

pyknotid

[image: The knot 10_51 in an ideal conformation, visualised by pyknotid.]
pyknotid is a Python module for identifying knot types and other
topological quantities. It can take as input space-curves (such as
visualised above) or standard topological notations.

See the overview for an introduction to
pyknotid’s functionality, or find specific topics in the index below.

Contents

	Overview
	Installation

	Space curve analysis

	Topological representations

	Knot catalogue

	Example knots

	Space curve analysis
	Different knot classes

	Creating space curves

	SpaceCurve

	Knot

	OpenKnot

	Link

	PeriodicCell

	Invariants
	Mathematica

	API documentation

	Topological representations
	Creating representations

	Calculating invariants

	GaussCode

	PlanarDiagram

	GaussDiagram

	DTNotation

	Representation

	Knot catalogue
	Downloading the database

	Lookup by name

	Lookup by invariants

	Exploring properties of knots

	Database download module

	Identify module

	Database module

	Visualise
	API documentation

	About pyknotid
	Contacts

	Cite us

Indices and tables

	Index

	Search Page

Overview

[image: The knot 10_11 in an ideal conformation, visualised by pyknotid.]
pyknotid is a Python module for doing calculations on knots or links,
whether specified as space-curves, or via standard topological
notations.

Visit Knot ID [http://inclem.net/knotidentifier] for an online
interface to some of these tools.

Installation

You can install pyknotid via pip:

$ pip install pyknotid

By default pyknotid will try to compile some cython modules, but if
this fails (normally because cython is not installed) it will only
print a message and continue without errors. This won’t impact your
use of pyknotid except that the cython calculations would be,
especially during space-curve analysis. If you want to use the
improved speed of the cython implementations but did not initially
install them, you should uninstall pyknotid, install cython, and
reinstall pyknotid.

You can also install the pyknotid development version from github at
https://github.com/SPOCKnots/pyknotid.

Space curve analysis

pyknotid can perform many calculations on space curves specified as a
set of points, as well as plotting the curves in three dimensions or
in projection. See the space curve documentation for more information.

Some topological calculations can only be performed for relatively
short, simple curves, but in general pyknotid can work fine even for
space-curves with many thousands of points.

Example:

from pyknotid.make import trefoil
from pyknotid.spacecurves import Knot

k = Knot(trefoil())

k.determinant() # 3
k.gauss_code() # 1+a,2-a,3+a,1-a,2+a,3-a
k.identify() # [<Knot 3_1>]

Topological representations

pyknotid can accept input using several standard topological notations
including the Gauss code, planar diagram or Dowker-Thistlethwaite
notation. You can then calculate topological invariants, or even
reconstruct a 3D space curve. See the representation
documentation for more information.

Example:

from pyknotid.representations import GaussCode, Representation

gc = GaussCode('1+a,2-a,3+a,1-a,2+a,3-a')
gc.simplify() # does nothing here, as no Reidemeister moves can be
 # performed to immediately simplify the curve

Representation is a generic topological representation providing
more methods
rep = Representation(gc)
rep.determinant() # 3
rep.space_curve() # <Knot with 34 points>, a space curve with the
 # given Gauss code on projection

Knot catalogue

pyknotid can look up knot types in a prebuilt database containing
various invariants for knots with up to 15 crossings. They can be
looked up by the knot name (e.g. 3_1 for the trefoil knot, 4_1
for the figure-eight knot etc.), or the values of different knot
invariants. See the knot catalogue documentation for more information.

Example:

from pyknotid.catalogue import get_knot, from_invariants

k = get_knot('5_2')
k.vassiliev_2 # 2
k.determinant() # 3

k = get_knot('7_3').space_curve() # <Knot with 83 points>, a space curve
 # that forms a 7_3 knot.

knots = from_invariants(determinant=7, max_crossings=11) # [<Knot 5_2>,
 # <Knot 7_1>,
 # <Knot 9_42>,
 # <Knot K11n57>,
 # <Knot K11n96>,
 # <Knot K11n111>]

Example knots

pyknotid includes several functions for creating example knotted space
curves. See the example knots documentation for
more details.

Example:

from pyknotid.make import torus_knot

k = torus_knot(p=5, q=2)
k.identify() # [<Knot 5_1>]

from pyknotid.make import torus_link

l = torus_link(p=2, q=8) # a 2-component link
l.linking_number() # 8

from pyknotid.make import figure_eight

k = figure_eight()
k.determinant() # 5

Space curve analysis

[image: A closed random walks with 30 steps]
This module contains classes and functions for working with knots and
links as three-dimensional space curves, or calling functions
elsewhere in pyknotid to perform topological analysis. Functionality
includes manipulating knots/links via translation, rotation and
scaling, plotting diagrams, finding crossings and identifying knots.

Different knot classes

pyknotid includes the following classes for topological calculation:

	SpaceCurve: Provides functions for calculations on a single
curve, including plotting, some geometrical properties and finding
crossings in projection.

	Knot: Provides functions for topological calculations on a
single curve, such as the Alexander polynomial or Vassiliev
invariants.

	OpenKnot: Provides functions for topological calculations on
an open curve that does not form a closed loop. Open curves are
topologically trivial from a mathematical perspective, but can be
analysed in terms of the topology of different closures.

	Link: Provides the same interface to collections of multiple
curves, and can calculate linking invariants.

	PeriodicCell: Provides some convenience functions for
managing collections of curves in periodic boundaries.

Creating space curves

The space curve classes are specified via N by 3 arrays of points in
three dimensions, representing a piecewise linear curve.

For instance, the following code produces and plots a
Knot from a set of manually
specified points:

import numpy as np
from pyknotid.spacecurves import Knot

points = np.array([[9.0, 0.0, 0.0],
 [0.781, 4.43, 2.6],
 [-4.23, 1.54, -2.6],
 [-4.5, -7.79, -7.35e-16],
 [3.45, -2.89, 2.6],
 [3.45, 2.89, -2.6],
 [-4.5, 7.79, 0.0],
 [-4.23, -1.54, 2.6],
 [0.781, -4.43, -2.6]])

k = Knot(points)
k.plot()

[image: A trefoil knot specified by vertex points]
The pyknotid.make module provides functions for
creating many types of example knots, such as torus knots or some
specific knot types:

import numpy as np
from pyknotid.make import torus_knot

 k = torus_knot(7, 4)
 k.plot()

[image: A p=7 and q=4 knot produced by the above code]

	SpaceCurve
	API documentation

	Knot
	API documentation

	OpenKnot
	API documentation

	Link
	API documentation

	PeriodicCell
	API documentation

SpaceCurve

The SpaceCurve class is the base for all space-curve analysis
in pyknotid. It provides methods for geometrical manipulation
(translation, rotation etc.), calculating geometrical characteristics
such as the writhe, and obtaining topological representations of the
curve by analysing its crossings in projection.

pyknotid provides other classes for topological analysis of the curves:

	Knot for calculating knot invariants of the space-curve.

	Link to handle multiple SpaceCurves and calculate linking invariants.

	Cell for handling multiple space-curves in a box with periodic boundaries.

API documentation

	
class pyknotid.spacecurves.spacecurve.SpaceCurve(points, verbose=True, add_closure=False, zero_centroid=False)

	Bases: object

Class for holding the vertices of a single line, providing helper
methods for convenient manipulation and analysis.

The methods of this class are largely geometrical (though this
includes listing the crossings in projection and extracting a
Gauss code etc.). For topological measurements, you should use
a Knot.

This class deliberately combines methods to do many different kinds
of measurements or manipulations. Some of these are externally
available through other modules in pyknotid - if so, this is usually
indicated in the method docstrings.

	Parameters

	
	points (array-like) – The 3d points (vertices) of a piecewise
linear curve representation

	verbose (bool) – Indicates whether the SpaceCurve should print
information during processing

	add_closure (bool) – If True, adds a final point to the knot near to the start point,
so that it will appear visually to close when plotted.

	zero_centroid (bool) – If True, shifts the coordinates of the points so that their centre
of mass is at the origin.

	
arclength(include_closure=True)

	Returns the arclength of the line, the sum of lengths of each
piecewise linear segment.

	Parameters

	include_closure (bool) – Whether to include the distance between the final and
first points. Defaults to True.

	
average_crossing_number(samples=10, recalculate=False, **kwargs)

	The (approximate) average crossing number of the space curve,
obtained by averaging
the planar writhe over the given number of directions.

	Parameters

	
	samples (int) – The number of directions to average over.

	recalculate (bool) – Whether to recalculate the ACN.

	**kwargs – These are passed directly to raw_crossings().

	
close()

	Adds the starting point to the end of the curve, so that it ends
exactly where it began.

	
classmethod closing_on_sphere(line, com=(0.0, 0.0, 0.0))

	Adds new vertices to close the line at its maximum radius,
returning a SpaceCurve representing the result.

	Parameters

	
	line (ndarray) – The points of the line.

	com (iterable) – Optional additional centre of mass to shift by before closing

	
copy()

	Returns another knot with the same points and verbosity
as self. Other attributes (e.g. cached crossings) are not
preserved.

	
cuaps(include_closure=True)

	Returns a list of the ‘cuaps’, where the curve is parallel to the
positive x-axis. See D Bar-Natan and R van der Veen, “A
polynomial time knot polynomial”, 2017.

	
curvatures(closed=True)

	Returns curvatures at each vertex (or really line segment).

	
classmethod from_braid_word(word)

	Returns a SpaceCurve instance formed from the given braid
word.

The braid word should be of the form ‘aAbBcC’ (i.e. capitalisation
denotes inverse).

	Parameters

	word (str) – The braid word to interpret.

	
classmethod from_csv(filen, **kwargs)

	Loads knot points from the given csv file, and returns a
SpaceCurve with those points.

Arguments are passed straight to pyknot.io.from_csv().

	
classmethod from_gauss_code(code)

	Creates a Knot from the given code, which must be provided as a
string and may optionally include crossing orientations (these are
actually ignored).

	
classmethod from_json(filen)

	Loads knot points from the given filename, assuming json format,
and returns a SpaceCurve with those points.

	
classmethod from_lattice_data(line)

	Returns a SpaceCurve instance in which the line has been
slightly translated and rotated, in order to (practically) ensure
no self intersections in closure or coincident points in
projection.

	Parameters

	line (array-like) – The list of points in the line. May be any type that SpaceCurve
normally accepts.

	Returns

	

	Return type

	SpaceCurve

	
classmethod from_periodic_line(line, shape, perturb=True, **kwargs)

	Returns a SpaceCurve instance in which the line has been
unwrapped through
the periodic boundaries.

	Parameters

	
	line (array-like) – The Nx3 vector of points in the line

	shape (array-like) – The x, y, z distances of the periodic boundary

	perturb (bool) – If True, translates and rotates the knot to avoid any lattice
problems.

	
gauss_code(recalculate=False, **kwargs)

	Returns a GaussCode
instance representing the crossings of the knot.

The GaussCode instance is cached internally. If you want to
recalculate it (e.g. to get an unsimplified version if you
have simplified it), you should pass recalculate=True.

This method passes kwargs directly to raw_crossings(),
see the documentation of that function for all options.

	
gauss_diagram(simplify=False, **kwargs)

	Returns a
GaussDiagram
instance representing the crossings of the knot.

This method passes kwargs directly to raw_crossings(),
see the documentation of that function for all options.

	
interpolate(num_points, s=0, **kwargs)

	Replaces self.points with points from a B-spline interpolation.

This method uses scipy.interpolate.splprep. kwargs are passed
to this function.

	
octree_simplify(runs=1, plot=False, rotate=True, obey_knotting=True, **kwargs)

	Simplifies the curve via the octree reduction of
:module:`pyknotid.simplify.octree`.

	Parameters

	
	runs (int) – The number of times to run the octree simplification.
Defaults to 1.

	plot (bool) – Whether to plot the curve after each run. Defaults to False.

	rotate (bool) – Whether to rotate the space curve before each run. Defaults
to True as this can make things much faster.

	obey_knotting (bool) – Whether to not let the line pass through itself. Defaults to
True as this is always what you want for a closed curve.

