

Welcome to PyJWT

PyJWT is a Python library which allows you to encode and decode JSON Web
Tokens (JWT). JWT is an open, industry-standard (RFC 7519 [https://tools.ietf.org/html/rfc7519]) for representing
claims securely between two parties.

Sponsor

	[image: auth0-logo]

	If you want to quickly add secure token-based authentication to Python projects, feel free to check Auth0’s Python SDK and free plan at auth0.com/developers [https://auth0.com/developers?utm_source=GHsponsor&utm_medium=GHsponsor&utm_campaign=pyjwt&utm_content=auth].

Installation

You can install pyjwt with pip:

$ pip install pyjwt

See Installation for more information.

Example Usage

>>> import jwt
>>> encoded_jwt = jwt.encode({"some": "payload"}, "secret", algorithm="HS256")
>>> print(encoded_jwt)
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzb21lIjoicGF5bG9hZCJ9.4twFt5NiznN84AWoo1d7KO1T_yoc0Z6XOpOVswacPZg
>>> jwt.decode(encoded_jwt, "secret", algorithms=["HS256"])
{'some': 'payload'}

See Usage Examples for more examples.

Index

	Installation
	Cryptographic Dependencies (Optional)

	Usage Examples
	Encoding & Decoding Tokens with HS256

	Encoding & Decoding Tokens with RS256 (RSA)

	Specifying Additional Headers

	Reading the Claimset without Validation

	Reading Headers without Validation

	Registered Claim Names

	Requiring Presence of Claims

	Retrieve RSA signing keys from a JWKS endpoint

	OIDC Login Flow

	Frequently Asked Questions
	How can I extract a public / private key from a x509 certificate?

	Digital Signature Algorithms
	Asymmetric (Public-key) Algorithms

	Specifying an Algorithm

	API Reference
	Exceptions

	Changelog
	Unreleased

	v2.8.0

	v2.7.0

	v2.6.0

	v2.5.0

	v2.4.0

	v2.3.0

	v2.2.0

	v2.1.0

	v2.0.1

	v2.0.0

	v1.7.1

	v1.7.0

	v1.6.4

	v1.6.3

	v1.6.1

	v1.6.0

	v1.5.3

	v1.5.2

	v1.5.1

	v1.5.0

	v1.4.2

	v1.4.1

	v1.4

	v1.3

	v1.2.0

	v1.1.0

	v1.0.1

	v1.0.0

Installation

You can install PyJWT with pip:

$ pip install pyjwt

Cryptographic Dependencies (Optional)

If you are planning on encoding or decoding tokens using certain digital
signature algorithms (like RSA or ECDSA), you will need to install the
cryptography [https://cryptography.io] library. This can be installed explicitly, or as a required
extra in the pyjwt requirement:

$ pip install pyjwt[crypto]

The pyjwt[crypto] format is recommended in requirements files in
projects using PyJWT, as a separate cryptography requirement line
may later be mistaken for an unused requirement and removed.

Usage Examples

Encoding & Decoding Tokens with HS256

>>> import jwt
>>> key = "secret"
>>> encoded = jwt.encode({"some": "payload"}, key, algorithm="HS256")
>>> print(encoded)
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzb21lIjoicGF5bG9hZCJ9.4twFt5NiznN84AWoo1d7KO1T_yoc0Z6XOpOVswacPZg
>>> jwt.decode(encoded, key, algorithms="HS256")
{'some': 'payload'}

Encoding & Decoding Tokens with RS256 (RSA)

RSA encoding and decoding require the cryptography module. See Cryptographic Dependencies (Optional).

>>> import jwt
>>> private_key = b"-----BEGIN PRIVATE KEY-----\nMIGEAgEAMBAGByqGSM49AgEGBS..."
>>> public_key = b"-----BEGIN PUBLIC KEY-----\nMHYwEAYHKoZIzj0CAQYFK4EEAC..."
>>> encoded = jwt.encode({"some": "payload"}, private_key, algorithm="RS256")
>>> print(encoded)
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzb21lIjoicGF5bG9hZCJ9.4twFt5NiznN84AWoo1d7KO1T_yoc0Z6XOpOVswacPZg
>>> decoded = jwt.decode(encoded, public_key, algorithms=["RS256"])
{'some': 'payload'}

If your private key needs a passphrase, you need to pass in a PrivateKey object from cryptography.

from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.backends import default_backend

pem_bytes = b"-----BEGIN PRIVATE KEY-----\nMIGEAgEAMBAGByqGSM49AgEGBS..."
passphrase = b"your password"

private_key = serialization.load_pem_private_key(
 pem_bytes, password=passphrase, backend=default_backend()
)
encoded = jwt.encode({"some": "payload"}, private_key, algorithm="RS256")

If you are repeatedly encoding with the same private key, reusing the same
RSAPrivateKey also has performance benefits because it avoids the
CPU-intensive RSA_check_key primality test.

Specifying Additional Headers

>>> jwt.encode(
... {"some": "payload"},
... "secret",
... algorithm="HS256",
... headers={"kid": "230498151c214b788dd97f22b85410a5"},
...)
'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6IjIzMDQ5ODE1MWMyMTRiNzg4ZGQ5N2YyMmI4NTQxMGE1In0.eyJzb21lIjoicGF5bG9hZCJ9.DogbDGmMHgA_bU05TAB-R6geQ2nMU2BRM-LnYEtefwg'

Reading the Claimset without Validation

If you wish to read the claimset of a JWT without performing validation of the
signature or any of the registered claim names, you can set the
verify_signature option to False.

Note: It is generally ill-advised to use this functionality unless you
clearly understand what you are doing. Without digital signature information,
the integrity or authenticity of the claimset cannot be trusted.

>>> jwt.decode(encoded, options={"verify_signature": False})
{'some': 'payload'}

Reading Headers without Validation

Some APIs require you to read a JWT header without validation. For example,
in situations where the token issuer uses multiple keys and you have no
way of knowing in advance which one of the issuer’s public keys or shared
secrets to use for validation, the issuer may include an identifier for the
key in the header.

>>> jwt.get_unverified_header(encoded)
{'alg': 'RS256', 'typ': 'JWT', 'kid': 'key-id-12345...'}

Registered Claim Names

The JWT specification defines some registered claim names and defines
how they should be used. PyJWT supports these registered claim names:

	“exp” (Expiration Time) Claim

	“nbf” (Not Before Time) Claim

	“iss” (Issuer) Claim

	“aud” (Audience) Claim

	“iat” (Issued At) Claim

Expiration Time Claim (exp)

The “exp” (expiration time) claim identifies the expiration time on
or after which the JWT MUST NOT be accepted for processing. The
processing of the “exp” claim requires that the current date/time
MUST be before the expiration date/time listed in the “exp” claim.
Implementers MAY provide for some small leeway, usually no more than
a few minutes, to account for clock skew. Its value MUST be a number
containing a NumericDate value. Use of this claim is OPTIONAL.

You can pass the expiration time as a UTC UNIX timestamp (an int) or as a
datetime, which will be converted into an int. For example:

jwt.encode({"exp": 1371720939}, "secret")
jwt.encode({"exp": datetime.now(tz=timezone.utc)}, "secret")

Expiration time is automatically verified in jwt.decode() and raises
jwt.ExpiredSignatureError if the expiration time is in the past:

try:
 jwt.decode("JWT_STRING", "secret", algorithms=["HS256"])
except jwt.ExpiredSignatureError:
 # Signature has expired
 ...

Expiration time will be compared to the current UTC time (as given by
timegm(datetime.now(tz=timezone.utc).utctimetuple())), so be sure to use a UTC timestamp
or datetime in encoding.

You can turn off expiration time verification with the verify_exp parameter in the options argument.

