

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pylsdj 2.3.3 documentation

Welcome to pylsdj’s documentation!

Contents:

	Introduction
	What is LSDJ?

	What is pylsdj?

	Why?

	How Can I Help?

	Known Limitations

	Terminology Primer

	Compression and Decompression
	Usage Examples

	API Documentation

	.sav Files
	Loading and Saving

	Accessing and Editing a .sav File’s Projects

	Usage Examples

	API Documentation

	Projects
	Usage Examples

	API Documentation

	Songs
	Notes

	Instruments

	Appearance and Playback Behavior

	API Documentation

	Chains
	Usage Examples

	API Reference

	Phrases
	API Documentation

	Clocks
	Usage Examples

	API Documentation

	Instruments
	Importing and Exporting Instruments

	Instrument Fields

	Synths
	Usage Examples

	API Reference

	Tables
	Usage Examples

	API Reference

	Speech Instrument
	Speech Instrument Structure

	Usage Examples

	API Documentation

	Utilities

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Alex Rasmussen.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pylsdj 2.3.3 documentation

Introduction

What is LSDJ?

Little Sound DJ (or LSDJ) is a program for the Nintendo Game Boy that turns the humble Game Boy into a music workstation. More information about LSDJ can be found at the LSDJ website [http://www.littlesounddj.com/lsd/] and the LSDJ wiki [http://littlesounddj.wikia.com/wiki/Little_Sound_Dj].

What is pylsdj?

pylsdj is a suite of tools for reading, writing and editing LSDJ’s save data, which includes the user’s saved songs and instruments.

Why?

Before pylsdj, the suite of tools available for interacting with LSDJ’s save data was sparse and fragmented. People who wanted to share and re-use instruments between songs or move songs between saves were met with partial solutions at best. pylsdj endeavors to be a one-stop solution for save data reading, writing and editing.

How Can I Help?

First and foremost, use it! You can also try out LSMC [https://www.github.com/alexras/lsmc], which is really just a GUI on top of many of pylsdj’s functions.

Second, if you find a bug, file it. I know I haven’t hit all the potential use cases for this in tests, and your input will help me find and squash bugs.

Third, if you’re a developer, write some tests. If you find a feature pylsdj doesn’t have and you want to take a crack at it, fork the code and send me a pull request. I’m ready and willing to receive contributions from the community.

Known Limitations

pylsdj only works on save data for LSDJ versions 3.0.0 and above. Given that version 3.0.0 came out back in 2006 and marked a significant change in file structure, I feel like this is a reasonable point at which to freeze backwards-compatibility.

There are parts of the codebase that are much more messy than I’d like them to be, but perfect is the enemy of done.

Terminology Primer

LSDJ’s save data is stored in the Game Boy’s battery RAM. LSDJ’s file manager can hold up to 32 songs. Songs are stored in the file manager in a compressed form and a song is expanded into memory when it’s being worked on.

The Game Boy has four audio channels: two pulse wave generators, a PCM 4-bit wave sample, and a noise generator. A song consists of a sequence of chains, one for each channel. Each chain consists of a sequence of phrases, and a phrase contains up to 16 notes.

The sound of each note is determined by the instrument used to play the note. This instrument controls the sound produced by one of the channels when the note is played. While the sound produced by each channel is simple, LSDJ provides a variety of means to vary the sound over time, allowing for a wide range of timbres as well as effects like arpeggio and vibrato.

 Copyright 2015, Alex Rasmussen.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pylsdj 2.3.3 documentation

Compression and Decompression

Game Boys don’t have a lot of RAM (128KB tops); in order for LSDJ to deal with
such a limited amount of space, it has to pack files in pretty tight. To do
this, it uses an algorithm referred to on the LSDJ wiki [http://littlesounddj.wikia.com/wiki/Little_Sound_Dj] as the “file pack
algorithm”.

pylsdj includes functions that will compress and decompress lists of bytes
using the file pack algorithm.

Typically you don’t need to do this: .sav files compress themselves on save and
decompress themselves on load automatically. If your application needs to do
something fancy with LSDJ’s filesystem, however, you can use the compression
and decompression functions by themselves.

