py Documentation
Release 1.4.31

holger krekel et. al.

Oct 25, 2017

Contents

installation info in a nutshell

I.1 easyinstall oT PIpPY « + « v v v i e e e
1.2 Working from version control or a tarball
1.3 activating a checkout with setuptools
1.4 Mailing listand issue tracker
py-path

2.1 py.path.local - local file systempath
2.2 py.path.svnurlandpy.path.svawc
2.3 Common vs. specific API, Examples
2.4 Known problems / limitations 0oL

py-code: higher level python code and introspection objects

3.1 Contentsofthelibrary
3.2 The Wrappers v v v v e e e e e e e e e e e e
py.io

4.1 IO Capturingexamples o v v it e
42 pyioobjectreference.o e

py-log documentation and musings

5.1 Foreword e
5.2 Loggingorganisation
5.3 Usingthe pyloglibrary
py-xml: simple pythonic xml/html file generation

6.1 Motivation e
6.2 apythonic object model ,please

Miscellaneous features of the py lib

7.1 Mapping the standard python library intopy
7.2 Support for interaction with system utilities/binaries
7.3 Cross-Python Version compatibility helpers

1.4.31

1.4.30

............... 19

25

............... 25
............... 26

27

............... 27
............... 27
............... 28

31

............... 31
............... 31

35

............... 35
............... 35
............... 36

37

39

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

1.4.29

1.4.28

1.4.27

1.4.26

1.4.25

1.4.24

1.4.23

1.4.22

1.4.21

1.4.20

Changes between 1.4.18 and 1.4.19
Changes between 1.4.17 and 1.4.18
Changes between 1.4.16 and 1.4.17
Changes between 1.4.15 and 1.4.16
Changes between 1.4.14 and 1.4.15
Changes between 1.4.13 and 1.4.14
Changes between 1.4.12 and 1.4.13
Changes between 1.4.11 and 1.4.12
Changes between 1.4.10 and 1.4.11
Changes between 1.4.9 and 1.4.10
Changes between 1.4.8 and 1.4.9
Changes between 1.4.7 and 1.4.8
Changes between 1.4.6 and 1.4.7
Changes between 1.4.5 and 1.4.6
Changes between 1.4.4 and 1.4.5
Changes between 1.4.3 and 1.4.4
Changes between 1.4.2 and 1.4.3
Changes between 1.4.1 and 1.4.2
Changes between 1.4.0 and 1.4.1

Changes between 1.3.4 and 1.4.0

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

Changes between 1.3.3 and 1.3.4
Changes between 1.3.2 and 1.3.3

Changes between 1.3.1 and 1.3.2

42.1 Newfeatures i i i i i i e

Changes between 1.3.0 and 1.3.1

43.1 Newfeatures v i i e
432 Fixes/Maintenancet v it i e

Changes between 1.2.1 and 1.3.0
Changes between 1.2.1 and 1.2.0
Changes between 1.2 and 1.1.1

Changes between 1.1.1 and 1.1.0
Changes between 1.1.0 and 1.0.2
Changes between 1.0.1 and 1.0.2

Changes between 1.0.0 and 1.0.1

Changes between 1.0.0b9 and 1.0.0

Changes between 1.0.0b8 and 1.0.0b9
Changes between 1.0.0b7 and 1.0.0b8
Changes between 1.0.0b3 and 1.0.0b7
Changes between 1.0.0b1 and 1.0.0b3

Changes between 0.9.2 and 1.0.0b1

Changes between 0.9.1 and 0.9.2
Changes between 0.9.0 and 0.9.1

Indices and tables

101

103

105
105
106

107
107
107

109

111

113

115

117

119

121

123

125

127

129

131

133

135

137

139

py Documentation, Release 1.4.31

see CHANGELOG for latest changes.

Note: Since version 1.4, the testing tool “py.test” is part of its own pytest distribution.

Contents:

Contents 1

http://pytest.org

py Documentation, Release 1.4.31

2 Contents

CHAPTER 1

installation info in a nutshell

PyPI name: py

Pythons: CPython 2.6, 2.7, 3.3, 3.4, PyPy-2.3
Operating systems: Linux, Windows, OSX, Unix
Requirements: setuptools or Distribute
Installers: easy_install and pip

hg repository: https://bitbucket.org/hpk42/py

easy install or pip py

Both Distribute and setuptools provide the easy_install installation tool with which you can type into a command
line window:

’easy_install -U py

to install the latest release of the py lib. The —U switch will trigger an upgrade if you already have an older version
installed.

Note: As of version 1.4 py does not contain py.test anymore - you need to install the new ‘pytest‘_ distribution.

Working from version control or a tarball

To follow development or start experiments, checkout the complete code and documentation source with mercurial:

’hg clone https://bitbucket.org/hpkd2/py

http://pypi.python.org/pypi/py/
http://pypi.python.org/pypi/setuptools
http://pypi.python.org/pypi/distribute
https://bitbucket.org/hpk42/py
http://pypi.python.org/pypi/distribute
http://pypi.python.org/pypi/setuptools
http://mercurial.selenic.com/wiki/

py Documentation, Release 1.4.31

Development takes place on the ‘trunk’ branch.

You can also go to the python package index and download and unpack a TAR file:

’http://pypi.python.org/pypi/py/

activating a checkout with setuptools

With a working Distribute or setuptools installation you can type:

’python setup.py develop

in order to work inline with the tools and the 1ib of your checkout.

Mailing list and issue tracker

* py-dev developers list and commit mailing list.
* #pylib on irc.freenode.net IRC channel for random questions.

* bitbucket issue tracker use this bitbucket issue tracker to report bugs or request features.

4 Chapter 1. installation info in a nutshell

http://pypi.python.org/pypi/distribute
http://pypi.python.org/pypi/setuptools
http://codespeak.net/mailman/listinfo/py-dev
http://codespeak.net/mailman/listinfo/py-svn
http://bitbucket.org/hpk42/py/issues/

CHAPTER 2

py.path

The ‘py’ lib provides a uniform high-level api to deal with filesystems and filesystem-like interfaces: py.path. It
aims to offer a central object to fs-like object trees (reading from and writing to files, adding files/directories, examining
the types and structure, etc.), and out-of-the-box provides a number of implementations of this APL

py.path.local - local file system path

basic interactive example

The first and most obvious of the implementations is a wrapper around a local filesystem. It’s just a bit nicer in usage
than the regular Python APIs, and of course all the functionality is bundled together rather than spread over a number

of modules.

Example usage, here we use the py.test.ensuretemp () function to create a py.path.local object for us
(which wraps a directory):

>>> import py
>>> temppath = py.test.ensuretemp ('py.path_documentation')

>>> foopath

>>> foopath.

False

>>> foopath.
>>> foopath.

True

>>> foopath.

'bar'
>>> foofile

>>> foofile.

b

= temppath.join('foo') # get child 'foo' (lazily)

check () # check if child 'foo' exists
write('bar') # write some data to it

check ()

read ()

= foopath.open() # return a 'real' file object
read (1)

py Documentation, Release 1.4.31

reference documentation

class py._path.local.LocalPath (path=None, expanduser=False)
object oriented interface to os.path and other local filesystem related information.

exception ImportMismatchError
raised on pyimport() if there is a mismatch of __file__’s

LocalPath.samefile (other)
return True if ‘other’ references the same file as ‘self”.

LocalPath.remove (rec=1, ignore_errors=False)
remove a file or directory (or a directory tree if rec=1). if ignore_errors is True, errors while removing
directories will be ignored.

LocalPath.computehash (hashtype="md5’, chunksize=524288)
return hexdigest of hashvalue for this file.

LocalPath.new (*¥*kw)
create a modified version of this path. the following keyword arguments modify various path parts:

a:/some/path/to/a/file.ext
XX drive
)19:9:9:9:9:9:9:9:0:9:9:9:0:9::9:4 dirname
XXXXKXKXKX basename
XXKXX purebasename
XXX ext

LocalPath.dirpath (*args, **kwargs)
return the directory path joined with any given path arguments.

LocalPath. join (*args, **kwargs)
return a new path by appending all ‘args’ as path components. if abs=1 is used restart from root if any of
the args is an absolute path.

LocalPath.open (mode="r’, ensure=False, encoding=None)
return an opened file with the given mode.

If ensure is True, create parent directories if needed.

LocalPath.listdir (fil=None, sort=None)
list directory contents, possibly filter by the given fil func and possibly sorted.

LocalPath.size ()
return size of the underlying file object

LocalPath.mtime ()
return last modification time of the path.

LocalPath.copy (target, mode=False)
copy path to target.

LocalPath. rename (farget)
rename this path to target.

LocalPath.dump (obj, bin=1)
pickle object into path location

LocalPath.mkdir (*args)
create & return the directory joined with args.

LocalPath.write_binary (data, ensure=False)
write binary data into path. If ensure is True create missing parent directories.

6 Chapter 2. py.path

py Documentation, Release 1.4.31

LocalPath.write_text (data, encoding, ensure=False)
write text data into path using the specified encoding. If ensure is True create missing parent directories.

LocalPath.write (data, mode="w’, ensure=False)
write data into path. If ensure is True create missing parent directories.

LocalPath.ensure (*args, **kwargs)
ensure that an args-joined path exists (by default as a file). if you specify a keyword argument ‘dir=True’
then the path is forced to be a directory path.

LocalPath.stat (raising=True)
Return an os.stat() tuple.

LocalPath.lstat ()
Return an os.Istat() tuple.

LocalPath.setmtime (mtime=None)
set modification time for the given path. if ‘mtime’ is None (the default) then the file’s mtime is set to
current time.

Note that the resolution for ‘mtime’ is platform dependent.

LocalPath.chdir ()
change directory to self and return old current directory

LocalPath.as_cwd (*args, **kwds)
return context manager which changes to current dir during the managed “with” context. On __enter__ it
returns the old dir.

LocalPath.realpath ()
return a new path which contains no symbolic links.

LocalPath.atime ()
return last access time of the path.

LocalPath.chmod (mode, rec=0)
change permissions to the given mode. If mode is an integer it directly encodes the os-specific modes. if
rec is True perform recursively.

LocalPath.pypkgpath ()
return the Python package path by looking for the last directory upwards which still contains an
__init__.py. Return None if a pkgpath can not be determined.

LocalPath.pyimport (modname=None, ensuresyspath=True)
return path as an imported python module.

If modname is None, look for the containing package and construct an according module name. The mod-
ule will be put/looked up in sys.modules. if ensuresyspath is True then the root dir for importing the file
(taking __init__.py files into account) will be prepended to sys.path if it isn’t there already. If ensuresys-
path=="append” the root dir will be appended if it isn’t already contained in sys.path. if ensuresyspath is
False no modification of syspath happens.

LocalPath.sysexec (*argv, ¥**popen_opts)
return stdout text from executing a system child process, where the ‘self” path points to executable. The
process is directly invoked and not through a system shell.

classmethod L.ocalPath.sysfind (name, checker=None, paths=None)
return a path object found by looking at the systems underlying PATH specification. If the checker is not
None it will be invoked to filter matching paths. If a binary cannot be found, None is returned Note: This
is probably not working on plain win32 systems but may work on cygwin.

2.1.

py-path.local - local file system path 7

py Documentation, Release 1.4.31

LocalPath.basename
basename part of path.

LocalPath.bestrelpath (dest)
return a string which is a relative path from self (assumed to be a directory) to dest such that
self.join(bestrelpath) == dest and if not such path can be determined return dest.

LocalPath.chown (user, group, rec=0)
change ownership to the given user and group. user and group may be specified by a number or by a name.
if rec is True change ownership recursively.

LocalPath.common (other)
return the common part shared with the other path or None if there is no common part.

LocalPath.dirname
dirname part of path.

LocalPath.ensure_dir (*args)
ensure the path joined with args is a directory.

LocalPath.ext
extension of the path (including the °.").

LocalPath. fnmatch (pattern)
return true if the basename/fullname matches the glob-‘pattern’.

valid pattern characters:

* matches everything

? matches any single character
[seq] matches any character in seq
[!seq] matches any char not in seq

If the pattern contains a path-separator then the full path is used for pattern matching and a ‘*’ is prepended
to the pattern.

if the pattern doesn’t contain a path-separator the pattern is only matched against the basename.

classmethod L.ocalPath.get_temproot ()
return the system’s temporary directory (where tempfiles are usually created in)

LocalPath.load()
(deprecated) return object unpickled from self.read()

LocalPath.mklinkto (oldname)
posix style hard link to another name.

LocalPath.mksymlinkto (value, absolute=1)
create a symbolic link with the given value (pointing to another name).

LocalPath.move (target)
move this path to target.

LocalPath.parts (reverse=False)
return a root-first list of all ancestor directories plus the path itself.

LocalPath.purebasename
pure base name of the path.

LocalPath.read (mode="r")
read and return a bytestring from reading the path.

8 Chapter 2. py.path

py Documentation, Release 1.4.31

LocalPath.read_binary ()
read and return a bytestring from reading the path.

LocalPath.read_text (encoding)
read and return a Unicode string from reading the path.

LocalPath.readlines (cr=1)
read and return a list of lines from the path. if cr is False, the newline will be removed from the end of
each line.

LocalPath.readlink ()
return value of a symbolic link.

LocalPath.relto (relpath)
return a string which is the relative part of the path to the given ‘relpath’.

