
pyhht Documentation
Release 0.0.1

Jaidev Deshpande

Aug 23, 2018

Contents

1 PyHHT Tutorials 3
1.1 Limitations of the Fourier Transform: Need For a Data Driven Approach 3
1.2 Motivation for Hilbert Spectral Analysis . 9
1.3 Using PyHHT: EMD and Hilbert Spectral Analysis . 19

2 pyhht package 21
2.1 Submodules . 21
2.2 pyhht.emd module . 21
2.3 pyhht.utils module . 25
2.4 pyhht.visualization module . 27
2.5 Module contents . 28

3 pyhht 35

4 PyHHT Examples 37

5 Indices and tables 39

Bibliography 41

Python Module Index 43

i

ii

pyhht Documentation, Release 0.0.1

Contents:

Contents 1

pyhht Documentation, Release 0.0.1

2 Contents

CHAPTER 1

PyHHT Tutorials

The Hilbert Huang transform (HHT) is a time series analysis technique that is designed to handle nonlinear and
nonstationary time series data. PyHHT is a Python module based on NumPy and SciPy which implements the HHT.
These tutorials introduce HHT, the common vocabulary associated with it and the usage of the PyHHT module itself
to analyze time series data.

This series of tutorials goes through the philosophy of the Hilbert Huang transform in detail. The first two tutorials lay
the groundwork for the HHT, providing the motivation first for the Hilbert spectral analysis and then for the empirical
mode decomposition algorithm. The third tutorial is an introduction to the PyHHT module. You may skip the first
two sections if you are comfortable with the theory of HHT and if you want to start coding Python applications with
PyHHT.

Contents:

1.1 Limitations of the Fourier Transform: Need For a Data Driven Ap-
proach

Methods based on the Fourier transform are almost synonymous with frequency domain processing of signals (funnily,
I once had a classmate who thought “Fourier” was French for frequency). There is no doubt about how incredibly
powerful Fourier analysis can be. However, its popularity and effectiveness have a downside. It has led to a very
specific and limited view of frequency in the context of signal processing. Simply put, frequencies, in the context of
Fourier methods, are just a collection of the individual frequencies of periodic signals that a given signal is composed
of. The purpose of these tutorials is to demonstrate how restrictive this interpretation of frequency can be in some
cases, and to lay the groundwork for complementary methods, like the Hilbert spectral analysis.

This is not to say that Hilbert spectral analysis can in any way replace Fourier, but that it provides an alternative
interpretation of frequency, and an alternative view of nonlinear and nonstationary phenomena.

1.1.1 The Problem

Note: To run the code snippets on this page, you will need the PyTFTB module, which can be found here.

3

https://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://github.com/scikit-signal/pytftb

pyhht Documentation, Release 0.0.1

To begin with, let us construct a nonstationary signal, and try to glean its time and frequency characteristics. Consider
the signal obtained as follows:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from tftb.generators import fmconst
>>> n_points = 128
>>> mode1, iflaw1 = fmconst(n_points, fnorm=0.1)
>>> mode2, iflaw2 = fmconst(n_points, fnorm=0.3)
>>> signal = np.r_[mode1, mode2]
>>> plt.plot(np.real(signal)), plt.grid(), plt.show()

0 50 100 150 200 250
1.0

0.5

0.0

0.5

1.0

This first half of the signal is a sinusoid with a normalized frequency of 0.1 and the other half has a normalized
frequency of 0.3. If we look at the energy spectrum of this signal, sure enough, there are two peaks at the respective
frequencies:

>>> X = np.fft.fftshift(np.fft.fft(signal))
>>> plt.plot(np.linspace(-0.5, 0.5, 256), np.abs(X) ** 2)

4 Chapter 1. PyHHT Tutorials

pyhht Documentation, Release 0.0.1

0.4 0.2 0.0 0.2 0.4
Normalized Frequency

Energy Spectrum

Note that the signal produced by the fmconst function produces an Analytic Signal. Analytic signals are complex
valued, and by definition do not have negative frequency components.

1.1.2 A note on time-frequency analysis

The energy spectrum is perfectly valid, but the Fourier transform is essentially an integral over time. Thus, we lose
all information that varies with time. All we can tell from the spectrum is that the signal has two distinct frequency
components. In other words, we can comment on what happens a signal, not when it happens. Consider a song as the
signal under consideration. If you were not interested in time, the whole point of processing that signal would be lost.
Rhythm and timing are the very heart of good music, after all. In this case, we want to know when the drums kicked
in, as well as what notes were being played on the guitar. If we perform only frequency analysis, all time information
would be lost and the only information we would have would be about what frequencies were played in the song, and
what their respective amplitudes were, averaged over the duration of the entire song. So even if the drums stop playing
after the second stanza, the frequency spectrum would show them playing throughout the song. Conversely, if we were
only interested in the time information, we would be hardly better off than simply listening to the song.

The solution to this is time-frequency analysis, which is a field that deals with signal processing in both time and
frequency domain. It consists of a collection of methods that allow us to make tradeoffs between time and frequency
processing of a signal, depending on what makes more sense for a particular application. HHT too is a tool for
time-frequency analysis, as we shall see.

