
PyInstaller Documentation
Release 3.2

David Cortesi

2017-01-08

Contents

1 What’s New This Release 3
1.1 Requirements . 3
1.2 License . 4
1.3 How To Contribute . 4
1.4 How to Install PyInstaller . 4
1.5 What PyInstaller Does and How It Does It . 6
1.6 Using PyInstaller . 9
1.7 Run-time Information . 17
1.8 Using Spec Files . 18
1.9 When Things Go Wrong . 25
1.10 Advanced Topics . 29
1.11 Understanding PyInstaller Hooks . 36
1.12 Building the Bootloader . 43
1.13 Changelog for PyInstaller . 45
1.14 Credits . 55
1.15 Man Pages . 59
1.16 Indices and tables . 64

i

ii

PyInstaller Documentation, Release 3.2

Version PyInstaller 3.2

Homepage http://www.pyinstaller.org

Contact pyinstaller@googlegroups.com

Authors David Cortesi, based on structure by Giovanni Bajo & William Caban, based on Gordon McMil-
lan’s manual

Copyright This document has been placed in the public domain.

PyInstaller bundles a Python application and all its dependencies into a single package. The user can run the packaged
app without installing a Python interpreter or any modules. PyInstaller supports Python 2.7 and Python 3.3+, and
correctly bundles the major Python packages such as numpy, PyQt, Django, wxPython, and others.

PyInstaller is tested against Windows, Mac OS X, and Linux. However, it is not a cross-compiler: to make a Windows
app you run PyInstaller in Windows; to make a Linux app you run it in Linux, etc. PyInstaller has been used
successfully with AIX, Solaris, and FreeBSD, but is not tested against them.

Contents 1

http://www.pyinstaller.org
mailto:pyinstaller@googlegroups.com

PyInstaller Documentation, Release 3.2

2 Contents

CHAPTER 1

What’s New This Release

Release 3.0 is a major rewrite that adds Python 3 support, better code quality through use of automated testing, and
resolutions for many old issues.

Functional changes include removal of support for Python prior to 2.7, an easier way to include data files in the bundle
(Adding Files to the Bundle), and changes to the “hook” API (Understanding PyInstaller Hooks).

Contents:

1.1 Requirements

1.1.1 Windows

PyInstaller runs in Windows XP or newer. It can create graphical windowed apps (apps that do not need a command
window).

PyInstaller requires two Python modules in in a Windows system. It requires either the PyWin32 or pypiwin32
Python extension for Windows. If you install PyInstaller using pip, and PyWin32 is not already installed, pypiwin32
is automatically installed. PyInstaller also requires the pefile package.

The pip-Win package is recommended, but not required.

1.1.2 Mac OS X

PyInstaller runs in Mac OS X 10.7 (Lion) or newer. It can build graphical windowed apps (apps that do not use a
terminal window). PyInstaller builds apps that are compatible with the Mac OS X release in which you run it, and
following releases. It can build 32-bit binaries in Mac OS X releases that support them.

1.1.3 Linux

PyInstaller requires the ldd terminal application to discover the shared libraries required by each program or shared
library. It is typically found in the distribution-package glibc or libc-bin.

It also requires the objdump terminal application to extract information from object files and the objcopy terminal
application to append data to the bootloader. These are typically found in the distribution-package binutils.

3

http://sourceforge.net/projects/pywin32/files/
https://pypi.python.org/pypi/pypiwin32/219
https://pypi.python.org/pypi/pefile/
https://sites.google.com/site/pydatalog/python/pip-for-windows

PyInstaller Documentation, Release 3.2

1.1.4 AIX, Solaris, and FreeBSD

Users have reported success running PyInstaller on these platforms, but it is not tested on them. The ldd and
objdump commands are needed.

Each bundled app contains a copy of a bootloader, a program that sets up the application and starts it (see The Bootstrap
Process in Detail).

When you install PyInstaller using pip, the setup will attempt to build a bootloader for this platform. If that succeeds,
the installation continues and PyInstaller is ready to use.

If the pip setup fails to build a bootloader, or if you do not use pip to install, you must compile a bootloader manually.
The process is described under Building the Bootloader.

1.2 License

PyInstaller is distributed under the GPL License but with an exception that allows you to use it to build commercial
products:

1. You may use PyInstaller to bundle commercial applications out of your source code.

2. The executable bundles generated by PyInstaller from your source code can be shipped with whatever license
you want.

3. You may modify PyInstaller for your own needs but changes to the PyInstaller source code fall under the terms
of the GPL license. That is, if you distribute your modifications you must distribute them under GPL terms.

For updated information or clarification see our FAQ at the PyInstaller home page.

1.3 How To Contribute

PyInstaller is an open-source project that is created and maintained by volunteers. At Pyinstaller.org you find links to
the mailing list, IRC channel, and Git repository, and the important How to Contribute link. Contributions to code and
documentation are welcome, as well as tested hooks for installing other packages.

1.4 How to Install PyInstaller

PyInstaller is a normal Python package. You can download the archive from PyPi, but it is easier to install using pip
where is is available, for example:

pip install pyinstaller

or upgrade to a newer version:

pip install --upgrade pyinstaller

1.4.1 Installing in Windows

For Windows, PyWin32 or the more recent pypiwin32, is a prerequisite. The latter is installed automatically when you
install PyInstaller using pip or easy_install. If necessary, follow the pypiwin32 link to install it manually.

4 Chapter 1. What’s New This Release

http://www.pip-installer.org/
http://www.pip-installer.org/
http://www.pip-installer.org/
https://raw.github.com/pyinstaller/pyinstaller/develop/COPYING.txt
https://github.com/pyinstaller/pyinstaller/wiki/FAQ
http://www.pyinstaller.org
https://github.com/pyinstaller/pyinstaller/wiki/Community
https://github.com/pyinstaller/pyinstaller/wiki/How-to-Contribute
https://pypi.python.org/pypi/PyInstaller/
http://www.pip-installer.org/
http://sourceforge.net/projects/pywin32/files/
https://pypi.python.org/pypi/pypiwin32/219
http://www.pip-installer.org/
http://peak.telecommunity.com/DevCenter/EasyInstall
https://pypi.python.org/pypi/pypiwin32/219

PyInstaller Documentation, Release 3.2

It is particularly easy to use pip-Win to install PyInstaller along with the correct version of PyWin32. pip-Win also
provides virtualenv, which makes it simple to maintain multiple different Python interpreters and install packages such
as PyInstaller in each of them. (For more on the uses of virtualenv, see Supporting Multiple Platforms below.)

When pip-Win is working, enter this command in its Command field and click Run:

venv -c -i pyi-env-name

This creates a new virtual environment rooted at C:\Python\pyi-env-name and makes it the current environ-
ment. A new command shell window opens in which you can run commands within this environment. Enter the
command

pip install PyInstaller

Once it is installed, to use PyInstaller,

• Start pip-Win

• In the Command field enter venv pyi-env-name

• Click Run

Then you have a command shell window in which commands such as pyinstaller execute in that Python environment.

1.4.2 Installing in Mac OS X

PyInstaller works with the default Python 2.7 provided with current Mac OS X installations. However, if you plan to
use a later version of Python, or if you use any of the major packages such as PyQt, Numpy, Matplotlib, Scipy, and
the like, we strongly recommend that you install these using either MacPorts or Homebrew.

PyInstaller users report fewer problems when they use a package manager than when they attempt to install major
packages individually.

1.4.3 Installing from the archive

If pip is not available, download the compressed archive from PyPI. If you are asked to test a problem using the latest
development code, download the compressed archive from the develop branch of PyInstaller Downloads page.

Expand the archive. Inside is a script named setup.py. Execute python setup.py install with adminis-
trator privilege to install or upgrade PyInstaller.

For platforms other than Windows, Linux and Mac OS, you must first build a bootloader program for your platform:
see Building the Bootloader. After the bootloader has been created, use python setup.py install with ad-
ministrator privileges to complete the installation.

1.4.4 Verifying the installation

On all platforms, the command pyinstaller should now exist on the execution path. To verify this, enter the
command

pyinstaller --version

The result should resemble 3.n for a released version, and 3.n.dev0-xxxxxx for a development branch.

If the command is not found, make sure the execution path includes the proper directory:

• Windows: C:\PythonXY\Scripts where XY stands for the major and minor Python version number, for
example C:\Python34\Scripts for Python 3.4)

• Linux: /usr/bin/

1.4. How to Install PyInstaller 5

https://sites.google.com/site/pydatalog/python/pip-for-windows
http://sourceforge.net/projects/pywin32/files/
https://sites.google.com/site/pydatalog/python/pip-for-windows
http://www.virtualenv.org/
https://www.macports.org/
http://brew.sh/
https://pypi.python.org/pypi/PyInstaller/
https://github.com/pyinstaller/pyinstaller/releases

PyInstaller Documentation, Release 3.2

• OS X (using the default Apple-supplied Python) /usr/bin

• OS X (using Python installed by homebrew) /usr/local/bin

• OS X (using Python installed by macports) /opt/local/bin

To display the current path in Windows the command is echo %path% and in other systems, echo $PATH.

1.4.5 Installed commands

The complete installation places these commands on the execution path:

• pyinstaller is the main command to build a bundled application. See Using PyInstaller.

• pyi-makespec is used to create a spec file. See Using Spec Files.

• pyi-archive_viewer is used to inspect a bundled application. See Inspecting Archives.

• pyi-bindepend is used to display dependencies of an executable. See Inspecting Executables.

• pyi-grab_version is used to extract a version resource from a Windows executable. See Capturing Win-
dows Version Data.

If you do not perform a complete installation (installing via pip or executing setup.py), these commands will
not be installed as commands. However, you can still execute all the functions documented below by running
Python scripts found in the distribution folder. The equivalent of the pyinstaller command is pyinstaller-
folder/pyinstaller.py. The other commands are found in pyinstaller-folder /cliutils/ with meaningful
names (makespec.py, etc.)

1.5 What PyInstaller Does and How It Does It

This section covers the basic ideas of PyInstaller. These ideas apply to all platforms. Options and special cases are
covered below, under Using PyInstaller.

PyInstaller reads a Python script written by you. It analyzes your code to discover every other module and library
your script needs in order to execute. Then it collects copies of all those files – including the active Python interpreter!
– and puts them with your script in a single folder, or optionally in a single executable file.

For the great majority of programs, this can be done with one short command,

pyinstaller myscript.py

or with a few added options, for example a windowed application as a single-file executable,

pyinstaller –onefile –windowed myscript.py

You distribute the bundle as a folder or file to other people, and they can execute your program. To your users, the app
is self-contained. They do not need to install any particular version of Python or any modules. They do not need to
have Python installed at all.

Note: The output of PyInstaller is specific to the active operating system and the active version of Python. This
means that to prepare a distribution for:

• a different OS

• a different version of Python

• a 32-bit or 64-bit OS

6 Chapter 1. What’s New This Release

PyInstaller Documentation, Release 3.2

you run PyInstaller on that OS, under that version of Python. The Python interpreter that executes PyInstaller is part
of the bundle, and it is specific to the OS and the word size.

1.5.1 Analysis: Finding the Files Your Program Needs

What other modules and libraries does your script need in order to run? (These are sometimes called its “dependen-
cies”.)

To find out, PyInstaller finds all the import statements in your script. It finds the imported modules and looks in
them for import statements, and so on recursively, until it has a complete list of modules your script may use.

PyInstaller understands the “egg” distribution format often used for Python packages. If your script imports a module
from an “egg”, PyInstaller adds the egg and its dependencies to the set of needed files.

PyInstaller also knows about many major Python packages, including the GUI packages Qt (imported via PyQt or
PySide), WxPython, TkInter, Django, and other major packages. For a complete list, see Supported Packages.

Some Python scripts import modules in ways that PyInstaller cannot detect: for example, by using the
__import__() function with variable data, or manipulating the sys.path value at run time. If your script requires
files that PyInstaller does not know about, you must help it:

• You can give additional files on the pyinstaller command line.

• You can give additional import paths on the command line.

• You can edit the myscript.spec file that PyInstaller writes the first time you run it for your script. In the
spec file you can tell PyInstaller about code modules that are unique to your script.

• You can write “hook” files that inform PyInstaller of hidden imports. If you create a “hook” for a package that
other users might also use, you can contribute your hook file to PyInstaller.

If your program depends on access to certain data files, you can tell PyInstaller to include them in the bundle as well.
You do this by modifying the spec file, an advanced topic that is covered under Using Spec Files.

In order to locate included files at run time, your program needs to be able to learn its path at run time in a way that
works regardless of whether or not it is running from a bundle. This is covered under Run-time Information.

PyInstaller does not include libraries that should exist in any installation of this OS. For example in Linux, it does not
bundle any file from /lib or /usr/lib, assuming these will be found in every system.

1.5.2 Bundling to One Folder

When you apply PyInstaller to myscript.py the default result is a single folder named myscript. This folder
contains all your script’s dependencies, and an executable file also named myscript (myscript.exe in Win-
dows).

You compress the folder to myscript.zip and transmit it to your users. They install the program simply by
unzipping it. A user runs your app by opening the folder and launching the myscript executable inside it.

It is easy to debug problems that occur when building the app when you use one-folder mode. You can see exactly
what files PyInstaller collected into the folder.

Another advantage of a one-folder bundle is that when you change your code, as long as it imports exactly the same
set of dependencies, you could send out only the updated myscript executable. That is typically much smaller than
the entire folder. (If you change the script so that it imports more or different dependencies, or if the dependencies are
upgraded, you must redistribute the whole bundle.)

1.5. What PyInstaller Does and How It Does It 7

http://www.qt-project.org
http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://qt-project.org/wiki/About-PySide
http://www.wxpython.org/
http://wiki.python.org/moin/TkInter
https://www.djangoproject.com/
https://github.com/pyinstaller/pyinstaller/wiki/Supported-Packages

PyInstaller Documentation, Release 3.2

A small disadvantage of the one-folder format is that the one folder contains a large number of files. Your user must
find the myscript executable in a long list of names or among a big array of icons. Also your user can create a
problem by accidentally dragging files out of the folder.

1.5.3 How the One-Folder Program Works

A bundled program always starts execution in the PyInstaller bootloader. This is the heart of the myscript exe-
cutable in the folder.

The PyInstaller bootloader is a binary executable program for the active platform (Windows, Linux, Mac OS X, etc.).
When the user launches your program, it is the bootloader that runs. The bootloader creates a temporary Python
environment such that the Python interpreter will find all imported modules and libraries in the myscript folder.

The bootloader starts a copy of the Python interpreter to execute your script. Everything follows normally from there,
provided that all the necessary support files were included.

(This is an overview. For more detail, see The Bootstrap Process in Detail below.)

1.5.4 Bundling to One File

PyInstaller can bundle your script and all its dependencies into a single executable named myscript
(myscript.exe in Windows).

The advantage is that your users get something they understand, a single executable to launch. A disadvantage is that
any related files such as a README must be distributed separately. Also, the single executable is a little slower to
start up than the one-folder bundle.

Before you attempt to bundle to one file, make sure your app works correctly when bundled to one folder. It is is much
easier to diagnose problems in one-folder mode.

1.5.5 How the One-File Program Works

The bootloader is the heart of the one-file bundle also. When started it creates a temporary folder in the appropriate
temp-folder location for this OS. The folder is named _MEIxxxxxx, where xxxxxx is a random number.

The one executable file contains an embedded archive of all the Python modules used by your script, as well as
compressed copies of any non-Python support files (e.g. .so files). The bootloader uncompresses the support files
and writes copies into the the temporary folder. This can take a little time. That is why a one-file app is a little slower
to start than a one-folder app.

After creating the temporary folder, the bootloader proceeds exactly as for the one-folder bundle, in the context of the
temporary folder. When the bundled code terminates, the bootloader deletes the temporary folder.

(In Linux and related systems, it is possible to mount the /tmp folder with a “no-execution” option. That option is
not compatible with a PyInstaller one-file bundle. It needs to execute code out of /tmp.)

Because the program makes a temporary folder with a unique name, you can run multiple copies of the app; they won’t
interfere with each other. However, running multiple copies is expensive in disk space because nothing is shared.

The _MEIxxxxxx folder is not removed if the program crashes or is killed (kill -9 on Unix, killed by the Task Manager
on Windows, “Force Quit” on Mac OS). Thus if your app crashes frequently, your users will lose disk space to multiple
_MEIxxxxxx temporary folders.

Note: Do not give administrator privileges to a one-file executable (setuid root in Unix/Linux, or the “Run this
program as an administrator” property in Windows 7). There is an unlikely but not impossible way in which a malicious

8 Chapter 1. What’s New This Release

PyInstaller Documentation, Release 3.2

attacker could corrupt one of the shared libraries in the temp folder while the bootloader is preparing it. Distribute a
privileged program in one-folder mode instead.

Note: Applications that use os.setuid() may encounter permissions errors. The temporary folder where the bundled
app runs may not being readable after setuid is called. If your script needs to call setuid, it may be better to use
one-folder mode so as to have more control over the permissions on its files.

1.5.6 Using a Console Window

By default the bootloader creates a command-line console (a terminal window in Linux and Mac OS, a command
window in Windows). It gives this window to the Python interpreter for its standard input and output. Your script’s
use of print and input() are directed here. Error messages from Python and default logging output also appear
in the console window.

An option for Windows and Mac OS is to tell PyInstaller to not provide a console window. The bootloader starts
Python with no target for standard output or input. Do this when your script has a graphical interface for user input
and can properly report its own diagnostics.

1.5.7 Hiding the Source Code

The bundled app does not include any source code. However, PyInstaller bundles compiled Python scripts (.pyc
files). These could in principle be decompiled to reveal the logic of your code.

If you want to hide your source code more thoroughly, one possible option is to compile some of your modules with
Cython. Using Cython you can convert Python modules into C and compile the C to machine language. PyInstaller
can follow import statements that refer to Cython C object modules and bundle them.