PyJWT also supports the leeway part of the expiration time definition, which
means you can validate a expiration time which is in the past but not very far.
For example, if you have a JWT payload with a expiration time set to 30 seconds
after creation but you know that sometimes you will process it after 30 seconds,
you can set a leeway of 10 seconds in order to have some margin:

jwt_payload = jwt.encode(
 {"exp": datetime.datetime.now(tz=timezone.utc) + datetime.timedelta(seconds=30)},
 "secret",
)

time.sleep(32)

JWT payload is now expired
But with some leeway, it will still validate
jwt.decode(jwt_payload, "secret", leeway=10, algorithms=["HS256"])

Instead of specifying the leeway as a number of seconds, a datetime.timedelta
instance can be used. The last line in the example above is equivalent to:

jwt.decode(
 jwt_payload, "secret", leeway=datetime.timedelta(seconds=10), algorithms=["HS256"]
)

Not Before Time Claim (nbf)

The “nbf” (not before) claim identifies the time before which the JWT
MUST NOT be accepted for processing. The processing of the “nbf”
claim requires that the current date/time MUST be after or equal to
the not-before date/time listed in the “nbf” claim. Implementers MAY
provide for some small leeway, usually no more than a few minutes, to
account for clock skew. Its value MUST be a number containing a
NumericDate value. Use of this claim is OPTIONAL.

The nbf claim works similarly to the exp claim above.

jwt.encode({"nbf": 1371720939}, "secret")
jwt.encode({"nbf": datetime.now(tz=timezone.utc)}, "secret")

Issuer Claim (iss)

The “iss” (issuer) claim identifies the principal that issued the
JWT. The processing of this claim is generally application specific.
The “iss” value is a case-sensitive string containing a StringOrURI
value. Use of this claim is OPTIONAL.

payload = {"some": "payload", "iss": "urn:foo"}

token = jwt.encode(payload, "secret")
decoded = jwt.decode(token, "secret", issuer="urn:foo", algorithms=["HS256"])

If the issuer claim is incorrect, jwt.InvalidIssuerError will be raised.

Audience Claim (aud)

The “aud” (audience) claim identifies the recipients that the JWT is
intended for. Each principal intended to process the JWT MUST
identify itself with a value in the audience claim. If the principal
processing the claim does not identify itself with a value in the
“aud” claim when this claim is present, then the JWT MUST be
rejected.

In the general case, the “aud” value is an array of case-
sensitive strings, each containing a StringOrURI value.

payload = {"some": "payload", "aud": ["urn:foo", "urn:bar"]}

token = jwt.encode(payload, "secret")
decoded = jwt.decode(token, "secret", audience="urn:foo", algorithms=["HS256"])

In the special case when the JWT has one audience, the “aud” value MAY be
a single case-sensitive string containing a StringOrURI value.

payload = {"some": "payload", "aud": "urn:foo"}

token = jwt.encode(payload, "secret")
decoded = jwt.decode(token, "secret", audience="urn:foo", algorithms=["HS256"])

If multiple audiences are accepted, the audience parameter for
jwt.decode can also be an iterable

payload = {"some": "payload", "aud": "urn:foo"}

token = jwt.encode(payload, "secret")
decoded = jwt.decode(
 token, "secret", audience=["urn:foo", "urn:bar"], algorithms=["HS256"]
)

The interpretation of audience values is generally application specific.
Use of this claim is OPTIONAL.

If the audience claim is incorrect, jwt.InvalidAudienceError will be raised.

Issued At Claim (iat)

The iat (issued at) claim identifies the time at which the JWT was issued.
This claim can be used to determine the age of the JWT. Its value MUST be a
number containing a NumericDate value. Use of this claim is OPTIONAL.

If the iat claim is not a number, an jwt.InvalidIssuedAtError exception will be raised.

jwt.encode({"iat": 1371720939}, "secret")
jwt.encode({"iat": datetime.now(tz=timezone.utc)}, "secret")

Requiring Presence of Claims

If you wish to require one or more claims to be present in the claimset, you can set the require parameter to include these claims.

>>> jwt.decode(encoded, options={"require": ["exp", "iss", "sub"]})
{'exp': 1371720939, 'iss': 'urn:foo', 'sub': '25c37522-f148-4cbf-8ee6-c4a9718dd0af'}

Retrieve RSA signing keys from a JWKS endpoint

>>> import jwt
>>> from jwt import PyJWKClient
>>> token = "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6Ik5FRTFRVVJCT1RNNE16STVSa0ZETlRZeE9UVTFNRGcyT0Rnd1EwVXpNVGsxUWpZeVJrUkZRdyJ9.eyJpc3MiOiJodHRwczovL2Rldi04N2V2eDlydS5hdXRoMC5jb20vIiwic3ViIjoiYVc0Q2NhNzl4UmVMV1V6MGFFMkg2a0QwTzNjWEJWdENAY2xpZW50cyIsImF1ZCI6Imh0dHBzOi8vZXhwZW5zZXMtYXBpIiwiaWF0IjoxNTcyMDA2OTU0LCJleHAiOjE1NzIwMDY5NjQsImF6cCI6ImFXNENjYTc5eFJlTFdVejBhRTJINmtEME8zY1hCVnRDIiwiZ3R5IjoiY2xpZW50LWNyZWRlbnRpYWxzIn0.PUxE7xn52aTCohGiWoSdMBZGiYAHwE5FYie0Y1qUT68IHSTXwXVd6hn02HTah6epvHHVKA2FqcFZ4GGv5VTHEvYpeggiiZMgbxFrmTEY0csL6VNkX1eaJGcuehwQCRBKRLL3zKmA5IKGy5GeUnIbpPHLHDxr-GXvgFzsdsyWlVQvPX2xjeaQ217r2PtxDeqjlf66UYl6oY6AqNS8DH3iryCvIfCcybRZkc_hdy-6ZMoKT6Piijvk_aXdm7-QQqKJFHLuEqrVSOuBqqiNfVrG27QzAPuPOxvfXTVLXL2jek5meH6n-VWgrBdoMFH93QEszEDowDAEhQPHVs0xj7SIzA"
>>> kid = "NEE1QURBOTM4MzI5RkFDNTYxOTU1MDg2ODgwQ0UzMTk1QjYyRkRFQw"
>>> url = "https://dev-87evx9ru.auth0.com/.well-known/jwks.json"
>>> optional_custom_headers = {"User-agent": "custom-user-agent"}
>>> jwks_client = PyJWKClient(url, headers=optional_custom_headers)
>>> signing_key = jwks_client.get_signing_key_from_jwt(token)
>>> data = jwt.decode(
... token,
... signing_key.key,
... algorithms=["RS256"],
... audience="https://expenses-api",
... options={"verify_exp": False},
...)
>>> print(data)
{'iss': 'https://dev-87evx9ru.auth0.com/', 'sub': 'aW4Cca79xReLWUz0aE2H6kD0O3cXBVtC@clients', 'aud': 'https://expenses-api', 'iat': 1572006954, 'exp': 1572006964, 'azp': 'aW4Cca79xReLWUz0aE2H6kD0O3cXBVtC', 'gty': 'client-credentials'}

OIDC Login Flow

The following usage demonstrates an OIDC login flow using pyjwt. Further
reading about the OIDC spec is recommended for implementers.

In particular, this demonstrates validation of the at_hash claim.
This claim relies on data from outside of the the JWT for validation. Methods
are provided which support computation and validation of this claim, but it
is not built into pyjwt.

import base64
import jwt
import requests

Part 1: setup
get the OIDC config and JWKs to use

in OIDC, you must know your client_id (this is the OAuth 2.0 client_id)
client_id = ...

example of fetching data from your OIDC server
see: https://openid.net/specs/openid-connect-discovery-1_0.html#ProviderConfig
oidc_server = ...
oidc_config = requests.get(
 f"https://{oidc_server}/.well-known/openid-configuration"
).json()
signing_algos = oidc_config["id_token_signing_alg_values_supported"]

setup a PyJWKClient to get the appropriate signing key
jwks_client = jwt.PyJWKClient(oidc_config["jwks_uri"])

Part 2: login / authorization
when a user completes an OIDC login flow, there will be a well-formed
response object to parse/handle

data from the login flow
see: https://openid.net/specs/openid-connect-core-1_0.html#TokenResponse
token_response = ...
id_token = token_response["id_token"]
access_token = token_response["access_token"]

Part 3: decode and validate at_hash
after the login is complete, the id_token needs to be decoded
this is the stage at which an OIDC client must verify the at_hash

get signing_key from id_token
signing_key = jwks_client.get_signing_key_from_jwt(id_token)

now, decode_complete to get payload + header
data = jwt.decode_complete(
 id_token,
 key=signing_key.key,
 algorithms=signing_algos,
 audience=client_id,
)
payload, header = data["payload"], data["header"]

get the pyjwt algorithm object
alg_obj = jwt.get_algorithm_by_name(header["alg"])

compute at_hash, then validate / assert
digest = alg_obj.compute_hash_digest(access_token)
at_hash = base64.urlsafe_b64encode(digest[: (len(digest) // 2)]).rstrip("=")
assert at_hash == payload["at_hash"]

Frequently Asked Questions

How can I extract a public / private key from a x509 certificate?