	**kwargs – Any remaining kwargs are passed to the
pyknotid.simplify.octree.OctreeCell
constructor.

	
planar_diagram(**kwargs)

	Returns a
PlanarDiagram
instance representing the crossings of the knot.

This method passes kwargs directly to raw_crossings(),
see the documentation of that function for all options.

	
planar_second_order_writhe(**kwargs)

	The second order writhe (type 2, i1,i3,i2,i4) of the projection of
the curve along the z axis.

	
planar_writhe(**kwargs)

	Returns the current planar writhe of the knot; the signed sum
of crossings of the current projection.

The ‘true’ writhe is the average of this quantity over all
projection directions, and is available from the writhe()
method.

	Parameters

	**kwargs – These are passed directly to raw_crossings().

	
plot(mode='auto', clf=True, closed=False, **kwargs)

	Plots the line. See pyknotid.visualise.plot_line() for
full documentation.

	
plot_projection(with_crossings=True, mark_start=False, fig_ax=None, show=True, mark_points=False)

	Plots a 2D diagram of the knot projected along the current
z-axis. The crossings, and start point of the curve, can
optionally be marked.

The projection is drawn using matplotlib.

[image: An example knot projection.]

	Parameters

	
	with_crossings (bool) – If True, marks the location of each self-intersection in
projection. Defaults to True.

	mark_start (bool) – If True, marks the first point of the curve. Default to False.

	fig_ax (tuple) – A 2-tuple of the matplotlib (fig, ax) to use, or None
to create a new pair.

	show (bool) – If True, opens a new window showing the drawing. Defaults
to True.

	Returns

	

	Return type

	A 2-tuple of the matplotlib (fig, ax) used for the drawing.

	
points

	The points of the spacecurve, as an Nx3 numpy array.

	
radius_of_gyration()

	Returns the radius of gyration of the points of self,
assuming each has equal weight and ignoring the connecting
lines.

	
raw_crossings(mode='use_max_jump', include_closure=True, recalculate=False, try_cython=True)

	Returns the crossings in the diagram of the projection of the
space curve into its z=0 plane.

The crossings will be calculated the first time this function
is called, then cached until an operation that would change
the list (e.g. rotation, or changing self.points).

Multiple modes are available (see parameters) - you should be
aware of this because different modes may be vastly slower or
faster depending on the type of line.

	Parameters

	
	mode (str, optional) – One of 'count_every_jump' or 'use_max_jump' or
'naive'. In the first case,
walking along the line uses information about the length of
every step. In the second, it guesses that all steps have the
same length as the maximum step length. In the last, no
optimisation is made and every crossing is checked.
The optimal choice depends on the data but is usually
'use_max_jump', which is the default.

	include_closure (bool, optional) – Whether to include crossings with the
line joining the start and end points. Defaults to True.

	recalculate (bool, optional) – Whether to force a recalculation of the crossing positions.
Defaults to False.

	try_cython (bool, optional) – Whether to force the use of the python (as opposed to cython)
implementation of find_crossings. This will make no difference
if the cython could not be loaded, in which case python is already
used automatically. Defaults to True.

	Returns

	The raw array of floats representing crossings, of the
form [[line_index, other_index, +-1, +-1], …], where the
line_index and other_index are in arclength parameterised
by integers for each vertex and linearly interpolated,
and the +-1 represent over/under and clockwise/anticlockwise
respectively.

	Return type

	array-like

	
reparameterised(mode='arclength', num_points=None, interpolation='linear')

	Returns a new SpaceCurve where new points have been selected
by interpolating the current ones.

Warning

This doesn’t do what you expect! The new segments
will probably not all be separated by the right amount
in terms of the new parameterisation.

	Parameters

	
	mode (str) – The function to reparameterise by. Defaults to ‘arclength’,
which is currently the only option.

	num_points (int) – The number of points in the new parameterisation. Defaults
to None, which means the same as the current number.

	interpolation (str) – The type of interpolation to use, passed directly to the
kind option of scipy.interpolate.interp1d. Defaults
to ‘linear’, and other options have not been tested.

	
representation(recalculate=False, **kwargs)

	Returns a Representation
instance representing the crossings of the knot.

The Representation instance is cached internally. If you want to
recalculate it (e.g. to get an unsimplified version if you
have simplified it), you should pass recalculate=True.

This method passes kwargs directly to raw_crossings(),
see the documentation of that function for all options.

	
rotate(angles=None)

	Rotates all the points of self by the given angles in each axis.

	Parameters

	angles (array-like) – The rotation angles about x, y and z. If None, random
angles are used. Defaults to None.

	
scale(factor)

	Scales all the points of self by the given factor.

You can accomplish the same thing, or other more subtle
transformations, by modifying self.:py:attr:points.

	
segment_arclengths()

	Returns an array of arclengths of every step in the line
defined by self.points.

	
simplify_straight_segments(closed=False)

	Replaces successive curve segments with identical tangents with a
single longer segment.

	
smooth(repeats=1, periodic=True, window_len=10, window='hanning')

	Smooths each of the x, y and z components of self.points by
convolving with a window of the given type and size.

Warning

This is not topologically safe, it can change
the knot type of the curve. For topologically
safe reduction, see octree_simplify().

	Parameters

	
	repeats (int) – Number of times to run the smoothing algorithm. Defaults to 1.

	periodic (bool) – If True, the convolution window wraps around the curve.
Defaults to True.

	window_len (int) – Width of the convolution window. Defaults to 10.
Passed to pyknotid.spacecurves.smooth.smooth().

	window (string) – The type of convolution window. Defaults to ‘hanning’.
Passed to pyknotid.spacecurves.smooth.smooth().

	
to_json(filen)

	Writes the knot points to the given filename, in a json format
that can be read later by SpaceCurve.from_json(). Uses
pyknotid.io.to_json_file() internally.

	
to_txt(filen)

	Writes the knot points to the given filename, formatted
with each x,y,z component of each point space-separated
on its own line, i.e.:

...
1.2 6.1 98.5
6.19 8.5 1.9
...

	
torsions(signed=False, closed=True)

	Returns torsions at each vertex.

	
translate(vector)

	Translates all the points of self by the given vector.

	Parameters

	vector (array-like) – The x, y, z translation distances

	
writhe(samples=10, recalculate=False, method='integral', include_acn=False, **kwargs)

	The (approximate) writhe of the space curve, obtained by averaging
the planar writhe over the given number of directions.

	Parameters

	
	samples (int) – The number of directions to average over. Defaults to 10.

	recalculate (bool) – Whether to recalculate the writhe even if a cached result
is available. Defaults to False.

	method (str) – If ‘projections’, averages the planar writhe over many
projections. If ‘integral’, calculates the writhing integral.

	**kwargs – These are passed directly to raw_crossings().

	
zero_centroid()

	Translate such that the centroid (average position of vertices)
is at (0, 0, 0).

Knot

Class for dealing with curves as knots. Knot provides many
methods for topological manipulation and calculations.

API documentation

	
class pyknotid.spacecurves.knot.Knot(points, verbose=True, add_closure=False, zero_centroid=False)

	Bases: pyknotid.spacecurves.spacecurve.SpaceCurve

Class for holding the vertices of a single line, providing helper
methods for convenient manipulation and analysis.

A Knot just represents a single space curve, it may be
topologically trivial!

This class deliberately combines methods to do many different kinds
of measurements or manipulations. Some of these are externally
available through other modules in pyknotid - if so, this is usually
indicated in the method docstrings.

	Parameters

	
	points (array-like) – The 3d points (vertices) of a piecewise
linear curve representation

	verbose (bool) – Indicates whether the Knot should print
information during processing

	add_closure (bool) – If True, adds a final point to the knot near to the start point,
so that it will appear visually to close when plotted.

	
alexander_at_root(root, round=True, **kwargs)

	Returns the Alexander polynomial at the given root of unity,
i.e. evaluated at exp(2 pi I / root).

The result returned is the absolute value.

	Parameters

	
	root (int) – The root of unity to use, i.e. evaluating at exp(2 pi I / root).
If this is iterable, this method returns a list of the results
at every value of that iterable.

	round (bool) – If True and n in (1, 2, 3, 4), the result will be rounded
to the nearest integer for convenience, and returned as an
integer type.

	**kwargs – These are passed directly to alexander_polynomial().

	
alexander_polynomial(variable=-1, quadrant='lr', mode='python', **kwargs)

	Returns the Alexander polynomial at the given point,
as calculated by pyknotid.invariants.alexander().

See pyknotid.invariants.alexander() for the meanings
of the named arguments.

	
copy()

	Returns another knot with the same points and verbosity
as self. Other attributes (e.g. cached crossings) are not
preserved.

	
determinant()

	Returns the determinant of the knot. This is the Alexander
polynomial evaluated at -1.

	
exterior_manifold()

	The knot complement manifold of self as a SnapPy class
giving access to all of SnapPy’s tools.

This method requires that Spherogram, and possibly SnapPy,
are installed.

	
hyperbolic_volume()

	Returns the hyperbolic volume at the given point, via
pyknotid.representations.PlanarDiagram.as_spherogram().

	Returns

	
	volume (float) – A float representing the volume returned.

	accuracy (int) – The number of digits of precision. This is significant
digits, e.g. 0.00021 with 1 digit precision = 2E-4.

	solution_type (str) – The solution type of the manifold. Normally one of:
- ‘contains degenerate tetrahedra’ => may not be a valid result
- ‘all tetrahedra positively oriented’ =>

really probably hyperbolic

	
identify(determinant=True, alexander=False, roots=(2, 3, 4), min_crossings=True)

	Provides a simple interface to
pyknotid.catalogue.identify.from_invariants(), by passing
the given invariants. This does not support all invariants
available, or more sophisticated identification methods,
so don’t be afraid to use the catalogue functions directly.

	Parameters

	
	determinant (bool) – If True, uses the knot determinant in the identification.
Defaults to True.

	alexander (bool) – If True-like, uses the full alexander polynomial in the
identification. If the input is a dictionary of kwargs,
these are passed straight to self.alexander_polynomial.

	roots (iterable) – A list of roots of unity at which to evaluate. Defaults
to (2, 3, 4), the first of which is redundant with the
determinant. Note that higher roots can be calculated, but
aren’t available in the database.

	min_crossings (bool) – If True, the output is restricted to knots with fewer crossings
than the current projection of this one. Defaults to True. The
only reason to turn this off is to see what other knots have
the same invariants, it is never not useful for direct
identification.

	
isolate_knot()

	Return indices of self.points within which the knot (if any)
appears to lie, according to a simple closure algorithm.

This method is experimental and may not provide very good results.

	
planar_writhe_quantities(num_angles=100, **kwargs)

	Returns the second order writhes, and arnold 2St+J+ values, for a
range of different projection directions.

	
plot(**kwargs)

	Plots the line. See pyknotid.visualise.plot_line() for
full documentation.

	
plot_isolated(**kwargs)

	Plots the curve in red, except for the isolated local knot which
is coloured blue. The local knot is found with self.isolate_knot,
which may not be reliable or have good resolution.

	Parameters

	**kwargs – kwargs are passed directly to Knot.plot().

	
points

	The points of the spacecurve, as an Nx3 numpy array.

	
slipknot_alexander(num_samples=0, **kwargs)

	
	Parameters

	
	num_samples (int) – The number of indices to cut at. Defaults to 0, which
means to sample at all indices.

	**kwargs – Keyword arguments, passed directly to
:meth:`pyknotid.spacecurves.openknot.OpenKnot.alexander_fractions.

	
vassiliev_degree_2(simplify=True, **kwargs)

	Returns the Vassiliev invariant of degree 2 for the Knot.

	Parameters

	
	simplify (bool) – If True, simplifies the Gauss code of self before
calculating the invariant. Defaults to True, but
will work fine if you set it to False (and might even
be faster).

