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CHAPTER 1

PyLMNN

PyLMNN is an implementation of the Large Margin Nearest Neighbor algorithm for metric learning in pure python.

This implementation follows closely the original MATLAB code by Kilian Weinberger found at https://bitbucket.org/
mlcircus/lmnn. This version solves the unconstrained optimisation problem and finds a linear transformation using
L-BFGS as the backend optimizer.

This package can also find optimal hyper-parameters for LMNN via Bayesian Optimization using the excellent GPy-
Opt package.

1.1 Installation

The code was developed in python 3.5 under Ubuntu 16.04 and was also tested under Ubuntu 18.04 and python 3.6.
You can clone the repo with:

git clone https://github.com/johny-c/pylmnn.git

or install it via pip:

pip3 install pylmnn

1.2 Dependencies

• numpy>=1.11.2

• scipy>=0.18.1

• scikit_learn>=0.18.1
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1.3 Optional dependencies

In case you want to use the hyperparameter optimization module, you should also install:

• GPy>=1.5.6

• GPyOpt>=1.0.3

1.4 Usage

Here is a minimal use case:

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris

from pylmnn import LargeMarginNearestNeighbor as LMNN

# Load a data set
X, y = load_iris(return_X_y=True)

# Split in training and testing set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.7, stratify=y,
→˓random_state=42)

# Set up the hyperparameters
k_train, k_test, n_components, max_iter = 3, 3, X.shape[1], 180

# Instantiate the metric learner
lmnn = LMNN(n_neighbors=k_train, max_iter=max_iter, n_components=n_components)

# Train the metric learner
lmnn.fit(X_train, y_train)

# Fit the nearest neighbors classifier
knn = KNeighborsClassifier(n_neighbors=k_test)
knn.fit(lmnn.transform(X_train), y_train)

# Compute the k-nearest neighbor test accuracy after applying the learned
→˓transformation
lmnn_acc = knn.score(lmnn.transform(X_test), y_test)
print('LMNN accuracy on test set of {} points: {:.4f}'.format(X_test.shape[0], lmnn_
→˓acc))

You can check the examples directory for a demonstration of how to use the code with different datasets and how to
estimate good hyperparameters with Bayesian Optimisation.

Documentation can also be found at http://pylmnn.readthedocs.io/en/latest/ .

1.5 References

If you use this code in your work, please cite the following publication.
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@ARTICLE{weinberger09distance,
title={Distance metric learning for large margin nearest neighbor classification},
author={Weinberger, K.Q. and Saul, L.K.},
journal={The Journal of Machine Learning Research},
volume={10},
pages={207--244},
year={2009},
publisher={MIT Press}

}

1.6 License and Contact

This work is released under the 3-Clause BSD License.

Contact John Chiotellis :envelope: for questions, comments and reporting bugs.
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CHAPTER 2

API Reference

2.1 pylmnn.lmnn module

Large Margin Nearest Neighbor Classification

class pylmnn.lmnn.LargeMarginNearestNeighbor(n_neighbors=3, n_components=None,
init=’pca’, warm_start=False,
max_impostors=500000,
neighbors_params=None,
weight_push_loss=0.5, impos-
tor_store=’auto’, max_iter=50, tol=1e-05,
callback=None, store_opt_result=False,
verbose=0, random_state=None,
n_jobs=1)

Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Distance metric learning for large margin classification.

n_neighbors [int, optional (default=3)] Number of neighbors to use as target neighbors for each sample.

n_components [int, optional (default=None)] Preferred dimensionality of the embedding. If None it is inferred
from init.

init [string or numpy array, optional (default=’pca’)] Initialization of the linear transformation. Possible options
are ‘pca’, ‘identity’ and a numpy array of shape (n_features_a, n_features_b).

pca: n_components many principal components of the inputs passed to fit() will be used to initial-
ize the transformation.

identity: If n_components is strictly smaller than the dimensionality of the inputs passed to fit(),
the identity matrix will be truncated to the first n_components rows.