The load_pem_x509_certificate() function from cryptography can be used to
extract the public or private keys from a x509 certificate in PEM format.

from cryptography.x509 import load_pem_x509_certificate

cert_str = b"-----BEGIN CERTIFICATE-----MIIDETCCAfm..."
cert_obj = load_pem_x509_certificate(cert_str)
public_key = cert_obj.public_key()
private_key = cert_obj.private_key()

Digital Signature Algorithms

The JWT specification supports several algorithms for cryptographic signing.
This library currently supports:

	HS256 - HMAC using SHA-256 hash algorithm (default)

	HS384 - HMAC using SHA-384 hash algorithm

	HS512 - HMAC using SHA-512 hash algorithm

	ES256 - ECDSA signature algorithm using SHA-256 hash algorithm

	ES256K - ECDSA signature algorithm with secp256k1 curve using SHA-256 hash algorithm

	ES384 - ECDSA signature algorithm using SHA-384 hash algorithm

	ES512 - ECDSA signature algorithm using SHA-512 hash algorithm

	RS256 - RSASSA-PKCS1-v1_5 signature algorithm using SHA-256 hash algorithm

	RS384 - RSASSA-PKCS1-v1_5 signature algorithm using SHA-384 hash algorithm

	RS512 - RSASSA-PKCS1-v1_5 signature algorithm using SHA-512 hash algorithm

	PS256 - RSASSA-PSS signature using SHA-256 and MGF1 padding with SHA-256

	PS384 - RSASSA-PSS signature using SHA-384 and MGF1 padding with SHA-384

	PS512 - RSASSA-PSS signature using SHA-512 and MGF1 padding with SHA-512

	EdDSA - Both Ed25519 signature using SHA-512 and Ed448 signature using SHA-3 are supported. Ed25519 and Ed448 provide 128-bit and 224-bit security respectively.

Asymmetric (Public-key) Algorithms

Usage of RSA (RS*) and EC (EC*) algorithms require a basic understanding
of how public-key cryptography is used with regards to digital signatures.
If you are unfamiliar, you may want to read
this article [https://en.wikipedia.org/wiki/Public-key_cryptography].

When using the RSASSA-PKCS1-v1_5 algorithms, the key argument in both
jwt.encode() and jwt.decode() ("secret" in the examples) is expected to
be either an RSA public or private key in PEM or SSH format. The type of key
(private or public) depends on whether you are signing or verifying a token.

When using the ECDSA algorithms, the key argument is expected to
be an Elliptic Curve public or private key in PEM format. The type of key
(private or public) depends on whether you are signing or verifying.

Specifying an Algorithm

You can specify which algorithm you would like to use to sign the JWT
by using the algorithm parameter:

>>> encoded = jwt.encode({"some": "payload"}, "secret", algorithm="HS512")
>>> print(encoded)
eyJhbGciOiJIUzUxMiIsInR5cCI6IkpXVCJ9.eyJzb21lIjoicGF5bG9hZCJ9.WTzLzFO079PduJiFIyzrOah54YaM8qoxH9fLMQoQhKtw3_fMGjImIOokijDkXVbyfBqhMo2GCNu4w9v7UXvnpA

When decoding, you can also specify which algorithms you would like to permit
when validating the JWT by using the algorithms parameter which takes a list
of allowed algorithms:

>>> jwt.decode(encoded, "secret", algorithms=["HS512", "HS256"])
{'some': 'payload'}

In the above case, if the JWT has any value for its alg header other than
HS512 or HS256, the claim will be rejected with an InvalidAlgorithmError.

Warning

Do not compute the algorithms parameter based on the
alg from the token itself, or on any other data that an
attacker may be able to influence, as that might expose you to
various vulnerabilities (see RFC 8725 §2.1 [https://www.rfc-editor.org/rfc/rfc8725.html#section-2.1]). Instead,
either hard-code a fixed value for algorithms, or configure it
in the same place you configure the key. Make sure not to mix
symmetric and asymmetric algorithms that interpret the key in
different ways (e.g. HS* and RS*).

API Reference

	
jwt.encode(payload, key, algorithm="HS256", headers=None, json_encoder=None)

	Encode the payload as JSON Web Token.

	Parameters

	
	payload (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – JWT claims, e.g. dict(iss=..., aud=..., sub=...)

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – a key suitable for the chosen algorithm:

	for asymmetric algorithms: PEM-formatted private key, a multiline string

	for symmetric algorithms: plain string, sufficiently long for security

	algorithm (str [https://docs.python.org/3/library/stdtypes.html#str]) – algorithm to sign the token with, e.g. "ES256".
If headers includes alg, it will be preferred to this parameter.

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – additional JWT header fields, e.g. dict(kid="my-key-id").

	json_encoder (json.JSONEncoder [https://docs.python.org/3/library/json.html#json.JSONEncoder]) – custom JSON encoder for payload and headers

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	a JSON Web Token

	
jwt.decode(jwt, key="", algorithms=None, options=None, audience=None, issuer=None, leeway=0)

	Verify the jwt token signature and return the token claims.

	Parameters

	
	jwt (str [https://docs.python.org/3/library/stdtypes.html#str]) – the token to be decoded

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – the key suitable for the allowed algorithm

	algorithms (list [https://docs.python.org/3/library/stdtypes.html#list]) – allowed algorithms, e.g. ["ES256"]

Warning

Do not compute the algorithms parameter based on
the alg from the token itself, or on any other data
that an attacker may be able to influence, as that might
expose you to various vulnerabilities (see RFC 8725 §2.1 [https://www.rfc-editor.org/rfc/rfc8725.html#section-2.1]). Instead,
either hard-code a fixed value for algorithms, or
configure it in the same place you configure the
key. Make sure not to mix symmetric and asymmetric
algorithms that interpret the key in different ways
(e.g. HS* and RS*).

	options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – extended decoding and validation options

	verify_signature=True verify the JWT cryptographic signature

	require=[] list of claims that must be present.
Example: require=["exp", "iat", "nbf"].
Only verifies that the claims exists. Does not verify that the claims are valid.

	verify_aud=verify_signature check that aud (audience) claim matches audience

	verify_iss=verify_signature check that iss (issuer) claim matches issuer

	verify_exp=verify_signature check that exp (expiration) claim value is in the future

	verify_iat=verify_signature check that iat (issued at) claim value is an integer

	verify_nbf=verify_signature check that nbf (not before) claim value is in the past

	strict_aud=False check that the aud claim is a single value (not a list), and matches audience exactly

Warning

exp, iat and nbf will only be verified if present.
Please pass respective value to require if you want to make
sure that they are always present (and therefore always verified
if verify_exp, verify_iat, and verify_nbf respectively
is set to True).

	Iterable] audience (Union[str [https://docs.python.org/3/library/stdtypes.html#str],) – optional, the value for verify_aud check

	issuer (str [https://docs.python.org/3/library/stdtypes.html#str]) – optional, the value for verify_iss check

	leeway (float [https://docs.python.org/3/library/functions.html#float]) – a time margin in seconds for the expiration check

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns

	the JWT claims

	
jwt.api_jwt.decode_complete(jwt, key="", algorithms=None, options=None, audience=None, issuer=None, leeway=0)

	Identical to jwt.decode except for return value which is a dictionary containing the token header (JOSE Header),
the token payload (JWT Payload), and token signature (JWT Signature) on the keys “header”, “payload”,
and “signature” respectively.