	**kwargs – These are passed directly to gauss_code().

	
vassiliev_degree_3(simplify=True, try_cython=True, **kwargs)

	Returns the Vassiliev invariant of degree 3 for the Knot.

	Parameters

	
	simplify (bool) – If True, simplifies the Gauss code of self before
calculating the invariant. Defaults to True, but
will work fine if you set it to False (and might even
be faster).

	try_cython (bool) – Whether to try and use an optimised cython version of the
routine (takes about 1/3 of the time for complex
representations). Defaults to True, but the python
fallback will be slower than setting it to False if the
cython function is not available.

	**kwargs – These are passed directly to gauss_code().

	
whitney_index()

	The degree of the Gauss map mapping a point on the curve to the
direction of the positive tangent vector at this point.

OpenKnot

Class for working with open (linear) curves, that do not form closed
loops. OpenKnot provides methods for visualising these curves
and analysing their topology via different kinds of closures.

API documentation

	
class pyknotid.spacecurves.openknot.OpenKnot(*args, **kwargs)

	Bases: pyknotid.spacecurves.spacecurve.SpaceCurve

Class for holding the vertices of a single line that is assumed to
be an open curve. This class inherits from
SpaceCurve, replacing any
default arguments that assume closed curves, and providing methods
for statistical analysis of knot invariants on projection and closure.

All knot invariant methods return the results of a sampling over
many projections of the knot, unless indicated otherwise.

	
alexander_fractions(number_of_samples=10, **kwargs)

	Returns each of the Alexander polynomials from
self.alexander_polynomials, with the fraction of that type.

	
alexander_polynomials(number_of_samples=10, radius=None, recalculate=False, zero_centroid=False, optimise_closure=True)

	Returns a list of Alexander polynomials for the knot, closing
on a sphere of the given radius, with the given number of sample
points approximately evenly distributed on the sphere.

The results are cached by number of samples and radius.

	Parameters

	
	number_of_samples (int) – The number of points on the sphere to sample. Defaults to 10.

	optimise_closure (bool) – If True, doesn’t really close on a sphere but at infinity.
This lets the calculation be optimised slightly, and so is the
default.

	radius (float) – The radius of the sphere on which to close the knot. Defaults
to None, which picks 10 times the largest Cartesian deviation
from 0. This is only used if optimise_closure=False.

	zero_centroid (bool) – Whether to first move the average position of vertices to
(0, 0, 0). Defaults to True.

	Returns

	A number_of_samples by 3 array of angles and alexander
polynomials.

	Return type

	ndarray

	
alexander_polynomials_multiroots(number_of_samples=10, radius=None, zero_centroid=False)

	Returns a list of Alexander polynomials for the knot, closing
on a sphere of the given radius, with the given number of sample
points approximately evenly distributed on the sphere. The
Alexander polynomials are found at three different roots (2, 3
and 4) and a the knot types corresponding to these roots are
returned also.

The results are cached by number of samples and radius.

	Parameters

	
	number_of_samples (int) – The number of points on the sphere to sample. Defaults to 10.

	radius (float) – The radius of the sphere on which to close the knot. Defaults
to None, which picks 10 times the largest Cartesian deviation
from 0.

	zero_centroid (bool) – Whether to first move the average position of vertices to
(0, 0, 0). Defaults to True.

	Returns

	A number_of_samples by 3 array of angles and alexander
polynomials.

	Return type

	ndarray

	
arclength()

	Calls pyknotid.spacecurves.spacecurve.SpaceCurve.arclength(),
automatically not including the closure.

	
closing_distance()

	Returns the distance between the first and last points.

	
closure_alexander_polynomial(theta=0, phi=0)

	Returns the Alexander polynomial of the knot, when projected in
the z plane after rotating the given theta and phi to the
North pole.

	Parameters

	
	theta (float) – The sphere angle theta

	phi (float) – The sphere angle phi

	
generalised_alexander()

	Returns the generalised Alexander polynomial for the default projection
of the open knot

	
multiroots_fractions(number_of_samples=10, **kwargs)

	Returns each of the knot types from
self.alexander_polynomials_multiroots, with the fraction of that type.

	
plot_alexander_map(number_of_samples=10, scatter_points=False, mode='imshow', interpolation=100, **kwargs)

	Creates (and returns) a projective diagram showing each
different Alexander polynomial in a different colour according
to a closure on a far away point in this direction.

	Parameters

	
	number_of_samples (int) – The number of points on the sphere to close at.

	scatter_points (bool) – If True, plots a dot at each point on the map projection
where a closure was made.

	mode (str) – ‘imshow’ to plot the pixels of an image, otherwise plots
filled contours. Defaults to ‘imshow’.

	interpolation (int) – The (short) side length of the interpolation grid on which
the map projection is made. Defaults to 100.

	
plot_alexander_shell(number_of_samples=100, mode='mesh', radius=None, **kwargs)

	Plots the curve in 3d via self.plot(), along with a translucent
sphere coloured by the type of knot obtained by closing on each
point.

Parameters are all passed to OpenKnot.alexander_polynomials(),
except opacity and kwargs which are given to mayavi.mesh, and
sphere_radius_factor which gives the radius of the enclosing
sphere in terms of the maximum Cartesian distance of any point
in the line from the origin.

	
plot_projections(number_of_samples)

	Plots the projection of the knot at each of the given
number of samples squared, rotated such that the sample
direction is vertical.

The output (and return) is a matplotlib plot with
number_of_samples x number_of_samples axes.

	
plot_self_linking_map(number_of_samples=10, scatter_points=False, mode='imshow', **kwargs)

	Creates (and returns) a projective diagram showing each
different self linking number in a different colour according
to a projection in this direction.

	
plot_self_linking_shell(number_of_samples=100, **kwargs)

	Plots the curve in 3d via self.plot(), along with a translucent
sphere coloured by the self linking number obtained by projecting from
this point.

Parameters are all passed to
OpenKnot.virtual_checks(), except opacity and kwargs
which are given to mayavi.mesh, and sphere_radius_factor which gives
the radius of the enclosing sphere in terms of the maximum Cartesian
distance of any point in the line from the origin.

	
plot_virtual_map(number_of_samples=10, scatter_points=False, mode='imshow', **kwargs)

	Creates (and returns) a projective diagram showing each
different virtual Boolean in a different colour according
to a projection in this direction.

	
plot_virtual_shell(number_of_samples=10, zero_centroid=False, sphere_radius_factor=2.0, opacity=0.3, **kwargs)

	Plots the curve in 3d via self.plot(), along with a translucent
sphere coloured according to whether or not the projection from this
point corresponds to a virtual knot or not.

Parameters are all passed to
OpenKnot.virtual_checks(), except opacity and kwargs
which are given to mayavi.mesh, and sphere_radius_factor which gives
the radius of the enclosing sphere in terms of the maximum Cartesian
distance of any point in the line from the origin.

	
points

	The points of the spacecurve, as an Nx3 numpy array.

	
projection_invariant(**kwargs)

	First checks if the projection of an open curve is virtual or classical. If virtual,
a virtual knot invariant is calculated. Otherwise a classical invariant is calculated.

	
raw_crossings(mode='use_max_jump', virtual_closure=False, recalculate=False, try_cython=False)

	Calls pyknotid.spacecurves.spacecurve.SpaceCurve.raw_crossings(),
but without including the closing line between the last
and first points (i.e. setting include_closure=False).

	
self_linking(theta=0, phi=0)

	Takes an open curve, finds its Gauss code (for the default projection)
and calculates its self linking number, J(K). See Kauffman 2004 for
more information.

	Returns

	The self linking number of the open curve

	Return type

	self_link_counter : int

	
self_linking_fractions(number_of_samples=10, **kwargs)

	Returns each of the self linking numbers from
self.virtual.self_link.projections, with the fraction of each type.

	
self_linkings(number_of_samples=10, zero_centroid=False, **kwargs)

	Returns a list of self linking numbers for the curve with a given
number of projections taken from directions approximately evenly
distributed.

	Parameters

	
	number_of_samples (int) – The number of points on the sphere to project from. Defaults to 10.

	zero_centroid (bool) – Whether to first move the average position of vertices to
(0, 0, 0). Defaults to False.

	Returns

	A number_of_samples by 3 array of angles and self linking number

	Return type

	ndarray

	
smooth(repeats=1, window_len=10, window='hanning')

	Calls pyknotid.spacecurves.spacecurve.SpaceCurve.smooth(),
with the periodic argument automatically set to False.

	
vassiliev_degree_2_average(samples=10, recalculate=False, **kwargs)

	Returns the average Vassliev degree 2 invariant calculated by
averaging its combinatorial value over many different
projection directions.

	Parameters

	
	samples (int) – The number of directions to average over. Defaults to 10.

	recalculate (bool) – Whether to recalculate the writhe even if a cached result
is available. Defaults to False.

	**kwargs – These are passed directly to raw_crossings().

	
virtual_check()

	Takes an open curve and checks (for the default projection) if its
Gauss code corresponds to a virtual knot or not. Returns a
Boolean of this information.

Warning

This only checks the distance by which entries in
the Gauss code are separated, it is not
guaranteed to detect virtual knots.

	Returns

	virtual – True if the Gauss code corresponds to a virtual knot. False
otherwise.

	Return type

	bool

	
virtual_checks(number_of_samples=10, zero_centroid=False)

	Returns a list of virtual Booleans for the curve with a given number
if projections taken from directions approximately evenly distributed.
A value of True corresponds to the projection giving a virtual knot,
with False returned otherwise.

	Parameters

	
	number_of_samples (int) – The number of points on the sphere to project from. Defaults to 10.

	zero_centroid (bool) – Whether to first move the average position of vertices to
(0, 0, 0). Defaults to False.

	Returns

	A number_of_samples by 3 array of angles and virtual Booleans
(True if virtual, False otherwise)

	Return type

	ndarray

	
virtual_fractions(number_of_samples=10, **kwargs)

	Returns each of the virtual booleans from
self.virtual.check.projections, with the fraction of each type.

	
pyknotid.spacecurves.openknot.gall_peters(theta, phi)

	Converts spherical coordinates to the Gall-Peters
projection of the sphere, an area-preserving projection in
the shape of a Rectangle.

	Parameters

	
	theta (float) – The latitude, in radians.

	phi (float) – The longitude, in radians.

	
pyknotid.spacecurves.openknot.knot_db_to_string(database_object)

	Takes output from from_invariants() and returns knot type as decimal.
For example: <Knot 3_1> becomes 3.1 and <Knot K13n1496> becomes 13.1496

	
pyknotid.spacecurves.openknot.mollweide(phi, lambda_)

	Converts spherical coordinates to the Mollweide
projection of the sphere, an area-preserving projection in
the shape of an ellipse.

	Parameters

	
	phi (float) – The latitude, in radians.

	lambda (float) – The longitude, in radians.

Link

[image: A hopf link visualised by pyknotid]
Class for dealing with multiple curves as a link. Link
provides methods for topological manipulation and calculations on
multiple curves.

API documentation

	
class pyknotid.spacecurves.link.Link(lines, verbose=True)

	Bases: object

Class for holding the vertices of multiple lines, providing helper
methods for convenient manipulation and analysis.

The data is stored
internally as multiple :class:`Knot`s.

	Parameters

	
	lines (list of nx3 array-like or Knots) – List with the points of each line.

	verbose (bool) – Whether to print information during processing. Defaults
to True.

	
arclength(include_closures=True)

	Returns the sum of arclengths of the lines.

	Parameters

	include_closures (bool) – Whether to include the distance between the final and
first points of each line. Defaults to True.

	
classmethod from_periodic_lines(lines, shape, perturb=True)

	Returns a Link instance in which the lines have
been unwrapped through the periodic boundaries.

	Parameters

	
	line (list) – A list of the Nx3 vectors of points in the lines

	shape (array-like) – The x, y, z distances of the periodic boundary

	perturb (bool) – If True, translates and rotates the knot to avoid any lattice
problems.

	
gauss_code(**kwargs)

	Returns a GaussCode
instance representing the crossings of the knot.

