

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	PyMeasure 0.3 documentation

PyMeasure scientific package

[image: PyMeasure Scientific package]
PyMeasure makes scientific measurements easy to set up and run. The package contains a repository of instrument classes and a system for running experiment procedures, which provides graphical interfaces for graphing live data and managing queues of experiments. Both parts of the package are independent, and when combined provide all the necessary requirements for advanced measurements with only limited coding.

PyMeasure is currently under active development, so please report any issues you experience to our Issues page [https://github.com/ralph-group/pymeasure/issues].

[image: https://ci.appveyor.com/api/projects/status/hcj2n2a7l97wfbb8/branch/master?svg=true]
 [https://ci.appveyor.com/project/cjermain/pymeasure][image: https://travis-ci.org/ralph-group/pymeasure.svg?branch=master]
 [https://travis-ci.org/ralph-group/pymeasure][image: https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat]
 [http://pymeasure.readthedocs.org/en/latest/]The main documentation for the site is organized into a couple sections:

	Learning PyMeasure

	API References

	About PyMeasure

Information about development is also available:

	Getting involved

Learning PyMeasure

	Introduction
	Instrument ready

	Graphical displays

	Getting started
	Dependencies

	Installing

	Tutorials
	Connecting to an instrument

	Making a measurement

	Using a graphical interface

API References

	pymeasure.adapters
	Adapter base class

	Fake adapter

	Serial adapter

	Prologix adapter

	VISA adapter

	pymeasure.experiment
	Experiment class

	Listener class

	Procedure class

	Parameter classes

	Worker class

	Results class

	pymeasure.display
	Browser classes

	Curves classes

	Inputs classes

	Listeners classes

	Log classes

	Manager classes

	Plotter class

	Qt classes

	Thread classes

	Widget classes

	Windows classes

	pymeasure.instruments
	Keithley instruments

Getting involved

	Contributing

	Reporting an error

	Adding Instruments

	Coding Standards
	Python style guides

	Standard naming

	Usage of getter and setter

About PyMeasure

	Authors

	License

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

Introduction

PyMeasure uses an object oriented approach for communicating with scientific instruments, which provides an intuitive interface where the low-level SCPI and GPIB commands are hidden from normal use. Users can focus on solving the measurement problems at hand, instead of re-inventing how to communicate with instruments.

Instruments with VISA (GPIB, Serial, etc) are supported through the PyVISA package [http://pyvisa.readthedocs.org/en/master/] under the hood. Prologix GPIB [http://prologix.biz/] adapters are also supported. Communication protocols can be swapped, so that instrument classes can be used with all supported protocols interchangeably.

Before using PyMeasure, you should be acquainted with basic Python programming for the sciences [https://scipy-lectures.github.io/] and understand the concept of objects.

Instrument ready

The package includes a number of instruments already defined. Their definitions are organized based on the manufacturer name of the instrument. For example the class that defines the Keithley 2400 SourceMeter can be imported by calling:

from pymeasure.instruments.keithley import Keithley2400

The Getting Started section will go into more detail on connecting to an instrument. If you don’t find the instrument you are looking for, but are interested in contributing, see the documentation on adding an instrument.

Graphical displays

Graphical user interfaces (GUIs) can be easily generated to manage execution of measurement procedures with PyMeasure. This includes live plotting for data, and a queue system for managing large numbers of experiments.

These features are explored in the Using a graphical interface tutorial.

[image: ManagedWindow Running Example]

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

Getting started

This section provides instructions for installing PyMeasure.

Dependencies

PyMeasure is a Python 3+ library, and does not support Python 2. This is a deliberate move to switch code over to the new conventions, and remove the extra work of back-porting functionality.

Core dependencies

PyMeasure builds on the success of two key Python packages.

	Numpy [https://github.com/numpy/numpy] - Numerical Python, which handles large data sets efficiently

	Pandas [https://github.com/pydata/pandas] - An extension of Numpy that simplifies data management

Optional dependencies

There are a number of other packages that are required for specific functionality.

For communicating with VISA instruments, the PyVISA package is required. PySerial is used for basic serial communication.

	PyVISA [https://github.com/hgrecco/pyvisa] - VISA instrument communication library

	PySerial [https://github.com/pyserial/pyserial] - Serial communication library

The live-plotting and user-interfaces require either PyQt4 or PySide, in combination with PyQtGraph.

	PyQt4 [https://www.riverbankcomputing.com/software/pyqt/download] - Cross-platform Qt library for graphical user interfaces

	PySide [https://github.com/PySide/PySide] - Alternative to PyQt4, licensed appropriately for commercial use

	PyQtGraph [https://github.com/pyqtgraph/pyqtgraph] - Efficient live-plotting library

For listening in on the experimental procedure execution through TCP messaging, the PyZMQ and MsgPack-Numpy libraries are required. This is not necessary for general use.

	PyZMQ [https://github.com/zeromq/pyzmq] - Message communication library

	MsgPack Numpy [https://github.com/lebedov/msgpack-numpy] - Compresses messages and handles Numpy arrays

Installing

Get the latest release from GitHub [https://github.com/ralph-group/pymeasure/releases] or install via the Python pip installer:

pip install pymeasure

If you plan to use any of the addition dependencies, install them seperately.

Now that you have PyMeasure installed, the next step is to connect to an instrument.

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

Tutorials

The following sections provide instructions for getting started with PyMeasure.

	Connecting to an instrument
	Using adapters

	Making a measurement
	Using scripts

	Using Procedures

	Using a graphical interface
	Using the Plotter

	Using the ManagedWindow

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

 	Tutorials

Connecting to an instrument

After following the Getting Started section, you now have a working installation of PyMeasure. This section describes connecting to an instrument, using a Keithley 2400 SourceMeter as an example. To follow the tutorial, open a command prompt, IPython terminal, or Jupyter notebook.

First import the instrument of interest.

from pymeasure.instruments.keithley import Keithley2400

Then construct an object by passing the GPIB address. For this example we connect to the instrument over GPIB (using VISA) with an address of 4. See the adapters section below for more details.

sourcemeter = Keithley2400("GPIB::4")

For instruments with standard SCPI commands, an id property will return the results of a *IDN? SCPI command, identifying the instrument.

sourcemeter.id

This is equivalent to manually calling the SCPI command.

sourcemeter.ask("*IDN?")

Here the ask method writes the SCPI command, reads the result, and returns that result. This is further equivalent to calling the methods below.

sourcemeter.write("*IDN?")
sourcemeter.read()

This example illustrates that the top-level methods like id are really composed of many lower-level methods. Both can be called depending on the operation that is desired. PyMeasure hides the complexity of these lower-level operations, so you can focus on the bigger picture.

Using adapters

PyMeasure supports a number of adapters, which are responsible for communicating with the underlying hardware. In the example above, we passed the string “GPIB::4” when constructing the instrument. By default this constructs a VISAAdapter class to connect to the instrument using VISA. Instead of passing a string, we could equally pass an adapter object.

from pymeasure.adapters import VISAAdapter

adapter = VISAAdapter("GPIB::4")
sourcemeter = Keithely2400(adapter)

To instead use a Prologix GPIB device connected on /dev/ttyUSB0 (proper permissions are needed in Linux, see PrologixAdapter), the adapter is constructed in a similar way. Unlike the VISA adapter which is specific to each instrument, the Prologix adapter can be shared by many instruments. Therefore, they are addressed separately based on the GPIB address number when passing the adapter into the instrument construction.

from pymeasure.adapters import PrologixAdapter

adapter = PrologixAdapter('/dev/ttyUSB0')
sourcemeter = Keithley2400(adapeter.gpib(4))

For instruments using serial communication that have particular settings that need to be matched, a custom Adapter sub-class can be made. For example, the LakeShore 425 Gaussmeter connects via USB, but uses particular serial communication settings. Therefore, a LakeShoreUSBAdapter class enables these requirements in the background.

from pymeasure.instruments.lakeshore import LakeShore425

gaussmeter = LakeShore425('/dev/lakeshore425')

Behind the scenes the /dev/lakeshore425 port is passed to the LakeShoreUSBAdapter.

The above examples illustrate different methods for communicating with instruments, using adapters to keep instrument code independent from the communication protocols. Next we present the methods for setting up measurements.

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

 	Tutorials

Making a measurement

This tutorial will walk you through using PyMeasure to acquire a current-voltage (IV) characteristic using a Keithley 2400. Even if you don’t have access to this instrument, this tutorial will explain the method for making measurements with PyMeasure. First we describe using a simple script to make the measurement. From there, we show how Procedures objects greatly simplify the workflow, which leads to making the measurement with a graphical interface.

Using scripts

Scripts are a quick way to get up and running with a measurement in PyMeasure. For our IV characteristic measurement, we perform the following steps:

	Import the necessary packages

	Set the input parameters to define the measurement

	Connect to the Keithley 2400

	Set up the instrument for the IV characteristic

	Allocate arrays to store the resulting measurements

	Loop through the current points, measure the voltage, and record

	Save the final data to a CSV file

	Shutdown the instrument

These steps are expressed in code as follows.

