property)

 	(pymeasure.instruments.hp.HP3478A property)

 	(pymeasure.instruments.lakeshore.LakeShore425 property)

 	(pymeasure.instruments.lakeshore.lakeshore_base.LakeShoreHeaterChannel property)

 	(pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 property)

 	range_ (pymeasure.instruments.hp.HP34401A property)

 	Ranging (class in pymeasure.instruments.agilent.agilentB1500)

 	ratio (pymeasure.instruments.agilent.agilent4156.VARD property)

 	(pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	razorbillRP100 (class in pymeasure.instruments.razorbill)

 	read() (pymeasure.adapters.Adapter method)

 	(pymeasure.adapters.FakeAdapter method)

 	(pymeasure.adapters.PrologixAdapter method)

 	(pymeasure.adapters.SerialAdapter method)

 	(pymeasure.adapters.TelnetAdapter method)

 	(pymeasure.adapters.VISAAdapter method)

 	(pymeasure.adapters.VXI11Adapter method)

 	(pymeasure.instruments.aja.DCXS method)

 	(pymeasure.instruments.andeenhagerling.AH2700A method)

 	(pymeasure.instruments.attocube.anc300.ANC300Controller method)

 	(pymeasure.instruments.Channel method)

 	(pymeasure.instruments.danfysik.Danfysik8500 method)

 	(pymeasure.instruments.fluke.Fluke7341 method)

 	(pymeasure.instruments.fwbell.FWBell5080 method)

 	(pymeasure.instruments.hcp.TC038 method)

 	(pymeasure.instruments.hcp.TC038D method)

 	(pymeasure.instruments.Instrument method)

 	(pymeasure.instruments.ipgphotonics.yar.YAR method)

 	(pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.keithley.Keithley2260B method)

 	(pymeasure.instruments.keithley.Keithley2306 method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley2600 method)

 	(pymeasure.instruments.keithley.Keithley2700 method)

 	(pymeasure.instruments.keithley.Keithley2750 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	(pymeasure.instruments.keysight.KeysightE36312A method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.mksinst.mks937b.MKS937B method)

 	(pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalInputOutput method)

 	(pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter method)

 	(pymeasure.instruments.parker.ParkerGV6 method)

 	(pymeasure.instruments.signalrecovery.DSP7225 method)

 	(pymeasure.instruments.signalrecovery.DSP7265 method)

 	(pymeasure.instruments.tcpowerconversion.CXN method)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 method)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 method)

 	(pymeasure.instruments.teledyne.TeledyneT3AFG method)

 	(pymeasure.instruments.texio.TexioPSW360L30 method)

 	(pymeasure.instruments.thyracont.smartline_v1.SmartlineV1 method)

 	(pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 method)

 	(pymeasure.instruments.toptica.ibeamsmart.IBeamSmart method)

 	(pymeasure.instruments.velleman.VellemanK8090 method)

 	read_analog_digital_dataframe() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	read_analog_digital_u64() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	read_binary_values() (pymeasure.adapters.Adapter method)

 	(pymeasure.adapters.FakeAdapter method)

 	(pymeasure.adapters.PrologixAdapter method)

 	(pymeasure.adapters.SerialAdapter method)

 	(pymeasure.adapters.TelnetAdapter method)

 	(pymeasure.adapters.VISAAdapter method)

 	(pymeasure.adapters.VXI11Adapter method)

 	(pymeasure.instruments.andeenhagerling.AH2700A method)

 	(pymeasure.instruments.Channel method)

 	(pymeasure.instruments.fwbell.FWBell5080 method)

 	(pymeasure.instruments.Instrument method)

 	(pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.keithley.Keithley2200 method)

 	(pymeasure.instruments.keithley.Keithley2260B method)

 	(pymeasure.instruments.keithley.Keithley2306 method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley2600 method)

 	(pymeasure.instruments.keithley.Keithley2700 method)

 	(pymeasure.instruments.keithley.Keithley2750 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	(pymeasure.instruments.keysight.KeysightE36312A method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.signalrecovery.DSP7225 method)

 	(pymeasure.instruments.signalrecovery.DSP7265 method)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 method)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 method)

 	(pymeasure.instruments.teledyne.TeledyneT3AFG method)

 	(pymeasure.instruments.texio.TexioPSW360L30 method)

 	read_buffer() (pymeasure.instruments.pendulum.cnt91.CNT91 method)

 	read_bytes() (pymeasure.adapters.Adapter method)

 	(pymeasure.adapters.FakeAdapter method)

 	(pymeasure.adapters.PrologixAdapter method)

 	(pymeasure.adapters.SerialAdapter method)

 	(pymeasure.adapters.TelnetAdapter method)

 	(pymeasure.adapters.VISAAdapter method)

 	(pymeasure.adapters.VXI11Adapter method)

 	(pymeasure.instruments.andeenhagerling.AH2700A method)

 	(pymeasure.instruments.Channel method)

 	(pymeasure.instruments.fwbell.FWBell5080 method)

 	(pymeasure.instruments.Instrument method)

 	(pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.keithley.Keithley2200 method)

 	(pymeasure.instruments.keithley.Keithley2260B method)

 	(pymeasure.instruments.keithley.Keithley2306 method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley2600 method)

 	(pymeasure.instruments.keithley.Keithley2700 method)

 	(pymeasure.instruments.keithley.Keithley2750 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	(pymeasure.instruments.keysight.KeysightE36312A method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.signalrecovery.DSP7225 method)

 	(pymeasure.instruments.signalrecovery.DSP7265 method)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 method)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 method)

 	(pymeasure.instruments.teledyne.TeledyneT3AFG method)

 	(pymeasure.instruments.texio.TexioPSW360L30 method)

 	read_channels() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	read_data() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	(pymeasure.instruments.hp.HP3437A method)

 	read_datafile() (pymeasure.instruments.anritsu.AnritsuMS464xB method)

 	read_measurement() (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X method)

 	read_measurement_from_addr() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	read_memory() (pymeasure.instruments.anritsu.AnritsuMS9710C method)

 	read_output() (pymeasure.instruments.ni.virtualbench.VirtualBench.PowerSupply method)

 	read_random_memory() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	read_raw() (pymeasure.adapters.VXI11Adapter method)

 	read_trace() (pymeasure.instruments.rohdeschwarz.fsl.FSL method)

 	readAI() (in module pymeasure.instruments.comedi)

 	reading (pymeasure.instruments.hp.HP34401A property)

 	recall() (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 method)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 method)

 	recall_config() (pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDBase method)

 	recall_open_short_average() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	recall_state() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	recall_thru() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	recall_trace() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	receive() (pymeasure.experiment.listeners.Listener method)

 	Recorder (class in pymeasure.experiment.listeners)

 	reference (pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	reference_externalinput (pymeasure.instruments.srs.SR860 property)

 	reference_level (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	
 	reference_level_calibration (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	reference_offset (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	reference_output (pymeasure.instruments.anapico.APSIN12G property)

 	reference_phase (pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	reference_source (pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	reference_source_trigger (pymeasure.instruments.srs.SR830 property)

 	reference_triggermode (pymeasure.instruments.srs.SR860 property)

 	refresh_parameters() (pymeasure.experiment.procedure.Procedure method)

 	regulation_mode (pymeasure.instruments.aja.DCXS property)

 	relative_field (pymeasure.instruments.lakeshore.LakeShore421 property)

 	relative_field_raw (pymeasure.instruments.lakeshore.LakeShore421 property)

 	relative_mode_enabled (pymeasure.instruments.lakeshore.LakeShore421 property)

 	relative_multiplier (pymeasure.instruments.lakeshore.LakeShore421 property)

 	relative_setpoint (pymeasure.instruments.lakeshore.LakeShore421 property)

 	relative_setpoint_multiplier (pymeasure.instruments.lakeshore.LakeShore421 property)

 	relative_setpoint_raw (pymeasure.instruments.lakeshore.LakeShore421 property)

 	relay() (pymeasure.instruments.keithley.Keithley2306 method)

 	relay_mode (pymeasure.instruments.advantest.advantestR624X.SMUChannel property)

 	release_control() (pymeasure.instruments.tcpowerconversion.CXN method)

 	reload() (pymeasure.experiment.results.Results method)

 	remaining_deposition_time_min (pymeasure.instruments.aja.DCXS property)

 	remaining_deposition_time_sec (pymeasure.instruments.aja.DCXS property)

 	remote (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

 	remote() (pymeasure.instruments.danfysik.Danfysik8500 method)

 	(pymeasure.instruments.keithley.Keithley2000 method)

 	remote_interfaces (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	remote_local_state (pymeasure.instruments.agilent.Agilent33220A property)

 	remote_lock() (pymeasure.instruments.keithley.Keithley2000 method)

 	remote_mode (pymeasure.instruments.temptronic.ATSBase property)

 	remote_trigger_type (pymeasure.instruments.anritsu.AnritsuMS464xB property)

 	remove() (pymeasure.display.manager.BaseManager method)

 	(pymeasure.display.manager.Manager method)

 	(pymeasure.display.widgets.image_widget.ImageWidget method)

 	(pymeasure.display.widgets.plot_widget.PlotWidget method)

 	(pymeasure.display.widgets.tab_widget.TabWidget method)

 	(pymeasure.display.widgets.table_widget.TableWidget method)

 	remove_child() (pymeasure.instruments.common_base.CommonBase method)

 	(pymeasure.instruments.keithley.Keithley2200 method)

 	(pymeasure.instruments.keysight.KeysightE36312A method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	remove_file() (pymeasure.instruments.activetechnologies.AWG401x_AWG method)

 	remove_node() (pymeasure.display.widgets.sequencer_widget.SequencerTreeModel method)

 	repeat (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

 	repeat_sweep() (pymeasure.instruments.anritsu.AnritsuMS9740A method)

 	repetition_rate (pymeasure.instruments.hp.HP8116A property)

 	repetitions (pymeasure.instruments.rohdeschwarz.hmp.HMP4040 property)

 	replace_placeholders() (in module pymeasure.experiment.results)

 	request_control() (pymeasure.instruments.tcpowerconversion.CXN method)

 	request_service() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	request_service_conditions (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	res_bandwidth (pymeasure.instruments.rohdeschwarz.fsl.FSL property)

 	reset() (pymeasure.adapters.PrologixAdapter method)

 	(pymeasure.instruments.activetechnologies.AWG401x_AWG.WaveformsLazyDict method)

 	(pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	(pymeasure.instruments.andeenhagerling.AH2700A method)

 	(pymeasure.instruments.fwbell.FWBell5080 method)

 	(pymeasure.instruments.hp.HP8116A method)

 	(pymeasure.instruments.hp.HP8657B method)

 	(pymeasure.instruments.hp.HPLegacyInstrument method)

 	(pymeasure.instruments.Instrument method)

 	(pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.keithley.Keithley2200 method)

 	(pymeasure.instruments.keithley.Keithley2260B method)

 	(pymeasure.instruments.keithley.Keithley2306 method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley2600 method)

 	(pymeasure.instruments.keithley.Keithley2700 method)

 	(pymeasure.instruments.keithley.Keithley2750 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	(pymeasure.instruments.keysight.KeysightE36312A method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.parker.ParkerGV6 method)

 	(pymeasure.instruments.signalrecovery.DSP7225 method)

 	(pymeasure.instruments.signalrecovery.DSP7265 method)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 method)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 method)

 	(pymeasure.instruments.teledyne.TeledyneT3AFG method)

 	(pymeasure.instruments.temptronic.ATSBase method)

 	(pymeasure.instruments.texio.TexioPSW360L30 method)

 	reset_alarm() (pymeasure.instruments.lakeshore.LakeShore211 method)

 	reset_buffer() (pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley2700 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	reset_instrument() (pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalInputOutput method)

 	(pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter method)

 	(pymeasure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator method)

 	(pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	(pymeasure.instruments.ni.virtualbench.VirtualBench.PowerSupply method)

 	reset_interlocks() (pymeasure.instruments.danfysik.Danfysik8500 method)

 	reset_OVP_OCP() (pymeasure.instruments.hp.HP6632A method)

 	reset_position() (pymeasure.instruments.anaheimautomation.DPSeriesMotorController method)

 	resistance (pymeasure.instruments.agilent.Agilent34410A property)

 	(pymeasure.instruments.agilent.Agilent34450A property)

 	(pymeasure.instruments.hp.HP34401A property)

 	(pymeasure.instruments.keithley.Keithley2000 property)

 	(pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.keithley.Keithley6517B property)

 	resistance_4w (pymeasure.instruments.agilent.Agilent34410A property)

 	(pymeasure.instruments.agilent.Agilent34450A property)

 	(pymeasure.instruments.hp.HP34401A property)

 	resistance_4w_auto_range (pymeasure.instruments.agilent.Agilent34450A property)

 	resistance_4W_digits (pymeasure.instruments.keithley.Keithley2000 property)

 	resistance_4W_nplc (pymeasure.instruments.keithley.Keithley2000 property)

 	resistance_4w_range (pymeasure.instruments.agilent.Agilent34450A property)

 	resistance_4W_range (pymeasure.instruments.keithley.Keithley2000 property)

 	resistance_4W_reference (pymeasure.instruments.keithley.Keithley2000 property)

 	resistance_4w_resolution (pymeasure.instruments.agilent.Agilent34450A property)

 	resistance_auto_range (pymeasure.instruments.agilent.Agilent34450A property)

 	resistance_digits (pymeasure.instruments.keithley.Keithley2000 property)

 	resistance_nplc (pymeasure.instruments.keithley.Keithley2000 property)

 	(pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.keithley.Keithley6517B property)

 	resistance_range (pymeasure.instruments.agilent.Agilent34450A property)

 	(pymeasure.instruments.keithley.Keithley2000 property)

 	(pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.keithley.Keithley6517B property)

 	resistance_reference (pymeasure.instruments.keithley.Keithley2000 property)

 	resistance_resolution (pymeasure.instruments.agilent.Agilent34450A property)

 	resolution (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	(pymeasure.instruments.anritsu.AnritsuMS9740A property)