The GaussCode instance is cached internally. If you want to
recalculate it (e.g. to get an unsimplified version if you
have simplified it), you should pass recalculate=True.

This method passes kwargs directly to raw_crossings(),
see the documentation of that function for all options.

	
linking_number(**kwargs)

	Returns the linking number of the lines in the Link, the
sum of signed crossings between them, ignoring crossings of
a line with itself.

	
octree_simplify(runs=1, plot=False, rotate=True, obey_knotting=False, **kwargs)

	Simplifies the curves via the octree reduction of
:module:`pyknotid.simplify.octree`.

	Parameters

	
	runs (int) – The number of times to run the octree simplification.
Defaults to 1.

	plot (bool) – Whether to plot the curve after each run. Defaults to False.

	rotate (bool) – Whether to rotate the space curve before each run. Defaults
to True as this can make things much faster.

	obey_knotting (bool) – Whether to not let the line pass through itself. Defaults to
False - knotting of individual components will be ignored!
This is much faster than the alternative.

:param kwargs are passed to the pyknotid.simplify.octree.OctreeCell:
:param constructor.:

	
plot(mode='vispy', clf=True, colours=None, **kwargs)

	Plots all the lines. See pyknotid.visualise.plot_line() for
full documentation.

	
raw_crossings(mode='use_max_jump', only_with_other_lines=True, include_closures=True, recalculate=False, try_cython=True)

	Returns the crossings in the diagram of the projection of the
space curve into its z=0 plane.

The crossings will be calculated the first time this function
is called, then cached until an operation that would change
the list (e.g. rotation, or changing self.points).

Multiple modes are available (see parameters) - you should be
aware of this because different modes may be vastly slower or
faster depending on the type of line.

	Parameters

	
	mode (str, optional) – One of 'count_every_jump' and 'use_max_jump'. In the former
case,
walking along the line uses information about the length of
every step. In the latter, it guesses that all steps have the
same length as the maximum step length. The optimal choice
depends on the data, but is usually 'use_max_jump', which
is the default.

	only_with_other_lines (bool) – If True, ignores self-crossings (i.e. the knot type of the loops)
and returns only a list of crossings between the loops. Defaults
to True

	include_closures (bool, optional) – Whether to include crossings with the
lines joining their start and end points. Defaults to True.

	recalculate (bool, optional) – Whether to force a recalculation of the crossing positions.
Defaults to False.

	try_cython (bool, optional) – Whether to try to use a cython implementation of crossing
finding. This will make no difference if the cython could not
be loaded, in which case python is already
used automatically. Defaults to True.

	Returns

	The raw array of floats representing crossings, of the
form [[line_index, other_index, +-1, +-1], …], where the
line_index and other_index are in arclength parameterised
by integers for each vertex and linearly interpolated,
and the +-1 represent over/under and clockwise/anticlockwise
respectively.

	Return type

	array-like

	
rotate(angles=None)

	Rotates all the points of each line of self by the given angle
in each axis.

	Parameters

	angles (array-like) – Rotation angles about x, y and z axes. If None, random angles
are used. Defaults to None.

	
smooth(*args, **kwargs)

	Smooths each of the x, y and z components of each of self.lines
by convolving with a window of the given type and size.

kwargs are passed straight to
pyknotid.spacecurves.spacecurve.SpaceCurve.smooth().

	
translate(vector, lines=None)

	Translate all points in some or all lines of self.

	Parameters

	
	vector (array-like) – The x, y, z translation distances

	lines (list or int) – The list of line indices to which the translation should
be applied. Defaults to None, which applies the translation
to all the lines of self. If an integer is supplied, only
the line with this index is translated.

PeriodicCell

Tools for working with a periodic cell of spacecurves.

API documentation

	
class pyknotid.spacecurves.periodiccell.Cell(lines, shape, periodic=True, cram=False, downsample=None)

	Bases: object

Class for holding the vertices of some number of lines with
periodic boundary conditions.

	Parameters

	
	lines (list) – Must be a list of Knots or ndarrays of vertices.

	shape (tuble or int) – The shape of the cell, in whatever units the lines use.

	periodic (bool) – Whether the cell is periodic. If True, lines are marked as
‘nth’ or ‘loop’ in self.line_types. Defaults to True.

	
classmethod from_qwer(qwer, shape, **kwargs)

	Returns an instance of Cell from a quartet of differently
classified lines in periodic boundaries.

	Parameters

	
	qwer (tuple) – Should be a 4-tuple of lists q, w, e, r. q is closed
loops, w is lines with non-trivial homology, e is lines that
terminate on the boundaries of the cell, r is any remaining
(unclassified) lines.

	shape (int or tuple) – The size of the cell along each axis. If a single number
is passed, all axes are assumed to be the same length.

	
linking_matrix()

	Get the linking numbers of each line in the cell with every
other.

	
smooth(repeats=1, window_len=10)

	Smooth each line in the curve, equivalent to
smooth().

Invariants

Functions for retrieving invariants of knots and links.

Many of these functions can be called in a more convenient way via
methods of the space curve classes
(e.g. Knot) or the
Representation class.

Mathematica

Functions whose name ends with _mathematica try to create an
external Mathematica process to calculate the answer. They may hang
or have other problems if Mathematica isn’t available in your
$PATH, so be careful using them.

Warning

This module may be broken into multiple components at
some point.

API documentation

	
pyknotid.invariants.alexander(representation, variable=-1, quadrant='lr', simplify=True, mode='python')

	Calculates the Alexander polynomial of the given knot. The
representation must have just one knot component, or the
calculation will fail or potentially give bad results.

The result is returned with whatever numerical precision the
algorithm produces, it is not rounded.

The given representation must be simplified (RM1 performed if
possible) for this to work, otherwise the matrix has overlapping
elements. This is so important that this function automatically
calls
pyknotid.representations.gausscode.GaussCode.simplify(), you
must disable this manually if you don’t want to do it.

Note

If ‘maxima’ or ‘mathematica’ is chosen as the mode, the
variable will automatically be set to t.

Note

If the mode is ‘cypari’, the quadrant argument will be
ignored and the upper-left quadrant always used.

	Parameters

	
	representation (Anything convertible to a) – GaussCode
A pyknotid representation class for the knot, or anything that
can automatically be converted into a GaussCode (i.e. by writing
GaussCode(your_object)).

	variable (float or complex or sympy variable) – The value to caltulate the Alexander polynomial at. Defaults to -1,
but may be switched to the sympy variable t in the future.
Supports int/float/complex types (fast, works for thousands of
crossings) or sympy
expressions (much slower, works mostly only for <100 crossings).

	quadrant (str) – Determines what principal minor of the Alexander matrix should be
used in the calculation; all choices should give the same answer.
Must be ‘lr’, ‘ur’, ‘ul’ or ‘ll’ for lower-right, upper-right,
upper-left or lower-left respectively.

	simplify (bool) – Whether to call the GaussCode simplify method, defaults to True.

	mode (string) – One of ‘python’, ‘maxima’, ‘cypari’ or ‘mathematica’.
denotes what
tools to use; if python, the calculation is performed with
numpy or sympy as appropriate. If maxima or mathematica, that
program is called by the function - this will only work if the
external tool is installed and available. Defaults to python.

	
pyknotid.invariants.alexander_cypari(representation, quadrant='ul', verbose=False, simplify=True)

	Returns the Alexander polynomial of the given representation, by
calculating the matrix determinant via cypari, a python interface
to Pari-GP.

The function only supports evaluating at the variable t.

The returned object is a cypari query type.

	Parameters

	
	representation (Anything convertible to a) – GaussCode
A pyknotid representation class for the knot, or anything that
can automatically be converted into a GaussCode (i.e. by writing
GaussCode(your_object)).

	quadrant (str) – Determines what principal minor of the Alexander matrix should be
used in the calculation; all choices should give the same answer.
Must be ‘lr’, ‘ur’, ‘ul’ or ‘ll’ for lower-right, upper-right,

	verbose (bool) – Whether to print information about the procedure. Defaults to False.

	simplify (bool) – If True, tries to simplify the representation before calculating
the polynomial. Defaults to True.

	
pyknotid.invariants.alexander_mathematica(representation, quadrant='ul', verbose=False, via_file=True)

	Returns the Alexander polynomial of the given representation, by
creating a Mathematica process and running its knot routines.
The Mathematica installation must include the KnotTheory package.

The function only supports evaluating at the variable t.

	Parameters

	
	representation (Anything convertible to a) – GaussCode
A pyknotid representation class for the knot, or anything that
can automatically be converted into a GaussCode (i.e. by writing
GaussCode(your_object)).

	quadrant (str) – Determines what principal minor of the Alexander matrix should be
used in the calculation; all choices should give the same answer.
Must be ‘lr’, ‘ur’, ‘ul’ or ‘ll’ for lower-right, upper-right,

	verbose (bool) – Whether to print information about the procedure. Defaults to False.

	via_file (bool) – If True, calls Mathematica via a written file mathematicascript.m,
otherwise calls Mathematica directly with runMath. The latter
had a nasty bug in at least one recent Mathematica version, so the
default is to True.

	simplify (bool) – If True, tries to simplify the representation before calculating
the polynomial. Defaults to True.

	
pyknotid.invariants.alexander_maxima(representation, quadrant='ul', verbose=False, simplify=True)

	Returns the Alexander polynomial of the given representation, by
calculating the matrix determinant in maxima.

The function only supports evaluating at the variable t.

	Parameters

	
	representation (Anything convertible to a) – GaussCode
A pyknotid representation class for the knot, or anything that
can automatically be converted into a GaussCode (i.e. by writing
GaussCode(your_object)).

	quadrant (str) – Determines what principal minor of the Alexander matrix should be
used in the calculation; all choices should give the same answer.
Must be ‘lr’, ‘ur’, ‘ul’ or ‘ll’ for lower-right, upper-right,

	verbose (bool) – Whether to print information about the procedure. Defaults to False.

	simplify (bool) – If True, tries to simplify the representation before calculating
the polynomial. Defaults to True.

	
pyknotid.invariants.arnold_2St_2Jminus(representation)

	Returns J- + 2 * St where J+ and St are Arnold’s invariants of
plane curves.

See ‘Invariants of curves and fronts via Gauss diagrams’, M
Polyak, Topology 37, 1998.

	
pyknotid.invariants.arnold_2St_2Jplus(representation)

	Returns J+ + 2 * St where J+ and St are Arnold’s invariants of
plane curves.

The calculation is performed by transforming the representation
into a representation of an unknot by flipping crossings, then
calculating the second order writhe.

See ‘Invariants of curves and fronts via Gauss diagrams’, M
Polyak, Topology 37, 1998.

	
pyknotid.invariants.contract_points(planar_diagram)

	For appropriately contracting :class: Points in a
:class: PlanarDiagram According to the following rules:

P_a,b P_b,c -> P_a,c
P_a,b P_a,b -> P_a,a

	
pyknotid.invariants.hyperbolic_volume(representation)

	The hyperbolic volume, calculated by the SnapPy library for
studying the topology and geometry of 3-manifolds. This function
depends on the Spherogram module, distributed with SnapPy or
available separately.

	Parameters

	representation (A PlanarDiagram, or anything convertible to a) – GaussCode
A pyknotid representation class for the knot, or anything that
can automatically be converted into a GaussCode (i.e. by writing
GaussCode(your_object)), or a PlanarDiagram.

	
pyknotid.invariants.jones_mathematica(representation)

	Returns the Jones polynomial of the given representation, by
creating a Mathematica process and running its knot routines.
The Mathematica installation must include the KnotTheory package.

The function only supports evaluating at the variable q.

	Parameters

	representation (A PlanarDiagram, or anything convertible to a) – GaussCode
A pyknotid representation class for the knot, or anything that
can automatically be converted into a GaussCode (i.e. by writing
GaussCode(your_object)), or a PlanarDiagram.

	
pyknotid.invariants.second_order_writhe(representation)

	Returns the second order writhe (i1,i3,i2,i4) of the
representation, as defined in Lin and Wang.

	
pyknotid.invariants.self_linking(representation)

	Returns the self linking number J(K) of the Gauss code, an
invariant of virtual knots. See Kauffman 2004 for more
information.