LocalPath.visit (fil=None, rec=None, ignore=<class ‘py._path.common.NeverRaised >, bf=False,

sort=False)
yields all paths below the current one

fil is a filter (glob pattern or callable), if not matching the path will not be yielded, defaulting to None
(everything is returned)

rec is a filter (glob pattern or callable) that controls whether a node is descended, defaulting to None

ignore is an Exception class that is ignoredwhen calling dirlist() on any of the paths (by default, all excep-
tions are reported)

bf if True will cause a breadthfirst search instead of the default depthfirst. Default: False
sort if True will sort entries within each directory level.

classmethod L.ocalPath.mkdtemp (rootdir=None)
return a Path object pointing to a fresh new temporary directory (which we created ourself).

classmethod LocalPath.make_numbered_dir (prefix="session-, rootdir=None, keep=3,

) lock_timeout=172800)
return unique directory with a number greater than the current maximum one. The number is assumed

to start directly after prefix. if keep is true directories with a number less than (maxnum-keep) will be
removed.

py -path.svnurl and py.path. svnwc

Two other py . path implementations that the py lib provides wrap the popular Subversion revision control system:
the first (called ‘svnurl’) by interfacing with a remote server, the second by wrapping a local checkout. Both allow you
to access relatively advanced features such as metadata and versioning, and both in a way more user-friendly manner
than existing other solutions.

Some example usage of py .path.svnurl:

>>> import py
>>> if not py.test.config.option.urlcheck: raise ValueError ('skipchunk')
>>> url = py.path.svnurl ('http://codespeak.net/svn/py")
>>> info = url.info()
>>> info.kind
'dir'
>>> firstentry = url.log() [-1]
>>> import time
>>> time.strftime ('%Y-%m-2d', time.gmtime (firstentry.date))
'2004-10-02"

2.2. py.path.svnurl and py.path. svnwc 9

http://subversion.tigris.org/

py Documentation, Release 1.4.31

Example usage of py.path. svnwc:

>>> if not py.test.config.option.urlcheck: raise ValueError ('skipchunk")
>>> temp = py.test.ensuretemp ('py.path documentation')

>>> wc = py.path.svnwc (temp. join('svnwc'))

>>> wc.checkout ('http://codespeak.net/svn/py/dist/py/path/local")
>>> wc.join('local.py') .check ()

True

svn path related API reference

class py._path.svnwc.SvnWCCommandPath
path implementation offering access/modification to svn working copies. It has methods similar to the functions
in os.path and similar to the commands of the svn client.

strpath
string path

rev
revision

url
url of this WC item

dump (0bj)
pickle object into path location

svnurl ()
return current SvnPath for this WC-item.

switch (url)
switch to given URL.

checkout (url=None, rev=None)
checkout from url to local wcpath.

update (rev="HEAD’, interactive=True)
update working copy item to given revision. (None -> HEAD).

write (content, mode="w’)
write content into local filesystem wc.

dirpath (*args)
return the directory Path of the current Path.
ensure (*args, **kwargs)

ensure that an args-joined path exists (by default as a file). if you specify a keyword argument ‘direc-
tory=True’ then the path is forced to be a directory path.

mkdir (*args)
create & return the directory joined with args.

add ()
add ourself to svn

remove (rec=1, force=1)
remove a file or a directory tree. ‘rec’ursive is ignored and considered always true (because of underlying
svn semantics.

copy (target)
copy path to target.

10 Chapter 2. py.path

py Documentation, Release 1.4.31

rename (farget)
rename this path to target.

lock ()
set a lock (exclusive) on the resource

unlock ()
unset a previously set lock

cleanup ()
remove any locks from the resource

status (updates=0, rec=0, externals=0)
return (collective) Status object for this file.

diff (rev=None)
return a diff of the current path against revision rev (defaulting to the last one).

blame ()
return a list of tuples of three elements: (revision, commiter, line)

commit (msg="", rec=1)
commit with support for non-recursive commits

propset (name, value, *args)
set property name to value on this path.

propget (name)
get property name on this path.

propdel (name)
delete property name on this path.

proplist (rec=0)
return a mapping of property names to property values. If rec is True, then return a dictionary mapping
sub-paths to such mappings.

revert (rec=0)
revert the local changes of this path. if rec is True, do so recursively.

new (**kw)
create a modified version of this path. A ‘rev’ argument indicates a new revision. the following keyword
arguments modify various path parts:

http://host.com/repo/path/file.ext | | dirname
|——I basename |-| purebasename
[-I ext

join (*args, **kwargs)
return a new Path (with the same revision) which is composed of the self Path followed by ‘args’ path
components.

info (usecache=1)
return an Info structure with svn-provided information.

listdir (fil=None, sort=None)
return a sequence of Paths.

listdir will return either a tuple or a list of paths depending on implementation choices.

open (mode="r")
return an opened file with the given mode.

2.2. py.path.svnurl and py.path. svnwc 11

http://host.com/repo/path/file.ext

py Documentation, Release 1.4.31

log (rev_start=None, rev_end=1, verbose=False)
return a list of LogEntry instances for this path. rev_start is the starting revision (defaulting to the first
one). rev_end is the last revision (defaulting to HEAD). if verbose is True, then the LogEntry instances
also know which files changed.

size ()
Return the size of the file content of the Path.

mtime ()
Return the last modification time of the file.

basename
basename part of path.

bestrelpath (dest)
return a string which is a relative path from self (assumed to be a directory) to dest such that
self join(bestrelpath) == dest and if not such path can be determined return dest.

check (**kw)
check a path for existence and properties.

Without arguments, return True if the path exists, otherwise False.

valid checkers:

file=1 # is a file

file=0 # is not a file (may not even exist)
dir=1 # is a dir

link=1 # is a link

exists=1 # exists

You can specify multiple checker definitions, for example:

path.check (file=1, link=1) # a link pointing to a file

common (other)
return the common part shared with the other path or None if there is no common part.

dirname
dirname part of path.

ensure_dir (*args)
ensure the path joined with args is a directory.

ext
extension of the path (including the *.”).

fnmatch (paitern)
return true if the basename/fullname matches the glob- ‘pattern’.

valid pattern characters:

* matches everything

? matches any single character
[seq] matches any character in seq
[!seq] matches any char not in seq

If the pattern contains a path-separator then the full path is used for pattern matching and a ‘*’ is prepended
to the pattern.

if the pattern doesn’t contain a path-separator the pattern is only matched against the basename.

12

Chapter 2. py.path

py Documentation, Release 1.4.31

load()
(deprecated) return object unpickled from self.read()

move (farget)
move this path to target.

parts (reverse=False)
return a root-first list of all ancestor directories plus the path itself.

purebasename
pure base name of the path.

read (mode="r’)
read and return a bytestring from reading the path.

read_binary ()
read and return a bytestring from reading the path.

read_text (encoding)
read and return a Unicode string from reading the path.

readlines (cr=1)
read and return a list of lines from the path. if cr is False, the newline will be removed from the end of
each line.

relto (relpath)
return a string which is the relative part of the path to the given ‘relpath’.

samefile (other)
return True if other refers to the same stat object as self.

visit (fil=None, rec=None, ignore=<class ‘py._path.common.NeverRaised’>, bf=Fualse, sort=False)
yields all paths below the current one

fil is a filter (glob pattern or callable), if not matching the path will not be yielded, defaulting to None
(everything is returned)

rec is a filter (glob pattern or callable) that controls whether a node is descended, defaulting to None

ignore is an Exception class that is ignoredwhen calling dirlist() on any of the paths (by default, all excep-
tions are reported)

bf if True will cause a breadthfirst search instead of the default depthfirst. Default: False

sort if True will sort entries within each directory level.

class py._path.svnurl.SvnCommandPath

path implementation that offers access to (possibly remote) subversion repositories.

open (mode='r’)
return an opened file with the given mode.

dirpath (*args, **kwargs)
return the directory path of the current path joined with any given path arguments.

mkdir (*args, **kwargs)
create & return the directory joined with args. pass a ‘msg’ keyword argument to set the commit message.

copy (target, msg="copied by py lib invocation’)
copy path to target with checkin message msg.

rename (target, msg="renamed by py lib invocation’)
rename this path to target with checkin message msg.

2.2. py.path.svnurl and py.path. svnwc 13

py Documentation, Release 1.4.31

remove (rec=1, msg="removed by py lib invocation’)
remove a file or directory (or a directory tree if rec=1) with checkin message msg.

export (topath)
export to a local path

topath should not exist prior to calling this, returns a py.path.local instance

ensure (*args, **kwargs)
ensure that an args-joined path exists (by default as a file). If you specify a keyword argument ‘dir=True’
then the path is forced to be a directory path.

info ()
return an Info structure with svn-provided information.

listdir (fil=None, sort=None)
list directory contents, possibly filter by the given fil func and possibly sorted.

log (rev_start=None, rev_end=1, verbose=False)
return a list of LogEntry instances for this path. rev_start is the starting revision (defaulting to the first
one). rev_end is the last revision (defaulting to HEAD). if verbose is True, then the LogEntry instances
also know which files changed.

basename
basename part of path.

bestrelpath (dest)
return a string which is a relative path from self (assumed to be a directory) to dest such that
self join(bestrelpath) == dest and if not such path can be determined return dest.

check (**kw)
check a path for existence and properties.

Without arguments, return True if the path exists, otherwise False.

valid checkers:

file=1 # is a file

file=0 # is not a file (may not even exist)
dir=1 # is a dir

link=1 # is a link

exists=1 # exists

You can specify multiple checker definitions, for example:

b~

path.check (file=1, link=1) # a link pointing to a file

common (other)
return the common part shared with the other path or None if there is no common part.

dirname
dirname part of path.

ensure_dir (*args)
ensure the path joined with args is a directory.

ext
extension of the path (including the *.*).

fnmatch (pattern)
return true if the basename/fullname matches the glob-‘pattern’.

valid pattern characters:

14 Chapter 2. py.path

py Documentation, Release 1.4.31

* matches everything

? matches any single character
[seq] matches any character in seq
[!seqg] matches any char not in seq

If the pattern contains a path-separator then the full path is used for pattern matching and a ‘*’ is prepended
to the pattern.

if the pattern doesn’t contain a path-separator the pattern is only matched against the basename.

join (*args)
return a new Path (with the same revision) which is composed of the self Path followed by ‘args’ path
components.

load ()
(deprecated) return object unpickled from self.read()

move (farget)
move this path to target.

mtime ()
Return the last modification time of the file.

new (**kw)
create a modified version of this path. A ‘rev’ argument indicates a new revision. the following keyword
arguments modify various path parts:

http://host.com/repo/path/file.ext
[———— | dirname
| —————— | basename
| == purebasename
|——| ext

parts (reverse=False)
return a root-first list of all ancestor directories plus the path itself.

propget (name)
return the content of the given property.

proplist ()
list all property names.

purebasename
pure base name of the path.

read (mode="r’")
read and return a bytestring from reading the path.

read_binary ()
read and return a bytestring from reading the path.

read_text (encoding)
read and return a Unicode string from reading the path.

readlines (cr=1)
read and return a list of lines from the path. if cr is False, the newline will be removed from the end of
each line.

relto (relpath)
return a string which is the relative part of the path to the given ‘relpath’.

2.2. py.path.svnurl and py.path. svnwc 15

py Documentation, Release 1.4.31

samefile (other)
return True if other refers to the same stat object as self.

size ()
Return the size of the file content of the Path.

url
url of this svn-path.

visit (fil=None, rec=None, ignore=<class ‘py._path.common.NeverRaised’>, bf=False, sort=False)
yields all paths below the current one

fil is a filter (glob pattern or callable), if not matching the path will not be yielded, defaulting to None
(everything is returned)

rec is a filter (glob pattern or callable) that controls whether a node is descended, defaulting to None

ignore is an Exception class that is ignoredwhen calling dirlist() on any of the paths (by default, all excep-
tions are reported)

bf if True will cause a breadthfirst search instead of the default depthfirst. Default: False
sort if True will sort entries within each directory level.

class py._path.svnwc.SvnAuth (username, password, cache_auth=True, interactive=True)
container for auth information for Subversion

Common vs. specific APl, Examples

All Path objects support a common set of operations, suitable for many use cases and allowing to transparently switch
the path object within an application (e.g. from “local” to “svnwc”). The common set includes functions such as
path.read() to read all data from a file, path.write() to write data, path.listdir() to get a list of directory entries,
path.check() to check if a node exists and is of a particular type, path.join() to get to a (grand)child, path.visit() to
recursively walk through a node’s children, etc. Only things that are not common on ‘normal’ filesystems (yet), such
as handling metadata (e.g. the Subversion “properties”) require using specific APIs.

A quick ‘cookbook’ of small examples that will be useful ‘in real life’, which also presents parts of the ‘common’
API, and shows some non-common methods:

Searching .ixt files

Search for a particular string inside all files with a .txt extension in a specific directory.

>>> dirpath = temppath.ensure('testdir', dir=True)

>>> dirpath.join('textfilel.txt') .write('foo bar baz'")
>>> dirpath.join('textfile2.txt') .write('frob bar spam eggs')
>>> subdir = dirpath.ensure('subdir', dir=True)

>>> subdir.Jjoin('textfilel.txt').write('foo baz')
>>> subdir.join('textfile2.txt') .write('spam eggs spam foo bar spam')
>>> results = []
>>> for fpath in dirpath.visit ('x.txt'):
if 'bar' in fpath.read():
R results.append(fpath.basename)
>>> results.sort ()
>>> results
["textfilel.txt', 'textfile2.txt', 'textfile2.txt']

16 Chapter 2. py.path

py Documentation, Release 1.4.31

Working with Paths

This example shows the py . path features to deal with filesystem paths Note that the filesystem is never touched, all
operations are performed on a string level (so the paths don’t have to exist, either):

>>> pl = py.path.local('/foo/bar")
>>> p2 = pl.join('baz/qux")

>>> p2 == py.path.local('/foo/bar/baz/qux")

True

>>> sep = py.path.local.sep

>>> p2.relto(pl) .replace(sep, '/') # os-specific path sep in the string
'baz/qux'

>>> p2.bestrelpath(pl) .replace(sep, '/'")

HY AR

>>> p2.join(p2.bestrelpath(pl)) == pl

True

>>> p3 = pl / 'baz/qux' # the / operator allows joining, too
>>> p2 == p3

True

>>> p4 = pl + ".py"

>>> p4d.basename == "bar.py"

True

>>> pd.ext == ".py"

True

>>> p4.purebasename == "bar"

True

This should be possible on every implementation of py . path, so regardless of whether the implementation wraps
a UNIX filesystem, a Windows one, or a database or object tree, these functions should be available (each with their
own notion of path seperators and dealing with conversions, etc.).

