

Welcome to pylibftdi’s documentation!

pylibftdi is a simple library interacting with FTDI devices to provide
serial and parallel IO from Python.

Examples:

>>> from pylibftdi import BitBangDevice
>>> with BitBangDevice('FT0123') as dev:
... dev.port |= 1

>>> # Send a MIDI 'note on' message
>>> from pylibftdi import Device
>>> with Device() as dev:
... dev.baudrate = 31250
... dev.write('\x90\x64\x64')

The two main use cases it serves are:

	the need to control or monitor external equipment, for which a FTDI
module may be a cheap and reliable starting point.

	the need to interact with existing devices which are known to contain
FTDI chipsets for their USB interface.

FTDI (http://www.ftdichip.com) create devices (chipsets, modules,
cables etc) to interface devices to the USB port of your computer.

libftdi (http://www.intra2net.com/en/developer/libftdi/) is an open source
driver to communicate with these devices, and runs on top of libusb.
It works on Windows, Linux, and Mac OS X, and likely other systems too.

pylibftdi is a pure Python module which interfaces (via ctypes) to libftdi,
exposing a simple file-like API to connected devices. It supports serial and
parallel IO in a straight-forward way, and aims to be one of the simplest
ways of interacting with the world outside your PC.

Contents

	Introduction
	Usage

	History & Motivation

	Plans

	License

	Quick Start
	Install pylibftdi

	Connect and enumerate FTDI devices

	Test some actual IO

	Installation
	Windows

	Mac OS X

	Linux

	Testing installation

	Basic Usage
	General

	Bit-bang mode
	Read-Modify-Write

	The Bus class

	Serial mode
	Setting line parameters

	The SerialDevice class

	Subclassing Device - A MIDI device

	Advanced Usage
	libftdi function access

	pylibftdi questions
	Using pylibftdi - General

	Using pylibftdi - Programming

	Using pylibftdi - Interfacing

	pylibftdi troubleshooting
	Error messages

	Diagnosis

	Where did my ttyUSB devices go?

	Gathering information

	Developing pylibftdi
	How do I checkout and use the latest development version?

	How do I run the tests?

	How can I determine and select the underlying libftdi library?

	pylibftdi Package
	pylibftdi Package

	_base Module

	device Module

	driver Module

	bitbang Module

	serial_device Module

	util Module

	Subpackages

Indices and tables

	Index

	Module Index

	Search Page

Introduction

pylibftdi is a minimal Pythonic interface to FTDI devices using libftdi [http://www.intra2net.com/en/developer/libftdi/].

	Features

	
	No dependencies beyond standard library and a libftdi install.

	Supports parallel and serial devices

	Support for multiple devices

	File-like interface wherever appropriate

	Cross-platform

	Limitations

	
	The API might change prior to reaching a 1.0 release.

Usage

The primary interface is the Device class in the pylibftdi package; this
gives serial access on relevant FTDI devices (e.g. the UM232R), providing a
file-like interface (read, write). Baudrate is controlled with the baudrate
property.

If a Device instance is created with mode='t' (text mode) then read() and
write() can use the given encoding (defaulting to latin-1). This allows
easier integration with passing unicode strings between devices.

Multiple devices are supported by passing the desired device serial number (as
a string) in the device_id parameter - this is the first parameter in both
Device() and BitBangDevice() constructors. Alternatively the device ‘description’
can be given, and an attempt will be made to match this if matching by serial
number fails.

Examples

>>> from pylibftdi import Device
>>>
>>> with Device(mode='t') as dev:
... dev.baudrate = 115200
... dev.write('Hello World')

The pylibftdi.BitBangDevice wrapper provides access to the parallel IO mode of
operation through the port and direction properties. These provide an
8 bit IO port including all the relevant bit operations to make things simple.

>>> from pylibftdi import BitBangDevice
>>>
>>> with BitBangDevice('FTE00P4L') as bb:
... bb.direction = 0x0F # four LSB are output(1), four MSB are input(0)
... bb.port |= 2 # set bit 1
... bb.port &= 0xFE # clear bit 0

There is support for a number of external devices and protocols, including
interfacing with HD44780 LCDs using the 4-bit interface.

History & Motivation

This package is the result of various bits of work using FTDI’s
devices, primarily for controlling external devices. Some of this
is documented on the codedstructure blog, codedstructure.blogspot.com

Several other open-source Python FTDI wrappers exist, and each may be
best for some projects. Some aim at closely wrapping the libftdi interface,
others use FTDI’s own D2XX driver (ftd2xx [http://pypi.python.org/pypi/ftd2xx]) or talk directly to USB via
libusb or similar (such as pyftdi [https://github.com/eblot/pyftdi]).

The aim for pylibftdi is to work with libftdi, but to provide
a high-level Pythonic interface. Various wrappers and utility
functions are also part of the distribution; following Python’s
batteries included approach, there are various interesting devices
supported out-of-the-box - or at least there will be soon!

Plans

	Add more examples: SPI devices, knight-rider effects, input devices, MIDI…

	Perhaps add support for D2XX driver, though the name then becomes a
slight liability ;)

License

Copyright (c) 2010-2023 Ben Bass <benbass@codedstructure.net>

pylibftdi is released under the MIT licence; see the file “LICENSE.txt”
for information.

All trademarks referenced herein are property of their respective
holders.
libFTDI itself is developed by Intra2net AG. No association with
Intra2net is claimed or implied, but I have found their library
helpful and had fun with it…

Quick Start

Install pylibftdi

See the installation instructions for more detailed requirements, but
hopefully things will work by just running the following:

$ python3 -m pip install pylibftdi

Connect and enumerate FTDI devices

Connect the FTDI device to a free USB port. Run the list_devices example
to enumerate connected FTDI devices:

$ python3 -m pylibftdi.examples.list_devices

For each connected device, this will show manufacturer, model identifier,
and serial number. With a single device connected, the output maybe
something like the following:

FTDI:UM232H:FTUBIOWF

Though hopefully with a different serial number, or else you’ve either
stolen mine, or you are me…

Test some actual IO

Output example

Connect an LED between D0 of your bit-bang capable device and ground, via a
330 - 1K ohm resistor as appropriate.

Test the installation and functioning of pylibftdi with the following:

$ python3 -m pylibftdi.examples.led_flash

The LED should now flash at approximately 1Hz.

Input example

To test some input, remove any connections from the port lines initially,
then run the following, which reads and prints the status of the input lines
regularly:

$ python3 -m pylibftdi.examples.pin_read

The pin_read example is a complete command line application which can
be used to monitor for particular values on the attached device pins, and
output an appropriate error code on match. Repeat the above with a trailing
--help for info.

Using pylibftdi from the REPL

Since pylibftdi v0.18.0, a __main__.py module is included which
imports all the exported constants, classes and functions from pylibftdi.

This allows quick interaction with FTDI devices from the Python REPL:

$ python3 -im pylibftdi
>>> d = Device()
>>> d.write('Hello World')
>>>

Installation

Unsurprisingly, pylibftdi depends on libftdi, and installing this varies
according to your operating system. Chances are that following one of the
following instructions will install the required prerequisites. If not, be
aware that libftdi in turn relies on libusb.

Installing pylibftdi itself is straightforward - it is a pure Python package
(using ctypes for bindings), and has no dependencies outside the Python
standard library for installation. Don’t expect it to work happily without
libftdi installed though :-)

$ pip install pylibftdi

Depending on your environment, you may want to set up a virtual environment [https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/]
or use either the --user flag, or prefix the command with sudo to
gain root privileges.

Windows

I perform only limited testing of pylibftdi on Windows, but it should work
correctly provided the requirements of libftdi and libusb are correctly
installed.

Recent libftdi binaries for Windows seem to be available from the picusb [http://sourceforge.net/projects/picusb/files/]
project on Sourceforge. Download libftdi1-1.1_devkit_x86_x64_21Feb2014.zip
or later from that site, which includes the required

Installing libraries on Windows is easier with recent versions of Python
(2.7.9, 3.4+) installing pip directly, so the standard approach of
pip install pylibftdi will now easily work on Windows.

Mac OS X

I suggest using homebrew [http://mxcl.github.com/homebrew/] to install libftdi:

$ brew install libftdi

On OS X Mavericks (and presumably future versions) Apple include a driver for
FTDI devices. This needs unloading before libftdi can access FTDI devices
directly. See the Troubleshooting section for instructions.

Linux

There are two steps in getting a sensible installation in Linux systems:

	Getting libftdi and its dependencies installed

	Ensuring permissions allow access to the device without requiring root
privileges. Symptoms of this not being done are programs only working
properly when run with sudo, giving ‘-4’ or ‘-8’ error codes in
other cases.

Each of these steps will be slightly different depending on the distribution
in use. I’ve tested pylibftdi on Debian Wheezy (on a Raspberry Pi),
Ubuntu (various versions, running on a fairly standard ThinkPad laptop),
and Arch Linux (running on a PogoPlug - one of the early pink ones).

Debian (Raspberry Pi) / Ubuntu etc

On Debian like systems (including Ubuntu, Mint, Debian, etc), the package
libftdi1-dev should give you what you need as far as the libftdi library
is concerned:

$ sudo apt-get install libftdi1-dev

The following works for both a Raspberry Pi (Debian Wheezy) and Ubuntu 12.04,
getting ordinary users (e.g. ‘pi’ on the RPi) access to the FTDI device without
needing root permissions:

	Create a file /etc/udev/rules.d/99-libftdi.rules. You will need sudo
access to create this file.

	Put the following in the file:

SUBSYSTEMS=="usb", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6001", GROUP="dialout", MODE="0660"
SUBSYSTEMS=="usb", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6010", GROUP="dialout", MODE="0660"
SUBSYSTEMS=="usb", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6011", GROUP="dialout", MODE="0660"
SUBSYSTEMS=="usb", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6014", GROUP="dialout", MODE="0660"
SUBSYSTEMS=="usb", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6015", GROUP="dialout", MODE="0660"

The list of USB product IDs above matches the default used by pylibftdi, but
some FTDI devices may use other USB PIDs. You could try removing the match on
idProduct altogether, just matching on the FTDI vendor ID as follows:

SUBSYSTEMS=="usb", ATTRS{idVendor}=="0403", GROUP="dialout", MODE="0660"

Or use lsusb or similar to determine the exact values to use (or try checking
dmesg output on device insertion / removal).
udevadm monitor --environment is also helpful, but note that the environment
‘keys’ it gives are different to the attributes (filenames within /sys/devices/…)
which the ATTRS will match. Perhaps ENV{} matches work just as well, though I’ve
only tried matching on ATTRS.