Import necessary packages
from pymeasure.instruments.keithley import Keithley2400
import numpy as np
import pandas as pd
from time import sleep

Set the input parameters
data_points = 50
averages = 50
max_current = 0.01
min_current = -max_current

Connect and configure the instrument
sourcemeter = Keithley2400("GPIB::4")
sourcemeter.reset()
sourcemeter.use_front_terminals()
sourcemeter.measure_voltage()
sourcemeter.config_current_source()
sleep(0.1) # wait here to give the instrument time to react
sourcemeter.set_buffer(averages)

Allocate arrays to store the measurement results
currents = np.linspace(min_current, max_current, num=data_points)
voltages = np.zeros_like(currents)
voltage_stds = np.zeros_like(currents)

Loop through each current point, measure and record the voltage
for i in range(data_points):
 sourcemeter.current = currents[i]
 sourcemeter.reset_buffer()
 sleep(0.1)
 sourcemeter.start_buffer()
 sourcemeter.wait_for_buffer()

 # Record the average and standard deviation
 voltages[i] = sourcemeter.means
 voltage_stds[i] = sourcemeter.standard_devs

Save the data columns in a CSV file
data = pd.DataFrame({
 'Current (A)': currents,
 'Voltage (V)': voltages,
 'Voltage Std (V)': voltage_stds,
})
data.to_csv('example.csv')

sourcemeter.shutdown()

Running this example script will execute the measurement and save the data to a CSV file. While this may be sufficient for very basic measurements, this example illustrates a number of issues that PyMeasure solves. The issues with the script example include:

	The progress of the measurement is not transparent

	Input parameters are not associated with the data that is saved

	Data is not plotted during the execution (nor at all in this case)

	Data is only saved upon successful completion, which is otherwise lost

	Canceling a running measurement causes the system to end in a undetermined state

	Exceptions also end the system in an undetermined state

The Procedure class allows us to solve all of these issues. The next section introduces the Procedure class and shows how to modify our script example to take advantage of these features.

Using Procedures

The Procedure object bundles the sequence of steps in an experiment with the parameters required for a its successful execution. This simple structure comes with huge benefits, since a number of convenient tools for making the measurement use this common interface.

Let’s start with a simple example of a procedure which loops over a certain number of iterations. We make the SimpleProcedure object as a sub-class of Procedure, since SimpleProcedure is a Procedure.

from time import sleep
from pymeasure.experiment import Procedure
from pymeasure.experiment import IntegerParameter

class SimpleProcedure(Procedure):

 # a Parameter that defines the number of loop iterations
 iterations = IntegerParameter('Loop Iterations')

 # a list defining the order and appearance of columns in our data file
 DATA_COLUMNS = ['Iteration']

 def execute(self):
 """ Loops over each iteration and emits the current iteration,
 before waiting for 0.01 sec, and then checking if the procedure
 should stop
 """
 for i in range(self.iterations):
 self.emit('results', {'Iteration': i})
 sleep(0.01)
 if self.should_stop():
 break

At the top of the SimpleProcedure class we define the required Parameters. In this case, iterations is a IntegerParameter that defines the number of loops to perform. Inside our Procedure class we reference the value in the iterations Parameter by the class variable where the Parameter is stored (self.iterations). PyMeasure swaps out the Parameters with their values behind the scene, which makes accessing the values of parameters very convenient.

We define the data columns that will be recorded in a list stored in DATA_COLUMNS. This sets the order by which columns are stored in the file. In this example, we will store the Iteration number for each loop iteration.

The execute methods defines the main body of the procedure. Our example method consists of a loop over the number of iterations, in which we emit the data to be recorded (the Iteration number). The data is broadcast to any number of listeners by using the emit method, which takes a topic as the first argument. Data with the 'results' topic and the proper data columns will be recorded to a file. The sleep function in our example provides two very useful features. The first is to delay the execution of the next lines of code by the time argument in units of seconds. The seconds is that during this delay time, the CPU is free to perform other code. Successful measurements often require the intelligent use of sleep to deal with instrument delays and ensure that the CPU is not hogged by a single script. After our delay, we check to see if the Procedure should stop by calling self.should_stop(). By checking this flag, the Procedure will react to a user canceling the procedure execution.

This covers the basic requirements of a Procedure object. Now let’s construct our SimpleProcedure object with 100 iterations.

procedure = SimpleProcedure()
procedure.iterations = 100

Next we will show how to run the procedure.

Running Procedures

A Procedure is run by a Worker object. The Worker executes the Procedure in a separate process, which has a speed advantage on computers with multiple processors and allows other scripts to execute asynchronously with the procedure (e.g. a graphical user interface). In addition to performing the measurement, the Worker spawns a Recorder object, which listens for the 'results' topic in data emitted by the Procedure, and writes those lines to a data file. The Results object provides a convenient abstraction to keep track of where the data should be stored, the data in an accessible form, and the Procedure that pertains to those results.

We first construct a Results object for our Procedure.

from pymeasure.experiment import Results

data_filename = 'example.csv'
results = Results(procedure, data_filename)

Constructing the Results object for our Procedure creates the file using the data_filename, and stores the Parameters for the Procedure. This allows the Procedure and Results objects to be reconstructed later simply by loading the file using Results.load(data_filename). The Parameters in the file are easily readable.

We now construct a Worker with the Results object, since it contains our Procedure.

from pymeasure.experiment import Worker

worker = Worker(results)

The Worker publishes data and other run-time information through specific queues, but can also publish this information over the local network on a specific TCP port (using the optional port argument. Using TCP communication allows great flexibility for sharing information with Listener objects. Queues are used as the standard communication method because they preserve the data order, which is of critical importance to storing data accurately and reacting to the measurement status in order.

Now we are ready to start the worker.

worker.start()

The Worker process will be launched in a separate process, which allows us to perform other tasks while it is running. When writing a script that should block (wait for the Worker to finish), we need to join the Worker back into the main process.

worker.join(timeout=3600) # wait at most 1 hr (3600 sec)

Let’s put all the pieces together. Our SimpleProcedure can be run in a script by the following.

from time import sleep
from pymeasure.experiment import Procedure, Results, Worker
from pymeasure.experiment import IntegerParameter

class SimpleProcedure(Procedure):

 # a Parameter that defines the number of loop iterations
 iterations = IntegerParameter('Loop Iterations')

 # a list defining the order and appearance of columns in our data file
 DATA_COLUMNS = ['Iteration']

 def execute(self):
 """ Loops over each iteration and emits the current iteration,
 before waiting for 0.01 sec, and then checking if the procedure
 should stop
 """
 for i in range(self.iterations):
 self.emit('results', {'Iteration': i})
 sleep(0.01)
 if self.should_stop():
 break

if __name__ == "__main__":
 procedure = SimpleProcedure()
 procedure.iterations = 100

 data_filename = 'example.csv'
 results = Results(procedure, data_filename)

 worker = Worker(results)
 worker.start()

 worker.join(timeout=3600) # wait at most 1 hr (3600 sec)

Here we have included an if statement to only run the script if the __name__ is __main__. This precaution allows us to import the SimpleProcedure object without running the execution.

Using Logs

Logs keep track of important details in the execution of a procedure. We describe the use of the Python logging module with PyMeasure, which makes it easy to document the execution of a procedure and provides useful insight when diagnosing issues or bugs.

Let’s extend our SimpleProcedure with logging.

import logging
log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())

from time import sleep
from pymeasure.log import console_log
from pymeasure.experiment import Procedure, Results, Worker
from pymeasure.experiment import IntegerParameter

class SimpleProcedure(Procedure):

 iterations = IntegerParameter('Loop Iterations')

 DATA_COLUMNS = ['Iteration']

 def execute(self):
 log.info("Starting the loop of %d iterations" % self.iterations)
 for i in range(self.iterations):
 data = {'Iteration': i}
 self.emit('results', data)
 log.debug("Emitting results: %s" % data)
 sleep(0.01)
 if self.should_stop():
 log.warning("Caught the stop flag in the procedure")
 break

if __name__ == "__main__":
 console_log(log)

 log.info("Constructing a SimpleProcedure")
 procedure = SimpleProcedure()
 procedure.iterations = 100

 data_filename = 'example.csv'
 log.info("Constructing the Results with a data file: %s" % data_filename)
 results = Results(procedure, data_filename)

 log.info("Constructing the Worker")
 worker = Worker(results)
 worker.start()
 log.info("Started the Worker")

 log.info("Joining with the worker in at most 1 hr")
 worker.join(timeout=3600) # wait at most 1 hr (3600 sec)
 log.info("Finished the measurement")

First, we have imported the Python logging module and grabbed the logger using the __name__ argument. This gives us logging information specific to the current file. Conversely, we could use the '' argument to get all logs, including those of pymeasure. We use the console_log function to conveniently output the log to the console. Further details on how to use the logger are addressed in the Python logging documentation.

Modifying our script

Now that you have a background on how to use the different features of the Procedure class, and how they are run, we will revisit our IV characteristic measurement using Procedures. Below we present the modified version of our example script, now as a IVProcedure class.