1.1. Limitations of the Fourier Transform: Need For a Data Driven Approach 5

http://pytftb.readthedocs.org/en/latest/apiref/tftb.generators.html#tftb.generators.frequency_modulated.fmconst
https://en.wikipedia.org/wiki/Analytic_signal
https://en.wikipedia.org/wiki/Time%E2%80%93frequency_analysis

pyhht Documentation, Release 0.0.1

1.1.3 Time-Frequency representations of the signal

A popular choice to represent both time and frequency characteristics is the short-time Fourier transform (STFT),
which, simply put, transforms contiguous chunks of the input and aggregates the result in a 2 dimensional form, where
one axis represents frequency and the other represents time. PyTFTB has an STFT implementation which we can use
as follows:

>>> from tftb.processing import ShortTimeFourierTransform
>>> stft = ShortTimeFourierTransform(signal)
>>> stft.run()
>>> stft.plot()

0 50 100 150 200 250
Time

0.0

0.1

0.2

0.3

0.4

N
o
rm

a
liz

e
d
 F

re
q
u
e
n
cy

STFT

This representation is quite statisfactory. However, there are a number of reasons why it might not always work.

First of all, the short time Fourier transform is parameterized by two important things, other than the signal itself
- the number of bins into which the frequency range of the signal is partitioned, and the window function used for
smoothing the frequencies. Let’s see what happens when we vary the number of frequency bins and the length of the
window function.

6 Chapter 1. PyHHT Tutorials

https://en.wikipedia.org/wiki/Short-time_Fourier_transform
http://pytftb.readthedocs.org/en/latest/apiref/tftb.processing.html#tftb.processing.linear.ShortTimeFourierTransform

pyhht Documentation, Release 0.0.1

8
1

6
3

2
6

4
1

2
8

3

2
5

6

5 9 17 33 65

Window lengths

Fr
e
q
u
e
n
cy

 b
in

s
STFT with varying parameters

The number of frequency bins increases from top to bottom and the length of the window function increases from left
to right. Notice that the representation we are looking for is at the bottom right corner, obtained with 256 frequency
bins and a (Hamming) window of length 65. Note that the PyTFTB implementation of the STFT is naive - the default
number of frequency bins it uses is equal to the length of the input signal. We can, of course, specify a smaller number,
but anything less than 256 would lead to a less than ideal representation. Moreover, these many bins sufficed in this
particular case because the frequencies in the input signal are relatively low, in that a sufficient number of cycles can
be accommodated within 256 samples. Also, the frequency components are sufficiently separated for the window
function to separate them properly. Thus, to find a suitable time-frequency for an arbitrary nonstationary signal, it is
likely that we might end up searching the grid shown above, which is highly impractical.

1.1.4 A counterexample

As an example of how this approach can go wrong, take a look at the following signal:

1.1. Limitations of the Fourier Transform: Need For a Data Driven Approach 7

pyhht Documentation, Release 0.0.1

>>> from tftb.generators import fmsin
>>> sig, iflaw = fmsin(256, 0.1, 0.3, period=64)
>>> plt.plot(np.real(sig))

0 50 100 150 200 250
1.0

0.5

0.0

0.5

1.0

This signal contains frequencies which are modulated such that they vary sinusoidally between 0.1 and 0.3. The time-
frequency distribution of this signal should look somewhat like a sine wave. Here’s the spectrogram of the STFT of
this signal:

>>> stft = ShortTimeFourierTransform(sig)
>>> stft.run()
>>> stft.plot()

8 Chapter 1. PyHHT Tutorials

pyhht Documentation, Release 0.0.1

0 50 100 150 200 250
Time

0.0

0.1

0.2

0.3

0.4

N
o
rm

a
liz

e
d
 F

re
q
u
e
n
cy

STFT

From this representation, the sinusoidal nature of the frequencies can be made out, and even the concentration of energy
at the extrema of the sine wave makes sense. But the artifacts between the high energy areas are quite ambiguous, and
bear little resemblance to the signal’s true characterisitcs.

Of course, there are a number of heuristics one can apply to make this representation more reasonable - like tweaking
the parameters of the STFT, increasing the sampling frequency of the signal, or to use another time-frequency repre-
sentation altogether. Unfortunately none of these methods are fully data driven, in that they rely very strongly on a
parametric model of the data, and the representation is only as good as the model. A major drawback of time frequency
distributions that depend on Fourier or wavelet models is that they don’t allow for an “unsupervised” or data driven
approach to time series analysis.

The Hilbert Huang transform fixes this to a great extent. The following section will deal with how Hilbert spectral
analysis is better suited for nonlinear and nonstationary time series data, and how the empirical mode decomposition
algorithm makes the results of the Hilber spectral analysis more reasonable.

1.2 Motivation for Hilbert Spectral Analysis

The Fourier transform generalizes Fourier coefficients of a signal over time. Since the Fourier coefficients are the
measures of the signal amplitude as a function of frequency, the time information is totally lost, as we saw in the last
section. To address this issue there have developed further modifications of the Fourier transform, the most popular of
which is the short-time Fourier transform (STFT). The STFT divides the input signal into windows of time and then
considers the Fourier transforms of those time windows, thereby achieving some localization of frequency information
along the time axis. While practically powerful for most signals, this method cannot be generalized for a broad class

1.2. Motivation for Hilbert Spectral Analysis 9

http://pyhht.readthedocs.org/en/latest/tutorials/limitations_fourier.html
http://pyhht.readthedocs.org/en/latest/tutorials/limitations_fourier.html
https://en.wikipedia.org/wiki/Short-time_Fourier_transform

pyhht Documentation, Release 0.0.1

of signals because of its a priori window lengths. Particularly, the window lengths must be long enough to capture at
least one cycle of a component frequency, but not so long as to be redundant. On the other hand, most real-life signals
are nonstationary, or have multiple frequency components. The duration of the STFT windows should not be so long
as to mix the multiple components during a single operation of the kernel. This might lead to highly undesirable
results like the frequency analysis representing multiple components of a nonstationary signal as harmonics of lower
components.