Note that changed udev rules files will be picked up automatically by the udev
daemon, but will only be acted upon on device actions, so unplug/plug in the
device to check whether you’re latest rules iteration actually works :-)

Also note that the udev rules above assume that your user is in the ‘dialout’
group - if not, add it to your user with the following, though note that this
will not apply immediately, not a full reboot may be needed on some systems:

sudo usermod -aG dialout $USER

See http://wiki.debian.org/udev for more on writing udev rules.

Arch Linux

The libftdi package (sensibly enough) provides the libftdi library:

$ sudo pacman -S libftdi

Similar udev rules to those above for Debian should be included (again in
/etc/udev/rules.d/99-libftdi.rules or similar), though the GROUP directive
should be changed to set the group to ‘users’:

SUBSYSTEMS=="usb", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6001", GROUP="users", MODE="0660"
SUBSYSTEMS=="usb", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6010", GROUP="users", MODE="0660"
(etc...)

Testing installation

Connect your device, and run the following (as a regular user):

$ python3 -m pylibftdi.examples.list_devices

If all goes well, the program should report information about each connected
device. If no information is printed, but it is when run with sudo, a
possibility is permissions problems - see the section under Linux above
regarding udev rules.

If the above works correctly, then try the following:

$ python3 -m pylibftdi.examples.led_flash

Even without any LED connected, this should ‘work’ without any error - quit
with Ctrl-C. Likely errors at this point are either permissions problems
(e.g. udev rules not working), or not finding the device at all - although
the earlier stage is likely to have failed if this were the case.

Feel free to contact me (@codedstructure on Twitter) if you have any issues with
installation, though be aware I don’t have much in the way of Windows systems
to test.

Basic Usage

pylibftdi is a minimal Pythonic interface to FTDI devices using libftdi [http://www.intra2net.com/en/developer/libftdi/].
Rather than simply expose all the methods of the underlying library directly,
it aims to provide a simpler API for the main use-cases of serial and parallel
IO, while still allowing the use of the more advanced functions of the library.

General

The primary interface is the Device class in the pylibftdi package; this
gives serial access on relevant FTDI devices (e.g. the UM232R), providing a
file-like interface (read, write). Baudrate is controlled with the baudrate
property.

If a Device instance is created with mode='t' (text mode) then read() and
write() can use the given encoding (defaulting to latin-1). This allows
easier integration with passing unicode strings between devices.

Multiple devices are supported by passing the desired device serial number (as
a string) in the device_id parameter - this is the first parameter in both
Device() and BitBangDevice() constructors. Alternatively the device ‘description’
can be given, and an attempt will be made to match this if matching by serial
number fails.

In the event that multiple devices (perhaps of identical type) have the same
description and serial number, the device_index parameter may be given to
open matching devices by numerical index; this defaults to zero, meaning the
first matching device.

Examples

>>> from pylibftdi import Device
>>>
>>> with Device(mode='t') as dev:
... dev.baudrate = 115200
... dev.write('Hello World')

The pylibftdi.BitBangDevice wrapper provides access to the parallel IO mode of
operation through the port and direction properties. These provide an
8 bit IO port including all the relevant bit operations to make things simple.

>>> from pylibftdi import BitBangDevice
>>>
>>> with BitBangDevice('FTE00P4L') as bb:
... bb.direction = 0x0F # four LSB are output(1), four MSB are input(0)
... bb.port |= 2 # set bit 1
... bb.port &= 0xFE # clear bit 0

There is support for a number of external devices and protocols, specifically
for interfacing with HD44780 LCDs using the 4-bit interface.

Bit-bang mode

Bit-bang mode allows the programmer direct access (both read and write) to the state of the IO lines from a compatible FTDI device.

The interface provided by FTDI is intended to mirror the type of usage on a microcontroller, and is similar to the ‘user port’ on many old 8-bit computers such as the BBC Micro and Commodore 64.

The basic model is to have two 8 bit ports - one for data, and one for ‘direction’. The data port maps each of the 8 bits to 8 independent IO signals, each of which can be configured separately as an ‘input’ or an ‘output’.

In pylibftdi, the data port is given by the port attribute of a BitBangDevice instance, and the direction control is provided by the direction attribute. Both these attributes are implemented as Python properties, so no method calls are needed on them - simple read and write in Python-land converts to read and write in the physical world seen by the FTDI device.

The direction register maps to

where each bit maps to a separate digital signal,

Read-Modify-Write

Port vs Latch

Via the augmented assignment operations, pylibftdi BitBangDevice instances support read-modify-write operations, such as arithmetic (+= etc), bitwise (&=), and other logical operations such as shift (<<=)

Examples

>>> from pylibftdi import BitBangDevice
>>>
>>> with BitBangDevice('FTE00P4L') as bb:
... bb.direction = 0x0F # four LSB are output(1), four MSB are input(0)
... bb.port |= 2 # set bit 1
... bb.port &= 0xFE # clear bit 0

>>> with BitBangDevice() as bb:
... bb.port = 1
... while True:
... # Rotate the value in bb.port
... bb.port = ((bb.port << 1) | ((bb.port >> 8) & 1)) & 0xFF
... time.sleep(1)

The Bus class

Dealing with bit masks and shifts gets messy quickly. Some languages such as C and C++ provide direct support for accessing bits - or series of consecutive bits - with bitfields. The Bus class provides the facility to provide a similar level of support to pylibftdi BitBangDevice classes.

As an example, consider an HD44780 LCD display. These have a data channel of either 4 or 8 bits, and a number of additional status lines - rs which acts as a register select pin - indicating whether a data byte is a command (0) or data (1), and e - clock enable.:

class LCD(object):
 """
 The UM232R/245R is wired to the LCD as follows:
 DB0..3 to LCD D4..D7 (pin 11..pin 14)
 DB6 to LCD 'RS' (pin 4)
 DB7 to LCD 'E' (pin 6)
 """
 data = Bus(0, 4)
 rs = Bus(6)
 e = Bus(7)

Serial mode

The default mode of pylibftdi devices is to behave as a serial UART device, similar to the ‘COM1’ device found on older PCs. Nowadays most PCs operate with serial devices over USB-serial adapters, which may often include their own FTDI chips. To remain compatible with the RS232 standard however, these adapters will often include level-shifting circuitry which is of no benefit in communicating with other circuits operating at the 3.3 or 5 volt levels the FTDI hardware uses.

The default serial configuration is 9600 baud, 8 data bits, 1 stop bit and no parity (sometimes referred to as 8-N-1 [http://en.wikipedia.org/wiki/8-N-1]). This is the default configuration of the old ‘COM’ devices back to the days of the original IBM PC and MS-DOS.

Setting line parameters

Changing line parameters other than the baudrate is supported via use of the underlying FTDI function calls.

The SerialDevice class

While the standard Device class supports standard read and write methods, as well as a baudrate property, further functionality is provided by the SerialDevice class, available either as a top-level import from pylibftdi or through the serial_device module. This subclasses Device and adds additional properties to access various control and handshake lines.

The following properties are available:

	property

	meaning

	direction

	cts

	Clear To Send

	Input

	rts

	Ready To Send

	Output

	dsr

	Data Set Ready

	Input

	dtr

	Data Transmit Ready

	Output

	ri

	Ring Indicator

	Input

Note that these lines are normally active-low, and pylibftdi makes no attempt to hide this from the user. It is impractical to try to ‘undo’ this inversion in any case, since it can be disabled in the EEPROM settings of the device. Just be aware if using these lines as GPIO that the electrical sense will be the opposite of the value read. The lines are intended to support handshaking rather than GPIO, so this is not normally an issue; if CTS is connected to RTS, then values written to RTS will be reflected in the value read from CTS.

Subclassing Device - A MIDI device

To abstract application code from the details of any particular interface, it may be helpful to subclass the Device class, providing the required configuration in the __init__ method to act in a certain way. For example, the MIDI [http://www.midi.org] protocol used by electronic music devices is an asynchronous serial protocol operating at 31250 baud, and with the same 8-N-1 parameters which pylibftdi defaults to.

Creating a MidiDevice subclass of Device is straightforward:

class MidiDevice(Device):
 "subclass of pylibftdi.Device configured for MIDI"

 def __init__(self, *o, **k):
 Device.__init__(self, *o, **k)
 self.baudrate = 31250

Note it is important that the superclass __init__ is called first; calling it on an uninitialised Device would fail, and even if it succeeded, the superclass __init__ method resets baudrate to 9600 anyway to ensure a consistent setup for devices which may have been previously used with different parameters.

Use of the MidiDevice class is simple - as a pylibftdi Device instance, it provides a file-based API. Simply read() and write() the data to an instance of the class:

>>> m = MidiDevice()
>>> m.write('\x90\x80\x80')
>>> time.sleep(1)
>>> m.write('\x80\x00')

Advanced Usage

libftdi function access

Three attributes of Device instances are documented which allow direct
access to the underlying libftdi functionality.

	fdll - this is a reference to the loaded libftdi library, loaded
via ctypes. This should be used with the normal ctypes protocols.

	ctx - this is a reference to the context of the current device
context. It is managed as a raw ctypes byte-string, so can be modified
if required at the byte-level using appropriate ctypes methods.

	ftdi_fn - a convenience function wrapper, this is the preferred
method for accessing library functions for a specific device instance.
This is a function forwarder to the local fdll attribute, but also
wraps the device context and passes it as the first argument. In this
way, using device.ftdi_fn.ft_xyz is more like the D2XX driver
provided by FTDI, in which the device context is passed in at
initialisation time and then the client no longer needs to care about it.
A call to:

>>> device.ftdi_fn.ft_xyz(1, 2, 3)

is equivalent to the following:

>>> device.fdll.ft_xyz(ctypes.byref(device.ctx), 1, 2, 3)

but has the advantages of being shorter and not requiring ctypes to be
in scope.

incorrect operations using any of these attributes of devices
are liable to crash the Python interpreter

Examples

The following example shows opening a device in serial mode, switching
temporarily to bit-bang mode, then back to serial and writing a string.
Why this would be wanted is anyone’s guess ;-)

>>> from pylibftdi import Device
>>>
>>> with Device() as dev:
>>> dev.ftdi_fn.ftdi_set_bitmode(1, 0x01)
>>> dev.write('\x00\x01\x00')
>>> dev.ftdi_fn.ftdi_set_bitmode(0, 0x00)
>>> dev.write('Hello World!!!')

The libftdi [http://www.intra2net.com/en/developer/libftdi/documentation/] documentation should be consulted in conjunction with the
ctypes [http://docs.python.org/library/ctypes.html] reference for guidance on using these features.

pylibftdi questions

None of these are yet frequently asked, and perhaps they never will be…
But they are still questions, and they relate to pylibftdi.