Import necessary packages
from pymeasure.instruments.keithley import Keithley2400
from pymeasure.experiment import Procedure
from pymeasure.experiment import IntegerParameter, FloatParameter
from time import sleep

class IVProcedure(Procedure):

 data_points = IntegerParameter('Data points', default=50)
 averages = IntegerParameter('Averages', default=50)
 max_current = FloatParameter('Maximum Current', unit='A', default=0.01)
 min_current = FloatParameter('Minimum Current', unit='A', default=-0.01)

 DATA_COLUMNS = ['Current (A)', 'Voltage (V)', 'Voltage Std (V)']

 def startup(self):
 log.info("Connecting and configuring the instrument")
 self.sourcemeter = Keithley2400("GPIB::4")
 self.sourcemeter.reset()
 self.sourcemeter.use_front_terminals()
 self.sourcemeter.measure_voltage()
 self.sourcemeter.config_current_source()
 sleep(0.1) # wait here to give the instrument time to react
 self.sourcemeter.set_buffer(averages)

 def execute(self):
 currents = np.linspace(
 self.min_current,
 self.max_current,
 num=self.data_points
)

 # Loop through each current point, measure and record the voltage
 for current in currents:
 log.info("Setting the current to %g A" % current)
 self.sourcemeter.current = current
 self.sourcemeter.reset_buffer()
 sleep(0.1)
 self.sourcemeter.start_buffer()
 log.info("Waiting for the buffer to fill with measurements")
 self.sourcemeter.wait_for_buffer()

 self.emit('results', {
 'Current (A)': current,
 'Voltage (V)': self.sourcemeter.means,
 'Voltage Std (V)': self.sourcemeter.standard_devs
 })
 sleep(0.01)
 if self.should_stop():
 log.info("User aborted the procedure")
 break

 def shutdown(self):
 self.sourcemeter.shutdown()
 log.info("Finished measuring")

if __name__ == "__main__":
 console_log(log)

 log.info("Constructing an IVProcedure")
 procedure = IVProcedure()
 procedure.data_points = 100
 procedure.averages = 50
 procedure.max_current = -0.01
 procedure.min_current = 0.01

 data_filename = 'example.csv'
 log.info("Constructing the Results with a data file: %s" % data_filename)
 results = Results(procedure, data_filename)

 log.info("Constructing the Worker")
 worker = Worker(results)
 worker.start()
 log.info("Started the Worker")

 log.info("Joining with the worker in at most 1 hr")
 worker.join(timeout=3600) # wait at most 1 hr (3600 sec)
 log.info("Finished the measurement")

At this point, you are familiar with how to construct a Procedure sub-class. The next section shows how to put these procedures to work in a graphical environment, where will have live-plotting of the data and the ability to easily queue up a number of experiments in sequence. All of these features come from using the Procedure object.

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

 	Tutorials

Using a graphical interface

In the previous tutorial we measured the IV characteristic of a sample to show how we can set up a simple experiment in PyMeasure. The real power of PyMeasure comes when we also use the graphical tools that are included to turn our simple example into a full-flegged user interface.

Using the Plotter

While it lacks the nice features of the ManagedWindow, the Plotter object is the simplest way of getting live-plotting. The Plotter takes a Results object and plots the data at a regular interval, grabbing the latest data each time from the file.

Let’s extend our SimpleProcedure with a RandomProcedure, which generates random numbers during our loop. This example does not include instruments to provide a simpler example.

import logging
log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())

import random
from time import sleep
from pymeasure.log import console_log
from pymeasure.display import Plotter
from pymeasure.experiment import Procedure, Results, Worker
from pymeasure.experiment import IntegerParameter, FloatParameter, Parameter

class RandomProcedure(Procedure):

 iterations = IntegerParameter('Loop Iterations')
 delay = FloatParameter('Delay Time', units='s', default=0.2)
 seed = Parameter('Random Seed', default='12345')

 DATA_COLUMNS = ['Iteration', 'Random Number']

 def startup(self):
 log.info("Setting the seed of the random number generator")
 random.seed(self.seed)

 def execute(self):
 log.info("Starting the loop of %d iterations" % self.iterations)
 for i in range(self.iterations):
 data = {
 'Iteration': i,
 'Random Number': random.random()
 }
 self.emit('results', data)
 log.debug("Emitting results: %s" % data)
 sleep(self.delay)
 if self.should_stop():
 log.warning("Caught the stop flag in the procedure")
 break

if __name__ == "__main__":
 console_log(log)

 log.info("Constructing a SimpleProcedure")
 procedure = SimpleProcedure()
 procedure.iterations = 100

 data_filename = 'random.csv'
 log.info("Constructing the Results with a data file: %s" % data_filename)
 results = Results(procedure, data_filename)

 log.info("Constructing the Plotter")
 plotter = Plotter(results)
 plotter.start()
 log.info("Started the Plotter")

 log.info("Constructing the Worker")
 worker = Worker(results)
 worker.start()
 log.info("Started the Worker")

 log.info("Joining with the worker in at most 1 hr")
 worker.join(timeout=3600) # wait at most 1 hr (3600 sec)
 log.info("Finished the measurement")

The important addition is the construction of the Plotter from the Results object.

plotter = Plotter(results)
plotter.start()

Just like the Worker, the Plotter is started in a different process so that it can be run on a separate CPU for higher performance. The Plotter launches a Qt graphical interface using pyqtgraph which allows the Results data to be viewed based on the columns in the data.

[image: Results Plotter Example]

Using the ManagedWindow

The ManagedWindow is the most convenient tool for running measurements with your Procedure. This has the major advantage of accepting the input parameters graphically. From the parameters, a graphical form is automatically generated that allows the inputs to be typed in. With this feature, measurements can be started dynamically, instead of defined in a script.

Another major feature of the ManagedWindow is its support for running measurements in a sequential queue. This allows you to set up a number of measurements with different input parameters, and watch them unfold on the live-plot. This is especially useful for long running measurements. The ManagedWindow achieves this through the Manager object, which coordinates which Procedure the Worker should run and keeps track of its status as the Worker progresses.

Below we adapt our previous example to use a ManagedWindow.

import logging
log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())

import random
from time import sleep
from pymeasure.log import console_log
from pymeasure.display.Qt import QtGui
from pymeasure.display.windows import ManagedWindow
from pymeasure.experiment import Procedure, Results
from pymeasure.experiment import IntegerParameter, FloatParameter, Parameter

class RandomProcedure(Procedure):

 iterations = IntegerParameter('Loop Iterations')
 delay = FloatParameter('Delay Time', units='s', default=0.2)
 seed = Parameter('Random Seed', default='12345')

 DATA_COLUMNS = ['Iteration', 'Random Number']

 def startup(self):
 log.info("Setting the seed of the random number generator")
 random.seed(self.seed)

 def execute(self):
 log.info("Starting the loop of %d iterations" % self.iterations)
 for i in range(self.iterations):
 data = {
 'Iteration': i,
 'Random Number': random.random()
 }
 self.emit('results', data)
 log.debug("Emitting results: %s" % data)
 sleep(self.delay)
 if self.should_stop():
 log.warning("Caught the stop flag in the procedure")
 break

class MainWindow(ManagedWindow):

 def __init__(self):
 super(MainWindow, self).__init__(
 procedure_class=RandomProcedure,
 inputs=['iterations', 'delay', 'seed'],
 displays=['iterations', 'delay', 'seed'],
 x_axis='Iteration',
 y_axis='Random Number'
)
 self.setWindowTitle('GUI Example')

 def queue(self):
 filename = tempfile.mktemp()

 procedure = self.make_procedure()
 results = Results(procedure, filename)
 experiment = self.new_experiment(results)

 self.manager.queue(experiment)

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 window = MainWindow()
 window.show()
 sys.exit(app.exec_())

This results in the following graphical display.

[image: ManagedWindow Example]
In the code, the MainWindow class is a sub-class of the ManagedWindow class. We overwrite the constructor to provide information about the procedure class and its options. The inputs are a list of Parameters class-variable names, which the display will generate graphical fields for. The displays is a similar list, which instead defines the parameters to display in the browser window. This browser keeps track of the experiments being run in the sequential queue.

The queue method establishes how the Procedure object is constructed. We use the self.make_procedure method to create a Procedure based on the graphical input fields. Here we are free to modify the procedure before putting it on the queue. In this context, the Manager uses an Experiment object to keep track of the Procedure, Results, and its associated graphical representations in the browser and live-graph. This is then given to the Manager to queue the experiment.

[image: ManagedWindow Queue Example]
By default the Manager starts a measurement when its procedure is queued. The abort button can be pressed to stop an experiment. In the Procedure, the self.should_stop call will catch the abort event and halt the measurement. It is important to check this value, or the Procedure will not be responsive to the abort event.

[image: ManagedWindow Resume Example]
If you abort a measurement, the resume button must be pressed to continue the next measurement. This allows you to adjust anything, which is presumably why the abort was needed.

[image: ManagedWindow Running Example]
Now that you have learned about the ManagedWindow, you have all of the basics to get up and running quickly with a measurement and produce an easy to use graphical interface with PyMeasure.

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

pymeasure.adapters

The adapter classes allow the instruments to be independent of the communication method used. The classes can be directly imported from pymeasure.adapters for convenience.

Adapters for specific instruments should be grouped in a adapters.py file in the corresponding manufacturer’s folder of pymeasure.instruments.

Adapter base class

	
class pymeasure.adapters.adapter.Adapter

	Base class for Adapter child classes, which adapt between the Instrument
object and the connection, to allow flexible use of different connection
techniques.