Checking path types

Now we will show a bit about the powerful ‘check()’ method on paths, which allows you to check whether a file exists,
what type it is, etc.:

>>> filel = temppath.join('filel')

>>> filel.check () # does it exist?

False

>>> filel = filel.ensure(file=True) # 'touch' the file
>>> filel.check ()

True

>>> filel.check (dir=True) # 1is it a dir?

False

>>> filel.check (file=True) # or a file?

True

>>> filel.check (ext='.txt') # check the extension
False

>>> textfile = temppath.ensure('text.txt', file=True)
>>> textfile.check (ext=".txt")

True

>>> filel.check (basename="'filel') # we can use all the path's properties here
True

2.3. Common vs. specific APl, Examples 17

py Documentation, Release 1.4.31

Setting svn-properties

As an example of ‘uncommon’ methods, we’ll show how to read and write properties in an py .path.svnwc in-
stance:

>>> if not py.test.config.option.urlcheck: raise ValueError ('skipchunk')
>>> wc.propget ('foo')
T
>>> wc.propset ('foo', 'bar')
>>> wc.propget ('foo')

'bar'

>>> len(wc.status () .prop_modified) # our own props
1

>>> msg = wc.revert() # roll back our changes

>>> len(wc.status () .prop_modified)

0

SVN authentication

Some uncommon functionality can also be provided as extensions, such as SVN authentication:

>>> if not py.test.config.option.urlcheck: raise ValueError ('skipchunk')
>>> auth = py.path.SvnAuth ('anonymous', 'user', cache_auth=False,
.. interactive=False)
>>> wc.auth = auth

>>> wc.update () # this should work
>>> path = wc.ensure('thisshouldnotexist.txt")
>>> try:

path.commit ('testing')
except py.process.cmdexec.Error, e:
pass
>>> 'authorization failed' in str(e)
True

Known problems / limitations

* The SVN path objects require the “svn” command line, there is currently no support for python bindings. Parsing
the svn output can lead to problems, particularly regarding if you have a non-english “locales” setting.

* While the path objects basically work on windows, there is no attention yet on making unicode paths work or
deal with the famous “8.3” filename issues.

18 Chapter 2. py.path

CHAPTER 3

py.code: higher level python code and introspection objects

py . code provides higher level APIs and objects for Code, Frame, Traceback, ExceptionInfo and source code con-
struction. The py . code library tries to simplify accessing the code objects as well as creating them. There is a small
set of interfaces a user needs to deal with, all nicely bundled together, and with a rich set of ‘Pythonic’ functionality.

Contents of the library

Every object in the py.code library wraps a code Python object related to code objects, source code, frames
and tracebacks: the py.code.Code class wraps code objects, py .code. Source source snippets, py .code.
Traceback®™ exception tracebacks, ' py.code.Frame frame objects (as found in e.g. tracebacks)
and py.code.ExceptionInfo the tuple provided by sys.exc_info() (containing exception and traceback infor-
mation when an exception occurs). Also in the library is a helper function py . code.compile () that provides the
same functionality as Python’s built-in ‘compile()’ function, but returns a wrapped code object.

The wrappers

Py .code.Code

Code objects are instantiated with a code object or a callable as argument, and provide functionality to compare
themselves with other Code objects, get to the source file or its contents, create new Code objects from scratch, etc.

A quick example:

>>> import py

>>> c = py.code.Code (py.path.local.read)
>>> c.path.basename

'common.py'

>>> isinstance (c.source(), py.code.Source)
True

>>> str(c.source()) .split('\n'") [0]

"def read(self, mode='r"'):"

19

py Documentation, Release 1.4.31

class py . code.Code (rawcode)
wrapper around Python code objects

path
return a path object pointing to source code (note that it might not point to an actually existing file).

fullsource
return a py.code.Source object for the full source file of the code

source ()
return a py.code.Source object for the code object’s source only

getargs (var=Fualse)
return a tuple with the argument names for the code object

if ‘var’ is set True also return the names of the variable and keyword arguments when present

Py .code. Source

Source objects wrap snippets of Python source code, providing a simple yet powerful interface to read, deindent, slice,
compare, compile and manipulate them, things that are not so easy in core Python.

Example:

>>> s = py.code.Source ("""\
def fool():
print "foo"
)

>>> str(s).startswith('def') # automatic de—indentation!
True
>>> s.isparseable()
True
>>> sub = s.getstatement (1) # get the statement starting at line 1
>>> str(sub) .strip() # XXX why is the strip() required?!?
'print "foo"'

class py . code . Source (*parts, **kwargs)
a immutable object holding a source code fragment, possibly deindenting it.

strip ()
return new source object with trailing and leading blank lines removed.

putaround (before="", after="", indent=" ")
return a copy of the source object with ‘before’ and ‘after’ wrapped around it.

indent (indent=""*)
return a copy of the source object with all lines indented by the given indent-string.

getstatement (lineno, assertion=False)
return Source statement which contains the given linenumber (counted from 0).

getstatementrange (lineno, assertion=False)
return (start, end) tuple which spans the minimal statement region which containing the given lineno.

deindent (offset=None)
return a new source object deindented by offset. If offset is None then guess an indentation offset from
the first non-blank line. Subsequent lines which have a lower indentation offset will be copied verbatim as
they are assumed to be part of multilines.

isparseable (deindent=True)
return True if source is parseable, heuristically deindenting it by default.

20 Chapter 3. py.code: higher level python code and introspection objects

py Documentation, Release 1.4.31

compile (filename=None, mode="exec’, flag=0, dont_inherit=0, _genframe=None)
return compiled code object. if filename is None invent an artificial filename which displays the source/line
position of the caller frame.

Py .code.Traceback

Tracebacks are usually not very easy to examine, you need to access certain somewhat hidden attributes of the trace-
back’s items (resulting in expressions such as ‘fname = tb.tb_next.tb_frame.f_code.co_filename’). The Traceback
interface (and its Tracebackltem children) tries to improve this.

Example:

>>> import sys

>>> try:
py.path.local (100) # illegal argument
except:
. exc, e, tb = sys.exc_info()
>>> t = py.code.Traceback (tb)
>>> first = t[1l] # get the second entry (first is in this doc)
>>> first.path.basename # second is in py/path/local.py
'local.py’
>>> isinstance (first.statement, py.code.Source)
True

>>> str(first.statement) .strip() .startswith('raise ValueError')
True

class py . code . Traceback (th)
Traceback objects encapsulate and offer higher level access to Traceback entries.

Entry
alias of TracebackEntry

cut (path=None, lineno=None, firstlineno=None, excludepath=None)
return a Traceback instance wrapping part of this Traceback

by provding any combination of path, lineno and firstlineno, the first frame to start the to-be-returned
traceback is determined

this allows cutting the first part of a Traceback instance e.g. for formatting reasons (removing some
uninteresting bits that deal with handling of the exception/traceback)

filter (fu=<function <lambda>>)
return a Traceback instance with certain items removed

fn is a function that gets a single argument, a TracebackItem instance, and should return True when the
item should be added to the Traceback, False when not

by default this removes all the TracebackItems which are hidden (see ishidden() above)

getcrashentry ()
return last non-hidden traceback entry that lead to the exception of a traceback.

recursionindex ()
return the index of the frame/Tracebackltem where recursion originates if appropriate, None if no recursion
occurred

append ()
L.append(object) — append object to end

count (value) — integer — return number of occurrences of value

3.2. The wrappers 21

py Documentation, Release 1.4.31

extend ()
L.extend(iterable) — extend list by appending elements from the iterable

index (value[, start[, stop]]) — integer — return first index of value.
Raises ValueError if the value is not present.

insert ()
L.insert(index, object) — insert object before index

pop ([index]) — item — remove and return item at index (default last).
Raises IndexError if list is empty or index is out of range.

remove ()
L.remove(value) — remove first occurrence of value. Raises ValueError if the value is not present.

reverse ()
L.reverse() — reverse IN PLACE

sort ()
L.sort(cmp=None, key=None, reverse=False) — stable sort IN PLACE; cmp(x, y) ->-1,0, 1

Py .code.Frame

Frame wrappers are used in py . code . Traceback items, and will usually not directly be instantiated. They provide
some nice methods to evaluate code ‘inside’ the frame (using the frame’s local variables), get to the underlying code
(frames have a code attribute that points to a py . code . Code object) and examine the arguments.

Example (using the “first’ Tracebackltem instance created above):

>>> frame = first.frame

>>> isinstance (frame.code, py.code.Code)

True

>>> isinstance (frame.eval('self'), py.path.local)
True

>>> [namevalue[0] for namevalue in frame.getargs()]
['cls', 'path']

class py . code . Frame (frame)
Wrapper around a Python frame holding f_locals and f_globals in which expressions can be evaluated.

statement
statement this frame is at

eval (code, **vars)
evaluate ‘code’ in the frame

‘vars’ are optional additional local variables
returns the result of the evaluation

exec_ (code, **vars)
exec ‘code’ in the frame

‘vars’ are optiona; additional local variables

repr (object)
return a ‘safe’ (non-recursive, one-line) string repr for ‘object’

getargs (var=False)
return a list of tuples (name, value) for all arguments

if ‘var’ is set True also include the variable and keyword arguments when present

22 Chapter 3. py.code: higher level python code and introspection objects

py Documentation, Release 1.4.31

py .code.ExceptionInfo

A wrapper around the tuple returned by sys.exc_info() (will call sys.exc_info() itself if the tuple is not provided as an
argument), provides some handy attributes to easily access the traceback and exception string.

Example:

>>> import sys
>>> try:

foobar ()

except:

excinfo = py.code.ExceptionInfo ()
>>> excinfo.typename
'NameError'
>>> isinstance (excinfo.traceback, py.code.Traceback)
True
>>> excinfo.exconly ()
"NameError: name 'foobar' is not defined"

class py . code .ExceptionInfo (tup=None, exprinfo=None)
wraps sys.exc_info() objects and offers help for navigating the traceback.

type = None
the exception class

value = None
the exception instance

tb = None
the exception raw traceback

typename = None
the exception type name

traceback = None
the exception traceback (py.code.Traceback instance)

exconly (tryshort=False)
return the exception as a string

when ‘tryshort’ resolves to True, and the exception is a py.code._AssertionError, only the actual exception
part of the exception representation is returned (so ‘AssertionError: ‘ is removed from the beginning)

errisinstance (exc)
return True if the exception is an instance of exc

getrepr (showlocals=False, style="long’, abspath=False, tbfilter=True, funcargs=False)
return str()able representation of this exception info. showlocals: show locals per traceback entry style:
longlshortlnolnative traceback style tbfilter: hide entries (where __tracebackhide__ is true)

in case of style==native, tbfilter and showlocals is ignored.

class py.code.Traceback (th)
Traceback objects encapsulate and offer higher level access to Traceback entries.

Entry
alias of TracebackEntry

cut (path=None, lineno=None, firstlineno=None, excludepath=None)
return a Traceback instance wrapping part of this Traceback

by provding any combination of path, lineno and firstlineno, the first frame to start the to-be-returned
traceback is determined

3.2. The wrappers 23

py Documentation, Release 1.4.31

this allows cutting the first part of a Traceback instance e.g. for formatting reasons (removing some
uninteresting bits that deal with handling of the exception/traceback)

filter (fu=<function <lambda>>)
return a Traceback instance with certain items removed

fn is a function that gets a single argument, a Tracebackltem instance, and should return True when the
item should be added to the Traceback, False when not

by default this removes all the TracebackItems which are hidden (see ishidden() above)

getcrashentry ()
return last non-hidden traceback entry that lead to the exception of a traceback.

recursionindex ()
return the index of the frame/TracebackItem where recursion originates if appropriate, None if no recursion
occurred

append ()
L.append(object) — append object to end

count (value) — integer — return number of occurrences of value

extend ()
L.extend(iterable) — extend list by appending elements from the iterable

index (value[, start[, stop]]) — integer — return first index of value.
Raises ValueError if the value is not present.

insert ()
L.insert(index, object) — insert object before index

pop ([index]) — item — remove and return item at index (default last).
Raises IndexError if list is empty or index is out of range.

remove ()
L.remove(value) — remove first occurrence of value. Raises ValueError if the value is not present.

reverse ()
L.reverse() —reverse IN PLACE

sort ()
L.sort(cmp=None, key=None, reverse=False) — stable sort IN PLACE; cmp(x, y) ->-1,0, 1

24

Chapter 3. py.code: higher level python code and introspection objects

CHAPTER 4

py.io

The ‘py’ lib provides helper classes for capturing IO during execution of a program.

10 Capturing examples

PY .

io.StdCapture

Basic Example:

>>>
>>>
>>>
>>>
>>>

True

import py

capture = py.io.StdCapture()
print "hello"

out,err = capture.reset ()
out.strip() == "hello"

For calling functions you may use a shortcut:

>>>
>>>
>>>
>>>

True

import py

def f(): print "hello"

res, out, err = py.io.StdCapture.call (f)
out.strip() == "hello"

pPY.