A powerful variant of the Fourier transform is the wavelet transform. By using finite-support basis functions, wavelets
are able to approximate even nonstationary data. These basis functions possess most of the desirable properties re-
quired for linear decomposition (like orthogonality, completeness , etc) and they can be drawn from a large dictionary
of wavelets. This makes the wavelet transform a versatile tool for analysis of nonstationary data. But the wavelet trans-
form is still a linear decomposition and hence suffers from related problems like the uncertainty principle. Moreover,
like Fourier, the wavelet transform too is non-adaptive. The basis functions are selected a priori and consequently
make the wavelet decomposition prone to spurious harmonics and ultimately incorrect interpretations of the data.

A remarkable advantage of Fourier based methods is their mathematical framework. Fourier based methods are so
elegant that they make building models for a given dataset very easy. Although such models can represent most of the
data and are extensive enough for a practical application, the fact remains that there is some amount of data slipping
through the gaps left behind by linear approximations. Despite all these shortcomings, wavelet analysis still remains
the best possible method for analysis of nonstationary data, and hence should be used as a reference to establish the
validity of other methods.

1.2.1 1. The Uncertainty Principle

A very manifest limitation of the Fourier transform can be seen as the uncertainty principle. Consider the signal shown
here:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> f1, f2 = 500, 1000
>>> t1, t2 = 0.192, 0.196
>>> f_sample = 8000
>>> n_points = 2048
>>> ts = np.arange(n_points, dtype=float) / f_sample
>>> signal = np.sin(2 * np.pi * f1 * ts) + np.sin(2 * np.pi * f2 * ts)
>>> signal[int(t1 * f_sample) - 1] += 3
>>> signal[int(t2 * f_sample) - 1] += 3
>>> plt.plot(ts, signal)

10 Chapter 1. PyHHT Tutorials

pyhht Documentation, Release 0.0.1

0.00 0.05 0.10 0.15 0.20
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Signal with two time and freuquency events.

It is a sum of two sinusiodal signals of frequencies 500 Hz and 1000 Hz. It has two spikes at t = 0.192s and t = 0.196s.
The purpose of a time frequency distribution would be to clearly identify both the frequencies and both the spikes,
thus resolving events in both frequency and time. Let’s check out the spectrograms of the STFTs of the signal with
four different window lengths:

1.2. Motivation for Hilbert Spectral Analysis 11

pyhht Documentation, Release 0.0.1

window duration = 2 ms

window duration = 4 ms

window duration = 8 ms

0.00 0.05 0.10 0.15 0.20 0.25

window duration = 16 ms

As can be clearly seen, resolution in time and frequency cannot be obtained simultaneously. In the last (bottom) image,
where the window length is high, the STFT manages to discriminate between frequencies of 500 Hz and 1000 Hz very
clearly, but the time resolution between the events at t = 0.192 s and t = 0.196 s is ambiguous. As we reduce the
length of the window function, the resolution between the time events goes on becoming better, but only at the cost of
resolution in frequencies.

This phenomenon is called the Uncertainty principle. Informally, it states that arbitrarily high resolution cannot be
obtained in both time and frequency. This is a consequence of the definition of the Fourier transform. The definition
insists that a signal be represented as a weighted sum of sinusoids, and therefore identifies frequency information that
is globally prevalent. As a workaround to this interpretation, we use the STFT which performs the Fourier transform
on limited periods of the signals. But unfortunately the period length is defined a priori, thereby making the results
uncertain in either frequency or time. Mathematically this uncertainty can be quantified with the Heisenberg-Gabor
Inequality (also sometimes called the Gabor limit):

Heisenberg - Gabor Inequality

If 𝑇 and 𝐵 are standard deviations of the time characteristics and the bandwidth respectively of a signal 𝑠(𝑡), then

𝑇𝐵1

The expression states that the time-bandwidth product of a signal is lower bounded by unity. Gaussian functions satisfy
the equality condition in the equation. This can be verified as follows:

12 Chapter 1. PyHHT Tutorials

https://en.wikipedia.org/wiki/Fourier_transform#Uncertainty_principle

pyhht Documentation, Release 0.0.1

>>> from tftb.generators import fmconst, amgauss
>>> x = gen.amgauss(128) * gen.fmconst(128)[0]
>>> plot(real(x))

0 20 40 60 80 100 120
1.0

0.5

0.0

0.5

1.0
Gaussian amplitude modulation

>>> from tftb.processing import loctime, locfreq
>>> time_mean, time_duration = loctime(x)
>>> freq_center, bandwidth = locfreq(x)
>>> time_duration * bandwidth
1.0

A remarkably insightful commentary on the Uncertainty principle is provided in1, which states that the Uncertainty
principle is a statement about two variables whose associated operators do not mutually commute. This helps us apply
the Uncertainty principle in signal processing in the same way as in quantum physics.

1.2.2 2. Instantaneous Frequency

As a workaround to the limitations imposed by the Uncertainty principle, we can define a new measure of signal
characteristics called the instantaneous frequency. The definition of instantaneous frequency has remained highly
controversial ever since its inception, and it is easy to see why. When something is instantaneous it is localized in time.
Since time and frequency are inverse quantities, localizing frequency in time can be highly ambiguous. However, a
practical definition of instantaneous frequencies is provided in2, and is discussed in the next section.