This class should only be inhereted from.

	
ask(command)

	Writes the command to the instrument and returns the resulting
ASCII response

	Parameters:	command – SCPI command string to be sent to the instrument

	Returns:	String ASCII response of the instrument

	
binary_values(command, header_bytes=0, dtype=<class 'numpy.float32'>)

	Returns a numpy array from a query for binary data

	Parameters:	
	command – SCPI command to be sent to the instrument

	header_bytes – Integer number of bytes to ignore in header

	dtype – The NumPy data type to format the values with

	Returns:	NumPy array of values

	
read()

	Reads until the buffer is empty and returns the resulting
ASCII respone

	Returns:	String ASCII response of the instrument.

	
values(command)

	Writes a command to the instrument and returns a list of formatted
values from the result

	Parameters:	command – SCPI command to be sent to the instrument

	Returns:	String ASCII response of the instrument

	
write(command)

	Writes a command to the instrument

	Parameters:	command – SCPI command string to be sent to the instrument

Fake adapter

	
class pymeasure.adapters.adapter.FakeAdapter

	The Fake adapter class is provided for debugging purposes,
which returns valid data for each Adapter method

Serial adapter

	
class pymeasure.adapters.serial.SerialAdapter(port, **kwargs)

	Adapter class for using the Python Serial package to allow
serial communication to instrument

	Parameters:	
	port – Serial port

	kwargs – Any valid key-word argument for serial.Serial

	
binary_values(command, header_bytes=0, dtype=<class 'numpy.float32'>)

	Returns a numpy array from a query for binary data

	Parameters:	
	command – SCPI command to be sent to the instrument

	header_bytes – Integer number of bytes to ignore in header

	dtype – The NumPy data type to format the values with

	Returns:	NumPy array of values

	
read()

	Reads until the buffer is empty and returns the resulting
ASCII respone

	Returns:	String ASCII response of the instrument.

	
values(command)

	Writes a command to the instrument and returns a list of formatted
values from the result

	Parameters:	command – SCPI command to be sent to the instrument

	Returns:	String ASCII response of the instrument

	
write(command)

	Writes a command to the instrument

	Parameters:	command – SCPI command string to be sent to the instrument

Prologix adapter

	
class pymeasure.adapters.prologix.PrologixAdapter(port, address=None, **kwargs)

	Encapsulates the additional commands necessary
to communicate over a Prologix GPIB-USB Adapter,
using the SerialAdapter.

Each PrologixAdapter is constructed based on a serial port or
connection and the GPIB address to be communicated to.
Serial connection sharing is achieved by using the gpib()
method to spawn new PrologixAdapters for different GPIB addresses.

	Parameters:	
	port – The Serial port name or a serial.Serial object

	address – Integer GPIB address of the desired instrument

	kwargs – Key-word arguments if constructing a new serial object

	Variables:	address – Integer GPIB address of the desired instrument

To allow user access to the Prologix adapter in Linux, create the file:
/etc/udev/rules.d/51-prologix.rules, with contents:

SUBSYSTEMS=="usb",ATTRS{idVendor}=="0403",ATTRS{idProduct}=="6001",MODE="0666"

Then reload the udev rules with:

sudo udevadm control --reload-rules
sudo udevadm trigger

	
gpib(address)

	Returns and PrologixAdapter object that references the GPIB
address specified, while sharing the Serial connection with other
calls of this function

	Parameters:	address – Integer GPIB address of the desired instrument

	Returns:	PrologixAdapter for specific GPIB address

	
read()

	Reads the response of the instrument until timeout

	Returns:	String ASCII response of the instrument

	
set_defaults()

	Sets up the default behavior of the Prologix-GPIB
adapter

	
wait_for_srq(timeout=25, delay=0.1)

	Blocks until a SRQ, and leaves the bit high

	Parameters:	
	timeout – Timeout duration in seconds

	delay – Time delay between checking SRQ in seconds

	
write(command)

	Writes the command to the GPIB address stored in the
address

	Parameters:	command – SCPI command string to be sent to the instrument

VISA adapter

	
class pymeasure.adapters.visa.VISAAdapter(resourceName, **kwargs)

	Adapter class for the VISA library using PyVISA to communicate
to instruments. Inherit from either class VISAAdapter14 or VISAAdapter15.

	Parameters:	
	resource – VISA resource name that identifies the address

	kwargs – Any valid key-word arguments for constructing a PyVISA instrument

	
binary_values(command, header_bytes=0, dtype=<class 'numpy.float32'>)

	Returns a numpy array from a query for binary data

	Parameters:	
	command – SCPI command to be sent to the instrument

	header_bytes – Integer number of bytes to ignore in header

	dtype – The NumPy data type to format the values with

	Returns:	NumPy array of values

	
read()

	Reads until the buffer is empty and returns the resulting
ASCII respone

	Returns:	String ASCII response of the instrument.

	
values(command, separator=', ')

	Writes a command to the instrument and returns a list of numerical
values from the result.

	Parameters:	command – SCPI command to be sent to the instrument.

	Returns:	A list of numerical values.

	
version

	The string of the PyVISA version in use

	
write(command)

	Writes a command to the instrument

	Parameters:	command – SCPI command string to be sent to the instrument

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

pymeasure.experiment

This section contains specific documentation on the classes and methods of the package.

	Experiment class

	Listener class

	Procedure class

	Parameter classes

	Worker class

	Results class

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

 	pymeasure.experiment

Experiment class

The Experiment class is intended for use in the Jupyter notebook environment.

	
class pymeasure.experiment.experiment.Experiment(title, procedure, analyse=<function Experiment.<lambda>>)

	Class which starts logging and creates/runs the results and worker processes.

procedure = Procedure()
experiment = Experiment(title, procedure)
experiment.start()
experiment.plot_live('x', 'y', style='.-')

for a multi-subplot graph:

import pylab as pl
ax1 = pl.subplot(121)
experiment.plot('x','y',ax=ax1)
ax2 = pl.subplot(122)
experiment.plot('x','z',ax=ax2)
experiment.plot_live()

	Variables:	value – The value of the parameter

	Parameters:	
	title – The experiment title

	procedure – The procedure object

	analyse – Post-analysis function, which takes a pandas dataframe as input and
returns it with added (analysed) columns. The analysed results are accessible via
experiment.data, as opposed to experiment.results.data for the ‘raw’ data.

	_data_timeout – Time limit for how long live plotting should wait for datapoints.

	
clear_plot()

	Clear the figures and plot lists.

	
data

	Data property which returns analysed data, if an analyse function
is defined, otherwise returns the raw data.

	
pcolor(xname, yname, zname, *args, **kwargs)

	Plot the results from the experiment.data pandas dataframe in a pcolor graph.
Store the plots in a plots list attribute.

	
plot(*args, **kwargs)

	Plot the results from the experiment.data pandas dataframe. Store the
plots in a plots list attribute.

	
plot_live(*args, **kwargs)

	Live plotting loop for jupyter notebook, which automatically updates
(an) in-line matplotlib graph(s). Will create a new plot as specified by input
arguments, or will update (an) existing plot(s).

	
start()

	Start the worker

	
update_line(ax, hl, xname, yname)

	Update a line in a matplotlib graph with new data.

	
update_pcolor(ax, xname, yname, zname)

	Update a pcolor graph with new data.

	
update_plot()

	Update the plots in the plots list with new data from the experiment.data
pandas dataframe.

	
wait_for_data()

	Wait for the data attribute to fill with datapoints.

	
pymeasure.experiment.experiment.create_filename(title)

	Create a new filename according to the style defined in the config file.
If no config is specified, create a temporary file.

	
pymeasure.experiment.experiment.get_array(start, stop, step)

	Returns a numpy array from start to stop

	
pymeasure.experiment.experiment.get_array_steps(start, stop, numsteps)

	Returns a numpy array from start to stop in numsteps

	
pymeasure.experiment.experiment.get_array_zero(maxval, step)

	Returns a numpy array from 0 to maxval to -maxval to 0

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

 	pymeasure.experiment

Listener class

	
class pymeasure.experiment.listeners.Listener(port, topic='', timeout=0.01)

	Base class for Threads that need to listen for messages
on a ZMQ TCP port and can be stopped by a thread-safe
method call

	
class pymeasure.experiment.listeners.Recorder(results, queue)

	Recorder loads the initial Results for a filepath and
appends data by listening for it over a queue. The queue
ensures that no data is lost between the Recorder and Worker.

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

 	pymeasure.experiment

Procedure class

	
class pymeasure.experiment.procedure.Procedure(**kwargs)

	Provides the base class of a procedure to organize the experiment
execution. Procedures should be run by Workers to ensure that
asynchronous execution is properly managed.

procedure = Procedure()
results = Results(procedure, data_filename)
worker = Worker(results, port)
worker.start()

Inheriting classes should define the startup, execute, and shutdown
methods as needed. The shutdown method is called even with a
software exception or abort event during the execute method.