numpy array: n_features_b must match the dimensionality of the inputs passed to fit() and
n_features_a must be less than or equal to that. If n_components is not None, n_features_a must
match it.
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warm_start [bool, optional, (default=False)] If True and fit() has been called before, the solution of the
previous call to fit() is used as the initial linear transformation (n_components and init will be
ignored).

max_impostors [int, optional (default=500000)] Maximum number of impostors to consider per iteration. In
the worst case this will allow max_impostors * n_neighbors constraints to be active.

neighbors_params [dict, optional (default=None)] Parameters to pass to a neighbors.
NearestNeighbors instance - apart from n_neighbors - that will be used to select the target
neighbors.

weight_push_loss [float, optional (default=0.5)] A float in (0, 1], weighting the push loss. This is parameter 𝜇
in the journal paper (See references below). In practice, the objective function will be normalized so that
the push loss has weight 1 and hence the pull loss has weight (1 - 𝜇)/𝜇.

impostor_store [str [‘auto’|’list’|’sparse’], optional]

list : Three lists will be used to store the indices of reference samples, the indices of their impostors and
the (squared) distances between the (sample, impostor) pairs.

sparse : A sparse indicator matrix will be used to store the (sample, impostor) pairs. The (squared)
distances to the impostors will be computed twice (once to determine the impostors and once to be
stored), but this option tends to be faster than ‘list’ as the size of the data set increases.

auto : Will attempt to decide the most appropriate choice of data structure based on the values passed to
fit().

max_iter [int, optional (default=50)] Maximum number of iterations in the optimization.

tol [float, optional (default=1e-5)] Convergence tolerance for the optimization.

callback [callable, optional (default=None)] If not None, this function is called after every iteration of the
optimizer, taking as arguments the current solution (transformation) and the number of iterations. This
might be useful in case one wants to examine or store the transformation found after each iteration.

store_opt_result [bool, optional (default=False)] If True, the scipy.optimize.OptimizeResult ob-
ject returned by minimize() of scipy.optimize will be stored as attribute opt_result_.

verbose [int, optional (default=0)] If 0, no progress messages will be printed. If 1, progress messages
will be printed to stdout. If > 1, progress messages will be printed and the iprint parameter of
_minimize_lbfgsb() of scipy.optimize will be set to verbose - 2.

random_state [int or numpy.RandomState or None, optional (default=None)] A pseudo random number gen-
erator object or a seed for it if int.

n_jobs [int, optional (default=1)] The number of parallel jobs to run for neighbors search. If -1, then the
number of jobs is set to the number of CPU cores. Doesn’t affect fit() method.

components_ [array, shape (n_components, n_features)] The linear transformation learned during fitting.

n_neighbors_ [int] The provided n_neighbors is decreased if it is greater than or equal to min(number of
elements in each class).

n_iter_ [int] Counts the number of iterations performed by the optimizer.

opt_result_ [scipy.optimize.OptimizeResult (optional)] A dictionary of information representing the optimiza-
tion result. This is stored only if store_opt_result is True. It contains the following attributes:

x [ndarray] The solution of the optimization.

success [bool] Whether or not the optimizer exited successfully.

status [int] Termination status of the optimizer.
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message [str] Description of the cause of the termination.

fun, jac [ndarray] Values of objective function and its Jacobian.

hess_inv [scipy.sparse.linalg.LinearOperator] the product of a vector with the approximate inverse of the
Hessian of the objective function..

nfev [int] Number of evaluations of the objective function..

nit [int] Number of iterations performed by the optimizer.

>>> from sklearn.neighbors import LargeMarginNearestNeighbor
>>> from sklearn.neighbors import KNeighborsClassifier
>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> X, y = load_iris(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y,
... stratify=y, test_size=0.7, random_state=42)
>>> lmnn = LargeMarginNearestNeighbor(n_neighbors=3, random_state=42)
>>> lmnn.fit(X_train, y_train)
LargeMarginNearestNeighbor(...)
>>> # Fit and evaluate a simple nearest neighbor classifier for comparison
>>> knn = KNeighborsClassifier(n_neighbors=3)
>>> knn.fit(X_train, y_train)
KNeighborsClassifier(...)
>>> print(knn.score(X_test, y_test))
0.933333333333
>>> # Now fit on the data transformed by the learned transformation
>>> knn.fit(lmnn.transform(X_train), y_train)
KNeighborsClassifier(...)
>>> print(knn.score(lmnn.transform(X_test), y_test))
0.971428571429

Warning: Exact floating-point reproducibility is generally not guaranteed (unless special care is taken
with library and compiler options). As a consequence, the transformations computed in 2 identical runs
of LargeMarginNearestNeighbor can differ from each other. This can happen even before the optimizer is
called if initialization with PCA is used (init=’pca’).

fit(X, y)
Fit the model according to the given training data.