1 http://www.amazon.com/Time-Frequency-Analysis-Theory-Applications/dp/0135945321
2 http://tftb.nongnu.org/tutorial.pdf

1.2. Motivation for Hilbert Spectral Analysis 13

http://www.amazon.com/Time-Frequency-Analysis-Theory-Applications/dp/0135945321
http://tftb.nongnu.org/tutorial.pdf

pyhht Documentation, Release 0.0.1

2.1 Analytic Signals and Instantaneous Frequencies

In order to define instantaneous frequencies we must first introduce the concept of analytic signals. For any real valued
signal 𝑥(𝑡) we associate a complex valued signal 𝑥𝑎(𝑡) defined as:

𝑥𝑎(𝑡) = 𝑥(𝑡) + 𝑗̂︂𝑥(𝑡)
where ̂︂𝑥(𝑡) is the Hilbert transform of 𝑥(𝑡). Then the instantaneous frequency can be defined as:

𝜈𝑖𝑛𝑠𝑡 =
1

2𝜋

𝑑

𝑑𝑡
arctan[𝑥𝑎(𝑡)]

2.2 Instantaneous Frequencies from HHT

The real innovation of the HHT is an iterative algorithm called the Empirical Mode Decomposition (EMD) which
breaks a signal down into so-called Intrinsic Mode Functions (IMFs) which are characterized by being narrowband,
nearly monocomponent and having a large time-bandwidth product. This allows the IMFs to have well-defined Hilbert
transforms and consequently, physically meaningful instantaneous frequencies. In the next couple of sections we
briefly describe IMFs and the algorithm, EMD, used to obtain them.

2.3 Intrinsic Mode Functions

Consider the three sinusoidal signals obtained as follows:

>>> x = np.linspace(0, 2 * np.pi, 1000)
>>> s1 = np.sin(x)
>>> s2 = np.sin(x) - 1
>>> s3 = np.sin(x) + 2
>>> plt.plot(x, s1, 'b', x, s2, 'g', x, s3, 'r')

14 Chapter 1. PyHHT Tutorials

pyhht Documentation, Release 0.0.1

0 1 2 3 4 5 6
2

1

0

1

2

3

All of them are identical, except that two of them have a nonzero DC component. Since the Hilbert transform of sine
is cosine, the analytic signals of these sinusoids should represent unit circles in the complex plane:

>>> from scipy.signal import hilbert
>>> hs1 = hilbert(s1)
>>> hs2 = hilbert(s2)
>>> hs3 = hilbert(s3)
>>> plt.plot(np.real(hs1), np.imag(hs1), 'b')
>>> plt.plot(np.real(hs2), np.imag(hs2), 'g')
>>> plt.plot(np.real(hs3), np.imag(hs3), 'r')

1.2. Motivation for Hilbert Spectral Analysis 15

pyhht Documentation, Release 0.0.1

2 1 0 1 2 3

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Imagine that each circle is traced out by a phasor rotating anticlockwise, which is centered at the origin in the figure
above. The angle that the phasor rotates through in an infinitesimally small time period represents the instantaneous
phase of the signal, and its time differential is the instantaneous frequency. Using this interpretation, let’s try to
compute the instantaneous frequencies of the three signals:

>>> from scipy import angle, unwrap
>>> omega_s1 = unwrap(angle(hs1)) # unwrapped instantaneous phase
>>> omega_s2 = unwrap(angle(hs2))
>>> omega_s3 = unwrap(angle(hs3))
>>> f_inst_s1 = np.diff(omega_s1) # instantaneous frequency
>>> f_inst_s2 = np.diff(omega_s2)
>>> f_inst_s3 = np.diff(omega_s3)
>>> plt.plot(x[1:], f_inst_s1, "b")
>>> plt.plot(x[1:], f_inst_s2, "g")
>>> plt.plot(x[1:], f_inst_s3, "r")
>>> plt.show()

16 Chapter 1. PyHHT Tutorials

pyhht Documentation, Release 0.0.1

15 10 5 0 5 10 15
0.004

0.002

0.000

0.002

0.004

0.006

0.008

As shown in the figure, only one sinusoid presents an instantaneous frequency that is constant and corresponds to the
true frequency of the waves. This wave is the one which has its analytical signal centered around the origin, thereby
allowing the phasor to rotate through a total angle of 2𝜋 in one period. This is the wave that has a zero DC component
and is symmetrical around the time axis.

The fact that true instantaneous frequencies are reproduced only when the signal is symmetric about the X-axis moti-
vates the definition of an IMF.

Intrinsic Mode Functions

A function is called an intrinsic mode function when:

1. The number of its extrema and zero-crossings differ at most by unity.

2. The mean of the local envelopes defined by its local maxima and that defined by its local minima should
be zero at all times.

Condition 1 ensures that there are no localized oscillations in the signal and it crosses the X-axis at least once before
it goes from one extremum to another, which makes it adaptive. Condition 2 ensures meaningful instantaneous fre-
quencies, as explained in the previous example. The next section explains the algorithm for extracting IMFs out of a
signal.

1.2. Motivation for Hilbert Spectral Analysis 17

pyhht Documentation, Release 0.0.1

2.4 Empirical Mode Decomposition

The EMD is an iterative algorithm which breaks a signal down into IMFs. The process is performed as follows:

1. Find all local extrema in the signal.

2. Join all the local maxima with a cubic spline, creating an upper envelope. Repeat for local minima and create a
lower envelope.