Usage Examples

from pylsdj import filepack

Here's a list of bytes
bytes = [0x12, 0x12, 0x12, 0x15, 0x15, 0x10]

We can compress those bytes
compressed = filepack.compress(bytes)

... and then decompress them again
decompressed = filepack.decompress(compressed)

API Documentation

	
pylsdj.filepack.compress(raw_data)

	Compress raw bytes with the filepack algorithm.

	Parameters:	raw_data – an array of raw data bytes to compress

	Return type:	a list of compressed bytes

	
pylsdj.filepack.decompress(compressed_data)

	Decompress data that has been compressed by the filepack algorithm.

	Parameters:	compressed_data – an array of compressed data bytes to decompress

	Return type:	an array of decompressed bytes

 Copyright 2015, Alex Rasmussen.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pylsdj 2.3.3 documentation

.sav Files

pylsdj manipulates .sav files through a pylsdj.SAVFile object. This object can be used to load, store, and edit the contents of LSDJ’s SRAM file.

Loading and Saving

If you’re writing an application using pylsdj, you’ll probably want to load and store it.

Callback Functions

Several methods of pylsdj.SAVFile take a progress callback function that callers can use to notify callers of how far the operation has progressed. Callback functions take four arguments

	message: a message explaining what the step is doing

	step: the step that the operation is currently on

	total_steps: the total number of steps in the operation

	continuing: True if the operation is going to continue

Accessing and Editing a .sav File’s Projects

A .sav file’s project_list field contains an ordered list of that file’s
projects. You can insert, modify and delete pylsdj.Project objects
in this list to modify the .sav file’s contents. Note that changes to the .sav
file will not persist unless it is saved.

Usage Examples

from pylsdj import SAVFile

Load .sav file from lsdj.sav
sav = SAVFile('lsdj.sav')

Load a .sav file, passing loading progress to a callback
def my_callback(message, step, total_steps, continuing):
 print '%(m)s: %(s)d/%(t)d complete!' % { m: message, s: step, t: total_steps }

sav = SAVFile('lsdj.sav', my_callback)

Get the file's project map (maps slot number to Project)
projects = sav.projects

Save a savfile as lsdj_modified.sav, passing the same progress callback
from the above example
sav.save('lsdj_modified.sav', my_callback)

API Documentation

	
class pylsdj.SAVFile(filename, callback=<function _noop_callback at 0x7f4b6f2c4ed8>)

	
	
project_list

	The list of pylsdj.Project s that the
.sav file contains

	
save(filename, callback=<function _noop_callback at 0x7f4b6f2c4ed8>)

	Save this file.

	Parameters:	
	filename (str) – the file to which to save the .sav file

	callback (function) – a progress callback function

 Copyright 2015, Alex Rasmussen.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pylsdj 2.3.3 documentation

Projects

A project is a wrapper around a song that gives the song a name and a version.

In addition to the pylsdj.Project object itself, the
pylsdj.projects module contains functions for loading projects from
.srm and .lsdsng files.

Usage Examples

from pylsdj import Project, load_srm, load_lsdsng

Load a .srm file
srm_proj = load_srm("test1.srm")

Load a .lsdsng file
lsdsng_proj = load_srm("test2.lsdsng")

Convert the .srm project to .lsdsng
srm_proj.save_lsdsng("test1_conv.lsdsng")

Get the srm project's song
song = srm_proj.song

API Documentation

	
pylsdj.load_lsdsng(filename)

	Load a Project from a .lsdsng file.

	Parameters:	filename – the name of the file from which to load

	Return type:	pylsdj.Project

	
pylsdj.load_srm(filename)

	Load a Project from an .srm file.

	Parameters:	filename – the name of the file from which to load

	Return type:	pylsdj.Project

	
class pylsdj.Project(name, version, size_blks, data)

	
	
name = None

	the project’s name

	
save(filename)

	Save a project in .lsdsng format to the target file.

	Parameters:	filename – the name of the file to which to save

	Deprecated:	use save_lsdsng(filename) instead

	
save_lsdsng(filename)

	Save a project in .lsdsng format to the target file.

	Parameters:	filename – the name of the file to which to save

	
save_srm(filename)

	Save a project in .srm format to the target file.