	Parameters

	
	jwt (str [https://docs.python.org/3/library/stdtypes.html#str]) – the token to be decoded

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – the key suitable for the allowed algorithm

	algorithms (list [https://docs.python.org/3/library/stdtypes.html#list]) – allowed algorithms, e.g. ["ES256"]

Warning

Do not compute the algorithms parameter based on
the alg from the token itself, or on any other data
that an attacker may be able to influence, as that might
expose you to various vulnerabilities (see RFC 8725 §2.1 [https://www.rfc-editor.org/rfc/rfc8725.html#section-2.1]). Instead,
either hard-code a fixed value for algorithms, or
configure it in the same place you configure the
key. Make sure not to mix symmetric and asymmetric
algorithms that interpret the key in different ways
(e.g. HS* and RS*).

	options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – extended decoding and validation options

	verify_signature=True verify the JWT cryptographic signature

	require=[] list of claims that must be present.
Example: require=["exp", "iat", "nbf"].
Only verifies that the claims exists. Does not verify that the claims are valid.

	verify_aud=verify_signature check that aud (audience) claim matches audience

	verify_iss=verify_signature check that iss (issuer) claim matches issuer

	verify_exp=verify_signature check that exp (expiration) claim value is in the future

	verify_iat=verify_signature check that iat (issued at) claim value is an integer

	verify_nbf=verify_signature check that nbf (not before) claim value is in the past

Warning

exp, iat and nbf will only be verified if present.
Please pass respective value to require if you want to make
sure that they are always present (and therefore always verified
if verify_exp, verify_iat, and verify_nbf respectively
is set to True).

	audience (Iterable) – optional, the value for verify_aud check

	issuer (str [https://docs.python.org/3/library/stdtypes.html#str]) – optional, the value for verify_iss check

	leeway (float [https://docs.python.org/3/library/functions.html#float]) – a time margin in seconds for the expiration check

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns

	Decoded JWT with the JOSE Header on the key header, the JWS
Payload on the key payload, and the JWS Signature on the key signature.

Note

TODO: Document PyJWS class

Exceptions

	
class jwt.exceptions.InvalidTokenError

	Base exception when decode() fails on a token

	
class jwt.exceptions.DecodeError

	Raised when a token cannot be decoded because it failed validation

	
class jwt.exceptions.InvalidSignatureError

	Raised when a token’s signature doesn’t match the one provided as part of
the token.

	
class jwt.exceptions.ExpiredSignatureError

	Raised when a token’s exp claim indicates that it has expired

	
class jwt.exceptions.InvalidAudienceError

	Raised when a token’s aud claim does not match one of the expected
audience values

	
class jwt.exceptions.InvalidIssuerError

	Raised when a token’s iss claim does not match the expected issuer

	
class jwt.exceptions.InvalidIssuedAtError

	Raised when a token’s iat claim is in the future

	
class jwt.exceptions.ImmatureSignatureError

	Raised when a token’s nbf claim represents a time in the future

	
class jwt.exceptions.InvalidKeyError

	Raised when the specified key is not in the proper format

	
class jwt.exceptions.InvalidAlgorithmError

	Raised when the specified algorithm is not recognized by PyJWT

	
class jwt.exceptions.MissingRequiredClaimError

	Raised when a claim that is required to be present is not contained
in the claimset

Changelog

All notable changes to this project will be documented in this file.
This project adheres to Semantic Versioning [https://semver.org/].

Unreleased [https://github.com/jpadilla/pyjwt/compare/2.7.0...HEAD]

Changed

Fixed

Added

v2.8.0 [https://github.com/jpadilla/pyjwt/compare/2.7.0...2.8.0]

Changed

	Update python version test matrix by @auvipy in #895 [https://github.com/jpadilla/pyjwt/pull/895]

Fixed

Added

	Add strict_aud as an option to jwt.decode by @woodruffw in #902 [https://github.com/jpadilla/pyjwt/pull/902]

	Export PyJWKClientConnectionError class by @daviddavis in #887 [https://github.com/jpadilla/pyjwt/pull/887]

	Allows passing of ssl.SSLContext to PyJWKClient by @juur in #891 [https://github.com/jpadilla/pyjwt/pull/891]

v2.7.0 [https://github.com/jpadilla/pyjwt/compare/2.6.0...2.7.0]

Changed

	Changed the error message when the token audience doesn’t match the expected audience by @irdkwmnsb #809 [https://github.com/jpadilla/pyjwt/pull/809]

	Improve error messages when cryptography isn’t installed by @Viicos in #846 [https://github.com/jpadilla/pyjwt/pull/846]

	Make Algorithm an abstract base class by @Viicos in #845 [https://github.com/jpadilla/pyjwt/pull/845]

	ignore invalid keys in a jwks by @timw6n in #863 [https://github.com/jpadilla/pyjwt/pull/863]

Fixed

	Add classifier for Python 3.11 by @eseifert in #818 [https://github.com/jpadilla/pyjwt/pull/818]

	Fix _validate_iat validation by @Viicos in #847 [https://github.com/jpadilla/pyjwt/pull/847]

	fix: use datetime.datetime.timestamp function to have a milliseconds by @daillouf #821 [https://github.com/jpadilla/pyjwt/pull/821]

	docs: correct mistake in the changelog about verify param by @gbillig in #866 [https://github.com/jpadilla/pyjwt/pull/866]

Added

	Add compute_hash_digest as a method of Algorithm objects, which uses
the underlying hash algorithm to compute a digest. If there is no appropriate
hash algorithm, a NotImplementedError will be raised in #775 [https://github.com/jpadilla/pyjwt/pull/775]

	Add optional headers argument to PyJWKClient. If provided, the headers
will be included in requests that the client uses when fetching the JWK set by @thundercat1 in #823 [https://github.com/jpadilla/pyjwt/pull/823]

	Add PyJWT._{de,en}code_payload hooks by @akx in #829 [https://github.com/jpadilla/pyjwt/pull/829]

	Add sort_headers parameter to api_jwt.encode by @evroon in #832 [https://github.com/jpadilla/pyjwt/pull/832]

	Make mypy configuration stricter and improve typing by @akx in #830 [https://github.com/jpadilla/pyjwt/pull/830]

	Add more types by @Viicos in #843 [https://github.com/jpadilla/pyjwt/pull/843]

	Add a timeout for PyJWKClient requests by @daviddavis in #875 [https://github.com/jpadilla/pyjwt/pull/875]

	Add client connection error exception by @daviddavis in #876 [https://github.com/jpadilla/pyjwt/pull/876]

	Add complete types to take all allowed keys into account by @Viicos in #873 [https://github.com/jpadilla/pyjwt/pull/873]

	Add as_dict option to Algorithm.to_jwk by @fluxth in #881 [https://github.com/jpadilla/pyjwt/pull/881]

v2.6.0 [https://github.com/jpadilla/pyjwt/compare/2.5.0...2.6.0]

Changed

	bump up cryptography >= 3.4.0 by @jpadilla in #807 [https://github.com/jpadilla/pyjwt/pull/807]

	Remove types-cryptography from crypto extra by @lautat in #805 [https://github.com/jpadilla/pyjwt/pull/805]

Fixed

	Invalidate token on the exact second the token expires #797 [https://github.com/jpadilla/pyjwt/pull/797]

	fix: version 2.5.0 heading typo by @c0state in #803 [https://github.com/jpadilla/pyjwt/pull/803]

Added

	Adding validation for issued_at when iat > (now + leeway) as ImmatureSignatureError by @sriharan16 in https://github.com/jpadilla/pyjwt/pull/794

v2.5.0 [https://github.com/jpadilla/pyjwt/compare/2.4.0...2.5.0]

Changed

	Skip keys with incompatible alg when loading JWKSet by @DaGuich in #762 [https://github.com/jpadilla/pyjwt/pull/762]

	Remove support for python3.6 by @sirosen in #777 [https://github.com/jpadilla/pyjwt/pull/777]

	Emit a deprecation warning for unsupported kwargs by @sirosen in #776 [https://github.com/jpadilla/pyjwt/pull/776]