If keyword arguments are provided, they are added to the object as
attributes.

	
check_parameters()

	Raises an exception if any parameter is missing before calling
the associated function. Ensures that each value can be set and
got, which should cast it into the right format. Used as a decorator
@check_parameters on the startup method

	
execute()

	Preforms the commands needed for the measurement itself. During
execution the shutdown method will always be run following this method.
This includes when Exceptions are raised.

	
gen_measurement()

	Create MEASURE and DATA_COLUMNS variables for get_datapoint method.

	
parameter_objects()

	Returns a dictionary of all the Parameter objects and grabs any
current values that are not in the default definitions

	
parameter_values()

	Returns a dictionary of all the Parameter values and grabs any
current values that are not in the default definitions

	
parameters_are_set()

	Returns True if all parameters are set

	
refresh_parameters()

	Enforces that all the parameters are re-cast and updated in the meta
dictionary

	
set_parameters(parameters, except_missing=True)

	Sets a dictionary of parameters and raises an exception if additional
parameters are present if except_missing is True

	
shutdown()

	Executes the commands necessary to shut down the instruments
and leave them in a safe state. This method is always run at the end.

	
startup()

	Executes the commands needed at the start-up of the measurement

	
class pymeasure.experiment.procedure.UnknownProcedure(parameters)

	Handles the case when a Procedure object can not be imported
during loading in the Results class

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

 	pymeasure.experiment

Parameter classes

The parameter classes are used to define input variables for a Procedure. They each inherit from the Parameter base class.

	
class pymeasure.experiment.parameters.BooleanParameter(name, default=None, ui_class=None)

	Parameter sub-class that uses the boolean type to
store the value.

	Variables:	value – The boolean value of the parameter

	Parameters:	
	name – The parameter name

	default – The default boolean value

	ui_class – A Qt class to use for the UI of this parameter

	
class pymeasure.experiment.parameters.FloatParameter(name, units=None, minimum=-1000000000.0, maximum=1000000000.0, **kwargs)

	Parameter sub-class that uses the floating point
type to store the value.

	Variables:	value – The floating point value of the parameter

	Parameters:	
	name – The parameter name

	units – The units of measure for the parameter

	minimum – The minimum allowed value (default: -1e9)

	maximum – The maximum allowed value (default: 1e9)

	default – The default floating point value

	ui_class – A Qt class to use for the UI of this parameter

	
class pymeasure.experiment.parameters.IntegerParameter(name, units=None, minimum=-1000000000.0, maximum=1000000000.0, **kwargs)

	Parameter sub-class that uses the integer type to
store the value.

	Variables:	value – The integer value of the parameter

	Parameters:	
	name – The parameter name

	units – The units of measure for the parameter

	minimum – The minimum allowed value (default: -1e9)

	maximum – The maximum allowed value (default: 1e9)

	default – The default integer value

	ui_class – A Qt class to use for the UI of this parameter

	
class pymeasure.experiment.parameters.ListParameter(name, choices=None, units=None)

	Parameter sub-class that stores the value as a list.

	Parameters:	
	name – The parameter name

	choices – An explicit list of choices, which is disregarded if None

	units – The units of measure for the parameter

	default – The default value

	ui_class – A Qt class to use for the UI of this parameter

	
class pymeasure.experiment.parameters.Measurable(name, fget=None, units=None, measure=True, default=None, **kwargs)

	Encapsulates the information for a measurable experiment parameter
with information about the name, fget function and units if supplied.
The value property is called when the procedure retrieves a datapoint
and calls the fget function. If no fget function is specified, the value
property will return the latest set value of the parameter (or default
if never set).

	Variables:	value – The value of the parameter

	Parameters:	
	name – The parameter name

	fget – The parameter fget function (e.g. an instrument parameter)

	default – The default value

	
class pymeasure.experiment.parameters.Parameter(name, default=None, ui_class=None)

	Encapsulates the information for an experiment parameter
with information about the name, and units if supplied.

	Variables:	value – The value of the parameter

	Parameters:	
	name – The parameter name

	default – The default value

	ui_class – A Qt class to use for the UI of this parameter

	
is_set()

	Returns True if the Parameter value is set

	
class pymeasure.experiment.parameters.VectorParameter(name, length=3, units=None, **kwargs)

	Parameter sub-class that stores the value in a
vector format.

	Variables:	value – The value of the parameter as a list of floating point numbers

	Parameters:	
	name – The parameter name

	length – The integer dimensions of the vector

	units – The units of measure for the parameter

	default – The default value

	ui_class – A Qt class to use for the UI of this parameter

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

 	pymeasure.experiment

Worker class

	
class pymeasure.experiment.workers.Worker(results, log_queue=None, log_level=20, port=None)

	Worker runs the procedure and emits information about
the procedure and its status over a ZMQ TCP port. In a child
thread, a Recorder is run to write the results to

	
emit(topic, data)

	Emits data of some topic over TCP

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

 	pymeasure.experiment

Results class

	
class pymeasure.experiment.results.Results(procedure, data_filename)

	The Results class provides a convenient interface to reading and
writing data in connection with a Procedure object.

	Variables:	
	COMMENT – The character used to identify a comment (default: #)

	DELIMITER – The character used to delimit the data (default: ,)

	LINE_BREAK – The character used for line breaks (default n)

	CHUNK_SIZE – The length of the data chuck that is read

	Parameters:	
	procedure – Procedure object

	data_filename – The data filename where the data is or should be
stored

	
format(data)

	Returns a formatted string containing the data to be written
to a file

	
header()

	Returns a text header to accompany a datafile so that the procedure
can be reconstructed

	
labels()

	Returns the columns labels as a string to be written
to the file

	
static load(data_filename, procedure_class=None)

	Returns a Results object with the associated Procedure object and
data

	
parse(line)

	Returns a dictionary containing the data from the line

	
static parse_header(header, procedure_class=None)

	Returns a Procedure object with the parameters as defined in the
header text.

	
reload()

	Preforms a full reloading of the file data, neglecting
any changes in the comments

	
pymeasure.experiment.results.unique_filename(directory, prefix='DATA', suffix='', ext='csv', dated_folder=False, index=True, datetimeformat='%Y%m%d')

	Returns a unique filename based on the directory and prefix

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

pymeasure.display

This section contains specific documentation on the classes and methods of the package.

	Browser classes

	Curves classes

	Inputs classes

	Listeners classes

	Log classes

	Manager classes

	Plotter class

	Qt classes

	Thread classes

	Widget classes

	Windows classes

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

 	pymeasure.display

Browser classes

	
class pymeasure.display.browser.Browser(procedure_class, display_parameters, measured_quantities, sort_by_filename=False, parent=None)

	Graphical list view of Experiment objects allowing the user
to view the status of queued Experiments as well as loading and displaying
data from previous runs.

In order that different Experiments be displayed within the same Browser,
they must have entries in DATA_COLUMNS corresponding to the
measured_quantities of the Browser.

	
add(experiment)

	Add a Experiment object to the Browser. This function
checks to make sure that the Experiment measures the appropriate
quantities to warrant its inclusion, and then adds a BrowserItem to
the Browser, filling all relevant columns with Parameter data.

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

 	pymeasure.display

Curves classes

	
class pymeasure.display.curves.BufferCurve(errors=False, **kwargs)

	Creates a curve based on a predefined buffer size and allows
data to be added dynamically, in additon to supporting error bars

	
append(x, y, xError=None, yError=None)

	Appends data to the curve with optional errors

	
prepare(size, dtype=<class 'numpy.float32'>)

	Prepares the buffer based on its size, data type

	
class pymeasure.display.curves.Crosshairs(plot, pen=None)

	Attaches crosshairs to the a plot and provides a signal with the
x and y graph coordinates

	
mouseMoved(event=None)

	Updates the mouse position upon mouse movement

	
update()

	Updates the mouse position based on the data in the plot. For
dynamic plots, this is called each time the data changes to ensure
the x and y values correspond to those on the display.

	
class pymeasure.display.curves.ResultsCurve(results, x, y, xerr=None, yerr=None, force_reload=False, **kwargs)

	Creates a curve loaded dynamically from a file through the Results
object and supports error bars. The data can be forced to fully reload
on each update, useful for cases when the data is changing across the full
file instead of just appending.

	
update()

	Updates the data by polling the results

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

 	pymeasure.display

Inputs classes

	
class pymeasure.display.inputs.Input(parameter)

	Takes a Parameter object in the constructor and has a
parameter method

	
update_parameter()

	Mutates the self._parameter variable to update
its value

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

 	pymeasure.display

Listeners classes

	
class pymeasure.display.listeners.Monitor(queue)

	Monitor listens for status and progress messages
from a Worker through a queue to ensure no messages
are lost

	
class pymeasure.display.listeners.QListener(port, topic='', timeout=0.01)

	Base class for QThreads that need to listen for messages
on a ZMQ TCP port and can be stopped by a thread- and process-safe
method call

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

 	pymeasure.display

Log classes

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

 	pymeasure.display

Manager classes

	
class pymeasure.display.manager.Experiment(results, curve, browser_item, parent=None)

	The Experiment class helps group the Procedure,
Results, and their display functionality. Its function
is only a convenient container.

	Parameters:	
	procedure – Procedure object

	results – Results object

	curve – ResultsCurve object

	browser_item – BrowserItem object

	
class pymeasure.display.manager.ExperimentQueue

	Represents a Queue of Experiments and allows queries to
be easily preformed

	
has_next()

	Returns True if another item is on the queue

	
next()

	Returns the next experiment on the queue

	
class pymeasure.display.manager.Manager(plot, browser, port=5888, log_level=20, parent=None)

	Controls the execution of Experiment classes by implementing
a queue system in which Experiments are added, removed, executed, or
aborted. When instantiated, the Manager is linked to a Browser
and a PyQtGraph PlotItem within the user interface, which are updated
in accordance with the execution status of the Experiments.

	
abort()

	Aborts the currently running Experiment, but raises an exception if
there is no running experiment

	
clear()

	Remove all Experiments

	
is_running()

	Returns True if a procedure is currently running

	
load(experiment)

	Load a previously executed Experiment

	
next()

	Initiates the start of the next experiment in the queue as long
as no other experiments are currently running and there is a procedure
in the queue.

	
queue(experiment)

	Adds an experiment to the queue.

	
remove(experiment)

	Removes an Experiment

	
resume()

	Resume processing of the queue.