Additionally, Python bytecode can be obfuscated with AES256 by specifying an encryption key on PyInstaller’s com-
mand line. Please note that it is still very easy to extract the key and get back the original bytecode, but it should
prevent most forms of “casual” tampering.

1.6 Using PyInstaller

The syntax of the pyinstaller command is:

pyinstaller [options] script [script ...] | specfile

In the most simple case, set the current directory to the location of your program myscript.py and execute:

pyinstaller myscript.py

PyInstaller analyzes myscript.py and:

• Writes myscript.spec in the same folder as the script.

• Creates a folder build in the same folder as the script if it does not exist.

• Writes some log files and working files in the build folder.

• Creates a folder dist in the same folder as the script if it does not exist.

• Writes the myscript executable folder in the dist folder.

1.6. Using PyInstaller 9

http://www.cython.org/

PyInstaller Documentation, Release 3.2

In the dist folder you find the bundled app you distribute to your users.

Normally you name one script on the command line. If you name more, all are analyzed and included in the output.
However, the first script named supplies the name for the spec file and for the executable folder or file. Its code is the
first to execute at run-time.

For certain uses you may edit the contents of myscript.spec (described under Using Spec Files). After you do
this, you name the spec file to PyInstaller instead of the script:

pyinstaller myscript.spec

You may give a path to the script or spec file, for example

pyinstaller options... ~/myproject/source/myscript.py

or, on Windows,

pyinstaller "C:\Documents and Settings\project\myscript.spec"

1.6.1 Options

General Options

-h, --help show this help message and exit

-v, --version Show program version info and exit.

--distpath DIR Where to put the bundled app (default: ./dist)

--workpath WORKPATH Where to put all the temporary work files, .log, .pyz and etc. (default:
./build)

-y, --noconfirm Replace output directory (default: SPECPATH/dist/SPECNAME) without asking
for confirmation

--upx-dir UPX_DIR Path to UPX utility (default: search the execution path)

-a, --ascii Do not include unicode encoding support (default: included if available)

--clean Clean PyInstaller cache and remove temporary files before building.

--log-level LEVEL Amount of detail in build-time console messages. LEVEL may be one of DE-
BUG, INFO, WARN, ERROR, CRITICAL (default: INFO).

What to generate

-D, --onedir Create a one-folder bundle containing an executable (default)

-F, --onefile Create a one-file bundled executable.

--specpath DIR Folder to store the generated spec file (default: current directory)

-n NAME, --name NAME Name to assign to the bundled app and spec file (default: first script’s
basename)

What to bundle, where to search

-p DIR, --paths DIR A path to search for imports (like using PYTHONPATH). Multiple paths are
allowed, separated by ‘:’, or use this option multiple times

10 Chapter 1. What’s New This Release

PyInstaller Documentation, Release 3.2

--hidden-import MODULENAME, --hiddenimport MODULENAME Name an import not visible
in the code of the script(s). This option can be used multiple times.

--additional-hooks-dir HOOKSPATH An additional path to search for hooks. This option can be
used multiple times.

--runtime-hook RUNTIME_HOOKS Path to a custom runtime hook file. A runtime hook is code
that is bundled with the executable and is executed before any other code or mod-
ule to set up special features of the runtime environment. This option can be used
multiple times.

--exclude-module EXCLUDES Optional module or package (his Python names, not path names) that
will be ignored (as though it was not found). This option can be used multiple
times.

--key KEY The key used to encrypt Python bytecode.

How to generate

-d, --debug Tell the bootloader to issue progress messages while initializing and starting the
bundled app. Used to diagnose problems with missing imports.

-s, --strip Apply a symbol-table strip to the executable and shared libs (not recommended
for Windows)

--noupx Do not use UPX even if it is available (works differently between Windows and
*nix)

Windows and Mac OS X specific options

-c, --console, --nowindowed Open a console window for standard i/o (default)

-w, --windowed, --noconsole Windows and Mac OS X: do not provide a console window for standard
i/o. On Mac OS X this also triggers building an OS X .app bundle. This option is
ignored in *NIX systems.

-i <FILE.ico or FILE.exe,ID or FILE.icns>, --icon <FILE.ico or FILE.exe,ID or FILE.icns>
FILE.ico: apply that icon to a Windows executable. FILE.exe,ID, extract the
icon with ID from an exe. FILE.icns: apply the icon to the .app bundle on Mac
OS X

Windows specific options

--version-file FILE add a version resource from FILE to the exe

-m <FILE or XML>, --manifest <FILE or XML> add manifest FILE or XML to the exe

-r RESOURCE, --resource RESOURCE Add or update a resource to a Windows executable. The
RESOURCE is one to four items, FILE[,TYPE[,NAME[,LANGUAGE]]]. FILE
can be a data file or an exe/dll. For data files, at least TYPE and NAME must be
specified. LANGUAGE defaults to 0 or may be specified as wildcard * to update
all resources of the given TYPE and NAME. For exe/dll files, all resources from
FILE will be added/updated to the final executable if TYPE, NAME and LAN-
GUAGE are omitted or specified as wildcard *.This option can be used multiple
times.

1.6. Using PyInstaller 11

PyInstaller Documentation, Release 3.2

--uac-admin Using this option creates a Manifest which will request elevation upon application
restart.

--uac-uiaccess Using this option allows an elevated application to work with Remote Desktop.

Windows Side-by-side Assembly searching options (advanced)

--win-private-assemblies Any Shared Assemblies bundled into the application will be changed into
Private Assemblies. This means the exact versions of these assemblies will al-
ways be used, and any newer versions installed on user machines at the system
level will be ignored.

--win-no-prefer-redirects While searching for Shared or Private Assemblies to bundle into the appli-
cation, PyInstaller will prefer not to follow policies that redirect to newer ver-
sions, and will try to bundle the exact versions of the assembly.

Mac OS X specific options

--osx-bundle-identifier BUNDLE_IDENTIFIER Mac OS X .app bundle identifier is used as
the default unique program name for code signing purposes. The usual
form is a hierarchical name in reverse DNS notation. For example:
com.mycompany.department.appname (default: first script’s basename)

1.6.2 Shortening the Command

Because of its numerous options, a full pyinstaller command can become very long. You will run the same
command again and again as you develop your script. You can put the command in a shell script or batch file, using
line continuations to make it readable. For example, in Linux:

pyinstaller --noconfirm --log-level=WARN \
--onefile --nowindow \
--hidden-import=secret1 \
--hidden-import=secret2 \
--upx-dir=/usr/local/share/ \
myscript.spec

Or in Windows, use the little-known BAT file line continuation:

pyinstaller --noconfirm --log-level=WARN ^
--onefile --nowindow ^
--hidden-import=secret1 ^
--hidden-import=secret2 ^
--icon=..\MLNMFLCN.ICO ^
myscript.spec

1.6.3 Using UPX

UPX is a free utility available for most operating systems. UPX compresses executable files and libraries, making them
smaller, sometimes much smaller. UPX is available for most operating systems and can compress a large number of
executable file formats. See the UPX home page for downloads, and for the list of supported executable formats.
Development of UPX appears to have ended in September 2013, at which time it supported most executable formats
except for 64-bit binaries for Mac OS X. UPX has no effect on those.

12 Chapter 1. What’s New This Release

http://upx.sourceforge.net/
http://upx.sourceforge.net/

PyInstaller Documentation, Release 3.2

A compressed executable program is wrapped in UPX startup code that dynamically decompresses the program when
the program is launched. After it has been decompressed, the program runs normally. In the case of a PyInstaller
one-file executable that has been UPX-compressed, the full execution sequence is:

• The compressed program start up in the UPX decompressor code.

• After decompression, the program executes the PyInstaller bootloader, which creates a temporary environment
for Python.

• The Python interpreter executes your script.

PyInstaller looks for UPX on the execution path or the path specified with the --upx-dir option. If UPX ex-
ists, PyInstaller applies it to the final executable, unless the --noupx option was given. UPX has been used with
PyInstaller output often, usually with no problems.

1.6.4 Encrypting Python Bytecode

To encrypt the Python bytecode modules stored in the bundle, pass the --key=key-string argument on the command
line.

For this to work, you must have the PyCrypto module installed. The key-string is a string of 16 characters which is
used to encrypt each file of Python byte-code before it is stored in the archive inside the executable file.

1.6.5 Supporting Multiple Platforms

If you distribute your application for only one combination of OS and Python, just install PyInstaller like any other
package and use it in your normal development setup.

Supporting Multiple Python Environments

When you need to bundle your application within one OS but for different versions of Python and support libraries
– for example, a Python 3 version and a Python 2.7 version; or a supported version that uses Qt4 and a development
version that uses Qt5 – we recommend you use virtualenv. With virtualenv you can maintain different combinations
of Python and installed packages, and switch from one combination to another easily. (If you work only with Python
3.4 and later, the built-in script pyvenv does the same job.)

• Use virtualenv to create as many different development environments as you need, each with its unique combi-
nation of Python and installed packages.

• Install PyInstaller in each environment.

• Use PyInstaller to build your application in each environment.

Note that when using virtualenv, the path to the PyInstaller commands is:

• Windows: ENV_ROOT\Scripts

• Others: ENV_ROOT/bin

Under Windows, the pip-Win package installs virtualenv and makes it especially easy to set up different environments
and switch between them. Under Linux and Mac OS, you switch environments at the command line.

Supporting Multiple Operating Systems

If you need to distribute your application for more than one OS, for example both Windows and Mac OS X, you must
install PyInstaller on each platform and bundle your app separately on each.

1.6. Using PyInstaller 13

https://pypi.python.org/pypi/pycrypto/
http://www.virtualenv.org/
https://docs.python.org/3.4/library/venv.html
https://sites.google.com/site/pydatalog/python/pip-for-windows

PyInstaller Documentation, Release 3.2

You can do this from a single machine using virtualization. The free virtualBox or the paid VMWare and Parallels
allow you to run another complete operating system as a “guest”. You set up a virtual machine for each “guest” OS.
In it you install Python, the support packages your application needs, and PyInstaller.

The Dropbox system is useful with virtual machines. Install a Dropbox client in each virtual machine, all linked to
your Dropbox account. Keep a single copy of your script(s) in a Dropbox folder. Then on any virtual machine you
can run PyInstaller thus:

cd ~/Dropbox/project_folder/src # Linux, Mac -- Windows similar
rm *.pyc # get rid of modules compiled by another Python
pyinstaller --workpath=path-to-local-temp-folder \

--distpath=path-to-local-dist-folder \
...other options as required... \
./myscript.py

PyInstaller reads scripts from the common Dropbox folder, but writes its work files and the bundled app in folders that
are local to the virtual machine.

If you share the same home directory on multiple platforms, for example Linux and OS X, you will need to set the
PYINSTALLER_CONFIG_DIR environment variable to different values on each platform otherwise PyInstaller may
cache files for one platform and use them on the other platform, as by default it uses a subdirectory of your home
directory as its cache location.

It is said to be possible to cross-develop for Windows under Linux using the free Wine environment. Further details
are needed, see How to Contribute.

1.6.6 Making Linux Apps Forward-Compatible

Under Linux, PyInstaller does not bundle libc (the C standard library, usually glibc, the Gnu version) with the
app. Instead, the app expects to link dynamically to the libc from the local OS where it runs. The interface between
any app and libc is forward compatible to newer releases, but it is not backward compatible to older releases.

For this reason, if you bundle your app on the current version of Linux, it may fail to execute (typically with a runtime
dynamic link error) if it is executed on an older version of Linux.

The solution is to always build your app on the oldest version of Linux you mean to support. It should continue to
work with the libc found on newer versions.

The Linux standard libraries such as glibc are distributed in 64-bit and 32-bit versions, and these are not compatible.
As a result you cannot bundle your app on a 32-bit system and run it on a 64-bit installation, nor vice-versa. You must
make a unique version of the app for each word-length supported.

1.6.7 Capturing Windows Version Data

A Windows app may require a Version resource file. A Version resource contains a group of data structures, some
containing binary integers and some containing strings, that describe the properties of the executable. For details see
the Microsoft Version Information Structures page.

Version resources are complex and some elements are optional, others required. When you view the version tab of
a Properties dialog, there’s no simple relationship between the data displayed and the structure of the resource. For
this reason PyInstaller includes the pyi-grab_version command. It is invoked with the full path name of any
Windows executable that has a Version resource:

pyi-grab_version executable_with_version_resource

The command writes text that represents a Version resource in readable form to standard output. You can copy it from
the console window or redirect it to a file. Then you can edit the version information to adapt it to your program. Using

14 Chapter 1. What’s New This Release

https://www.virtualbox.org
http://www.vmware.com/solutions/desktop/
http://www.parallels.com
https://www.dropbox.com/home
http://www.winehq.org/
https://github.com/pyinstaller/pyinstaller/wiki/How-to-Contribute
http://msdn.microsoft.com/en-us/library/ff468916(v=vs.85).aspx

PyInstaller Documentation, Release 3.2

pyi-grab_version you can find an executable that displays the kind of information you want, copy its resource
data, and modify it to suit your package.

The version text file is encoded UTF-8 and may contain non-ASCII characters. (Unicode characters are allowed in
Version resource string fields.) Be sure to edit and save the text file in UTF-8 unless you are certain it contains only
ASCII string values.

Your edited version text file can be given with the --version-file= option to pyinstaller or
pyi-makespec. The text data is converted to a Version resource and installed in the bundled app.

In a Version resource there are two 64-bit binary values, FileVersion and ProductVersion. In the version text
file these are given as four-element tuples, for example:

filevers=(2, 0, 4, 0),
prodvers=(2, 0, 4, 0),

The elements of each tuple represent 16-bit values from most-significant to least-significant. For example the value
(2, 0, 4, 0) resolves to 0002000000040000 in hex.

You can also install a Version resource from a text file after the bundled app has been created, using the set_version
command:

set_version version_text_file executable_file

The set_version utility reads a version text file as written by pyi-grab_version, converts it to a Version
resource, and installs that resource in the executable_file specified.

For advanced uses, examine a version text file as written by pyi-grab_version. You find it is Python
code that creates a VSVersionInfo object. The class definition for VSVersionInfo is found in
utils/win32/versioninfo.py in the PyInstaller distribution folder. You can write a program that imports
versioninfo. In that program you can eval the contents of a version info text file to produce a VSVersionInfo
object. You can use the .toRaw() method of that object to produce a Version resource in binary form. Or you can
apply the unicode() function to the object to reproduce the version text file.

1.6.8 Building Mac OS X App Bundles

If you specify only --onefile under Mac OS X, the output in dist is a UNIX executable myscript. It can be
executed from a Terminal command line. Standard input and output work as normal through the Terminal window.

If you also specify --windowed, the dist folder contains two outputs: the UNIX executable myscript and also
an OS X application named myscript.app.

As you probably know, an application is a special type of folder. The one built by PyInstaller contains a folder always
named Contents. It contains:

• A folder Frameworks which is empty.

• A folder MacOS that contains a copy of the same myscript UNIX executable.

• A folder Resources that contains an icon file.

• A file Info.plist that describes the app.

PyInstaller builds minimal versions of these elements.

Use the osx-bundle-identifier= argument to add a bundle identifier. This becomes the
CFBundleIdentifier used in code-signing (see the PyInstaller code signing recipe and for more detail,
the Apple code signing overview technical note).

Use the icon= argument to specify a custom icon for the application. (If you do not specify an icon file, PyInstaller
supplies a file icon-windowed.icns with the PyInstaller logo.)

1.6. Using PyInstaller 15

https://github.com/pyinstaller/pyinstaller/wiki/Recipe-OSX-Code-Signing
https://developer.apple.com/library/mac/technotes/tn2206/_index.html

PyInstaller Documentation, Release 3.2

You can add items to the Info.plist by editing the spec file; see Spec File Options for a Mac OS X Bundle below.

Making Mac OS X apps Forward-Compatible

In Mac OS X, components from one version of the OS are usually compatible with later versions, but they may not
work with earlier versions.

The only way to be certain your app supports an older version of Mac OS X is to run PyInstaller in the oldest version
of the OS you need to support.

For example, to be sure of compatibility with “Snow Leopard” (10.6) and later versions, you should execute PyInstaller
in that environment. You would create a copy of Mac OS X 10.6, typically in a virtual machine. In it, install the
desired level of Python (the default Python in Snow Leopard was 2.6, which PyInstaller no longer supports), and
install PyInstaller, your source, and all its dependencies. Then build your app in that environment. It should be
compatible with later versions of Mac OS X.

Building 32-bit Apps in Mac OS X

Older versions of Mac OS X supported both 32-bit and 64-bit executables. PyInstaller builds an app using the the
word-length of the Python used to execute it. That will typically be a 64-bit version of Python, resulting in a 64-bit
executable. To create a 32-bit executable, run PyInstaller under a 32-bit Python.

Python as installed in OS X will usually be executable in either 64- or 32-bit mode. To verify this, apply the file
command to the Python executable:

$ file /usr/local/bin/python3
/usr/local/bin/python3: Mach-O universal binary with 2 architectures
/usr/local/bin/python3 (for architecture i386): Mach-O executable i386
/usr/local/bin/python3 (for architecture x86_64): Mach-O 64-bit executable x86_64

The OS chooses which architecture to run, and typically defaults to 64-bit. You can force the use of either architecture
by name using the arch command:

$ /usr/local/bin/python3
Python 3.4.2 (v3.4.2:ab2c023a9432, Oct 5 2014, 20:42:22)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys; sys.maxsize
9223372036854775807

$ arch -i386 /usr/local/bin/python3
Python 3.4.2 (v3.4.2:ab2c023a9432, Oct 5 2014, 20:42:22)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys; sys.maxsize
2147483647

Apple’s default /usr/bin/python may circumvent the arch specification and run 64-bit regardless. (That is not
the case if you apply arch to a specific version such as /usr/bin/python2.7.) To make sure of running 32-bit
in all cases, set the following environment variable:

VERSIONER_PYTHON_PREFER_32_BIT=yes
arch -i386 /usr/bin/python pyinstaller --clean -F -w myscript.py

Getting the Opened Document Names

16 Chapter 1. What’s New This Release

PyInstaller Documentation, Release 3.2

Note: Support for OpenDocument events is broken in PyInstaller 3.0 owing to code changes needed in the bootloader
to support current versions of Mac OS X. Do not attempt to use this feature until it has been fixed. If this feature is
important to you, follow and comment on the status of PyInstaller Issue #1309.