	Parameters:	filename – the name of the file to which to save

	
size_blks = None

	the size of the song in filesystem blocks

	
song

	the song associated with the project

	
version = None

	the project’s version (incremented on every save in LSDJ)

 Copyright 2015, Alex Rasmussen.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pylsdj 2.3.3 documentation

Songs

A song contains all the information about its notes and the instruments that
control how the notes sound. It also contains settings related to how LSDJ
should play the song.

Notes

A song is defined by its sequence. A sequence consists of a number of
sequence steps. Each step specifies a chain for each of the Game Boy’s four
audio channels (pulse 1, pulse 2, wave, and noise). See Chains for more
information on how Chains are structured.

A song’s sequence is stored in its sequence field as a two-dimensional
dictionary of chains.

Usage Examples

from pylsdj import Sequence

Get the chain in step $3 of PU2 from the sequence
curr_chain = song.sequence[Sequence.PU2][0x3]

Get that same chain from the global chains table
curr_chain_another_way = song.chains[curr_chain.index]

Get chain $2D from the global chain table
chain_two_d = song.chains[0x2d]

Instruments

The sound of a note is determined by an instrument. An instrument can also
refer to a synth or a macro table to control how it behaves over time.

A song contains global tables for instruments, synths and macro tables. These
are stored in the song’s instruments, synths and tables fields,
resp.

Appearance and Playback Behavior

Songs also have a number of fields that control the appearance of LSDJ and its
synchronization setting. A complete overview of what all these settings do is
out of this document’s scope; see the API documentation below for a list of
supported settings.

API Documentation

	
class pylsdj.Song(song_data)

	A song consists of a sequence of chains, one per channel.

	
bookmarks

	list of screen bookmarks

	
chains

	the song’s chain table, represented as a list of Chain objects

	
clock

	the amount of time LSDJ has been used since the last memory
reset, represented as a Clock object

	
clone

	chain cloning depth; one of "deep", "slim"

	
colorset

	the selected LSDJ colorset

	
file_changed

	1 if the file has changed since last save, 0 otherwise

	
font

	the selected LSDJ font

	
global_clock

	the amount of time LSDJ has been used total, represented
as a Clock object

	
grooves

	the song’s groove table

	
instruments

	the song’s instrument table, represented as a list of
Instrument objects

	
key_delay

	the delay before key repeat is activated for Game Boy buttons

	
key_repeat

	the key repeat speed for Game Boy buttons

	
phrases

	the song’s phrase table, represented as a list of Phrase objects

	
prelisten

	if non-zero, play notes and instruments while entering them

	
sequence

	the song’s sequence, showing the order in which chains are
played on each of the four channels

	
song_version

	the song’s version number

	
speech_instrument

	the song’s speech instrument settings, represented as a
SpeechInstrument object

	
sync_setting

	LSDJ’s sync setting; one of "off", "slave", "master", "midi", "nano", and "keyboard"

	
tables

	the song’s table of macro tables, represented as Table objects

	
tempo

	the song’s tempo

 Copyright 2015, Alex Rasmussen.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pylsdj 2.3.3 documentation

Chains

A chain is a list of phrases for a single channel.

A chain can have up to 16 phrases, each of which is associated with a transpose (how much the phrase’s notes should be shifted up).

The pylsdj.chain.Chain class is a convenience wrapper around one of a song’s chains.

Usage Examples

Access the second transpose in chain $05
song.chains[0x05].transposes[1]

Access the fifth phrase in chain $53
song.chains[0x53].phrase[4]

API Reference

	
class pylsdj.chain.Chain(song, index)

	A chain is a sequence of phrases for a single channel. Each phrase can be
transposed by a number of semitones.

 Copyright 2015, Alex Rasmussen.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pylsdj 2.3.3 documentation

Phrases

Each phrase consists of a sequence of notes. Each note can have a parameterized effect and instrument associated with it.