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

 	pymeasure.display

Plotter class

	
class pymeasure.display.plotter.Plotter(results, refresh_time=0.1)

	Plotter dynamically plots data from a file through the Results
object and supports error bars.

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

 	pymeasure.display

Qt classes

All Qt imports should reference pymeasure.display.Qt, for consistant importing from either PySide or PyQt4.

	
Qt.fromUi(*args, **kwargs)

	Returns a Qt object constructed using loadUiType
based on its arguments. All QWidget objects in the
form class are set in the returned object for easy
accessiblity.

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

 	pymeasure.display

Thread classes

	
class pymeasure.display.thread.StoppableQThread(parent=None)

	Base class for QThreads which require the ability
to be stopped by a thread-safe method call

	
join(timeout=0)

	Joins the current thread and forces it to stop after
the timeout if necessary

	Parameters:	timeout – Timeout duration in seconds

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

 	pymeasure.display

Widget classes

	
class pymeasure.display.widgets.PlotFrame(x_axis=None, y_axis=None, refresh_time=0.2, check_status=True, parent=None)

	Combines a PyQtGraph Plot with Crosshairs. Refreshes
the plot based on the refresh_time, and allows the axes
to be changed on the fly, which updates the plotted data

	
parse_axis(axis)

	Returns the units of an axis by searching the string

	
class pymeasure.display.widgets.PlotWidget(columns, x_axis=None, y_axis=None, refresh_time=0.2, check_status=True, parent=None)

	Extends the PlotFrame to allow different columns
of the data to be dynamically choosen

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

 	pymeasure.display

Windows classes

	
class pymeasure.display.windows.ManagedWindow(procedure_class, inputs=[], displays=[], x_axis=None, y_axis=None, log_channel='', log_level=20, parent=None)

	The ManagedWindow uses a Manager to control Workers in a Queue,
and provides a simple interface. The queue method must be overwritten
by a child class which is required to pass an Experiment containing the
Results and Procedure to self.manager.queue.

	
queue()

	This method should be overwritten by the child class. The
self.manager.queue method should be passed an Experiment object
which contains the Results and Procedure to be run.

	
set_parameters(parameters)

	This method should be overwritten by the child class. The
parameters argument is a dictionary of Parameter objects.
The Parameters should overwrite the GUI values so that a user
can click “Queue” to capture the same parameters.

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

pymeasure.instruments

This section contains specific documentation on the classes and methods of the package.

	Keithley instruments
	Keithley 2000 Multimeter

	Keithley 2400 SourceMeter

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

 	pymeasure.instruments

Keithley instruments

This section contains specific documentation on the classes and methods of the package.

	Keithley 2000 Multimeter

	Keithley 2400 SourceMeter

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

 	pymeasure.instruments

 	Keithley instruments

Keithley 2000 Multimeter

	
class pymeasure.instruments.keithley.keithley2000.Keithley2000(resourceName, **kwargs)

	
	
average

	Obtain the filter setting.

	Returns:	(number of counts, status ON/OFF, control MOVing/REPeat)

	
bandwidth

	Obtain the bandwidth.

	
beep(freq, dur)

	Make a beep sound

	Parameters:	
	freq – Frequency, Hz

	dur – Duration, seconds

	
check_errors()

	Read all errors from the instrument.

	
config

	Return the current configuration.

	
get_average()

	Obtain the filter setting.

	Returns:	(number of counts, status ON/OFF, control MOVing/REPeat)

	
get_bandwidth()

	Obtain the bandwidth.

	
get_config()

	Return the current configuration.

	
get_nplc()

	Return the current NPLC (number of power line cycles).

	
get_range()

	Get the maximum limit of current configuration.

	Returns:	(Maximum limit, Auto Range status)

	
get_reference()

	Obtain the reference setting.

	Returns:	(Relative value, status ON/OFF)

	
nplc

	Return the current NPLC (number of power line cycles).

	
range

	Get the maximum limit of current configuration.

	Returns:	(Maximum limit, Auto Range status)

	
reference

	Obtain the reference setting.

	Returns:	(Relative value, status ON/OFF)

	
reset()

	Reset instrument.

	
set_average(count, method='REPeat')

	Make multiple readings and output the average

	Parameters:	
	count – number of repeats, 1 - 100

if count = 1, average is OFF

	method – either “REPeat” (default) or “MOVing”

	
set_bandwidth(bandwidth)

	Set bandwidth for AC measurement.

	
set_config(config, range=0, nplc=2, bandwidth=1000)

	Set configuration.

	Parameters:	
	config – String describing the function, such as ‘VAC’, ‘R4W’, etc.

	Range – Maximum limit of reading, default = 0 (auto range).

	nplc – Number of power line cycles, default = 2.

	bandwidth – Bandwidth for AC measurement, default = 1000.

	
set_range(maxvalue)

	Set range to accommodate maxvalue.

auto range ON if maxvalue = 0

	
set_reference(RefValue)

	Set reference value for output.
No reference if RefValue is 0

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

 	pymeasure.instruments

 	Keithley instruments

Keithley 2400 SourceMeter

	
class pymeasure.instruments.keithley.keithley2400.Keithley2400(resourceName, **kwargs)

	This is the class for the Keithley 2000-series instruments

	
config_current_source(source_current=0.0, complicance_voltage=0.1, current_range=0.001, auto_range=True)

	Set up to source current

	
config_voltage_source(source_voltage=0.0, compliance_current=0.1, current_range=2.0, voltage_range=2.0, auto_range=True)

	Set up to source voltage

	
disable_buffer()

	Disables the connection between measurements and the
buffer, but does not abort the measurement process

	
disable_output_trigger()

	Disables the output trigger for the Trigger layer

	
is_buffer_full()

	Returns True if the buffer is full of measurements

	
max_current

	Returns the maximum current from the buffer

	
max_resistance

	Returns the maximum resistance from the buffer

	
max_voltage

	Returns the maximum voltage from the buffer

	
maximums

	Returns the calculated maximums for voltage, current, and
resistance from the buffer data as a list

	
mean_current

	Returns the mean current from the buffer

	
mean_resistance

	Returns the mean resistance from the buffer

	
mean_voltage

	Returns the mean voltage from the buffer

	
means

	Returns the calculated means (averages) for voltage,
current, and resistance from the buffer data as a list

	
measure_resistance(nplc=1, resistance=1000.0, auto_range=True)

	Sets up to measure resistance

	
measure_voltage(nplc=1, voltage=1000.0, auto_range=True)

	Sets up to measure voltage

	
min_current

	Returns the minimum current from the buffer

	
min_resistance

	Returns the minimum resistance from the buffer

	
min_voltage

	Returns the minimum voltage from the buffer

	
minimums

	Returns the calculated minimums for voltage, current, and
resistance from the buffer data as a list

	
set_continous()

	Sets the Keithley to continously read samples
and turns off any buffer or output triggering

	
set_external_trigger(line=1)

	Sets up the measurments to be taken on the specified
line of an external trigger

	
set_immediate_trigger()

	Sets up the measurement to be taken with the internal
trigger at the maximum sampling rate

	
set_output_trigger(line=1, after='DEL')

	Sets up an output trigger on the specified trigger link
line number, with the option of supplyiny the part of the
measurement after which the trigger should be generated
(default to Delay, which is right before the measurement)

	
set_timed_arm(interval)

	Sets up the measurement to be taken with the internal
trigger at a variable sampling rate defined by the interval
in seconds between sampling points

	
set_trigger_counts(arm, trigger)

	Sets the number of counts for both the sweeps (arm) and the
points in those sweeps (trigger), where the total number of
points can not exceed 2500

	
standard_devs

	Returns the calculated standard deviations for voltage,
current, and resistance from the buffer data as a list

	
std_current

	Returns the current standard deviation from the buffer

	
std_resistance

	Returns the resistance standard deviation from the buffer

	
std_voltage

	Returns the voltage standard deviation from the buffer

	
stop_buffer()

	Aborts the arming and triggering sequence and uses
a Selected Device Clear (SDC) if possible

	
use_front_terminals()

	Uses the front terminals instead of the rear

	
use_rear_terminals()

	Uses the rear terminals instead of the front

	
wait_for_buffer(has_aborted=<function Keithley2400.<lambda>>, time_out=60, time_step=0.01)

	Blocks waiting for a full buffer or an abort event with timing
set in units of seconds

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

Contributing

Contributions to the instrument repository and the main code base are encouraged. Since the code is hosted on GitHub, contributions should be added by forking the repository [https://help.github.com/articles/fork-a-repo/] and submitting a pull request [https://help.github.com/articles/using-pull-requests/]. Do not make your updates on the master branch. Instead make a new branch [https://help.github.com/articles/creating-and-deleting-branches-within-your-repository/] and work on that branch. To ensure consistency, follow the coding standards for PyMeasure.

Unit testing is an important part of keeping the package running. When adding a feature that can be readily tested, include a unit test compatible with py.test [http://pytest.org/latest/] so that our continuous integration services can ensure that your features are retained and do not conflict with existing behavior.