When a user double-clicks a document of a type your application supports, or when a user drags a document icon
and drops it on your application’s icon, Mac OS X launches your application and provides the name(s) of the opened
document(s) in the form of an OpenDocument AppleEvent. This AppleEvent is received by the bootloader before
your code has started executing.

The bootloader gets the names of opened documents from the OpenDocument event and encodes them into the argv
string before starting your code. Thus your code can query sys.argv to get the names of documents that should be
opened at startup.

OpenDocument is the only AppleEvent the bootloader handles. If you want to handle other events, or events that are
delivered after the program has launched, you must set up the appropriate handlers.

1.7 Run-time Information

Your app should run in a bundle exactly as it does when run from source. However, you may need to learn at run-time
whether the app is running from source, or is “frozen” (bundled). For example, you might have data files that are
normally found based on a module’s __file__ attribute. That will not work when the code is bundled.

The PyInstaller bootloader adds the name frozen to the sys module. So the test for “are we bundled?” is:

import sys
if getattr(sys, 'frozen', False) :

running in a bundle
else :

running live

When your app is running, it may need to access data files in any of three general locations:

• Files that were bundled with it (see Adding Data Files).

• Files the user has placed with the app bundle, say in the same folder.

• Files in the user’s current working directory.

The program has access to several path variables for these uses.

1.7.1 Using __file__ and sys._MEIPASS

When your program is not frozen, the standard Python variable __file__ is the full path to the script now executing.
When a bundled app starts up, the bootloader sets the sys.frozen attribute and stores the absolute path to the bundle
folder in sys._MEIPASS. For a one-folder bundle, this is the path to that folder, wherever the user may have put it.
For a one-file bundle, this is the path to the _MEIxxxxxx temporary folder created by the bootloader (see How the
One-File Program Works).

1.7.2 Using sys.executable and sys.argv[0]

When a normal Python script runs, sys.executable is the path to the program that was executed, namely, the
Python interpreter. In a frozen app, sys.executable is also the path to the program that was executed, but that
is not Python; it is the bootloader in either the one-file app or the executable in the one-folder app. This gives you a
reliable way to locate the frozen executable the user actually launched.

1.7. Run-time Information 17

https://github.com/pyinstaller/pyinstaller/issues/1309

PyInstaller Documentation, Release 3.2

The value of sys.argv[0] is the name or relative path that was used in the user’s command. It may be a relative
path or an absolute path depending on the platform and how the app was launched.

If the user launches the app by way of a symbolic link, sys.argv[0] uses that symbolic name, while
sys.executable is the actual path to the executable. Sometimes the same app is linked under different names
and is expected to behave differently depending on the name that is used to launch it. For this case, you would test
os.path.basename(sys.argv[0])

On the other hand, sometimes the user is told to store the executable in the same folder as the files it will operate on,
for example a music player that should be stored in the same folder as the audio files it will play. For this case, you
would use os.path.dirname(sys.executable).

The following small program explores some of these possibilities. Save it as directories.py. Execute it as a
Python script, then bundled as a one-folder app. Then bundle it as a one-file app and launch it directly and also via a
symbolic link:

#!/usr/bin/python3
import sys, os
frozen = 'not'
if getattr(sys, 'frozen', False):

we are running in a bundle
frozen = 'ever so'
bundle_dir = sys._MEIPASS

else:
we are running in a normal Python environment
bundle_dir = os.path.dirname(os.path.abspath(__file__))

print('we are',frozen,'frozen')
print('bundle dir is', bundle_dir)
print('sys.argv[0] is', sys.argv[0])
print('sys.executable is', sys.executable)
print('os.getcwd is', os.getcwd())

1.8 Using Spec Files

When you execute

pyinstaller options.. myscript.py

the first thing PyInstaller does is to build a spec (specification) file myscript.spec. That file is stored in the
--specpath= directory, by default the current directory.

The spec file tells PyInstaller how to process your script. It encodes the script names and most of the options you
give to the pyinstaller command. The spec file is actually executable Python code. PyInstaller builds the app by
executing the contents of the spec file.

For many uses of PyInstaller you do not need to examine or modify the spec file. It is usually enough to give all the
needed information (such as hidden imports) as options to the pyinstaller command and let it run.

There are four cases where it is useful to modify the spec file:

• When you want to bundle data files with the app.

• When you want to include run-time libraries (.dll or .so files) that PyInstaller does not know about from
any other source.

• When you want to add Python run-time options to the executable.

• When you want to create a multiprogram bundle with merged common modules.

18 Chapter 1. What’s New This Release

PyInstaller Documentation, Release 3.2

These uses are covered in topics below.

You create a spec file using this command:

pyi-makespec options name.py [other scripts ...]

The options are the same options documented above for the pyinstaller command. This command creates the
name.spec file but does not go on to build the executable.

After you have created a spec file and modified it as necessary, you build the application by passing the spec file to the
pyinstaller command:

pyinstaller options name.spec

When you create a spec file, most command options are encoded in the spec file. When you build from a spec file,
those options cannot be changed. If they are given on the command line they are ignored and replaced by the options
in the spec file.

Only the following command-line options have an effect when building from a spec file:

• –upx-dir=

• –distpath=

• –workpath=

• –noconfirm

• –ascii

1.8.1 Spec File Operation

After PyInstaller creates a spec file, or opens a spec file when one is given instead of a script, the pyinstaller
command executes the spec file as code. Your bundled application is created by the execution of the spec file. The
following is an shortened example of a spec file for a minimal, one-folder app:

block_cipher = None
a = Analysis(['minimal.py'],

pathex=['/Developer/PItests/minimal'],
binaries=None,
datas=None,
hiddenimports=[],
hookspath=None,
runtime_hooks=None,
excludes=None,
cipher=block_cipher)

pyz = PYZ(a.pure, a.zipped_data,
cipher=block_cipher)

exe = EXE(pyz,...)
coll = COLLECT(...)

The statements in a spec file create instances of four classes, Analysis, PYZ, EXE and COLLECT.

• A new instance of class Analysis takes a list of script names as input. It analyzes all imports and other
dependencies. The resulting object (assigned to a) contains lists of dependencies in class members named:

– scripts: the python scripts named on the command line;

– pure: pure python modules needed by the scripts;

– binaries: non-python modules needed by the scripts;

– datas: non-binary files included in the app.

1.8. Using Spec Files 19

PyInstaller Documentation, Release 3.2

• An instance of class PYZ is a .pyz archive (described under Inspecting Archives below), which contains all the
Python modules from a.pure.

• An instance of EXE is built from the analyzed scripts and the PYZ archive. This object creates the executable
file.

• An instance of COLLECT creates the output folder from all the other parts.

In one-file mode, there is no call to COLLECT, and the EXE instance receives all of the scripts, modules and binaries.

You modify the spec file to pass additional values to Analysis and to EXE.

1.8.2 Adding Files to the Bundle

To add files to the bundle, you create a list that describes the files and supply it to the Analysis call. To find the data
files at run-time, see Run-time Information.

Adding Data Files

To have data files included in the bundle, provide a list that describes the files as the value of the datas= argument
to Analysis. The list of data files is a list of tuples. Each tuple has two values, both of which must be strings:

• The first string specifies the file or files as they are in this system now.

• The second specifies the name of the folder to contain the files at run-time.

For example, to add a single README file to the top level of a one-folder app, you could modify the spec file as
follows:

a = Analysis(...
datas=[('src/README.txt', '.')],
...
)

You have made the datas= argument a one-item list. The item is a tuple in which the first string says the existing file
is src/README.txt. That file will be looked up (relative to the location of the spec file) and copied into the top
level of the bundled app.

The strings may use either / or \ as the path separator character. You can specify input files using “glob” abbreviations.
For example to include all the .mp3 files from a certain folder:

a = Analysis(...
datas= [('/mygame/sfx/*.mp3', 'sfx')],
...
)

All the .mp3 files in the folder /mygame/sfx will be copied into a folder named sfx in the bundled app.

The spec file is more readable if you create the list of added files in a separate statement:

added_files = [
('/mygame/sfx/*.mp3', 'sfx'),
('src/README.txt', '.')
]

a = Analysis(...
datas = added_files,
...
)

You can also include the entire contents of a folder:

20 Chapter 1. What’s New This Release

PyInstaller Documentation, Release 3.2

added_files = [
('/mygame/data', 'data'),
('/mygame/sfx/*.mp3', 'sfx'),
('src/README.txt', '.')
]

The folder /mygame/data will be reproduced under the name data in the bundle.

Using Data Files from a Module

If the data files you are adding are contained within a Python module, you can retrieve them using
pkgutils.get_data().

For example, suppose that part of your application is a module named helpmod. In the same folder as your script
and its spec file you have this folder arrangement:

helpmod
__init__.py
helpmod.py
help_data.txt

Because your script includes the statement import helpmod, PyInstaller will create this folder arrangement in your
bundled app. However, it will only include the .py files. The data file help_data.txt will not be automatically
included. To cause it to be included also, you would add a datas tuple to the spec file:

a = Analysis(...
datas= [('helpmod/help_data.txt', 'helpmod')],
...
)

When your script executes, you could find help_data.txt by using its base folder path, as described in the previous
section. However, this data file is part of a module, so you can also retrieve its contents using the standard library
function pkgutil.get_data():

import pkgutil
help_bin = pkgutil.get_data('helpmod', 'help_data.txt')

In Python 3, this returns the contents of the help_data.txt file as a binary string. If it is actually characters, you
must decode it:

help_utf = help_bin.decode('UTF-8', 'ignore')

Adding Binary Files

To add binary files, make a list of tuples that describe the files needed. Assign the list of tuples to the binaries=
argument of Analysis.

Normally PyInstaller learns about .so and .dll libraries by analyzing the imported modules. Sometimes it is not
clear that a module is imported; in that case you use a --hidden-import= command option. But even that might
not find all dependencies.

Suppose you have a module special_ops.so that is written in C and uses the Python C-API. Your program
imports special_ops, and PyInstaller finds and includes special_ops.so. But perhaps special_ops.so
links to libiodbc.2.dylib. PyInstaller does not find this dependency. You could add it to the bundle this way:

1.8. Using Spec Files 21

PyInstaller Documentation, Release 3.2

a = Analysis(...
binaries=[('/usr/lib/libiodbc.2.dylib', 'libiodbc.dylib')],
...

As with data files, if you have multiple binary files to add, create the list in a separate statement and pass the list by
name.

Advanced Methods of Adding Files

PyInstaller supports a more advanced (and complex) way of adding files to the bundle that may be useful for special
cases. See The TOC and Tree Classes below.

1.8.3 Giving Run-time Python Options

You can pass command-line options to the Python interpreter. The interpreter takes a number of command-line options
but only the following are supported for a bundled app:

• v to write a message to stdout each time a module is initialized.

• u for unbuffered stdio.

• W and an option to change warning behavior: W ignore or W once or W error.

To pass one or more of these options, create a list of tuples, one for each option, and pass the list as an additional
argument to the EXE call. Each tuple has three elements:

• The option as a string, for example v or W ignore.

• None

• The string OPTION

For example modify the spec file this way:

options = [('v', None, 'OPTION'), ('W ignore', None, 'OPTION')]
a = Analysis(...

)
...
exe = EXE(pyz,

a.scripts,
options, <--- added line
exclude_binaries=...
)

1.8.4 Spec File Options for a Mac OS X Bundle

When you build a windowed Mac OS X app (that is, running in Mac OS X, you specify the --onefile
--windowed options), the spec file contains an additional statement to create the Mac OS X application bundle,
or app folder:

app = BUNDLE(exe,
name='myscript.app',
icon=None,
bundle_identifier=None)

The icon= argument to BUNDLE will have the path to an icon file that you specify using the --icon= option. The
bundle_identifier will have the value you specify with the --osx-bundle-identifier= option.

22 Chapter 1. What’s New This Release

PyInstaller Documentation, Release 3.2

An Info.plist file is an important part of a Mac OS X app bundle. (See the Apple bundle overview for a discussion
of the contents of Info.plist.)

PyInstaller creates a minimal Info.plist. You can add or overwrite entries in the plist by passing an
info_plist= parameter to the BUNDLE call. The value of this argument is a Python dict. Each key and value
in the dict becomes a key and value in the Info.plist file. For example, when you use PyQt5, you can set
NSHighResolutionCapable to True to let your app also work in retina screen:

app = BUNDLE(exe,
name='myscript.app',
icon=None,
bundle_identifier=None
info_plist={

'NSHighResolutionCapable': 'True'
},

)

The info_plist= parameter only handles simple key:value pairs. It cannot handle nested XML arrays. For ex-
ample, if you want to modify Info.plist to tell Mac OS X what filetypes your app supports, you must add a
CFBundleDocumentTypes entry to Info.plist (see Apple document types). The value of that keyword is a
list of dicts, each containing up to five key:value pairs.

To add such a value to your app’s Info.plist you must edit the plist file separately after PyInstaller has created
the app. However, when you re-run PyInstaller, your changes will be wiped out. One solution is to prepare a complete
Info.plist file and copy it into the app after creating it.

Begin by building and testing the windowed app. When it works, copy the Info.plist prepared by PyInstaller.
This includes the CFBundleExecutable value as well as the icon path and bundle identifier if you supplied them.
Edit the Info.plist as necessary to add more items and save it separately.

From that point on, to rebuild the app call PyInstaller in a shell script, and follow it with a statement such as:

cp -f Info.plist dist/myscript.app/Contents/Info.plist

1.8.5 Multipackage Bundles

Note: This feature is broken in the PyInstaller 3.0 release. Do not attempt building multipackage bundles until the
feature is fixed. If this feature is important to you, follow and comment on PyInstaller Issue #1527.

Some products are made of several different apps, each of which might depend on a common set of third-party libraries,
or share code in other ways. When packaging such an product it would be a pity to treat each app in isolation, bundling
it with all its dependencies, because that means storing duplicate copies of code and libraries.

You can use the multipackage feature to bundle a set of executable apps so that they share single copies of libraries.
You can do this with either one-file or one-folder apps. Each dependency (a DLL, for example) is packaged only once,
in one of the apps. Any other apps in the set that depend on that DLL have an “external reference” to it, telling them
to extract that dependency from the executable file of the app that contains it.

This saves disk space because each dependency is stored only once. However, to follow an external reference takes
extra time when an app is starting up. All but one of the apps in the set will have slightly slower launch times.

The external references between binaries include hard-coded paths to the output directory, and cannot be rearranged.
If you use one-folder mode, you must install all the application folders within a single parent directory. If you use
one-file mode, you must place all the related applications in the same directory when you install the application.

To build such a set of apps you must code a custom spec file that contains a call to the MERGE function. This function
takes a list of analyzed scripts, finds their common dependencies, and modifies the analyses to minimize the storage

1.8. Using Spec Files 23

https://developer.apple.com/library/mac/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CoreFoundationKeys.html#//apple_ref/doc/uid/20001431-101685
https://github.com/pyinstaller/pyinstaller/issues/1527

PyInstaller Documentation, Release 3.2

cost.

The order of the analysis objects in the argument list matters. The MERGE function packages each dependency into
the first script from left to right that needs that dependency. A script that comes later in the list and needs the same
file will have an external reference to the prior script in the list. You might sequence the scripts to place the most-used
scripts first in the list.

A custom spec file for a multipackage bundle contains one call to the MERGE function:

MERGE(*args)

MERGE is used after the analysis phase and before EXE and COLLECT. Its variable-length list of arguments consists
of a list of tuples, each tuple having three elements:

• The first element is an Analysis object, an instance of class Analysis, as applied to one of the apps.

• The second element is the script name of the analyzed app (without the .py extension).

• The third element is the name for the executable (usually the same as the script).

MERGE examines the Analysis objects to learn the dependencies of each script. It modifies these objects to avoid
duplication of libraries and modules. As a result the packages generated will be connected.

Example MERGE spec file

One way to construct a spec file for a multipackage bundle is to first build a spec file for each app in the package.
Suppose you have a product that comprises three apps named (because we have no imagination) foo, bar and zap:

pyi-makespec options as appropriate... foo.py

pyi-makespec options as appropriate... bar.py

pyi-makespec options as appropriate... zap.py

Check for warnings and test each of the apps individually. Deal with any hidden imports and other problems. When all
three work correctly, combine the statements from the three files foo.spec, bar.spec and zap.spec as follows.

First copy the Analysis statements from each, changing them to give each Analysis object a unique name:

foo_a = Analysis(['foo.py'],
pathex=['/the/path/to/foo'],
hiddenimports=[],
hookspath=None)

bar_a = Analysis(['bar.py'], etc., etc...

zap_a = Analysis(['zap.py'], etc., etc...

Now call the MERGE method to process the three Analysis objects:

MERGE((foo_a, 'foo', 'foo'), (bar_a, 'bar', 'bar'), (zap_a, 'zap', 'zap'))

The Analysis objects foo_a, bar_a, and zap_a are modified so that the latter two refer to the first for common
dependencies.

Following this you can copy the PYZ, EXE and COLLECT statements from the original three spec files, substituting
the unique names of the Analysis objects where the original spec files have a., for example:

foo_pyz = PYZ(foo_a.pure)
foo_exe = EXE(foo_pyz, foo_a.scripts, ... etc.
foo_coll = COLLECT(foo_exe, foo_a.binaries, foo_a.datas... etc.

24 Chapter 1. What’s New This Release

PyInstaller Documentation, Release 3.2

bar_pyz = PYZ(bar_a.pure)
bar_exe = EXE(bar_pyz, bar_a.scripts, ... etc.
bar_coll = COLLECT(bar_exe, bar_a.binaries, bar_a.datas... etc.