Using pylibftdi - General

Can I use pylibftdi with device XYZ?

If the device XYZ is (or uses as it’s) an FTDI device, then possibly. A large
number of devices will work, but won’t be recognised due to the limited
USB Vendor and Product IDs which pylibftdi checks for.

To see the vendor / product IDs which are supported, run the following:

>>> from pylibftdi import USB_VID_LIST, USB_PID_LIST
>>> print(', '.join(hex(pid) for pid in USB_VID_LIST))
0x403
>>> print(', '.join(hex(pid) for pid in USB_PID_LIST))
0x6001, 0x6010, 0x6011, 0x6014, 0x6015

If a FTDI device with a VID / PID not matching the above is required, then
the device’s values should be appended to the appropriate list after import:

>>> from pylibftdi import USB_PID_LIST, USB_VID_LIST, Device
>>> USB_PID_LIST.append(0x1234)
>>>
>>> dev = Device() # will now recognise a device with PID 0x1234.

Which devices are recommended?

While I used to do a lot of soldering, I prefer the cleaner way of
breadboarding nowadays. As such I can strongly recommend the FTDI DIP
modules which plug into a breadboard nice and easy, can be self-powered
from USB, and can be re-used for dozens of different projects.

I’ve used (and test against) the following, all of which have 0.1” pin
spacing in two rows 0.5” or 0.6” apart, so will sit across the central
divide of any breadboard:

	UB232R

	a small 8 pin device with mini-USB port; serial and CBUS bit-bang.

	UM245R

	a 24-pin device with parallel FIFO modes. Full-size USB type B socket.

	UM232R

	a 24-pin device with serial and bit-bang modes. Full-size USB type B
socket.

	UM232H

	this contains a more modern FT232H device, and libftdi support is
fairly recent (requires 0.20 or later). Supports USB 2.0 Hi-Speed mode
though, and lots of interesting modes (I2C, SPI, JTAG…) which I’ve not
looked at yet. Mini-USB socket.

Personally I’d go with the UM232R device for compatibility. It works great
with both UART and bit-bang IO, which I target as the two main use-cases
for pylibftdi. The UM232H is certainly feature-packed though, and I hope
to support some of the more interesting modes in future.

Using pylibftdi - Programming

How do I set the baudrate?

In both serial and parallel mode, the internal baudrate generator (BRG) is
set using the baudrate property of the Device instance. Reading this
will show the current baudrate (which defaults to 9600); writing to it
will attempt to set the BRG to that value.

On failure to set the baudrate, it will remain at its previous setting.

In parallel mode, the actual bytes-per-second rate of parallel data is
16x the programmed BRG value. This is an effect of the FTDI devices
themselves, and is not hidden by pylibftdi.

How do I send unicode over a serial connection?

If a Device instance is created with mode='t', then text-mode is
activated. This is analogous to opening files; after all, the API is
intentionally modelled on file objects whereever possible.

When text-mode is used, an encoding can be specified. The default is
latin-1 for the very practical reason that it is transparent to 8-bit
binary data; by default a text-mode serial connection looks just like a
binary mode one.

An alternative encoding can be used provided in the same constructor call
used to instantiate the Device class, e.g.:

>>> dev = Device(mode='t', encoding='utf-8')

Read and write operations will then return / take unicode values.

Whether it is sensible to try and send unicode over a ftdi connection is
a separate issue… At least consider doing codec operations at a higher
level in your application.

How do I use multiple-interface devices?

Some FTDI devices have multiple interfaces, for example the FT2232H has 2
and the FT4232H has four. In terms of accessing them, they can be
considered as independent devices; once a connection is established to one
of them, it is isolated from the other interfaces.

To select which interface to use when opening a connection to a specific
interface on a multiple-interface device, use the interface_select
parameter of the Device (or BitBangDevice) class constructor.
The value should be one of the following values. Symbolic constants are
provided in the pylibftdi namespace.

	interface_select

	Meaning

	INTERFACE_ANY (0)

	Any interface

	INTERFACE_A (1)

	INTERFACE A

	INTERFACE_B (2)

	INTERFACE B

	INTERFACE_C (3)

	INTERFACE C

	INTERFACE_D (4)

	INTERFACE D

You should be able to open multiple Devices with different
interface_select settings.
Thanks to Daniel Forer for testing multiple device support.

What is the difference between the port and latch BitBangDevice properties?

latch reflects the current state of the output latch (i.e. the last value
written to the port), while port reflects input states as well. Writing to
either port or latch has an identical effect, so when pylibftdi is used
only for output, there is no effective difference, and port is recommended
for simplicity and consistency.

The place where it does make a difference is during read-modify-write
operations. Consider the following:

>>> dev = BitBangDevice() # 1
>>> dev.direction = 0x81 # 2 # set bits 0 and 7 are output
>>> dev.port = 0 # 3
>>> for _ in range(255): # 4
>>> dev.port += 1 # 5 # read-modify-write operation

In this (admittedly contrived!) scenario, if one of the input lines D1..D6
were held low, then they would cause the counter to effectively ‘stop’. The
+= 1 operation would never actually set the bit as required (because it is
an input at 0), and the highest output bit would never get set.

Using dev.latch in lines 3 and 5 above would resolve this, as the
read-modify-write operation on line 5 is simply working on the in-memory
latch value, rather than reading the inputs, and it would simply count up from
0 to 255 in steps of one, writing the value to the device (which would be
ignored in the case of input lines).

Similar concepts exist in many microcontrollers, for example see
http://stackoverflow.com/a/2623498 for a possibly better explanation, though
in a slightly different context :)

If you aren’t using read-modify-write operations (e.g. augmented assignment),
or you have a direction on the port of either ALL_INPUTS (0) or ALL_OUTPUTS
(1), then just ignore this section and use port :)

What is the purpose of the chunk_size parameter?

While libftdi is performing I/O to the device, it is not really running Python
code at all, but C library code via ctypes. If there is a significant amount of
data, especially at low baud-rates, this can be a significant delay during which
no Python bytecode is executed. The most obvious result of this is that no
signals are delivered to the Python process during this time, and interrupt
signals (Ctrl-C) will be ignored.

Try the following:

>>> dev = Device()
>>> dev.baudrate = 120 # nice and slow!
>>> dev.write('helloworld' * 1000)

This should take approximately 10 seconds prior to returning, and crucially,
Ctrl-C interruptions will be deferred for all that time. By setting
chunk_size on the device (which may be set either as a keyword parameter
during Device instantiation, or at a later point as an attribute of the
Device instance), the I/O operations are performed in chunks of at most
the specified number of bytes. Setting it to 0, the default value, disables
this chunking.

Repeat the above command but prior to the write operation, set
dev.chunk_size = 10. A Ctrl-C interruption should now kick-in almost
instantly. There is a performance trade-off however; if using chunk_size is
required, set it as high as is reasonable for your application.

Using pylibftdi - Interfacing

How do I control an LED?

pylibftdi devices generally have sufficient output current to sink or source
the 10mA or so which a low(ish) current LED will need. A series resistor is
essential to protect both the LED and the FTDI device itself; a value between
220 and 470 ohms should be sufficient depending on required brightness / LED
efficiency.

How do I control a higher current device?

FTDI devices will typically provide a few tens of milli-amps, but beyond that
things either just won’t work, or the device could be damaged. For medium
current operation, a standard bipolar transistor switch will suffice; for
larger loads a MOSFET or relay should be used. (Note a relay will require a
low-power transistor switch anyway). Search online for something like
‘mosfet logic switch’ or ‘transistor relay switch’ for more details.

What is the state of an unconnected input pin?

This depends on the device and the EEPROM configuration values. Most devices
will have weak (typ. 200Kohm) pull-ups on input pins, so there is no harm
leaving them floating. Consult the datasheet for your device for definitive
information, but you can always just leave an (unconnected) device and read
it’s pins when set as inputs; chances are they will read 255 / 0xFF:

>>> dev = BitBangDevice(direction=0)
>>> dev.port
255

While not recommended for anything serious, this does allow the possibility
of reading a input switch state by simply connecting a switch between an input
pin and ground (possibly with a low value - e.g. 100 ohm - series resistor to
prevent accidents should it be set to an output and set high…). Note that
with a normal push-to-make switch, the value will read ‘1’ when the switch is
not pressed; pressing it will set the input line value to ‘0’.

pylibftdi troubleshooting

Once up-and-running, pylibftdi is designed to be very simple, but sometimes
getting it working in the first place can be more difficult.

Error messages

FtdiError: unable to claim usb device. Make sure the default FTDI driver is not in use (-5)

This indicates a conflict with FTDI’s own drivers, and is (as far as I know)
mainly a problem on Mac OS X, where they can be disabled (until reboot) by
unloading the appropriate kernel module.

MacOS (Mavericks and later)

Starting with OS X Mavericks, OS X includes kernel drivers which will reserve
the FTDI device by default. In addition, the FTDI-provided VCP driver will
claim the device by default. These need unloading before libftdi will be able`
to communicate with the device:

sudo kextunload -bundle-id com.apple.driver.AppleUSBFTDI
sudo kextunload -bundle-id com.FTDI.driver.FTDIUSBSerialDriver

Similarly to reload them:

sudo kextload -bundle-id com.apple.driver.AppleUSBFTDI
sudo kextload -bundle-id com.FTDI.driver.FTDIUSBSerialDriver

Earlier versions of pylibftdi (prior to 0.18.0) included scripts for
MacOS which unloaded / reloaded these drivers, but these complicated cross-platform
packaging so have been removed. If you are on using MacOS with programs which
need these drivers on a frequent basis (such as the Arduino IDE when using
older FTDI-based Arduino boards), consider implementing these yourself, along the
lines of the following (which assumes ~/bin is in your path):

cat << EOF > /usr/local/bin/ftdi_osx_driver_unload
sudo kextunload -bundle-id com.apple.driver.AppleUSBFTDI
sudo kextunload -bundle-id com.FTDI.driver.FTDIUSBSerialDriver
EOF

cat << EOF > /usr/local/bin/ftdi_osx_driver_reload
sudo kextload -bundle-id com.apple.driver.AppleUSBFTDI
sudo kextload -bundle-id com.FTDI.driver.FTDIUSBSerialDriver
EOF

chmod +x /usr/local/bin/ftdi_osx_driver_*

OS X Mountain Lion and earlier

Whereas Mavericks includes an FTDI driver directly, earlier versions of OS X
did not, and if this issue occurred it would typically as a result of
installing some other program - for example the Arduino IDE.