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

Reporting an error

Please report all errors to the Issues section [https://github.com/ralph-group/pymeasure/issues] of the PyMeasure GitHub repository. Use the search function to determine if there is an existing or resolved issued before posting.

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

Adding Instruments

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

Coding Standards

In order to maintain consistency across the different instruments in the PyMeasure repository, we enforce the following standards.

Python style guides

Python 3 is used in PyMeasure. The PEP8 style guide [https://www.python.org/dev/peps/pep-0008/] and PEP257 docstring conventions [https://www.python.org/dev/peps/pep-0257/] should be followed.

Function and variable names should be lower case with underscores as needed to seperate words. Camel case should not be used, unless working with Qt, where it is common.

Standard naming

Since many instruments have similar functions, a few naming conventions have been adopted to make the interface more consistent.

Usage of getter and setter

Many settings (such as range, enabled status, etc) are provided by the instrument with a pair of actions: one is to read the current setting value, the other is to assign a value to the setting. One can write two methods, get_setting() and set_setting() for instance, to handle these two actions; or altenatively use getter and setter decorators. In most cases, the two ways are equivalent. In order to incorporate different programming styles, and for the convenience of users, our convention is as follow:
- Write two functions get_setting() and set_setting(). The latter one should have only one non-keyword argument (but can have many keyword arguments).
- Define a property setting = property(get_setting, set_setting).

Using a buffer

set_buffer
wait_for_buffer
get_buffer

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyMeasure 0.3 documentation

Authors

PyMeasure was started in 2013 by Colin Jermain and Graham Rowlands at Cornell University, when it became appearent that both were working on similar Python packages for scientific measurements. PyMeasure combined these efforts and continues to gain valuable contributions from other scientists who are interested in advancing measurement software.

The following developers have contributed to the PyMeasure package:

Colin Jermain

Graham Rowlands

Minh-Hai Nguyen

Guen Prawiro-Atmodjo

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	PyMeasure 0.3 documentation

License

Copyright (c) 2013-2016 PyMeasure Developers

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	PyMeasure 0.3 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pymeasure	

 	
 	
 pymeasure.display.browser	

 	
 	
 pymeasure.display.curves	

 	
 	
 pymeasure.display.inputs	

 	
 	
 pymeasure.display.listeners	

 	
 	
 pymeasure.display.log	

 	
 	
 pymeasure.display.manager	

 	
 	
 pymeasure.display.plotter	

 	
 	
 pymeasure.display.thread	

 	
 	
 pymeasure.display.widgets	

 	
 	
 pymeasure.display.windows	

 	
 	
 pymeasure.experiment.experiment	

 	
 	
 pymeasure.experiment.listeners	

 	
 	
 pymeasure.experiment.parameters	

 	
 	
 pymeasure.experiment.procedure	

 	
 	
 pymeasure.experiment.results	

 	
 	
 pymeasure.experiment.workers	

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	PyMeasure 0.3 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | U
 | V
 | W

A

 	

 	abort() (pymeasure.display.manager.Manager method)

 	Adapter (class in pymeasure.adapters.adapter)

 	add() (pymeasure.display.browser.Browser method)

 	

 	append() (pymeasure.display.curves.BufferCurve method)

 	ask() (pymeasure.adapters.adapter.Adapter method)

 	average (pymeasure.instruments.keithley.keithley2000.Keithley2000 attribute)

B

 	

 	bandwidth (pymeasure.instruments.keithley.keithley2000.Keithley2000 attribute)

 	beep() (pymeasure.instruments.keithley.keithley2000.Keithley2000 method)

 	binary_values() (pymeasure.adapters.adapter.Adapter method)

 	

 	(pymeasure.adapters.serial.SerialAdapter method)

 	(pymeasure.adapters.visa.VISAAdapter method)

 	

 	BooleanParameter (class in pymeasure.experiment.parameters)

 	Browser (class in pymeasure.display.browser)

 	BufferCurve (class in pymeasure.display.curves)

C

 	

 	check_errors() (pymeasure.instruments.keithley.keithley2000.Keithley2000 method)

 	check_parameters() (pymeasure.experiment.procedure.Procedure method)

 	clear() (pymeasure.display.manager.Manager method)

 	clear_plot() (pymeasure.experiment.experiment.Experiment method)

 	config (pymeasure.instruments.keithley.keithley2000.Keithley2000 attribute)

 	

 	config_current_source() (pymeasure.instruments.keithley.keithley2400.Keithley2400 method)

 	config_voltage_source() (pymeasure.instruments.keithley.keithley2400.Keithley2400 method)

 	create_filename() (in module pymeasure.experiment.experiment)

 	Crosshairs (class in pymeasure.display.curves)

D

 	

 	data (pymeasure.experiment.experiment.Experiment attribute)

 	disable_buffer() (pymeasure.instruments.keithley.keithley2400.Keithley2400 method)

 	

 	disable_output_trigger() (pymeasure.instruments.keithley.keithley2400.Keithley2400 method)

E

 	

 	emit() (pymeasure.experiment.workers.Worker method)

 	execute() (pymeasure.experiment.procedure.Procedure method)

 	

 	Experiment (class in pymeasure.display.manager)

 	

 	(class in pymeasure.experiment.experiment)

 	ExperimentQueue (class in pymeasure.display.manager)

F

 	

 	FakeAdapter (class in pymeasure.adapters.adapter)

 	FloatParameter (class in pymeasure.experiment.parameters)

 	

 	format() (pymeasure.experiment.results.Results method)

G

 	

 	gen_measurement() (pymeasure.experiment.procedure.Procedure method)

 	get_array() (in module pymeasure.experiment.experiment)

 	get_array_steps() (in module pymeasure.experiment.experiment)

 	get_array_zero() (in module pymeasure.experiment.experiment)

 	get_average() (pymeasure.instruments.keithley.keithley2000.Keithley2000 method)

 	get_bandwidth() (pymeasure.instruments.keithley.keithley2000.Keithley2000 method)

 	

 	get_config() (pymeasure.instruments.keithley.keithley2000.Keithley2000 method)

 	get_nplc() (pymeasure.instruments.keithley.keithley2000.Keithley2000 method)

 	get_range() (pymeasure.instruments.keithley.keithley2000.Keithley2000 method)

 	get_reference() (pymeasure.instruments.keithley.keithley2000.Keithley2000 method)

 	gpib() (pymeasure.adapters.prologix.PrologixAdapter method)

H

 	

 	has_next() (pymeasure.display.manager.ExperimentQueue method)

 	

 	header() (pymeasure.experiment.results.Results method)

I

 	

 	Input (class in pymeasure.display.inputs)

 	IntegerParameter (class in pymeasure.experiment.parameters)

 	is_buffer_full() (pymeasure.instruments.keithley.keithley2400.Keithley2400 method)

 	

 	is_running() (pymeasure.display.manager.Manager method)

 	is_set() (pymeasure.experiment.parameters.Parameter method)

J

 	

 	join() (pymeasure.display.thread.StoppableQThread method)

K

 	

 	Keithley2000 (class in pymeasure.instruments.keithley.keithley2000)

 	

 	Keithley2400 (class in pymeasure.instruments.keithley.keithley2400)

L

 	

 	labels() (pymeasure.experiment.results.Results method)

 	Listener (class in pymeasure.experiment.listeners)

 	

 	ListParameter (class in pymeasure.experiment.parameters)

 	load() (pymeasure.display.manager.Manager method)

 	

 	(pymeasure.experiment.results.Results static method)

M

 	

 	ManagedWindow (class in pymeasure.display.windows)

 	Manager (class in pymeasure.display.manager)

 	max_current (pymeasure.instruments.keithley.keithley2400.Keithley2400 attribute)

 	max_resistance (pymeasure.instruments.keithley.keithley2400.Keithley2400 attribute)

 	max_voltage (pymeasure.instruments.keithley.keithley2400.Keithley2400 attribute)

 	maximums (pymeasure.instruments.keithley.keithley2400.Keithley2400 attribute)

 	mean_current (pymeasure.instruments.keithley.keithley2400.Keithley2400 attribute)

 	mean_resistance (pymeasure.instruments.keithley.keithley2400.Keithley2400 attribute)

 	mean_voltage (pymeasure.instruments.keithley.keithley2400.Keithley2400 attribute)

 	means (pymeasure.instruments.keithley.keithley2400.Keithley2400 attribute)

 	

 	Measurable (class in pymeasure.experiment.parameters)

 	measure_resistance() (pymeasure.instruments.keithley.keithley2400.Keithley2400 method)

 	measure_voltage() (pymeasure.instruments.keithley.keithley2400.Keithley2400 method)

 	min_current (pymeasure.instruments.keithley.keithley2400.Keithley2400 attribute)

 	min_resistance (pymeasure.instruments.keithley.keithley2400.Keithley2400 attribute)

 	min_voltage (pymeasure.instruments.keithley.keithley2400.Keithley2400 attribute)

 	minimums (pymeasure.instruments.keithley.keithley2400.Keithley2400 attribute)

 	Monitor (class in pymeasure.display.listeners)

 	mouseMoved() (pymeasure.display.curves.Crosshairs method)

N

 	

 	next() (pymeasure.display.manager.ExperimentQueue method)

 	

 	(pymeasure.display.manager.Manager method)