(If you are building one-file apps, there is no COLLECT step.) Save the combined spec file as foobarzap.spec
and then build it:

pyi-build foobarzap.spec

The output in the dist folder will be all three apps, but the apps dist/bar/bar and dist/zap/zap will refer
to the contents of dist/foo/ for shared dependencies.

There are several multipackage examples in the PyInstaller distribution folder under
/tests/old_suite/multipackage.

Remember that a spec file is executable Python. You can use all the Python facilities (for and with and the members
of sys and io) in creating the Analysis objects and performing the PYZ, EXE and COLLECT statements. You may
also need to know and use The TOC and Tree Classes described below.

1.8.6 Globals Available to the Spec File

While a spec file is executing it has access to a limited set of global names. These names include the classes defined
by PyInstaller: Analysis, BUNDLE, COLLECT, EXE, MERGE, PYZ, TOC and Tree, which are discussed in the
preceding sections.

Other globals contain information about the build environment:

DISTPATH The relative path to the dist folder where the application will be stored. The default path is relative to
the current directory. If the --distpath= option is used, DISTPATH contains that value.

HOMEPATH The absolute path to the PyInstaller distribution, typically in the current Python site-packages folder.

SPEC The complete spec file argument given to the pyinstaller command, for example myscript.spec or
source/myscript.spec.

SPECPATH The path prefix to the SPEC value as returned by os.split().

specnm The name of the spec file, for example myscript.

workpath The path to the build directory. The default is relative to the current directory. If the workpath=
option is used, workpath contains that value.

WARNFILE The full path to the warnings file in the build directory, for example build/warnmyscript.txt.

1.9 When Things Go Wrong

The information above covers most normal uses of PyInstaller. However, the variations of Python and third-party
libraries are endless and unpredictable. It may happen that when you attempt to bundle your app either PyInstaller it-
self, or your bundled app, terminates with a Python traceback. Then please consider the following actions in sequence,
before asking for technical help.

1.9.1 Recipes and Examples for Specific Problems

The PyInstaller FAQ page has work-arounds for some common problems. Code examples for some advanced uses
and some common problems are available on our PyInstaller Recipes page. Some of the recipes there include:

• A more sophisticated way of collecting data files than the one shown above (Adding Files to the Bundle).

1.9. When Things Go Wrong 25

https://github.com/pyinstaller/pyinstaller/wiki/FAQ
https://github.com/pyinstaller/pyinstaller/wiki/Recipes

PyInstaller Documentation, Release 3.2

• Bundling a typical Django app.

• A use of a run-time hook to set the PyQt4 API level.

• A workaround for a multiprocessing constraint under Windows.

and others. Many of these Recipes were contributed by users. Please feel free to contribute more recipes!

1.9.2 Finding out What Went Wrong

Build-time Messages

When the Analysis step runs, it produces error and warning messages. These display after the com-
mand line if the --log-level option allows it. Analysis also puts messages in a warnings file named
build/name/warnname.txt in the work-path= directory.

Analysis creates a message when it detects an import and the module it names cannot be found. A message may also
be produced when a class or function is declared in a package (an __init__.py module), and the import specifies
package.name. In this case, the analysis can’t tell if name is supposed to refer to a submodule or package.

The “module not found” messages are not classed as errors because typically there are many of them. For example,
many standard modules conditionally import modules for different platforms that may or may not be present.

All “module not found” messages are written to the build/name/warnname.txt file. They are not displayed to
standard output because there are many of them. Examine the warning file; often there will be dozens of modules not
found, but their absence has no effect.

When you run the bundled app and it terminates with an ImportError, that is the time to examine the warning file.
Then see Helping PyInstaller Find Modules below for how to proceed.

Build-Time Dependency Graph

If you specify --log-level=DEBUG to the pyinstaller command, PyInstaller writes two files of data about
dependencies into the build folder.

The file build/name/xref-name.html in the work-path= directory is an HTML file that lists the full contents
of the import graph, showing which modules are imported by which. You can open it in any web browser. Find a
module name, then keep clicking the “imported by” links until you find the top-level import that causes that module
to be included.

The file build/name/graph-name.dot in the work-path= directory is a GraphViz input file. You can process
it with the GraphViz command dot to produce a graphical display of the import dependencies.

These files are very large because even the simplest “hello world” Python program ends up including a large number
of standard modules. For this reason the graph file is not very useful in this release.

Build-Time Python Errors

PyInstaller sometimes terminates by raising a Python exception. In most cases the reason is clear from the exception
message, for example “Your system is not supported”, or “Pyinstaller requires at least Python 2.7”. Others clearly
indicate a bug that should be reported.

One of these errors can be puzzling, however: IOError("Python library not found!") PyInstaller needs
to bundle the Python library, which is the main part of the Python interpreter, linked as a dynamic load library. The
name and location of this file varies depending on the platform in use. Some Python installations do not include a
dynamic Python library by default (a static-linked one may be present but cannot be used). You may need to install a
development package of some kind. Or, the library may exist but is not in a folder where PyInstaller is searching.

26 Chapter 1. What’s New This Release

http://graphviz.org/Home.php
http://graphviz.org/Home.php

PyInstaller Documentation, Release 3.2

The places where PyInstaller looks for the python library are different in different operating systems, but /lib and
/usr/lib are checked in most systems. If you cannot put the python library there, try setting the correct path in the
environment variable LD_LIBRARY_PATH in Linux or DYLD_LIBRARY_PATH in OS X.

Getting Debug Messages

Giving the --debug option causes the bundled executable itself to write progress messages when it runs. This can be
useful during development of a complex package, or when your app doesn’t seem to be starting, or just to learn how
the runtime works.

Normally the debug progress messages go to standard output. If the --windowed option is used when bundling a
Windows app, they are displayed as MessageBoxes. For a --windowed Mac OS app they are not displayed.

Remember to bundle without --debug for your production version. Users would find the messages annoying.

Getting Python’s Verbose Imports

You can also pass a -v (verbose imports) flag to the embedded Python interpreter (see Giving Run-time Python Options
above). This can be extremely useful. It can be informative even with apps that are apparently working, to make sure
that they are getting all imports from the bundle, and not leaking out to the local installed Python.

Python verbose and warning messages always go to standard output and are not visible when the --windowed option
is used. Remember to not use this in the distributed program.

1.9.3 Helping PyInstaller Find Modules

Extending the Path

If Analysis recognizes that a module is needed, but cannot find that module, it is often because the script is manipulat-
ing sys.path. The easiest thing to do in this case is to use the --paths= option to list all the other places that the
script might be searching for imports:

pyi-makespec --paths=/path/to/thisdir \
--paths=/path/to/otherdir myscript.py

These paths will be noted in the spec file. They will be added to the current sys.path during analysis.

Listing Hidden Imports

If Analysis thinks it has found all the imports, but the app fails with an import error, the problem is a hidden import;
that is, an import that is not visible to the analysis phase.

Hidden imports can occur when the code is using __import__ or perhaps exec or eval. Hidden imports can
also occur when an extension module uses the Python/C API to do an import. When this occurs, Analysis can detect
nothing. There will be no warnings, only an ImportError at run-time.

To find these hidden imports, build the app with the -v flag (Getting Python’s Verbose Imports above) and run it.

Once you know what modules are needed, you add the needed modules to the bundle using the --hidden-import=
command option, or by editing the spec file, or with a hook file (see Understanding PyInstaller Hooks below).

1.9. When Things Go Wrong 27

PyInstaller Documentation, Release 3.2

Extending a Package’s __path__

Python allows a script to extend the search path used for imports through the __path__ mechanism. Nor-
mally, the __path__ of an imported module has only one entry, the directory in which the __init__.py
was found. But __init__.py is free to extend its __path__ to include other directories. For example,
the win32com.shell.shell module actually resolves to win32com/win32comext/shell/shell.pyd.
This is because win32com/__init__.py appends ../win32comext to its __path__.

Because the __init__.py of an imported module is not actually executed during analysis, changes it makes to
__path__ are not seen by PyInstaller. We fix the problem with the same hook mechanism we use for hidden
imports, with some additional logic; see Understanding PyInstaller Hooks below.

Note that manipulations of __path__ hooked in this way apply only to the Analysis. At runtime all im-
ports are intercepted and satisfied from within the bundle. win32com.shell is resolved the same way as
win32com.anythingelse, and win32com.__path__ knows nothing of ../win32comext.

Once in a while, that’s not enough.

Changing Runtime Behavior

More bizarre situations can be accomodated with runtime hooks. These are small scripts that manipulate the environ-
ment before your main script runs, effectively providing additional top-level code to your script.

There are two ways of providing runtime hooks. You can name them with the option --runtime-hook=path-to-
script.

Second, some runtime hooks are provided. At the end of an analysis, the names in the module list produced by the
Analysis phase are looked up in loader/rthooks.dat in the PyInstaller install folder. This text file is the string
representation of a Python dictionary. The key is the module name, and the value is a list of hook-script pathnames. If
there is a match, those scripts are included in the bundled app and will be called before your main script starts.

Hooks you name with the option are executed in the order given, and before any installed runtime hooks. If you specify
--runtime-hook=file1.py --runtime-hook=file2.py then the execution order at runtime will be:

1. Code of file1.py.

2. Code of file2.py.

3. Any hook specified for an included module that is found in rthooks/rthooks.dat.

4. Your main script.

Hooks called in this way, while they need to be careful of what they import, are free to do almost anything. One reason
to write a run-time hook is to override some functions or variables from some modules. A good example of this is the
Django runtime hook (see loader/rthooks/pyi_rth_django.py in the PyInstaller folder). Django imports
some modules dynamically and it is looking for some .py files. However .py files are not available in the one-file
bundle. We need to override the function django.core.management.find_commands in a way that will just
return a list of values. The runtime hook does this as follows:

import django.core.management
def _find_commands(_):

return """cleanup shell runfcgi runserver""".split()
django.core.management.find_commands = _find_commands

1.9.4 Getting the Latest Version

If you have some reason to think you have found a bug in PyInstaller you can try downloading the latest development
version. This version might have fixes or features that are not yet at PyPI. You can download the latest stable version

28 Chapter 1. What’s New This Release

https://pypi.python.org/pypi/PyInstaller/

PyInstaller Documentation, Release 3.2

and the latest development version from the PyInstaller Downloads page.

You can also install the latest version of PyInstaller directly using pip:

pip install -e https://github.com/pyinstaller/pyinstaller/archive/develop.zip

1.9.5 Asking for Help

When none of the above suggestions help, do ask for assistance on the PyInstaller Email List.

Then, if you think it likely that you see a bug in PyInstaller, refer to the How to Report Bugs page.

1.10 Advanced Topics

The following discussions cover details of PyInstaller internal methods. You should not need this level of detail for
normal use, but such details are helpful if you want to investigate the PyInstaller code and possibly contribute to it, as
described in How to Contribute.

1.10.1 The Bootstrap Process in Detail

There are many steps that must take place before the bundled script can begin execution. A summary of these steps
was given in the Overview (How the One-Folder Program Works and How the One-File Program Works). Here is
more detail to help you understand what the bootloader does and how to figure out problems.

Bootloader

The bootloader prepares everything for running Python code. It begins the setup and then returns itself in another
process. This approach of using two processes allows a lot of flexibility and is used in all bundles except one-folder
mode in Windows. So do not be surprised if you will see your bundled app as two processes in your system task
manager.

What happens during execution of bootloader:

1. First process: bootloader starts.

(a) If one-file mode, extract bundled files to temppath_MEIxxxxxx

(b) Set/unset various environment variables, e.g. override LD_LIBRARY_PATH on Linux or LIBPATH on
AIX; unset DYLD_LIBRARY_PATH on OSX.

(c) Set up to handle signals for both processes.

(d) Run the child process.

(e) Wait for the child process to finish.

(f) If one-file mode, delete temppath_MEIxxxxxx.

2. Second process: bootloader itself started as a child process.

(a) On Windows set the activation context.

(b) Load the Python dynamic library. The name of the dynamic library is embedded in the executable file.

(c) Initialize Python interpreter: set sys.path, sys.prefix, sys.executable.

(d) Run python code.

1.10. Advanced Topics 29

https://github.com/pyinstaller/pyinstaller/releases
http://www.pip-installer.org/
https://groups.google.com/forum/#!forum/pyinstaller
https://github.com/pyinstaller/pyinstaller/wiki/How-to-Report-Bugs
https://github.com/pyinstaller/pyinstaller/wiki/How-to-Contribute
http://msdn.microsoft.com/en-us/library/windows/desktop/aa374153(v=vs.85).aspx

PyInstaller Documentation, Release 3.2

Running Python code requires several steps:

1. Run the Python initialization code which prepares everything for running the user’s main script. The initializa-
tion code can use only the Python built-in modules because the general import mechanism is not yet available.
It sets up the Python import mechanism to load modules only from archives embedded in the executable. It also
adds the attributes frozen and _MEIPASS to the sys built-in module.

2. Execute any run-time hooks: first those specified by the user, then any standard ones.

3. Install python “egg” files. When a module is part of a zip file (.egg), it has been bundled into the ./eggs
directory. Installing means appending .egg file names to sys.path. Python automatically detects whether an
item in sys.path is a zip file or a directory.

4. Run the main script.

Python imports in a bundled app

PyInstaller embeds compiled python code (.pyc files) within the executable. PyInstaller injects its code into the
normal Python import mechanism. Python allows this; the support is described in PEP 302 “New Import Hooks”.

PyInstaller implements the PEP 302 specification for importing built-in modules, importing “frozen” mod-
ules (compiled python code bundled with the app) and for C-extensions. The code can be read in
./PyInstaller/loader/pyi_mod03_importers.py.

At runtime the PyInstaller PEP 302 hooks are appended to the variable sys.meta_path. When trying to import
modules the interpreter will first try PEP 302 hooks in sys.meta_path before searching in sys.path. As a
result, the Python interpreter loads imported python modules from the archive embedded in the bundled executable.

This is the resolution order of import statements in a bundled app:

1. Is it a built-in module? A list of built-in modules is in variable sys.builtin_module_names.

2. Is it a module embedded in the executable? Then load it from embedded archive.

3. Is it a C-extension? The app will try to find a file with name package.subpackage.module.pyd or pack-
age.subpackage.module.so

4. Next examine paths in the sys.path. There could be any additional location with python modules or .egg
filenames.

5. If the module was not found then raise ImportError.

1.10.2 The TOC and Tree Classes

PyInstaller manages lists of files using the TOC (Table Of Contents) class. It provides the Tree class as a convenient
way to build a TOC from a folder path.

TOC Class (Table of Contents)

Objects of the TOC class are used as input to the classes created in a spec file. For example, the scripts member of
an Analysis object is a TOC containing a list of scripts. The pure member is a TOC with a list of modules, and so on.

Basically a TOC object contains a list of tuples of the form

(name,path,typecode)

In fact, it acts as an ordered set of tuples; that is, it contains no duplicates (where uniqueness is based on the name
element of each tuple). Within this constraint, a TOC preserves the order of tuples added to it.

30 Chapter 1. What’s New This Release

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0302

PyInstaller Documentation, Release 3.2

A TOC behaves like a list and supports the same methods such as appending, indexing, etc. A TOC also behaves like
a set, and supports taking differences and intersections. In all of these operations a list of tuples can be used as one
argument. For example, the following expressions are equivalent ways to add a file to the a.datas member:

a.datas.append([('README', 'src/README.txt', 'DATA')])
a.datas += [('README', 'src/README.txt', 'DATA')]

Set-difference makes excluding modules quite easy. For example:

a.binaries - [('badmodule', None, None)]

is an expression that produces a new TOC that is a copy of a.binaries from which any tuple named badmodule
has been removed. The right-hand argument to the subtraction operator is a list that contains one tuple in which name
is badmodule and the path and typecode elements are None. Because set membership is based on the name element
of a tuple only, it is not necessary to give accurate path and typecode elements when subtracting.

In order to add files to a TOC, you need to know the typecode values and their related path values. A typecode is a
one-word string. PyInstaller uses a number of typecode values internally, but for the normal case you need to know
only these:

typecode description name path
‘DATA’ Arbitrary files. Run-time name. Full path name in build.
‘BINARY’ A shared library. Run-time name. Full path name in build.
‘EXTENSION’ A binary extension to Python. Run-time name. Full path name in build.
‘OPTION’ A Python run-time option. Option code ignored.

The run-time name of a file will be used in the final bundle. It may include path elements, for example
extras/mydata.txt.

A BINARY file or an EXTENSION file is assumed to be loadable, executable code, for example a dynamic library.
The types are treated the same. EXTENSION is generally used for a Python extension module, for example a module
compiled by Cython. PyInstaller will examine either type of file for dependencies, and if any are found, they are also
included.

The Tree Class

The Tree class is a way of creating a TOC that describes some or all of the files within a directory:

Tree(root, prefix=run-time-folder, excludes=string_list, typecode=code | ’DATA’)

• The root argument is a path string to a directory. It may be absolute or relative to the spec file directory.

• The prefix argument, if given, is a name for a subfolder within the run-time folder to contain the tree files. If
you omit prefix or give None, the tree files will be at the top level of the run-time folder.

• The excludes argument, if given, is a list of one or more strings that match files in the root that should be omitted
from the Tree. An item in the list can be either:

– a name, which causes files or folders with this basename to be excluded

– *.ext, which causes files with this extension to be excluded

• The typecode argument, if given, specifies the TOC typecode string that applies to all items in the Tree. If
omitted, the default is DATA, which is appropriate for most cases.

For example:

extras_toc = Tree('../src/extras', prefix='extras', excludes=['tmp','*.pyc'])

This creates extras_toc as a TOC object that lists all files from the relative path ../src/extras, omitting
those that have the basename (or are in a folder named) tmp or that have the type .pyc. Each tuple in this TOC has:

1.10. Advanced Topics 31

http://www.cython.org/

PyInstaller Documentation, Release 3.2

• A name composed of extras/filename.