Currently only works for knots.

	
pyknotid.invariants.vassiliev_degree_2(representation)

	Calculates the Vassiliev invariant of degree 2 of the given
knot. The representation must have just one knot component,
this doesn’t work for links.

	Parameters

	representation (Anything convertible to a) – GaussCode
A pyknotid representation class for the knot, or anything that
can automatically be converted into a GaussCode (i.e. by writing
GaussCode(your_object)).

	
pyknotid.invariants.vassiliev_degree_3(representation, try_cython=True)

	Calculates the Vassiliev invariant of degree 3 of the given
knot. The representation must have just one knot component,
this doesn’t work for links.

	Parameters

	
	representation (Anything convertible to a) – GaussCode
A pyknotid representation class for the knot, or anything that
can automatically be converted into a GaussCode (i.e. by writing
GaussCode(your_object)).

	try_cython (bool) – Whether to try and use an optimised cython version of the
routine (takes about 1/3 of the time for complex representations).
Defaults to True, but the python fallback will be slower
than setting it to False if the cython function is not
available.

	
pyknotid.invariants.virtual_vassiliev_degree_3(representation)

	Calculates the virtual Vassiliev invariant of degree 3 (for
non-long-knots) of the given representation, as described in
‘Finite type invariants of classical and virtual knots’ by
Goussarov, Polyak and Viro.

	Parameters

	representation (Representation) – A representation class, or anything convertible to one
(in principle).

Topological representations

Knots and links can be encoded in many different ways, generally by
enumerating their self-intersections in projection along some
axis. We provide here

This module contains classes and functions for representing
knots in knot diagrams, mainly the
pyknotid.representations.gausscode.GaussCode and
pyknotid.representations.planardiagram.PlanarDiagram.

These provide convenient methods to convert between different
representations, and to simplify via Reidemeister moves.

Creating representations

Knot representations can be calculated from space curves, or created directly by inputting standard notations.

From space curves

pyknotid’s space curve classes can all return topological representations. For instance:

from pyknotid.spacecurves import Knot
from pyknotid.make import trefoil
k = Knot(trefoil())

You can extract a GaussCode object:

k.gauss_code() # 1+a,2-a,3+a,1-a,2+a,3-a

or a PlanarDiagram:

k.planar_diagram() # PD with 3: X_{2,5,3,6} X_{4,1,5,2} X_{6,3,1,4}

or a Gauss diagram:

k.gauss_diagram() # plots the diagram in a new window using matplotlib

[image: An example Gauss diagram for the knot 10_93]
or a generic Representation:

k.representation() # 1+a,2-a,3+a,1-a,2+a,3-a (but provides more methods than a GaussCode)

By direct input

Gauss codes

A Gauss code is a list of crossings in a projection of a curve,
labelled by numbers, and in each case indicating whether the curve
passes over (+) or under (-) itself. Each crossing also has a local
orientation, represented here by ‘c’ for clockwise, or ‘a’ for
anticlockwise.

With these rules, you can enter Gauss codes as comma-separated lists:

from pyknotid.representations import GaussCode
gc = GaussCode('1+c,2-c,3+c,1-c,2+c,3-c')

If you do not know the crossing orientations (c/a), pyknotid can
calculate them automatically:

gc = GaussCode.calculating_orientations('1+,2-,3+,1-,2+,3-')

If you do this with a chiral not, the chirality is selected
arbitrarily.

Calculating invariants

You can calculate many invariants using the functions of
Invariants.

pyknotid also provides a more convenient interface using the
Representation
class. Internally this wraps a Gauss code:

from pyknotid.representations import Representation
rep = Representation('1-c,2+c,3-a,4+a,2-c,1+c,4-a,3+a')

You can then calculate many quantities via methods of this object:

rep.vassiliev_degree_2() # 1
rep.vassiliev_degree_3() # -1
rep.identify() # [<Knot 4_1>]

For a full list of available functions, see
Representation.

	GaussCode
	API documentation

	PlanarDiagram
	API documentation

	GaussDiagram
	API documentation

	DTNotation
	API documentation

	Representation
	API documentation

GaussCode

Classes for working with Gauss codes representing planar projections
of curves.

See class documentation for more details.

API documentation

	
class pyknotid.representations.gausscode.GaussCode(crossings='', verbose=True)

	Bases: object

Class for containing and manipulating Gauss codes.

By default you must pass an extended Gauss code that includes the
sign of each crossing (‘c’ for clockwise or ‘a’ for
anticlockwise), e.g. 1+c,2-c,3+c,1-c,2+c,3-c for the trefoil
knot. If you do not know the crossing signs you can instead call
GaussCode.calculating_orientations(), e.g.
gc = GaussCode.calculating_orientations('1+,2-,3+,1-,2+,3-').

The length of a Gauss code (e.g. len(GaussCode())) is the
number of crossings in it.

	Parameters

	
	crossings (array-like or string or PlanarDiagram or GaussCode) – A raw_crossings array from a
Knot
or Link, or a string
representation of the form (e.g.)
1+c,2-c,3+c,1-c,2+c,3-c, with commas between entries,
and with multiple link components separated by spaces and/or
newlines. If a PlanarDiagram or GaussCode is passed, the code
is duplicated.

	verbose (bool) – Whether to print information during calculations. Defaults to
True.

	
classmethod calculating_orientations(code)

	Takes a Gauss code without crossing orientations and returns an
equivalent Gauss code (though not necessarily of the same length).

This works by generating a space curve and finding its
self-intersections on projection. This is overkill for the
problem, but works.

	
flipped()

	Returns a copy of self with crossing over/under switched.

	
mirrored()

	Returns a copy of self with crossing orientations reversed.

	
reindex_crossings()

	Replaces the indices of the crossings in the Gauss code with the
integers from 1 to its length.

Note that this modifies the Gauss code in place, the previous indices
are not recorded.

	
simplify(one=True, two=True, one_extended=True)

	Simplifies the GaussCode, performing the given Reidemeister moves
everywhere possible, as many times as possible, until the
GaussCode is no longer changing.

This modifies the GaussCode - (non-topological) information may
be lost!

	Parameters

	
	one (bool) – Whether to use Reidemeister 1, defaults to True.

	two (bool) – Whether to use Reidemeister 2, defaults to True.

	one_extended (bool) – Whether to use extended Reidemeister 1, which removes crossings
connected by arcs which include only over or only under crossings
(and which must thus be topologically irrelevant). Defaults
to True.

	
without_virtual()

	Returns a version of the Gauss code without explicit virtual
crossings.

PlanarDiagram

Classes for working with planar diagram notation of knot diagrams.

See individual class documentation for more details.

API documentation

	
class pyknotid.representations.planardiagram.Crossing(a=None, b=None, c=None, d=None)

	Bases: list

A single crossing in a planar diagram. Each PlanarDiagram
is a list of these.

	Parameters

	
	a (int or None) – The first entry in the list of lines meeting at this Crossing.

	b (int or None) – The second entry in the list of lines meeting at this Crossing.

	c (int or None) – The third entry in the list of lines meeting at this Crossing.

	d (int or None) – The fourth entry in the list of lines meeting at this Crossing.

	
as_mathematica()

	Get a string of mathematica code that can represent the Crossing
in mathematica’s knot library.

The mathematica code won’t be valid if any lines of self are None.

	Return type

	str

	
components()

	Returns a de-duplicated list of lines intersecting at this Crossing.

	Return type

	list

	
update_line_number(old, new)

	Replaces all instances of the given line number in self.

	Parameters

	
	old (int) – The old line number

	new (int) – The number to replace it with

	
valid()

	True if all intersecting lines are not None.

	
class pyknotid.representations.planardiagram.PlanarDiagram(crossings='')

	Bases: list

A class for containing and manipulating planar diagrams.

Just provides convenient display and conversion methods for now.
In the future, will support simplification.

Shorthand input may be of the form X_1,4,2,5 X_3,6,4,1 X_5,2,6,3.
This is (should be?) the same as returned by repr.

	Parameters

	crossings (array-like or string or GaussCode) – The list of crossings in the diagram, which will be converted
to an internal planar diagram representation. Currently these are
mostly converted via a GaussCode instance, so in addition to the
shorthand any array-like supported by
GaussCode may be used.

	
as_mathematica()

	Returns a mathematica code representation of self, usable in the
mathematica knot tools.

	
as_networkx()

	Get a networkx graph representing the planar diagram, where
each node is a crossing and each edge is an arc. This is a
non-directed non-multi graph; where two arcs join the same crossing,
they are represented as a single edge, but information about
duplicates is returned alongside the graph.

	Returns

	
	g (Graph) – The networkx graph

	duplicates (list) – A list of tuples representing nodes joined by multiple edges.

	heights (dict) – A dictionary of (start, end, arc_number) graph edges,
containing the start and end height of each edge.

	first_edge (tuple) – The first edge in the graph, including (start, end, arc_number).

	
as_networkx_extended()

	(internal use only) Returns a networkx Graph along with extra
information about the crossings.

	
as_spherogram()

	Get a planar diagram class from the Spherogram module, which
can be used to access SnapPy’s manifold tools.

This method requires that spherogram and SnapPy are installed.

	
pyknotid.representations.planardiagram.index_height(index)

	Returns the height based on the index of the crossing in an entry
of a planar diagram; the 0th and 2nd indices are under crossings,
and the 1st and 3rd are over crossings.

	
pyknotid.representations.planardiagram.shorthand_to_crossings(s)

	Takes a planar diagram shorthand string, and returns a list of
:class:`Crossing`s.

GaussDiagram

[image: A Gauss diagram for the knot 10_93]
Class for creating and viewing Gauss diagrams.

API documentation

	
class pyknotid.representations.gaussdiagram.GaussDiagram(representation)

	Bases: object

Class for containing and manipulating Gauss diagrams.

	Parameters

	representation (Another representation of a knot.) –

	
plot(fig_ax=None)

	Plots the Gauss diagram using matplotlib. This is called
automatically on __init__.

Returns a tuple of the matplotlib figure and axis.

DTNotation

Classes for working with DT notation representing planar projections
of curves.

API documentation

	
class pyknotid.representations.dtnotation.DTNotation(code)

	Bases: object

Class for containing and manipulation DT notation.

	Parameters

	code (str or array-like) – The DT code. Must be either a string of entries separated
by spaces, or an array.

	
gauss_code_string()

	Returns a string containing a Gauss code, in the format accepted
by GaussCode.

To get a GaussCode
object, you can pass this string when initialising it, or use
DTNotation.representation().

	
representation(**kwargs)

	Returns a
Representation
representing the same DT code. The crossing orientations (and
therefore resulting chirality) are chosen arbitrarily.

Representation

An abstract representation of a Knot, providing methods for
the calculation of topological invariants.

API documentation

	
class pyknotid.representations.representation.CrossingGraph

	Bases: collections.defaultdict

	
align_nodes()

	Orders the lines of each node to be in order, clockwise, depending
on their incoming angle.

	
class pyknotid.representations.representation.Representation(crossings='', verbose=True)

	Bases: pyknotid.representations.gausscode.GaussCode

An abstract representation of a knot or link. Internally
this is just a Gauss code, but it exposes extra topological methods
and may in future be refactored to work differently.

	
alexander_at_root(root, round=True, **kwargs)

	Returns the Alexander polynomial at the given root of unity,
i.e. evaluated at exp(2 pi I / root).

The result returned is the absolute value.

	Parameters

	
	root (int) – The root of unity to use, i.e. evaluating at exp(2 pi I / root).
If this is iterable, this method returns a list of the results
at every value of that iterable.

	round (bool) – If True and n in (1, 2, 3, 4), the result will be rounded
to the nearest integer for convenience, and returned as an
integer type.