3. Calculate the mean of the envelopes.

4. Subtract mean from original signals.

5. Repeat steps 1-4 until result is an IMF.

6. Subtract this IMF from the original signal.

7. Repeat steps 1-6 till there are no more IMFs left in the signal.

The next tutorial demonstrates how EMD can be used with PyHHT.

2.5 Properties of Intrinsic Mode Functions

By virtue of the EMD algorithm, the decomposition is complete, in that the sum of the IMFs and the residue subtracted
from the input signal leaves behind only a negligible residue. The decomposition is almost orthogonal. Also, as
emphasized earlier, the greatest advantage of the IMFs are well-behaved Hilbert transforms, enabling the extraction of
physically meaningful instantaneous frequencies.

IMFs have large time-bandwidth products, which indicates that they tend to move away from the lower bound of the
Heisenberg-Gabor inequality, thereby avoiding the limitations of the Uncertainty principle, as explained in section 1.

1.2.3 3. Two Views of Nonlinear Phenomena

Despite all its robustness and convenience, the Hilbert-Huang transform is unfortunately just an algorithm, without a
well-defined mathematical base. All inferences drawn from it are empirical and can only be corroborated as such. It
lacks the mathematical sophistication of the Fourier framework. On the plus side it provides a very realistic insight
into data.

Thus here we have room for a tradeoff between the mathematical elegance of the Fourier analysis and the physical
significance provided by the Hilbert-Huang transform. Wavelets are the closest thing to the HHT that not only have
the ability to analyze nonlinear and nonstationary phenomena, but also a complete mathematical foundation. Unfor-
tunately wavelets are not adaptive and as such might suffer from problems like uncertainty principle, leakages, Gibb’s
phenomenon, harmonics, etc - like most of the decomposition techniques that use a priori basis functions. On the
other hand, the basis functions of the HHT are IMFs which are adaptive and empirical. But EMD is not a perfect
algorithm. For many signals it does not converge down to a set of finite IMFs. Some experts even believe that there is
an inherent contradiction between the way IMFs are defined and the way EMD is executed. This means that we can
possibly use wavelets as a ‘handle’ for the appropriate extraction of IMFs, and conversely, use IMFs to establish the
physical relevance of wavelet decomposition.

Thus the Hilbert-Huang transform is a alternate view of nonlinear and nonstationary phenomena, one that is unen-
cumbered by mathematical jargon. This lack of mathematical sophistication allows researchers to be very flexible and
versatile with its use.

1.2.4 4. Conclusion

Consider a dark room with a photosensitive device. Suppose a light flashes upon the device at a given instant. The
Fourier interpretation of this phenomenon would be to consider a number of (ideally infinitely many) of frequencies

18 Chapter 1. PyHHT Tutorials

pyhht Documentation, Release 0.0.1

which are in phase exactly at the time when the light is flashed. The frequencies interfere constructively at that instant
to produce the flash of light and cancel each other out at all the other times. The truth of the matter remains that
there are not so many frequency ‘events’ to speak of. But the Fourier interpretation is mathematically so elegant that
sometimes it drives the physical significance out of the model.

The Hilbert-Huang transform, on the other hand, gives prevalence only to physically meaningful events. The extraction
of instantaneous frequencies does not depend on convolution (as in the Fourier model), but on time derivatives. The
bases are not chosen a priori, but are adaptive. A complementary use of these two paradigms to analyze nonlinear and
nonstationary phenomena has great research potential.

The next tutorial is a comprehensive guide to PyHHT, and provides a detailed overview of how different aspects of the
HHT can be harnessed with the module.

1.3 Using PyHHT: EMD and Hilbert Spectral Analysis

1.3. Using PyHHT: EMD and Hilbert Spectral Analysis 19

pyhht Documentation, Release 0.0.1

20 Chapter 1. PyHHT Tutorials

CHAPTER 2

pyhht package

2.1 Submodules

2.2 pyhht.emd module

Empirical Mode Decomposition.

pyhht.emd.EMD
alias of pyhht.emd.EmpiricalModeDecomposition

class pyhht.emd.EmpiricalModeDecomposition(x, t=None, threshold_1=0.05, thresh-
old_2=0.5, alpha=0.05, ndirs=4, fixe=0,
maxiter=2000, fixe_h=0, n_imfs=0, nbsym=2,
bivariate_mode=’bbox_center’)

Bases: object

The EMD class.

Methods

decompose() Decompose the input signal into IMFs.
io() Compute the index of orthoginality, as defined by:
keep_decomposing() Check whether to continue the sifting operation.
mean_and_amplitude(m) Compute the mean of the envelopes and the mode

amplitudes.
stop_EMD() Check if there are enough extrema (3) to continue

sifting.
stop_sifting(m) Evaluate the stopping criteria for the current mode.

21

https://docs.python.org/3/library/functions.html#object

pyhht Documentation, Release 0.0.1

__init__(x, t=None, threshold_1=0.05, threshold_2=0.5, alpha=0.05, ndirs=4, fixe=0, max-
iter=2000, fixe_h=0, n_imfs=0, nbsym=2, bivariate_mode=’bbox_center’)

Empirical mode decomposition.