• A path consisting of a complete, absolute path to that file in the ../src/extras folder (relative to the
location of the spec file).

• A typecode of DATA (by default).

An example of creating a TOC listing some binary modules:

cython_mods = Tree('..src/cy_mods', excludes=['*.pyx','*.py','*.pyc'], typecode='EXTENSION')

This creates a TOC with a tuple for every file in the cy_mods folder, excluding any with the .pyx, .py or .pyc
suffixes (so presumably collecting the .pyd or .so modules created by Cython). Each tuple in this TOC has:

• Its own filename as name (no prefix; the file will be at the top level of the bundle).

• A path as an absolute path to that file in ../src/cy_mods relative to the spec file.

• A typecode of EXTENSION (BINARY could be used as well).

1.10.3 Inspecting Archives

An archive is a file that contains other files, for example a .tar file, a .jar file, or a .zip file. Two kinds of archives
are used in PyInstaller. One is a ZlibArchive, which allows Python modules to be stored efficiently and, with some
import hooks, imported directly. The other, a CArchive, is similar to a .zip file, a general way of packing up (and
optionally compressing) arbitrary blobs of data. It gets its name from the fact that it can be manipulated easily from C
as well as from Python. Both of these derive from a common base class, making it fairly easy to create new kinds of
archives.

ZlibArchive

A ZlibArchive contains compressed .pyc or .pyo files. The PYZ class invocation in a spec file creates a ZlibArchive.

The table of contents in a ZlibArchive is a Python dictionary that associates a key, which is a member’s name as given
in an import statement, with a seek position and a length in the ZlibArchive. All parts of a ZlibArchive are stored in
the marshalled format and so are platform-independent.

A ZlibArchive is used at run-time to import bundled python modules. Even with maximum compression this works
faster than the normal import. Instead of searching sys.path, there’s a lookup in the dictionary. There are no
directory operations and no file to open (the file is already open). There’s just a seek, a read and a decompress.

A Python error trace will point to the source file from which the archive entry was created (the __file__ attribute
from the time the .pyc was compiled, captured and saved in the archive). This will not tell your user anything useful,
but if they send you a Python error trace, you can make sense of it.

CArchive

A CArchive can contain any kind of file. It’s very much like a .zip file. They are easy to create in Python and easy
to unpack from C code. A CArchive can be appended to another file, such as an ELF and COFF executable. To allow
this, the archive is made with its table of contents at the end of the file, followed only by a cookie that tells where the
table of contents starts and where the archive itself starts.

A CArchive can be embedded within another CArchive. An inner archive can be opened and used in place, without
having to extract it.

Each table of contents entry has variable length. The first field in the entry gives the length of the entry. The last field
is the name of the corresponding packed file. The name is null terminated. Compression is optional for each member.

32 Chapter 1. What’s New This Release

http://docs.python.org/library/marshal

PyInstaller Documentation, Release 3.2

Fig. 1.1: Structure of the ZlibArchive

1.10. Advanced Topics 33

PyInstaller Documentation, Release 3.2

There is also a type code associated with each member. The type codes are used by the self-extracting executables. If
you’re using a CArchive as a .zip file, you don’t need to worry about the code.

The ELF executable format (Windows, Linux and some others) allows arbitrary data to be concatenated to the end of
the executable without disturbing its functionality. For this reason, a CArchive’s Table of Contents is at the end of the
archive. The executable can open itself as a binary file, seek to the end and ‘open’ the CArchive.

Fig. 1.2: Structure of the CArchive

Using pyi-archive_viewer

Use the pyi-archive_viewer command to inspect any type of archive:

pyi-archive_viewer archivefile

With this command you can examine the contents of any archive built with PyInstaller (a PYZ or PKG), or any
executable (.exe file or an ELF or COFF binary). The archive can be navigated using these commands:

O name Open the embedded archive name (will prompt if omitted). For example when looking in a one-file exe-
cutable, you can open the outPYZ.pyz archive inside it.

U Go up one level (back to viewing the containing archive).

X name Extract name (will prompt if omitted). Prompts for an output filename. If none given, the member is extracted
to stdout.

Q Quit.

34 Chapter 1. What’s New This Release

PyInstaller Documentation, Release 3.2

Fig. 1.3: Structure of the Self Extracting Executable

1.10. Advanced Topics 35

PyInstaller Documentation, Release 3.2

The pyi-archive_viewer command has these options:

-h, --help Show help.

-l, --log Quick contents log.

-b, --brief Print a python evaluable list of contents filenames.

-r, --recursive Used with -l or -b, applies recursive behaviour.

1.10.4 Inspecting Executables

You can inspect any executable file with pyi-bindepend:

pyi-bindepend executable_or_dynamic_library

The pyi-bindepend command analyzes the executable or DLL you name and writes to stdout all its binary depen-
dencies. This is handy to find out which DLLs are required by an executable or by another DLL.

pyi-bindepend is used by PyInstaller to follow the chain of dependencies of binary extensions during Analysis.

1.10.5 Creating a Reproducible Build

In certain cases it is important that when you build the same application twice, using exactly the same set of depen-
dencies, the two bundles should be exactly, bit-for-bit identical.

That is not the case normally. Python uses a random hash to make dicts and other hashed types, and this affects
compiled byte-code as well as PyInstaller internal data structures. As a result, two builds may not produce bit-for-bit
identical results even when all the components of the application bundle are the same and the two applications execute
in identical ways.

You can assure that a build will produce the same bits by setting the PYTHONHASHSEED environment variable to
a known integer value before running PyInstaller. This forces Python to use the same random hash sequence until
PYTHONHASHSEED is unset or set to ’random’. For example, execute PyInstaller in a script such as the following
(for Linux and OS X):

set seed to a known repeatable integer value
PYTHONHASHSEED=1
export PYTHONHASHSEED
create one-file build as myscript
pyinstaller myscript.spec
make checksum
cksum dist/myscript/myscript | awk '{print $1}' > dist/myscript/checksum.txt
let Python be unpredictable again
unset PYTHONHASHSEED

1.11 Understanding PyInstaller Hooks

In summary, a “hook” file extends PyInstaller to adapt it to the special needs and methods used by a Python package.
The word “hook” is used for two kinds of files. A runtime hook helps the bootloader to launch an app. For more
on runtime hooks, see Changing Runtime Behavior. Other hooks run while an app is being analyzed. They help the
Analysis phase find needed files.

The majority of Python packages use normal methods of importing their dependencies, and PyInstaller locates all
their files without difficulty. But some packages make unusual uses of the Python import mechanism, or make clever
changes to the import system at runtime. For this or other reasons, PyInstaller cannot reliably find all the needed files,

36 Chapter 1. What’s New This Release

PyInstaller Documentation, Release 3.2

or may include too many files. A hook can tell about additional source files or data files to import, or files not to
import.

A hook file is a Python script, and can use all Python features. It can also import helper methods from
PyInstaller.utils.hooks and useful variables from PyInstaller.compat. These helpers are docu-
mented below.

The name of a hook file is hook-full-import-name.py, where full-import-name is the fully-qualified name of
an imported script or module. You can browse through the existing hooks in the hooks folder of the PyIn-
staller distribution folder and see the names of the packages for which hooks have been written. For example
hook-PyQt5.QtCore.py is a hook file telling about hidden imports needed by the module PyQt5.QtCore.
When your script contains import PyQt5.QtCore (or from PyQt5 import QtCore), Analysis notes that
hook-PyQt5.QtCore.py exists, and will call it.

Many hooks consist of only one statement, an assignment to hiddenimports. For example, the hook for the
dnspython package, called hook-dns.rdata.py, has only this statement:

hiddenimports = [
"dns.rdtypes.*",
"dns.rdtypes.ANY.*"

]

When Analysis sees import dns.rdata or from dns import rdata it calls hook-dns.rdata.py and
examines its value of hiddenimports. As a result, it is as if your source script also contained:

import dns.rdtypes.*
import dsn.rdtypes.ANY.*

A hook can also cause the addition of data files, and it can cause certain files to not be imported. Examples of these
actions are shown below.

When the module that needs these hidden imports is useful only to your project, store the hook file(s) somewhere
near your source file. Then specify their location to the pyinstaller or pyi-makespec command with the
--additional-hooks-dir= option. If the hook file(s) are at the same level as the script, the command could be
simply:

pyinstaller --additional-hooks-dir=. myscript.py

If you write a hook for a module used by others, please send us the hook file so we can make it available.

1.11.1 How a Hook Is Loaded

A hook is a module named hook-full-import-name.py in a folder where the Analysis object looks for hooks. Each
time Analysis detects an import, it looks for a hook file with a matching name. When one is found, Analysis imports
the hook’s code into a Python namespace. This results in the execution of all top-level statements in the hook source,
for example import statements, assignments to global names, and function definitions. The names defined by these
statements are visible to Analysis as attributes of the namespace.

Thus a hook is a normal Python script and can use all normal Python facilities. For example it could test
sys.version and adjust its assignment to hiddenimports based on that. There are over 150 hooks in the
PyInstaller installation. You are welcome to browse through them for examples.

Hook Global Variables

A majority of the existing hooks consist entirely of assignments of values to one or more of the following global
variables. If any of these are defined by the hook, Analysis takes their values and applies them to the bundle being
created.

1.11. Understanding PyInstaller Hooks 37

http://www.dnspython.org/

PyInstaller Documentation, Release 3.2

hiddenimports A list of module names (relative or absolute) that should be part of the bundled app. This has the
same effect as the --hidden-import command line option, but it can contain a list of names and is applied
automatically only when the hooked module is imported. Example:

hiddenimports = ['_proxy', 'utils', 'defs']

excludedimports A list of absolute module names that should not be part of the bundled app. If an excluded
module is imported only by the hooked module or one of its sub-modules, the excluded name and its sub-
modules will not be part of the bundle. (If an excluded name is explicitly imported in the source file or some
other module, it will be kept.) Several hooks use this to prevent automatic inclusion of the tkinter module.
Example:

excludedimports = [modname_tkinter]

datas A list of files to bundle with the app as data. Each entry in the list is a tuple containing two strings. The first
string specifies a file (or file “glob”) in this system, and the second specifies the name(s) the file(s) are to have
in the bundle. (This is the same format as used for the datas= argument, see Adding Data Files.) Example:

datas = [('/usr/share/icons/education_*.png', 'icons')]

If you need to collect multiple directories or nested directories, you can use helper functions from the
PyInstaller.utils.hooks module (see below) to create this list, for example:

datas = collect_data_files('submodule1')
datas+= collect_data_files('submodule2')

In rare cases you may need to apply logic to locate particular files within the file system, for example because
the files are in different places on different platforms or under different versions. Then you can write a hook()
function as described below under The hook(hook_api) Function.

binaries A list of files or directories to bundle as binaries. The format is the same as datas (tuples with strings
that specify the source and the destination). Binaries is a special case of datas, in that PyInstaller will check
each file to see if it depends on other dynamic libraries. Example:

binaries = [('C:\\Windows\\System32*.dll', 'dlls')]

Many hooks use helpers from the PyInstaller.utils.hooks module to create this list (see below):

binaries = collect_dynamic_libs('zmq')

Useful Items in PyInstaller.compat

A hook may import the following names from PyInstaller.compat, for example:

from PyInstaller.compat import modname_tkinter, is_win

is_py2: True when the active Python is version 2.7.

is_py3: True when the active Python is version 3.X.

is_py34, is_py35, is_py36: True when the current version of Python is at least 3.4, 3.5 or 3.6 respectively.

is_win: True in a Windows system.

is_cygwin: True when sys.platform==’cygwin’.

is_darwin: True in Mac OS X.

is_linux: True in any Linux system (sys.platform.startswith(’linux’)).

is_solar: True in Solaris.

38 Chapter 1. What’s New This Release

PyInstaller Documentation, Release 3.2

is_aix: True in AIX.

is_freebsd: True in FreeBSD.

is_venv: True in any virtual environment (either virtualenv or venv).

base_prefix: String, the correct path to the base Python installation, whether the installation is native or a virtual
environment.

modname_tkinter: String, Tkinter in Python 2.7 but tkinter in Python 3. To prevent an unnecessary import
of Tkinter, write:

from PyInstaller.compat import modname_tkinter
excludedimports = [modname_tkinter]

EXTENSION_SUFFIXES: List of Python C-extension file suffixes. Used for finding all binary dependencies in a
folder; see hook-cryptography.py for an example.

Useful Items in PyInstaller.utils.hooks

A hook may import useful functions from PyInstaller.utils.hooks. Use a fully-qualified import statement,
for example:

from PyInstaller.utils.hooks import collect_data_files, eval_statement

The PyInstaller.utils.hooks functions listed here are generally useful and used in a number of existing
hooks. There are several more functions besides these that serve the needs of specific hooks, such as hooks for
PyQt4/5. You are welcome to read the PyInstaller.utils.hooks module (and read the existing hooks that
import from it) to get code and ideas.

exec_statement(’statement’): Execute a single Python statement in an externally-spawned interpreter
and return the standard output that results, as a string. Examples:

tk_version = exec_statement(
"from _tkinter import TK_VERSION; print(TK_VERSION)"
)

mpl_data_dir = exec_statement(
"import matplotlib; print(matplotlib._get_data_path())"
)

datas = [(mpl_data_dir, "")]

eval_statement(’statement’): Execute a single Python statement in an externally-spawned interpreter.
If the resulting standard output text is not empty, apply the eval() function to it; else return None. Example:

databases = eval_statement('''
import sqlalchemy.databases
print(sqlalchemy.databases.__all__)
''')

for db in databases:
hiddenimports.append("sqlalchemy.databases." + db)

is_module_satisfies(requirements, version=None, version_attr=’__version__’):
Check that the named module (fully-qualified) exists and satisfies the given requirement. Example:

if is_module_satisfies('sqlalchemy >= 0.6'):

This function provides robust version checking based on the same low-level algorithm used by easy_install
and pip, and should always be used in preference to writing your own comparison code. In particular, ver-

1.11. Understanding PyInstaller Hooks 39

PyInstaller Documentation, Release 3.2

sion strings should never be compared lexicographically (except for exact equality). For example ’00.5’ >
’0.6’ returns True, which is not the desired result.

The requirements argument uses the same syntax as supported by the Package resources module of setup
tools (follow the link to see the supported syntax).

The optional version argument is is a PEP0440-compliant, dot-delimited version specifier such as
’3.14-rc5’.

When the package being queried has been installed by easy_install or pip, the existing setup tools ma-
chinery is used to perform the test and the version and version_attr arguments are ignored.

When that is not the case, the version argument is taken as the installed version of the package (perhaps
obtained by interrogating the package in some other way). When version is None, the named package
is imported into a subprocess, and the __version__ value of that import is tested. If the package uses
some other name than __version__ for its version global, that name can be passed as the version_attr
argument.

For more details and examples refer to the function’s doc-string, found in
Pyinstaller/utils/hooks/__init__.py.

collect_submodules(’package-name’, subdir=None, pattern=None): Returns a list of
strings that specify all the modules in a package, ready to be assigned to the hiddenimports global. Returns
an empty list when package does not name a package (a package is defined as a module that contains a
__path__ attribute).

subdir, if given, names a relative subdirectory in the package, used in the case where a package imports
modules at runtime from a directory lacking __init__.py. The pattern, if given, is a string that may be
contained in the names of modules. Only modules containing the pattern will be returned. Example:

hiddenimports = collect_submodules('PIL', pattern='ImagePlugin')

collect_data_files(’module-name’, subdir=None, include_py_files=False):
Returns a list of (source, dest) tuples for all non-Python (i.e. data) files found in module-name, ready to be
assigned to the datas global. module-name is the fully-qualified name of a module or package (but not a
zipped “egg”). The function uses os.walk() to visit the module directory recursively. subdir, if given,
restricts the search to a relative subdirectory.

Normally Python executable files (ending in .py, .pyc, etc.) are not collected. Pass
include_py_files=True to collect those files as well. (This can be used with routines such as those
in pkgutil that search a directory for Python executable files and load them as extensions or plugins.)

collect_dynamic_libs(’module-name’): Returns a list of (source, dest) tuples for all the dynamic libs
present in a module directory. The list is ready to be assigned to the binaries global variable. The function
uses os.walk() to examine all files in the module directory recursively. The name of each file found is tested
against the likely patterns for a dynamic lib: *.dll, *.dylib, lib*.pyd, and lib*.so. Example:

binaries = collect_dynamic_libs('enchant')

get_module_file_attribute(’module-name’): Return the absolute path to module-name, a fully-
qualified module name. Example:

nacl_dir = os.path.dirname(get_module_file_attribute('nacl'))

get_package_paths(’package-name’): Given the name of a package, return a tuple. The first element
is the absolute path to the folder where the package is stored. The second element is the absolute path to the
named package. For example, if pkg.subpkg is stored in /abs/Python/lib the result of:

get_package_paths('pkg.subpkg')

is the tuple, (’/abs/Python/lib’, ’/abs/Python/lib/pkg/subpkg’)

40 Chapter 1. What’s New This Release

https://pythonhosted.org/setuptools/pkg_resources.html#requirements-parsing

PyInstaller Documentation, Release 3.2

copy_metadata(’package-name’): Given the name of a package, return the name of its distribution meta-
data folder as a list of tuples ready to be assigned (or appended) to the datas global variable.

Some packages rely on metadata files accessed through the pkg_resources module. Normally PyInstaller
does not include these metadata files. If a package fails without them, you can use this function in a hook file to
easily add them to the bundle. The tuples in the returned list have two strings. The first is the full pathname to
a folder in this system. The second is the folder name only. When these tuples are added to datas, the folder
will be bundled at the top level. If package-name does not have metadata, an AssertionError exception is raised.

get_homebrew_path(formula=’’): Return the homebrew path to the named formula, or to the global
prefix when formula is omitted. Returns None if not found.

django_find_root_dir(): Return the path to the top-level Python package containing the Django files, or
None if nothing can be found.

django_dottedstring_imports(’django-root-dir’) Return a list of all necessary Django mod-
ules specified in the Django settings.py file, such as the Django.settings.INSTALLED_APPS list and
many others.

