

 Navigation

 	
 index

 	
 next |

 	pyimq 0.0.5 documentation

PyIMQ: Python bindings to OpenMQ

This documentation is a work-in-progress, and will be updated frequently

pyimq is a set of Python [http://www.python.org/] bindings to Open Message Queue [http://mq.java.net/] (also known as the Glassfish Message Queue, formerly known as the Sun Java System Message Queue and informally known as IMQ).

This software wraps the Sun GlassFish Message Queue C runtime library [http://docs.oracle.com/cd/E19879-01/821-0030/index.html] in Python [http://www.python.org/], modelling the implied object oriented design of the C interface.

The most common message queue usage patterns are supported, including asynchronous message consumers.

Contents

	Getting Started
	Prerequisites

	Obtaining OpenMQ

	Building the Message Queue Runtime Library

	Running OpenMQ

	Writing a Producer

	Writing a Consumer

A Quick Example

This example shows a simple consumer, which simply retrieves messages and prints them.

#!/usr/bin/env python

import sys, os, optparse

if not 'MQ_LOG_LEVEL' in os.environ:
 os.environ['MQ_LOG_LEVEL'] = '-1'

from imq import MQConnection, MQMessage
from imq import MQ_BROKER_HOST_PROPERTY, MQ_BROKER_PORT_PROPERTY, \
 MQ_CONNECTION_TYPE_PROPERTY, MQ_CLIENT_ACKNOWLEDGE, MQ_SESSION_SYNC_RECEIVE, \
 MQ_QUEUE_DESTINATION, MQ_TOPIC_DESTINATION, MQ_TEXT_MESSAGE
from imq import MQ_STRING_TYPE, MQ_INT32_TYPE

def consumer(host, port, name, type):
 conn = MQConnection({MQ_BROKER_HOST_PROPERTY: (MQ_STRING_TYPE, host),
 MQ_BROKER_PORT_PROPERTY: (MQ_INT32_TYPE, port),
 MQ_CONNECTION_TYPE_PROPERTY: (MQ_STRING_TYPE, "TCP")}, "guest", "guest")
 sess = conn.create_session(False, MQ_CLIENT_ACKNOWLEDGE, MQ_SESSION_SYNC_RECEIVE)
 cons = sess.create_consumer(sess.create_destination(name, type))
 conn.start()

 while True:
 mess = cons.receive_message_wait()

 if mess.type() != MQ_TEXT_MESSAGE:
 mess.acknowledge_messages()
 continue

 text = mess.get_text()
 sys.stdout.write("Received message: " + mess.get_text() + "\n")
 sys.stdout.flush()
 mess.acknowledge_messages()

if __name__ == '__main__':
 parser = optparse.OptionParser()
 parser.add_option("--host", action="store", dest="host", default="localhost")
 parser.add_option("--port", action="store", dest="port", default=7676, type="int")
 parser.add_option("--destination_name", action="store", dest="destination_name", default="example_producerconsumer_dest")
 parser.add_option("--type", action="store", dest="type", choices=("q", "t",), default="q")
 (options, args) = parser.parse_args()

 args = {'host' : options.host, 'port' : options.port, 'name' : options.destination_name,
 'type' : 't' == options.type and MQ_TOPIC_DESTINATION or MQ_QUEUE_DESTINATION}

 consumer(**args)

Indices and tables

	Index

	Search Page

 Copyright 2013, Michael van der Westhuizen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	pyimq 0.0.5 documentation

Getting Started

If you are already familiar with the OpenMQ C runtime library you should still read this section to familiarise yourself with the mqcrt object hierarchy as exposed to Python.

If you are not familiar with the OpenMQ C runtime library you may want to open a copy of the mqcrt documentation [http://docs.oracle.com/cd/E19879-01/821-0030/index.html] in another tab.

Prerequisites

To use the pyimq module you’ll need access to an OpenMQ installation (or Sun Java System Message Queue, or Glassfish Message Queue). If you do not yet have access to such a beast, this document will help you to get a simple OpenMQ instance up and running.

You’ll also need to OpenMQ C runtime library, as the pyimq module uses this C library to access the message queue broker.

The OpenMQ C runtime library (mqcrt) is distributed along with platform specific builds of OpenMQ, but is often not quite what you really need to build a Python extension module against, so if you need to rebuild mqcrt you’ll need a C++ compiler and some patience.

Finally, if you’re running the OpenMQ broker (server) on your machine you’ll need a Java [http://www.oracle.com/technetwork/java/javase/downloads/index.html] installation. If you plan to build mqcrt you’ll also need a Java [http://www.oracle.com/technetwork/java/javase/downloads/index.html] JDK and Ant [http://ant.apache.org].

Obtaining OpenMQ

	notes on downloading and running an instance of OpenMQ

	
	Download...

	Unzip...

	Run...

Building the Message Queue Runtime Library

notes on building, when you need to, and where to find more information

prereqs

	Extract

	Patch

	Configure

	Build

	Install

Running OpenMQ

a quick introduction to running an instance

Writing a Producer

how to write a producer

Writing a Consumer

how to write a consumer

 Copyright 2013, Michael van der Westhuizen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	pyimq 0.0.5 documentation

Index

 Copyright 2013, Michael van der Westhuizen.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		pyimq 0.0.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Michael van der Westhuizen.
 Created using Sphinx 1.3.5.

_static/up.png

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