 	(pymeasure.instruments.hp.HP34401A property)

 	(pymeasure.instruments.hp.HP3478A property)

 	resolution_actual (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	resolution_bandwidth (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	resolution_bandwidth_to_span_ratio (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	resolution_vbw (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	(pymeasure.instruments.anritsu.AnritsuMS9740A property)

 	Results (class in pymeasure.experiment.results)

 	ResultsClass (pymeasure.display.widgets.image_frame.ImageFrame attribute)

 	(pymeasure.display.widgets.plot_frame.PlotFrame attribute)

 	ResultsCurve (class in pymeasure.display.curves)

 	ResultsDialog (class in pymeasure.display.widgets.results_dialog)

 	ResultsImage (class in pymeasure.display.curves)

 	ResultsTable (class in pymeasure.display.widgets.table_widget)

 	resume() (pymeasure.display.manager.BaseManager method)

 	return_to_local() (pymeasure.instruments.anritsu.AnritsuMS464xB method)

 	reverse_power_limit (pymeasure.instruments.tcpowerconversion.CXN property)

 	rf_enabled (pymeasure.instruments.tcpowerconversion.CXN property)

 	rf_out_enabled (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	rf_sweep_center (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	rf_sweep_span (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	rf_sweep_start (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	rf_sweep_step (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	rf_sweep_stop (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	right_limit (pymeasure.instruments.newport.esp300.Axis property)

 	rom_version (pymeasure.instruments.hp.HP6632A property)

 	round_up() (pymeasure.display.curves.ResultsImage method)

 	rowCount() (pymeasure.display.widgets.sequencer_widget.SequencerTreeModel method)

 	(pymeasure.display.widgets.table_widget.PandasModelBase method)

 	RQS (pymeasure.instruments.hp.hp856Xx.StatusRegister attribute)

 	rsd (pymeasure.instruments.deltaelektronika.SM7045D property)

 	run() (pymeasure.display.listeners.Monitor method)

 	(pymeasure.display.plotter.Plotter method)

 	(pymeasure.display.widgets.estimator_widget.EstimatorThread method)

 	(pymeasure.experiment.workers.Worker method)

 	(pymeasure.instruments.keysight.KeysightDSOX1102G method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator method)

 	(pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope method)

 	(pymeasure.instruments.thermotron.Thermotron3800 method)

 	run_mode (pymeasure.instruments.activetechnologies.AWG401x_AWG property)

 	run_status (pymeasure.instruments.activetechnologies.AWG401x_AWG property)

S

 	
 	Sample (pymeasure.instruments.hp.hp856Xx.DetectionModes attribute)

 	sample_continuously() (pymeasure.instruments.keithley.Keithley2400 method)

 	sample_count (pymeasure.instruments.hp.HP34401A property)

 	sample_decreasing_strategy (pymeasure.instruments.activetechnologies.AWG401x_AWG property)

 	sample_frequency (pymeasure.instruments.srs.SR830 property)

 	sample_hold_mode (pymeasure.instruments.advantest.advantestR624X.SMUChannel property)

 	sample_increasing_strategy (pymeasure.instruments.activetechnologies.AWG401x_AWG property)

 	SampleHold (class in pymeasure.instruments.advantest.advantestR624X)

 	SampleMode (class in pymeasure.instruments.advantest.advantestR624X)

 	sampler_harmonic_number (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	SAMPLING (pymeasure.instruments.agilent.agilentB1500.MeasMode attribute)

 	sampling_auto_abort() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	sampling_frequency (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	sampling_mode (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 property)

 	sampling_points (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	(pymeasure.instruments.anritsu.AnritsuMS9740A property)

 	sampling_rate (pymeasure.instruments.activetechnologies.AWG401x_AWG property)

 	sampling_rate_max (pymeasure.instruments.activetechnologies.AWG401x_AWG property)

 	sampling_rate_min (pymeasure.instruments.activetechnologies.AWG401x_AWG property)

 	sampling_source() (pymeasure.instruments.agilent.agilentB1500.SMU method)

 	sampling_timing() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	SamplingMode (class in pymeasure.instruments.agilent.agilentB1500)

 	SamplingPostOutput (class in pymeasure.instruments.agilent.agilentB1500)

 	save() (pymeasure.instruments.agilent.agilent4156.Agilent4156 method)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 method)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 method)

 	save_config() (pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDBase method)

 	save_dock_layout() (pymeasure.display.widgets.dock_widget.DockWidget method)

 	save_file() (pymeasure.instruments.activetechnologies.AWG401x_AWG method)

 	save_sequence() (pymeasure.instruments.rohdeschwarz.hmp.HMP4040 method)

 	save_state() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	save_trace() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	save_var() (pymeasure.instruments.agilent.agilent4156.Agilent4156 method)

 	scale (pymeasure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel property)

 	scale_volt (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	scan() (pymeasure.instruments.agilent.Agilent8722ES method)

 	scan_continuous() (pymeasure.instruments.agilent.Agilent8722ES method)

 	scan_points (pymeasure.instruments.agilent.Agilent8722ES property)

 	scan_single() (pymeasure.instruments.agilent.Agilent8722ES method)

 	ScientificInput (class in pymeasure.display.inputs)

 	scpi_version (pymeasure.instruments.hp.HP34401A property)

 	screen_layout (pymeasure.instruments.srs.SR860 property)

 	screenshot() (pymeasure.instruments.srs.SR860 method)

 	search_peak() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	select_for_output() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	selected_channel (pymeasure.instruments.rohdeschwarz.hmp.HMP4040 property)

 	(pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDBase property)

 	selected_channel_active (pymeasure.instruments.rohdeschwarz.hmp.HMP4040 property)

 	self_calibrate() (pymeasure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator method)

 	self_test (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X property)

 	self_test_result (pymeasure.instruments.hp.HP34401A property)

 	send_trigger() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	sense_mode (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	sensitivity (pymeasure.instruments.ametek.Ametek7270 property)

 	(pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	(pymeasure.instruments.srs.SR510 property)

 	(pymeasure.instruments.srs.SR570 property)

 	(pymeasure.instruments.srs.SR830 property)

 	sensitvity (pymeasure.instruments.srs.SR860 property)

 	sensor (pymeasure.instruments.lakeshore.lakeshore_base.LakeShoreTemperatureChannel property)

 	sensor_serial (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 property)

 	sequence (pymeasure.instruments.rohdeschwarz.hmp.HMP4040 property)

 	sequence_program_listing() (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X method)

 	sequence_program_number (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X property)

 	sequence_wait() (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X method)

 	SequenceDialog (class in pymeasure.display.widgets.sequencer_widget)

 	SequenceInterruptionType (class in pymeasure.instruments.advantest.advantestR624X)

 	SequencerTreeModel (class in pymeasure.display.widgets.sequencer_widget)

 	SequencerTreeView (class in pymeasure.display.widgets.sequencer_widget)

 	SequencerWidget (class in pymeasure.display.widgets.sequencer_widget)

 	serial (pymeasure.instruments.mksinst.mks937b.MKS937B property)

 	(pymeasure.instruments.tcpowerconversion.CXN property)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

 	(pymeasure.instruments.toptica.ibeamsmart.IBeamSmart property)

 	serial_baud (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	serial_bits (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	serial_flowcontrol (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	serial_nr (pymeasure.instruments.attocube.anc300.Axis property)

 	serial_number (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	(pymeasure.instruments.lakeshore.LakeShore421 property)

 	(pymeasure.instruments.novanta.Fpu60 property)

 	serial_parity (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	serial_stopbits (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	SerialAdapter (class in pymeasure.adapters)

 	series_resistance (pymeasure.instruments.agilent.agilent4156.SMU property)

 	series_resistor (pymeasure.instruments.agilent.agilentB1500.SMU property)

 	service_request_enable_bits (pymeasure.instruments.anritsu.AnritsuMS464xB property)

 	service_request_enable_register (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X property)

 	SESR (class in pymeasure.instruments.advantest.advantestR624X)

 	set_auto_couple() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	set_averaging() (pymeasure.instruments.agilent.Agilent8722ES method)

 	set_buffer() (pymeasure.instruments.signalrecovery.DSP7225 method)

 	(pymeasure.instruments.signalrecovery.DSP7265 method)

 	set_channel_A_mode() (pymeasure.instruments.ametek.Ametek7270 method)

 	set_channel_state() (pymeasure.instruments.rohdeschwarz.hmp.HMP4040 method)

 	set_color() (pymeasure.display.widgets.plot_widget.PlotWidget method)

 	(pymeasure.display.widgets.tab_widget.TabWidget method)

 	(pymeasure.display.widgets.table_widget.TableWidget method)

 	set_comparison_limits() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	set_continuous_sensor_transition() (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 method)

 	set_continuous_sweep (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	set_crt_adjustment_pattern() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	set_current_mode() (pymeasure.instruments.ametek.Ametek7270 method)

 	set_default_sensor_transition() (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 method)

 	set_defaults() (pymeasure.instruments.parker.ParkerGV6 method)

 	set_differential_mode() (pymeasure.instruments.ametek.Ametek7270 method)

 	set_digital_output() (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X method)

 	set_direct_sensor_transition() (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 method)

 	set_field() (pymeasure.instruments.oxfordinstruments.IPS120_10 method)

 	set_fixed_frequency() (pymeasure.instruments.agilent.Agilent8722ES method)

 	set_full_span() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	set_fullband() (pymeasure.instruments.hp.HP8561B method)

 	set_hardware_limits() (pymeasure.instruments.parker.ParkerGV6 method)

 	set_high() (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 method)

 	set_IF_bandwidth() (pymeasure.instruments.agilent.Agilent8722ES method)

 	set_linear_scale() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	set_lo_common_connection_relay() (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X method)

 	set_low() (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 method)

 	set_marker_delta_to_span() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	set_marker_minimum() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	set_marker_to_center_frequency() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	set_marker_to_center_frequency_step_size() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	set_marker_to_reference_level() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	set_max_over_voltage() (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 method)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 method)

 	set_maximum_hold (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	set_minimum_hold (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	set_model() (pymeasure.display.widgets.table_widget.Table method)

 	set_monitored_quantity() (pymeasure.instruments.hcp.TC038 method)

 	set_output_format() (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X method)

 	set_output_type() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	set_parameter() (pymeasure.display.inputs.BooleanInput method)

 	(pymeasure.display.inputs.Input method)

 	(pymeasure.display.inputs.IntegerInput method)

 	(pymeasure.display.inputs.ListInput method)

 	(pymeasure.display.inputs.ScientificInput method)

 	set_parameters() (pymeasure.display.windows.managed_window.ManagedWindowBase method)

 	(pymeasure.experiment.procedure.Procedure method)

 	set_point (pymeasure.instruments.fluke.Fluke7341 property)

 	set_point_number (pymeasure.instruments.temptronic.ATSBase property)

 	set_ramp_delay() (pymeasure.instruments.danfysik.Danfysik8500 method)

 	set_ramp_to_current() (pymeasure.instruments.danfysik.Danfysik8500 method)

 	set_reference_mode() (pymeasure.instruments.ametek.Ametek7270 method)

 	set_sample_mode() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	set_scaling() (pymeasure.instruments.srs.SR830 method)

 	set_scanner_control() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	set_sequence() (pymeasure.instruments.danfysik.Danfysik8500 method)

 	set_signal_identification_to_center_frequency() (pymeasure.instruments.hp.HP8561B method)

 	set_software_limits() (pymeasure.instruments.parker.ParkerGV6 method)

 	set_temperature() (pymeasure.instruments.temptronic.ATSBase method)

 	set_timed_arm() (pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	set_timing_parameters() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	set_title() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	set_trace_data_a (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	set_trace_data_b (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	set_trigger_counts() (pymeasure.instruments.keithley.Keithley2400 method)

 	set_voltage_mode() (pymeasure.instruments.ametek.Ametek7270 method)

 	(pymeasure.instruments.signalrecovery.DSP7225 method)

 	(pymeasure.instruments.signalrecovery.DSP7265 method)

 	set_wire_mode() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	setChannelAMode() (pymeasure.instruments.signalrecovery.DSP7225 method)

 	(pymeasure.instruments.signalrecovery.DSP7265 method)

 	setData() (pymeasure.display.widgets.sequencer_widget.SequencerTreeModel method)

 	setDifferentialMode() (pymeasure.instruments.signalrecovery.DSP7225 method)

 	(pymeasure.instruments.signalrecovery.DSP7265 method)

 	setEditorData() (pymeasure.display.widgets.sequencer_widget.ComboBoxDelegate method)

 	(pymeasure.display.widgets.sequencer_widget.LineEditDelegate method)

 	setModel() (pymeasure.display.widgets.sequencer_widget.SequencerTreeView method)

 	(pymeasure.display.widgets.table_widget.Table method)

 	setModelData() (pymeasure.display.widgets.sequencer_widget.ComboBoxDelegate method)

 	(pymeasure.display.widgets.sequencer_widget.LineEditDelegate method)

 	setpoint (pymeasure.instruments.aja.DCXS property)

 	(pymeasure.instruments.hcp.TC038 property)

 	(pymeasure.instruments.hcp.TC038D property)

 	(pymeasure.instruments.lakeshore.lakeshore_base.LakeShoreHeaterChannel property)

 	(pymeasure.instruments.tcpowerconversion.CXN property)

 	(pymeasure.instruments.thermotron.Thermotron3800 property)

 	setting() (pymeasure.instruments.common_base.CommonBase static method)

 	(pymeasure.instruments.keysight.KeysightE36312A static method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 static method)

 	setup() (pymeasure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel method)

 	setup_parser() (pymeasure.display.console.ConsoleArgumentParser method)

 	setup_plot() (pymeasure.display.plotter.Plotter method)

 	SFM (class in pymeasure.instruments.rohdeschwarz.sfm)

 	shape (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	(pymeasure.instruments.agilent.Agilent33220A property)

 	(pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	(pymeasure.instruments.hp.HP33120A property)

 	(pymeasure.instruments.hp.HP8116A property)

 	shield (pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	shutdown() (pymeasure.experiment.procedure.Procedure method)