API Documentation

	
class pylsdj.Phrase(song, index)

	A phrase is a sequence of notes for a single channel.

	
fx

	a list of the phrase’s effects, one byte per effect

	
fx_val

	a list of the phrase’s effect parameters, one byte per effect

	
index

	the phrase’s index within its parent song’s phrase table

	
instruments

	a list of Instruments, None where no instrument is defined

	
notes

	a list of the phrase’s notes, one byte per note

	
song

	a reference to the phrase’s parent song

 Copyright 2015, Alex Rasmussen.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pylsdj 2.3.3 documentation

Clocks

LSDJ’s clocks serve as a way to track the amount of time the current song has
been worked on. The global clock also has a checksum, which provides a check
against file corruption.

pylsdj.clock.TotalClock is a wrapper around a song’s global clock
data. Modifying any of the clock’s fields (days, hours, or minutes)
will also update the checksum accordingly.

	pylsdj.clock.Clock is a wrapper around a song’s local clock

	data. It only tracks hours and minutes.

Usage Examples

Get a clock’s days

>>> clock.days
5

Set a clock’s hours:

>>> clock.hours = 6

API Documentation

	
class pylsdj.clock.TotalClock(clock_data)

	
	
checksum

	the clock’s checksum (days + hours + minutes)

	
days

	The total number of days on the clock.

	
hours

	The total number of hours on the clock.

	
minutes

	The total number of minutes on the clock.

	
class pylsdj.clock.Clock(clock_data)

	
	
hours

	The total number of hours on the clock.

	
minutes

	The total number of minutes on the clock.

 Copyright 2015, Alex Rasmussen.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pylsdj 2.3.3 documentation

Instruments

pylsdj.Instrument is a wrapper class allowing manipulation of a
project’s instrument. It is typically accessed by looking up the instrument in
its parent song’s instruments field.

Importing and Exporting Instruments

Instruments export in what I’m calling lsdinst format, which is really just
a JSON encoding of the instrument’s data.

Importing an instrument is handled by its parent song, so that it can do the necessary bookkeeping if the instrument’s type changes.

	
class pylsdj.Instruments(song)

	
	
import_from_file(index, filename)

	Import this instrument’s settings from the given file. Will
automatically add the instrument’s synth and table to the song’s
synths and tables if needed.

Note that this may invalidate existing instrument accessor objects.

	Parameters:	
	index – the index into which to import

	filename – the file from which to load

	Raises ImportException:

		if importing failed, usually because the song
doesn’t have enough synth or table slots left for the instrument’s
synth or table

	
class pylsdj.Instrument(song, index)

	
	
export_to_file(filename)

	Export this instrument’s settings to a file.

	Parameters:	filename – the name of the file

Usage Examples

Editing a song's instrument $06
instrument = song.instruments[0x06]

Change the instrument's name
instrument.name = "ABCDE"

Export the instrument to a file
instrument.export_to_file("my_instrument.lsdinst")

Import the instrument, overwriting instrument $09
song.instruments.import_from_file(0x09, "my_instrument.lsdinst")

Instrument Fields

All instrument types have the following fields:

	name: the instrument’s name

	type: the instrument’s type (pulse, wave, noise, or kit)

Different instruments have different additional fields, corresponding to the
fields that an instrument has in LSDJ. These fields are described below.

Vibrato

The pulse, wave, and kit instrument types all have a vibrato control, accessed
through their vibrato fields, which has the following structure:

	
class pylsdj.Vibrato(data)

	
	
direction

	‘down’ or ‘up’

	
type

	hf (for high frequency sine), sawtooth,
saw or square

Pulse Instruments

	
class pylsdj.PulseInstrument(song, index)

	
	
automate

	if True, automation is on

	
envelope

	the noise instrument’s volume envelope (8-bit integer)

	
name

	the instrument’s name (5 characters, zero-padded)

	
phase_finetune

	detune pulse channel 1 down, channel 2 up; in LSDJ, this is
PU FINE (4-bit integer)

	
phase_transpose

	detune pulse channel 2 this many semitones; in LSDJ, this is
PU2 TUNE (8-bit integer)

	
sound_length

	the instrument sound’s length, a 6-bit integer or unlimited
if the sound plays forever

	
sweep

	modulates the sound’s frequency; only works on pulse 1
(8-bit integer)

	
table

	a `pylsdj.Table` referencing the instrument’s table, or None
if the instrument doesn’t have a table

	
type

	the instrument’s type (pulse, wave, kit or noise)

	
vibrato

	instrument’s vibrato settings

	
wave

	the pulse’s wave width; 12.5%, 25%, 50% or 75%

Wave Instruments

	
class pylsdj.WaveInstrument(song, index)