The hook(hook_api) Function

In addition to, or instead of, setting global values, a hook may define a function hook(hook_api). A hook()
function should only be needed if the hook needs to apply sophisticated logic or to make a complex search of the
source machine.

The Analysis object calls the function and passes it a hook_api object which has the following immutable properties:

__name__: The fully-qualified name of the module that caused the hook to be called, e.g., six.moves.tkinter.

__file__: The absolute path of the module. If it is:

• A standard (rather than namespace) package, this is the absolute path of this package’s directory.

• A namespace (rather than standard) package, this is the abstract placeholder -.

• A non-package module or C extension, this is the absolute path of the corresponding file.

__path__: A list of the absolute paths of all directories comprising the module if it is a package, or None. Typically
the list contains only the absolute path of the package’s directory.

The hook_api object also offers the following methods:

add_imports(*names): The names argument may be a single string or a list of strings giving the fully-
qualified name(s) of modules to be imported. This has the same effect as adding the names to the
hiddenimports global.

del_imports(*names): The names argument may be a single string or a list of strings, giving the fully-
qualified name(s) of modules that are not to be included if they are imported only by the hooked module. This
has the same effect as adding names to the excludedimports global.

add_datas(tuple_list): The tuple_list argument has the format used with the datas global vari-
able. This call has the effect of adding items to that list.

add_binaries(tuple_list): The tuple_list argument has the format used with the binaries
global variable. This call has the effect of adding items to that list.

The hook() function can add, remove or change included files using the above methods of hook_api. Or, it can
simply set values in the four global variables, because these will be examined after hook() returns.

1.11. Understanding PyInstaller Hooks 41

PyInstaller Documentation, Release 3.2

The pre_find_module_path(pfmp_api) Method

You may write a hook with the special function pre_find_module_path(pfmp_api). This method is called
when the hooked module name is first seen by Analysis, before it has located the path to that module or package (hence
the name “pre-find-module-path”).

Hooks of this type are only recognized if they are stored in a sub-folder named pre_find_module_path
in a hooks folder, either in the distributed hooks folder or an --additional-hooks-dir folder. You may
have normal hooks as well as hooks of this type for the same module. For example PyInstaller includes both a
hooks/hook-distutils.py and also a hooks/pre_find_module_path/hook-distutils.py.

The pfmp_api object that is passed has the following immutable attribute:

module_name: A string, the fully-qualified name of the hooked module.

The pfmp_api object has one mutable attribute, search_dirs. This is a list of strings that specify the absolute
path, or paths, that will be searched for the hooked module. The paths in the list will be searched in sequence. The
pre_find_module_path() function may replace or change the contents of pfmp_api.search_dirs.

Immediately after return from pre_find_module_path(), the contents of search_dirs will be used to find
and analyze the module.

For an example of use, see the file hooks/pre_find_module_path/hook-distutils.py. It uses this
method to redirect a search for distutils when PyInstaller is executing in a virtual environment.

The pre_safe_import_module(psim_api) Method

You may write a hook with the special function pre_safe_import_module(psim_api). This method is
called after the hooked module has been found, but before it and everything it recursively imports is added to the
“graph” of imported modules. Use a pre-safe-import hook in the unusual case where:

• The script imports package.dynamic-name

• The package exists

• however, no module dynamic-name exists at compile time (it will be defined somehow at run time)

You use this type of hook to make dynamically-generated names known to PyInstaller. PyInstaller will not try to locate
the dynamic names, fail, and report them as missing. However, if there are normal hooks for these names, they will be
called.

Hooks of this type are only recognized if they are stored in a sub-folder named pre_safe_import_module in a
hooks folder, either in the distributed hooks folder or an --additional-hooks-dir folder. (See the distributed
hooks/pre_safe_import_module folder for examples.)

You may have normal hooks as well as hooks of this type for the same module. For exam-
ple the distributed system has both a hooks/hook-gi.repository.GLib.py and also a
hooks/pre_safe_import_module/hook-gi.repository.GLib.py.

The psim_api object offers the following attributes, all of which are immutable (an attempt to change one raises an
exception):

module_basename: String, the unqualified name of the hooked module, for example text.

module_name: String, the fully-qualified name of the hooked module, for example email.mime.text.

module_graph: The module graph representing all imports processed so far.

parent_package: If this module is a top-level module of its package, None. Otherwise, the graph node that
represents the import of the top-level module.

42 Chapter 1. What’s New This Release

PyInstaller Documentation, Release 3.2

The last two items, module_graph and parent_package, are related to the module-graph, the internal data
structure used by PyInstaller to document all imports. Normally you do not need to know about the module-graph.

The psim_api object also offers the following methods:

add_runtime_module(fully_qualified_name): Use this method to add an imported module whose
name may not appear in the source because it is dynamically defined at run-time. This is useful to make
the module known to PyInstaller and avoid misleading warnings. A typical use applies the name from the
psim_api:

psim_api.add_runtime_module(psim_api.module_name)

add_alias_module(real_module_name, alias_module_name): real_module_name is the
fully-qualifed name of an existing module, one that has been or could be imported by name (it will be added to
the graph if it has not already been imported). alias_module_name is a name that might be referenced in
the source file but should be treated as if it were real_module_name. This method ensures that if PyInstaller
processes an import of alias_module_name it will use real_module_name.

append_package_path(directory): The hook can use this method to add a package path to be searched
by PyInstaller, typically an import path that the imported module would add dynamically to the path if the
module was executed normally. directory is a string, a pathname to add to the __path__ attribute.

1.12 Building the Bootloader

PyInstaller comes with pre-compiled bootloaders for some platforms in the bootloader folder of the distribution
folder. When there is no pre-compiled bootloader, the pip setup will attempt to build one.

If there is no precompiled bootloader for your platform, or if you want to modify the bootloader source, you need to
build the bootloader. To do this,

• cd into the distribution folder.

• cd bootloader.

• Make the bootloader with: python ./waf distclean all.

This will produce the bootloader executables,

• ./PyInstaller/bootloader/YOUR_OS/run,

• ./PyInstaller/bootloader/YOUR_OS/run_d

• ./PyInstaller/bootloader/YOUR_OS/runw and

• ./PyInstaller/bootloader/YOUR_OS/runw_d

Note: If you have multiple versions of Python, the Python you use to run waf is the one whose configuration is used.

If this reports an error, read the detailed notes that follow, then ask for technical help.

1.12.1 Development tools

On Debian/Ubuntu systems, you can run the following to install everything required:

sudo apt-get install build-essential

On Fedora/RHEL and derivates, you can run the following:

su
yum groupinstall "Development Tools"

1.12. Building the Bootloader 43

http://www.pip-installer.org/

PyInstaller Documentation, Release 3.2

On Mac OS X you can get gcc by installing Xcode. It is a suite of tools for developing software for Mac OS X. It can
be also installed from your Mac OS X Install DVD. It is not necessary to install the version 4 of Xcode.

On Solaris and AIX the bootloader is built and tested with gcc.

1.12.2 Building for Windows

On Windows you can use the Visual Studio C++ compiler (Visual Studio 2008 is recommended). A free version you
can download is Visual Studio Express.

Note: When compiling libs to link with Python it is important to use the same level of Visual Studio as was used
to compile Python. That is not the case here. The bootloader is a self-contained static executable that imposes no
restrictions on the version of Python being used. So you can use any Visual Studio version that is convenient.

If Visual Studio is not convenient, you can download and install the MinGW distribution from one of the following
locations:

• MinGW-w64 required, uses gcc 4.4 and up.

• TDM-GCC - MinGW (not used) and MinGW-w64 installers

On Windows, when using MinGW-w64, add PATH_TO_MINGW\bin to your system PATH. variable. Before building
the bootloader run for example:

set PATH=C:\MinGW\bin;%PATH%

Change to the bootloader subdirectory. Run:

python ./waf distclean all

This will produce the bootloader executables run*.exe in the .\PyInstaller\bootloader\YOUR_OS di-
rectory.

1.12.3 Building for LINUX

By default, the bootloaders on Linux are LSB binaries.

LSB is a set of open standards that should increase compatibility among Linux distributions. PyInstaller produces a
bootloader as an LSB binary in order to increase compatibility for packaged applications among distributions.

Note: LSB version 4.0 is required for successfull building of bootloader.

On Debian- and Ubuntu-based distros, you can install LSB 4.0 tools by adding the following repository to the
sources.list file:

deb http://ftp.linux-foundation.org/pub/lsb/repositories/debian lsb-4.0 main

then after having update the apt repository:

sudo apt-get update

you can install LSB 4.0:

sudo apt-get install lsb lsb-build-cc

Most other distributions contain only LSB 3.0 in their software repositories and thus LSB build tools 4.0 must be
downloaded by hand. From Linux Foundation download LSB sdk 4.0 for your architecture.

Unpack it by:

44 Chapter 1. What’s New This Release

http://developer.apple.com/xcode
http://www.microsoft.com/express/
http://mingw-w64.sourceforge.net/
http://tdm-gcc.tdragon.net/
http://ftp.linuxfoundation.org/pub/lsb/bundles/released-4.0.0/sdk/

PyInstaller Documentation, Release 3.2

tar -xvzf lsb-sdk-4.0.3-1.ia32.tar.gz

To install it run:

cd lsb-sdk
./install.sh

After having installed the LSB tools, you can follow the standard building instructions.

NOTE: if for some reason you want to avoid LSB compilation, you can do so by specifying –no-lsb on the waf
command line, as follows:

python waf configure --no-lsb build install

This will also produce support/loader/YOUR_OS/run, support/loader/YOUR_OS/run_d,
support/loader/YOUR_OS/runw and support/loader/YOUR_OS/runw_d, but they will not be
LSB binaries.

1.13 Changelog for PyInstaller

1.13.1 3.2 (2016-05-03)

• Even the “main” script is now byte-compiled (#1847, #1856)

• The manual is on readthedocs.io now (#1578)

• On installation try to compile the bootloader if there is none for the current plattform (#1377)

• (Unix) Use objcopy to create a valid ELF file (#1812, #1831)

• (Linux): Compile with _FORTIFY_SOURCE (#1820)

• New, updated and fixed hooks: CherryPy (#1860), Cryptography (#1425, #1861), enchant (1562),
gi.repository.GdkPixbuf (#1843), gst (#1963), Lib2to3 (#1768), PyQt4, PyQt5, PySide (#1783, #1897, #1887),
SciPy (#1908, #1909), sphinx (#1911, #1912), sqlalchemy (#1951), traitlets wx.lib.pubsub (#1837, #1838),

• For windowed mode add isatty() for our dummy NullWriter (#1883)

• Suppress “Failed to execute script” in case of SystemExit (#1869)

• Do not apply Upx compressor for bootloader files (#1863)

• Fix absolute path for lib used via ctypes (#1934)

• (OSX) Fix binary cache on NFS (#1573, #1849)

• (Windows) Fix message in grab_version (#1923)

• (Windows) Fix wrong icon paramter in Windows example (#1764)

• (Windows) Fix win32 unicode handling (#1878)

• (Windows) Fix unnecessary rebuilds caused by rebuilding winmanifest (#1933)

• (Cygwin) Fix finding the Python library for Cygwin 64-bit (#1307, #1810, #1811)

• (OSX) Fix compilation issue (#1882)

• (Windows) No longer bundle pefile, use package from for windows (#1357)

• (Windows) Provide a more robust means of executing a Python script

• AIX fixes.

1.13. Changelog for PyInstaller 45

PyInstaller Documentation, Release 3.2

• Update waf to version 1.8.20 (#1868)

• Fix excludedimports, more predictable order how hooks are applied #1651

• Internal impovements and code clean-up (#1754, #1760, #1794, #1858, #1862, #1887, #1907, #1913)

• Clean-ups fixes and improvements for the test suite

Known Issues

• Apps built with Windows 10 and Python 3.5 may not run on Windows versions earlier than 10 (#1566).

• The multipackage (MERGE) feature (#1527) is currently broken.

• (OSX) Support for OpenDocument events (#1309) is broken.

1.13.2 3.1.1 (2016-01-31)

Fixed the following issues:

• Fix problems with setuptools 19.4 (#1772, #1773, #1790, #1791)

• 3.1 does not collect certain direct imports (#1780)

• Git reports wrong version even if on unchanged release (#1778)

• Don’t resolve symlinks in modulegraph.py (#1750, #1755)

• ShortFileName not returned in win32 util (#1799)

1.13.3 3.1 (2016-01-09)

• Support reproducible builds (#490, #1434, #1582, #1590).

• Strip leading parts of paths in compiled code objects (#1059, #1302, #1724).

• With --log-level=DEBUG, a dependency graph-file is emitted in the build-directory.

• Allow running pyinstaller as user root. By popular demand, see e.g. #1564, #1459, #1081.

• New Hooks: botocore, boto3, distorm3, GObject, GI (G Introspection), GStreamer, GEvent, kivy,
lxml.isoschematron, pubsub.core, PyQt5.QtMultimedia, scipy.linalg, shelve.

• Fixed or Updated Hooks: astroid, django, jsonschema logilab, PyQt4, PyQt5, skimage, sklearn.

• Add option --hiddenimport as an alias for --hidden-import.

• (OSX): Fix issues with st_flags (#1650).

• (OSX) Remove warning message about 32bit compatibility (#1586).

• (Linux) The cache is now stored in $XDG_CACHE_HOME/pyinstaller instead of $XDG_DATA_HOME -
the cache is moved automatically (#1118).

• Documentation updates, e.g. about reproducible builds

• Put back full text of GPL license into COPYING.txt.

• Fix crashes when looking for ctypes DLLs (#1608, #1609, #1620).

• Fix: Imports in byte-code not found if code contains a function (#1581).

• Fix recursion into bytes-code when scanning for ctypes (#1620).

• Fix PyCrypto modules to work with crypto feature (--key option) (#1663).

46 Chapter 1. What’s New This Release

PyInstaller Documentation, Release 3.2

• Fix problems with excludedimports in some hook excluding the named modules even if used elswhere
(#1584, #1600).

• Fix freezing of pip 7.1.2 (#1699).

• FreeBSD and Solaris fixes.

• Search for ldconfig in $PATH first (#1659)

• Deny processing outdated package _xmlplus.

• Improvements to the test-suite, testing infrastructure and continuous integration.

• For non-release builds, the exact git revision is not used.

• Internal code refactoring.

• Enhancements and clean-ups to the hooks API - only relevant for hook authors. See the manual for details. E.g:

– Removed attrs in hooks - they were not used anymore anyway.

– Change add/del_import() to accept arbitrary number of module names.

– New hook utility function copy_metadata().

Known Issues

• Apps built with Windows 10 and Python 3.5 may not run on Windows versions earlier than 10 (#1566).

• The multipackage (MERGE) feature (#1527) is currently broken.

• (OSX) Support for OpenDocument events (#1309) is broken.

1.13.4 3.0 (2015-10-04)

• Python 3 support (3.3 / 3.4 / 3.5).

• Remove support for Python 2.6 and lower.

• Full unicode support in the bootloader (#824, #1224, #1323, #1340, #1396)

– (Windows) Python 2.7 apps can now run from paths with non-ASCII characters

– (Windows) Python 2.7 onefile apps can now run for users whose usernames contain non-ASCII characters

– Fix sys.getfilesystemencoding() to return correct values (#446, #885).

• (OSX) Executables built with PyInstaller under OS X can now be digitally signed.

• (OSX) 32bit precompiled bootloader no longer distributed, only 64bit.

• (Windows) for 32bit bootloader enable flag LARGEADDRESSAWARE that allows to use 4GB of RAM.

• New hooks: amazon-product-api, appy, certifi, countrycode, cryptography, gi, httplib2, jsonschema, keyring,
lensfunpy, mpl_toolkits.basemap, ncclient, netCDF4, OpenCV, osgeo, patsy, PsychoPy, pycountry, pycparser,
PyExcelerate, PyGobject, pymssql, PyNaCl, PySiDe.QtCore, PySide.QtGui, rawpy, requests, scapy, scipy, six,
SpeechRecognition, u1db, weasyprint, Xlib.

• Hook fixes: babel, ctypes, django, IPython, pint, PyEnchant, Pygments, PyQt5, PySide, pyusb, sphinx,
sqlalchemy, tkinter, wxPython.

• Add support for automatically including data files from eggs.

• Add support for directory eggs support.

• Add support for all kind of namespace packages e.g. zope.interface, PEP302 (#502, #615, #665, #1346).

• Add support for pkgutil.extend_path().

1.13. Changelog for PyInstaller 47

PyInstaller Documentation, Release 3.2

• New option --key to obfuscate the Python bytecode.

• New option --exclude-module to ignore a specific module or package.

• (Windows) New option --uac-admin to request admin permissions before starting the app.

• (Windows) New option --uac-uiaccess allows an elevated application to work with Remote Desktop.

• (Windows) New options for Side-by-side Assembly searching:

– --win-private-assemblies bundled Shared Assemblies into the application will be changed into
Private Assemblies

– --win-no-prefer-redirects while searching for Assemblies PyInstaller will prefer not to follow
policies that redirect to newer versions.

• (OSX) New option --osx-bundle-identifier to set .app bundle identifier.

• (Windows) Remove old COM server support.

• Allow override PyInstaller default config directory by environment variable PYINSTALLER_CONFIG_DIR.

• Add FreeBSD support.

• AIX fixes.

• Solaris fixes.

• Use library modulegraph for module dependency analysis.

• Bootloader debug messages LOADER: ... printed to stderr.

• PyInstaller no longer extends sys.path and bundled 3rd-party libraries do not interfere with their other ver-
sions.

• Enhancemants to Analysis():

– New arguments excludedimports to exclude Python modules in import hooks.

– New argument binaries to bundle dynamic libraries in .spec file and in import hooks.