 	(pymeasure.experiment.workers.Worker method)

 	(pymeasure.instruments.agilent.Agilent8257D method)

 	(pymeasure.instruments.ametek.Ametek7270 method)

 	(pymeasure.instruments.ami.AMI430 method)

 	(pymeasure.instruments.andeenhagerling.AH2700A method)

 	(pymeasure.instruments.anritsu.AnritsuMG3692C method)

 	(pymeasure.instruments.deltaelektronika.SM7045D method)

 	(pymeasure.instruments.eurotest.EurotestHPP120256 method)

 	(pymeasure.instruments.fwbell.FWBell5080 method)

 	(pymeasure.instruments.hp.HP8116A method)

 	(pymeasure.instruments.hp.HP8657B method)

 	(pymeasure.instruments.hp.HPLegacyInstrument method)

 	(pymeasure.instruments.Instrument method)

 	(pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.keithley.Keithley2200 method)

 	(pymeasure.instruments.keithley.Keithley2260B method)

 	(pymeasure.instruments.keithley.Keithley2306 method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley2600 method)

 	(pymeasure.instruments.keithley.Keithley2700 method)

 	(pymeasure.instruments.keithley.Keithley2750 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	(pymeasure.instruments.keysight.KeysightE36312A method)

 	(pymeasure.instruments.lakeshore.LakeShore421 method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.newport.ESP300 method)

 	(pymeasure.instruments.ni.virtualbench.VirtualBench method)

 	(pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalInputOutput method)

 	(pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter method)

 	(pymeasure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator method)

 	(pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	(pymeasure.instruments.ni.virtualbench.VirtualBench.PowerSupply method)

 	(pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDBase method)

 	(pymeasure.instruments.signalrecovery.DSP7225 method)

 	(pymeasure.instruments.signalrecovery.DSP7265 method)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 method)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 method)

 	(pymeasure.instruments.teledyne.TeledyneT3AFG method)

 	(pymeasure.instruments.temptronic.ATSBase method)

 	(pymeasure.instruments.texio.TexioPSW360L30 method)

 	(pymeasure.instruments.toptica.ibeamsmart.IBeamSmart method)

 	(pymeasure.instruments.yokogawa.Yokogawa7651 method)

 	shutter_delay (pymeasure.instruments.aja.DCXS property)

 	shutter_open (pymeasure.instruments.novanta.Fpu60 property)

 	shutter_state (pymeasure.instruments.aja.DCXS property)

 	signal_identification (pymeasure.instruments.hp.HP8561B property)

 	signal_identification_frequency (pymeasure.instruments.hp.HP8561B property)

 	signal_inverted (pymeasure.instruments.srs.SR570 property)

 	SignalChannel (class in pymeasure.instruments.teledyne.teledyneT3AFG)

 	sine_amplitudepreset1 (pymeasure.instruments.srs.SR860 property)

 	sine_amplitudepreset2 (pymeasure.instruments.srs.SR860 property)

 	sine_amplitudepreset3 (pymeasure.instruments.srs.SR860 property)

 	sine_amplitudepreset4 (pymeasure.instruments.srs.SR860 property)

 	sine_dclevelpreset1 (pymeasure.instruments.srs.SR860 property)

 	sine_dclevelpreset2 (pymeasure.instruments.srs.SR860 property)

 	sine_dclevelpreset3 (pymeasure.instruments.srs.SR860 property)

 	sine_dclevelpreset4 (pymeasure.instruments.srs.SR860 property)

 	sine_voltage (pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	single() (pymeasure.instruments.keysight.KeysightDSOX1102G method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope method)

 	single_sweep() (pymeasure.instruments.anritsu.AnritsuMS9710C method)

 	(pymeasure.instruments.rohdeschwarz.fsl.FSL method)

 	sizeHint() (pymeasure.display.widgets.image_widget.ImageWidget method)

 	(pymeasure.display.widgets.plot_widget.PlotWidget method)

 	skew_factor (pymeasure.instruments.lecroy.lecroyT3DSO1204.LeCroyT3DSO1204Channel property)

 	slew_rate (pymeasure.instruments.danfysik.Danfysik8500 property)

 	slew_rate_1 (pymeasure.instruments.razorbill.razorbillRP100 property)

 	slew_rate_2 (pymeasure.instruments.razorbill.razorbillRP100 property)

 	slope (pymeasure.instruments.ametek.Ametek7270 property)

 	(pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	slot (pymeasure.instruments.thorlabs.ThorlabsPro8000 property)

 	SM7045D (class in pymeasure.instruments.deltaelektronika)

 	SmartlineV1 (class in pymeasure.instruments.thyracont.smartline_v1)

 	SmartlineV2 (class in pymeasure.instruments.thyracont.smartline_v2)

 	SmartlineV2.Sources (class in pymeasure.instruments.thyracont.smartline_v2)

 	SMU (class in pymeasure.instruments.agilent.agilent4156)

 	(class in pymeasure.instruments.agilent.agilentB1500)

 	SMU_MEASUREMENT (pymeasure.instruments.agilent.agilentB1500.WaitTimeType attribute)

 	
 	smu_names (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 property)

 	smu_references (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 property)

 	SMU_SOURCE (pymeasure.instruments.agilent.agilentB1500.WaitTimeType attribute)

 	SMUChannel (class in pymeasure.instruments.advantest.advantestR624X)

 	SMUCurrentRanging (class in pymeasure.instruments.agilent.agilentB1500)

 	SMUVoltageRanging (class in pymeasure.instruments.agilent.agilentB1500)

 	snap() (pymeasure.instruments.srs.SR830 method)

 	(pymeasure.instruments.srs.SR860 method)

 	software_version (pymeasure.instruments.aja.DCXS property)

 	(pymeasure.instruments.novanta.Fpu60 property)

 	Sound_Channel (class in pymeasure.instruments.rohdeschwarz.sfm)

 	sound_mode (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	source_auto_range (pymeasure.instruments.keithley.Keithley6221 property)

 	source_compliance (pymeasure.instruments.keithley.Keithley6221 property)

 	source_current (pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.keithley.Keithley6221 property)

 	(pymeasure.instruments.yokogawa.Yokogawa7651 property)

 	source_current_delay (pymeasure.instruments.keithley.Keithley2450 property)

 	source_current_delay_auto (pymeasure.instruments.keithley.Keithley2450 property)

 	source_current_range (pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.yokogawa.Yokogawa7651 property)

 	source_current_resistance_limit (pymeasure.instruments.keithley.Keithley6517B property)

 	source_delay (pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley6221 property)

 	source_delay_auto (pymeasure.instruments.keithley.Keithley2400 property)

 	source_enabled (pymeasure.instruments.bkprecision.BKPrecision9130B property)

 	(pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.keithley.Keithley6221 property)

 	(pymeasure.instruments.keithley.Keithley6517B property)

 	(pymeasure.instruments.yokogawa.Yokogawa7651 property)

 	(pymeasure.instruments.yokogawa.YokogawaGS200 property)

 	source_level (pymeasure.instruments.yokogawa.YokogawaGS200 property)

 	source_leveling_control (pymeasure.instruments.hp.HP8560A property)

 	source_mode (pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.yokogawa.Yokogawa7651 property)

 	(pymeasure.instruments.yokogawa.YokogawaGS200 property)

 	source_power (pymeasure.instruments.hp.HP8560A property)

 	source_power_offset (pymeasure.instruments.hp.HP8560A property)

 	source_power_step (pymeasure.instruments.hp.HP8560A property)

 	source_power_sweep (pymeasure.instruments.hp.HP8560A property)

 	source_range (pymeasure.instruments.keithley.Keithley6221 property)

 	(pymeasure.instruments.yokogawa.YokogawaGS200 property)

 	source_voltage (pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.keithley.Keithley6517B property)

 	(pymeasure.instruments.yokogawa.Yokogawa7651 property)

 	source_voltage_delay (pymeasure.instruments.keithley.Keithley2450 property)

 	source_voltage_delay_auto (pymeasure.instruments.keithley.Keithley2450 property)

 	source_voltage_range (pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.keithley.Keithley6517B property)

 	(pymeasure.instruments.yokogawa.Yokogawa7651 property)

 	SourceLevelingControlMode (class in pymeasure.instruments.hp.hp856Xx)

 	spacing (pymeasure.instruments.agilent.agilent4156.VAR1 property)

 	span (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	span_frequency (pymeasure.instruments.advantest.advantestR3767CG.AdvantestR3767CG property)

 	SPD1168X (class in pymeasure.instruments.siglenttechnologies)

 	SPD1305X (class in pymeasure.instruments.siglenttechnologies)

 	SPDBase (class in pymeasure.instruments.siglenttechnologies.siglent_spdbase)

 	SPDChannel (class in pymeasure.instruments.siglenttechnologies.siglent_spdbase)

 	SPDSingleChannelBase (class in pymeasure.instruments.siglenttechnologies.siglent_spdbase)

 	special_channel (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	SpectrumAnalyzer (pymeasure.instruments.hp.hp856Xx.SweepCoupleMode attribute)

 	SPOT (pymeasure.instruments.agilent.agilentB1500.MeasMode attribute)

 	square_dutycycle (pymeasure.instruments.agilent.Agilent33220A property)

 	(pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	squelch (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	SR510 (class in pymeasure.instruments.srs)

 	SR570 (class in pymeasure.instruments.srs)

 	SR830 (class in pymeasure.instruments.srs)

 	SR860 (class in pymeasure.instruments.srs)

 	SRER (class in pymeasure.instruments.advantest.advantestR624X)

 	srq_enabled (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X property)

 	SRQ_enabled (pymeasure.instruments.hp.HP6632A property)

 	srq_event_enabled (pymeasure.instruments.keithley.Keithley6221 property)

 	SRQ_mask (pymeasure.instruments.hp.HP3437A property)

 	(pymeasure.instruments.hp.HP3478A property)

 	STAIRCASE_SWEEP (pymeasure.instruments.agilent.agilentB1500.MeasMode attribute)

 	staircase_sweep_source() (pymeasure.instruments.agilent.agilentB1500.SMU method)

 	StaircaseSweepPostOutput (class in pymeasure.instruments.agilent.agilentB1500)

 	standard_devs (pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	standard_event_enabled (pymeasure.instruments.keithley.Keithley6221 property)

 	standard_events (pymeasure.instruments.keithley.Keithley6221 property)

 	standby() (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X method)

 	(pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	start (pymeasure.instruments.agilent.agilent4156.VARX property)

 	START (pymeasure.instruments.agilent.agilentB1500.StaircaseSweepPostOutput attribute)

 	start() (pymeasure.experiment.experiment.Experiment method)

 	(pymeasure.instruments.temptronic.ATSBase method)

 	start_autovernier() (pymeasure.instruments.hp.HP8116A method)

 	start_buffer() (pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley2700 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	(pymeasure.instruments.signalrecovery.DSP7225 method)

 	(pymeasure.instruments.signalrecovery.DSP7265 method)

 	start_frequency (pymeasure.instruments.advantest.advantestR3767CG.AdvantestR3767CG property)

 	(pymeasure.instruments.agilent.Agilent8257D property)

 	(pymeasure.instruments.agilent.Agilent8722ES property)

 	(pymeasure.instruments.agilent.AgilentE4408B property)

 	(pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	start_power (pymeasure.instruments.agilent.Agilent8257D property)

 	start_ramp() (pymeasure.instruments.danfysik.Danfysik8500 method)

 	start_sequence() (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X method)

 	(pymeasure.instruments.danfysik.Danfysik8500 method)

 	(pymeasure.instruments.rohdeschwarz.hmp.HMP4040 method)

 	start_sequence_program() (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X method)

 	start_step_sweep() (pymeasure.instruments.agilent.Agilent8257D method)

 	startup() (pymeasure.experiment.procedure.Procedure method)

 	(pymeasure.experiment.procedure.UnknownProcedure method)

 	state (pymeasure.instruments.ami.AMI430 property)

 	status (pymeasure.instruments.agilent.agilentB1500.SMU property)

 	(pymeasure.instruments.andeenhagerling.AH2700A property)

 	(pymeasure.instruments.danfysik.Danfysik8500 property)

 	(pymeasure.instruments.eurotest.EurotestHPP120256 property)

 	(pymeasure.instruments.fwbell.FWBell5080 property)

 	(pymeasure.instruments.heidenhain.ND287 property)

 	(pymeasure.instruments.hp.HP6632A property)

 	(pymeasure.instruments.hp.HP8116A property)

 	(pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	(pymeasure.instruments.hp.HPLegacyInstrument property)

 	(pymeasure.instruments.Instrument property)

 	(pymeasure.instruments.ipgphotonics.yar.YAR property)

 	(pymeasure.instruments.keithley.Keithley2000 property)

 	(pymeasure.instruments.keithley.Keithley2200 property)

 	(pymeasure.instruments.keithley.Keithley2260B property)

 	(pymeasure.instruments.keithley.Keithley2306 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.keithley.Keithley2600 property)

 	(pymeasure.instruments.keithley.Keithley2700 property)

 	(pymeasure.instruments.keithley.Keithley2750 property)

 	(pymeasure.instruments.keithley.Keithley6221 property)

 	(pymeasure.instruments.keithley.Keithley6517B property)

 	(pymeasure.instruments.keysight.KeysightE36312A property)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	(pymeasure.instruments.parker.ParkerGV6 property)

 	(pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	(pymeasure.instruments.srs.SR510 property)

 	(pymeasure.instruments.tcpowerconversion.CXN property)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

 	(pymeasure.instruments.teledyne.TeledyneT3AFG property)

 	(pymeasure.instruments.texio.TexioPSW360L30 property)

 	(pymeasure.instruments.velleman.VellemanK8090 property)

 	status() (pymeasure.instruments.keithley.Keithley2400 method)

 	status_byte_register (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X property)

 	status_desc (pymeasure.instruments.hp.HP3437A attribute)

 	(pymeasure.instruments.hp.HP3478A attribute)

 	(pymeasure.instruments.hp.HP6632A attribute)