As a result, the kernel module may have different names, but FTDIUSBSerialDriver.kext
is the usual culprit. Unload the kernel driver as follows:

sudo kextunload /System/Library/Extensions/FTDIUSBSerialDriver.kext

To reload the kernel driver, do the following:

sudo kextload /System/Library/Extensions/FTDIUSBSerialDriver.kext

If you aren’t using whatever program might have installed it, the driver
could be permanently removed (to prevent the need to continually unload it),
but this is dangerous:

sudo rm /System/Library/Extensions/FTDIUSBSerialDriver.kext

Diagnosis

Getting a list of USB devices

Mac OS X

Start ‘System Information’, then select Hardware > USB, and look for your
device. On the command line, system_profiler SPUSBDataType can be used.
In the following example I’ve piped it into grep -C 7 FTDI, to print 7
lines either side of a match on the string ‘FTDI’:

ben$ system_profiler SPUSBDataType | grep -C 7 FTDI
 UM232H:

 Product ID: 0x6014
 Vendor ID: 0x0403 (Future Technology Devices International Limited)
 Version: 9.00
 Serial Number: FTUBIOWF
 Speed: Up to 480 Mb/sec
 Manufacturer: FTDI
 Location ID: 0x24710000 / 7
 Current Available (mA): 500
 Current Required (mA): 90

 USB Reader:

 Product ID: 0x4082

Linux

Use lsusb. Example from my laptop:

ben@ben-laptop:~$ lsusb
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 006 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 007 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 008 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 008 Device 011: ID 0a5c:217f Broadcom Corp. Bluetooth Controller
Bus 002 Device 009: ID 17ef:481d Lenovo
Bus 002 Device 016: ID 0403:6014 Future Technology Devices International, Ltd FT232H Single HS USB-UART/FIFO IC

Where did my ttyUSB devices go?

When a pylibftdi.Device() is opened, any kernel device which was previously
present will become unavailable. On Linux for example, a serial-capable FTDI
device will (via the ftdi_sio driver) create a device node such as
/dev/ttyUSB0 (or ttyUSB1,2,3 etc). This device allows use of the FTDI device
as a simple file in the Linux filesystem which can be read and written.
Various programs such as the Arduino IDE (at least when communicating with
some board variants) and libraries such as PySerial will use this device.
Once libftdi opens a device, the corresponding entry in /dev/ will disappear.
Prior to pylibftdi version 0.16, the simplest way to get the device node to
reappear would be to unplug and replug the USB device itself. Starting from
0.16, this should no longer be necessary as the kernel driver (which exports
/dev/ttyUSB…) is reattached when the pylibftdi device is closed. This
behaviour can be controlled by the auto_detach argument (which is defaulted
to True) to the Device class; setting it to False reverts to the old
behaviour.

Note that on recent OS X, libftdi doesn’t ‘steal’ the device, but instead
refuses to open it. The kernel devices can be seen as
/dev/tty.usbserial-xxxxxxxx, where xxxxxxxx is the device serial number.
FTDI’s Application Note AN134 [http://www.ftdichip.com/Support/Documents/AppNotes/AN_134_FTDI_Drivers_Installation_Guide_for_MAC_OSX.pdf] details this further (see section ‘Using
Apple-provided VCP or D2XX with OS X 10.9 & 10.10’). See the section above
under Installation for further details on resolving this.

Gathering information

Starting with pylibftdi version 0.15, an example script to gather system
information is included, which will help in any diagnosis required.

Run the following:

python3 -m pylibftdi.examples.info

this will output a range of information related to the versions of libftdi
libusb in use, as well as the system platform and Python version, for example:

pylibftdi version : 0.18.0
libftdi version : libftdi_version(major=1, minor=4, micro=0, version_str='1.4', snapshot_str='unknown')
libftdi library name : libftdi1.so.2
libusb version : libusb_version(major=1, minor=0, micro=22, nano=11312, rc='', describe='http://libusb.info')
libusb library name : libusb-1.0.so.0
Python version : 3.7.3
OS platform : Linux-5.0.0-32-generic-x86_64-with-Ubuntu-19.04-disco

Developing pylibftdi

How do I checkout and use the latest development version?

pylibftdi is currently developed on GitHub, though started out as a Mercurial
repository on bitbucket.org. There may still be references to old bitbucket issues
in the docs.

pylibftdi is developed using poetry [https://python-poetry.org/], and a Dockerfile plus Makefile make use
development tasks straightforward. In any case, start with a local clone of the
repository:

$ git clone https://github.com/codedstructure/pylibftdi
$ cd pylibftdi

There are then two main approaches, though pick and mix the different elements to suit:

poetry and docker
If make and docker are available in your environment, the easiest way to do development
may be to simply run make shell. This creates an Ubuntu-based docker environment with
libftdi, poetry, and other requirements pre-installed, and drops into a shell where the
current pylibftdi code is installed.

make on its own will run through all the unittests and linting available for pylibftdi,
and is a useful check to make sure things haven’t been broken.

The downside of running in a docker container is that USB support to actual FTDI devices
may be lacking…

editable install with pip
This assumes that the venv and pip packages are installed; on some (e.g. Ubuntu)
Linux environments, these may need installing as OS packages. Once installed, perform
an ‘editable’ install as follows:

.../pylibftdi$ python3 -m venv env
.../pylibftdi$ source env/bin/activate
(env) .../pylibftdi$ python3 -m pip install -e .

Note this also creates a virtual environment within the project directory;
see here [https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/]

How do I run the tests?

From the root directory of a cloned pylibftdi repository, run the following:

(env) .../pylibftdi$ python3 -m unittest discover
.....................................
--
Ran 37 tests in 0.038s

OK

Note that other test runners (such as pytest) will also run the tests and may be
easier to extend.

How can I determine and select the underlying libftdi library?

Since pylibftdi 0.12, the Driver exposes libftdi_version() and libusb_version()
methods, which return a tuple whose first three entries correspond to major, minor,
and micro versions of the libftdi driver being used.

Note there are two major versions of libftdi - libftdi1 can coexist with
the earlier 0.x versions - it is now possible to select which library to
load when instantiating the Driver. Note on at least Ubuntu Linux, the libftdi1
OS package actually refers to libftdi 0.20 (or similar), whereas libftdi1-2
refers to the more recent 1.x release (currently 1.5):

Python 3.10.6 (main, May 29 2023, 11:10:38) [GCC 11.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from pylibftdi import Driver
>>> Driver().libftdi_version()
libftdi_version(major=1, minor=5, micro=0, version_str='1.5', snapshot_str='unknown')
>>> Driver("ftdi1").libftdi_version()
libftdi_version(major=1, minor=5, micro=0, version_str='1.5', snapshot_str='unknown')
>>> Driver("ftdi").libftdi_version()
libftdi_version(major=0, minor=0, micro=0, version_str='< 1.0 - no ftdi_get_library_version()', snapshot_str='unknown')

If both are installed, pylibftdi prefers libftdi1 (e.g. libftdi 1.5) over libftdi (e.g. 0.20).
Since different OSs require different parameters to be given to find a library,
the default search list given to ctypes.util.find_library is defined by the
Driver._lib_search attribute, and this may be updated as appropriate.
By default it is as follows:

_lib_search = {
 "libftdi": ["ftdi1", "libftdi1", "ftdi", "libftdi"],
 "libusb": ["usb-1.0", "libusb-1.0"],
}

This covers Windows (which requires the ‘lib’ prefix), Linux (which requires
its absence), and Mac OS X, which is happy with either.

pylibftdi Package

pylibftdi Package

pylibftdi - python wrapper for libftdi

Copyright (c) 2010-2020 Ben Bass <benbass@codedstructure.net>
See LICENSE file for details and (absence of) warranty

pylibftdi: https://github.com/codedstructure/pylibftdi

libftdi can be found at: http://www.intra2net.com/en/developer/libftdi/

Neither libftdi nor Intra2net are associated with this project;
if something goes wrong here, it’s almost definitely my fault
rather than a problem with the libftdi library.

	
exception pylibftdi.__init__.FtdiError

	Bases: Exception

	
class pylibftdi.__init__.Driver(libftdi_search: str | list[str] | None[str, list, None] = None, **kwargs)

	Bases: object

This is where it all happens…
We load the libftdi library, and use it.

	
__init__(libftdi_search: str | list[str] | None[str, list, None] = None, **kwargs) → None

	
	Parameters

	libftdi_search (string or a list of strings) – force a particular version of libftdi to be used
can specify either library name(s) or path(s)

	
libftdi_version() → pylibftdi.driver.libftdi_version

	
	Returns

	the version of the underlying library being used

	Return type

	tuple (major, minor, micro, version_string, snapshot_string)

	
libusb_version() → pylibftdi.driver.libusb_version

	
	Returns

	namedtuple containing version info on libusb

	
list_devices() → list

	
	Returns

	(manufacturer, description, serial#) for each attached
device, e.g.:

[(‘FTDI’, ‘UM232R USB <-> Serial’, ‘FTE4FFVQ’),
(‘FTDI’, ‘UM245R’, ‘FTE00P4L’)]

	Return type

	a list of string triples

the serial number can be used to open specific devices

	
fdll

	ctypes DLL referencing the libftdi library

This is the main interface to FTDI functionality.

	
class pylibftdi.__init__.Device(device_id: str | None[str, None] = None, mode: str = 'b', encoding: str = 'latin1', interface_select: int | None[int, None] = None, device_index: int = 0, **kwargs)

	Bases: object

Represents a connection to a single FTDI device

	
__init__(device_id: str | None[str, None] = None, mode: str = 'b', encoding: str = 'latin1', interface_select: int | None[int, None] = None, device_index: int = 0, **kwargs) → None

	Device([device_id[, mode, [OPTIONS …]]) -> Device instance

represents a single FTDI device accessible via the libftdi driver.
Supports a basic file-like interface (open/close/read/write, context
manager support).

	Parameters

	
	device_id – an optional serial number of the device to open.
if omitted, this refers to the first device found, which is
convenient if only one device is attached, but otherwise
fairly useless.

	mode – either ‘b’ (binary) or ‘t’ (text). This primarily affects
Python 3 calls to read() and write(), which will accept/return
unicode strings which will be encoded/decoded according to the given…

	encoding – the codec name to be used for text operations.

	interface_select – select interface to use on multi-interface devices

	device_index – optional index of the device to open, in the
event of multiple matches for other parameters (PID, VID,
device_id). Defaults to zero (the first device found).

The following parameters are only available as keyword parameters
and override class attributes, so may be specified in subclasses.