– New argument datas to bundle additional data files in .spec file and in import hooks.

• A lot of internal code refactoring.

• Test suite migrated to pytest framework.

• Improved testing infrastructure with continuous integration (Travis - Linux, Appveyor - Windows)

• Wiki and bug tracker migrated to github.

Known Issues

• Apps built with Windows 10 and Python 3.5 may not run on Windows versions earlier than 10 (#1566).

• The multipackage (MERGE) feature (#1527) is currenty broken.

• (OSX) Support for OpenDocument events (#1309) is broken.

1.13.5 2.1 (2013-09-27)

• Rewritten manual explaining even very basic topics.

• PyInstaller integration with setuptools (direct installation with easy_install or pip from PYPI -
https://pypi.python.org/pypi). After installation there will be available command ‘pyinstaller’ for PyInstaller
usage.

• (Windows) Alter –version-file resource format to allow unicode support.

48 Chapter 1. What’s New This Release

https://pypi.python.org/pypi

PyInstaller Documentation, Release 3.2

• (Windows) Fix running frozen app running from paths containing foreign characters.

• (Windows) Fix running PyInstaller from paths containing foreign characters.

• (OSX) Implement –icon option for the .app bundles.

• (OSX) Add argv emulation for OpenDocument AppleEvent (see manual for details).

• Rename –buildpath to –workpath.

• Created app is put to –distpath.

• All temporary work files are now put to –workpath.

• Add option –clean to remove PyInstaller cache and temporary files.

• Add experimental support for Linux arm.

• Minimum suported Python version is 2.4.

• Add import hooks for docutils, jinja2, sphinx, pytz, idlelib, sqlite3.

• Add import hooks for IPython, Scipy, pygst, Python for .NET.

• Add import hooks for PyQt5, Bacon, raven.

• Fix django import hook to work with Django 1.4.

• Add rthook for twisted, pygst.

• Add rthook for pkg_resource. It fixes the following functions for frozen app pkg_resources.resource_stream(),
pkg_resources.resource_string().

• Better support for pkg_resources (.egg manipulation) in frozen executables.

• Add option –runtime-hook to allow running custom code from frozen app before loading other Python from the
frozen app. This is usefull for some specialized preprocessing just for the frozen executable. E.g. this option
can be used to set SIP api v2 for PyQt4.

• Fix runtime option –Wignore.

• Rename utils to lowercase: archieve_viewer.py, bindepend.py, build.py, grab_version.py, make_comserver.py,
makespec.py, set_version.py.

• (OSX) Fix missing qt_menu.nib in dist directory when using PySide.

• (OSX) Fix bootloader compatibility with Mac OS X 10.5

• (OSX) Search libpython in DYLD_LIBRARY_PATH if libpython cannot be found.

• (OSX) Fix Python library search in virtualenv.

• Environment variable PYTHONHOME is now unset and path to python home is set in bootloader by function
Py_SetPythonHome().This overrides sys.prefix and sys.exec_prefix for frozen application.

• Python library filename (e.g. python27.dll, libpython2.7.so.1.0, etc) is embedded to the created exe file. Boot-
loader is not trying several filenames anymore.

• Frozen executables now use PEP-302 import hooks to import frozen modules and C extensions. (sys.meta_path)

• Drop old import machinery from iu.py.

• Drop own code to import modules from zip archives (.egg files) in frozen executales. Native Python implemen-
tation is kept unchanged.

• Drop old crypto code. This feature was never completed.

• Drop bootloader dependency on Python headers for compilation.

1.13. Changelog for PyInstaller 49

PyInstaller Documentation, Release 3.2

• (Windows) Recompile bootloaders with VS2008 to ensure win2k compatibility.

• (Windows) Use 8.3 filenames for homepath/temppath.

• Add prefix LOADER to the debug text from bootloader.

• Allow running PyInstaller programatically.

• Move/Rename some files, code refactoring.

• Add more tests.

• Tilde is in PyInstaller recognized as $HOME variable.

1.13.6 2.0 (2012-08-08)

• Minimum suported Python version is 2.3.

• (OSX) Add support for Mac OS X 64-bit

• (OSX) Add support Mac OS X 10.7 (Lion) and 10.8 (Mountain Lion).

• (OSX) With argument –windowed PyInstaller creates application bundle (.app)

• automatically.

• Add experimental support for AIX (thanks to Martin Gamwell Dawids).

• Add experimental support for Solaris (thanks to Hywel Richards).

• Add Multipackage function to create a collection of packages to avoid

• library duplication. See documentation for more details.

• New symplified command line interface. Configure.py/Makespec.py/Build.py

• replaced by pyinstaller.py. See documentation for more details.

• Removed cross-building/bundling feature which was never really finished.

• Added option –log-level to all scripts to adjust level of output (thanks to Hartmut Goebel).

• rthooks.dat moved to support/rthooks.dat

• Packaged executable now returns the same return-code as the

• unpackaged script (thanks to Brandyn White).

• Add import hook for PyUSB (thanks to Chien-An “Zero” Cho).

• Add import hook for wx.lib.pubsub (thanks to Daniel Hyams).

• Add import hook for pyttsx.

• Improve import hook for Tkinter.

• Improve import hook for PyQt4.

• Improve import hook for win32com.

• Improve support for running PyInstaller in virtualenv.

• Add cli options –additional-hooks-dir and –hidden-import.

• Remove cli options -X, -K, -C, –upx, –tk, –configfile, –skip-configure.

• UPX is used by default if available in the PATH variable.

• Remove compatibility code for old platforms (dos, os2, MacOS 9).

50 Chapter 1. What’s New This Release

PyInstaller Documentation, Release 3.2

• Use Python logging system for message output (thanks to Hartmut Goebel).

• Environment variable MEIPASS2 is accessible as sys._MEIPASS.

• Bootloader now overrides PYTHONHOME and PYTHONPATH. PYTHONHOME and PYTHONPATH is set
to the value of MEIPASS2 variable.

• Bootloader uses absolute paths.

• (OSX) Drop dependency on otool from Xcode on Mac OSX.

• (OSX) Fix missing qt_menu.nib in dist directory when using PyQt4.

• (OSX) Bootloader does not use DYLD_LIBRARY_PATH on Mac OS X anymore. @loader_path is used in-
stead.

• (OSX) Add support to detect .dylib dependencies on Mac OS X containing @executable_path, @loader_path
and @rpath.

• (OSX) Use macholib to detect dependencies on dynamic libraries.

• Improve test suite.

• Improve source code structure.

• Replace os.system() calls by suprocess module.

• Bundle fake ‘site’ module with frozen applications to prevent loading any user’s Python modules from host OS.

• Include runtime hooks (rthooks) in code analysis.

• Source code hosting moved to github: https://github.com/pyinstaller/pyinstaller

• Hosting for running tests daily: https://jenkins.shiningpanda-ci.com/pyinstaller/

1.13.7 1.5.1 (2011-08-01)

• New default PyInstaller icon for generated executables on Windows.

• Add support for Python built with –enable-shared on Mac OSX.

• Add requirements section to documentation.

• Documentation is now generated by rst2html and rst2pdf.

• Fix wrong path separators for bootloader-file on Windows

• Add workaround for incorrect platform.system() on some Python Windows installation where this function
returns ‘Microsoft’ instead ‘Windows’.

• Fix –windowed option for Mac OSX where a console executable was created every time even with this option.

• Mention dependency on otool, ldd and objdump in documentation.

• Fix typo preventing detection of DLL libraries loaded by ctypes module.

1.13.8 1.5 (2011-05-05)

• Full support for Python 2.7.

• Full support for Python 2.6 on Windows. No manual redistribution of DLLs, CRT, manifest, etc. is required:
PyInstaller is able to bundle all required dependencies (thanks to Florian Hoech).

• Added support for Windows 64-bit (thanks to Martin Zibricky).

1.13. Changelog for PyInstaller 51

https://github.com/pyinstaller/pyinstaller
https://jenkins.shiningpanda-ci.com/pyinstaller/

PyInstaller Documentation, Release 3.2

• Added binary bootloaders for Linux (32-bit and 64-bit, using LSB), and Darwin (32-bit). This means that
PyInstaller users on this platform don’t need to compile the bootloader themselves anymore (thanks to Martin
Zibricky and Lorenzo Mancini).

• Rewritten the build system for the bootloader using waf (thanks to Martin Zibricky)

• Correctly detect Python unified binary under Mac OSX, and bail out if the unsupported 64-bit version is used
(thanks to Nathan Weston).

• Fix TkInter support under Mac OSX (thanks to Lorenzo Mancini).

• Improve bundle creation under Mac OSX and correctly support also one-dir builds within bundles (thanks to
Lorenzo Mancini).

• Fix spurious KeyError when using dbhash

• Fix import of nested packages made from Pyrex-generated files.

• PyInstaller is now able to follow dependencies of binary extensions (.pyd/.so) compressed within .egg-files.

• Add import hook for PyTables.

• Add missing import hook for QtWebKit.

• Add import hook for pywinauto.

• Add import hook for reportlab (thanks Nevar).

• Improve matplotlib import hook (for Mac OSX).

• Improve Django import hooks.

• Improve compatibility across multiple Linux distributions by being more careful on which libraries are in-
cluded/excluded in the package.

• Improve compatibility with older Python versions (Python 2.2+).

• Fix double-bouncing-icon bug on Mac OSX. Now windowed applications correctly start on Mac OSX showing
a single bouncing icon.

• Fix weird “missing symbol” errors under Mac OSX (thanks to Isaac Wagner).

1.13.9 1.4 (2010-03-22)

• Fully support up to Python 2.6 on Linux/Mac and Python 2.5 on Windows.

• Preliminar Mac OSX support: both one-file and one-dir is supported; for non-console applications, a bundle can
be created. Thanks to many people that worked on this across several months (Daniele Zannotti, Matteo Bertini,
Lorenzo Mancini).

• Improved Linux support: generated executables are fatter but now should now run on many different Linux
distributions (thanks to David Mugnai).

• Add support for specifying data files in import hooks. PyInstaller can now automatically bundle all data files or
plugins required for a certain 3rd-party package.

• Add intelligent support for ctypes: PyInstaller is now able to track all places in the source code where ctypes
is used and automatically bundle dynamic libraries accessed through ctypes. (Thanks to Lorenzo Mancini for
submitting this). This is very useful when using ctypes with custom-made dynamic libraries.

• Executables built with PyInstaller under Windows can now be digitally signed.

• Add support for absolute imports in Python 2.5+ (thanks to Arve Knudsen).

• Add support for relative imports in Python 2.5+.

52 Chapter 1. What’s New This Release

PyInstaller Documentation, Release 3.2

• Add support for cross-compilation: PyInstaller is now able to build Windows executables when running under
Linux. See documentation for more details.

• Add support for .egg files: PyInstaller is now able to look for dependencies within .egg files, bundle them and
make them available at runtime with all the standard features (entry-points, etc.).

• Add partial support for .egg directories: PyInstaller will treat them as normal packages and thus it will not
bundle metadata.

• Under Linux/Mac, it is now possible to build an executable even when a system packages does not have .pyc
or .pyo files available and the system-directory can be written only by root. PyInstaller will in fact generate the
required .pyc/.pyo files on-the-fly within a build-temporary directory.

• Add automatic import hooks for many third-party packages, including:

– PyQt4 (thanks to Pascal Veret), with complete plugin support.

– pyodbc (thanks to Don Dwiggins)

– cElementTree (both native version and Python 2.5 version)

– lxml

– SQLAlchemy (thanks to Greg Copeland)

– email in Python 2.5 (though it does not support the old-style Python 2.4 syntax with Python 2.5)

– gadfly

– PyQWt5

– mako

– Improved PyGTK (thanks to Marco Bonifazi and foxx).

– paste (thanks to Jamie Kirkpatrick)

– matplotlib

• Add fix for the very annoying “MSVCRT71 could not be extracted” bug, which was caused by the DLL being
packaged twice (thanks to Idris Aykun).

• Removed C++-style comments from the bootloader for compatibility with the AIX compiler.

• Fix support for .py files with DOS line endings under Linux (fixes PyOpenGL).

• Fix support for PIL when imported without top-level package (“import Image”).

• Fix PyXML import hook under NT (thanks to Lorenzo Mancini)

• Fixed problem with PyInstaller picking up the wrong copy of optparse.

• Improve correctness of the binary cache of UPX’d/strip’d files. This fixes problems when switching between
multiple versions of the same third-party library (like e.g. wxPython allows to do).

• Fix a stupid bug with modules importing optparse (under Linux) (thanks to Louai Al-Khanji).

• Under Python 2.4+, if an exception is raised while importing a module inside a package, the module is now
removed from the parent’s namespace (to match the behaviour of Python itself).

• Fix random race-condition at startup of one-file packages, that was causing this exception to be generated: “PYZ
entry ‘encodings’ (0j) is not a valid code object”.

• Fix problem when having unicode strings among path elements.

• Fix random exception (“bad file descriptor”) with “prints” in non-console mode (actually a pythonw “bug” that’s
fixed in Python 3.0).

1.13. Changelog for PyInstaller 53

PyInstaller Documentation, Release 3.2

• Sometimes the temporary directory did not get removed upon program exit, when running on Linux.

• Fixed random segfaults at startup on 64-bit platforms (like x86-64).

1.13.10 1.3 (2006-12-20)

• Fix bug with user-provided icons disappearing from built executables when these were compressed with UPX.

• Fix problems with packaging of applications using PIL (that was broken because of a bug in Python’s import
machinery, in recent Python versions). Also add a workaround including Tcl/Tk with PIL unless ImageTk is
imported.

• (Windows) When used under Windows XP, packaged programs now have the correct look & feel and follow
user’s themes (thanks to the manifest file being linked within the generated executable). This is especially useful
for applications using wxPython.

• Fix a buffer overrun in the bootloader (which could lead to a crash) when the built executable is run from within
a deep directory (more than 70-80 characters in the pathname).

• Bootstrap modules are now compressed in the executable (so that they are not visible in plaintext by just looking
at it with a hex editor).

• Fixed a regression introduced in 1.1: under Linux, the bootloader does not depend on libpythonX.X.so anymore.

1.13.11 1.2 (2006-06-29)

• Fix a crash when invoking UPX with certain kinds of builds.

• Fix icon support by re-adding a resource section in the bootloader executable.

1.13.12 1.1 (2006-02-13)

• (Windows) Make single-file packages not depend on MSVCRT71.DLL anymore, even under Python 2.4. You
can eventually ship your programs really as single-file executables, even when using the newest Python version!

• Fix problem with incorrect python path detection. Now using helpers from distutils.

• Fix problem with rare encodings introduced in newer Python versions: now all the encodings are automatically
found and included, so this problem should be gone forever.

• Fix building of COM servers (was broken in 1.0 because of the new build system).

• Mimic Python 2.4 behaviour with broken imports: sys.modules is cleaned up afterwise. This allows to package
SQLObject applications under Windows with Python 2.4 and above.

• Add import hook for the following packages:

– GTK

– PyOpenGL (tested 2.0.1.09)

– dsnpython (tested 1.3.4)

– KInterasDB (courtesy of Eugene Prigorodov)

• Fix packaging of code using “time.strptime” under Python 2.3+.

• (Linux) Ignore linux-gate.so while calculating dependencies (fix provided by Vikram Aggarwal).

• (Windows) With Python 2.4, setup UPX properly so to be able to compress binaries generated with Visual Studio
.NET 2003 (such as most of the extensions). UPX 1.92+ is needed for this.

54 Chapter 1. What’s New This Release

PyInstaller Documentation, Release 3.2

1.13.13 1.0 (2005-09-19) with respect to McMillan’s Python Installer 5b5

• Add support for Python 2.3 (fix packaging of codecs).

• Add support for Python 2.4 (under Windows, needed to recompiled the bootloader with a different compiler
version).

• Fix support for Python 1.5.2, should be fully functional now (required to rewrite some parts of the string module
for the bootloader).

• Fix a rare bug in extracting the dependencies of a DLL (bug in PE header parser).

• Fix packaging of PyQt programs (needed an import hook for a hidden import).

• Fix imports calculation for modules using the “from __init__ import” syntax.

• Fix a packaging bug when a module was being import both through binary dependency and direct import.

• Restyle documentation (now using docutils and reStructuredText).

• New Windows build system for automatic compilations of bootloader in all the required flavours (using Scons)

1.14 Credits

Thanks goes to all the kind PyInstaller contributors who have contributed new code, bug reports, fixes, comments and
ideas. A brief list follows, please let us know if your name is omitted by accident:

1.14.1 Contributions to PyInstaller 3.2

• Hartmut Goebel - Core developer and release manager.

• Martin Zibricky - Core developer.

• David Cortesi - Core developer and documentation manager.

• Bryan A. Jones - Core developer.

• David Vierra - Core developer and encoding specialist.

• Cecil Curry - brave bug-fixing and code-refactoring

• And Cycle - unicode fixes.

• Chris Hager - QtQuick hook.

• David Schoorisse - wrong icon paramter in Windows example.

• Florian Bruhin - typo hunting.

• Garth Bushell - Support for objcopy.

• Insoleet - lib2to3 hook

• Jonathan Springer - hook fixes, brave works on PyQt.

• Matteo Bertini - code refactoring.

• Jonathan Stewmon - bug hunting.

• Kenneth Zhao - waf update.

• Leonid Rozenberg - typo hunting.

• Merlijn Wajer - bug fixing.

1.14. Credits 55

PyInstaller Documentation, Release 3.2

• Nicholas Chammas - cleanups.

• nih - hook fixes.

• Olli-Pekka Heinisuo - CherryPy hook.

• Rui Carmo - cygwin fixes.

• Stephen Rauch - hooks and fixes for unnecessary rebuilds.

• Tim Stumbaugh - bug hunting.

1.14.2 Contributions to PyInstaller 3.1.1

• Hartmut Goebel - Core developer and release manager.

• David Vierra - Core developer and encoding specialist.