	
	
automate

	if True, automation is on

	
name

	the instrument’s name (5 characters, zero-padded)

	
play_type

	how to play the synth sound; once, loop, ping-pong,
or manual

	
repeat

	the synth sound’s repeat point (4-bit integer)

	
speed

	how fast the sound should be played back (4-bit integer)

	
steps

	length of the synth sound (4-bit integer)

	
synth

	the wave’s synth settings

	
table

	a `pylsdj.Table` referencing the instrument’s table, or None
if the instrument doesn’t have a table

	
type

	the instrument’s type (pulse, wave, kit or noise)

	
vibrato

	instrument’s vibrato settings

	
volume

	the sound’s volume; 0 through 3

Noise Instrument Fields

	
class pylsdj.NoiseInstrument(song, index)

	
	
automate

	if True, automation is on

	
envelope

	the noise instrument’s volume envelope (8-bit integer)

	
name

	the instrument’s name (5 characters, zero-padded)

	
s_cmd

	free or stable. When free, altering noise shape with the
S command can sometimes mute the sound. When stable, sound will never
be muted by accident. My understanding is that this setting exists for
backwards-compatibility of behavior in old LSDJ instruments

	
sound_length

	the instrument sound’s length, a 6-bit integer or unlimited
if the sound plays forever

	
sweep

	modulates the sound’s frequency; only works on pulse 1
(8-bit integer)

	
table

	a `pylsdj.Table` referencing the instrument’s table, or None
if the instrument doesn’t have a table

	
type

	the instrument’s type (pulse, wave, kit or noise)

Kit Instrument Fields

	
class pylsdj.KitInstrument(song, index)

	
	
automate

	if True, automation is on

	
dist_type

	algorithm used when two kits are mixed together; clip, shape,
shap2 or wrap

	
half_speed

	if true, play samples at half their normal speed

	
keep_attack_1

	loop sample in kit 1 and start playing from beginning

	
keep_attack_2

	loop sample in kit 2 and start playing from beginning

	
kit_1

	the index of the first kit in LSDJ’s kit list

	
kit_2

	the index of the second kit in LSDJ’s kit list

	
length_1

	the length of kit 1’s sound (0 means ‘always play the sample to
the end’ and is displayed as AUT in LSDJ)

	
length_2

	the length of kit 2’s sound (0 means ‘always play the sample to
the end’ and is displayed as AUT in LSDJ)

	
loop_1

	loop sample in kit 1 and start playing from an offset

	
loop_2

	loop sample in kit 2 and start playing from an offset

	
name

	the instrument’s name (5 characters, zero-padded)

	
offset_1

	kit 1’s loop start point (if loop_1 is True and keep_attack_1 is
False)

	
offset_2

	kit 2’s loop start point (if loop_2 is True and keep_attack_2 is
False)

	
pitch

	sample pitch shift (8-bit integer)

	
table

	a `pylsdj.Table` referencing the instrument’s table, or None
if the instrument doesn’t have a table

	
type

	the instrument’s type (pulse, wave, kit or noise)

	
vibrato

	instrument’s vibrato settings

	
volume

	the kit’s volume; 0 to 3

 Copyright 2015, Alex Rasmussen.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pylsdj 2.3.3 documentation

Synths

Synths are used by the wave channel to define the shape of its waveform and how
that shape changes over time.

A synth is defined by a sequence of 16 waveforms. In LSDJ waveforms can be
drawn by hand, or can be generated by tweaking the softsynth’s parameters.

If you update the synth’s waves or its parameters, the synth’s wave synth
overwrite lock in its parent song will be updated appropriately. Modifying the
wave frames manually will enable the lock, while modifying its parameters will
disable the lock.