If you also want to capture writes to the stdout/stderr filedescriptors you may invoke:

io.StdCaptureFD

>>>
>>>
>>>

import py, sys
capture = py.io.StdCaptureFD (out=False, in_=False)
sys.stderr.write ("world")

25

py Documentation, Release 1.4.31

>>> out,err = capture.reset ()
>>> err
'world'

py.io object reference

class py.io.StdCaptureFD (out=True, err=True, mixed=False, in_=True, patchsys=True, now=True)
This class allows to capture writes to FD1 and FD2 and may connect a NULL file to FDO (and prevent reads
from sys.stdin). If any of the 0,1,2 file descriptors is invalid it will not be captured.

resume ()
resume capturing with original temp files.

done (save=True)
return (outfile, errfile) and stop capturing.

readouterr ()
return snapshot value of stdout/stderr capturings.

call (func, *args, **kwargs)
return a (res, out, err) tuple where out and err represent the output/error output during function execution.
call the given function with args/kwargs and capture output/error during its execution.

reset ()
reset sys.stdout/stderr and return captured output as strings.

suspend ()
return current snapshot captures, memorize tempfiles.

class py.io.StdCapture (out=True, err=True, in_=True, mixed=False, now=True)
This class allows to capture writes to sys.stdoutlstderr “in-memory” and will raise errors on tries to read from
sys.stdin. It only modifies sys.stdoutlstderrlstdin attributes and does not touch underlying File Descriptors (use
StdCaptureFD for that).

done (save=True)
return (outfile, errfile) and stop capturing.

resume ()
resume capturing with original temp files.

readouterr ()
return snapshot value of stdout/stderr capturings.

call (func, *args, **kwargs)
return a (res, out, err) tuple where out and err represent the output/error output during function execution.
call the given function with args/kwargs and capture output/error during its execution.

reset ()
reset sys.stdout/stderr and return captured output as strings.

suspend ()
return current snapshot captures, memorize tempfiles.

class py.io.TerminalWriter (file=None, stringio=False, encoding=None)

26 Chapter 4. py.io

CHAPTER B

py.log documentation and musings

Foreword

This document is an attempt to briefly state the actual specification of the py . Log module. It was written by Francois
Pinard and also contains some ideas for enhancing the py.log facilities.

NOTE that py . 1og is subject to refactorings, it may change with the next release.

This document is meant to trigger or facilitate discussions. It shamelessly steals from the Agile Testing comments,
and from other sources as well, without really trying to sort them out.

Logging organisation

The py.log module aims a niche comparable to the one of the logging module found within the standard Python
distributions, yet with much simpler paradigms for configuration and usage.

Holger Krekel, the main py library developer, introduced the idea of keyword-based logging and the idea of logging
producers and consumers. A log producer is an object used by the application code to send messages to various log
consumers. When you create a log producer, you define a set of keywords that are then used to both route the logging
messages to consumers, and to prefix those messages.

In fact, each log producer has a few keywords associated with it for identification purposes. These keywords form a
tuple of strings, and may be used to later retrieve a particular log producer.

A log producer may (or may not) be associated with a log consumer, meant to handle log messages in particular ways.
The log consumers can be STDOUT, STDERR, log files, syslog, the Windows Event Log, user defined functions, etc.
(Yet, logging to syslog or to the Windows Event Log is only future plans for now). A log producer has never more
than one consumer at a given time, but it is possible to dynamically switch a producer to use another consumer. On
the other hand, a single log consumer may be associated with many producers.

Note that creating and associating a producer and a consumer is done automatically when not otherwise overriden, so
using py logging is quite comfortable even in the smallest programs. More typically, the application programmer will
likely design a hierarchy of producers, and will select keywords appropriately for marking the hierarchy tree. If a node
of the hierarchical tree of producers has to be divided in sub-trees, all producers in the sub-trees share, as a common

27

http://agiletesting.blogspot.com/2005/06/keyword-based-logging-with-py-library.html
http://www.python.org/doc/2.4.2/lib/module-logging.html

py Documentation, Release 1.4.31

prefix, the keywords of the node being divided. In other words, we go further down in the hierarchy of producers
merely by adding keywords.

Using the py.log library

To use the py . 1og library, the user must import it into a Python application, create at least one log producer and one
log consumer, have producers and consumers associated, and finally call the log producers as needed, giving them log
messages.

Importing

Once the py library is installed on your system, a mere:

import py

holds enough magic for lazily importing the various facilities of the py library when they are first needed. This is
really how py . 1og is made available to the application. For example, after the above import py, one may directly
write py . log.Producer (.. .) and everything should work fine, the user does not have to worry about specifically
importing more modules.

Creating a producer

There are three ways for creating a log producer instance:

* Assoon as py . log is first evaluated within an application program, a default log producer is created, and made
available under the name py . log.default. The keyword default is associated with that producer.

* The py.log.Producer () constructor may be explicitly called for creating a new instance of a log producer.
That constructor accepts, as an argument, the keywords that should be associated with that producer. Keywords
may be given either as a tuple of keyword strings, or as a single space-separated string of keywords.

* Whenever an attribute is taken out of a log producer instance, for the first time that attribute is taken, a new log
producer is created. The keywords associated with that new producer are those of the initial producer instance,
to which is appended the name of the attribute being taken.

The last point is especially useful, as it allows using log producers without further declarations, merely creating them
on-the-fly.

Creating a consumer

There are many ways for creating or denoting a log consumer:

¢ A default consumer exists within the py . 1og facilities, which has the effect of writing log messages on the
Python standard output stream. That consumer is associated at the very top of the producer hierarchy, and as
such, is called whenever no other consumer is found.

* The notation py.log.STDOUT accesses a log consumer which writes log messages on the Python standard
output stream.

* The notation py.log.STDERR accesses a log consumer which writes log messages on the Python standard
error stream.

* The py.log.File () constructor accepts, as argument, either a file already opened in write mode or any
similar file-like object, and creates a log consumer able to write log messages onto that file.

28 Chapter 5. py.log documentation and musings

py Documentation, Release 1.4.31

e The py.log.Path () constructor accepts a file name for its first argument, and creates a log consumer able
to write log messages into that file. The constructor call accepts a few keyword parameters:

— append, which is False by default, may be used for opening the file in append mode instead of write
mode.

— delayed_create, which is False by default, maybe be used for opening the file at the latest possible
time. Consequently, the file will not be created if it did not exist, and no actual log message gets written to
it.

— buffering, which is 1 by default, is used when opening the file. Buffering can be turned off by speci-
fying a 0 value. The buffer size may also be selected through this argument.

* Any user defined function may be used for a log consumer. Such a function should accept a single argument,
which is the message to write, and do whatever is deemed appropriate by the programmer. When the need arises,
this may be an especially useful and flexible feature.

e The special value None means no consumer at all. This acts just like if there was a consumer which would
silently discard all log messages sent to it.

Associating producers and consumers

Each log producer may have at most one log consumer associated with it. A log producer gets associated with a log
consumer through a py.log.setconsumer () call. That function accepts two arguments, the first identifying a
producer (a tuple of keyword strings or a single space-separated string of keywords), the second specifying the precise
consumer to use for that producer. Until this function is called for a producer, that producer does not have any explicit
consumer associated with it.

Now, the hierarchy of log producers establishes which consumer gets used whenever a producer has no explicit con-
sumer. When a log producer has no consumer explicitly associated with it, it dynamically and recursively inherits
the consumer of its parent node, that is, that node being a bit closer to the root of the hierarchy. In other words, the
rightmost keywords of that producer are dropped until another producer is found which has an explicit consumer. A
nice side-effect is that, by explicitly associating a consumer with a producer, all consumer-less producers which appear
under that producer, in the hierarchy tree, automatically inherits that consumer.

Writing log messages

All log producer instances are also functions, and this is by calling them that log messages are generated. Each call to
a producer object produces the text for one log entry, which in turn, is sent to the log consumer for that producer.

The log entry displays, after a prefix identifying the log producer being used, all arguments given in the call, converted
to strings and space-separated. (This is meant by design to be fairly similar to what the print statement does in
Python). The prefix itself is made up of a colon-separated list of keywords associated with the producer, the whole
being set within square brackets.

Note that the consumer is responsible for adding the newline at the end of the log entry. That final newline is not part
of the text for the log entry.

5.3. Using the py.log library 29

py Documentation, Release 1.4.31

30 Chapter 5. py.log documentation and musings

CHAPTER O

py.xml: simple pythonic xml/html file generation

Motivation

There are a plethora of frameworks and libraries to generate xml and html trees. However, many of them are large,
have a steep learning curve and are often hard to debug. Not to speak of the fact that they are frameworks to begin
with.

a pythonic object model , please

The py lib offers a pythonic way to generate xml/html, based on ideas from xist which uses python class objects to build
xml trees. However, xist‘s implementation is somewhat heavy because it has additional goals like transformations and
supporting many namespaces. But its basic idea is very easy.

generating arbitrary xml structures

With py . xm1 . Namespace you have the basis to generate custom xml-fragments on the fly:

class ns (py.xml.Namespace) :
"my custom xml namespace"
doc = ns.books (
ns.book (
ns.author ("May Day"),
ns.title("python for java programmers"),),
ns.book (
ns.author ("why"),
ns.title("Java for Python programmers"),),
publisher="N.N",
)

print doc.unicode (indent=2) .encode ('utf8")

will give you this representation:

31

http://www.livinglogic.de/Python/xist/index.html
http://www.livinglogic.de/Python/xist/Howto.html
http://www.livinglogic.de/Python/xist/index.html

py Documentation, Release 1.4.31

<books publisher="N.N">
<book>
<author>May Day</author>
<title>python for java programmers</title></book>
<book>
<author>why</author>
<title>Java for Python programmers</title></book></books>

In a sentence: positional arguments are child-tags and keyword-arguments are attributes.

On a side note, you’ll see that the unicode-serializer supports a nice indentation style which keeps your generated html
readable, basically through emulating python’s white space significance by putting closing-tags rightmost and almost
invisible at first glance :-)

basic example for generating html

Consider this example:

from py.xml import html # html namespace
paras = "First Para", "Second para"

doc = html.html (
html.head(
html.meta (name="Content-Type", value="text/html; charset=latinl")),
html.body (
[html.p(p) for p in paras]))

print unicode (doc) .encode('latinl')

Again, tags are objects which contain tags and have attributes. More exactly, Tags inherit from the list type and thus
can be manipulated as list objects. They additionally support a default way to represent themselves as a serialized
unicode object.

If you happen to look at the py.xml implementation you’ll note that the tag/namespace implementation consumes some
50 lines with another 50 lines for the unicode serialization code.

CSS-styling your html Tags

One aspect where many of the huge python xml/html generation frameworks utterly fail is a clean and convenient
integration of CSS styling. Often, developers are left alone with keeping CSS style definitions in sync with some style
files represented as strings (often in a separate .css file). Not only is this hard to debug but the missing abstractions
make it hard to modify the styling of your tags or to choose custom style representations (inline, html.head or external).
Add the Browers usual tolerance of messyness and errors in Style references and welcome to hell, known as the domain
of developing web applications :-)

By contrast, consider this CSS styling example:

class my (html) :
"my initial custom style"
class body (html.body) :
style = html.Style(font_size = "120%")

class h2 (html.h2):
style = html.Style (background = "grey")

32 Chapter 6. py.xml: simple pythonic xml/html file generation

py Documentation, Release 1.4.31

class p(html.p):
style = html.Style(font_weight="bold")

doc = my.html (
my .head (),
my .body (
my.h2 ("hello world"),
my.p ("bold as bold can™)

print doc.unicode (indent=2)

This will give you a small’n mean self contained represenation by default:

<html>
<head/>
<body style="font-size: 120%">
<h2 style="background: grey">hello world</h2>
<p style="font-weight: bold">bold as bold can</p></body></html>

Most importantly, note that the inline-styling is just an implementation detail of the unicode serialization code. You
can easily modify the serialization to put your styling into the html.head or in a separate file and autogenerate
CSS-class names or ids.

Hey, you could even write tests that you are using correct styles suitable for specific browser requirements. Did i
mention that the ability to easily write tests for your generated html and its serialization could help to develop _stable_
user interfaces?

More to come ...

For now, i don’t think we should strive to offer much more than the above. However, it is probably not hard to offer
partial serialization to allow generating maybe hundreds of complex html documents per second. Basically we would
allow putting callables both as Tag content and as values of attributes. A slightly more advanced Serialization would
then produce a list of unicode objects intermingled with callables. At HTTP-Request time the callables would get
called to complete the probably request-specific serialization of your Tags. Hum, it’s probably harder to explain this
than to actually code it :-)

6.2. a pythonic object model, please 33

py Documentation, Release 1.4.31

34 Chapter 6. py.xml: simple pythonic xml/html file generation

CHAPTER /

Miscellaneous features of the py lib

Mapping the standard python library into py

The py . std object allows lazy access to standard library modules. For example, to get to the print-exception func-
tionality of the standard library you can write:

’py.std.traceback.print_exc()

without having to do anything else than the usual import py at the beginning. You can access any other top-level
standard library module this way. This means that you will only trigger imports of modules that are actually needed.
Note that no attempt is made to import submodules.

Support for interaction with system utilities/binaries

Currently, the py lib offers two ways to interact with system executables. py.process.cmdexec () invokes the
shell in order to execute a string. The other one, py.path.local‘s ‘sysexec()’ method lets you directly execute a
binary.

Both approaches will raise an exception in case of a return- code other than 0 and otherwise return the stdout-output
of the child process.

The shell based approach

You can execute a command via your system shell by doing something like:

out = py.process.cmdexec('ls -v'")

However, the cmdexec approach has a few shortcomings:
* it relies on the underlying system shell

* it neccessitates shell-escaping for expressing arguments

35

py Documentation, Release 1.4.31

* it does not easily allow to “fix” the binary you want to run.

* it only allows to execute executables from the local filesystem

local paths have sysexec

In order to synchronously execute an executable file you can use sysexec:

binsvn.sysexec('ls', 'http://codespeak.net/svn')

where binsvn is a path that points to the svn commandline binary. Note that this function does not offer any
shell-escaping so you have to pass in already separated arguments.

finding an executable local path

Finding an executable is quite different on multiple platforms. Currently, the PATH environment variable based search
on unix platforms is supported:

py.path.local.sysfind('svn')

which returns the first path whose basename matches svn. In principle, sysfind deploys platform specific algorithms
to perform the search. On Windows, for example, it may look at the registry (XXX).

To make the story complete, we allow to pass in a second checker argument that is called for each found executable.
For example, if you have multiple binaries available you may want to select the right version:

def mysvn (p) :

mmon mmon

check that the given svn binary has version 1.1.
line = p.execute('--version'').readlines () [0]
if line.find('version 1.1"):
return p
binsvn = py.path.local.sysfind('svn', checker=mysvn)

Cross-Python Version compatibility helpers

The py . builtin namespace provides a number of helpers that help to write python code compatible across Python
interpreters, mainly Python2 and Python3. Type help (py.builtin) on a Python prompt for a the selection of
builtins.