Parameters

x [array-like, shape (n_samples,)] The signal on which to perform EMD

t [array-like, shape (n_samples,), optional] The timestamps of the signal.

threshold_1 [float, optional] Threshold for the stopping criterion, corresponding to 𝜃1 in
[3]. Defaults to 0.05.

threshold_2 [float, optional] Threshold for the stopping criterion, corresponding to 𝜃2 in
[3]. Defaults to 0.5.

alpha [float, optional] Tolerance for the stopping criterion, corresponding to 𝛼 in [3]. De-
faults to 0.05.

ndirs [int, optional] Number of directions in which interpolants for envelopes are computed
for bivariate EMD. Defaults to 4. This is ignored if the signal is real valued.

fixe [int, optional] Number of sifting iterations to perform for each IMF. By default, the
stopping criterion mentioned in [1] is used. If set to a positive integer, each mode is
either the result of exactly fixe number of sifting iterations, or until a pure IMF is found,
whichever is sooner.

maxiter [int, optional] Upper limit of the number of sifting iterations for each mode. De-
faults to 2000.

n_imfs [int, optional] Number of IMFs to extract. By default, this is ignored and decompo-
sition is continued until a monotonic trend is left in the residue.

nbsym [int, optional] Number of extrema to use to mirror the signals on each side of their
boundaries.

bivariate_mode [str, optional] The algorithm to be used for bivariate EMD as described in
[4]. Can be one of ‘centroid’ or ‘bbox_center’. This is ignored if the signal is real valued.

References

[1], [2], [3], [4]

Examples

>>> from pyhht.visualization import plot_imfs
>>> import numpy as np
>>> t = np.linspace(0, 1, 1000)
>>> modes = np.sin(2 * pi * 5 * t) + np.sin(2 * pi * 10 * t)
>>> x = modes + t
>>> decomposer = EMD(x)
>>> imfs = decomposer.decompose()
>>> plot_imfs(x, imfs, t)

22 Chapter 2. pyhht package

pyhht Documentation, Release 0.0.1

S
ig

n
a
l

Empirical Mode Decomposition

im
f1

im
f2

re
s.

Attributes

is_bivariate [bool] Whether the decomposer performs bivariate EMD. This is automatically
determined by the input value. This is True if at least one non-zero imaginary component
is found in the signal.

nbits [list] List of number of sifting iterations it took to extract each IMF.

decompose()
Decompose the input signal into IMFs.

This function does all the heavy lifting required for sifting, and should ideally be the only public method
of this class.

Returns

imfs [array-like, shape (n_imfs, n_samples)] A matrix containing one IMF per row.

Examples

>>> from pyhht.visualization import plot_imfs
>>> import numpy as np
>>> t = np.linspace(0, 1, 1000)
>>> modes = np.sin(2 * pi * 5 * t) + np.sin(2 * pi * 10 * t)
>>> x = modes + t
>>> decomposer = EMD(x)
>>> imfs = decomposer.decompose()

2.2. pyhht.emd module 23

pyhht Documentation, Release 0.0.1

io()
Compute the index of orthoginality, as defined by:

𝑁∑︁
𝑖,𝑗=1,�̸�=𝑗

‖𝐶𝑖𝐶𝑗‖
‖𝑥‖2

Where 𝐶𝑖 is the 𝑖 th IMF.

Returns

float Index of orthogonality. Lower values are better.

Examples

>>> import numpy as np
>>> t = np.linspace(0, 1, 1000)
>>> modes = np.sin(2 * pi * 5 * t) + np.sin(2 * pi * 10 * t)
>>> x = modes + t
>>> decomposer = EMD(x)
>>> imfs = decomposer.decompose()
>>> print('%.3f' % decomposer.io())
0.017

keep_decomposing()
Check whether to continue the sifting operation.

mean_and_amplitude(m)
Compute the mean of the envelopes and the mode amplitudes.

Parameters

m [array-like, shape (n_samples,)] The input array or an itermediate value of the sifting
process.

Returns

tuple A tuple containing the mean of the envelopes, the number of extrema, the number of
zero crosssing and the estimate of the amplitude of themode.

stop_EMD()
Check if there are enough extrema (3) to continue sifting.

Returns

bool Whether to stop further cubic spline interpolation for lack of local extrema.

stop_sifting(m)
Evaluate the stopping criteria for the current mode.

Parameters

m [array-like, shape (n_samples,)] The current mode.

Returns

bool Whether to stop sifting. If this evaluates to true, the current mode is interpreted as an
IMF.

24 Chapter 2. pyhht package

pyhht Documentation, Release 0.0.1

2.3 pyhht.utils module

Utility functions used to inspect EMD functionality.

pyhht.utils.boundary_conditions(signal, time_samples, z=None, nbsym=2)
Extend a 1D signal by mirroring its extrema on either side.

Parameters

signal [array-like, shape (n_samples,)] The input signal.

time_samples [array-like, shape (n_samples,)] Timestamps of the signal samples

z [array-like, shape (n_samples,), optional] A proxy signal on whose extrema the interpolation
is evaluated. Defaults to signal.

nbsym [int, optional] The number of extrema to consider on either side of the signal. Defaults
to 2

Returns

tuple A tuple of four arrays which represent timestamps of the minima of the extended sig-
nal, timestamps of the maxima of the extended signal, minima of the extended signal and
maxima of the extended signal. signal, minima of the extended signal and maxima of the
extended signal.