Usage Examples

Get the raw waveforms for synth $3
waves = song.synths[0x3].waves

Get the end volume for synth $9
vol = song.synths[0x9].end.volume

API Reference

	
class pylsdj.Synth(song, index)

	
	
distortion

	use "clip" or "wrap" distortion

	
end

	parameters for the end of the sound, represented as a
SynthSoundParams object

	
filter_resonance

	boosts the signal around the cutoff
frequency, to change how bright or dull the wave sounds

	
filter_type

	the type of filter applied to the waveform; one of
"lowpass", "highpass", "bandpass", "allpass"

	
index

	the synth’s index within its parent song’s synth table

	
phase_type

	compresses the waveform horizontally; one of
"normal", "resync", "resync2"

	
song

	the synth’s parent Song

	
start

	parameters for the start of the sound, represented as a
SynthSoundParams object

	
wave_synth_overwrite_lock

	if True, the synth’s waveforms override its synth parameters;
if False, its synth parameters override its waveforms

	
waveform

	the synth’s waveform type; one of "sawtooth",
"square", "sine"

	
waves

	a list of the synth’s waveforms, each of which is a list of bytes

	
class pylsdj.SynthSoundParams(params, overwrite_lock)

	
	
filter_cutoff

	the filter’s cutoff frequency

	
phase_amount

	the amount of phase shift, 0 = no phase,
0x1f = maximum phase

	
vertical_shift

	the amount to shift the waveform vertically

	
volume

	the wave’s volume

 Copyright 2015, Alex Rasmussen.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pylsdj 2.3.3 documentation

Tables

Tables define the behavior of an instrument over time.

Each table consists of a list of volume envelopes, transposes and effect
commands. How (or whether) these commands are applied to an instrument depends
on that instrument’s settings.

Usage Examples

Get table $4 from the song's table of tables
table = song.tables[0x4]

Alternatively, get it from instrument $b
table = song.instruments[0xb].table

Set the envelope in row $5 to $A6
table.envelopes[0x5] = 0xa6

Set the value of the first effect's parameter to 5 in row $6
table.fx1[0x6].value = 5

API Reference

	
class pylsdj.Table(song, index)

	Each table is a sequence of transposes, commands, and amplitude
changes that can be applied to any channel.

	
envelopes

	a list of the table’s volume envelopes

	
fx1

	a list of the table’s first effects, represented as TableFX
objects

	
fx2

	a list of the table’s first effects, represented as TableFX
objects

	
index

	the table’s index within its parent song’s table of macro tables

	
song

	the table’s parent Song

	
transposes

	a list of the table’s volume transposes

	
class pylsdj.TableFX(params, table_index, fx_index)

	
	
command

	the effect’s command

	
value

	the command’s parameter

 Copyright 2015, Alex Rasmussen.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pylsdj 2.3.3 documentation

Speech Instrument

LSDJ has a speech instrument (loaded into instrument slot $40) that can
synthesize words from allophones.

If you’re looking for a way to break down words into allophones, the CMU Pronouncing Dictionary [http://www.speech.cs.cmu.edu/cgi-bin/cmudict] is a good place to start.

Speech Instrument Structure

The speech instrument consists of a list of words. Each word has a name,
and a list of sounds. Each sound consists of an allophone and a length.

Usage Examples

Get word $5 defined in the speech instrument
word = song.speech_instrument.words[0x5]

Extract the word's allophones
allophones = [sound.allophone for sound in word.sounds]

Change the fifth allophone to 'OY'
word.sounds[4].allophone = 'OY'

Change the length of the 10th allophone to 5
word.sounds[9].length = 5

Change the 3rd word's name to 'WORD'
word.sounds[2].name = 'WORD'

API Documentation

	
class pylsdj.SpeechInstrument(song)

	
	
song

	the speech instrument’s parent song

	
words

	a list of the speech instrument’s defined words, as Word objects

	
class pylsdj.Word(song, index)

	
	
name

	the word’s name

	
sounds

	a list of the sounds that make up the word; each sound has
an allophone and a length

 Copyright 2015, Alex Rasmussen.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pylsdj 2.3.3 documentation

Utilities

	
pylsdj.utils.name_without_zeroes(name)

	Return a human-readable name without LSDJ’s trailing zeroes.