36 Chapter 7. Miscellaneous features of the py lib

CHAPTER 8

1.4.31

* fix local().copy(dest, mode=True) to also work with unicode.

* pass better error message with svn EEXIST paths

37

py Documentation, Release 1.4.31

38 Chapter 8. 1.4.31

CHAPTER 9

1.4.30

* fix issue68 an assert with a multiline list comprehension was not reported correctly. Thanks Henrik Heibuerger.

39

py Documentation, Release 1.4.31

40 Chapter 9. 1.4.30

cHAaPTER 10

1.4.29

* fix issue55: revert a change to the statement finding algorithm which is used by pytest for generating tracebacks.
Thanks Daniel Hahler for initial analysis.

* fix pytest issue254 for when traceback rendering can’t find valid source code. Thanks Ionel Cristian Maries.

41

py Documentation, Release 1.4.31

42 Chapter 10. 1.4.29

cHAPTER 11

1.4.28

* fix issue64 — dirpath regression when “abs=True” is passed. Thanks Gilles Dartiguelongue.

43

py Documentation, Release 1.4.31

44 Chapter 11. 1.4.28

cHAPTER 12

1.4.27

fix issue59: point to new repo site

allow a new ensuresyspath="append” mode for py.path.local.pyimport() so that a neccessary import path is
appended instead of prepended to sys.path

strike undocumented, untested argument to py.path.local.pypkgpath

speed up py.path.local.dirpath by a factor of 10

45

py Documentation, Release 1.4.31

46 Chapter 12. 1.4.27

cHAPTER 13

1.4.26

avoid calling normpath twice in py.path.local
py.builtin._reraise properly reraises under Python3 now.
fix issue53 - remove module index, thanks jenisys.

allow posix path separators when “fnmatch” is called. Thanks Christian Long for the complete PR.

47

py Documentation, Release 1.4.31

48 Chapter 13. 1.4.26

cHAPTER 14

1.4.25

* fix issue52: vaguely fix py25 compat of py.path.local (it’s not officially supported), also fix docs

* fix pytest issue 589: when checking if we have a recursion error check for the specific “maximum recursion
depth” text of the exception.

49

py Documentation, Release 1.4.31

50 Chapter 14. 1.4.25

cHAPTER 15

1.4.24

* Fix retrieving source when an else: line has an other statement on the same line.

¢ add localpath read_text/write_text/read_bytes/write_bytes methods as shortcuts and clearer bytes/text interfaces
for read/write. Adapted from a PR from Paul Moore.

51

py Documentation, Release 1.4.31

52 Chapter 15. 1.4.24

cHAPTER 16

1.4.23

* use newer apipkg version which makes attribute access on alias modules resolve to None rather than an Im-
portError. This helps with code that uses inspect.getframeinfo() on py34 which causes a complete walk on
sys.modules thus triggering the alias module to resolve and blowing up with ImportError. The negative side is
that something like “py.test.X”” will now result in None instead of “importerror: pytest” if pytest is not installed.
But you shouldn’t import “py.test” anyway anymore.

* adapt one svn test to only check for any exception instead of specific ones because different svn versions cause
different errors and we don’t care.

53

py Documentation, Release 1.4.31

54 Chapter 16. 1.4.23

cHAPTER 17

1.4.22

« refactor class-level registry on ForkedFunc child start/finish event to become instance based (i.e. passed into the
constructor)

55

py Documentation, Release 1.4.31

56 Chapter 17. 1.4.22

cHAPTER 18

1.4.21

ForkedFunc now has class-level register_on_start/on_exit() methods to allow adding information in the boxed
process. Thanks Marc Schlaich.

ForkedFunc in the child opens in “auto-flush” mode for stdout/stderr so that when a subprocess dies you can see
its output even if it didn’t flush itself.

refactor traceback generation in light of pytest issue 364 (shortening tracebacks). you can now set a new trace-
back style on a per-entry basis such that a caller can force entries to be isplayed as short or long entries.

win32: py.path.local.sysfind(name) will preferrably return files with extensions so that if “X” and “X.bat” or
“X.exe” is on the PATH, one of the latter two will be returned.

57

py Documentation, Release 1.4.31

58 Chapter 18. 1.4.21

cHAPTER 19

1.4.20

ignore unicode decode errors in xmlescape. Thanks Anatoly Bubenkoff.

on python2 modify traceback.format_exception_only to match python3 behaviour, namely trying to print uni-
code for Exception instances

use a safer way for serializing exception reports (helps to fix pytest issue413)

59

py Documentation, Release 1.4.31

60 Chapter 19. 1.4.20

cHAPTER 20

Changes between 1.4.18 and 1.4.19

merge in apipkg fixes
some micro-optimizations in py/_code/code.py for speeding up pytest runs. Thanks Alex Gaynor for initiative.

check PY_COLORS=1 or PY_COLORS=0 to force coloring/not-coloring for py.io.TerminalWriter() indepen-
dently from capabilities of the output file. Thanks Marc Abramowitz for the PR.

some fixes to unicode handling in assertion handling. Thanks for the PR to Floris Bruynooghe. (This helps to
fix pytest issue 319).

depend on setuptools presence, remove distribute_setup

61

py Documentation, Release 1.4.31

62 Chapter 20. Changes between 1.4.18 and 1.4.19

CHAPTER 21

Changes between 1.4.17 and 1.4.18

* introduce path.ensure_dir() as a synonym for ensure(..., dir=1)

* some unicode/python3 related fixes wrt to path manipulations (if you start passing unicode particular in py2 you
might still get problems, though)

63

py Documentation, Release 1.4.31

64 Chapter 21. Changes between 1.4.17 and 1.4.18

CHAPTER 22

Changes between 1.4.16 and 1.4.17

* make py.io.TerminalWriter() prefer colorama if it is available and avoid empty lines when separator-lines are
printed by being defensive and reducing the working terminalwidth by 1

* introduce optional “expanduser” argument to py.path.local to that local(“~”, expanduser=True) gives the home
directory of “user”.

65

py Documentation, Release 1.4.31

66 Chapter 22. Changes between 1.4.16 and 1.4.17

CHAPTER 23

Changes between 1.4.15 and 1.4.16

fix issue35 - define gt ordering between a local path and strings
fix issue36 - make chdir() work even if os.getcwd() fails.

add path.exists/isdir/isfile/islink shortcuts

introduce local path.as_cwd() context manager.

introduce p.write(ensure=1) and p.open(ensure=1) where ensure triggers creation of neccessary parent dirs.

67

py Documentation, Release 1.4.31

68 Chapter 23. Changes between 1.4.15 and 1.4.16

CHAPTER 24

Changes between 1.4.14 and 1.4.15

* majorly speed up some common calling patterns with LocalPath.listdir()/join/check/stat functions considerably.

* fix an edge case with fnmatch where a glob style pattern appeared in an absolute path.

69

py Documentation, Release 1.4.31

70 Chapter 24. Changes between 1.4.14 and 1.4.15

CHAPTER 25

Changes between 1.4.13 and 1.4.14

* fix dupfile to work with files that don’t carry a mode. Thanks Jason R. Coombs.

71

py Documentation, Release 1.4.31

72 Chapter 25. Changes between 1.4.13 and 1.4.14

CHAPTER 20

Changes between 1.4.12 and 1.4.13

fix getting statementrange/compiling a file ending in a comment line without newline (on python2.5)

for local paths you can pass “mode=True” to a copy() in order to copy permission bits (underlying mechanism
is using shutil.copymode)

add paths arguments to py.path.local.sysfind to restrict search to the diretories in the path.

add isdir/isfile/islink to path.stat() objects allowing to perform multiple checks without calling out multiple times
drop py.path.local.__new___ in favour of a simpler __init__

iniconfig: allow “name:value” settings in config files, no space after “name” required

fix issue 27 - NameError in unlikely untested case of saferepr

73

py Documentation, Release 1.4.31

74 Chapter 26. Changes between 1.4.12 and 1.4.13

CHAPTER 27

Changes between 1.4.11 and 1.4.12

* fix python2.4 support - for pre-AST interpreters re-introduce old way to find statements in exceptions (closes
pytest issue 209)

¢ add tox.ini to distribution

* fix issue23 - print, * args information in tracebacks, thanks Manuel Jacob

75

py Documentation, Release 1.4.31

76 Chapter 27. Changes between 1.4.11 and 1.4.12

CHAPTER 28

Changes between 1.4.10 and 1.4.11

use _ast to determine statement ranges when printing tracebacks - avoiding multi-second delays on some large
test modules

fix an internal test to not use class-denoted pytest_funcarg

fix a doc link to bug tracker

try to make terminal.write() printing more robust against unicodeencode/decode problems, amend according test
introduce py.builtin.text and py.builtin.bytes to point to respective str/unicode (py2) and bytes/str (py3) types
fix error handling on win32/py33 for ENODIR

77

py Documentation, Release 1.4.31

78 Chapter 28. Changes between 1.4.10 and 1.4.11

CHAPTER 29

Changes between 1.4.9 and 1.4.10

* terminalwriter: default to encode to UTFS if no encoding is defined on the output stream

* issue22: improve heuristic for finding the statementrange in exceptions

79

py Documentation, Release 1.4.31

80 Chapter 29. Changes between 1.4.9 and 1.4.10

cHAPTER 30

Changes between 1.4.8 and 1.4.9

fix bug of path.visit() which would not recognize glob-style patterns for the “rec” recursion argument

changed iniconfig parsing to better conform, now the chars ”;” and “#” only mark a comment at the stripped
start of a line

include recent apipkg-1.2

change internal terminalwriter.line/reline logic to more nicely support file spinners

81

py Documentation, Release 1.4.31

82 Chapter 30. Changes between 1.4.8 and 1.4.9

CHAPTER 31

Changes between 1.4.7 and 1.4.8

fix issue 13 - correct handling of the tag name object in xmlgen
fix issue 14 - support raw attribute values in xmlgen
fix windows terminalwriter printing/re-line problem

update distribute_setup.py to 0.6.27

83

py Documentation, Release 1.4.31

84 Chapter 31. Changes between 1.4.7 and 1.4.8

CHAPTER 32

Changes between 1.4.6 and 1.4.7

* fix issuell - own test failure with python3.3 / Thanks Benjamin Peterson

* help fix pytest issue 102

85

py Documentation, Release 1.4.31

86 Chapter 32. Changes between 1.4.6 and 1.4.7

CHAPTER 33

Changes between 1.4.5 and 1.4.6

help to fix pytest issue99: unify output of ExceptionInfo.getrepr(style="native”) with ...(style="long”)
fix issue7: source.getstatementrange() now raises proper error if no valid statement can be found

fix issue8: fix code and tests of svnurl/svnwc to work on subversion 1.7 - note that path.status(updates=1) will
not properly work svn-17’s status —xml output is broken.

make source.getstatementrange() more resilent about non-python code frames (as seen from jnja2)
make trackeback recursion detection more resilent about the eval magic of a decorator library
iniconfig: add support for ; as comment starter

properly handle lists in xmlgen on python3

132

normalize py.code.getfslineno(obj) to always return a (string, int) tuple defaulting to (
source code can be found for obj.

, -1) respectively if no

87

py Documentation, Release 1.4.31

88 Chapter 33. Changes between 1.4.5 and 1.4.6

CHAPTER 34

Changes between 1.4.4 and 1.4.5

* improve some unicode handling in terminalwriter and capturing (used by pytest)

89

py Documentation, Release 1.4.31

90 Chapter 34. Changes between 1.4.4 and 1.4.5

CHAPTER 35

Changes between 1.4.3 and 1.4.4

* afew fixes and assertion related refinements for pytest-2.1

¢ guard py.code.Code and getfslineno against bogus input and make py.code.Code objects for object instance by
looking up their __call__ function.