	**kwargs – These are passed directly to alexander_polynomial().

	
alexander_polynomial(variable=-1, quadrant='lr', mode='python', force_no_simplify=False)

	Returns the Alexander polynomial at the given point,
as calculated by pyknotid.invariants.alexander().

See pyknotid.invariants.alexander() for the meanings
of the named arguments.

	
classmethod calculating_orientations(code, **kwargs)

	Takes a Gauss code without crossing orientations and returns an
equivalent Gauss code (though not necessarily of the same length).

This works by generating a space curve and finding its
self-intersections on projection. This is overkill for the
problem, but works.

	
exterior_manifold()

	The knot complement manifold of self as a SnapPy class
giving access to all of SnapPy’s tools.

This method requires that Spherogram, and possibly SnapPy,
are installed.

	
hyperbolic_volume()

	Returns the hyperbolic volume at the given point, via
pyknotid.representations.PlanarDiagram.as_spherogram().

	
identify(determinant=True, vassiliev_2=True, vassiliev_3=None, alexander=False, roots=(2, 3, 4), min_crossings=True)

	Provides a simple interface to
pyknotid.catalogue.identify.from_invariants(), by passing
the given invariants. This does not support all invariants
available, or more sophisticated identification methods,
so don’t be afraid to use the catalogue functions directly.

	Parameters

	
	determinant (bool) – If True, uses the knot determinant in the identification.
Defaults to True.

	alexander (bool) – If True-like, uses the full alexander polynomial in the
identification. If the input is a dictionary of kwargs,
these are passed straight to self.alexander_polynomial.

	roots (iterable) – A list of roots of unity at which to evaluate. Defaults
to (2, 3, 4), the first of which is redundant with the
determinant. Note that higher roots can be calculated, but
aren’t available in the database.

	min_crossings (bool) – If True, the output is restricted to knots with fewer crossings
than the current projection of this one. Defaults to True. The
only reason to turn this off is to see what other knots have
the same invariants, it is never not useful for direct
identification.

	vassiliev_2 (bool) – If True, uses the Vassiliev invariant of order 2. Defaults to True.

	vassiliev_3 (bool) – If True, uses the Vassiliev invariant of order 3. Defaults to None,
which means the invariant is used only if the representation has
less than 30 crossings.

	
is_virtual()

	Takes an open curve and checks (for the default projection) if its
Gauss code corresponds to a virtual knot or not. Returns a Boolean of
this information.

	Returns

	virtual – True if the Gauss code corresponds to a virtual knot. False
otherwise.

	Return type

	bool

	
self_linking()

	Returns the self linking number J(K) of the Gauss code, an
invariant of virtual knots. See Kauffman 2004 for more information.

	Returns

	slink_counter – The self linking number of the open curve

	Return type

	int

	
vassiliev_degree_2(simplify=True)

	Returns the Vassiliev invariant of degree 2 for the Knot.

	Parameters

	
	simplify (bool) – If True, simplifies the Gauss code of self before
calculating the invariant. Defaults to True, but
will work fine if you set it to False (and might even
be faster).

	**kwargs – These are passed directly to gauss_code().

	
vassiliev_degree_3(simplify=True, try_cython=True)

	Returns the Vassiliev invariant of degree 3 for the Knot.

	Parameters

	
	simplify (bool) – If True, simplifies the Gauss code of self before
calculating the invariant. Defaults to True, but
will work fine if you set it to False (and might even
be faster).

	try_cython (bool) – Whether to try and use an optimised cython version of the
routine (takes about 1/3 of the time for complex
representations). Defaults to True, but the python
fallback will be slower than setting it to False if the
cython function is not available.

	**kwargs – These are passed directly to gauss_code().

	
virtual_vassiliev_degree_3()

	Returns the virtual Vassiliev invariant of degree 3 for the
representation.

Knot catalogue

pyknotid provides knot lookup by name or invariant values, using a
prebuilt database.

The knot database includes information about all knots with up to 15
crossings, with topological invariants following those indexed by the
Knot Atlas [http://katlas.org/wiki/Main_Page] and the KnotInfo
Table of Knot Invariants [http://www.indiana.edu/~knotinfo/], or
calculated by pyknotid using the Dowker-Thistlethwaite codes of the
knots.

Downloading the database

The database must normally be downloaded separately, and is currently
approximately 230MB in size.

If you do not download the database, most of pyknotid will work
fine. Only the explicit knot identification by database lookup, or
direct database queries, are not available.

To download the knot database:

from pyknotid.catalogue.getdb import download_database
download_database()

After this has completed (it may take a few seconds), the database
functions should all work immediately.

For other database management functions, see Database download module.

Lookup by name

Use pyknotid.catalogue.identify.get_knot():

from pyknotid.catalogue.identify import get_knot
trefoil = get_knot('3_1')
figure_eight = get_knot('4_1')

Lookup by invariants

Use pyknotid.catalogue.identify.from_invariants():

from pyknotid.catalogue.identify import from_invariants

from_invariants(determinant=5, max_crossings=9)
returns [<Knot 4_1>, <Knot 5_1>]

import sympy as sym
t = sym.var('t')
from_invariants(alexander=1-t+t**2, max_crossings=9)
returns [<Knot 3_1>]

For a full list of lookup parameters, see from_invariants().

Exploring properties of knots

You can view more properties of any knot returned by the database:

from pyknotid.catalogue import get_knot, from_invariants

k = get_knot('5_2')
k.pretty_print() # prints some information from the database:
 # Identifier: 5_2
 # Min crossings: 5
 # Fibered: False
 # Gauss code: -1, 5, -2, 1, -3, 4, -5, 2, -4, 3
 # Planar diagram: X_1425 X_3849 X_5,10,6,1 X_9,6,10,7 X_7283
 # DT code: 4 8 10 2 6
 # Determinant: 7
 # Signature: -2
 # Alexander: 2*t**2 - 3*t + 2
 # Jones: 1/q - 1/q**2 + 2/q**3 - 1/q**4 + q**(-5) - 1/q**6
 # HOMFLY: -a**6 + a**4*z**2 + a**4 + a**2*z**2 + a**2
 # Hyperbolic volume: 2.82812
 # Vassiliev order 2: 2
 # Vassiliev order 3: -3
 # Symmetry: reversible

Properties of the knot can also be accessed directly:

k.determinant # 7

For a full list of attributes available, see
pyknotid.catalogue.database.Knot.

	Database download module
	API documentation

	Identify module
	API documentation

	Database module
	API documentation

Database download module

To download the database, call download_database().

The other functions in this module provide basic functionality for
checking where the database is stored, and deleting old versions if
necessary.

API documentation

	
pyknotid.catalogue.getdb.clean_all_databases()

	Deletes all database files.

	
pyknotid.catalogue.getdb.clean_old_databases()

	Deletes old database files (all but the most recent version).

	
pyknotid.catalogue.getdb.download_database()

	Downloads the knots database to download_target_dir().

	
pyknotid.catalogue.getdb.download_target_dir()

	Returns the directory to which the knots database will be
downloaded.

	
pyknotid.catalogue.getdb.find_database(db_version=None)

	Returns the path to the knots.db file.

find_db looks in the following locations, in order of precedence:

	The local folder (containing getdb.py). This is convenient if
you have built your own database.

	The directory returned by appdirs.user_data_dir (depends on the OS).

If the database cannot be found, an exception is raised.

You can download a prebuilt database using download_database().

	Parameters

	db_version (int) – The database version to find. Defaults to None, in which case the
current db_version from pyknotid.catalogue.database is used.

	
pyknotid.catalogue.getdb.require_database(func)

	Decorator that causes a function to query find_database before
returning.

Identify module

Functions for identifying knots based on their name or invariants.

API documentation

	
pyknotid.catalogue.identify.first_from_invariants(*args, **kwargs)

	Returns the first Knot by crossing number (and arbitrary
ordering within that) with the given invariant conditions.

	Parameters

	**kwargs – Any set of invariant conditions. The accepted arguments are
the same as for from_invariants().

	
pyknotid.catalogue.identify.from_invariants(*args, **kwargs)

	Takes invariants as kwargs, and does the appropriate conversion to
return a list of database objects matching all the given criteria.

Note

This only searches within the indexed database
available. Some invariant options return only results where the
invariant both matches and is known, others return those that
match or are not known. Check the source if depending on
accurate results.

Does not support all available invariants. Currently, searching
is supported by:

	Parameters

	
	or name or id (identifier) – The name of the knot following knot atlas conventions, e.g. ‘3_1’

	min_crossings (int) – The minimal crossing number of the knot.

	max_crossings (int) – The maximal known crossing number of the knot. This may be higher
than its actual crossing number, it serves only to prune the
results list.

	signature (int) – The signature invariant.

	unknotting_number (int) – The unknotting number of the knot.

	or alex (alexander) – The Alexander polynomial, provided as a sympy expression in a
single variable (ideally ‘t’).

	or alexander_imag_2 (determinant) – The Alexander polynomial at -1 (== exp(Pi I))

	alexander_imag_3 (int) – The abs of the Alexander polynomial at exp(2 Pi I / 3)

	alexander_imag_4 (int) – The abs of the Alexander polynomial at exp(Pi I / 2)

	roots (iterable) – The abs of the Alexander polnomial at the given roots, assumed
to start at 2, e.g. passing (3, 2, 1) is the same as identifying
at determinant=3, alexander_imag_3=2, alexander_imag_4=1. An
entry of None means the value is ignored in the lookup.

	jones (sympy) – The Jones polynomial, provided as a sympy expression in a single
variable (ideally ‘q’).

	homfly (sympy) – The HOMFLY-PT polynomial, provided as a sympy expression in two
variables.

	or hyp_vol or hypvol (hyperbolic_volume) – The hyperbolic volume of the knot complement. The lookup is a
string comparison based on the given number of significant digits.

	or vassiliev_2 or v_2 or v2 (vassiliev_order_2) – The Vassiliev invariant of order 2. This will not prune knots
where this invariant is not known (specifically, those with 12 or
more crossings).

	or vassiliev_3 or v_3 or v3 (vassiliev_order_3) – The Vassiliev invariant of order 3. This will not prune knots
where this invariant is not known (specifically, those with 12 or
more crossings).

	symmetry (string) – The symmetry of the knot, one of ‘reversible’,
‘positive amphicheiral’, ‘negative amphicheiral’, ‘chiral’.

	or planar_writhe (writhe) – The writhe of the knot’s minimal diagram as recorded by its dt
code. This is not necessarily unique, only the value
of the dt code stored is given.

	composite (bool) – If True, will return only composite knots. If False, will return
only prime knots. Defaults to None, meaning it will return any knot
type.

	prime (bool) – If True, will return only prime knots. If False, will return
only composite knots. Defaults to None, meaning it will return any knot
type.

	other (iterable) – A list of other peewee terms that can be chained in where()
calls, e.g. database.Knot.min_crossings < 5. This provides
more flexibility than the other options.

	return_query (bool) – If True, returns the database iterator for the objects, otherwise
returns a list. Defaults to False (i.e. the list). This will
be much slower if the list is very large, but is convenient
for most searches.

	
pyknotid.catalogue.identify.get_knot(*args, **kwargs)

	Returns from the database the Knot with the given identifier.

For instance, trefoil = get_knot('3_1').

Database module

pyknotid looks up knot information via a prebuilt sqlite database,
accessed using the peewee ORM. Other ORMs are not currently supported.

The model class is pyknotid.catalogue.database.Knot,
documented below. For generic documentation about using the database,
see Knot catalogue.

pyknotid also includes functions for creating a database from scratch
(using knot information from the Knot Atlas), and improving an
existing database by calculating new invariants or pulling information
from other sources such as the KnotInfo database. These functions can
be found in pyknotid.catalogue.build and
pyknotid.catalogue.improve, which are not included in the indexed
documentation here.

API documentation

	
class pyknotid.catalogue.database.Knot(*args, **kwargs)

	Bases: pyknotid.catalogue.database.BaseModel

Peewee model for storing a knot in a database.