	Parameters:	name – the name from which to strip zeroes

	Return type:	the name, without trailing zeroes

 Copyright 2015, Alex Rasmussen.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	pylsdj 2.3.3 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pylsdj	

 	
 	
 pylsdj.filepack	

 	
 	
 pylsdj.utils	

 Copyright 2015, Alex Rasmussen.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	pylsdj 2.3.3 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W

A

 	

 	automate (pylsdj.KitInstrument attribute)

 	

 	(pylsdj.NoiseInstrument attribute)

 	(pylsdj.PulseInstrument attribute)

 	(pylsdj.WaveInstrument attribute)

B

 	

 	bookmarks (pylsdj.Song attribute)

C

 	

 	Chain (class in pylsdj.chain)

 	chains (pylsdj.Song attribute)

 	checksum (pylsdj.clock.TotalClock attribute)

 	Clock (class in pylsdj.clock)

 	clock (pylsdj.Song attribute)

 	

 	clone (pylsdj.Song attribute)

 	colorset (pylsdj.Song attribute)

 	command (pylsdj.TableFX attribute)

 	compress() (in module pylsdj.filepack)

D

 	

 	days (pylsdj.clock.TotalClock attribute)

 	decompress() (in module pylsdj.filepack)

 	direction (pylsdj.Vibrato attribute)

 	

 	dist_type (pylsdj.KitInstrument attribute)

 	distortion (pylsdj.Synth attribute)

E

 	

 	end (pylsdj.Synth attribute)

 	envelope (pylsdj.NoiseInstrument attribute)

 	

 	(pylsdj.PulseInstrument attribute)

 	

 	envelopes (pylsdj.Table attribute)

 	export_to_file() (pylsdj.Instrument method)

F

 	

 	file_changed (pylsdj.Song attribute)

 	filter_cutoff (pylsdj.SynthSoundParams attribute)

 	filter_resonance (pylsdj.Synth attribute)

 	filter_type (pylsdj.Synth attribute)

 	font (pylsdj.Song attribute)

 	

 	fx (pylsdj.Phrase attribute)

 	fx1 (pylsdj.Table attribute)

 	fx2 (pylsdj.Table attribute)

 	fx_val (pylsdj.Phrase attribute)

G

 	

 	global_clock (pylsdj.Song attribute)

 	

 	grooves (pylsdj.Song attribute)

H

 	

 	half_speed (pylsdj.KitInstrument attribute)

 	

 	hours (pylsdj.clock.Clock attribute)

 	

 	(pylsdj.clock.TotalClock attribute)

I

 	

 	index (pylsdj.Phrase attribute)

 	

 	(pylsdj.Synth attribute)

 	(pylsdj.Table attribute)

 	Instrument (class in pylsdj)

 	

 	instruments (pylsdj.Phrase attribute)

 	

 	(pylsdj.Song attribute)

K

 	

 	keep_attack_1 (pylsdj.KitInstrument attribute)

 	keep_attack_2 (pylsdj.KitInstrument attribute)

 	key_delay (pylsdj.Song attribute)

 	key_repeat (pylsdj.Song attribute)

 	

 	kit_1 (pylsdj.KitInstrument attribute)

 	kit_2 (pylsdj.KitInstrument attribute)

 	KitInstrument (class in pylsdj)

L

 	

 	length_1 (pylsdj.KitInstrument attribute)

 	length_2 (pylsdj.KitInstrument attribute)

 	load_lsdsng() (in module pylsdj)

 	

 	load_srm() (in module pylsdj)

 	loop_1 (pylsdj.KitInstrument attribute)

 	loop_2 (pylsdj.KitInstrument attribute)

M

 	

 	minutes (pylsdj.clock.Clock attribute)

 	

 	(pylsdj.clock.TotalClock attribute)

N

 	

 	name (pylsdj.KitInstrument attribute)

 	

 	(pylsdj.NoiseInstrument attribute)

 	(pylsdj.Project attribute)

 	(pylsdj.PulseInstrument attribute)

 	(pylsdj.WaveInstrument attribute)

 	(pylsdj.Word attribute)

 	name_without_zeroes() (in module pylsdj.utils)

 	

 	NoiseInstrument (class in pylsdj)

 	notes (pylsdj.Phrase attribute)

O

 	

 	offset_1 (pylsdj.KitInstrument attribute)

 	

 	offset_2 (pylsdj.KitInstrument attribute)

P

 	

 	phase_amount (pylsdj.SynthSoundParams attribute)

 	phase_finetune (pylsdj.PulseInstrument attribute)

 	phase_transpose (pylsdj.PulseInstrument attribute)

 	phase_type (pylsdj.Synth attribute)