* make exception presentation robust against invalid current cwd

91

py Documentation, Release 1.4.31

92 Chapter 35. Changes between 1.4.3 and 1.4.4

CHAPTER 30

Changes between 1.4.2 and 1.4.3

* fix terminal coloring issue for skipped tests (thanks Amaury)

* fix issue4 - large calls to ansi_print (thanks Amaury)

93

py Documentation, Release 1.4.31

94 Chapter 36. Changes between 1.4.2 and 1.4.3

CHAPTER 37

Changes between 1.4.1 and 1.4.2

* fix (pytest) issue23 - tmpdir argument now works on Python3.2 and WindowsXP (which apparently starts to
offer os.symlink now)

* better error message for syntax errors from compiled code

» small fix to better deal with (un-)colored terminal output on windows

95

py Documentation, Release 1.4.31

96 Chapter 37. Changes between 1.4.1 and 1.4.2

CHAPTER 38

Changes between 1.4.0 and 1.4.1

fix issuel - py.error.* classes to be pickleable

fix issue2 - on windows32 use PATHEXT as the list of potential extensions to find find binaries with
py-path.local.sysfind(commandname)

fix (pytest-) issuel0 and refine assertion reinterpretation to avoid breaking if the __nonzero__ of an object fails

fix (pytest-) issuel7 where python3 does not like “import *” leading to misrepresentation of import-errors in test
modules

fix py.error.* attribute pypy access issue
allow path.samefile(arg) to succeed when arg is a relative filename
fix (pytest-) issue20 path.samefile(relpath) works as expected now

fix (pytest-) issue8 len(long_list) now shows the lenght of the list

97

py Documentation, Release 1.4.31

98 Chapter 38. Changes between 1.4.0 and 1.4.1

CHAPTER 39

Changes between 1.3.4 and 1.4.0

py.test was moved to a separate “pytest” package. What remains is a stub hook which will proxy import
py.test topytest.

all command line tools (“py.cleanup/lookup/countloc/...” moved to “pycmd” package)
removed the old and deprecated “py.magic” namespace

use apipkg-1.1 and make py.apipkg.initpkglApiModule available

add py.iniconfig module for brain-dead easy ini-config file parsing

introduce py.builtin.any()

path objects have a .dirname attribute now (equivalent to os.path.dirname(path))
path.visit() accepts breadthfirst (bf) and sort options

remove deprecated py.compat namespace

99

py Documentation, Release 1.4.31

100 Chapter 39. Changes between 1.3.4 and 1.4.0

cHAPTER 40

Changes between 1.3.3 and 1.3.4

fix issuelll:
fix issuel19:
fix issuel16:
fix issuel15:

fix issuel18:

improve install documentation for windows

fix custom collectability of __init__.py as a module
—doctestmodules work with __init__.py files as well

unify internal exception passthrough/catching/GeneratorExit

new —tb=native for presenting cpython-standard exceptions

101

py Documentation, Release 1.4.31

102 Chapter 40. Changes between 1.3.3 and 1.3.4

cHAPTER 41

Changes between 1.3.2 and 1.3.3

fix issuel13: assertion representation problem with triple-quoted strings (and possibly other cases)

make conftest loading detect that a conftest file with the same content was already loaded, avoids surprises
in nested directory structures which can be produced e.g. by Hudson. It probably removes the need to use
—confcutdir in most cases.

fix terminal coloring for win32 (thanks Michael Foord for reporting)

fix weirdness: make terminal width detection work on stdout instead of stdin (thanks Armin Ronacher for
reporting)

remove trailing whitespace in all py/text distribution files

103

py Documentation, Release 1.4.31

104 Chapter 41. Changes between 1.3.2 and 1.3.3

CHAPTER 42

Changes between 1.3.1 and 1.3.2

New features

* fix issuel03: introduce py.test.raises as context manager, examples:

with py.test.raises(ZeroDivisionError):
x =0
1/ x

with py.test.raises (RuntimeError) as excinfo:
call_something ()

you may do extra checks on excinfo.value|type|traceback here

(thanks Ronny Pfannschmidt)

* Funcarg factories can now dynamically apply a marker to a test invocation. This is for example useful if a
factory provides parameters to a test which are expected-to-fail:

def pytest_funcarg__arg(request) :
request.applymarker (py.test.mark.xfail (reason="flaky config"))

def test_function(arg):

* improved error reporting on collection and import errors. This makes use of a more general mechanism, namely
that for custom test item/collect nodes node.repr_failure (excinfo) is now uniformly called so that
you can override it to return a string error representation of your choice which is going to be reported as a (red)
string.

* introduce ‘—junitprefix=STR’ option to prepend a prefix to all reports in the junitxml file.

105

py Documentation, Release 1.4.31

Bug fixes / Maintenance

make tests and the pytest_recwarn plugin in particular fully compatible to Python2.7 (if you use the
recwarn funcarg warnings will be enabled so that you can properly check for their existence in a cross-python
manner).

refine —pdb: ignore xfailed tests, unify its TB-reporting and don’t display failures again at the end.
fix assertion interpretation with the ** operator (thanks Benjamin Peterson)

fix issue105 assignment on the same line as a failing assertion (thanks Benjamin Peterson)

fix issue104 proper escaping for test names in junitxml plugin (thanks anonymous)

fix issueS7 -fl-looponfail to work with xpassing tests (thanks Ronny)

fix issue92 collectonly reporter and —pastebin (thanks Benjamin Peterson)

fix py.code.compile(source) to generate unique filenames

fix assertion re-interp problems on PyPy, by defering code compilation to the (overridable) Frame.eval class.
(thanks Amaury Forgeot)

fix py.path.local.pyimport() to work with directories

streamline py.path.local.mkdtemp implementation and usage

don’t print empty lines when showing junitxml-filename

add optional boolean ignore_errors parameter to py.path.local.remove

fix terminal writing on win32/python2.4

py.process.cmdexec() now tries harder to return properly encoded unicode objects on all python versions

install plain py.test/py.which scripts also for Jython, this helps to get canonical script paths in virtualenv situa-
tions

99 93

make path.bestrelpath(path) return ”.”, note that when calling X.bestrelpath the assumption is that X is a direc-
tory.

@ 9

make initial conftest discovery ignore prefixed arguments
fix resultlog plugin when used in an multicpu/multihost xdist situation (thanks Jakub Gustak)

perform distributed testing related reporting in the xdist-plugin rather than having dist-related code in the generic
py.test distribution

fix homedir detection on Windows

ship distribute_setup.py version 0.6.13

106

Chapter 42. Changes between 1.3.1 and 1.3.2

cHAPTER 43

Changes between 1.3.0 and 1.3.1

New features

* issue91: introduce new py.test.xfail(reason) helper to imperatively mark a test as expected to fail. Can be used
from within setup and test functions. This is useful especially for parametrized tests when certain configurations
are expected-to-fail. In this case the declarative approach with the @py.test.mark.xfail cannot be used as it
would mark all configurations as xfail.

¢ issuel02: introduce new —maxfail=NUM option to stop test runs after NUM failures. This is a generalization of
the ‘-x* or ‘—exitfirst’ option which is now equivalent to ‘—maxfail=1". Both ‘-x’ and ‘~maxfail’ will now also
print a line near the end indicating the Interruption.

* issue89: allow py.test.mark decorators to be used on classes (class decorators were introduced with python2.6)
and also allow to have multiple markers applied at class/module level by specifying a list.

» improve and refine letter reporting in the progress bar: . pass f failed test s skipped tests (reminder: use for
dependency/platform mismatch only) x xfailed test (test that was expected to fail) X xpassed test (test that was
expected to fail but passed)

You can use any combination of ‘fsxX’ with the ‘-r’ extended reporting option. The xfail/xpass results will show
up as skipped tests in the junitxml output - which also fixes issue99.

* make py.test.cmdline.main() return the exitstatus instead of raising SystemExit and also allow it to be called
multiple times. This of course requires that your application and tests are properly teared down and don’t have
global state.

Fixes / Maintenance

* improved traceback presentation: - improved and unified reporting for “~tb=short” option - Errors during test
module imports are much shorter, (using —tb=short style) - raises shows shorter more relevant tracebacks -
—fulltrace now more systematically makes traces longer / inhibits cutting

107

py Documentation, Release 1.4.31

improve support for raises and other dynamically compiled code by manipulating python’s linecache.cache
instead of the previous rather hacky way of creating custom code objects. This makes it seemlessly work on
Jython and PyPy where it previously didn’t.

fix issue96: make capturing more resilient against Control-C interruptions (involved somewhat substantial refac-
toring to the underlying capturing functionality to avoid race conditions).

fix chaining of conditional skipif/xfail decorators - so it works now as expected to use multiple
@py.test.mark.skipif(condition) decorators, including specific reporting which of the conditions lead to skip-

ping.
fix issue95: late-import zlib so that it’s not required for general py.test startup.

fix issue94: make reporting more robust against bogus source code (and internally be more careful when pre-
senting unexpected byte sequences)

108

Chapter 43. Changes between 1.3.0 and 1.3.1

cHAPTER 44

Changes between 1.2.1 and 1.3.0

deprecate —report option in favour of a new shorter and easier to remember -r option: it takes a string argument
consisting of any combination of ‘xfsX’ characters. They relate to the single chars you see during the dotted
progress printing and will print an extra line per test at the end of the test run. This extra line indicates the exact
position or test ID that you directly paste to the py.test cmdline in order to re-run a particular test.

allow external plugins to register new hooks via the new pytest_addhooks(pluginmanager) hook. The new
release of the pytest-xdist plugin for distributed and looponfailing testing requires this feature.

add a new pytest_ignore_collect(path, config) hook to allow projects and plugins to define exclusion behaviour
for their directory structure - for example you may define in a conftest.py this method:

def pytest_ignore_collect (path):
return path.check (link=1)

to prevent even a collection try of any tests in symlinked dirs.

new pytest_pycollect_makemodule(path, parent) hook for allowing customization of the Module collection ob-
ject for a matching test module.

extend and refine xfail mechanism: Qpy.test.mark.xfail (run=False) do not run the decorated
test @py.test.mark.xfail (reason="...") prints the reason string in xfail summaries specifiying
—-—runxfail on command line virtually ignores xfail markers

expose (previously internal) commonly useful methods: py.io.get_terminal_with() -> return terminal width
py.io.ansi_print(...) -> print colored/bold text on linux/win32 py.io.saferepr(obj) -> return limited representation
string

expose test outcome related exceptions as py.test.skip.Exception, py.test.raises.Exception etc., useful mostly for
plugins doing special outcome interpretation/tweaking

(issue85) fix junitxml plugin to handle tests with non-ascii output
fix/refine python3 compatibility (thanks Benjamin Peterson)

fixes for making the jython/win32 combination work, note however: jython2.5.1/win32 does not provide a
command line launcher, see http://bugs.jython.org/issue1491 . See pylib install documentation for how to work
around.

109

http://bugs.jython.org/issue1491

py Documentation, Release 1.4.31

* fixes for handling of unicode exception values and unprintable objects

(issue87) fix unboundlocal error in assertionold code

(issue86) improve documentation for looponfailing

refine IO capturing: stdin-redirect pseudo-file now has a NOP close() method

ship distribute_setup.py version 0.6.10

added links to the new capturelog and coverage plugins

110

Chapter 44. Changes between 1.2.1 and 1.3.0

cHAPTER 45

Changes between 1.2.1 and 1.2.0

refined usage and options for “py.cleanup’:

py.cleanup # remove "x.pyc" and "x$py.class" (jython) files

py.cleanup -e .swp —e .cache # also remove files with these extensions
py.cleanup -s # remove "build" and "dist" directory next to setup.py files
py.cleanup -d #

py.cleanup -a # synonym for "-s -d —-e 'pip-log.txt'"
py.cleanup —n #

also remove empty directories

dry run, only show what would be removed

add a new option “py.test —funcargs” which shows available funcargs and their help strings (docstrings on their
respective factory function) for a given test path

display a short and concise traceback if a funcarg lookup fails

early-load “conftest.py” files in non-dot first-level sub directories. allows to conveniently keep and access test-
related options in a test subdir and still add command line options.

fix issue67: new super-short traceback-printing option: “~tb=line” will print a single line for each failing
(python) test indicating its filename, lineno and the failure value

fix issue78: always call python-level teardown functions even if the according setup failed. This includes
refinements for calling setup_module/class functions which will now only be called once instead of the previous
behaviour where they’d be called multiple times if they raise an exception (including a Skipped exception). Any
exception will be re-corded and associated with all tests in the according module/class scope.

fix issue63: assume <40 columns to be a bogus terminal width, default to 80
fix pdb debugging to be in the correct frame on raises-related errors
update apipkg.py to fix an issue where recursive imports might unnecessarily break importing

fix plugin links

111

py Documentation, Release 1.4.31

112 Chapter 45. Changes between 1.2.1 and 1.2.0

CHAPTER 406

Changes between 1.2 and 1.1.1

moved dist/looponfailing from py.test core into a new separately released pytest-xdist plugin.

new junitxml plugin: —junitxml=path will generate a junit style xml file which is processable e.g. by the Hudson
CI system.

new option: —genscript=path will generate a standalone py.test script which will not need any libraries installed.
thanks to Ralf Schmitt.

new option: —ignore will prevent specified path from collection. Can be specified multiple times.
new option: —confcutdir=dir will make py.test only consider conftest files that are relative to the specified dir.

new funcarg: “pytestconfig” is the pytest config object for access to command line args and can now be easily
used in a test.

install ‘py.test” and py.which with a —~SVERSION suffix to disambiguate between Python3, python2.X, Jython
and PyPy installed versions.

new “pytestconfig” funcarg allows access to test config object

new “pytest_report_header” hook can return additional lines to be displayed at the header of a test run.

might eventually evolve as a full substitute to “-k” specifications.

streamlined plugin loading: order is now as documented in customize.html: setuptools, ENV, commandline,
conftest. also setuptools entry point names are turned to canonical namees (“pytest_*")

automatically skip tests that need ‘capfd’ but have no os.dup
allow pytest_generate_tests to be defined in classes as well
deprecate usage of ‘disabled’ attribute in favour of pytestmark

deprecate definition of Directory, Module, Class and Function nodes in conftest.py files. Use pytest collect
hooks instead.

collection/item node specific runtest/collect hooks are only called exactly on matching conftest.py files, i.e. ones
which are exactly below the filesystem path of an item

113

py Documentation, Release 1.4.31

change: the first pytest_collect_directory hook to return something will now prevent further hooks to be called.

change: figleaf plugin now requires —figleaf to run. Also change its long command line options to be a bit
shorter (see py.test -h).

change: pytest doctest plugin is now enabled by default and has a new option —doctest-glob to set a pattern for
file matches.

change: remove internal py._* helper vars, only keep py._pydir

robustify capturing to survive if custom pytest_runtest_setup code failed and prevented the capturing setup code
from running.

make py.test.* helpers provided by default plugins visible early - works transparently both for pydoc and for
interactive sessions which will regularly see e.g. py.test.mark and py.test.importorskip.

simplify internal plugin manager machinery
simplify internal collection tree by introducing a RootCollector node
fix assert reinterpreation that sees a call containing “keyword=...”

fix issue66: invoke pytest_sessionstart and pytest_sessionfinish hooks on slaves during dist-testing, report mod-
ule/session teardown hooks correctly.

fix issue65: properly handle dist-testing if no execnet/py lib installed remotely.
skip some install-tests if no execnet is available

fix docs, fix internal bin/ script generation

114

Chapter 46. Changes between 1.2 and 1.1.1

CHAPTER 4/

Changes between 1.1.1 and 1.1.0

introduce automatic plugin registration via ‘pytestll’ entrypoints via setuptools’
pkg_resources.iter_entry_points

fix py.test dist-testing to work with execnet >= 1.0.0b4
re-introduce py.test.cmdline.main() for better backward compatibility

svn paths: fix a bug with path.check(versioned=True) for svn paths, allow ‘%’ in svn paths, make svnwc.update()
default to interactive mode like in 1.0.x and add svanwc.update(interactive=False) to inhibit interaction.

refine distributed tarball to contain test and no pyc files

try harder to have deprecation warnings for py.compat.* accesses report a correct location

115

py Documentation, Release 1.4.31

116 Chapter 47. Changes between 1.1.1 and 1.1.0

CHAPTER 48

Changes between 1.1.0 and 1.0.2

adjust and improve docs

remove py.rest tool and internal namespace - it was never really advertised and can still be used with the old
release if needed. If there is interest it could be revived into its own tool i guess.

fix issue48 and issue59: raise an Error if the module from an imported test file does not seem to come from the
filepath - avoids “same-name” confusion that has been reported repeatedly

merged Ronny’s nose-compatibility hacks: now nose-style setup_module() and setup() functions are supported
introduce generalized py.test.mark function marking

reshuffle / refine command line grouping

deprecate parser.addgroup in favour of getgroup which creates option group

add —report command line option that allows to control showing of skipped/xfailed sections

generalized skipping: a new way to mark python functions with skipif or xfail at function, class and modules
level based on platform or sys-module attributes.

extend py.test.mark decorator to allow for positional args

introduce and test “py.cleanup -d” to remove empty directories

fix issue #59 - robustify unittest test collection

make bpython/help interaction work by adding an __all__ attribute to ApiModule, cleanup initpkg

use MIT license for pylib, add some contributors

remove py.execnet code and substitute all usages with ‘execnet’ proper

fix issueS0 - cached_setup now caches more to expectations for test functions with multiple arguments.
merge Jarko’s fixes, issue #45 and #46

add the ability to specify a path for py.lookup to search in

fix a funcarg cached_setup bug probably only occuring in distributed testing and “module” scope with teardown.