	Remove redundant wheel dep from pyproject.toml by @mgorny in #765 [https://github.com/jpadilla/pyjwt/pull/765]

	Do not fail when an unusable key occurs by @DaGuich in #762 [https://github.com/jpadilla/pyjwt/pull/762]

	Update audience typing by @JulianMaurin in #782 [https://github.com/jpadilla/pyjwt/pull/782]

	Improve PyJWKSet error accuracy by @JulianMaurin in #786 [https://github.com/jpadilla/pyjwt/pull/786]

	Mypy as pre-commit check + api_jws typing by @JulianMaurin in #787 [https://github.com/jpadilla/pyjwt/pull/787]

Fixed

	Adjust expected exceptions in option merging tests for PyPy3 by @mgorny in #763 [https://github.com/jpadilla/pyjwt/pull/763]

	Fixes for pyright on strict mode by @brandon-leapyear in #747 [https://github.com/jpadilla/pyjwt/pull/747]

	docs: fix simple typo, iinstance -> isinstance by @timgates42 in #774 [https://github.com/jpadilla/pyjwt/pull/774]

	Fix typo: priot -> prior by @jdufresne in #780 [https://github.com/jpadilla/pyjwt/pull/780]

	Fix for headers disorder issue by @kadabusha in #721 [https://github.com/jpadilla/pyjwt/pull/721]

Added

	Add to_jwk static method to ECAlgorithm by @leonsmith in #732 [https://github.com/jpadilla/pyjwt/pull/732]

	Expose get_algorithm_by_name as new method by @sirosen in #773 [https://github.com/jpadilla/pyjwt/pull/773]

	Add type hints to jwt/help.py and add missing types dependency by @kkirsche in #784 [https://github.com/jpadilla/pyjwt/pull/784]

	Add cacheing functionality for JWK set by @wuhaoyujerry in #781 [https://github.com/jpadilla/pyjwt/pull/781]

v2.4.0 [https://github.com/jpadilla/pyjwt/compare/2.3.0...2.4.0]

Security

	[CVE-2022-29217] Prevent key confusion through non-blocklisted public key formats. https://github.com/jpadilla/pyjwt/security/advisories/GHSA-ffqj-6fqr-9h24

Changed

	Explicit check the key for ECAlgorithm by @estin in https://github.com/jpadilla/pyjwt/pull/713

	Raise DeprecationWarning for jwt.decode(verify=…) by @akx in https://github.com/jpadilla/pyjwt/pull/742

Fixed

	Don’t use implicit optionals by @rekyungmin in https://github.com/jpadilla/pyjwt/pull/705

	documentation fix: show correct scope for decode_complete() by @sseering in https://github.com/jpadilla/pyjwt/pull/661

	fix: Update copyright information by @kkirsche in https://github.com/jpadilla/pyjwt/pull/729

	Don’t mutate options dictionary in .decode_complete() by @akx in https://github.com/jpadilla/pyjwt/pull/743

Added

	Add support for Python 3.10 by @hugovk in https://github.com/jpadilla/pyjwt/pull/699

	api_jwk: Add PyJWKSet.__getitem__ by @woodruffw in https://github.com/jpadilla/pyjwt/pull/725

	Update usage.rst by @guneybilen in https://github.com/jpadilla/pyjwt/pull/727

	Docs: mention performance reasons for reusing RSAPrivateKey when encoding by @dmahr1 in https://github.com/jpadilla/pyjwt/pull/734

	Fixed typo in usage.rst by @israelabraham in https://github.com/jpadilla/pyjwt/pull/738

	Add detached payload support for JWS encoding and decoding by @fviard in https://github.com/jpadilla/pyjwt/pull/723

	Replace various string interpolations with f-strings by @akx in https://github.com/jpadilla/pyjwt/pull/744

	Update CHANGELOG.rst by @hipertracker in https://github.com/jpadilla/pyjwt/pull/751

v2.3.0 [https://github.com/jpadilla/pyjwt/compare/2.2.0...2.3.0]

Fixed

	Revert “Remove arbitrary kwargs.” #701 [https://github.com/jpadilla/pyjwt/pull/701]

Added

	Add exception chaining #702 [https://github.com/jpadilla/pyjwt/pull/702]

v2.2.0 [https://github.com/jpadilla/pyjwt/compare/2.1.0...2.2.0]

Changed

	Remove arbitrary kwargs. #657 [https://github.com/jpadilla/pyjwt/pull/657]

	Use timezone package as Python 3.5+ is required. #694 [https://github.com/jpadilla/pyjwt/pull/694]

Fixed

	Assume JWK without the “use” claim is valid for signing as per RFC7517 #668 [https://github.com/jpadilla/pyjwt/pull/668]

	Prefer headers[“alg”] to algorithm in jwt.encode(). #673 [https://github.com/jpadilla/pyjwt/pull/673]

	Fix aud validation to support {‘aud’: null} case. #670 [https://github.com/jpadilla/pyjwt/pull/670]

	Make typ optional in JWT to be compliant with RFC7519. #644 [https://github.com/jpadilla/pyjwt/pull/644]

	Remove upper bound on cryptography version. #693 [https://github.com/jpadilla/pyjwt/pull/693]

Added

	Add support for Ed448/EdDSA. #675 [https://github.com/jpadilla/pyjwt/pull/675]

v2.1.0 [https://github.com/jpadilla/pyjwt/compare/2.0.1...2.1.0]

Changed

	Allow claims validation without making JWT signature validation mandatory. #608 [https://github.com/jpadilla/pyjwt/pull/608]

Fixed

	Remove padding from JWK test data. #628 [https://github.com/jpadilla/pyjwt/pull/628]

	Make kty mandatory in JWK to be compliant with RFC7517. #624 [https://github.com/jpadilla/pyjwt/pull/624]

	Allow JWK without alg to be compliant with RFC7517. #624 [https://github.com/jpadilla/pyjwt/pull/624]

	Allow to verify with private key on ECAlgorithm, as well as on Ed25519Algorithm. #645 [https://github.com/jpadilla/pyjwt/pull/645]

Added

	Add caching by default to PyJWKClient #611 [https://github.com/jpadilla/pyjwt/pull/611]

	Add missing exceptions.InvalidKeyError to jwt module __init__ imports #620 [https://github.com/jpadilla/pyjwt/pull/620]

	Add support for ES256K algorithm #629 [https://github.com/jpadilla/pyjwt/pull/629]

	Add from_jwk() to Ed25519Algorithm #621 [https://github.com/jpadilla/pyjwt/pull/621]

	Add to_jwk() to Ed25519Algorithm #643 [https://github.com/jpadilla/pyjwt/pull/643]

	Export PyJWK and PyJWKSet #652 [https://github.com/jpadilla/pyjwt/pull/652]

v2.0.1 [https://github.com/jpadilla/pyjwt/compare/2.0.0...2.0.1]

Changed

	Rename CHANGELOG.md to CHANGELOG.rst and include in docs #597 [https://github.com/jpadilla/pyjwt/pull/597]

Fixed

	Fix from_jwk() for all algorithms #598 [https://github.com/jpadilla/pyjwt/pull/598]

Added

v2.0.0 [https://github.com/jpadilla/pyjwt/compare/1.7.1...2.0.0]

Changed

Drop support for Python 2 and Python 3.0-3.5

Python 3.5 is EOL so we decide to drop its support. Version 1.7.1 is
the last one supporting Python 3.0-3.5.

Require cryptography >= 3

Drop support for PyCrypto and ECDSA

We’ve kept this around for a long time, mostly for environments that
didn’t allow installing cryptography.

Drop CLI

Dropped the included cli entry point.

Improve typings

We no longer need to use mypy Python 2 compatibility mode (comments)

jwt.encode(...) return type

Tokens are returned as string instead of a byte string

Dropped deprecated errors

Removed ExpiredSignature, InvalidAudience, and
InvalidIssuer. Use ExpiredSignatureError,
InvalidAudienceError, and InvalidIssuerError instead.

Dropped deprecated verify_expiration param in jwt.decode(...)