Examples

>>> from __future__ import print_function
>>> import numpy as np
>>> signal = np.array([-1, 1, -1, 1, -1])
>>> tmin, tmax, vmin, vmax = boundary_conditions(signal, np.arange(5))
>>> tmin
array([-2, 2, 6])
>>> tmax
array([-3, -1, 1, 3, 5, 7])
>>> vmin
array([-1, -1, -1])
>>> vmax
array([1, 1, 1, 1, 1, 1])

pyhht.utils.extr(x)
Extract the indices of the extrema and zero crossings.

Parameters

x [array-like, shape (n_samples,)] Input signal.

Returns

tuple A tuple of three arrays representing the minima, maxima and zero crossings of the signal
respectively.

Examples

2.3. pyhht.utils module 25

pyhht Documentation, Release 0.0.1

>>> from __future__ import print_function
>>> import numpy as np
>>> x = np.array([0, -2, 0, 1, 3, 0.5, 0, -1, -1])
>>> indmin, indmax, indzer = extr(x)
>>> print(indmin)
[1]
>>> print(indmax)
[4]
>>> print(indzer)
[0 2 6]

pyhht.utils.get_envelops(x, t=None)
Get the upper and lower envelopes of an array, as defined by its extrema.

Parameters

x [array-like, shape (n_samples,)] The input array.

t [array-like, shape (n_samples,), optional] Timestamps of the signal. Defaults to
np.arange(n_samples,)

Returns

tuple A tuple of arrays representing the upper and the lower envelopes respectively.

Examples

>>> import numpy as np
>>> x = np.random.rand(100,)
>>> upper, lower = get_envelops(x)

pyhht.utils.inst_freq(x, t=None)
Compute the instantaneous frequency of an analytic signal at specific time instants using the trapezoidal inte-
gration rule.

Parameters

x [array-like, shape (n_samples,)] The input analytic signal.

t [array-like, shape (n_samples,), optional] The time instants at which to calculate the instanta-
neous frequency. Defaults to np.arange(2, n_samples)

Returns

array-like Normalized instantaneous frequencies of the input signal

Examples

>>> from tftb.generators import fmsin
>>> import matplotlib.pyplot as plt
>>> x = fmsin(70, 0.05, 0.35, 25)[0]
>>> instf, timestamps = inst_freq(x)
>>> plt.plot(timestamps, instf)

26 Chapter 2. pyhht package

pyhht Documentation, Release 0.0.1

0 10 20 30 40 50 60 70
Time

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
e
q
u
e
n
cy

Instantaneous frequency estimation

2.4 pyhht.visualization module

Visualization functions for PyHHT.

pyhht.visualization.plot_imfs(signal, imfs, time_samples=None, fignum=None, show=True)
Plot the signal, IMFs and residue.

Parameters

signal [array-like, shape (n_samples,)] The input signal.

imfs [array-like, shape (n_imfs, n_samples)] Matrix of IMFs as generated with the
EMD.decompose method.

time_samples [array-like, shape (n_samples), optional] Time instants of the signal samples.
(defaults to np.arange(1, len(signal)))

fignum [int, optional] Matplotlib figure number (by default a new figure is created)

show [bool, optional] Whether to display the plot. Defaults to True, set to False if further
plotting needs to be done.

Returns

‘matplotlib.figure.Figure‘ The figure (new or existing) in which the decomposition is plotted.

2.4. pyhht.visualization module 27

pyhht Documentation, Release 0.0.1

Examples

>>> from pyhht.visualization import plot_imfs
>>> import numpy as np
>>> from pyhht import EMD
>>> t = np.linspace(0, 1, 1000)
>>> modes = np.sin(2 * np.pi * 5 * t) + np.sin(2 * np.pi * 10 * t)
>>> x = modes + t
>>> decomposer = EMD(x)
>>> imfs = decomposer.decompose()
>>> plot_imfs(x, imfs, t)

S
ig

n
a
l

Empirical Mode Decomposition

im
f1

im
f2

re
s.

2.5 Module contents

pyhht.EMD
alias of pyhht.emd.EmpiricalModeDecomposition

class pyhht.EmpiricalModeDecomposition(x, t=None, threshold_1=0.05, threshold_2=0.5,
alpha=0.05, ndirs=4, fixe=0, maxiter=2000,
fixe_h=0, n_imfs=0, nbsym=2, bivari-
ate_mode=’bbox_center’)

Bases: object

The EMD class.

28 Chapter 2. pyhht package

https://docs.python.org/3/library/functions.html#object

pyhht Documentation, Release 0.0.1

Methods

decompose() Decompose the input signal into IMFs.
io() Compute the index of orthoginality, as defined by:
keep_decomposing() Check whether to continue the sifting operation.
mean_and_amplitude(m) Compute the mean of the envelopes and the mode

amplitudes.
stop_EMD() Check if there are enough extrema (3) to continue

sifting.
stop_sifting(m) Evaluate the stopping criteria for the current mode.

__init__(x, t=None, threshold_1=0.05, threshold_2=0.5, alpha=0.05, ndirs=4, fixe=0, max-
iter=2000, fixe_h=0, n_imfs=0, nbsym=2, bivariate_mode=’bbox_center’)

Empirical mode decomposition.