 	(pymeasure.instruments.hp.HPLegacyInstrument attribute)

 	status_hex (pymeasure.instruments.danfysik.Danfysik8500 property)

 	status_info_shown (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	status_preset() (pymeasure.instruments.rohdeschwarz.sfm.SFM method)

 	status_reg (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	StatusRegister (class in pymeasure.instruments.hp.hp856Xx)

 	std_current (pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	std_resistance (pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	std_voltage (pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	step (pymeasure.instruments.agilent.agilent4156.VARX property)

 	step_current_down() (pymeasure.instruments.rohdeschwarz.hmp.HMP4040 method)

 	step_current_up() (pymeasure.instruments.rohdeschwarz.hmp.HMP4040 method)

 	step_points (pymeasure.instruments.agilent.Agilent8257D property)

 	step_position (pymeasure.instruments.anaheimautomation.DPSeriesMotorController property)

 	step_voltage_down() (pymeasure.instruments.rohdeschwarz.hmp.HMP4040 method)

 	step_voltage_up() (pymeasure.instruments.rohdeschwarz.hmp.HMP4040 method)

 	stepd (pymeasure.instruments.attocube.anc300.Axis property)

 	stepEnabled() (pymeasure.display.inputs.IntegerInput method)

 	(pymeasure.display.inputs.ScientificInput method)

 	steps_to_absolute() (pymeasure.instruments.anaheimautomation.DPSeriesMotorController method)

 	stepu (pymeasure.instruments.attocube.anc300.Axis property)

 	StimulusResponse (pymeasure.instruments.hp.hp856Xx.SweepCoupleMode attribute)

 	stop (pymeasure.instruments.agilent.agilent4156.VARX property)

 	STOP (pymeasure.instruments.agilent.agilentB1500.StaircaseSweepPostOutput attribute)

 	stop() (pymeasure.experiment.listeners.Recorder method)

 	(pymeasure.instruments.advantest.advantestR624X.AdvantestR624X method)

 	(pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	(pymeasure.instruments.agilent.agilent4156.Agilent4156 method)

 	(pymeasure.instruments.anaheimautomation.DPSeriesMotorController method)

 	(pymeasure.instruments.attocube.anc300.Axis method)

 	(pymeasure.instruments.keysight.KeysightDSOX1102G method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.ni.virtualbench.VirtualBench.FunctionGenerator method)

 	(pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	(pymeasure.instruments.parker.ParkerGV6 method)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope method)

 	(pymeasure.instruments.thermotron.Thermotron3800 method)

 	stop_all() (pymeasure.instruments.attocube.anc300.ANC300Controller method)

 	stop_buffer() (pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley2700 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	stop_frequency (pymeasure.instruments.advantest.advantestR3767CG.AdvantestR3767CG property)

 	(pymeasure.instruments.agilent.Agilent8257D property)

 	(pymeasure.instruments.agilent.Agilent8722ES property)

 	(pymeasure.instruments.agilent.AgilentE4408B property)

 	(pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	stop_power (pymeasure.instruments.agilent.Agilent8257D property)

 	stop_ramp() (pymeasure.instruments.danfysik.Danfysik8500 method)

 	stop_sequence() (pymeasure.instruments.danfysik.Danfysik8500 method)

 	(pymeasure.instruments.rohdeschwarz.hmp.HMP4040 method)

 	stop_step_sweep() (pymeasure.instruments.agilent.Agilent8257D method)

 	StoppableQThread (class in pymeasure.display.thread)

 	store_config (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X property)

 	store_image() (pymeasure.instruments.anritsu.AnritsuMS464xB method)

 	store_metadata() (pymeasure.experiment.results.Results method)

 	store_open() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	store_sequence_command() (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X method)

 	store_short() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	store_thru() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	stored_reading (pymeasure.instruments.hp.HP34401A property)

 	stored_readings_count (pymeasure.instruments.hp.HP34401A property)

 	StringInput (class in pymeasure.display.inputs)

 	strip_chart_dat1 (pymeasure.instruments.srs.SR860 property)

 	strip_chart_dat2 (pymeasure.instruments.srs.SR860 property)

 	strip_chart_dat3 (pymeasure.instruments.srs.SR860 property)

 	strip_chart_dat4 (pymeasure.instruments.srs.SR860 property)

 	subsystem_info (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	subtract_display_line_from_trace_b() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	supply_current (pymeasure.instruments.ami.AMI430 property)

 	sweep_auto_abort() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	sweep_couple (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	sweep_delay_time (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X property)

 	sweep_marker_frequency (pymeasure.instruments.hp.HP8116A property)

 	sweep_mode (pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel property)

 	(pymeasure.instruments.keysight.KeysightN7776C property)

 	sweep_output (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	sweep_points (pymeasure.instruments.keysight.KeysightN7776C property)

 	sweep_rate (pymeasure.instruments.oxfordinstruments.IPS120_10 property)

 	sweep_single (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	sweep_speed (pymeasure.instruments.keysight.KeysightN7776C property)

 	sweep_start (pymeasure.instruments.hp.HP8116A property)

 	sweep_state (pymeasure.instruments.keysight.KeysightN7776C property)

 	sweep_status (pymeasure.instruments.oxfordinstruments.IPS120_10 property)

 	(pymeasure.instruments.oxfordinstruments.ITC503 property)

 	sweep_step (pymeasure.instruments.keysight.KeysightN7776C property)

 	sweep_stop (pymeasure.instruments.hp.HP8116A property)

 	sweep_table (pymeasure.instruments.oxfordinstruments.ITC503 property)

 	sweep_time (pymeasure.instruments.agilent.Agilent8722ES property)

 	(pymeasure.instruments.agilent.AgilentE4408B property)

 	(pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel property)

 	(pymeasure.instruments.hp.HP8116A property)

 	(pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	(pymeasure.instruments.rohdeschwarz.fsl.FSL property)

 	sweep_timing() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	sweep_twoway (pymeasure.instruments.keysight.KeysightN7776C property)

 	sweep_type (pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel property)

 	sweep_wl_start (pymeasure.instruments.keysight.KeysightN7776C property)

 	sweep_wl_stop (pymeasure.instruments.keysight.KeysightN7776C property)

 	SweepCoupleMode (class in pymeasure.instruments.hp.hp856Xx)

 	SweepMode (class in pymeasure.instruments.advantest.advantestR624X)

 	(class in pymeasure.instruments.agilent.agilentB1500)

 	SweepOut (class in pymeasure.instruments.hp.hp856Xx)

 	SwissArmyFake (class in pymeasure.instruments.fakes)

 	switch_heater_enabled (pymeasure.instruments.oxfordinstruments.IPS120_10 property)

 	switch_heater_status (pymeasure.instruments.oxfordinstruments.IPS120_10 property)

 	switch_off (pymeasure.instruments.velleman.VellemanK8090 property)

 	switch_on (pymeasure.instruments.velleman.VellemanK8090 property)

 	SwitchHeaterError (class in pymeasure.instruments.oxfordinstruments.ips120_10)

 	sync_sequence() (pymeasure.instruments.danfysik.Danfysik8500 method)

 	synchronous_sweep_source() (pymeasure.instruments.agilent.agilentB1500.SMU method)

 	system_current (pymeasure.instruments.temptronic.ATS525 property)

 	system_number (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	system_setup (pymeasure.instruments.keysight.KeysightDSOX1102G property)

 	system_status_code (pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDBase property)

 	system_temp (pymeasure.instruments.toptica.ibeamsmart.IBeamSmart property)

 	SystemStatusCode (class in pymeasure.instruments.siglenttechnologies.siglent_spdbase)

T

 	
 	Table (class in pymeasure.display.widgets.table_widget)

 	TableWidget (class in pymeasure.display.widgets.table_widget)

 	TabWidget (class in pymeasure.display.widgets.tab_widget)

 	talk_ascii (pymeasure.instruments.hp.HP3437A property)

 	target_current (pymeasure.instruments.ami.AMI430 property)

 	target_field (pymeasure.instruments.ami.AMI430 property)

 	target_voltage (pymeasure.instruments.oxfordinstruments.ITC503 property)

 	target_voltage_table (pymeasure.instruments.oxfordinstruments.ITC503 property)

 	TC038 (class in pymeasure.instruments.hcp)

 	TC038D (class in pymeasure.instruments.hcp)

 	TDK_Gen40_38 (class in pymeasure.instruments.tdk.tdk_gen40_38)

 	TDK_Gen80_65 (class in pymeasure.instruments.tdk.tdk_gen80_65)

 	TDS2000 (class in pymeasure.instruments.tektronix)

 	TEDSetTemperature (pymeasure.instruments.thorlabs.ThorlabsPro8000 property)

 	TEDStatus (pymeasure.instruments.thorlabs.ThorlabsPro8000 property)

 	TeledyneOscilloscope (class in pymeasure.instruments.teledyne)

 	TeledyneOscilloscopeChannel (class in pymeasure.instruments.teledyne.teledyne_oscilloscope)

 	TeledyneT3AFG (class in pymeasure.instruments.teledyne)

 	TelnetAdapter (class in pymeasure.adapters)

 	temp (pymeasure.instruments.toptica.ibeamsmart.IBeamSmart property)

 	temperature (pymeasure.instruments.agilent.Agilent34450A property)

 	(pymeasure.instruments.fluke.Fluke7341 property)

 	(pymeasure.instruments.hcp.TC038 property)

 	(pymeasure.instruments.hcp.TC038D property)

 	(pymeasure.instruments.ipgphotonics.yar.YAR property)

 	(pymeasure.instruments.keithley.Keithley2000 property)

 	(pymeasure.instruments.tcpowerconversion.CXN property)

 	(pymeasure.instruments.temptronic.ATSBase property)

 	(pymeasure.instruments.thermotron.Thermotron3800 property)

 	temperature_1 (pymeasure.instruments.oxfordinstruments.ITC503 property)

 	temperature_2 (pymeasure.instruments.oxfordinstruments.ITC503 property)

 	temperature_3 (pymeasure.instruments.oxfordinstruments.ITC503 property)

 	temperature_celsius (pymeasure.instruments.lakeshore.LakeShore211 property)

 	temperature_condition_status_code (pymeasure.instruments.temptronic.ATSBase property)

 	temperature_digits (pymeasure.instruments.keithley.Keithley2000 property)

 	temperature_error (pymeasure.instruments.oxfordinstruments.ITC503 property)

 	temperature_event_status (pymeasure.instruments.temptronic.ATSBase property)

 	temperature_fahrenheit (pymeasure.instruments.lakeshore.LakeShore211 property)

 	temperature_kelvin (pymeasure.instruments.lakeshore.LakeShore211 property)

 	temperature_limit_air_dut (pymeasure.instruments.temptronic.ATSBase property)

 	temperature_limit_air_high (pymeasure.instruments.temptronic.ATSBase property)

 	temperature_limit_air_low (pymeasure.instruments.temptronic.ATSBase property)

 	temperature_nplc (pymeasure.instruments.keithley.Keithley2000 property)

 	temperature_reference (pymeasure.instruments.keithley.Keithley2000 property)

 	temperature_seed (pymeasure.instruments.ipgphotonics.yar.YAR property)

 	temperature_sensor (pymeasure.instruments.lakeshore.LakeShore211 property)

 	temperature_setpoint (pymeasure.instruments.oxfordinstruments.ITC503 property)

 	(pymeasure.instruments.temptronic.ATSBase property)

 	temperature_setpoint_window (pymeasure.instruments.temptronic.ATSBase property)

 	temperature_soak_time (pymeasure.instruments.temptronic.ATSBase property)

 	TemperatureStatusCode (class in pymeasure.instruments.temptronic.temptronic_base)

 	terminals_used (pymeasure.instruments.hp.HP34401A property)

 	test_method() (pymeasure.generator.Generator method)

 	test_property_getter() (pymeasure.generator.Generator method)

 	test_property_setter() (pymeasure.generator.Generator method)

 	test_property_setter_batch() (pymeasure.generator.Generator method)

 	TexioPSW360L30 (class in pymeasure.instruments.texio)

 	text_enabled (pymeasure.instruments.keithley.Keithley2700 property)

 	textFromValue() (pymeasure.display.inputs.ScientificInput method)

 	Thermotron3800 (class in pymeasure.instruments.thermotron)

 	Thermotron3800.Thermotron3800Mode (class in pymeasure.instruments.thermotron)

 	theta (pymeasure.instruments.ametek.Ametek7270 property)

 	(pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	ThorlabsPM100USB (class in pymeasure.instruments.thorlabs)

 	ThorlabsPro8000 (class in pymeasure.instruments.thorlabs)

 	threshold (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	TIME (pymeasure.instruments.agilent.agilentB1500.ADCMode attribute)

 	time (pymeasure.instruments.fakes.SwissArmyFake property)

 	(pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	time_constant (pymeasure.instruments.ametek.Ametek7270 property)

 	(pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	(pymeasure.instruments.srs.SR510 property)

 	(pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	time_stamp (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 property)

 	timebase (pymeasure.instruments.keysight.KeysightDSOX1102G property)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	(pymeasure.instruments.srs.SR860 property)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope property)

 	timebase_hor_magnify (pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	timebase_hor_position (pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	timebase_mode (pymeasure.instruments.keysight.KeysightDSOX1102G property)

 	timebase_offset (pymeasure.instruments.keysight.KeysightDSOX1102G property)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope property)

 	timebase_range (pymeasure.instruments.keysight.KeysightDSOX1102G property)

 	timebase_scale (pymeasure.instruments.keysight.KeysightDSOX1102G property)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope property)

 	timebase_setup() (pymeasure.instruments.keysight.KeysightDSOX1102G method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope method)

 	to_dict() (pymeasure.instruments.agilent.agilentB1500.QueryLearn static method)

 	total_cycle_count (pymeasure.instruments.temptronic.ATSBase property)

 	Trace (class in pymeasure.instruments.anritsu.anritsuMS464xB)