Use
jwt.decode(encoded, key, algorithms=["HS256"], options={"verify_exp": False})
instead.

Dropped deprecated verify param in jwt.decode(...)

Use jwt.decode(encoded, key, options={"verify_signature": False})
instead.

Require explicit algorithms in jwt.decode(...) by default

Example: jwt.decode(encoded, key, algorithms=["HS256"]).

Dropped deprecated require_* options in jwt.decode(...)

For example, instead of
jwt.decode(encoded, key, algorithms=["HS256"], options={"require_exp": True}),
use
jwt.decode(encoded, key, algorithms=["HS256"], options={"require": ["exp"]}).

And the old v1.x syntax
jwt.decode(token, verify=False)
is now:
jwt.decode(jwt=token, key='secret', algorithms=['HS256'], options={"verify_signature": False})

Added

Introduce better experience for JWKs

Introduce PyJWK, PyJWKSet, and PyJWKClient.

import jwt
from jwt import PyJWKClient

token = "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6Ik5FRTFRVVJCT1RNNE16STVSa0ZETlRZeE9UVTFNRGcyT0Rnd1EwVXpNVGsxUWpZeVJrUkZRdyJ9.eyJpc3MiOiJodHRwczovL2Rldi04N2V2eDlydS5hdXRoMC5jb20vIiwic3ViIjoiYVc0Q2NhNzl4UmVMV1V6MGFFMkg2a0QwTzNjWEJWdENAY2xpZW50cyIsImF1ZCI6Imh0dHBzOi8vZXhwZW5zZXMtYXBpIiwiaWF0IjoxNTcyMDA2OTU0LCJleHAiOjE1NzIwMDY5NjQsImF6cCI6ImFXNENjYTc5eFJlTFdVejBhRTJINmtEME8zY1hCVnRDIiwiZ3R5IjoiY2xpZW50LWNyZWRlbnRpYWxzIn0.PUxE7xn52aTCohGiWoSdMBZGiYAHwE5FYie0Y1qUT68IHSTXwXVd6hn02HTah6epvHHVKA2FqcFZ4GGv5VTHEvYpeggiiZMgbxFrmTEY0csL6VNkX1eaJGcuehwQCRBKRLL3zKmA5IKGy5GeUnIbpPHLHDxr-GXvgFzsdsyWlVQvPX2xjeaQ217r2PtxDeqjlf66UYl6oY6AqNS8DH3iryCvIfCcybRZkc_hdy-6ZMoKT6Piijvk_aXdm7-QQqKJFHLuEqrVSOuBqqiNfVrG27QzAPuPOxvfXTVLXL2jek5meH6n-VWgrBdoMFH93QEszEDowDAEhQPHVs0xj7SIzA"
kid = "NEE1QURBOTM4MzI5RkFDNTYxOTU1MDg2ODgwQ0UzMTk1QjYyRkRFQw"
url = "https://dev-87evx9ru.auth0.com/.well-known/jwks.json"

jwks_client = PyJWKClient(url)
signing_key = jwks_client.get_signing_key_from_jwt(token)

data = jwt.decode(
 token,
 signing_key.key,
 algorithms=["RS256"],
 audience="https://expenses-api",
 options={"verify_exp": False},
)
print(data)

Support for JWKs containing ECDSA keys

Add support for Ed25519 / EdDSA

Pull Requests

	Add PyPy3 to the test matrix (#550) by @jdufresne

	Require tweak (#280) by @psafont

	Decode return type is dict[str, Any] (#393) by @jacopofar

	Fix linter error in test_cli (#414) by @jaraco

	Run mypy with tox (#421) by @jpadilla

	Document (and prefer) pyjwt[crypto] req format (#426) by @gthb

	Correct type for json_encoder argument (#438) by @jdufresne

	Prefer https:// links where available (#439) by @jdufresne

	Pass python_requires argument to setuptools (#440) by @jdufresne

	Rename [wheel] section to [bdist_wheel] as the former is legacy
(#441) by @jdufresne

	Remove setup.py test command in favor of pytest and tox (#442) by
@jdufresne

	Fix mypy errors (#449) by @jpadilla

	DX Tweaks (#450) by @jpadilla

	Add support of python 3.8 (#452) by @Djailla

	Fix 406 (#454) by @justinbaur

	Add support for Ed25519 / EdDSA, with unit tests (#455) by
@Someguy123

	Remove Python 2.7 compatibility (#457) by @Djailla

	Fix simple typo: encododed -> encoded (#462) by @timgates42

	Enhance tracebacks. (#477) by @JulienPalard

	Simplify python_requires (#478) by @michael-k

	Document top-level .encode and .decode to close #459 (#482) by
@dimaqq

	Improve documentation for audience usage (#484) by @CorreyL

	Correct README on how to run tests locally (#489) by @jdufresne

	Fix tox -e lint warnings and errors (#490) by @jdufresne

	Run pyupgrade across project to use modern Python 3 conventions
(#491) by @jdufresne

	Add Python-3-only trove classifier and remove “universal” from wheel
(#492) by @jdufresne

	Emit warnings about user code, not pyjwt code (#494) by @mgedmin

	Move setup information to declarative setup.cfg (#495) by @jdufresne

	CLI options for verifying audience and issuer (#496) by
@GeoffRichards

	Specify the target Python version for mypy (#497) by @jdufresne

	Remove unnecessary compatibility shims for Python 2 (#498) by
@jdufresne

	Setup GH Actions (#499) by @jpadilla

	Implementation of ECAlgorithm.from_jwk (#500) by @jpadilla

	Remove cli entry point (#501) by @jpadilla

	Expose InvalidKeyError on jwt module (#503) by @russellcardullo

	Avoid loading token twice in pyjwt.decode (#506) by @CaselIT

	Default links to stable version of documentation (#508) by @salcedo

	Update README.md badges (#510) by @jpadilla

	Introduce better experience for JWKs (#511) by @jpadilla

	Fix tox conditional extras (#512) by @jpadilla

	Return tokens as string not bytes (#513) by @jpadilla

	Drop support for legacy contrib algorithms (#514) by @jpadilla

	Drop deprecation warnings (#515) by @jpadilla

	Update Auth0 sponsorship link (#519) by @Sambego

	Update return type for jwt.encode (#521) by @moomoolive

	Run tests against Python 3.9 and add trove classifier (#522) by
@michael-k

	Removed redundant default_backend() (#523) by @rohitkg98

	Documents how to use private keys with passphrases (#525) by @rayluo

	Update version to 2.0.0a1 (#528) by @jpadilla

	Fix usage example (#530) by @nijel

	add EdDSA to docs (#531) by @CircleOnCircles

	Remove support for EOL Python 3.5 (#532) by @jdufresne

	Upgrade to isort 5 and adjust configurations (#533) by @jdufresne

	Remove unused argument “verify” from PyJWS.decode() (#534) by
@jdufresne

	Update typing syntax and usage for Python 3.6+ (#535) by @jdufresne

	Run pyupgrade to simplify code and use Python 3.6 syntax (#536) by
@jdufresne

	Drop unknown pytest config option: strict (#537) by @jdufresne

	Upgrade black version and usage (#538) by @jdufresne

	Remove “Command line” sections from docs (#539) by @jdufresne

	Use existing key_path() utility function throughout tests (#540) by
@jdufresne

	Replace force_bytes()/force_unicode() in tests with literals (#541)
by @jdufresne

	Remove unnecessary Unicode decoding before json.loads() (#542) by
@jdufresne

	Remove unnecessary force_bytes() calls prior to base64url_decode()
(#543) by @jdufresne

	Remove deprecated arguments from docs (#544) by @jdufresne

	Update code blocks in docs (#545) by @jdufresne

	Refactor jwt/jwks_client.py without requests dependency (#546) by
@jdufresne

	Tighten bytes/str boundaries and remove unnecessary coercing (#547)
by @jdufresne

	Replace codecs.open() with builtin open() (#548) by @jdufresne

	Replace int_from_bytes() with builtin int.from_bytes() (#549) by
@jdufresne

	Enforce .encode() return type using mypy (#551) by @jdufresne

	Prefer direct indexing over options.get() (#552) by @jdufresne

	Cleanup “noqa” comments (#553) by @jdufresne

	Replace merge_dict() with builtin dict unpacking generalizations
(#555) by @jdufresne