	Parameters

	
	lazy_open – if True, then the device will not be opened immediately -
the user must perform an explicit open() call prior to other
operations.

	chunk_size – if non-zero, split read and write operations into chunks
of this size. With large or slow accesses, interruptions (i.e.
KeyboardInterrupt) may not happen in a timely fashion.

	auto_detach – default True, whether to automatically re-attach
the kernel driver on device close.

	index – optional index into list_devices() to open.
Useful in the event that multiple devices of differing VID/PID
are attached, where device_index is insufficient to select
as device indexing restarts at 0 for each VID/PID combination.

	
close() → None

	close our connection, free resources

	
flush(flush_what: int = 1) → None

	Instruct the FTDI device to flush its FIFO buffers

By default both the input and output buffers will be
flushed, but the caller can selectively chose to only
flush the input or output buffers using flush_what:

	Parameters

	flush_what – select what to flush:
FLUSH_BOTH (default);
FLUSH_INPUT (just the rx buffer);
FLUSH_OUTPUT (just the tx buffer)

	
flush_input() → None

	flush the device input buffer

	
flush_output() → None

	flush the device output buffer

	
get_error_string() → str

	
	Returns

	error string from libftdi driver

	
handle_open_error(errcode: int) → str

	return a (hopefully helpful) error message on a failed open()

	
next() → str

	

	
open() → None

	open connection to a FTDI device

	
read(length) → bytes/string of up to `length` bytes.

	read upto length bytes from the FTDI device
:param length: maximum number of bytes to read
:return: value read from device
:rtype: bytes if self.mode is ‘b’, else decode with self.encoding

	
readline(size: int = 0) → str

	readline() for file-like compatibility.

	Parameters

	size – maximum amount of data to read looking for a line

	Returns

	a line of text, or size bytes if no line-ending found

This only works for mode=’t’ on Python3

	
readlines(sizehint: int | None[int, None] = None) → list

	readlines() for file-like compatibility.

	
write(data) → count of bytes actually written

	write given data string to the FTDI device

	Parameters

	data (string or bytes) – string to be written

	Returns

	count of bytes written, which may be less than len(data)

	
writelines(lines: list) → None

	writelines for file-like compatibility.

	Parameters

	lines – sequence of lines to write

	
auto_detach = True

	

	
baudrate

	get or set the baudrate of the FTDI device. Re-read after setting
to ensure baudrate was accepted by the driver.

	
chunk_size = 0

	

	
closed

	The Python file API defines a read-only ‘closed’ attribute

	
ftdi_fn

	this allows the vast majority of libftdi functions
which are called with a pointer to a ftdi_context
struct as the first parameter to be called here
preventing the need to leak self.ctx into the user
code (and import byref from ctypes):

>>> with Device() as dev:
... # set 8 bit data, 2 stop bits, no parity
... dev.ftdi_fn.ftdi_set_line_property(8, 2, 0)
...

	
lazy_open = False

	

	
softspace = 0

	

	
class pylibftdi.__init__.BitBangDevice(device_id=None, direction=255, lazy_open=False, sync=True, bitbang_mode=1, interface_select=None, **kwargs)

	Bases: pylibftdi.device.Device

simple subclass to support bit-bang mode

Internally uses async mode at the moment, but provides a ‘sync’
flag (defaulting to True) which controls the behaviour of port
reading and writing - if set, the FIFOs are ignored (read) or
cleared (write) so operations will appear synchronous

	Adds three read/write properties to the base class:

	direction: 8 bit input(0)/output(1) direction control.
port: 8 bit IO port, as defined by direction.
latch: 8 bit output value, allowing e.g. bb.latch += 1 to make sense

when there is a mix of input and output lines

	
__init__(device_id=None, direction=255, lazy_open=False, sync=True, bitbang_mode=1, interface_select=None, **kwargs)

	Device([device_id[, mode, [OPTIONS …]]) -> Device instance

represents a single FTDI device accessible via the libftdi driver.
Supports a basic file-like interface (open/close/read/write, context
manager support).

	Parameters

	
	device_id – an optional serial number of the device to open.
if omitted, this refers to the first device found, which is
convenient if only one device is attached, but otherwise
fairly useless.

	mode – either ‘b’ (binary) or ‘t’ (text). This primarily affects
Python 3 calls to read() and write(), which will accept/return
unicode strings which will be encoded/decoded according to the given…

	encoding – the codec name to be used for text operations.

	interface_select – select interface to use on multi-interface devices

	device_index – optional index of the device to open, in the
event of multiple matches for other parameters (PID, VID,
device_id). Defaults to zero (the first device found).

The following parameters are only available as keyword parameters
and override class attributes, so may be specified in subclasses.

	Parameters

	
	lazy_open – if True, then the device will not be opened immediately -
the user must perform an explicit open() call prior to other
operations.

	chunk_size – if non-zero, split read and write operations into chunks
of this size. With large or slow accesses, interruptions (i.e.
KeyboardInterrupt) may not happen in a timely fashion.

	auto_detach – default True, whether to automatically re-attach
the kernel driver on device close.

	index – optional index into list_devices() to open.
Useful in the event that multiple devices of differing VID/PID
are attached, where device_index is insufficient to select
as device indexing restarts at 0 for each VID/PID combination.

	
open()

	open connection to a FTDI device

	
read_pins()

	read the current ‘actual’ state of the pins

	Returns

	8-bit binary representation of pin state

	Return type

	int

	
direction

	get or set the direction of each of the IO lines. LSB=D0, MSB=D7
1 for output, 0 for input

	
latch

	latch property - the output latch (in-memory representation
of output pin state)

Note _latch is not masked by direction (except on initialisation),
as otherwise a loop incrementing a mixed input/output port would
not work, as it would ‘stop’ on input pins. This is the primary
use case for ‘latch’. It’s basically a port which ignores input.

	Returns

	the state of the output latch

	
port

	get or set the state of the IO lines. The value of output
lines is persisted in this object for the purposes of reading,
so read-modify-write operations (e.g. drv.port+=1) are valid.

	
class pylibftdi.__init__.Bus(offset, width=1)

	Bases: object

This class is a descriptor for a bus of a given width starting
at a given offset (0 = LSB). The device which does the actual
reading and writing is assumed to be a BitBangDevice instance
in the ‘device’ attribute of the object to which this is attached.

	
__init__(offset, width=1)

	Initialize self. See help(type(self)) for accurate signature.

_base Module

pylibftdi - python wrapper for libftdi

Copyright (c) 2010-2020 Ben Bass <benbass@codedstructure.net>
See LICENSE file for details and (absence of) warranty

pylibftdi: https://github.com/codedstructure/pylibftdi

	
exception pylibftdi._base.FtdiError

	Bases: Exception

	
exception pylibftdi._base.LibraryMissingError

	Bases: pylibftdi._base.FtdiError

device Module

pylibftdi.device - access to individual FTDI devices

Copyright (c) 2010-2020 Ben Bass <benbass@codedstructure.net>
See LICENSE file for details and (absence of) warranty

pylibftdi: https://github.com/codedstructure/pylibftdi

	
class pylibftdi.device.Device(device_id: str | None[str, None] = None, mode: str = 'b', encoding: str = 'latin1', interface_select: int | None[int, None] = None, device_index: int = 0, **kwargs)

	Bases: object

Represents a connection to a single FTDI device

	
__init__(device_id: str | None[str, None] = None, mode: str = 'b', encoding: str = 'latin1', interface_select: int | None[int, None] = None, device_index: int = 0, **kwargs) → None

	Device([device_id[, mode, [OPTIONS …]]) -> Device instance

represents a single FTDI device accessible via the libftdi driver.
Supports a basic file-like interface (open/close/read/write, context
manager support).

	Parameters

	
	device_id – an optional serial number of the device to open.
if omitted, this refers to the first device found, which is
convenient if only one device is attached, but otherwise
fairly useless.

	mode – either ‘b’ (binary) or ‘t’ (text). This primarily affects
Python 3 calls to read() and write(), which will accept/return
unicode strings which will be encoded/decoded according to the given…

	encoding – the codec name to be used for text operations.

	interface_select – select interface to use on multi-interface devices

	device_index – optional index of the device to open, in the
event of multiple matches for other parameters (PID, VID,
device_id). Defaults to zero (the first device found).

The following parameters are only available as keyword parameters
and override class attributes, so may be specified in subclasses.

	Parameters

	
	lazy_open – if True, then the device will not be opened immediately -
the user must perform an explicit open() call prior to other
operations.

	chunk_size – if non-zero, split read and write operations into chunks
of this size. With large or slow accesses, interruptions (i.e.
KeyboardInterrupt) may not happen in a timely fashion.

	auto_detach – default True, whether to automatically re-attach
the kernel driver on device close.

	index – optional index into list_devices() to open.
Useful in the event that multiple devices of differing VID/PID
are attached, where device_index is insufficient to select
as device indexing restarts at 0 for each VID/PID combination.

	
close() → None

	close our connection, free resources

	
flush(flush_what: int = 1) → None

	Instruct the FTDI device to flush its FIFO buffers

By default both the input and output buffers will be
flushed, but the caller can selectively chose to only
flush the input or output buffers using flush_what:

	Parameters

	flush_what – select what to flush:
FLUSH_BOTH (default);
FLUSH_INPUT (just the rx buffer);
FLUSH_OUTPUT (just the tx buffer)

	
flush_input() → None

	flush the device input buffer

	
flush_output() → None

	flush the device output buffer

	
get_error_string() → str

	
	Returns

	error string from libftdi driver

	
handle_open_error(errcode: int) → str

	return a (hopefully helpful) error message on a failed open()

	
next() → str

	

	
open() → None

	open connection to a FTDI device

	
read(length) → bytes/string of up to `length` bytes.

	read upto length bytes from the FTDI device
:param length: maximum number of bytes to read
:return: value read from device
:rtype: bytes if self.mode is ‘b’, else decode with self.encoding

	
readline(size: int = 0) → str

	readline() for file-like compatibility.

	Parameters

	size – maximum amount of data to read looking for a line

	Returns

	a line of text, or size bytes if no line-ending found

This only works for mode=’t’ on Python3

	
readlines(sizehint: int | None[int, None] = None) → list

	readlines() for file-like compatibility.

	
write(data) → count of bytes actually written

	write given data string to the FTDI device

	Parameters

	data (string or bytes) – string to be written

	Returns

	count of bytes written, which may be less than len(data)

	
writelines(lines: list) → None

	writelines for file-like compatibility.