 	(class in pymeasure.instruments.hp.hp856Xx)

 	
 	trace() (pymeasure.instruments.agilent.AgilentE4408B method)

 	trace_1 (pymeasure.instruments.advantest.advantestR3767CG.AdvantestR3767CG property)

 	trace_a_minus_b_enabled (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	trace_a_minus_b_plus_dl_enabled (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	trace_data_format (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	trace_df() (pymeasure.instruments.agilent.AgilentE4408B method)

 	trace_marker (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	trace_marker_center (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	trace_mode (pymeasure.instruments.rohdeschwarz.fsl.FSL property)

 	tracking (pymeasure.instruments.ni.virtualbench.VirtualBench.PowerSupply property)

 	tracking_adjust_coarse (pymeasure.instruments.hp.HP8560A property)

 	tracking_adjust_fine (pymeasure.instruments.hp.HP8560A property)

 	train_magnet() (pymeasure.instruments.oxfordinstruments.IPS120_10 method)

 	transfer_sequence() (pymeasure.instruments.rohdeschwarz.hmp.HMP4040 method)

 	translate_to_global() (pymeasure.display.widgets.table_widget.PandasModelBase method)

 	(pymeasure.display.widgets.table_widget.PandasModelByColumn method)

 	(pymeasure.display.widgets.table_widget.PandasModelByRow method)

 	translate_to_local() (pymeasure.display.widgets.table_widget.PandasModelBase method)

 	(pymeasure.display.widgets.table_widget.PandasModelByColumn method)

 	(pymeasure.display.widgets.table_widget.PandasModelByRow method)

 	triad() (pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley2700 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	trigger (pymeasure.instruments.hp.HP3437A property)

 	(pymeasure.instruments.hp.HP3478A property)

 	TRIGGER (pymeasure.instruments.hp.hp856Xx.StatusRegister attribute)

 	trigger (pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope property)

 	trigger() (pymeasure.instruments.activetechnologies.AWG401x_AWG method)

 	(pymeasure.instruments.advantest.advantestR624X.AdvantestR624X method)

 	(pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	(pymeasure.instruments.agilent.Agilent33220A method)

 	(pymeasure.instruments.agilent.Agilent33500 method)

 	(pymeasure.instruments.andeenhagerling.AH2500A method)

 	(pymeasure.instruments.andeenhagerling.AH2700A method)

 	(pymeasure.instruments.anritsu.AnritsuMS464xB method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	trigger_auto_delay_enabled (pymeasure.instruments.hp.HP34401A property)

 	trigger_continuous() (pymeasure.instruments.anritsu.AnritsuMS464xB method)

 	trigger_count (pymeasure.instruments.hp.HP34401A property)

 	(pymeasure.instruments.keithley.Keithley2000 property)

 	(pymeasure.instruments.keithley.Keithley2400 property)

 	trigger_coupling (pymeasure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel property)

 	trigger_delay (pymeasure.instruments.hp.HP34401A property)

 	(pymeasure.instruments.keithley.Keithley2000 property)

 	(pymeasure.instruments.keithley.Keithley2400 property)

 	trigger_immediately() (pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	trigger_in (pymeasure.instruments.keysight.KeysightN7776C property)

 	trigger_input (pymeasure.instruments.advantest.advantestR624X.SMUChannel property)

 	trigger_level (pymeasure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel property)

 	trigger_level2 (pymeasure.instruments.lecroy.lecroyT3DSO1204.LeCroyT3DSO1204Channel property)

 	trigger_link_function_enabled (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X property)

 	trigger_mode (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope property)

 	trigger_on_bus() (pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	trigger_on_external() (pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	trigger_out (pymeasure.instruments.keysight.KeysightN7776C property)

 	trigger_output_signal() (pymeasure.instruments.advantest.advantestR624X.AdvantestR624X method)

 	trigger_output_timing (pymeasure.instruments.advantest.advantestR624X.SMUChannel property)

 	trigger_ramp_to_level() (pymeasure.instruments.yokogawa.YokogawaGS200 method)

 	trigger_select (pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope property)

 	trigger_setup() (pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope method)

 	trigger_single() (pymeasure.instruments.anritsu.AnritsuMS464xB method)

 	trigger_single_autozero() (pymeasure.instruments.hp.HP34401A method)

 	trigger_slope (pymeasure.instruments.hp.HP8116A property)

 	(pymeasure.instruments.teledyne.teledyne_oscilloscope.TeledyneOscilloscopeChannel property)

 	trigger_source (pymeasure.instruments.activetechnologies.AWG401x_AWG property)

 	(pymeasure.instruments.agilent.Agilent33220A property)

 	(pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.AgilentE4980 property)

 	(pymeasure.instruments.anritsu.AnritsuMS464xB property)

 	(pymeasure.instruments.hp.HP34401A property)

 	trigger_state (pymeasure.instruments.agilent.Agilent33220A property)

 	trigger_sweep() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	triggered_caplossvolt() (pymeasure.instruments.andeenhagerling.AH2500A method)

 	(pymeasure.instruments.andeenhagerling.AH2700A method)

 	TriggerInputType (class in pymeasure.instruments.advantest.advantestR624X)

 	TriggerMode (class in pymeasure.instruments.hp.hp856Xx)

 	TriggerOutputSignalTiming (class in pymeasure.instruments.advantest.advantestR624X)

 	tristate_lines() (pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalInputOutput method)

 	tune_capacity (pymeasure.instruments.tcpowerconversion.CXN property)

 	(pymeasure.instruments.tcpowerconversion.tccxn.PresetChannel property)

 	tuner (pymeasure.instruments.tcpowerconversion.CXN property)

 	TV_country (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	TV_standard (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

U

 	
 	unblank_front() (pymeasure.instruments.srs.SR570 method)

 	under_voltage (pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

 	Uniform (pymeasure.instruments.hp.hp856Xx.WindowType attribute)

 	unique_filename() (in module pymeasure.experiment.results)

 	unit (pymeasure.instruments.fluke.Fluke7341 property)

 	(pymeasure.instruments.lakeshore.LakeShore421 property)

 	(pymeasure.instruments.lakeshore.LakeShore425 property)

 	(pymeasure.instruments.lecroy.lecroyT3DSO1204.LeCroyT3DSO1204Channel property)

 	(pymeasure.instruments.mksinst.mks937b.MKS937B property)

 	units (pymeasure.instruments.fwbell.FWBell5080 property)

 	(pymeasure.instruments.heidenhain.ND287 property)

 	(pymeasure.instruments.newport.esp300.Axis property)

 	UnknownProcedure (class in pymeasure.experiment.procedure)

 	unlock_harmonic_number() (pymeasure.instruments.hp.HP8561B method)

 	update() (pymeasure.display.curves.Crosshairs method)

 	update_channels() (pymeasure.instruments.anritsu.AnritsuMS464xB method)

 	
 	update_data() (pymeasure.display.curves.ResultsCurve method)

 	update_estimates() (pymeasure.display.widgets.estimator_widget.EstimatorWidget method)

 	update_frequency_range() (pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel method)

 	update_line() (pymeasure.experiment.experiment.Experiment method)

 	update_parameter() (pymeasure.display.inputs.Input method)

 	update_plot() (pymeasure.experiment.experiment.Experiment method)

 	update_status() (pymeasure.experiment.workers.Worker method)

 	update_traces() (pymeasure.instruments.anritsu.anritsuMS464xB.MeasurementChannel method)

 	updateEditorGeometry() (pymeasure.display.widgets.sequencer_widget.ComboBoxDelegate method)

 	(pymeasure.display.widgets.sequencer_widget.LineEditDelegate method)

 	use_absolute_position() (pymeasure.instruments.parker.ParkerGV6 method)

 	use_external_source (pymeasure.instruments.rohdeschwarz.sfm.Sound_Channel property)

 	use_front_terminals() (pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	use_rear_terminals() (pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	use_relative_position() (pymeasure.instruments.parker.ParkerGV6 method)

V

 	
 	V (pymeasure.instruments.hp.hp856Xx.AmplitudeUnits attribute)

 	validate() (pymeasure.display.inputs.ScientificInput method)

 	(pymeasure.display.widgets.sequencer_widget.ExpressionValidator method)

 	validate_auto_range_terminal() (pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter method)

 	validate_channel() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope method)

 	(pymeasure.instruments.ni.virtualbench.VirtualBench.PowerSupply method)

 	validate_dmm_function() (pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter method)

 	validate_lines() (pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalInputOutput method)

 	validate_range() (pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalMultimeter static method)

 	validate_trigger_instance() (pymeasure.instruments.ni.virtualbench.VirtualBench.MixedSignalOscilloscope static method)

 	valueFromText() (pymeasure.display.inputs.ScientificInput method)

 	values() (pymeasure.adapters.Adapter method)

 	(pymeasure.adapters.FakeAdapter method)

 	(pymeasure.adapters.PrologixAdapter method)

 	(pymeasure.adapters.SerialAdapter method)

 	(pymeasure.adapters.TelnetAdapter method)

 	(pymeasure.adapters.VISAAdapter method)

 	(pymeasure.adapters.VXI11Adapter method)

 	(pymeasure.instruments.common_base.CommonBase method)

 	(pymeasure.instruments.hp.HPLegacyInstrument method)

 	(pymeasure.instruments.keysight.KeysightE36312A method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.rohdeschwarz.sfm.Sound_Channel method)

 	(pymeasure.instruments.tcpowerconversion.CXN method)

 	(pymeasure.instruments.tcpowerconversion.tccxn.PresetChannel method)

 	valve_scaling (pymeasure.instruments.oxfordinstruments.ITC503 property)

 	VAR1 (class in pymeasure.instruments.agilent.agilent4156)

 	VAR2 (class in pymeasure.instruments.agilent.agilent4156)

 	VARD (class in pymeasure.instruments.agilent.agilent4156)

 	VARX (class in pymeasure.instruments.agilent.agilent4156)

 	VectorParameter (class in pymeasure.experiment.parameters)

 	VellemanK8090 (class in pymeasure.instruments.velleman)

 	VellemanK8090Switches (class in pymeasure.instruments.velleman)

 	verify_calibration_data() (pymeasure.instruments.hp.HP3478A method)

 	verify_calibration_entry() (pymeasure.instruments.hp.HP3478A method)

 	version (pymeasure.adapters.PrologixAdapter property)

 	(pymeasure.instruments.attocube.anc300.ANC300Controller property)

 	(pymeasure.instruments.oxfordinstruments.IPS120_10 property)

 	(pymeasure.instruments.oxfordinstruments.ITC503 property)

 	(pymeasure.instruments.rohdeschwarz.hmp.HMP4040 property)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

 	(pymeasure.instruments.toptica.ibeamsmart.IBeamSmart property)

 	(pymeasure.instruments.velleman.VellemanK8090 property)

 	vhighest (pymeasure.instruments.andeenhagerling.AH2500A property)

 	(pymeasure.instruments.andeenhagerling.AH2700A property)

 	Video (pymeasure.instruments.hp.hp856Xx.TriggerMode attribute)

 	video_average (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	video_bandwidth (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	(pymeasure.instruments.rohdeschwarz.fsl.FSL property)

 	video_bandwidth_to_resolution_bandwidth (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	video_trigger_level (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	view_sense_modes (pymeasure.instruments.anritsu.AnritsuMS2090A property)

 	view_trace() (pymeasure.instruments.hp.hp856Xx.HP856Xx method)

 	VirtualBench (class in pymeasure.instruments.ni.virtualbench)

 	VirtualBench.DigitalInputOutput (class in pymeasure.instruments.ni.virtualbench)

 	VirtualBench.DigitalMultimeter (class in pymeasure.instruments.ni.virtualbench)

 	VirtualBench.FunctionGenerator (class in pymeasure.instruments.ni.virtualbench)

 	VirtualBench.MixedSignalOscilloscope (class in pymeasure.instruments.ni.virtualbench)

 	VirtualBench.PowerSupply (class in pymeasure.instruments.ni.virtualbench)

 	VirtualBench_Direct (class in pymeasure.instruments.ni.virtualbench)

 	VISAAdapter (class in pymeasure.adapters)

 	vision_average_enabled (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	vision_balance (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	vision_carrier_enabled (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	vision_carrier_frequency (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	vision_clamping_average (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	vision_clamping_enabled (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	vision_clamping_mode (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	vision_precorrection_enabled (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	vision_residual_carrier_level (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	vision_sideband_filter_enabled (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	vision_videosignal_enabled (pymeasure.instruments.rohdeschwarz.sfm.SFM property)

 	visit_tree() (pymeasure.display.widgets.sequencer_widget.SequencerTreeModel method)

 	VMU (class in pymeasure.instruments.agilent.agilent4156)

 	voltage (pymeasure.instruments.agilent.Agilent34450A property)

 	VOLTAGE (pymeasure.instruments.agilent.agilentB1500.MeasOpMode attribute)

 	voltage (pymeasure.instruments.aja.DCXS property)

 	(pymeasure.instruments.ametek.Ametek7270 property)

 	(pymeasure.instruments.attocube.anc300.Axis property)

 	(pymeasure.instruments.bkprecision.BKPrecision9130B property)

 	(pymeasure.instruments.deltaelektronika.SM7045D property)

 	(pymeasure.instruments.eurotest.EurotestHPP120256 property)

 	(pymeasure.instruments.fakes.SwissArmyFake property)

 	(pymeasure.instruments.hp.HP6632A property)

 	(pymeasure.instruments.keithley.Keithley2000 property)

 	(pymeasure.instruments.keithley.keithley2200.PSChannel property)

 	(pymeasure.instruments.keithley.Keithley2260B property)

 	(pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.keithley.Keithley6517B property)

 	(pymeasure.instruments.keysight.keysightE36312A.VoltageChannel property)

 	(pymeasure.instruments.keysight.KeysightN5767A property)

 	(pymeasure.instruments.rohdeschwarz.hmp.HMP4040 property)

 	(pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDChannel property)

 	(pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

 	(pymeasure.instruments.texio.TexioPSW360L30 property)

 	
 	voltage_1 (pymeasure.instruments.razorbill.razorbillRP100 property)

 	voltage_2 (pymeasure.instruments.razorbill.razorbillRP100 property)

 	voltage_ac (pymeasure.instruments.agilent.Agilent34410A property)