	Do not mutate the input payload in PyJWT.encode() (#557) by
@jdufresne

	Use direct indexing in PyJWKClient.get_signing_key_from_jwt()
(#558) by @jdufresne

	Split PyJWT/PyJWS classes to tighten type interfaces (#559) by
@jdufresne

	Simplify mocked_response test utility function (#560) by @jdufresne

	Autoupdate pre-commit hooks and apply them (#561) by @jdufresne

	Remove unused argument “payload” from PyJWS.verifysignature()
(#562) by @jdufresne

	Add utility functions to assist test skipping (#563) by @jdufresne

	Type hint jwt.utils module (#564) by @jdufresne

	Prefer ModuleNotFoundError over ImportError (#565) by @jdufresne

	Fix tox “manifest” environment to pass (#566) by @jdufresne

	Fix tox “docs” environment to pass (#567) by @jdufresne

	Simplify black configuration to be closer to upstream defaults (#568)
by @jdufresne

	Use generator expressions (#569) by @jdufresne

	Simplify from_base64url_uint() (#570) by @jdufresne

	Drop lint environment from GitHub actions in favor of pre-commit.ci
(#571) by @jdufresne

	[pre-commit.ci] pre-commit autoupdate (#572)

	Simplify tox configuration (#573) by @jdufresne

	Combine identical test functions using pytest.mark.parametrize()
(#574) by @jdufresne

	Complete type hinting of jwks_client.py (#578) by @jdufresne

v1.7.1 [https://github.com/jpadilla/pyjwt/compare/1.7.0...1.7.1]

Fixed

	Update test dependencies with pinned ranges

	Fix pytest deprecation warnings

v1.7.0 [https://github.com/jpadilla/pyjwt/compare/1.6.4...1.7.0]

Changed

	Remove CRLF line endings
#353 [https://github.com/jpadilla/pyjwt/pull/353]

Fixed

	Update usage.rst
#360 [https://github.com/jpadilla/pyjwt/pull/360]

Added

	Support for Python 3.7
#375 [https://github.com/jpadilla/pyjwt/pull/375]
#379 [https://github.com/jpadilla/pyjwt/pull/379]
#384 [https://github.com/jpadilla/pyjwt/pull/384]

v1.6.4 [https://github.com/jpadilla/pyjwt/compare/1.6.3...1.6.4]

Fixed

	Reverse an unintentional breaking API change to .decode()
#352 [https://github.com/jpadilla/pyjwt/pull/352]

v1.6.3 [https://github.com/jpadilla/pyjwt/compare/1.6.1...1.6.3]

Changed

	All exceptions inherit from PyJWTError
#340 [https://github.com/jpadilla/pyjwt/pull/340]

Added

	Add type hints #344 [https://github.com/jpadilla/pyjwt/pull/344]

	Add help module
7ca41e [https://github.com/jpadilla/pyjwt/commit/7ca41e53b3d7d9f5cd31bdd8a2b832d192006239]

Docs

	Added section to usage docs for jwt.get_unverified_header()
#350 [https://github.com/jpadilla/pyjwt/pull/350]

	Update legacy instructions for using pycrypto
#337 [https://github.com/jpadilla/pyjwt/pull/337]

v1.6.1 [https://github.com/jpadilla/pyjwt/compare/1.6.0...1.6.1]

Fixed

	Audience parameter throws InvalidAudienceError when application
does not specify an audience, but the token does.
#336 [https://github.com/jpadilla/pyjwt/pull/336]

v1.6.0 [https://github.com/jpadilla/pyjwt/compare/1.5.3...1.6.0]

Changed

	Dropped support for python 2.6 and 3.3
#301 [https://github.com/jpadilla/pyjwt/pull/301]

	An invalid signature now raises an InvalidSignatureError instead
of DecodeError
#316 [https://github.com/jpadilla/pyjwt/pull/316]

Fixed

	Fix over-eager fallback to stdin
#304 [https://github.com/jpadilla/pyjwt/pull/304]

Added

	Audience parameter now supports iterables
#306 [https://github.com/jpadilla/pyjwt/pull/306]

v1.5.3 [https://github.com/jpadilla/pyjwt/compare/1.5.2...1.5.3]

Changed

	Increase required version of the cryptography package to >=1.4.0.

Fixed

	Remove uses of deprecated functions from the cryptography package.

	Warn about missing algorithms param to decode() only when
verify param is True
#281 [https://github.com/jpadilla/pyjwt/pull/281]

v1.5.2 [https://github.com/jpadilla/pyjwt/compare/1.5.1...1.5.2]

Fixed

	Ensure correct arguments order in decode super call
7c1e61d [https://github.com/jpadilla/pyjwt/commit/7c1e61dde27bafe16e7d1bb6e35199e778962742]

v1.5.1 [https://github.com/jpadilla/pyjwt/compare/1.5.0...1.5.1]

Changed

	Change optparse for argparse.
#238 [https://github.com/jpadilla/pyjwt/pull/238]

Fixed

	Guard against PKCS1 PEM encoded public keys
#277 [https://github.com/jpadilla/pyjwt/pull/277]

	Add deprecation warning when decoding without specifying
algorithms #277 [https://github.com/jpadilla/pyjwt/pull/277]

	Improve deprecation messages
#270 [https://github.com/jpadilla/pyjwt/pull/270]

	PyJWT.decode: move verify param into options
#271 [https://github.com/jpadilla/pyjwt/pull/271]

Added

	Support for Python 3.6
#262 [https://github.com/jpadilla/pyjwt/pull/262]

	Expose jwt.InvalidAlgorithmError
#264 [https://github.com/jpadilla/pyjwt/pull/264]

v1.5.0 [https://github.com/jpadilla/pyjwt/compare/1.4.2...1.5.0]

Changed

	Add support for ECDSA public keys in RFC 4253 (OpenSSH) format
#244 [https://github.com/jpadilla/pyjwt/pull/244]

	Renamed commandline script jwt to jwt-cli to avoid issues
with the script clobbering the jwt module in some circumstances.
#187 [https://github.com/jpadilla/pyjwt/pull/187]

	Better error messages when using an algorithm that requires the
cryptography package, but it isn’t available
#230 [https://github.com/jpadilla/pyjwt/pull/230]

	Tokens with future ‘iat’ values are no longer rejected
#190 [https://github.com/jpadilla/pyjwt/pull/190]

	Non-numeric ‘iat’ values now raise InvalidIssuedAtError instead of
DecodeError

	Remove rejection of future ‘iat’ claims
#252 [https://github.com/jpadilla/pyjwt/pull/252]

Fixed

	Add back ‘ES512’ for backward compatibility (for now)
#225 [https://github.com/jpadilla/pyjwt/pull/225]

	Fix incorrectly named ECDSA algorithm
#219 [https://github.com/jpadilla/pyjwt/pull/219]

	Fix rpm build #196 [https://github.com/jpadilla/pyjwt/pull/196]

Added

	Add JWK support for HMAC and RSA keys
#202 [https://github.com/jpadilla/pyjwt/pull/202]

v1.4.2 [https://github.com/jpadilla/pyjwt/compare/1.4.1...1.4.2]

Fixed

	A PEM-formatted key encoded as bytes could cause a TypeError to
be raised #213 [https://github.com/jpadilla/pyjwt/pull/214]

v1.4.1 [https://github.com/jpadilla/pyjwt/compare/1.4.0...1.4.1]

Fixed

	Newer versions of Pytest could not detect warnings properly
#182 [https://github.com/jpadilla/pyjwt/pull/182]

	Non-string ‘kid’ value now raises InvalidTokenError
#174 [https://github.com/jpadilla/pyjwt/pull/174]

	jwt.decode(None) now gracefully fails with InvalidTokenError
#183 [https://github.com/jpadilla/pyjwt/pull/183]

v1.4 [https://github.com/jpadilla/pyjwt/compare/1.3.0...1.4.0]

Fixed

	Exclude Python cache files from PyPI releases.