 	

 	nplc (pymeasure.instruments.keithley.keithley2000.Keithley2000 attribute)

P

 	

 	Parameter (class in pymeasure.experiment.parameters)

 	parameter_objects() (pymeasure.experiment.procedure.Procedure method)

 	parameter_values() (pymeasure.experiment.procedure.Procedure method)

 	parameters_are_set() (pymeasure.experiment.procedure.Procedure method)

 	parse() (pymeasure.experiment.results.Results method)

 	parse_axis() (pymeasure.display.widgets.PlotFrame method)

 	parse_header() (pymeasure.experiment.results.Results static method)

 	pcolor() (pymeasure.experiment.experiment.Experiment method)

 	plot() (pymeasure.experiment.experiment.Experiment method)

 	plot_live() (pymeasure.experiment.experiment.Experiment method)

 	PlotFrame (class in pymeasure.display.widgets)

 	Plotter (class in pymeasure.display.plotter)

 	PlotWidget (class in pymeasure.display.widgets)

 	prepare() (pymeasure.display.curves.BufferCurve method)

 	Procedure (class in pymeasure.experiment.procedure)

 	PrologixAdapter (class in pymeasure.adapters.prologix)

 	

 	pymeasure.display.browser (module)

 	pymeasure.display.curves (module)

 	pymeasure.display.inputs (module)

 	pymeasure.display.listeners (module)

 	pymeasure.display.log (module)

 	pymeasure.display.manager (module)

 	pymeasure.display.plotter (module)

 	pymeasure.display.thread (module)

 	pymeasure.display.widgets (module)

 	pymeasure.display.windows (module)

 	pymeasure.experiment.experiment (module)

 	pymeasure.experiment.listeners (module)

 	pymeasure.experiment.parameters (module)

 	pymeasure.experiment.procedure (module)

 	pymeasure.experiment.results (module)

 	pymeasure.experiment.workers (module)

Q

 	

 	QListener (class in pymeasure.display.listeners)

 	

 	queue() (pymeasure.display.manager.Manager method)

 	

 	(pymeasure.display.windows.ManagedWindow method)

R

 	

 	range (pymeasure.instruments.keithley.keithley2000.Keithley2000 attribute)

 	read() (pymeasure.adapters.adapter.Adapter method)

 	

 	(pymeasure.adapters.prologix.PrologixAdapter method)

 	(pymeasure.adapters.serial.SerialAdapter method)

 	(pymeasure.adapters.visa.VISAAdapter method)

 	Recorder (class in pymeasure.experiment.listeners)

 	reference (pymeasure.instruments.keithley.keithley2000.Keithley2000 attribute)

 	refresh_parameters() (pymeasure.experiment.procedure.Procedure method)

 	reload() (pymeasure.experiment.results.Results method)

 	

 	remove() (pymeasure.display.manager.Manager method)

 	reset() (pymeasure.instruments.keithley.keithley2000.Keithley2000 method)

 	Results (class in pymeasure.experiment.results)

 	ResultsCurve (class in pymeasure.display.curves)

 	resume() (pymeasure.display.manager.Manager method)

S

 	

 	SerialAdapter (class in pymeasure.adapters.serial)

 	set_average() (pymeasure.instruments.keithley.keithley2000.Keithley2000 method)

 	set_bandwidth() (pymeasure.instruments.keithley.keithley2000.Keithley2000 method)

 	set_config() (pymeasure.instruments.keithley.keithley2000.Keithley2000 method)

 	set_continous() (pymeasure.instruments.keithley.keithley2400.Keithley2400 method)

 	set_defaults() (pymeasure.adapters.prologix.PrologixAdapter method)

 	set_external_trigger() (pymeasure.instruments.keithley.keithley2400.Keithley2400 method)

 	set_immediate_trigger() (pymeasure.instruments.keithley.keithley2400.Keithley2400 method)

 	set_output_trigger() (pymeasure.instruments.keithley.keithley2400.Keithley2400 method)

 	set_parameters() (pymeasure.display.windows.ManagedWindow method)

 	

 	(pymeasure.experiment.procedure.Procedure method)

 	set_range() (pymeasure.instruments.keithley.keithley2000.Keithley2000 method)

 	set_reference() (pymeasure.instruments.keithley.keithley2000.Keithley2000 method)

 	

 	set_timed_arm() (pymeasure.instruments.keithley.keithley2400.Keithley2400 method)

 	set_trigger_counts() (pymeasure.instruments.keithley.keithley2400.Keithley2400 method)

 	shutdown() (pymeasure.experiment.procedure.Procedure method)

 	standard_devs (pymeasure.instruments.keithley.keithley2400.Keithley2400 attribute)

 	start() (pymeasure.experiment.experiment.Experiment method)

 	startup() (pymeasure.experiment.procedure.Procedure method)

 	std_current (pymeasure.instruments.keithley.keithley2400.Keithley2400 attribute)

 	std_resistance (pymeasure.instruments.keithley.keithley2400.Keithley2400 attribute)

 	std_voltage (pymeasure.instruments.keithley.keithley2400.Keithley2400 attribute)

 	stop_buffer() (pymeasure.instruments.keithley.keithley2400.Keithley2400 method)

 	StoppableQThread (class in pymeasure.display.thread)

U

 	

 	unique_filename() (in module pymeasure.experiment.results)

 	UnknownProcedure (class in pymeasure.experiment.procedure)

 	update() (pymeasure.display.curves.Crosshairs method)

 	

 	(pymeasure.display.curves.ResultsCurve method)

 	update_line() (pymeasure.experiment.experiment.Experiment method)

 	update_parameter() (pymeasure.display.inputs.Input method)

 	

 	update_pcolor() (pymeasure.experiment.experiment.Experiment method)

 	update_plot() (pymeasure.experiment.experiment.Experiment method)

 	use_front_terminals() (pymeasure.instruments.keithley.keithley2400.Keithley2400 method)

 	use_rear_terminals() (pymeasure.instruments.keithley.keithley2400.Keithley2400 method)

V

 	

 	values() (pymeasure.adapters.adapter.Adapter method)

 	

 	(pymeasure.adapters.serial.SerialAdapter method)

 	(pymeasure.adapters.visa.VISAAdapter method)

 	VectorParameter (class in pymeasure.experiment.parameters)

 	

 	version (pymeasure.adapters.visa.VISAAdapter attribute)

 	VISAAdapter (class in pymeasure.adapters.visa)

W

 	

 	wait_for_buffer() (pymeasure.instruments.keithley.keithley2400.Keithley2400 method)

 	wait_for_data() (pymeasure.experiment.experiment.Experiment method)

 	wait_for_srq() (pymeasure.adapters.prologix.PrologixAdapter method)

 	

 	Worker (class in pymeasure.experiment.workers)

 	write() (pymeasure.adapters.adapter.Adapter method)

 	

 	(pymeasure.adapters.prologix.PrologixAdapter method)

 	(pymeasure.adapters.serial.SerialAdapter method)

 	(pymeasure.adapters.visa.VISAAdapter method)

 Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

 _static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_images/pymeasure-managedwindow.png
Random Number

08

(0.573404, 0.536406)

Loop Iterations Delay Time Random Seed

_static/up.png

_images/pymeasure-plotter.png
(49.6662, 0.777392)

Random Number

m
2
&
>

/tmp/tmpaww4046u

JequInN wopuey

Data Filename:

_static/up-pressed.png

_images/PyMeasure.png
| PyMeasure

_images/pymeasure-managedwindow-resume.png
GUI Example
Input Parameters

e
Rests Graph | Experiment Log

Loop Tterations:

XAxis: | Iteration | YAxs: [Random Number
1000

Delay Time:
001s
Random Seed:

94594

Queue

Random Number

(1026.84, 0.485272)

show all Hide all Open

~ Fllename Loop Iterations Delay Time Random Seed
12345

Graph
© tmpnayfio 1000 0.01s
¥ M tmptasfdhcx 1000 0.01s 452032
¥ M tmpéqqn3p29 1000 0.01s 94594

_images/pymeasure-managedwindow-queued.png
GUI Example

| Input Parameters [y
o Results Graph | Experiment Log

Loop Tterations:
XAxis: | Iteration | YAxs: [Random Number
10000
Delay Time:
001s
Random Seed:

12345

Queue

H
£
2
£
5
B
£
H

(656,335, 0.26911)

Hide all

Filename Status Loop Iterations _ Delay Time
tmpwbb2_Itq Running 10000 001s
tmp7y97gest Queued 10000 001s
tmpyiwdnmnd Queued 10000 001s
tmpogtkaubm Queued 10000 001s
tmphpfnussc Queued 10000 001s

_images/pymeasure-managedwindow-running.png
GUI Example

| Input Parameters [y
o Results Graph | Experiment Log

Loop Tterations:

XAxis: | Iteration | YAxs: [Random Number
1000

Delay Time:
001s

Random Seed:

94594

Queue

Random Number

(340.455, 0.310728)

show all Hide all Open

Graph ~ Filename Progress Status Loop Tterations Delay Time ~ Random Seed
[tmpn8yfiof Finished 1000 001s 12345
v M tmptasfdhoc aes] Avorted 1000 0ots 452032
@ M tmpsaan3p29 (5%) Running 1000 0015 94594

search.html

 Navigation

 		
 index

 		
 modules |

 		PyMeasure 0.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013-2016, PyMeasure Developers.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/comment.png