 	(pymeasure.instruments.agilent.Agilent34450A property)

 	(pymeasure.instruments.hp.HP34401A property)

 	voltage_ac_auto_range (pymeasure.instruments.agilent.Agilent34450A property)

 	voltage_ac_bandwidth (pymeasure.instruments.keithley.Keithley2000 property)

 	voltage_ac_digits (pymeasure.instruments.keithley.Keithley2000 property)

 	voltage_ac_nplc (pymeasure.instruments.keithley.Keithley2000 property)

 	voltage_ac_range (pymeasure.instruments.agilent.Agilent34450A property)

 	(pymeasure.instruments.keithley.Keithley2000 property)

 	voltage_ac_reference (pymeasure.instruments.keithley.Keithley2000 property)

 	voltage_ac_resolution (pymeasure.instruments.agilent.Agilent34450A property)

 	voltage_amplitude (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	voltage_amplitude_max (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	voltage_amplitude_min (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	voltage_and_current (pymeasure.instruments.rohdeschwarz.hmp.HMP4040 property)

 	voltage_auto_range (pymeasure.instruments.agilent.Agilent34450A property)

 	voltage_dc (pymeasure.instruments.agilent.Agilent34410A property)

 	voltage_digits (pymeasure.instruments.keithley.Keithley2000 property)

 	voltage_filter_count (pymeasure.instruments.keithley.Keithley2450 property)

 	voltage_filter_type (pymeasure.instruments.keithley.Keithley2450 property)

 	voltage_fixed_level_sweep() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	voltage_fixed_pulsed_sweep() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	voltage_high (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	(pymeasure.instruments.agilent.Agilent33220A property)

 	(pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	voltage_high_max (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	voltage_high_min (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	voltage_limit (pymeasure.instruments.ami.AMI430 property)

 	(pymeasure.instruments.keithley.keithley2200.PSChannel property)

 	(pymeasure.instruments.yokogawa.YokogawaGS200 property)

 	voltage_limit_enabled (pymeasure.instruments.keithley.keithley2200.PSChannel property)

 	voltage_low (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	(pymeasure.instruments.agilent.Agilent33220A property)

 	(pymeasure.instruments.agilent.Agilent33500 property)

 	(pymeasure.instruments.agilent.agilent33500.Agilent33500Channel property)

 	voltage_low_max (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	voltage_low_min (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	voltage_name (pymeasure.instruments.agilent.agilent4156.SMU property)

 	(pymeasure.instruments.agilent.agilent4156.VMU property)

 	(pymeasure.instruments.agilent.agilent4156.VSU property)

 	voltage_nplc (pymeasure.instruments.keithley.Keithley2000 property)

 	(pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.keithley.Keithley6517B property)

 	voltage_offset (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	voltage_offset_max (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	voltage_offset_min (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	voltage_output_off_state (pymeasure.instruments.keithley.Keithley2450 property)

 	voltage_pulsed_source() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	voltage_pulsed_sweep() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	voltage_ramp (pymeasure.instruments.eurotest.EurotestHPP120256 property)

 	voltage_random_pulsed_sweep() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	voltage_random_sweep() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	voltage_range (pymeasure.instruments.agilent.Agilent34450A property)

 	(pymeasure.instruments.eurotest.EurotestHPP120256 property)

 	(pymeasure.instruments.keithley.Keithley2000 property)

 	(pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	(pymeasure.instruments.keithley.Keithley6517B property)

 	(pymeasure.instruments.keysight.KeysightN5767A property)

 	voltage_reference (pymeasure.instruments.keithley.Keithley2000 property)

 	voltage_resolution (pymeasure.instruments.agilent.Agilent34450A property)

 	voltage_set_random_memory() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	voltage_setpoint (pymeasure.instruments.eurotest.EurotestHPP120256 property)

 	(pymeasure.instruments.keithley.keithley2200.PSChannel property)

 	(pymeasure.instruments.keithley.Keithley2260B property)

 	(pymeasure.instruments.keysight.keysightE36312A.VoltageChannel property)

 	(pymeasure.instruments.siglenttechnologies.siglent_spdbase.SPDChannel property)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 property)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 property)

 	(pymeasure.instruments.texio.TexioPSW360L30 property)

 	voltage_source() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	voltage_step (pymeasure.instruments.rohdeschwarz.hmp.HMP4040 property)

 	voltage_sweep() (pymeasure.instruments.advantest.advantestR624X.SMUChannel method)

 	voltage_to_max() (pymeasure.instruments.rohdeschwarz.hmp.HMP4040 method)

 	voltage_to_min() (pymeasure.instruments.rohdeschwarz.hmp.HMP4040 method)

 	voltage_unit (pymeasure.instruments.activetechnologies.AWG401x.ChannelAFG property)

 	VoltageChannel (class in pymeasure.instruments.keysight.keysightE36312A)

 	VoltageRange (class in pymeasure.instruments.advantest.advantestR624X)

 	VSH (class in pymeasure.instruments.thyracont.smartline_v2)

 	VSR (class in pymeasure.instruments.thyracont.smartline_v2)

 	VSU (class in pymeasure.instruments.agilent.agilent4156)

 	VXI11Adapter (class in pymeasure.adapters)

W

 	
 	W (pymeasure.instruments.hp.hp856Xx.AmplitudeUnits attribute)

 	wait() (pymeasure.instruments.anritsu.AnritsuMS9710C method)

 	wait_for() (pymeasure.instruments.andeenhagerling.AH2700A method)

 	(pymeasure.instruments.attocube.anc300.ANC300Controller method)

 	(pymeasure.instruments.Channel method)

 	(pymeasure.instruments.common_base.CommonBase method)

 	(pymeasure.instruments.fwbell.FWBell5080 method)

 	(pymeasure.instruments.Instrument method)

 	(pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.keithley.Keithley2200 method)

 	(pymeasure.instruments.keithley.Keithley2260B method)

 	(pymeasure.instruments.keithley.Keithley2306 method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley2600 method)

 	(pymeasure.instruments.keithley.Keithley2700 method)

 	(pymeasure.instruments.keithley.Keithley2750 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	(pymeasure.instruments.keysight.KeysightE36312A method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.signalrecovery.DSP7225 method)

 	(pymeasure.instruments.signalrecovery.DSP7265 method)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 method)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 method)

 	(pymeasure.instruments.teledyne.TeledyneT3AFG method)

 	(pymeasure.instruments.texio.TexioPSW360L30 method)

 	wait_for_buffer() (pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley2700 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	(pymeasure.instruments.signalrecovery.DSP7225 method)

 	(pymeasure.instruments.signalrecovery.DSP7265 method)

 	(pymeasure.instruments.srs.SR830 method)

 	wait_for_completion() (pymeasure.instruments.anaheimautomation.DPSeriesMotorController method)

 	wait_for_current() (pymeasure.instruments.danfysik.Danfysik8500 method)

 	wait_for_data() (pymeasure.experiment.experiment.Experiment method)

 	wait_for_holding() (pymeasure.instruments.ami.AMI430 method)

 	wait_for_idle() (pymeasure.instruments.oxfordinstruments.IPS120_10 method)

 	wait_for_output_voltage_reached() (pymeasure.instruments.eurotest.EurotestHPP120256 method)

 	wait_for_ready() (pymeasure.instruments.danfysik.Danfysik8500 method)

 	wait_for_settling() (pymeasure.instruments.temptronic.ATSBase method)

 	wait_for_srq() (pymeasure.adapters.PrologixAdapter method)

 	(pymeasure.adapters.VISAAdapter method)

 	wait_for_stop() (pymeasure.instruments.newport.esp300.Axis method)

 	wait_for_sweep() (pymeasure.instruments.anritsu.AnritsuMS9710C method)

 	wait_for_temperature() (pymeasure.instruments.lakeshore.lakeshore_base.LakeShoreTemperatureChannel method)

 	(pymeasure.instruments.oxfordinstruments.ITC503 method)

 	wait_for_trigger() (pymeasure.instruments.agilent.Agilent33220A method)

 	(pymeasure.instruments.agilent.Agilent33500 method)

 	wait_time() (pymeasure.instruments.agilent.agilentB1500.AgilentB1500 method)

 	WaitTimeType (class in pymeasure.instruments.agilent.agilentB1500)

 	wave (pymeasure.instruments.fakes.SwissArmyFake property)

 	waveform_abort() (pymeasure.instruments.keithley.Keithley6221 method)

 	waveform_amplitude (pymeasure.instruments.keithley.Keithley6221 property)

 	waveform_arm() (pymeasure.instruments.keithley.Keithley6221 method)

 	waveform_data (pymeasure.instruments.keysight.KeysightDSOX1102G property)

 	waveform_duration_cycles (pymeasure.instruments.keithley.Keithley6221 property)

 	waveform_duration_set_infinity() (pymeasure.instruments.keithley.Keithley6221 method)

 	waveform_duration_time (pymeasure.instruments.keithley.Keithley6221 property)

 	waveform_dutycycle (pymeasure.instruments.keithley.Keithley6221 property)

 	waveform_first_point (pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope property)

 	waveform_format (pymeasure.instruments.keysight.KeysightDSOX1102G property)

 	waveform_frequency (pymeasure.instruments.keithley.Keithley6221 property)

 	waveform_function (pymeasure.instruments.keithley.Keithley6221 property)

 	waveform_offset (pymeasure.instruments.keithley.Keithley6221 property)

 	waveform_phasemarker_line (pymeasure.instruments.keithley.Keithley6221 property)

 	waveform_phasemarker_phase (pymeasure.instruments.keithley.Keithley6221 property)

 	waveform_points (pymeasure.instruments.keysight.KeysightDSOX1102G property)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope property)

 	waveform_points_mode (pymeasure.instruments.keysight.KeysightDSOX1102G property)

 	waveform_preamble (pymeasure.instruments.keysight.KeysightDSOX1102G property)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope property)

 	waveform_ranging (pymeasure.instruments.keithley.Keithley6221 property)

 	waveform_source (pymeasure.instruments.keysight.KeysightDSOX1102G property)

 	waveform_sparsing (pymeasure.instruments.lecroy.LeCroyT3DSO1204 property)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope property)

 	waveform_start() (pymeasure.instruments.keithley.Keithley6221 method)

 	waveform_use_phasemarker (pymeasure.instruments.keithley.Keithley6221 property)

 	waveforms (pymeasure.instruments.activetechnologies.AWG401x_AWG property)

 	wavelength (pymeasure.instruments.keysight.KeysightN7776C property)

 	(pymeasure.instruments.thorlabs.ThorlabsPM100USB property)

 	wavelength_center (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	wavelength_marker_value (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	wavelength_max (pymeasure.instruments.thorlabs.ThorlabsPM100USB property)

 	wavelength_min (pymeasure.instruments.thorlabs.ThorlabsPM100USB property)

 	wavelength_span (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	wavelength_start (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	wavelength_stop (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	wavelength_temperature (pymeasure.instruments.ipgphotonics.yar.YAR property)

 	wavelength_value_in (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	wavelengths (pymeasure.instruments.anritsu.AnritsuMS9710C property)

 	wavetype (pymeasure.instruments.teledyne.teledyneT3AFG.SignalChannel property)

 	WindowType (class in pymeasure.instruments.hp.hp856Xx)

 	wipe_sweep_table() (pymeasure.instruments.oxfordinstruments.ITC503 method)

 	wires (pymeasure.instruments.keithley.Keithley2400 property)

 	(pymeasure.instruments.keithley.Keithley2450 property)

 	wl_logging (pymeasure.instruments.keysight.KeysightN7776C property)

 	Worker (class in pymeasure.experiment.workers)

 	write() (pymeasure.adapters.Adapter method)

 	(pymeasure.adapters.FakeAdapter method)

 	(pymeasure.adapters.PrologixAdapter method)

 	(pymeasure.adapters.SerialAdapter method)

 	(pymeasure.adapters.TelnetAdapter method)

 	(pymeasure.adapters.VISAAdapter method)

 	(pymeasure.adapters.VXI11Adapter method)

 	(pymeasure.instruments.advantest.advantestR624X.AdvantestR624X method)

 	(pymeasure.instruments.agilent.agilentB1500.SMU method)

 	(pymeasure.instruments.anaheimautomation.DPSeriesMotorController method)

 	(pymeasure.instruments.andeenhagerling.AH2700A method)

 	(pymeasure.instruments.Channel method)

 	(pymeasure.instruments.eurotest.EurotestHPP120256 method)

 	(pymeasure.instruments.fwbell.FWBell5080 method)

 	(pymeasure.instruments.hcp.TC038 method)

 	(pymeasure.instruments.hcp.TC038D method)

 	(pymeasure.instruments.hp.HP34401A method)

 	(pymeasure.instruments.hp.HP8116A method)

 	(pymeasure.instruments.hp.HPLegacyInstrument method)

 	(pymeasure.instruments.Instrument method)

 	(pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.keithley.Keithley2260B method)

 	(pymeasure.instruments.keithley.Keithley2306 method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley2600 method)

 	(pymeasure.instruments.keithley.Keithley2700 method)

 	(pymeasure.instruments.keithley.Keithley2750 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	(pymeasure.instruments.keysight.KeysightE36312A method)

 	(pymeasure.instruments.lakeshore.LakeShore421 method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.mksinst.mks937b.MKS937B method)

 	(pymeasure.instruments.ni.virtualbench.VirtualBench.DigitalInputOutput method)

 	(pymeasure.instruments.oxfordinstruments.base.OxfordInstrumentsBase method)

 	(pymeasure.instruments.signalrecovery.DSP7225 method)

 	(pymeasure.instruments.signalrecovery.DSP7265 method)

 	(pymeasure.instruments.tcpowerconversion.CXN method)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 method)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 method)

 	(pymeasure.instruments.teledyne.TeledyneOscilloscope method)

 	(pymeasure.instruments.teledyne.TeledyneT3AFG method)

 	(pymeasure.instruments.texio.TexioPSW360L30 method)

 	(pymeasure.instruments.thermotron.Thermotron3800 method)