117

py Documentation, Release 1.4.31

many fixes and changes for making the code base python3 compatible, many thanks to Benjamin Peterson for
helping with this.

consolidate builtins implementation to be compatible with >=2.3, add helpers to ease keeping 2 and 3k compat-
ible code

deprecate py.compat.doctestlsubprocessltextwraploptparse
deprecate py.magic.autopath, remove py/magic directory

move pytest assertion handling to py/code and a pytest_assertion plugin, add “—no-assert” option, deprecate
py-magic namespaces in favour of (less) py.code ones.

consolidate and cleanup py/code classes and files

cleanup py/misc, move tests to bin-for-dist

introduce delattr/delitem/delenv methods to py.test’s monkeypatch funcarg
consolidate py.log implementation, remove old approach.

introduce py.io.TextIO and py.io.ByteslO for distinguishing between text/unicode and byte-streams (uses under-
lying standard lib io.* if available)

make py.unittest_convert helper script available which converts “unittest.py” style files into the simpler
assert/direct-test-classes py.test/nosetests style. The script was written by Laura Creighton.

simplified internal localpath implementation

118

Chapter 48. Changes between 1.1.0 and 1.0.2

cHAPTER 49

Changes between 1.0.1 and 1.0.2

* fixing packaging issues, triggered by fedora redhat packaging, also added doc, examples and contrib dirs to the
tarball.

¢ added a documentation link to the new django plugin.

119

py Documentation, Release 1.4.31

120 Chapter 49. Changes between 1.0.1 and 1.0.2

cHAPTER B0

Changes between 1.0.0 and 1.0.1

added a ‘pytest_nose’ plugin which handles nose.SkipTest, nose-style function/method/generator
setup/teardown and tries to report functions correctly.

capturing of unicode writes or encoded strings to sys.stdout/err work better, also terminalwriting was adapted
and somewhat unified between windows and linux.

improved documentation layout and content a lot

added a “~help-config” option to show conftest.py / ENV-var names for all longopt cmdline options, and some
special conftest.py variables. renamed ‘conf_capture’ conftest setting to ‘option_capture’ accordingly.

fix issue #27: better reporting on non-collectable items given on commandline (e.g. pyc files)
fix issue #33: added —version flag (thanks Benjamin Peterson)

fix issue #32: adding support for “incomplete” paths to wcpath.status()

“Test” prefixed classes are not collected by default anymore if they have an __init__ method
monkeypatch setenv() now accepts a “prepend” parameter

improved reporting of collection error tracebacks

simplified multicall mechanism and plugin architecture, renamed some internal methods and argnames

121

py Documentation, Release 1.4.31

122 Chapter 50. Changes between 1.0.0 and 1.0.1

CHAPTER D1

Changes between 1.0.0b9 and 1.0.0

* more terse reporting try to show filesystem path relatively to current dir

* improve xfail output a bit

123

py Documentation, Release 1.4.31

124 Chapter 51. Changes between 1.0.0b9 and 1.0.0

CHAPTER B2

Changes between 1.0.0b8 and 1.0.0b9

cleanly handle and report final teardown of test setup
fix svn-1.6 compat issue with py.path.svnwc().versioned() (thanks Wouter Vanden Hove)

setup/teardown or collection problems now show as ERRORs or with big “E*‘s in the progress lines. they are
reported and counted separately.

dist-testing: properly handle test items that get locally collected but cannot be collected on the remote side -
often due to platform/dependency reasons

simplified py.test.mark API - see keyword plugin documentation

integrate better with logging: capturing now by default captures test functions and their immediate
setup/teardown in a single stream

capsys and capfd funcargs now have a readouterr() and a close() method (underlyingly py.io.StdCapture/FD
objects are used which grew a readouterr() method as well to return snapshots of captured out/err)

make assert-reinterpretation work better with comparisons not returning bools (reported with numpy from thanks
maciej fijalkowski)

reworked per-test output capturing into the pytest_iocapture.py plugin and thus removed capturing code from
config object

item.repr_failure(excinfo) instead of item.repr_failure(excinfo, outerr)

125

py Documentation, Release 1.4.31

126 Chapter 52. Changes between 1.0.0b8 and 1.0.0b9

CHAPTER B3

Changes between 1.0.0b7 and 1.0.0b8

pytest_unittest-plugin is now enabled by default
introduced pytest_keyboardinterrupt hook and refined pytest_sessionfinish hooked, added tests.

workaround a buggy logging module interaction (“closing already closed files”). Thanks to Sridhar Ratnakumar
for triggering.

if plugins use “py.test.importorskip” for importing a dependency only a warning will be issued instead of exiting
the testing process.

many improvements to docs: - refined funcargs doc , use the term “factory” instead of “provider” - added a new
talk/tutorial doc page - better download page - better plugin docstrings - added new plugins page and automatic
doc generation script

fixed teardown problem related to partially failing funcarg setups (thanks MrTopf for reporting),
“pytest_runtest_teardown” is now always invoked even if the “pytest_runtest_setup” failed.

tweaked doctest output for docstrings in py modules, thanks Radomir.

127

py Documentation, Release 1.4.31

128 Chapter 53. Changes between 1.0.0b7 and 1.0.0b8

CHAPTER D4

Changes between 1.0.0b3 and 1.0.0b7

renamed py.test.xfail back to py.test.mark.xfail to avoid two ways to decorate for xfail

re-added py.test.mark decorator for setting keywords on functions (it was actually documented so removing it
was not nice)

remove scope-argument from request.addfinalizer() because request.cached_setup has the scope arg.
TOOWTDI.

perform setup finalization before reporting failures

apply modified patches from Andreas Kloeckner to allow test functions to have no func_code (#22) and to make
“-k” and function keywords work (#20)

apply patch from Daniel Peolzleithner (issue #23)
resolve issue #18, multiprocessing.Manager() and redirection clash

113

make __name__ == “__channelexec__" for remote_exec code

129

py Documentation, Release 1.4.31

130 Chapter 54. Changes between 1.0.0b3 and 1.0.0b7

CHAPTER B5

Changes between 1.0.0b1 and 1.0.0b3

plugin classes are removed: one now defines hooks directly in conftest.py or global pytest_*.py files.
added new pytest_namespace(config) hook that allows to inject helpers directly to the py.test.* namespace.
documented and refined many hooks

added new style of generative tests via pytest_generate_tests hook that integrates well with function arguments.

131

py Documentation, Release 1.4.31

132 Chapter 55. Changes between 1.0.0b1 and 1.0.0b3

CHAPTER D0

Changes between 0.9.2 and 1.0.0b1

* introduced new “funcarg” setup method, see doc/test/funcarg.txt

* introduced plugin architecuture and many new py.test plugins, see doc/test/plugins.txt

* teardown_method is now guaranteed to get called after a test method has run.

* new method: py.test.importorskip(mod,minversion) will either import or call py.test.skip()
» completely revised internal py.test architecture

* new py.process.ForkedFunc object allowing to fork execution of a function to a sub process and getting a result
back.

XXX lots of things missing here XXX

133

py Documentation, Release 1.4.31

134 Chapter 56. Changes between 0.9.2 and 1.0.0b1

CHAPTER D7

Changes between 0.9.1 and 0.9.2

refined installation and metadata, created new setup.py, now based on setuptools/ez_setup (thanks to Ralf
Schmitt for his support).

improved the way of making py.* scripts available in windows environments, they are now added to the Scripts
directory as ”.cmd” files.

py.path.svnwc.status() now is more complete and uses xml output from the ‘svn’ command if available (Guido
Wesdorp)

fix for py.path.svn* to work with svn 1.5 (Chris Lamb)
fix path.relto(otherpath) method on windows to use normcase for checking if a path is relative.

py.test’s traceback is better parseable from editors (follows the filenames:LINENO: MSG convention) (thanks
to Osmo Salomaa)

fix to javascript-generation, “py.test —runbrowser” should work more reliably now
removed previously accidentally added py.test.broken and py.test.notimplemented helpers.

there now is a py.__version___ attribute

135

py Documentation, Release 1.4.31

136 Chapter 57. Changes between 0.9.1 and 0.9.2

CHAPTER B8

Changes between 0.9.0 and 0.9.1

This is a fairly complete list of changes between 0.9 and 0.9.1, which can serve as a reference for developers.

allowing + signs in py.path.svn urls [39106]
fixed support for Failed exceptions without excinfo in py.test [39340]

added support for killing processes for Windows (as well as platforms that support os.kill) in py.misc.killproc
[39655]

added setup/teardown for generative tests to py.test [40702]

added detection of FAILED TO LOAD MODULE to py.test [40703, 40738, 40739]
fixed problem with calling .remove() on wcpaths of non-versioned files in py.path [44248]
fixed some import and inheritance issues in py.test [41480, 44648, 44655]

fail to run greenlet tests when pypy is available, but without stackless [45294]
small fixes in rsession tests [45295]

fixed issue with 2.5 type representations in py.test [45483, 45484]

made that internal reporting issues displaying is done atomically in py.test [45518]
made that non-existing files are igored by the py.lookup script [45519]

improved exception name creation in py.test [45535]

made that less threads are used in execnet [merge in 45539]

removed lock required for atomical reporting issue displaying in py.test [45545]
removed globals from execnet [45541, 45547]

refactored cleanup mechanics, made that setDaemon is set to 1 to make atexit get called in 2.5 (py.execnet)
[45548]

fixed bug in joining threads in py.execnet’s servemain [45549]

refactored py.test.rsession tests to not rely on exact output format anymore [45646]

137

py Documentation, Release 1.4.31

* using repr() on test outcome [45647]

* added ‘Reason’ classes for py.test.skip() [45648, 45649]

* killed some unnecessary sanity check in py.test.collect [45655]

¢ avoid using os.tmpfile() in py.io.fdcapture because on Windows it’s only usable by Administrators [45901]
¢ added support for locking and non-recursive commits to py.path.svnwc [45994]
* locking files in py.execnet to prevent CPython from segfaulting [46010]

* added export() method to py.path.svnurl

e fixed -d -x in py.test [47277]

* fixed argument concatenation problem in py.path.svnwc [49423]

* restore py.test behaviour that it exits with code 1 when there are failures [49974]
* don’t fail on html files that don’t have an accompanying .txt file [50606]

¢ fixed ‘utestconvert.py < input’ [50645]

» small fix for code indentation in py.code.source [50755]

* fix _docgen.py documentation building [51285]

 improved checks for source representation of code blocks in py.test [51292]

¢ added support for passing authentication to py.path.svn* objects [52000, 52001]

» removed sorted() call for py.apigen tests in favour of [].sort() to support Python 2.3 [52481]