• Torsten Landschoff - Fix problems with setuptools

• Peter Inglesby - resolve symlinks in modulegraph.py

• syradium - bug hunting

• dessant - bug hunting

• Joker Qyou - bug hunting

1.14.3 Contributions to PyInstaller 3.1

• Hartmut Goebel - Core developer and release manager.

• Martin Zibricky - Core developer.

• David Cortesi - Core developer and documentation manager.

• Bryan A. Jones - Core developer.

• David Vierra - Core developer and encoding specialist.

• Andrei Kopats - Windows fixes.

• Andrey Malkov - Django runtime hooks.

• Ben Hagen - kivy hook, GStreamer realtime hook.

• Cecil Curry - Module Version Comparisons and and reworking hooks.

• Dustin Spicuzza - Hooks for GLib, GIntrospection, Gstreamer, etc.

• giumas - lxml.isoschematron hook.

• Jonathan Stewmon - Hooks for botocore, boto, boto3 and gevent.monkey.

• Kenneth Zhao - Solaris fixes.

• Matthew Einhorn - kivy hook.

• mementum - pubsub.core hook.

• Nicholas Chammas - Documentation updates.

• Nico Galoppo - Hooks for skimage and sklearn.

• Panagiotis H.M. Issaris - weasyprint hook.

• Penaz - shelve hook.

56 Chapter 1. What’s New This Release

PyInstaller Documentation, Release 3.2

• Roman Yurchak - scipy.linalg hook.

• Starwarsfan2099 - Distorm3 hook.

• Thomas Waldmann - Fixes for Bootloader and FreeBSD.

• Tim Stumbaugh - Bug fixes.

• zpin - Bug fixes.

1.14.4 Contributions to PyInstaller 3.0

• Martin Zibricky - Core developer and release manager.

• Hartmut Goebel - Core developer.

• David Cortesi - Initial work on Python 3 support, Python 3 fixes, documentation updates, various hook fixes.

• Cecil Curry - ‘six’ hook for Python 3, various modulegraph improvements, wxPython hook fixes,

• David Vierra - unicode support in bootloader, Windows SxS Assembly Manifest fixes and many other Windows
improvements.

• Michael Mulley - keyring, PyNaCl import hook.

• Rainer Dreyer - OS X fixes, hook fixes.

• Bryan A. Jones - test suite fixes, various hook fixes.

• Philippe Pepiot - Linux fixes.

• Emanuele Bertoldi - pycountry import hook, Django import hook fixes.

• Glenn Ramsey - PyQt5 import hook - support for QtWebEngine on OSX, various hook fixes, Windows fixes.

• Karol Woźniak - import hook fixes.

• Jonathan Springer - PyGObject hooks. ctypes, PyEnchant hook fixes, OS X fixes.

• Giuseppe Masetti - osgeo, mpl_toolkits.basemap and netCDF4 import hooks.

• Yuu Yamashita - OS X fixes.

• Thomas Waldmann - FreeBSD fixes.

• Boris Savelev - FreeBSD and Solaris fixes.

• Guillermo Gutiérrez - Python 3 fixes.

• Jasper Geurtz - gui fixes, hook fixes.

• Holger Pandel - Windows fixes.

• Anthony Zhang - SpeechRecognition import hook.

• Andrei Fokau - Python 3.5 fixes.

• Kenneth Zhao - AIX fixes.

• Maik Riechert - lensfunpy, rawpy import hooks.

• Tim Stumbaugh - hook fixes.

• Andrew Leech - Windows fixes.

• Patrick Robertson - tkinter import hook fixes.

• Yaron de Leeuw - import hook fixes.

1.14. Credits 57

PyInstaller Documentation, Release 3.2

• Bryan Cort - PsychoPy import hook.

• Phoebus Veiz - bootloader fixes.

• Sean Johnston - version fix.

• Kevin Zhang - PyExcelerate import hook.

• Paulo Matias - unicode fixes.

• Lorenzo Villani - crypto feature, various fixes.

• Janusz Skonieczny - hook fixes.

• Martin Gamwell Dawids - Solaris fixes.

• Volodymyr Vitvitskyi - typo fixes.

• Thomas Kho - django import hook fixes.

• Konstantinos Koukopoulos - FreeBSD support.

• Jonathan Beezley - PyQt5 import hook fixes.

• Andraz Vrhovec - various fixes.

• Noah Treuhaft - OpenCV import hook.

• Michael Hipp - reportlab import hook.

• Michael Sverdlik - certifi, httplib2, requests, jsonschema import hooks.

• Santiago Reig - appy import hook.

1.14.5 Contributions to PyInstaller 2.1 and older

• Glenn Ramsey - PyQt5 import hook.

• David Cortesi - PyInstaller manual rewrite.

• Vaclav Smilauer - IPython import hook.

• Shane Hansen - Linux arm support.

• Bryan A. Jones - docutils, jinja2, sphinx, pytz, idlelib import hooks.

• Patrick Stewart <patstew at gmail dot com> - scipy import hook.

• Georg Schoelly <mail at georg-schoelly dot com> - storm ORM import hook.

• Vinay Sajip - zmq import hook.

• Martin Gamwell Dawids - AIX support.

• Hywel Richards - Solaris support.

• Brandyn White - packaged executable return code fix.

• Chien-An “Zero” Cho - PyUSB import hook.

• Daniel Hyams - h2py, wx.lib.pubsub import hooks.

• Hartmut Goebel - Python logging system for message output. Option –log-level.

• Florian Hoech - full Python 2.6 support on Windows including automatic handling of DLLs, CRT, manifest, etc.
Read and write resources from/to Win32 PE files.

• Martin Zibricky - rewrite the build system for the bootloader using waf. LSB compliant precompiled bootloaders
for Linux. Windows 64-bit support.

58 Chapter 1. What’s New This Release

PyInstaller Documentation, Release 3.2

• Peter Burgers - matplotlib import hook.

• Nathan Weston - Python architecture detection on OS X.

• Isaac Wagner - various OS X fixes.

• Matteo Bertini - OS X support.

• Daniele Zannotti - OS X support.

• David Mugnai - Linux support improvements.

• Arve Knudsen - absolute imports in Python 2.5+

• Pascal Veret - PyQt4 import hook with Qt4 plugins.

• Don Dwiggins - pyodbc import hook.

• Allan Green - refactoring and improved in-process COM servers.

• Daniele Varrazzo - various bootloader and OS X fixes.

• Greg Copeland - sqlalchemy import hook.

• Seth Remington - PyGTK hook improvements.

• Marco Bonifazi - PyGTK hook improvements. PyOpenGL import hook.

• Jamie Kirkpatrick - paste import hook.

• Lorenzo Mancini - PyXML import hook fixes under Windows. OS X support. App bundle creation on OS X.
Tkinter on OS X. Precompiled bootloaders for OS X.

• Lorenzo Berni - django import hook.

• Louai Al-Khanji - fixes with optparse module.

• Thomas Heller - set custom icon of Windows exe files.

• Eugene Prigorodov <eprigorodov at naumen dot ru> - KInterasDB import hook.

• David C. Morrill - vtkpython import hook.

• Alan James Salmoni - Tkinter interface to PyInstaller.

1.15 Man Pages

1.15.1 pyinstaller

SYNOPSIS

pyinstaller <options> SCRIPT

DESCRIPTION

Automatically calls pyi-configure, pyi-makespec and pyi-build in one run. In most cases, running pyinstaller
will be all you have to do.

Please see the PyInstaller Manual for more information.

1.15. Man Pages 59

PyInstaller Documentation, Release 3.2

OPTIONS

-h, --help show this help message and exit

-v, --version Show program version info and exit.

--distpath DIR Where to put the bundled app (default: ./dist)

--workpath WORKPATH Where to put all the temporary work files, .log, .pyz and etc. (default:
./build)

-y, --noconfirm Replace output directory (default: SPECPATH/dist/SPECNAME) without asking
for confirmation

--upx-dir UPX_DIR Path to UPX utility (default: search the execution path)

-a, --ascii Do not include unicode encoding support (default: included if available)

--clean Clean PyInstaller cache and remove temporary files before building.

--log-level LEVEL Amount of detail in build-time console messages. LEVEL may be one of DE-
BUG, INFO, WARN, ERROR, CRITICAL (default: INFO).

What to generate

-D, --onedir Create a one-folder bundle containing an executable (default)

-F, --onefile Create a one-file bundled executable.

--specpath DIR Folder to store the generated spec file (default: current directory)

-n NAME, --name NAME Name to assign to the bundled app and spec file (default: first script’s
basename)

What to bundle, where to search

-p DIR, --paths DIR A path to search for imports (like using PYTHONPATH). Multiple paths are
allowed, separated by ‘:’, or use this option multiple times

--hidden-import MODULENAME, --hiddenimport MODULENAME Name an import not visible
in the code of the script(s). This option can be used multiple times.

--additional-hooks-dir HOOKSPATH An additional path to search for hooks. This option can be
used multiple times.

--runtime-hook RUNTIME_HOOKS Path to a custom runtime hook file. A runtime hook is code
that is bundled with the executable and is executed before any other code or mod-
ule to set up special features of the runtime environment. This option can be used
multiple times.

--exclude-module EXCLUDES Optional module or package (his Python names, not path names) that
will be ignored (as though it was not found). This option can be used multiple
times.

--key KEY The key used to encrypt Python bytecode.

60 Chapter 1. What’s New This Release

PyInstaller Documentation, Release 3.2

How to generate

-d, --debug Tell the bootloader to issue progress messages while initializing and starting the
bundled app. Used to diagnose problems with missing imports.

-s, --strip Apply a symbol-table strip to the executable and shared libs (not recommended
for Windows)

--noupx Do not use UPX even if it is available (works differently between Windows and
*nix)

Windows and Mac OS X specific options

-c, --console, --nowindowed Open a console window for standard i/o (default)

-w, --windowed, --noconsole Windows and Mac OS X: do not provide a console window for standard
i/o. On Mac OS X this also triggers building an OS X .app bundle. This option is
ignored in *NIX systems.

-i <FILE.ico or FILE.exe,ID or FILE.icns>, --icon <FILE.ico or FILE.exe,ID or FILE.icns>
FILE.ico: apply that icon to a Windows executable. FILE.exe,ID, extract the
icon with ID from an exe. FILE.icns: apply the icon to the .app bundle on Mac
OS X

Windows specific options

--version-file FILE add a version resource from FILE to the exe

-m <FILE or XML>, --manifest <FILE or XML> add manifest FILE or XML to the exe

-r RESOURCE, --resource RESOURCE Add or update a resource to a Windows executable. The
RESOURCE is one to four items, FILE[,TYPE[,NAME[,LANGUAGE]]]. FILE
can be a data file or an exe/dll. For data files, at least TYPE and NAME must be
specified. LANGUAGE defaults to 0 or may be specified as wildcard * to update
all resources of the given TYPE and NAME. For exe/dll files, all resources from
FILE will be added/updated to the final executable if TYPE, NAME and LAN-
GUAGE are omitted or specified as wildcard *.This option can be used multiple
times.

--uac-admin Using this option creates a Manifest which will request elevation upon application
restart.

--uac-uiaccess Using this option allows an elevated application to work with Remote Desktop.

Windows Side-by-side Assembly searching options (advanced)

--win-private-assemblies Any Shared Assemblies bundled into the application will be changed into
Private Assemblies. This means the exact versions of these assemblies will al-
ways be used, and any newer versions installed on user machines at the system
level will be ignored.

--win-no-prefer-redirects While searching for Shared or Private Assemblies to bundle into the appli-
cation, PyInstaller will prefer not to follow policies that redirect to newer ver-
sions, and will try to bundle the exact versions of the assembly.

1.15. Man Pages 61

PyInstaller Documentation, Release 3.2

Mac OS X specific options

--osx-bundle-identifier BUNDLE_IDENTIFIER Mac OS X .app bundle identifier is used as
the default unique program name for code signing purposes. The usual
form is a hierarchical name in reverse DNS notation. For example:
com.mycompany.department.appname (default: first script’s basename)

ENVIRONMENT VARIABLES

PYIN-
STALLER_CONFIG_DIR

This changes the directory where PyInstaller caches some files. The default location for this
is operating system dependent, but is typically a subdirectory of the home directory.

SEE ALSO

pyi-configure(1), pyi-makespec(1), pyi-build(1), The PyInstaller Manual, pyinstaller(1)

Project Homepage http://www.pyinstaller.org

1.15.2 pyi-makespec

SYNOPSIS

pyi-makespec <options> SCRIPT [SCRIPT ...]

DESCRIPTION

The spec file is the description of what you want PyInstaller to do with your program. pyi-makespec is a simple
wizard to create spec files that cover basic usages:

py-Makespec [--onefile] yourprogram.py

By default, pyi-makespec generates a spec file that tells PyInstaller to create a distribution directory contains the
main executable and the dynamic libraries. The option --onefile specifies that you want PyInstaller to build a
single file with everything inside.

In most cases the specfile generated by pyi-makespec is all you need. If not, see When things go wrong in the
manual and be sure to read the introduction to Spec Files.

OPTIONS

-h, --help show this help message and exit

--log-level LEVEL Amount of detail in build-time console messages. LEVEL may be one of DE-
BUG, INFO, WARN, ERROR, CRITICAL (default: INFO).

What to generate

-D, --onedir Create a one-folder bundle containing an executable (default)

-F, --onefile Create a one-file bundled executable.

--specpath DIR Folder to store the generated spec file (default: current directory)

62 Chapter 1. What’s New This Release

http://www.pyinstaller.org

PyInstaller Documentation, Release 3.2

-n NAME, --name NAME Name to assign to the bundled app and spec file (default: first script’s
basename)

What to bundle, where to search

-p DIR, --paths DIR A path to search for imports (like using PYTHONPATH). Multiple paths are
allowed, separated by ‘:’, or use this option multiple times

--hidden-import MODULENAME, --hiddenimport MODULENAME Name an import not visible
in the code of the script(s). This option can be used multiple times.

--additional-hooks-dir HOOKSPATH An additional path to search for hooks. This option can be
used multiple times.

--runtime-hook RUNTIME_HOOKS Path to a custom runtime hook file. A runtime hook is code
that is bundled with the executable and is executed before any other code or mod-
ule to set up special features of the runtime environment. This option can be used
multiple times.

--exclude-module EXCLUDES Optional module or package (his Python names, not path names) that
will be ignored (as though it was not found). This option can be used multiple
times.

--key KEY The key used to encrypt Python bytecode.

How to generate

-d, --debug Tell the bootloader to issue progress messages while initializing and starting the
bundled app. Used to diagnose problems with missing imports.

-s, --strip Apply a symbol-table strip to the executable and shared libs (not recommended
for Windows)

--noupx Do not use UPX even if it is available (works differently between Windows and
*nix)

Windows and Mac OS X specific options

-c, --console, --nowindowed Open a console window for standard i/o (default)

-w, --windowed, --noconsole Windows and Mac OS X: do not provide a console window for standard
i/o. On Mac OS X this also triggers building an OS X .app bundle. This option is
ignored in *NIX systems.

-i <FILE.ico or FILE.exe,ID or FILE.icns>, --icon <FILE.ico or FILE.exe,ID or FILE.icns>
FILE.ico: apply that icon to a Windows executable. FILE.exe,ID, extract the
icon with ID from an exe. FILE.icns: apply the icon to the .app bundle on Mac
OS X

Windows specific options

--version-file FILE add a version resource from FILE to the exe

-m <FILE or XML>, --manifest <FILE or XML> add manifest FILE or XML to the exe

1.15. Man Pages 63

PyInstaller Documentation, Release 3.2

-r RESOURCE, --resource RESOURCE Add or update a resource to a Windows executable. The
RESOURCE is one to four items, FILE[,TYPE[,NAME[,LANGUAGE]]]. FILE
can be a data file or an exe/dll. For data files, at least TYPE and NAME must be
specified. LANGUAGE defaults to 0 or may be specified as wildcard * to update
all resources of the given TYPE and NAME. For exe/dll files, all resources from
FILE will be added/updated to the final executable if TYPE, NAME and LAN-
GUAGE are omitted or specified as wildcard *.This option can be used multiple
times.

--uac-admin Using this option creates a Manifest which will request elevation upon application
restart.

--uac-uiaccess Using this option allows an elevated application to work with Remote Desktop.

Windows Side-by-side Assembly searching options (advanced)

--win-private-assemblies Any Shared Assemblies bundled into the application will be changed into
Private Assemblies. This means the exact versions of these assemblies will al-
ways be used, and any newer versions installed on user machines at the system
level will be ignored.

--win-no-prefer-redirects While searching for Shared or Private Assemblies to bundle into the appli-
cation, PyInstaller will prefer not to follow policies that redirect to newer ver-
sions, and will try to bundle the exact versions of the assembly.

Mac OS X specific options

--osx-bundle-identifier BUNDLE_IDENTIFIER Mac OS X .app bundle identifier is used as
the default unique program name for code signing purposes. The usual
form is a hierarchical name in reverse DNS notation. For example:
com.mycompany.department.appname (default: first script’s basename)

ENVIRONMENT VARIABLES

PYIN-
STALLER_CONFIG_DIR

This changes the directory where PyInstaller caches some files. The default location for this
is operating system dependent, but is typically a subdirectory of the home directory.

SEE ALSO

pyi-build(1), The PyInstaller Manual, pyinstaller(1)

Project Homepage http://www.pyinstaller.org

1.16 Indices and tables

• genindex

• modindex

• search

64 Chapter 1. What’s New This Release

http://www.pyinstaller.org

Index

P
Python Enhancement Proposals

PEP 302, 30

65

	What's New This Release
	Requirements
	License
	How To Contribute
	How to Install PyInstaller
	What PyInstaller Does and How It Does It
	Using PyInstaller
	Run-time Information
	Using Spec Files
	When Things Go Wrong
	Advanced Topics
	Understanding PyInstaller Hooks
	Building the Bootloader
	Changelog for PyInstaller
	Credits
	Man Pages
	Indices and tables