 	(pymeasure.instruments.thyracont.smartline_v1.SmartlineV1 method)

 	(pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 method)

 	(pymeasure.instruments.velleman.VellemanK8090 method)

 	
 	write_binary_values() (pymeasure.adapters.Adapter method)

 	(pymeasure.adapters.FakeAdapter method)

 	(pymeasure.adapters.PrologixAdapter method)

 	(pymeasure.adapters.SerialAdapter method)

 	(pymeasure.adapters.TelnetAdapter method)

 	(pymeasure.adapters.VISAAdapter method)

 	(pymeasure.adapters.VXI11Adapter method)

 	(pymeasure.instruments.andeenhagerling.AH2700A method)

 	(pymeasure.instruments.Channel method)

 	(pymeasure.instruments.fwbell.FWBell5080 method)

 	(pymeasure.instruments.Instrument method)

 	(pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.keithley.Keithley2200 method)

 	(pymeasure.instruments.keithley.Keithley2260B method)

 	(pymeasure.instruments.keithley.Keithley2306 method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley2600 method)

 	(pymeasure.instruments.keithley.Keithley2700 method)

 	(pymeasure.instruments.keithley.Keithley2750 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	(pymeasure.instruments.keysight.KeysightE36312A method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.signalrecovery.DSP7225 method)

 	(pymeasure.instruments.signalrecovery.DSP7265 method)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 method)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 method)

 	(pymeasure.instruments.teledyne.TeledyneT3AFG method)

 	(pymeasure.instruments.texio.TexioPSW360L30 method)

 	write_bytes() (pymeasure.adapters.Adapter method)

 	(pymeasure.adapters.FakeAdapter method)

 	(pymeasure.adapters.PrologixAdapter method)

 	(pymeasure.adapters.SerialAdapter method)

 	(pymeasure.adapters.TelnetAdapter method)

 	(pymeasure.adapters.VISAAdapter method)

 	(pymeasure.adapters.VXI11Adapter method)

 	(pymeasure.instruments.andeenhagerling.AH2700A method)

 	(pymeasure.instruments.Channel method)

 	(pymeasure.instruments.fwbell.FWBell5080 method)

 	(pymeasure.instruments.Instrument method)

 	(pymeasure.instruments.keithley.Keithley2000 method)

 	(pymeasure.instruments.keithley.Keithley2200 method)

 	(pymeasure.instruments.keithley.Keithley2260B method)

 	(pymeasure.instruments.keithley.Keithley2306 method)

 	(pymeasure.instruments.keithley.Keithley2400 method)

 	(pymeasure.instruments.keithley.Keithley2450 method)

 	(pymeasure.instruments.keithley.Keithley2600 method)

 	(pymeasure.instruments.keithley.Keithley2700 method)

 	(pymeasure.instruments.keithley.Keithley2750 method)

 	(pymeasure.instruments.keithley.Keithley6221 method)

 	(pymeasure.instruments.keithley.Keithley6517B method)

 	(pymeasure.instruments.keysight.KeysightE36312A method)

 	(pymeasure.instruments.lecroy.LeCroyT3DSO1204 method)

 	(pymeasure.instruments.signalrecovery.DSP7225 method)

 	(pymeasure.instruments.signalrecovery.DSP7265 method)

 	(pymeasure.instruments.tdk.tdk_gen40_38.TDK_Gen40_38 method)

 	(pymeasure.instruments.tdk.tdk_gen80_65.TDK_Gen80_65 method)

 	(pymeasure.instruments.teledyne.TeledyneT3AFG method)

 	(pymeasure.instruments.texio.TexioPSW360L30 method)

 	write_calibration_data() (pymeasure.instruments.hp.HP3478A method)

 	write_composition() (pymeasure.instruments.thyracont.smartline_v2.SmartlineV2 method)

 	write_file() (pymeasure.generator.Generator method)

 	write_getter_test() (pymeasure.generator.Generator method)

 	write_init_test() (pymeasure.generator.Generator method)

 	write_method_test() (pymeasure.generator.Generator method)

 	write_method_tests() (pymeasure.generator.Generator method)

 	write_property_tests() (pymeasure.generator.Generator method)

 	write_raw() (pymeasure.adapters.VXI11Adapter method)

 	write_setter_test() (pymeasure.generator.Generator method)

 	writeAO() (in module pymeasure.instruments.comedi)

X

 	
 	x (pymeasure.instruments.ametek.Ametek7270 property)

 	(pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	(pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	x1 (pymeasure.instruments.ametek.Ametek7270 property)

 	
 	x2 (pymeasure.instruments.ametek.Ametek7270 property)

 	x_pointer (pymeasure.instruments.oxfordinstruments.ITC503 property)

 	xroll_frequency (pymeasure.instruments.hp.hp856Xx.HP856Xx attribute)

 	xy (pymeasure.instruments.ametek.Ametek7270 property)

 	(pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	(pymeasure.instruments.srs.SR830 property)

Y

 	
 	y (pymeasure.instruments.ametek.Ametek7270 property)

 	(pymeasure.instruments.signalrecovery.DSP7225 property)

 	(pymeasure.instruments.signalrecovery.DSP7265 property)

 	(pymeasure.instruments.srs.SR830 property)

 	(pymeasure.instruments.srs.SR860 property)

 	y1 (pymeasure.instruments.ametek.Ametek7270 property)

 	
 	y2 (pymeasure.instruments.ametek.Ametek7270 property)

 	y_pointer (pymeasure.instruments.oxfordinstruments.ITC503 property)

 	YAR (class in pymeasure.instruments.ipgphotonics.yar)

 	YAR.Status (class in pymeasure.instruments.ipgphotonics.yar)

 	Yokogawa7651 (class in pymeasure.instruments.yokogawa)

 	YokogawaGS200 (class in pymeasure.instruments.yokogawa)

Z

 	
 	zero() (pymeasure.instruments.ami.AMI430 method)

 	(pymeasure.instruments.newport.esp300.Axis method)

 	
 	zero_probe() (pymeasure.instruments.lakeshore.LakeShore421 method)

 	(pymeasure.instruments.lakeshore.LakeShore425 method)

_images/console_output.png
C:\GIT\pymeasurest\examples\Basic>py -3 console.py --iterations 1@ --result-file console_test
©3:26:29 PM: Worker thread started (root, INFO)

©3:26:29 PM: Worker started running an instance of 'TestProcedure' (root, INFO)

©3:26:29 PM: Setting up random number generator (root, INFO)

©3:26:29 PM: Starting to generate numbers (root, INFO)

©3:26:31 PM: Finished (root, INFO)

Finished: 100% (100.0 of 100) |#########s#ss#sss###########| Elapsed Time: 0:00:02 ETA: ©0:00:000
3:26:31 PM: Monitor caught stop command (pymeasure.display.listeners, INFO)

C:\GIT\pymeasurest\examples\Basic>

_images/PyMeasure.png
| PyMeasure

_images/managed_dock_window.png
v GUI Example. -+
Input Parameters ——
Dock Tab ‘ Experiment Log
Loop Iterations:
|10 XAxis: | Iteration ~ | Yaxis: | Random Number 1
Delay Tim .
£
[02s 2
£
Random Seed: g0
o 02 04 06 08
12345 &
teration
o (0366474,0861111)
| quewe |
XAxis: | Random Number 1 ~ | Yas: [Random Number 2
e
2
£
2o
50 02 04 06 08
Random Number 1
(0272181,0575972)
XAxis: | Random Number 1 ~ | Yas: [Random Number 3
g
2
£
2o
50 02 04 06 08
Random Number 1
(0233875,0.409722)
Open
Graph =~ Filename Progress Status Loop Iterations _ Delay Time __ Random Seed

_images/managed_dock_window_side_after.png
XAxis: | Iteration ~ | vaxis: |Random Number 1 ~ | || XAxis: |Random Number 1 ~ | Y Axis: |Random Number2 ~ |
08 08
o o
D D
2 2
E E
§oe §oe
& &
02 02
0
02 04 06 08 1 o 02 04 06 08 1
teration Random Number 1
(0.4881,0970674) (:0.117669, 0.188661)
XAxis: | Random Number 1 ~ | vaxis: |Random Number 3 ~|
08
2
2os
2
E
goa
&
02
0
o 02 04 06 08 1

Random Number 1

(0.186479, 1.00453)

_images/managed_dock_window_side_drag.png
Input Parameters

Loop Iterations:

DockTab | Experiment Log

GUI Example.

[10

XAxis: | Iteration

~| Yaxs: [Random Number 1

Delay Time:

fo2s |

Random Number 1

04 06
eration

(-0.0298485, 01987

XAxis: | Random Number 1

Random Number 2

Random Number Z

04 06
Random Number 1

(0.10275, -0.295181)

XAxis: | Random Number 1

~| Yaxs: |Random Number 3

Random Number

04 06
Random Number 1

08

(-0.0372151, 0442191)

_images/managed_dock_window_popup.gif
Input Parameters.

Dock Tab

| Experiment Log
Loop Iterations:

XAxis: | Iteration ~ | vaxis: |Random Number 1 -]
5
2
£
H) 2 3 6

teration
(8.38767, -0.0892037)
| quee |
X#xis: | Random Number 1

~ | Yaxis: |Random Number 2

Random Number 1

(0533195, 0.556458)

X Axis:

Random Number 1

YAxis: | Random Number 3

Random Numb

Random Number 1

(0.151316, 0.764039)

| showall || Hideal || Clearall | | open
Graph = Filename Progress Status Loop Iterations _ Delay Time __ Random Seed
vl tmpakmdwm I e 10 02s 12385

_images/managed_dock_window_save.png
Input Parameters

DockTab | Experi

ntLog

Loop Iterations:
[10] X#is: | Random Number 1 vads: [Ieration
Delay Time:
[02s | s
Random See 6 docks.py + x
[12205 2
5 4
= XAxis: | Tteration ~ | yaxis: |Random Number 1 ~|
| Queue
0. 1
08
= [View All
3 Xaxis
X Axis: E -
Sequencer 2 Yas =
£
Level Parameter Sequence H Mouse Mode L
o g Plot Options
3
E,
2 . |
&
0 2 3 4 5 6 7 8 o
04 teration 1
(034463,0.753584)
|s1282)
| showall || Hideall || clearall | | Open
Graph =~ Filename Progress Status Loop Iterations _ DelayTime __ Random s
o P 025 s

|Add rootitem| | Additem | |Removeitem

| Loadsequence || Queuesequence |

_images/managed_dock_window_top.png
GUI Example. =+
Input Parameters —
DockTab | Experiment Log
Loop Iterations:
| . ati | v axis:—Random Number1.
| 2
E
2
\ §
5
N o 02 04 0.6 08 1
e | eraion

(:0.0298485, 0.198783)

XAxis: | Random Number 1

Random Number 2

2
5
2
£
i
&

04 06
Random Number 1

(0.0585505, -0.365462)

XAxis: | Random Number 1

~| Yaxs: |Random Number 3

Random Number

04 06
Random Number 1

(-0.0372151, 0442191)

_images/pymeasure-directoryinput.png

_images/managed_dock_window_tab_after.png
GUI Example.

=
Input Parameters ————
DockTab | Experiment Log |
Loop lterations
[10 J
Delay Time: XAxis: | Random Number 1 ~| Ydis: | Random Number 2
08
B3] H
Eos
H
| quewe
E
§oe
&
02
0
o 02 04 06 08 1
Random Number 1
(0.280297,0.926686)
Xavis: | Random Number 1 ~| Yadis: | Random Number 3
08
2
2os
2
E
gos
&
02
0
o 02 04 06 08 1
Random Number 1
(0:344217,0.646419)

_images/managed_dock_window_tab_drag.png
GUI Example. =
Input Parameters. —
DockTab | Experiment Log
Loop Iterations:
terasi = | vavc |andomnumber =
2
5
2
§
&o
o 02 04 06 08 1
| quewe | teration
tortr2ssaTotO)

XAxis: | Random Number 1

Random Number 2

2
5
2
£
i
&

[

Random Number 1

XAxis: | Random Number 1

YAxis: | Random Number 3

Random Number

[

Random Number 1

(0.198262, 1.00994)

_images/pymeasure-estimator.png
Estimator

Duration 2s
Number of nes. 100
Sequence length 54

Measurement fiihed at | 2020-11-15 14:29:16

Update continuously (] Update.