X [array-like, shape (n_samples, n_features)] The training samples.

y [array-like, shape (n_samples,)] The corresponding training labels.

self [object] returns a trained LargeMarginNearestNeighbor model.

transform(X)
Applies the learned transformation to the given data.

X [array-like, shape (n_samples, n_features)] Data samples.

X_embedded: array, shape (n_samples, n_components) The data samples transformed.

NotFittedError If fit() has not been called before.

2.1. pylmnn.lmnn module 7
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pylmnn.lmnn.make_lmnn_pipeline(n_neighbors=3, n_components=None, init=’pca’,
warm_start=False, max_impostors=500000, neigh-
bors_params=None, weight_push_loss=0.5, impos-
tor_store=’auto’, max_iter=50, tol=1e-05, callback=None,
store_opt_result=False, verbose=0, random_state=None,
n_jobs=1, n_neighbors_predict=None, weights=’uniform’,
algorithm=’auto’, leaf_size=30, n_jobs_predict=None,
**kwargs)

Constructs a LargeMarginNearestNeighbor - KNeighborsClassifier pipeline.

See LargeMarginNearestNeighbor module documentation for details.

n_neighbors_predict [int, optional (default=None)] The number of neighbors to use during prediction. If None
(default) the value of n_neighbors used to train the model is used.

weights [str or callable, optional (default = ‘uniform’)] weight function used in prediction. Possible values:

• ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

• ‘distance’ : weight points by the inverse of their distance. in this case, closer neighbors of a query
point will have a greater influence than neighbors which are further away.

• [callable] : a user-defined function which accepts an array of distances, and returns an array of the
same shape containing the weights.

algorithm [{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional] Algorithm used to compute the nearest neighbors:

• ‘ball_tree’ will use BallTree

• ‘kd_tree’ will use KDTree

• ‘brute’ will use a brute-force search.

• ‘auto’ will attempt to decide the most appropriate algorithm based on the values passed to fit()
method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size [int, optional (default = 30)] Leaf size passed to BallTree or KDTree. This can affect the speed of the
construction and query, as well as the memory required to store the tree. The optimal value depends on the
nature of the problem.

n_jobs_predict [int, optional (default=None)] The number of parallel jobs to run for neighbors search during
prediction. If None (default), then the value of n_jobs is used.

memory [None, str or object with the joblib.Memory interface, optional] Used to cache the fitted transformers
of the pipeline. By default, no caching is performed. If a string is given, it is the path to the caching
directory. Enabling caching triggers a clone of the transformers before fitting. Therefore, the transformer
instance given to the pipeline cannot be inspected directly. Use the attribute named_steps or steps
to inspect estimators within the pipeline. Caching the transformers is advantageous when fitting is time
consuming.

lmnn_pipe [Pipeline] A Pipeline instance with two steps: a LargeMarginNearestNeighbor instance
that is used to fit the model and a KNeighborsClassifier instance that is used for prediction.

>>> from sklearn.neighbors import make_lmnn_pipeline
>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> X, y = load_iris(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y,
... stratify=y, test_size=0.7, random_state=42)

(continues on next page)
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(continued from previous page)

>>> lmnn_pipe = make_lmnn_pipeline(n_neighbors=3, n_neighbors_predict=3,
... random_state=42)
>>> lmnn_pipe.fit(X_train, y_train)
Pipeline(...)
>>> print(lmnn_pipe.score(X_test, y_test))
0.971428571429

2.2 pylmnn.utils module

2.3 pylmnn.bayesopt module

2.2. pylmnn.utils module 9
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Indices and tables

• genindex

• modindex

• search
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