	
DoesNotExist

	alias of KnotDoesNotExist

	
alexander = <TextField: Knot.alexander>

	Alexander polynomial, stored as a json list of coefficients from
lowest to highest index, including zeros if there are any jumps in
index.

	
alexander_imag_3 = <IntegerField: Knot.alexander_imag_3>

	The absolute value of the Alexander polynomial at
exp(2 pi I / 3). This will always be an integer.

	
alexander_imag_4 = <IntegerField: Knot.alexander_imag_4>

	The absolute value of the Alexander polynomial at
exp(2 pi I / 4) == I. This will always be an integer.

	
components

	A list tuples (identifier, index), where the knot with the
given identifier occurs index times.

	
composite = <BooleanField: Knot.composite>

	Whether the knot is composite or not.

	
conway_notation = <CharField: Knot.conway_notation>

	Conway notation, as a string.

	
determinant = <IntegerField: Knot.determinant>

	The knot determinant (Alexander polynomial at -1)

	
dt_code = <CharField: Knot.dt_code>

	Dowker-Thistlethwaite code, as a string.

	
fibered = <BooleanField: Knot.fibered>

	Whether the knot is fibered or not.

	
gauss_code = <CharField: Knot.gauss_code>

	Gauss code, as a string.

	
homfly = <TextField: Knot.homfly>

	HOMFLY-PT polynomial, stored as a json list.

	
hyperbolic_volume = <CharField: Knot.hyperbolic_volume>

	Hyperbolic volume, stored as a string to avoid precision
problems.

	
identifier = <CharField: Knot.identifier>

	The standard knot notation, e.g. 3_1 for trefoil

	
jones = <TextField: Knot.jones>

	Jones polynomial, stored as a json list of coefficients and indices
for each monomial.

	
min_crossings = <IntegerField: Knot.min_crossings>

	Minimal crossing number for the knot, e.g. 3 for trefoil

	
name = <CharField: Knot.name>

	The actual name (if any), e.g. trefoil

	
planar_diagram = <CharField: Knot.planar_diagram>

	Planar diagram representation, as a string.

	
planar_writhe = <IntegerField: Knot.planar_writhe>

	The writhe of the minimal diagram described by the DT_code. This is
not necessarily unique (see Perko pair, I think?).

	
pretty_print()

	Pretty print all information contained about self.

	
signature = <IntegerField: Knot.signature>

	The knot signature

	
space_curve(verbose=True, **kwargs)

	Returns a Knot object representing this knot.

	
symmetry = <CharField: Knot.symmetry>

	The symmetry type of the knot; reversible,
positive amphichiral, negative amphichiral fully
amphichiral or chiral.

	
two_bridge = <CharField: Knot.two_bridge>

	Two-bridge notation, as a string.

	
unknotting_number = <IntegerField: Knot.unknotting_number>

	Unknotting number, stored as an integer.

	
url()

	The guessed url of this knot in the Knot Atlas. This page may not
actually exist or be populated.

	
vassiliev_2 = <IntegerField: Knot.vassiliev_2>

	The Vassiliev invariant of order 2.

	
vassiliev_3 = <IntegerField: Knot.vassiliev_3>

	The Vassiliev invariant of order 3.

Visualise

Functions for plotting knots, supporting different toolkits and types
of plot.

pyknotid primarily supports Vispy [http://vispy.org/] as the
plotting mechanism. Mayavi [http://docs.enthought.com/mayavi/mayavi/] is semi-supported but
may not always work.

Many of these functions can be called in a more convenient way via
methods of the space curve classes
(e.g. Knot).

API documentation

	
pyknotid.visualise.plot_line(points, mode='auto', clf=True, **kwargs)

	Plots the given line, using the toolkit given by mode.

kwargs are passed to the toolkit specific function, except for:

	Parameters

	
	points (ndarray) – The nx3 array to plot.

	mode (str) – The toolkit to draw with. Defaults to ‘auto’, which will
automatically pick the first available toolkit from
[‘mayavi’, ‘matplotlib’, ‘vispy’], or raise an exception
if none can be imported.

	clf (bool) – Whether the existing figure should be cleared
before drawing the new one.

	
pyknotid.visualise.plot_projection(points, crossings=None, mark_start=False, fig_ax=None, show=True, mark_points=False)

	Plot the 2d projection of the given points, with optional
markers for where the crossings are.

	Parameters

	
	points (array-like) – The nxm array of points in the line, with m >= 2.

	crossings (array-like or None) – The nx2 array of crossing positions. If None, crossings
are not plotted. Defaults to None.

	
pyknotid.visualise.plot_shell_vispy(func, points, number_of_samples=10, radius=None, zero_centroid=False, sphere_radius_factor=2.0, opacity=0.5, cmap='hsv', **kwargs)

	func must be a function returning values at angles and points,
like OpenKnot._alexander_map_values.

	
pyknotid.visualise.plot_sphere_lambert_sharp_vispy(func, circle_points=50, depth=2, output_size=500, edge_color=None, cmap='brg', smooth=0, mesh='circles', **kwargs)

	func must be a function of sphere angles theta, phi

	
pyknotid.visualise.plot_sphere_lambert_vispy(func, circle_points=50, depth=2, edge_color=None, cmap='hsv', smooth=0, mesh='circles', **kwargs)

	func must be a function of sphere angles theta, phi

	
pyknotid.visualise.plot_sphere_mollweide_vispy(func, circle_points=50, depth=2, edge_color=None, cmap='hsv', smooth=0, mesh='circles', **kwargs)

	func must be a function of sphere angles theta, phi

	
pyknotid.visualise.plot_sphere_shell_vispy(func, rows=100, cols=100, radius=1.0, opacity=1.0, translation=(0.0, 0.0, 0.0), method='latitude', edge_color=None, cmap='hsv', smooth=0, cutoff=0.4, cutoff_max=0.8, transparent_side=True, **kwargs)

	func must be a function of sphere angles theta, phi

About pyknotid

pyknotid has been developed as part of Leverhulme Trust Programme
Grant RP2013-K-009: Scientific Properties of Complex Knots, a
collaboration between the University of Bristol and Durham University
in the UK. For more information, see the SPOCK homepage [http://www.maths.dur.ac.uk/spock/index.html/].

A graphical interface to some of these tools is available online at
Knot ID [http://inclem.net/knotidentifier].

Contacts

Questions or comments are welcome, please email alexander.taylor@bristol.ac.uk.

Cite us

If you use pyknotid in your research, please cite us as follows:

A J Taylor and other SPOCK contributors. pyknotid knot identification toolkit. https://github.com/SPOCKnots/pyknotid, 2017. Accessed YYYY-MM-DD.

In bibtex format:

@Misc{pyknotid,
 author = {Alexander J Taylor and other SPOCK contributors},
 title = {pyknotid knot identification toolkit},
 howpublished = {\url{https://github.com/SPOCKnots/pyknotid}},
 note = {Accessed YYYY-MM-DD},
 year = 2017,
}

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyknotid	

 	
 	
 pyknotid.catalogue	

 	
 	
 pyknotid.catalogue.database	

 	
 	
 pyknotid.catalogue.getdb	

 	
 	
 pyknotid.catalogue.identify	

 	
 	
 pyknotid.invariants	

 	
 	
 pyknotid.representations	

 	
 	
 pyknotid.representations.dtnotation	

 	
 	
 pyknotid.representations.gausscode	

 	
 	
 pyknotid.representations.gaussdiagram	

 	
 	
 pyknotid.representations.planardiagram	

 	
 	
 pyknotid.representations.representation	

 	
 	
 pyknotid.spacecurves	

 	
 	
 pyknotid.spacecurves.knot	

 	
 	
 pyknotid.spacecurves.link	

 	
 	
 pyknotid.spacecurves.openknot	

 	
 	
 pyknotid.spacecurves.periodiccell	

 	
 	
 pyknotid.spacecurves.spacecurve	

 	
 	
 pyknotid.visualise	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

A

 	
 	alexander (pyknotid.catalogue.database.Knot attribute)

 	alexander() (in module pyknotid.invariants)

 	alexander_at_root() (pyknotid.representations.representation.Representation method)

 	(pyknotid.spacecurves.knot.Knot method)

 	alexander_cypari() (in module pyknotid.invariants)

 	alexander_fractions() (pyknotid.spacecurves.openknot.OpenKnot method)

 	alexander_imag_3 (pyknotid.catalogue.database.Knot attribute)

 	alexander_imag_4 (pyknotid.catalogue.database.Knot attribute)

 	alexander_mathematica() (in module pyknotid.invariants)

 	alexander_maxima() (in module pyknotid.invariants)

 	alexander_polynomial() (pyknotid.representations.representation.Representation method)

 	(pyknotid.spacecurves.knot.Knot method)

 	alexander_polynomials() (pyknotid.spacecurves.openknot.OpenKnot method)

 	
 	alexander_polynomials_multiroots() (pyknotid.spacecurves.openknot.OpenKnot method)

 	align_nodes() (pyknotid.representations.representation.CrossingGraph method)

 	arclength() (pyknotid.spacecurves.link.Link method)

 	(pyknotid.spacecurves.openknot.OpenKnot method)

 	(pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	arnold_2St_2Jminus() (in module pyknotid.invariants)

 	arnold_2St_2Jplus() (in module pyknotid.invariants)

 	as_mathematica() (pyknotid.representations.planardiagram.Crossing method)

 	(pyknotid.representations.planardiagram.PlanarDiagram method)

 	as_networkx() (pyknotid.representations.planardiagram.PlanarDiagram method)

 	as_networkx_extended() (pyknotid.representations.planardiagram.PlanarDiagram method)

 	as_spherogram() (pyknotid.representations.planardiagram.PlanarDiagram method)

 	average_crossing_number() (pyknotid.spacecurves.spacecurve.SpaceCurve method)

C

 	
 	calculating_orientations() (pyknotid.representations.gausscode.GaussCode class method)

 	(pyknotid.representations.representation.Representation class method)

 	Cell (class in pyknotid.spacecurves.periodiccell)

 	clean_all_databases() (in module pyknotid.catalogue.getdb)

 	clean_old_databases() (in module pyknotid.catalogue.getdb)

 	close() (pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	closing_distance() (pyknotid.spacecurves.openknot.OpenKnot method)

 	closing_on_sphere() (pyknotid.spacecurves.spacecurve.SpaceCurve class method)

 	closure_alexander_polynomial() (pyknotid.spacecurves.openknot.OpenKnot method)

 	components (pyknotid.catalogue.database.Knot attribute)

 	
 	components() (pyknotid.representations.planardiagram.Crossing method)

 	composite (pyknotid.catalogue.database.Knot attribute)

 	contract_points() (in module pyknotid.invariants)

 	conway_notation (pyknotid.catalogue.database.Knot attribute)

 	copy() (pyknotid.spacecurves.knot.Knot method)

 	(pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	Crossing (class in pyknotid.representations.planardiagram)

 	CrossingGraph (class in pyknotid.representations.representation)

 	cuaps() (pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	curvatures() (pyknotid.spacecurves.spacecurve.SpaceCurve method)

D

 	
 	determinant (pyknotid.catalogue.database.Knot attribute)

 	determinant() (pyknotid.spacecurves.knot.Knot method)

 	DoesNotExist (pyknotid.catalogue.database.Knot attribute)

 	
 	download_database() (in module pyknotid.catalogue.getdb)

 	download_target_dir() (in module pyknotid.catalogue.getdb)

 	dt_code (pyknotid.catalogue.database.Knot attribute)

 	DTNotation (class in pyknotid.representations.dtnotation)

E

 	
 	exterior_manifold() (pyknotid.representations.representation.Representation method)

 	(pyknotid.spacecurves.knot.Knot method)