138 Chapter 58. Changes between 0.9.0 and 0.9.1

cHAPTER 59

Indices and tables

* genindex

¢ search

139

py Documentation, Release 1.4.31

140 Chapter 59. Indices and tables

Index

A

add() (py._path.svnwc.SvnWCCommandPath method),
10

append() (py.code.Traceback method), 21, 24

as_cwd() (py._path.local.LocalPath method), 7

atime() (py._path.local.LocalPath method), 7

B

basename (py._path.local.LocalPath attribute), 7

basename (py._path.svnurl.SvnCommandPath attribute),
14

basename (py._path.svnwc.SvnWCCommandPath

attribute), 12

bestrelpath() (py._path.local.LocalPath method), 8

bestrelpath() (py._path.svnurl.SvnCommandPath
method), 14

bestrelpath() (py._path.svawc.SvnWCCommandPath
method), 12

blame() (py._path.svnwc.SvnWCCommandPath method),
11

C

call() (py.io.StdCapture method), 26

call() (py.io.StdCaptureFD method), 26

chdir() (py._path.local.LocalPath method), 7

check() (py._path.svnurl.SvnCommandPath method), 14

check() (py._path.svnwc.SvnWCCommandPath method),
12

checkout() (py._path.svoawc.SvnWCCommandPath
method), 10

chmod() (py._path.local.LocalPath method), 7

chown() (py._path.local.LocalPath method), 8

cleanup() (py._path.svnwc.SvnWCCommandPath
method), 11

Code (class in py.code), 19

commit() (py._path.svawc.SvnWCCommandPath
method), 11

common() (py._path.local.LocalPath method), 8

common() (py._path.svnurl.SvnCommandPath method),
14

common() (py._path.svnwc.SvnWCCommandPath
method), 12

compile() (py.code.Source method), 21

computehash() (py._path.local.LocalPath method), 6

copy() (py._path.local.LocalPath method), 6

copy() (py._path.svnurl.SvnCommandPath method), 13

copy() (py._path.svnwc.SvnWCCommandPath method),
10

count() (py.code.Traceback method), 21, 24

cut() (py.code.Traceback method), 21, 23

D

deindent() (py.code.Source method), 20

diff() (py._path.svawc.SvaWCCommandPath method),
11

dirname (py._path.local.LocalPath attribute), 8

dirname (py._path.svnurl.SvnCommandPath attribute), 14

dirname (py._path.svawc.SvnWCCommandPath at-
tribute), 12

dirpath() (py._path.local.LocalPath method), 6

dirpath() (py._path.svnurl.SvnCommandPath method), 13

dirpath() (py._path.svnwc.SvnWCCommandPath
method), 10

done() (py.io.StdCapture method), 26

done() (py.io.StdCaptureFD method), 26

dump() (py._path.local.LocalPath method), 6

dump() (py._path.svawc.SvnWCCommandPath method),
10

E

ensure() (py._path.local.LocalPath method), 7

ensure() (py._path.svnurl.SvnCommandPath method), 14

ensure() (py._path.svnwc.SvnWCCommandPath
method), 10

ensure_dir() (py._path.local.LocalPath method), 8

ensure_dir() (py._path.svnurl. SvnCommandPath
method), 14

ensure_dir() (py._path.svnwc.SvnWCCommandPath
method), 12

Entry (py.code.Traceback attribute), 21, 23

141

py Documentation, Release 1.4.31

errisinstance() (py.code.ExceptionInfo method), 23
eval() (py.code.Frame method), 22

Exceptionlnfo (class in py.code), 23

exconly() (py.code.ExceptionInfo method), 23

exec_() (py.code.Frame method), 22

export() (py._path.svnurl. SvnCommandPath method), 14
ext (py._path.local.LocalPath attribute), 8

ext (py._path.svnurl. SvnCommandPath attribute), 14

ext (py._path.svnwc.SvnWCCommandPath attribute), 12
extend() (py.code.Traceback method), 21, 24

F

filter() (py.code.Traceback method), 21, 24

fnmatch() (py._path.local.LocalPath method), 8

fnmatch() (py._path.svnurl.SvnCommandPath method),
14

fnmatch() (py._path.svnwc.SvnWCCommandPath

method), 12

Frame (class in py.code), 22

fullsource (py.code.Code attribute), 20

G

get_temproot() (py._path.local.LocalPath class method),
8

getargs() (py.code.Code method), 20

getargs() (py.code.Frame method), 22

getcrashentry() (py.code.Traceback method), 21, 24

getrepr() (py.code.Exceptionlnfo method), 23

getstatement() (py.code.Source method), 20

getstatementrange() (py.code.Source method), 20

indent() (py.code.Source method), 20

index() (py.code.Traceback method), 22, 24

info() (py._path.svnurl.SvnCommandPath method), 14

info() (py._path.svawc.SvnWCCommandPath method),
11

insert() (py.code.Traceback method), 22, 24

isparseable() (py.code.Source method), 20

J

join() (py._path.local.LocalPath method), 6

join() (py._path.svnurl. SvnCommandPath method), 15

join() (py._path.svowe.SvnWCCommandPath method),
11

L

listdir() (py._path.local.LocalPath method), 6

listdir() (py._path.svnurl.SvnCommandPath method), 14

listdir() (py._path.svnwc.SvnWCCommandPath method),
11

load() (py._path.local.LocalPath method), 8

load() (py._path.svnurl.SvnCommandPath method), 15

load() (py._path.svnwc.SvnWCCommandPath method),
12

LocalPath (class in py._path.local), 6

LocalPath.ImportMismatchError, 6

lock() (py._path.svnwc.SvnWCCommandPath method),
11

log() (py._path.svnurl.SvnCommandPath method), 14

log() (py._path.svohwc.SvnWCCommandPath method),
11

Istat() (py._path.local.LocalPath method), 7

M

make_numbered_dir() (py._path.local.LocalPath class
method), 9

mkdir() (py._path.local.LocalPath method), 6

mkdir() (py._path.svnurl.SvnCommandPath method), 13

mkdir() (py._path.svonwc.SvnWCCommandPath method),
10

mkdtemp() (py._path.local.LocalPath class method), 9

mklinkto() (py._path.local.LocalPath method), 8

mksymlinkto() (py._path.local.LocalPath method), 8

move() (py._path.local.LocalPath method), 8

move() (py._path.svnurl. SvnCommandPath method), 15

move() (py._path.svawc.SvnWCCommandPath method),
13

mtime() (py._path.local.LocalPath method), 6

mtime() (py._path.svnurl.SvnCommandPath method), 15

mtime() (py._path.svnwc.SvnWCCommandPath
method), 12

N

new() (py._path.local.LocalPath method), 6

new() (py._path.svnurl.SvnCommandPath method), 15

new() (py._path.svawc.SvnWCCommandPath method),
11

O

open() (py._path.local.LocalPath method), 6

open() (py._path.svnurl.SvnCommandPath method), 13

open() (py._path.svnwc.SvnWCCommandPath method),
11

P

parts() (py._path.local.LocalPath method), 8

parts() (py._path.svnurl.SvnCommandPath method), 15

parts() (py._path.svnwc.SvnWCCommandPath method),
13

path (py.code.Code attribute), 20

pop() (py.code.Traceback method), 22, 24

propdel() (py._path.svnwc.SvnWCCommandPath
method), 11

propget() (py._path.svnurl.SvnCommandPath method),
15

142

Index

py Documentation, Release 1.4.31

(py._path.svnwc.SvnWCCommandPath
method), 11
proplist() (py._path.svnurl.SvnCommandPath method),
15

proplist()

propget()

(py._path.svawc.SvnWCCommandPath
method), 11
(py._path.svnwc.SvnWCCommandPath
method), 11
purebasename (py._path.local.LocalPath attribute), 8
purebasename (py._path.svnurl. SvnCommandPath
attribute), 15
purebasename (py._path.svowc.SvnWCCommandPath
attribute), 13
putaround() (py.code.Source method), 20
pyimport() (py._path.local.LocalPath method), 7
pypkgpath() (py._path.local.LocalPath method), 7

R

read() (py._path.local.LocalPath method), 8

read() (py._path.svnurl. SvnCommandPath method), 15

read() (py._path.svowe.SvnWCCommandPath method),
13

read_binary() (py._path.local.LocalPath method), 8

read_binary() (py._path.svnurl. SvnCommandPath
method), 15

read_binary() (py._path.svnwc.SvnWCCommandPath
method), 13

read_text() (py._path.local.LocalPath method), 9

read_text() (py._path.svnurl.SvnCommandPath method),
15

read_text() (py._path.svnwc.SvnWCCommandPath
method), 13

readlines() (py._path.local.LocalPath method), 9

readlines() (py._path.svnurl.SvnCommandPath method),
15

readlines() (py._path.svnwc.SvnWCCommandPath
method), 13

readlink() (py._path.local.LocalPath method), 9

readouterr() (py.io.StdCapture method), 26

readouterr() (py.io.StdCaptureFD method), 26

realpath() (py._path.local.LocalPath method), 7

recursionindex() (py.code.Traceback method), 21, 24

relto() (py._path.local.LocalPath method), 9

relto() (py._path.svnurl.SvnCommandPath method), 15

relto() (py._path.svnwc.SvnWCCommandPath method),
13

remove() (py._path.local.LocalPath method), 6

remove() (py._path.svnurl.SvnCommandPath method),
13

remove()

propset()

(py._path.svawc.SvnWCCommandPath
method), 10
remove() (py.code.Traceback method), 22, 24
rename() (py._path.local.LocalPath method), 6

rename() (py._path.svnurl.SvnCommandPath method),
13

rename() (py._path.svnwc.SvnWCCommandPath

method), 10

repr() (py.code.Frame method), 22

reset() (py.io.StdCapture method), 26

reset() (py.io.StdCaptureFD method), 26

resume() (py.io.StdCapture method), 26

resume() (py.io.StdCaptureFD method), 26

rev (py._path.svawc.SvnWCCommandPath attribute), 10

reverse() (py.code.Traceback method), 22, 24

revert() (py._path.svowc.SvnWCCommandPath method),
11

S

samefile() (py._path.local.LocalPath method), 6

samefile() (py._path.svnurl.SvnCommandPath method),
15

samefile() (py._path.svnwc.SvnWCCommandPath

method), 13

setmtime() (py._path.local.LocalPath method), 7

size() (py._path.local.LocalPath method), 6

size() (py._path.svnurl.SvnCommandPath method), 16

size() (py._path.svnwc.SvnWCCommandPath method),
12

sort() (py.code.Traceback method), 22, 24

Source (class in py.code), 20

source() (py.code.Code method), 20

stat() (py._path.local.LocalPath method), 7

statement (py.code.Frame attribute), 22

status() (py._path.svawc.SvnWCCommandPath method),
11

StdCapture (class in py.io), 26

StdCaptureFD (class in py.io), 26

strip() (py.code.Source method), 20

strpath (py._path.svnwc.SvnWCCommandPath attribute),
10

suspend() (py.io.StdCapture method), 26

suspend() (py.io.StdCaptureFD method), 26

SvnAuth (class in py._path.svawc), 16

SvnCommandPath (class in py._path.svnurl), 13

svnurl() (py._path.svnwc.SvnWCCommandPath
method), 10

SvnWCCommandPath (class in py._path.svnwc), 10

switch() (py-_path.svnwc.SvnWCCommandPath
method), 10

sysexec() (py._path.local.LocalPath method), 7

sysfind() (py._path.local.LocalPath class method), 7

T

tb (py.code.Exceptionlnfo attribute), 23
TerminalWriter (class in py.io), 26

Traceback (class in py.code), 21, 23

traceback (py.code.Exceptionlnfo attribute), 23

Index

143

py Documentation, Release 1.4.31

type (py.code.Exceptionlnfo attribute), 23
typename (py.code.ExceptionInfo attribute), 23

U

unlock() (py._path.svnwc.SvnWCCommandPath
method), 11

update() (py._path.svnwc.SvnWCCommandPath
method), 10

url (py._path.svnurl. SvnCommandPath attribute), 16

url (py._path.svohwc.SvnWCCommandPath attribute), 10

\Y

value (py.code.ExceptionlInfo attribute), 23

visit() (py._path.local.LocalPath method), 9

visit() (py._path.svnurl. SvnCommandPath method), 16

visit() (py._path.svawe.SvnWCCommandPath method),
13

W

write() (py._path.local.LocalPath method), 7

write() (py._path.svnwc.SvnWCCommandPath method),
10

write_binary() (py._path.local.LocalPath method), 6

write_text() (py._path.local.LocalPath method), 7

144

Index

	installation info in a nutshell
	easy install or pip py
	Working from version control or a tarball
	activating a checkout with setuptools
	Mailing list and issue tracker

	py.path
	py.path.local - local file system path
	py.path.svnurl and py.path.svnwc
	Common vs. specific API, Examples
	Known problems / limitations

	py.code: higher level python code and introspection objects
	Contents of the library
	The wrappers

	py.io
	IO Capturing examples
	py.io object reference

	py.log documentation and musings
	Foreword
	Logging organisation
	Using the py.log library

	py.xml: simple pythonic xml/html file generation
	Motivation
	a pythonic object model , please

	Miscellaneous features of the py lib
	Mapping the standard python library into py
	Support for interaction with system utilities/binaries
	Cross-Python Version compatibility helpers

	1.4.31
	1.4.30
	1.4.29
	1.4.28
	1.4.27
	1.4.26
	1.4.25
	1.4.24
	1.4.23
	1.4.22
	1.4.21
	1.4.20
	Changes between 1.4.18 and 1.4.19
	Changes between 1.4.17 and 1.4.18
	Changes between 1.4.16 and 1.4.17
	Changes between 1.4.15 and 1.4.16
	Changes between 1.4.14 and 1.4.15
	Changes between 1.4.13 and 1.4.14
	Changes between 1.4.12 and 1.4.13
	Changes between 1.4.11 and 1.4.12
	Changes between 1.4.10 and 1.4.11
	Changes between 1.4.9 and 1.4.10
	Changes between 1.4.8 and 1.4.9
	Changes between 1.4.7 and 1.4.8
	Changes between 1.4.6 and 1.4.7
	Changes between 1.4.5 and 1.4.6
	Changes between 1.4.4 and 1.4.5
	Changes between 1.4.3 and 1.4.4
	Changes between 1.4.2 and 1.4.3
	Changes between 1.4.1 and 1.4.2
	Changes between 1.4.0 and 1.4.1
	Changes between 1.3.4 and 1.4.0
	Changes between 1.3.3 and 1.3.4
	Changes between 1.3.2 and 1.3.3
	Changes between 1.3.1 and 1.3.2
	New features
	Bug fixes / Maintenance

	Changes between 1.3.0 and 1.3.1
	New features
	Fixes / Maintenance

	Changes between 1.2.1 and 1.3.0
	Changes between 1.2.1 and 1.2.0
	Changes between 1.2 and 1.1.1
	Changes between 1.1.1 and 1.1.0
	Changes between 1.1.0 and 1.0.2
	Changes between 1.0.1 and 1.0.2
	Changes between 1.0.0 and 1.0.1
	Changes between 1.0.0b9 and 1.0.0
	Changes between 1.0.0b8 and 1.0.0b9
	Changes between 1.0.0b7 and 1.0.0b8
	Changes between 1.0.0b3 and 1.0.0b7
	Changes between 1.0.0b1 and 1.0.0b3
	Changes between 0.9.2 and 1.0.0b1
	Changes between 0.9.1 and 0.9.2
	Changes between 0.9.0 and 0.9.1
	Indices and tables