	Parameters

	lines – sequence of lines to write

	
auto_detach = True

	

	
baudrate

	get or set the baudrate of the FTDI device. Re-read after setting
to ensure baudrate was accepted by the driver.

	
chunk_size = 0

	

	
closed

	The Python file API defines a read-only ‘closed’ attribute

	
ftdi_fn

	this allows the vast majority of libftdi functions
which are called with a pointer to a ftdi_context
struct as the first parameter to be called here
preventing the need to leak self.ctx into the user
code (and import byref from ctypes):

>>> with Device() as dev:
... # set 8 bit data, 2 stop bits, no parity
... dev.ftdi_fn.ftdi_set_line_property(8, 2, 0)
...

	
lazy_open = False

	

	
softspace = 0

	

	
class pylibftdi.device.ftdi_context_partial

	Bases: _ctypes.Structure

	
libusb_context

	Structure/Union member

	
libusb_device_handle

	Structure/Union member

driver Module

pylibftdi.driver - interface to the libftdi library

Copyright (c) 2010-2014 Ben Bass <benbass@codedstructure.net>
See LICENSE file for details and (absence of) warranty

pylibftdi: https://github.com/codedstructure/pylibftdi

	
class pylibftdi.driver.Driver(libftdi_search: str | list[str] | None[str, list, None] = None, **kwargs)

	Bases: object

This is where it all happens…
We load the libftdi library, and use it.

	
__init__(libftdi_search: str | list[str] | None[str, list, None] = None, **kwargs) → None

	
	Parameters

	libftdi_search (string or a list of strings) – force a particular version of libftdi to be used
can specify either library name(s) or path(s)

	
libftdi_version() → pylibftdi.driver.libftdi_version

	
	Returns

	the version of the underlying library being used

	Return type

	tuple (major, minor, micro, version_string, snapshot_string)

	
libusb_version() → pylibftdi.driver.libusb_version

	
	Returns

	namedtuple containing version info on libusb

	
list_devices() → list

	
	Returns

	(manufacturer, description, serial#) for each attached
device, e.g.:

[(‘FTDI’, ‘UM232R USB <-> Serial’, ‘FTE4FFVQ’),
(‘FTDI’, ‘UM245R’, ‘FTE00P4L’)]

	Return type

	a list of string triples

the serial number can be used to open specific devices

	
fdll

	ctypes DLL referencing the libftdi library

This is the main interface to FTDI functionality.

	
class pylibftdi.driver.ftdi_device_list

	Bases: _ctypes.Structure

	
dev

	Structure/Union member

	
next

	Structure/Union member

	
class pylibftdi.driver.ftdi_version_info

	Bases: _ctypes.Structure

	
major

	Structure/Union member

	
micro

	Structure/Union member

	
minor

	Structure/Union member

	
snapshot_str

	Structure/Union member

	
version_str

	Structure/Union member

	
class pylibftdi.driver.libftdi_version(major, minor, micro, version_str, snapshot_str)

	Bases: tuple

	
major

	Alias for field number 0

	
micro

	Alias for field number 2

	
minor

	Alias for field number 1

	
snapshot_str

	Alias for field number 4

	
version_str

	Alias for field number 3

	
class pylibftdi.driver.libusb_version(major, minor, micro, nano, rc, describe)

	Bases: tuple

	
describe

	Alias for field number 5

	
major

	Alias for field number 0

	
micro

	Alias for field number 2

	
minor

	Alias for field number 1

	
nano

	Alias for field number 3

	
rc

	Alias for field number 4

	
class pylibftdi.driver.libusb_version_struct

	Bases: _ctypes.Structure

	
describe

	Structure/Union member

	
major

	Structure/Union member

	
micro

	Structure/Union member

	
minor

	Structure/Union member

	
nano

	Structure/Union member

	
rc

	Structure/Union member

bitbang Module

pylibftdi - python wrapper for libftdi

Copyright (c) 2010-2014 Ben Bass <benbass@codedstructure.net>
See LICENSE file for details and (absence of) warranty

pylibftdi: https://github.com/codedstructure/pylibftdi

	
class pylibftdi.bitbang.BitBangDevice(device_id=None, direction=255, lazy_open=False, sync=True, bitbang_mode=1, interface_select=None, **kwargs)

	Bases: pylibftdi.device.Device

simple subclass to support bit-bang mode

Internally uses async mode at the moment, but provides a ‘sync’
flag (defaulting to True) which controls the behaviour of port
reading and writing - if set, the FIFOs are ignored (read) or
cleared (write) so operations will appear synchronous

	Adds three read/write properties to the base class:

	direction: 8 bit input(0)/output(1) direction control.
port: 8 bit IO port, as defined by direction.
latch: 8 bit output value, allowing e.g. bb.latch += 1 to make sense

when there is a mix of input and output lines

	
__init__(device_id=None, direction=255, lazy_open=False, sync=True, bitbang_mode=1, interface_select=None, **kwargs)

	Device([device_id[, mode, [OPTIONS …]]) -> Device instance

represents a single FTDI device accessible via the libftdi driver.
Supports a basic file-like interface (open/close/read/write, context
manager support).

	Parameters

	
	device_id – an optional serial number of the device to open.
if omitted, this refers to the first device found, which is
convenient if only one device is attached, but otherwise
fairly useless.

	mode – either ‘b’ (binary) or ‘t’ (text). This primarily affects
Python 3 calls to read() and write(), which will accept/return
unicode strings which will be encoded/decoded according to the given…

	encoding – the codec name to be used for text operations.

	interface_select – select interface to use on multi-interface devices

	device_index – optional index of the device to open, in the
event of multiple matches for other parameters (PID, VID,
device_id). Defaults to zero (the first device found).

The following parameters are only available as keyword parameters
and override class attributes, so may be specified in subclasses.

	Parameters

	
	lazy_open – if True, then the device will not be opened immediately -
the user must perform an explicit open() call prior to other
operations.

	chunk_size – if non-zero, split read and write operations into chunks
of this size. With large or slow accesses, interruptions (i.e.
KeyboardInterrupt) may not happen in a timely fashion.

	auto_detach – default True, whether to automatically re-attach
the kernel driver on device close.

	index – optional index into list_devices() to open.
Useful in the event that multiple devices of differing VID/PID
are attached, where device_index is insufficient to select
as device indexing restarts at 0 for each VID/PID combination.

	
open()

	open connection to a FTDI device

	
read_pins()

	read the current ‘actual’ state of the pins

	Returns

	8-bit binary representation of pin state

	Return type

	int

	
direction

	get or set the direction of each of the IO lines. LSB=D0, MSB=D7
1 for output, 0 for input

	
latch

	latch property - the output latch (in-memory representation
of output pin state)

Note _latch is not masked by direction (except on initialisation),
as otherwise a loop incrementing a mixed input/output port would
not work, as it would ‘stop’ on input pins. This is the primary
use case for ‘latch’. It’s basically a port which ignores input.

	Returns

	the state of the output latch

	
port

	get or set the state of the IO lines. The value of output
lines is persisted in this object for the purposes of reading,
so read-modify-write operations (e.g. drv.port+=1) are valid.

serial_device Module

pylibftdi - python wrapper for libftdi

Copyright (c) 2010-2014 Ben Bass <benbass@codedstructure.net>
See LICENSE file for details and (absence of) warranty

pylibftdi: https://github.com/codedstructure/pylibftdi

	
class pylibftdi.serial_device.SerialDevice(device_id: str | None[str, None] = None, mode: str = 'b', encoding: str = 'latin1', interface_select: int | None[int, None] = None, device_index: int = 0, **kwargs)

	Bases: pylibftdi.device.Device

simple subclass to support serial(rs232) lines

cts, dsr, ri - input
dtr, rts - output
modem_status - return a two byte bitfield of various values

Note: These lines are all active-low by default, though this can be
changed in the EEPROM settings. pylibftdi does not attempt to hide
these settings, and simply writes out the given values (i.e. ‘1’
will typically make an output line ‘active’ - and therefore low)

	
cts

	get the state of CTS (1 = ‘active’)

	
dsr

	get the state of DSR (1 = ‘active’)

	
dtr

	set (or get the previous set) state of the DTR line

	Returns

	the state of the DTR line; None if not previously set

	
modem_status

	Layout of the first byte:
B0..B3 - must be 0
B4 Clear to send (CTS) 0 = inactive 1 = active
B5 Data set ready (DTS) 0 = inactive 1 = active
B6 Ring indicator (RI) 0 = inactive 1 = active
B7 Receive line signal detect (RLSD) 0 = inactive 1 = active

Layout of the second byte:
B0 Data ready (DR)
B1 Overrun error (OE)
B2 Parity error (PE)
B3 Framing error (FE)
B4 Break interrupt (BI)
B5 Transmitter holding register (THRE)
B6 Transmitter empty (TEMT)
B7 Error in RCVR FIFO

‘{:016b}’.format(d.modem_status)
‘0110000000000001’
- b5,b6 set in MSB (‘2nd byte’), b0 set in first byte
(despite the libftdi docs saying this shouldn’t be set)

	
ri

	get the state of RI (1 = ‘active’)

	
rts

	set (or get the previous set) state of the RTS line

	Returns

	the state of the RTS line; None if not previously set

util Module

pylibftdi - python wrapper for libftdi

Copyright (c) 2010-2014 Ben Bass <benbass@codedstructure.net>
See LICENSE file for details and (absence of) warranty

pylibftdi: https://github.com/codedstructure/pylibftdi

	
class pylibftdi.util.Bus(offset, width=1)

	Bases: object

This class is a descriptor for a bus of a given width starting
at a given offset (0 = LSB). The device which does the actual
reading and writing is assumed to be a BitBangDevice instance
in the ‘device’ attribute of the object to which this is attached.

	
__init__(offset, width=1)

	Initialize self. See help(type(self)) for accurate signature.