F

 	
 	fibered (pyknotid.catalogue.database.Knot attribute)

 	find_database() (in module pyknotid.catalogue.getdb)

 	first_from_invariants() (in module pyknotid.catalogue.identify)

 	flipped() (pyknotid.representations.gausscode.GaussCode method)

 	from_braid_word() (pyknotid.spacecurves.spacecurve.SpaceCurve class method)

 	from_csv() (pyknotid.spacecurves.spacecurve.SpaceCurve class method)

 	
 	from_gauss_code() (pyknotid.spacecurves.spacecurve.SpaceCurve class method)

 	from_invariants() (in module pyknotid.catalogue.identify)

 	from_json() (pyknotid.spacecurves.spacecurve.SpaceCurve class method)

 	from_lattice_data() (pyknotid.spacecurves.spacecurve.SpaceCurve class method)

 	from_periodic_line() (pyknotid.spacecurves.spacecurve.SpaceCurve class method)

 	from_periodic_lines() (pyknotid.spacecurves.link.Link class method)

 	from_qwer() (pyknotid.spacecurves.periodiccell.Cell class method)

G

 	
 	gall_peters() (in module pyknotid.spacecurves.openknot)

 	gauss_code (pyknotid.catalogue.database.Knot attribute)

 	gauss_code() (pyknotid.spacecurves.link.Link method)

 	(pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	gauss_code_string() (pyknotid.representations.dtnotation.DTNotation method)

 	
 	gauss_diagram() (pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	GaussCode (class in pyknotid.representations.gausscode)

 	GaussDiagram (class in pyknotid.representations.gaussdiagram)

 	generalised_alexander() (pyknotid.spacecurves.openknot.OpenKnot method)

 	get_knot() (in module pyknotid.catalogue.identify)

H

 	
 	homfly (pyknotid.catalogue.database.Knot attribute)

 	hyperbolic_volume (pyknotid.catalogue.database.Knot attribute)

 	
 	hyperbolic_volume() (in module pyknotid.invariants)

 	(pyknotid.representations.representation.Representation method)

 	(pyknotid.spacecurves.knot.Knot method)

I

 	
 	identifier (pyknotid.catalogue.database.Knot attribute)

 	identify() (pyknotid.representations.representation.Representation method)

 	(pyknotid.spacecurves.knot.Knot method)

 	
 	index_height() (in module pyknotid.representations.planardiagram)

 	interpolate() (pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	is_virtual() (pyknotid.representations.representation.Representation method)

 	isolate_knot() (pyknotid.spacecurves.knot.Knot method)

J

 	
 	jones (pyknotid.catalogue.database.Knot attribute)

 	
 	jones_mathematica() (in module pyknotid.invariants)

K

 	
 	Knot (class in pyknotid.catalogue.database)

 	(class in pyknotid.spacecurves.knot)

 	
 	knot_db_to_string() (in module pyknotid.spacecurves.openknot)

L

 	
 	Link (class in pyknotid.spacecurves.link)

 	
 	linking_matrix() (pyknotid.spacecurves.periodiccell.Cell method)

 	linking_number() (pyknotid.spacecurves.link.Link method)

M

 	
 	min_crossings (pyknotid.catalogue.database.Knot attribute)

 	mirrored() (pyknotid.representations.gausscode.GaussCode method)

 	
 	mollweide() (in module pyknotid.spacecurves.openknot)

 	multiroots_fractions() (pyknotid.spacecurves.openknot.OpenKnot method)

N

 	
 	name (pyknotid.catalogue.database.Knot attribute)

O

 	
 	octree_simplify() (pyknotid.spacecurves.link.Link method)

 	(pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	
 	OpenKnot (class in pyknotid.spacecurves.openknot)

P

 	
 	planar_diagram (pyknotid.catalogue.database.Knot attribute)

 	planar_diagram() (pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	planar_second_order_writhe() (pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	planar_writhe (pyknotid.catalogue.database.Knot attribute)

 	planar_writhe() (pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	planar_writhe_quantities() (pyknotid.spacecurves.knot.Knot method)

 	PlanarDiagram (class in pyknotid.representations.planardiagram)

 	plot() (pyknotid.representations.gaussdiagram.GaussDiagram method)

 	(pyknotid.spacecurves.knot.Knot method)

 	(pyknotid.spacecurves.link.Link method)

 	(pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	plot_alexander_map() (pyknotid.spacecurves.openknot.OpenKnot method)

 	plot_alexander_shell() (pyknotid.spacecurves.openknot.OpenKnot method)

 	plot_isolated() (pyknotid.spacecurves.knot.Knot method)

 	plot_line() (in module pyknotid.visualise)

 	plot_projection() (in module pyknotid.visualise)

 	(pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	plot_projections() (pyknotid.spacecurves.openknot.OpenKnot method)

 	plot_self_linking_map() (pyknotid.spacecurves.openknot.OpenKnot method)

 	plot_self_linking_shell() (pyknotid.spacecurves.openknot.OpenKnot method)

 	plot_shell_vispy() (in module pyknotid.visualise)

 	plot_sphere_lambert_sharp_vispy() (in module pyknotid.visualise)

 	plot_sphere_lambert_vispy() (in module pyknotid.visualise)

 	plot_sphere_mollweide_vispy() (in module pyknotid.visualise)

 	plot_sphere_shell_vispy() (in module pyknotid.visualise)

 	
 	plot_virtual_map() (pyknotid.spacecurves.openknot.OpenKnot method)

 	plot_virtual_shell() (pyknotid.spacecurves.openknot.OpenKnot method)

 	points (pyknotid.spacecurves.knot.Knot attribute)

 	(pyknotid.spacecurves.openknot.OpenKnot attribute)

 	(pyknotid.spacecurves.spacecurve.SpaceCurve attribute)

 	pretty_print() (pyknotid.catalogue.database.Knot method)

 	projection_invariant() (pyknotid.spacecurves.openknot.OpenKnot method)

 	pyknotid.catalogue (module)

 	pyknotid.catalogue.database (module)

 	pyknotid.catalogue.getdb (module)

 	pyknotid.catalogue.identify (module)

 	pyknotid.invariants (module)

 	pyknotid.representations (module)

 	pyknotid.representations.dtnotation (module)

 	pyknotid.representations.gausscode (module)

 	pyknotid.representations.gaussdiagram (module)

 	pyknotid.representations.planardiagram (module)

 	pyknotid.representations.representation (module)

 	pyknotid.spacecurves (module)

 	pyknotid.spacecurves.knot (module)

 	pyknotid.spacecurves.link (module)

 	pyknotid.spacecurves.openknot (module)

 	pyknotid.spacecurves.periodiccell (module)

 	pyknotid.spacecurves.spacecurve (module)

 	pyknotid.visualise (module)

R

 	
 	radius_of_gyration() (pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	raw_crossings() (pyknotid.spacecurves.link.Link method)

 	(pyknotid.spacecurves.openknot.OpenKnot method)

 	(pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	reindex_crossings() (pyknotid.representations.gausscode.GaussCode method)

 	reparameterised() (pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	
 	Representation (class in pyknotid.representations.representation)

 	representation() (pyknotid.representations.dtnotation.DTNotation method)

 	(pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	require_database() (in module pyknotid.catalogue.getdb)

 	rotate() (pyknotid.spacecurves.link.Link method)

 	(pyknotid.spacecurves.spacecurve.SpaceCurve method)

S

 	
 	scale() (pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	second_order_writhe() (in module pyknotid.invariants)

 	segment_arclengths() (pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	self_linking() (in module pyknotid.invariants)

 	(pyknotid.representations.representation.Representation method)

 	(pyknotid.spacecurves.openknot.OpenKnot method)

 	self_linking_fractions() (pyknotid.spacecurves.openknot.OpenKnot method)

 	self_linkings() (pyknotid.spacecurves.openknot.OpenKnot method)

 	shorthand_to_crossings() (in module pyknotid.representations.planardiagram)

 	signature (pyknotid.catalogue.database.Knot attribute)

 	
 	simplify() (pyknotid.representations.gausscode.GaussCode method)

 	simplify_straight_segments() (pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	slipknot_alexander() (pyknotid.spacecurves.knot.Knot method)

 	smooth() (pyknotid.spacecurves.link.Link method)

 	(pyknotid.spacecurves.openknot.OpenKnot method)

 	(pyknotid.spacecurves.periodiccell.Cell method)

 	(pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	space_curve() (pyknotid.catalogue.database.Knot method)

 	SpaceCurve (class in pyknotid.spacecurves.spacecurve)

 	symmetry (pyknotid.catalogue.database.Knot attribute)

T

 	
 	to_json() (pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	to_txt() (pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	torsions() (pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	
 	translate() (pyknotid.spacecurves.link.Link method)

 	(pyknotid.spacecurves.spacecurve.SpaceCurve method)

 	two_bridge (pyknotid.catalogue.database.Knot attribute)

U

 	
 	unknotting_number (pyknotid.catalogue.database.Knot attribute)

 	
 	update_line_number() (pyknotid.representations.planardiagram.Crossing method)

 	url() (pyknotid.catalogue.database.Knot method)

V

 	
 	valid() (pyknotid.representations.planardiagram.Crossing method)

 	vassiliev_2 (pyknotid.catalogue.database.Knot attribute)

 	vassiliev_3 (pyknotid.catalogue.database.Knot attribute)

 	vassiliev_degree_2() (in module pyknotid.invariants)

 	(pyknotid.representations.representation.Representation method)

 	(pyknotid.spacecurves.knot.Knot method)

 	vassiliev_degree_2_average() (pyknotid.spacecurves.openknot.OpenKnot method)

 	
 	vassiliev_degree_3() (in module pyknotid.invariants)

 	(pyknotid.representations.representation.Representation method)

 	(pyknotid.spacecurves.knot.Knot method)

 	virtual_check() (pyknotid.spacecurves.openknot.OpenKnot method)

 	virtual_checks() (pyknotid.spacecurves.openknot.OpenKnot method)

 	virtual_fractions() (pyknotid.spacecurves.openknot.OpenKnot method)

 	virtual_vassiliev_degree_3() (in module pyknotid.invariants)

 	(pyknotid.representations.representation.Representation method)

W

 	
 	whitney_index() (pyknotid.spacecurves.knot.Knot method)

 	
 	without_virtual() (pyknotid.representations.gausscode.GaussCode method)

 	writhe() (pyknotid.spacecurves.spacecurve.SpaceCurve method)

Z

 	
 	zero_centroid() (pyknotid.spacecurves.spacecurve.SpaceCurve method)

 _static/comment-bright.png

_images/trefoil_few_points.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/p7_q4__torus_knot.png

_images/random_walk_length_30.png

_images/k10_11_ideal.png

_images/k10_51_ideal.png

_images/torus_hopf_link.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 pyknotid

 		
 Overview

 		
 Installation

 		
 Space curve analysis

 		
 Topological representations

 		
 Knot catalogue

 		
 Example knots

 		
 Space curve analysis

 		
 Different knot classes

 		
 Creating space curves

 		
 SpaceCurve

 		
 API documentation

 		
 Knot

 		
 API documentation

 		
 OpenKnot

 		
 API documentation

 		
 Link

 		
 API documentation

 		
 PeriodicCell

 		
 API documentation

 		
 Invariants

 		
 Mathematica

 		
 API documentation

 		
 Topological representations

 		
 Creating representations

 		
 From space curves

 		
 By direct input

 		
 Calculating invariants

 		
 GaussCode

 		
 API documentation

 		
 PlanarDiagram

 		
 API documentation

 		
 GaussDiagram

 		
 API documentation

 		
 DTNotation

 		
 API documentation

 		
 Representation

 		
 API documentation

 		
 Knot catalogue

 		
 Downloading the database

 		
 Lookup by name

 		
 Lookup by invariants

 		
 Exploring properties of knots

 		
 Database download module

 		
 API documentation

 		
 Identify module

 		
 API documentation

 		
 Database module

 		
 API documentation

 		
 Visualise

 		
 API documentation

 		
 About pyknotid

 		
 Contacts

 		
 Cite us

_images/example_gauss_diagram_k10_93.png

_static/up-pressed.png

_images/example_knot_projection_9_5.png

_static/up.png

_static/plus.png