 	Phrase (class in pylsdj)

 	phrases (pylsdj.Song attribute)

 	pitch (pylsdj.KitInstrument attribute)

 	

 	play_type (pylsdj.WaveInstrument attribute)

 	prelisten (pylsdj.Song attribute)

 	Project (class in pylsdj)

 	project_list (pylsdj.SAVFile attribute)

 	PulseInstrument (class in pylsdj)

 	pylsdj.filepack (module)

 	pylsdj.utils (module)

R

 	

 	repeat (pylsdj.WaveInstrument attribute)

S

 	

 	s_cmd (pylsdj.NoiseInstrument attribute)

 	save() (pylsdj.Project method)

 	

 	(pylsdj.SAVFile method)

 	save_lsdsng() (pylsdj.Project method)

 	save_srm() (pylsdj.Project method)

 	SAVFile (class in pylsdj)

 	sequence (pylsdj.Song attribute)

 	size_blks (pylsdj.Project attribute)

 	Song (class in pylsdj)

 	song (pylsdj.Phrase attribute)

 	

 	(pylsdj.Project attribute)

 	(pylsdj.SpeechInstrument attribute)

 	(pylsdj.Synth attribute)

 	(pylsdj.Table attribute)

 	song_version (pylsdj.Song attribute)

 	sound_length (pylsdj.NoiseInstrument attribute)

 	

 	(pylsdj.PulseInstrument attribute)

 	

 	sounds (pylsdj.Word attribute)

 	speech_instrument (pylsdj.Song attribute)

 	SpeechInstrument (class in pylsdj)

 	speed (pylsdj.WaveInstrument attribute)

 	start (pylsdj.Synth attribute)

 	steps (pylsdj.WaveInstrument attribute)

 	sweep (pylsdj.NoiseInstrument attribute)

 	

 	(pylsdj.PulseInstrument attribute)

 	sync_setting (pylsdj.Song attribute)

 	Synth (class in pylsdj)

 	synth (pylsdj.WaveInstrument attribute)

 	SynthSoundParams (class in pylsdj)

T

 	

 	Table (class in pylsdj)

 	table (pylsdj.KitInstrument attribute)

 	

 	(pylsdj.NoiseInstrument attribute)

 	(pylsdj.PulseInstrument attribute)

 	(pylsdj.WaveInstrument attribute)

 	TableFX (class in pylsdj)

 	tables (pylsdj.Song attribute)

 	

 	tempo (pylsdj.Song attribute)

 	TotalClock (class in pylsdj.clock)

 	transposes (pylsdj.Table attribute)

 	type (pylsdj.KitInstrument attribute)

 	

 	(pylsdj.NoiseInstrument attribute)

 	(pylsdj.PulseInstrument attribute)

 	(pylsdj.Vibrato attribute)

 	(pylsdj.WaveInstrument attribute)

V

 	

 	value (pylsdj.TableFX attribute)

 	version (pylsdj.Project attribute)

 	vertical_shift (pylsdj.SynthSoundParams attribute)

 	

 	Vibrato (class in pylsdj)

 	vibrato (pylsdj.KitInstrument attribute)

 	

 	(pylsdj.PulseInstrument attribute)

 	(pylsdj.WaveInstrument attribute)

 	volume (pylsdj.KitInstrument attribute)

 	

 	(pylsdj.SynthSoundParams attribute)

 	(pylsdj.WaveInstrument attribute)

W

 	

 	wave (pylsdj.PulseInstrument attribute)

 	wave_synth_overwrite_lock (pylsdj.Synth attribute)

 	waveform (pylsdj.Synth attribute)

 	WaveInstrument (class in pylsdj)

 	

 	waves (pylsdj.Synth attribute)

 	Word (class in pylsdj)

 	words (pylsdj.SpeechInstrument attribute)

 Copyright 2015, Alex Rasmussen.
 Created using Sphinx 1.2.2.

 _static/down.png

_static/ajax-loader.gif

_static/minus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		pylsdj 2.3.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Alex Rasmussen.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/up.png

_static/comment.png

_static/file.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/down-pressed.png