Subpackages

	examples Package
	examples Package

	bit_server Module

	lcd Module

	led_flash Module

	list_devices Module

	magic_candle Module

	midi_output Module

	pin_read Module

	serial_loopback Module

	info Module

examples Package

examples Package

pylibftdi examples

bit_server Module

bit_server.py - remote HTTP interface to bit-bangged FTDI port
This runs as a web server, connect to port 8008

Change HTTP_PORT for different port number or supply alternate as args[1]

	Requires:

	
	pylibftdi

	
class pylibftdi.examples.bit_server.ReqHandler(request, client_address, server)

	Bases: http.server.BaseHTTPRequestHandler

	
do_GET()

	

	
do_POST()

	

	
send_head()

	

	
class pylibftdi.examples.bit_server.ThreadingServer(server_address, RequestHandlerClass, bind_and_activate=True)

	Bases: socketserver.ThreadingMixIn, http.server.HTTPServer

	
pylibftdi.examples.bit_server.get_page()

	

	
pylibftdi.examples.bit_server.runserver(port=8008)

	

lcd Module

Write a string (argv[1] if run from command line) to a HD44780
LCD module connected via a FTDI UM232R/245R module using pylibftdi

example usage:

while true;
> do python lcd.py $(awk ‘{print $1}’ /proc/loadavg);
> sleep 5;
> done

Copyright (c) 2010-2014 Ben Bass <benbass@codedstructure.net>
All rights reserved.

	
class pylibftdi.examples.lcd.LCD(device)

	Bases: object

	The UM232R/245R is wired to the LCD as follows:

	DB0..3 to LCD D4..D7 (pin 11..pin 14)
DB6 to LCD ‘RS’ (pin 4)
DB7 to LCD ‘E’ (pin 6)

	
__init__(device)

	Initialize self. See help(type(self)) for accurate signature.

	
init_four_bit()

	set the LCD’s 4 bit mode, since we only have
8 data lines and need at least 2 to strobe
data into the module and select between data
and commands.

	
write_cmd(x)

	

	
write_data(x)

	

	
data

	This class is a descriptor for a bus of a given width starting
at a given offset (0 = LSB). The device which does the actual
reading and writing is assumed to be a BitBangDevice instance
in the ‘device’ attribute of the object to which this is attached.

	
e

	This class is a descriptor for a bus of a given width starting
at a given offset (0 = LSB). The device which does the actual
reading and writing is assumed to be a BitBangDevice instance
in the ‘device’ attribute of the object to which this is attached.

	
rs

	This class is a descriptor for a bus of a given width starting
at a given offset (0 = LSB). The device which does the actual
reading and writing is assumed to be a BitBangDevice instance
in the ‘device’ attribute of the object to which this is attached.

	
pylibftdi.examples.lcd.display(string, device_id=None)

	Display the given string on an attached LCD
an optional device_id can be given.

led_flash Module

Flash an LED connected via a FTDI UM232R/245R module using pylibftdi

Optionally supply a flash rate (in Hz, default 1) as an argument

Copyright (c) 2010-2014 Ben Bass <benbass@codedstructure.net>
All rights reserved.

	
pylibftdi.examples.led_flash.flash_forever(rate)

	toggle bit zero at rate Hz

	
pylibftdi.examples.led_flash.main()

	

list_devices Module

Report connected FTDI devices. This may be useful in obtaining
serial numbers to use as the device_id parameter of the Device()
constructor to communicate with a specific device when more than
one is present.

example usage:

$ python pylibftdi/examples/list_devices.py
FTDI:UB232R:FTAS1UN5
FTDI:UM232R USB <-> Serial:FTE4FFVQ

To open a device specifically to communicate with the second of
these devices, the following would be used:

>>> from pylibftdi import Device
>>> dev = Device(device_id="FTE4FFVQ")
>>>

Copyright (c) 2011-2014 Ben Bass <benbass@codedstructure.net>
All rights reserved.

	
pylibftdi.examples.list_devices.get_ftdi_device_list()

	return a list of lines, each a colon-separated
vendor:product:serial summary of detected devices

	
pylibftdi.examples.list_devices.main()

	

magic_candle Module

	Magic Candle - light falling on the LDR turns on the LED, which due

	to arrangement keeps the LED on until LDR/LED path
is blocked

LDR (via a transistor switch - dark = ‘1’) - D0
LED (via series resistor) - D1

pylibftdi - codedstructure 2013-2014

	
class pylibftdi.examples.magic_candle.Candle

	Bases: object

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

	
run()

	

	
be_light

	This class is a descriptor for a bus of a given width starting
at a given offset (0 = LSB). The device which does the actual
reading and writing is assumed to be a BitBangDevice instance
in the ‘device’ attribute of the object to which this is attached.

	
is_dark

	This class is a descriptor for a bus of a given width starting
at a given offset (0 = LSB). The device which does the actual
reading and writing is assumed to be a BitBangDevice instance
in the ‘device’ attribute of the object to which this is attached.

midi_output Module

	
class pylibftdi.examples.midi_output.MidiDevice(*o, **k)

	Bases: pylibftdi.device.Device

	
__init__(*o, **k)

	Device([device_id[, mode, [OPTIONS …]]) -> Device instance

represents a single FTDI device accessible via the libftdi driver.
Supports a basic file-like interface (open/close/read/write, context
manager support).

	Parameters

	
	device_id – an optional serial number of the device to open.
if omitted, this refers to the first device found, which is
convenient if only one device is attached, but otherwise
fairly useless.

	mode – either ‘b’ (binary) or ‘t’ (text). This primarily affects
Python 3 calls to read() and write(), which will accept/return
unicode strings which will be encoded/decoded according to the given…

	encoding – the codec name to be used for text operations.

	interface_select – select interface to use on multi-interface devices

	device_index – optional index of the device to open, in the
event of multiple matches for other parameters (PID, VID,
device_id). Defaults to zero (the first device found).

The following parameters are only available as keyword parameters
and override class attributes, so may be specified in subclasses.

	Parameters

	
	lazy_open – if True, then the device will not be opened immediately -
the user must perform an explicit open() call prior to other
operations.

	chunk_size – if non-zero, split read and write operations into chunks
of this size. With large or slow accesses, interruptions (i.e.
KeyboardInterrupt) may not happen in a timely fashion.

	auto_detach – default True, whether to automatically re-attach
the kernel driver on device close.

	index – optional index into list_devices() to open.
Useful in the event that multiple devices of differing VID/PID
are attached, where device_index is insufficient to select
as device indexing restarts at 0 for each VID/PID combination.

	
pylibftdi.examples.midi_output.scale()

	

	
pylibftdi.examples.midi_output.volume(beat)

	

pin_read Module

Display values on input pins of a BitBangDevice.

	TODO:

	
	ANSI colours / display differences in bold

	example - beep on pin 1 going high:

	$ pylibftdi/examples/pin_read.py -n 0.01 -m 1 -k 1 && beep

Copyright (c) 2011-2014 Ben Bass <benbass@codedstructure.net>
All rights reserved.

	
pylibftdi.examples.pin_read.display_loop(interval=1, count=0, match=None, mask=255)

	display and compare the value

	Parameters

	
	interval – polling interval in seconds

	count – number of polls to do, or infinite if 0

	match – value to look for to exit early

	mask – mask of read value before comparing to match

	Returns

	‘ok’. either a match was made or none was requested

	Return type

	bool

	
pylibftdi.examples.pin_read.display_value(value)

	display the given value

	
pylibftdi.examples.pin_read.get_value()

	get the value of the pins

	
pylibftdi.examples.pin_read.main(args=None)

	

serial_loopback Module

test serial loopback; assumes Rx and Tx are connected

Copyright (c) 2010-2020 Ben Bass <benbass@codedstructure.net>
All rights reserved.

	
class pylibftdi.examples.serial_loopback.LoopbackTester

	Bases: object

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

	
bisect()

	

	
main()

	

	
test_iter(lengths)

	

	
test_loopback(length)

	

	
pylibftdi.examples.serial_loopback.test_string(length)

	

info Module

Report environment info relevant to pylibftdi

example usage:

$ python3 -m pylibftdi.examples.info
pylibftdi version : 0.15.0
libftdi version : libftdi_version(major=1, minor=1, micro=0, version_str='1.1', snapshot_str='unknown')
libftdi library path : /usr/local/lib/libftdi1.dylib
libusb version : libusb_version(major=1, minor=0, micro=19, nano=10903, rc='', describe='http://libusb.info')
libusb library path : /usr/local/lib/libusb-1.0.dylib
Python version : 3.4.0
OS platform : Darwin-14.1.0-x86_64-i386-64bit

Copyright (c) 2015-2020 Ben Bass <benbass@codedstructure.net>

	
pylibftdi.examples.info.ftdi_info()

	Return (ordered) dictionary contianing pylibftdi environment info

Designed for display purposes only; keys and value types may vary.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pylibftdi	

 	
 	
 pylibftdi.__init__	

 	
 	
 pylibftdi._base	

 	
 	
 pylibftdi.bitbang	

 	
 	
 pylibftdi.device	

 	
 	
 pylibftdi.driver	

 	
 	
 pylibftdi.examples	

 	
 	
 pylibftdi.examples.bit_server	

 	
 	
 pylibftdi.examples.info	

 	
 	
 pylibftdi.examples.lcd	

 	
 	
 pylibftdi.examples.led_flash	

 	
 	
 pylibftdi.examples.list_devices	

 	
 	
 pylibftdi.examples.magic_candle	

 	
 	
 pylibftdi.examples.midi_output	

 	
 	
 pylibftdi.examples.pin_read	

 	
 	
 pylibftdi.examples.serial_loopback	

 	
 	
 pylibftdi.serial_device	

 	
 	
 pylibftdi.util	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W

_

 	
 	__init__() (pylibftdi.__init__.BitBangDevice method)

 	(pylibftdi.__init__.Bus method)

 	(pylibftdi.__init__.Device method)

 	(pylibftdi.__init__.Driver method)

 	(pylibftdi.bitbang.BitBangDevice method)

 	(pylibftdi.device.Device method)

 	(pylibftdi.driver.Driver method)

 	(pylibftdi.examples.lcd.LCD method)

 	(pylibftdi.examples.magic_candle.Candle method)

 	(pylibftdi.examples.midi_output.MidiDevice method)

 	(pylibftdi.examples.serial_loopback.LoopbackTester method)

 	(pylibftdi.util.Bus method)

A

 	
 	auto_detach (pylibftdi.__init__.Device attribute)

 	(pylibftdi.device.Device attribute)

B

 	
 	baudrate (pylibftdi.__init__.Device attribute)

 	(pylibftdi.device.Device attribute)

 	be_light (pylibftdi.examples.magic_candle.Candle attribute)

 	bisect() (pylibftdi.examples.serial_loopback.LoopbackTester method)

 	
 	BitBangDevice (class in pylibftdi.__init__)

 	(class in pylibftdi.bitbang)

 	Bus (class in pylibftdi.__init__)

 	(class in pylibftdi.util)

C

 	
 	Candle (class in pylibftdi.examples.magic_candle)

 	chunk_size (pylibftdi.__init__.Device attribute)

 	(pylibftdi.device.Device attribute)

 	close() (pylibftdi.__init__.Device method)

 	(pylibftdi.device.Device method)

 	
 	closed (pylibftdi.__init__.Device attribute)

 	(pylibftdi.device.Device attribute)

 	cts (pylibftdi.serial_device.SerialDevice attribute)

D

 	
 	data (pylibftdi.examples.lcd.LCD attribute)

 	describe (pylibftdi.driver.libusb_version attribute)

 	(pylibftdi.driver.libusb_version_struct attribute)

 	dev (pylibftdi.driver.ftdi_device_list attribute)

 	Device (class in pylibftdi.__init__)