_images/pymeasure-managedwindow-queued.png
GUI Example

| Input Parameters [y
o Results Graph | Experiment Log

Loop Tterations:
XAxis: | Iteration | YAxs: [Random Number
10000
Delay Time:
001s
Random Seed:

12345

Queue

H
£
2
£
5
B
£
H

(656,335, 0.26911)

Hide all

Filename Status Loop Iterations _ Delay Time
tmpwbb2_Itq Running 10000 001s
tmp7y97gest Queued 10000 001s
tmpyiwdnmnd Queued 10000 001s
tmpogtkaubm Queued 10000 001s
tmphpfnussc Queued 10000 001s

_images/pymeasure-managedwindow-resume.png
GUI Example
Input Parameters

e
Rests Graph | Experiment Log

Loop Tterations:

XAxis: | Iteration | YAxs: [Random Number
1000

Delay Time:
001s
Random Seed:

94594

Queue

Random Number

(1026.84, 0.485272)

show all Hide all Open

~ Fllename Loop Iterations Delay Time Random Seed
12345

Graph
© tmpnayfio 1000 0.01s
¥ M tmptasfdhcx 1000 0.01s 452032
¥ M tmpéqqn3p29 1000 0.01s 94594

nav.xhtml

 Table of Contents

 		
 PyMeasure scientific package

 		
 Introduction

 		
 Instrument ready

 		
 Graphical displays

 		
 Quick start

 		
 Setting up Python

 		
 Installing PyMeasure

 		
 Install with conda

 		
 Install with pip

 		
 Installing VISA

 		
 Checking the version

 		
 Tutorials

 		
 Connecting to an instrument

 		
 Using adapters

 		
 Modifying connection settings

 		
 Making a measurement

 		
 Using scripts

 		
 Using Procedures

 		
 Using a graphical interface

 		
 Using the Plotter

 		
 Using the ManagedWindow

 		
 Customising the plot options

 		
 Using tabular format

 		
 Defining your own ManagedWindow’s widgets

 		
 Using the sequencer

 		
 Using the directory input

 		
 Using the estimator widget

 		
 Flexible hiding of inputs

 		
 Using the ManagedDockWindow

 		
 Using the ManagedConsole

 		
 pymeasure.adapters

 		
 Adapter base class

 		
 Adapter

 		
 VISA adapter

 		
 VISAAdapter

 		
 Serial adapter

 		
 SerialAdapter

 		
 Prologix adapter

 		
 PrologixAdapter

 		
 VXI-11 adapter

 		
 VXI11Adapter

 		
 Telnet adapter

 		
 TelnetAdapter

 		
 Test adapters

 		
 expected_protocol()

 		
 ProtocolAdapter

 		
 FakeAdapter

 		
 Generator

 		
 pymeasure.experiment

 		
 Experiment class

 		
 Experiment

 		
 create_filename()

 		
 get_array()

 		
 get_array_steps()

 		
 get_array_zero()

 		
 Listener class

 		
 Listener

 		
 Monitor

 		
 Recorder

 		
 Procedure class

 		
 Procedure

 		
 UnknownProcedure

 		
 Parameter classes

 		
 BooleanParameter

 		
 FloatParameter

 		
 IntegerParameter

 		
 ListParameter

 		
 Measurable

 		
 Metadata

 		
 Parameter

 		
 PhysicalParameter

 		
 VectorParameter

 		
 Worker class

 		
 Worker

 		
 Results class

 		
 CSVFormatter

 		
 Results

 		
 replace_placeholders()

 		
 unique_filename()

 		
 pymeasure.display

 		
 Browser classes

 		
 BaseBrowserItem

 		
 Browser

 		
 BrowserItem

 		
 Console class

 		
 ConsoleArgumentParser

 		
 ConsoleBrowserItem

 		
 ManagedConsole

 		
 Curves classes

 		
 BufferCurve

 		
 Crosshairs

 		
 ResultsCurve

 		
 ResultsImage

 		
 Inputs classes

 		
 BooleanInput

 		
 Input

 		
 IntegerInput

 		
 ListInput

 		
 ScientificInput

 		
 StringInput

 		
 Listeners classes

 		
 Monitor

 		
 QListener

 		
 Log classes

 		
 LogHandler

 		
 Manager classes

 		
 BaseManager

 		
 Experiment

 		
 ExperimentQueue

 		
 Manager

 		
 Plotter class

 		
 Plotter

 		
 Qt classes

 		
 Thread classes

 		
 StoppableQThread

 		
 Widget classes

 		
 BrowserWidget

 		
 DirectoryLineEdit

 		
 EstimatorThread

 		
 EstimatorWidget

 		
 ImageFrame

 		
 ImageWidget

 		
 InputsWidget

 		
 HTMLFormatter

 		
 LogWidget

 		
 PlotFrame

 		
 PlotWidget

 		
 ResultsDialog

 		
 ComboBoxDelegate

 		
 ExpressionValidator

 		
 LineEditDelegate

 		
 SequenceDialog

 		
 SequencerTreeModel

 		
 SequencerTreeView

 		
 SequencerWidget

 		
 TabWidget

 		
 DockWidget

 		
 PandasModelBase

 		
 PandasModelByColumn

 		
 PandasModelByRow

 		
 ResultsTable

 		
 Table

 		
 TableWidget

 		
 Windows classes

 		
 ManagedImageWindow

 		
 ManagedWindow

 		
 ManagedWindowBase

 		
 PlotterWindow

 		
 ManagedDockWindow

 		
 pymeasure.instruments

 		
 Instrument classes

 		
 CommonBase

 		
 Instrument

 		
 Channel

 		
 FakeInstrument

 		
 SwissArmyFake

 		
 Validator functions

 		
 Comedi data acquisition

 		
 getAI()

 		
 getAO()

 		
 readAI()

 		
 writeAO()

 		
 Resource Manager

 		
 list_resources()

 		
 Active Technologies

 		
 Active Technologies AWG-401x 1.2GS/s Arbitrary Waveform Generator

 		
 Advantest

 		
 Advantest R3767CG Vector Network Analyzer

 		
 Advantest R6245/R6246 DC Voltage/Current Sources/Monitors

 		
 Agilent

 		
 Agilent 8257D Signal Generator

 		
 Agilent 8722ES Vector Network Analyzer

 		
 Agilent E4408B Spectrum Analyzer

 		
 Agilent E4980 LCR Meter

 		
 Agilent 34410A Multimeter

 		
 HP/Agilent/Keysight 34450A Digital Multimeter

 		
 Agilent 4155/4156 Semiconductor Parameter Analyzer

 		
 Agilent 33220A Arbitrary Waveform Generator

 		
 Agilent 33500 Function/Arbitrary Waveform Generator Family

 		
 Agilent 33521A Function/Arbitrary Waveform Generator

 		
 Agilent B1500 Semiconductor Parameter Analyzer

 		
 AJA International

 		
 AJA DCXS-750 or 1500 DC magnetron sputtering power supply

 		
 Ametek

 		
 Ametek 7270 DSP Lockin Amplifier

 		
 AMI

 		
 AMI 430 Power Supply

 		
 Anaheim Automation

 		
 DP-Series Step Motor Controller

 		
 Anapico

 		
 Anapico APSIN12G Signal Generator

 		
 Andeen Hagerling

 		
 Andeen Hagerling AH2500A capacitance bridge

 		
 Andeen Hagerling AH2700A capacitance bridge

 		
 Anritsu

 		
 Anritsu MG3692C Signal Generator

 		
 Anritsu MS9710C Optical Spectrum Analyzer

 		
 Anritsu MS9740A Optical Spectrum Analyzer

 		
 Anritsu MS2090A Handheld Spectrum Analyzer

 		
 Anritsu MS464xB Vector Network Analyzer

 		
 Attocube

 		
 Attocube ANC300 Motion Controller

 		
 BK Precision

 		
 BK Precision 9130B DC Power Supply

 		
 Danfysik

 		
 Danfysik 8500 Power Supply

 		
 Delta Elektronika

 		
 Delta Elektronica SM7045D Power source

 		
 Edwards

 		
 Edwards nxds vacuum pump

 		
 EURO TEST

 		
 Euro Test HPP120256 High Voltage Power Supply

 		
 Fluke

 		
 Fluke 7341 Temperature bath

 		
 F.W. Bell

 		
 F.W. Bell 5080 Handheld Gaussmeter

 		
 Heidenhain

 		
 Heidenhain ND287 Position Display Unit

 		
 HC Photonics

 		
 HCP TC038 crystal oven

 		
 HCP TC038D crystal oven

 		
 Hewlett Packard

 		
 HP 33120A Arbitrary Waveform Generator

 		
 HP 34401A Multimeter

 		
 HP 3437A System-Voltmeter

 		
 HP 3478A Multimeter

 		
 HP 8116A 50 MHz Pulse/Function Generator

 		
 HP 8560A / 8561B Spectrum Analyzer

 		
 HP Signal generator HP8657B

 		
 Support class for HP legacy devices

 		
 HP System Power Supplies HP663XA

 		
 IPG Photonics

 		
 YAR fiber amplifier series

 		
 Keithley

 		
 Keithley 2000 Multimeter

 		
 Keithley 2260B DC Power Supply

 		
 Keithley 2306 Dual Channel Battery/Charger Simulator

 		
 Keithley 2400 SourceMeter

 		
 Keithley 2450 SourceMeter

 		
 Keithley 2700 MultiMeter/Switch System

 		
 Keithley 6221 AC and DC Current Source

 		
 Keithley 6517B Electrometer

 		
 Keithley 2750 Multimeter/Switch System

 		
 Keithley 2600 SourceMeter

 		
 Keithley 2200 Series Power Supplies

 		
 Keysight

 		
 Keysight DSOX1102G Oscilloscope

 		
 Keysight N5767A Power Supply

 		
 Keysight N5776C Power Supply

 		
 Keysight E36312A Triple Output Power Supply

 		
 Lake Shore Cryogenics

 		
 Lake Shore 211 Temperature Monitor

 		
 Lake Shore 224 Temperature Monitor

 		
 Lake Shore 331 Temperature Controller

 		
 Lake Shore 421 Gaussmeter

 		
 Lake Shore 425 Gaussmeter

 		
 LakeShore Channel Classes

 		
 LeCroy

 		
 LeCroy T3DSO1204 Oscilloscope

 		
 MKS Instruments

 		
 MKS Instruments 937B Vacuum Gauge Controller

 		
 Newport

 		
 ESP 300 Motion Controller

 		
 National Instruments

 		
 NI Virtual Bench

 		
 Novanta Photonics

 		
 Novanta FPU60 laser power supply unit

 		
 Oxford Instruments

 		
 Oxford Instruments Base Instrument

 		
 Oxford Instruments Intelligent Temperature Controller 503

 		
 Oxford Instruments Intelligent Power Supply 120-10 for superconducting magnets

 		
 Oxford Instruments Power Supply 120-10 for superconducting magnets

 		
 Parker

 		
 Parker GV6 Servo Motor Controller

 		
 Pendulum

 		
 Pendulum CNT91 frequency counter

 		
 Razorbill

 		
 Razorbill RP100 custrom power supply for Razorbill Instrums stress & strain cells

 		
 Rohde & Schwarz

 		
 R&S SFM TV test transmitter

 		
 R&S FSL spectrum analyzer

 		
 R&S HMP4040 Power Supply

 		
 Siglent Technologies

 		
 Siglent Technologies Base Class

 		
 Siglent SPD1168X Power Supply

 		
 Siglent SPD1305X Power Supply

 		
 Signal Recovery

 		
 DSP 7225 Lock-in Amplifier

 		
 DSP 7265 Lock-in Amplifier

 		
 Stanford Research Systems

 		
 SR510 Lock-in Amplifier

 		
 SR570 Lock-in Amplifier

 		
 SR830 Lock-in Amplifier

 		
 SR860 Lock-in Amplifier

 		
 T&C Power Conversion

 		
 T&C Power Conversion AG Series Plasma Generator CXN

 		
 TDK Lambda

 		
 TDK Lambda Genesys 40-38 DC power supply

 		
 TDK Lambda Genesys 80-65 DC power supply

 		
 Tektronix

 		
 TDS2000 Oscilloscope

 		
 AFG3152C Arbitrary function generator

 		
 Teledyne

 		
 Teledyne T3AFG Arbitrary Waveform Generator

 		
 Teledyne Oscilloscope base classes

 		
 Temptronic

 		
 Temptronic Base Class

 		
 Temptronic ATS525 Thermostream

 		
 Temptronic ATS545 Thermostream

 		
 Temptronic ECO560 Thermostream

 		
 TEXIO

 		
 TEXIO PSW-360L30 Power Supply

 		
 Thermotron

 		
 Thermotron 3800 Oven

 		
 Thorlabs

 		
 Thorlabs PM100USB Powermeter

 		
 Thorlabs Pro 8000 modular laser driver

 		
 Thyracont

 		
 Smartline V1 Transmitter Series

 		
 Smartline V2 Transmitter Series

 		
 Toptica

 		
 Toptica IBeam Smart Laser diode

 		
 Velleman

 		
 Velleman K8090 8-channel relay board

 		
 Yokogawa

 		
 Yokogawa 7651 Programmable Supply

 		
 Yokogawa GS200 Source

 		
 Contributing

 		
 Using the development version

 		
 Working on a new feature

 		
 Making a pull request

 		
 Unit testing

 		
 Reporting an error

 		
 Adding instruments

 		
 File structure

 		
 Updating the init file

 		
 Add test files

 		
 Adding documentation

 		
 Instrument file

 		
 Your instrument’s user interface

 		
 Common instrument types

 		
 Managing status codes or other indicator values

 		
 Defining default connection settings

 		
 Single interface

 		
 Multiple interfaces

 		
 Writing properties

 		
 The property factories

 		
 Restricting values with validators

 		
 Mapping values

 		
 Boolean properties

 		
 Processing of set values

 		
 Processing of return values

 		
 Checking the instrument for errors

 		
 Using multiple values

 		
 Dynamic properties

 		
 Instruments with similar features

 		
 Instrument family with different parameter values

 		
 Instruments with similar command syntax

 		
 Instruments with channels

 		
 Adding a channel with ChannelCreator

 		
 Adding multiple channels with MultiChannelCreator

 		
 Advanced channel management

 		
 Advanced communication protocols

 		
 Instrument’s inner workings

 		
 Adding a device address and adding delay

 		
 Bytes communication

 		
 Writing tests

 		
 Protocol tests

 		
 Device tests

 		
 Solutions for implementation challenges

 		
 General issues

 		
 Communication protocol issues

 		
 Channels

 		
 Coding Standards

 		
 Python style guides

 		
 Documentation

 		
 Usage of getter and setter functions

 		
 Docstrings

 		
 Authors

 		
 License

 		
 Changelog

_images/pymeasure-plotter.png
(49.6662, 0.777392)

Random Number

m
2
&
>

/tmp/tmpaww4046u

JequInN wopuey

Data Filename:

_images/pymeasure-sequencer.png
Input Parameters

Loop Iterations:

[0

Delay Time:

o=

Random Seed:

[rzass

Queve Abort

Sequencer

Load sequence Save sequence.

Level Parameter Sequence
vo Delay Time arange(0.25, 1,0.25)
v 1 RandomSeed v|[1,4,8]
2/|Loop Iterations v exp(linspace(1, 5, 3))
1 |Random Seed | arange(10, 100, 10)

<

<

<

Add root tem Additem Remove item

Queue sequence

_images/pymeasure-managedwindow-running.png
GUI Example

| Input Parameters [y
o Results Graph | Experiment Log

Loop Tterations:

XAxis: | Iteration | YAxs: [Random Number
1000

Delay Time:
001s

Random Seed:

94594

Queue

Random Number

(340.455, 0.310728)

show all Hide all Open

Graph ~ Filename