Added

	Added new options to require certain claims (require_nbf,
require_iat, require_exp) and raise MissingRequiredClaimError
if they are not present.

	If audience= or issuer= is specified but the claim is not
present, MissingRequiredClaimError is now raised instead of
InvalidAudienceError and InvalidIssuerError

v1.3 [https://github.com/jpadilla/pyjwt/compare/1.2.0...1.3.0]

Fixed

	ECDSA (ES256, ES384, ES512) signatures are now being properly
serialized #158 [https://github.com/jpadilla/pyjwt/pull/158]

	RSA-PSS (PS256, PS384, PS512) signatures now use the proper salt
length for PSS padding.
#163 [https://github.com/jpadilla/pyjwt/pull/163]

Added

	Added a new jwt.get_unverified_header() to parse and return the
header portion of a token prior to signature verification.

Removed

	Python 3.2 is no longer a supported platform. This version of Python
is rarely used. Users affected by this should upgrade to 3.3+.

v1.2.0 [https://github.com/jpadilla/pyjwt/compare/1.1.0...1.2.0]

Fixed

	Added back verify_expiration= argument to jwt.decode() that
was erroneously removed in
v1.1.0 [https://github.com/jpadilla/pyjwt/compare/1.0.1...1.1.0].

Changed

	Refactored JWS-specific logic out of PyJWT and into PyJWS superclass.
#141 [https://github.com/jpadilla/pyjwt/pull/141]

Deprecated

	verify_expiration= argument to jwt.decode() is now deprecated
and will be removed in a future version. Use the option= argument
instead.

v1.1.0 [https://github.com/jpadilla/pyjwt/compare/1.0.1...1.1.0]

Added

	Added support for PS256, PS384, and PS512 algorithms.
#132 [https://github.com/jpadilla/pyjwt/pull/132]

	Added flexible and complete verification options during decode.
#131 [https://github.com/jpadilla/pyjwt/pull/131]

	Added this CHANGELOG.md file.

Deprecated

	Deprecated usage of the .decode(…, verify=False) parameter.

Fixed

	Fixed command line encoding.
#128 [https://github.com/jpadilla/pyjwt/pull/128]

v1.0.1 [https://github.com/jpadilla/pyjwt/compare/1.0.0...1.0.1]

Fixed

	Include jwt/contrib’ and jwt/contrib/algorithms` in setup.py so that
they will actually be included when installing.
882524d [https://github.com/jpadilla/pyjwt/commit/882524d]

	Fix bin/jwt after removing jwt.header().
bd57b02 [https://github.com/jpadilla/pyjwt/commit/bd57b02]

v1.0.0 [https://github.com/jpadilla/pyjwt/compare/0.4.3...1.0.0]

Changed

	Moved jwt.api.header out of the public API.
#85 [https://github.com/jpadilla/pyjwt/pull/85]

	Added README details how to extract public / private keys from an
x509 certificate.
#100 [https://github.com/jpadilla/pyjwt/pull/100]

	Refactor api.py functions into an object (PyJWT).
#101 [https://github.com/jpadilla/pyjwt/pull/101]

	Added support for PyCrypto and ecdsa when cryptography isn’t
available. #101 [https://github.com/jpadilla/pyjwt/pull/103]

Fixed

	Fixed a security vulnerability where alg=None header could bypass
signature verification.
#109 [https://github.com/jpadilla/pyjwt/pull/109]

	Fixed a security vulnerability by adding support for a whitelist of
allowed alg values jwt.decode(algorithms=[]).
#110 [https://github.com/jpadilla/pyjwt/pull/110]

 Python Module Index

 j

 		 	

 		
 j	

 	[image: -]
 	
 jwt	

 	
 	
 jwt.api_jwt	

Index

 D
 | E
 | I
 | J
 | M

D

 	
 	decode() (in module jwt)

 	
 	decode_complete() (in module jwt.api_jwt)

 	DecodeError (class in jwt.exceptions)

E

 	
 	encode() (in module jwt)

 	
 	ExpiredSignatureError (class in jwt.exceptions)

I

 	
 	ImmatureSignatureError (class in jwt.exceptions)

 	InvalidAlgorithmError (class in jwt.exceptions)

 	InvalidAudienceError (class in jwt.exceptions)

 	InvalidIssuedAtError (class in jwt.exceptions)

 	
 	InvalidIssuerError (class in jwt.exceptions)

 	InvalidKeyError (class in jwt.exceptions)

 	InvalidSignatureError (class in jwt.exceptions)

 	InvalidTokenError (class in jwt.exceptions)

J

 	
 	jwt (module)

 	
 	jwt.api_jwt (module)

M

 	
 	MissingRequiredClaimError (class in jwt.exceptions)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/40abf5e04f15f9507e0be7c22a80357d7098fe35.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to PyJWT

 		
 Installation

 		
 Cryptographic Dependencies (Optional)

 		
 Usage Examples

 		
 Encoding & Decoding Tokens with HS256

 		
 Encoding & Decoding Tokens with RS256 (RSA)

 		
 Specifying Additional Headers

 		
 Reading the Claimset without Validation

 		
 Reading Headers without Validation

 		
 Registered Claim Names

 		
 Expiration Time Claim (exp)

 		
 Not Before Time Claim (nbf)

 		
 Issuer Claim (iss)

 		
 Audience Claim (aud)

 		
 Issued At Claim (iat)

 		
 Requiring Presence of Claims

 		
 Retrieve RSA signing keys from a JWKS endpoint

 		
 OIDC Login Flow

 		
 Frequently Asked Questions

 		
 How can I extract a public / private key from a x509 certificate?

 		
 Digital Signature Algorithms

 		
 Asymmetric (Public-key) Algorithms

 		
 Specifying an Algorithm

 		
 API Reference

 		
 Exceptions

 		
 Changelog

 		
 Unreleased

 		
 Changed

 		
 Fixed

 		
 Added

 		
 v2.8.0

 		
 Changed

 		
 Fixed

 		
 Added

 		
 v2.7.0

 		
 Changed

 		
 Fixed

 		
 Added

 		
 v2.6.0

 		
 Changed

 		
 Fixed

 		
 Added

 		
 v2.5.0

 		
 Changed

 		
 Fixed

 		
 Added

 		
 v2.4.0

 		
 Security

 		
 Changed

 		
 Fixed

 		
 Added

 		
 v2.3.0

 		
 Fixed

 		
 Added

 		
 v2.2.0

 		
 Changed

 		
 Fixed

 		
 Added

 		
 v2.1.0

 		
 Changed

 		
 Fixed

 		
 Added

 		
 v2.0.1

 		
 Changed

 		
 Fixed

 		
 Added

 		
 v2.0.0

 		
 Changed

 		
 Added

 		
 Pull Requests

 		
 v1.7.1

 		
 Fixed

 		
 v1.7.0

 		
 Changed

 		
 Fixed

 		
 Added

 		
 v1.6.4

 		
 Fixed

 		
 v1.6.3

 		
 Changed

 		
 Added

 		
 Docs

 		
 v1.6.1

 		
 Fixed

 		
 v1.6.0

 		
 Changed

 		
 Fixed

 		
 Added

 		
 v1.5.3

 		
 Changed

 		
 Fixed

 		
 v1.5.2

 		
 Fixed

 		
 v1.5.1

 		
 Changed

 		
 Fixed

 		
 Added

 		
 v1.5.0

 		
 Changed

 		
 Fixed

 		
 Added

 		
 v1.4.2

 		
 Fixed

 		
 v1.4.1

 		
 Fixed

 		
 v1.4

 		
 Fixed

 		
 Added

 		
 v1.3

 		
 Fixed

 		
 Added

 		
 Removed

 		
 v1.2.0

 		
 Fixed

 		
 Changed

 		
 Deprecated

 		
 v1.1.0

 		
 Added

 		
 Deprecated

 		
 Fixed

 		
 v1.0.1

 		
 Fixed

 		
 v1.0.0

 		
 Changed

 		
 Fixed

_static/up-pressed.png

_static/up.png