 	(class in pylibftdi.device)

 	direction (pylibftdi.__init__.BitBangDevice attribute)

 	(pylibftdi.bitbang.BitBangDevice attribute)

 	
 	display() (in module pylibftdi.examples.lcd)

 	display_loop() (in module pylibftdi.examples.pin_read)

 	display_value() (in module pylibftdi.examples.pin_read)

 	do_GET() (pylibftdi.examples.bit_server.ReqHandler method)

 	do_POST() (pylibftdi.examples.bit_server.ReqHandler method)

 	Driver (class in pylibftdi.__init__)

 	(class in pylibftdi.driver)

 	dsr (pylibftdi.serial_device.SerialDevice attribute)

 	dtr (pylibftdi.serial_device.SerialDevice attribute)

E

 	
 	e (pylibftdi.examples.lcd.LCD attribute)

F

 	
 	fdll (pylibftdi.__init__.Driver attribute)

 	(pylibftdi.driver.Driver attribute)

 	flash_forever() (in module pylibftdi.examples.led_flash)

 	flush() (pylibftdi.__init__.Device method)

 	(pylibftdi.device.Device method)

 	flush_input() (pylibftdi.__init__.Device method)

 	(pylibftdi.device.Device method)

 	flush_output() (pylibftdi.__init__.Device method)

 	(pylibftdi.device.Device method)

 	
 	ftdi_context_partial (class in pylibftdi.device)

 	ftdi_device_list (class in pylibftdi.driver)

 	ftdi_fn (pylibftdi.__init__.Device attribute)

 	(pylibftdi.device.Device attribute)

 	ftdi_info() (in module pylibftdi.examples.info)

 	ftdi_version_info (class in pylibftdi.driver)

 	FtdiError, [1]

G

 	
 	get_error_string() (pylibftdi.__init__.Device method)

 	(pylibftdi.device.Device method)

 	
 	get_ftdi_device_list() (in module pylibftdi.examples.list_devices)

 	get_page() (in module pylibftdi.examples.bit_server)

 	get_value() (in module pylibftdi.examples.pin_read)

H

 	
 	handle_open_error() (pylibftdi.__init__.Device method)

 	(pylibftdi.device.Device method)

I

 	
 	init_four_bit() (pylibftdi.examples.lcd.LCD method)

 	
 	is_dark (pylibftdi.examples.magic_candle.Candle attribute)

L

 	
 	latch (pylibftdi.__init__.BitBangDevice attribute)

 	(pylibftdi.bitbang.BitBangDevice attribute)

 	lazy_open (pylibftdi.__init__.Device attribute)

 	(pylibftdi.device.Device attribute)

 	LCD (class in pylibftdi.examples.lcd)

 	libftdi_version (class in pylibftdi.driver)

 	libftdi_version() (pylibftdi.__init__.Driver method)

 	(pylibftdi.driver.Driver method)

 	LibraryMissingError

 	
 	libusb_context (pylibftdi.device.ftdi_context_partial attribute)

 	libusb_device_handle (pylibftdi.device.ftdi_context_partial attribute)

 	libusb_version (class in pylibftdi.driver)

 	libusb_version() (pylibftdi.__init__.Driver method)

 	(pylibftdi.driver.Driver method)

 	libusb_version_struct (class in pylibftdi.driver)

 	list_devices() (pylibftdi.__init__.Driver method)

 	(pylibftdi.driver.Driver method)

 	LoopbackTester (class in pylibftdi.examples.serial_loopback)

M

 	
 	main() (in module pylibftdi.examples.led_flash)

 	(in module pylibftdi.examples.list_devices)

 	(in module pylibftdi.examples.pin_read)

 	(pylibftdi.examples.serial_loopback.LoopbackTester method)

 	major (pylibftdi.driver.ftdi_version_info attribute)

 	(pylibftdi.driver.libftdi_version attribute)

 	(pylibftdi.driver.libusb_version attribute)

 	(pylibftdi.driver.libusb_version_struct attribute)

 	micro (pylibftdi.driver.ftdi_version_info attribute)

 	(pylibftdi.driver.libftdi_version attribute)

 	(pylibftdi.driver.libusb_version attribute)

 	(pylibftdi.driver.libusb_version_struct attribute)

 	
 	MidiDevice (class in pylibftdi.examples.midi_output)

 	minor (pylibftdi.driver.ftdi_version_info attribute)

 	(pylibftdi.driver.libftdi_version attribute)

 	(pylibftdi.driver.libusb_version attribute)

 	(pylibftdi.driver.libusb_version_struct attribute)

 	modem_status (pylibftdi.serial_device.SerialDevice attribute)

N

 	
 	nano (pylibftdi.driver.libusb_version attribute)

 	(pylibftdi.driver.libusb_version_struct attribute)

 	
 	next (pylibftdi.driver.ftdi_device_list attribute)

 	next() (pylibftdi.__init__.Device method)

 	(pylibftdi.device.Device method)

O

 	
 	open() (pylibftdi.__init__.BitBangDevice method)

 	(pylibftdi.__init__.Device method)

 	(pylibftdi.bitbang.BitBangDevice method)

 	(pylibftdi.device.Device method)

P

 	
 	port (pylibftdi.__init__.BitBangDevice attribute)

 	(pylibftdi.bitbang.BitBangDevice attribute)

 	pylibftdi.__init__ (module)

 	pylibftdi._base (module)

 	pylibftdi.bitbang (module)

 	pylibftdi.device (module)

 	pylibftdi.driver (module)

 	pylibftdi.examples (module)

 	pylibftdi.examples.bit_server (module)

 	
 	pylibftdi.examples.info (module)

 	pylibftdi.examples.lcd (module)

 	pylibftdi.examples.led_flash (module)

 	pylibftdi.examples.list_devices (module)

 	pylibftdi.examples.magic_candle (module)

 	pylibftdi.examples.midi_output (module)

 	pylibftdi.examples.pin_read (module)

 	pylibftdi.examples.serial_loopback (module)

 	pylibftdi.serial_device (module)

 	pylibftdi.util (module)

R

 	
 	rc (pylibftdi.driver.libusb_version attribute)

 	(pylibftdi.driver.libusb_version_struct attribute)

 	read() (pylibftdi.__init__.Device method)

 	(pylibftdi.device.Device method)

 	read_pins() (pylibftdi.__init__.BitBangDevice method)

 	(pylibftdi.bitbang.BitBangDevice method)

 	readline() (pylibftdi.__init__.Device method)

 	(pylibftdi.device.Device method)

 	
 	readlines() (pylibftdi.__init__.Device method)

 	(pylibftdi.device.Device method)

 	ReqHandler (class in pylibftdi.examples.bit_server)

 	ri (pylibftdi.serial_device.SerialDevice attribute)

 	rs (pylibftdi.examples.lcd.LCD attribute)

 	rts (pylibftdi.serial_device.SerialDevice attribute)

 	run() (pylibftdi.examples.magic_candle.Candle method)

 	runserver() (in module pylibftdi.examples.bit_server)

S

 	
 	scale() (in module pylibftdi.examples.midi_output)

 	send_head() (pylibftdi.examples.bit_server.ReqHandler method)

 	SerialDevice (class in pylibftdi.serial_device)

 	
 	snapshot_str (pylibftdi.driver.ftdi_version_info attribute)

 	(pylibftdi.driver.libftdi_version attribute)

 	softspace (pylibftdi.__init__.Device attribute)

 	(pylibftdi.device.Device attribute)

T

 	
 	test_iter() (pylibftdi.examples.serial_loopback.LoopbackTester method)

 	test_loopback() (pylibftdi.examples.serial_loopback.LoopbackTester method)

 	
 	test_string() (in module pylibftdi.examples.serial_loopback)

 	ThreadingServer (class in pylibftdi.examples.bit_server)

V

 	
 	version_str (pylibftdi.driver.ftdi_version_info attribute)

 	(pylibftdi.driver.libftdi_version attribute)

 	
 	volume() (in module pylibftdi.examples.midi_output)

W

 	
 	write() (pylibftdi.__init__.Device method)

 	(pylibftdi.device.Device method)

 	write_cmd() (pylibftdi.examples.lcd.LCD method)

 	
 	write_data() (pylibftdi.examples.lcd.LCD method)

 	writelines() (pylibftdi.__init__.Device method)

 	(pylibftdi.device.Device method)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to pylibftdi’s documentation!

 		
 Introduction

 		
 Usage

 		
 Examples

 		
 History & Motivation

 		
 Plans

 		
 License

 		
 Quick Start

 		
 Install pylibftdi

 		
 Connect and enumerate FTDI devices

 		
 Test some actual IO

 		
 Output example

 		
 Input example

 		
 Using pylibftdi from the REPL

 		
 Installation

 		
 Windows

 		
 Mac OS X

 		
 Linux

 		
 Debian (Raspberry Pi) / Ubuntu etc

 		
 Arch Linux

 		
 Testing installation

 		
 Basic Usage

 		
 General

 		
 Examples

 		
 Bit-bang mode

 		
 Read-Modify-Write

 		
 Examples

 		
 The Bus class

 		
 Serial mode

 		
 Setting line parameters

 		
 The SerialDevice class

 		
 Subclassing Device - A MIDI device

 		
 Advanced Usage

 		
 libftdi function access

 		
 Examples

 		
 pylibftdi questions

 		
 Using pylibftdi - General

 		
 Can I use pylibftdi with device XYZ?

 		
 Which devices are recommended?

 		
 Using pylibftdi - Programming

 		
 How do I set the baudrate?

 		
 How do I send unicode over a serial connection?

 		
 How do I use multiple-interface devices?

 		
 What is the difference between the port and latch BitBangDevice properties?

 		
 What is the purpose of the chunk_size parameter?

 		
 Using pylibftdi - Interfacing

 		
 How do I control an LED?

 		
 How do I control a higher current device?

 		
 What is the state of an unconnected input pin?

 		
 pylibftdi troubleshooting

 		
 Error messages

 		
 FtdiError: unable to claim usb device. Make sure the default FTDI driver is not in use (-5)

 		
 MacOS (Mavericks and later)

 		
 OS X Mountain Lion and earlier

 		
 Diagnosis

 		
 Mac OS X

 		
 Linux

 		
 Where did my ttyUSB devices go?

 		
 Gathering information

 		
 Developing pylibftdi

 		
 How do I checkout and use the latest development version?

 		
 How do I run the tests?

 		
 How can I determine and select the underlying libftdi library?

 		
 pylibftdi Package

 		
 pylibftdi Package

 		
 _base Module

 		
 device Module

 		
 driver Module

 		
 bitbang Module

 		
 serial_device Module

 		
 util Module

 		
 Subpackages

 		
 examples Package

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