Parameters

x [array-like, shape (n_samples,)] The signal on which to perform EMD

t [array-like, shape (n_samples,), optional] The timestamps of the signal.

threshold_1 [float, optional] Threshold for the stopping criterion, corresponding to 𝜃1 in
[3]. Defaults to 0.05.

threshold_2 [float, optional] Threshold for the stopping criterion, corresponding to 𝜃2 in
[3]. Defaults to 0.5.

alpha [float, optional] Tolerance for the stopping criterion, corresponding to 𝛼 in [3]. De-
faults to 0.05.

ndirs [int, optional] Number of directions in which interpolants for envelopes are computed
for bivariate EMD. Defaults to 4. This is ignored if the signal is real valued.

fixe [int, optional] Number of sifting iterations to perform for each IMF. By default, the
stopping criterion mentioned in [1] is used. If set to a positive integer, each mode is
either the result of exactly fixe number of sifting iterations, or until a pure IMF is found,
whichever is sooner.

maxiter [int, optional] Upper limit of the number of sifting iterations for each mode. De-
faults to 2000.

n_imfs [int, optional] Number of IMFs to extract. By default, this is ignored and decompo-
sition is continued until a monotonic trend is left in the residue.

nbsym [int, optional] Number of extrema to use to mirror the signals on each side of their
boundaries.

bivariate_mode [str, optional] The algorithm to be used for bivariate EMD as described in
[4]. Can be one of ‘centroid’ or ‘bbox_center’. This is ignored if the signal is real valued.

References

[1], [2], [3], [4]

2.5. Module contents 29

pyhht Documentation, Release 0.0.1

Examples

>>> from pyhht.visualization import plot_imfs
>>> import numpy as np
>>> t = np.linspace(0, 1, 1000)
>>> modes = np.sin(2 * pi * 5 * t) + np.sin(2 * pi * 10 * t)
>>> x = modes + t
>>> decomposer = EMD(x)
>>> imfs = decomposer.decompose()
>>> plot_imfs(x, imfs, t)

S
ig

n
a
l

Empirical Mode Decomposition

im
f1

im
f2

re
s.

Attributes

is_bivariate [bool] Whether the decomposer performs bivariate EMD. This is automatically
determined by the input value. This is True if at least one non-zero imaginary component
is found in the signal.

nbits [list] List of number of sifting iterations it took to extract each IMF.

decompose()
Decompose the input signal into IMFs.

This function does all the heavy lifting required for sifting, and should ideally be the only public method
of this class.

Returns

imfs [array-like, shape (n_imfs, n_samples)] A matrix containing one IMF per row.

30 Chapter 2. pyhht package

pyhht Documentation, Release 0.0.1

Examples

>>> from pyhht.visualization import plot_imfs
>>> import numpy as np
>>> t = np.linspace(0, 1, 1000)
>>> modes = np.sin(2 * pi * 5 * t) + np.sin(2 * pi * 10 * t)
>>> x = modes + t
>>> decomposer = EMD(x)
>>> imfs = decomposer.decompose()

io()
Compute the index of orthoginality, as defined by:

𝑁∑︁
𝑖,𝑗=1,�̸�=𝑗

‖𝐶𝑖𝐶𝑗‖
‖𝑥‖2

Where 𝐶𝑖 is the 𝑖 th IMF.

Returns

float Index of orthogonality. Lower values are better.

Examples

>>> import numpy as np
>>> t = np.linspace(0, 1, 1000)
>>> modes = np.sin(2 * pi * 5 * t) + np.sin(2 * pi * 10 * t)
>>> x = modes + t
>>> decomposer = EMD(x)
>>> imfs = decomposer.decompose()
>>> print('%.3f' % decomposer.io())
0.017

keep_decomposing()
Check whether to continue the sifting operation.

mean_and_amplitude(m)
Compute the mean of the envelopes and the mode amplitudes.

Parameters

m [array-like, shape (n_samples,)] The input array or an itermediate value of the sifting
process.

Returns

tuple A tuple containing the mean of the envelopes, the number of extrema, the number of
zero crosssing and the estimate of the amplitude of themode.

stop_EMD()
Check if there are enough extrema (3) to continue sifting.

Returns

bool Whether to stop further cubic spline interpolation for lack of local extrema.

stop_sifting(m)
Evaluate the stopping criteria for the current mode.

2.5. Module contents 31

pyhht Documentation, Release 0.0.1

Parameters

m [array-like, shape (n_samples,)] The current mode.

Returns

bool Whether to stop sifting. If this evaluates to true, the current mode is interpreted as an
IMF.

pyhht.plot_imfs(signal, imfs, time_samples=None, fignum=None, show=True)
Plot the signal, IMFs and residue.

Parameters

signal [array-like, shape (n_samples,)] The input signal.

imfs [array-like, shape (n_imfs, n_samples)] Matrix of IMFs as generated with the
EMD.decompose method.

time_samples [array-like, shape (n_samples), optional] Time instants of the signal samples.
(defaults to np.arange(1, len(signal)))

fignum [int, optional] Matplotlib figure number (by default a new figure is created)

show [bool, optional] Whether to display the plot. Defaults to True, set to False if further
plotting needs to be done.

Returns

‘matplotlib.figure.Figure‘ The figure (new or existing) in which the decomposition is plotted.

Examples

>>> from pyhht.visualization import plot_imfs
>>> import numpy as np
>>> from pyhht import EMD
>>> t = np.linspace(0, 1, 1000)
>>> modes = np.sin(2 * np.pi * 5 * t) + np.sin(2 * np.pi * 10 * t)
>>> x = modes + t
>>> decomposer = EMD(x)
>>> imfs = decomposer.decompose()
>>> plot_imfs(x, imfs, t)

32 Chapter 2. pyhht package

pyhht Documentation, Release 0.0.1

S
ig

n
a
l

Empirical Mode Decomposition

im
f1

im
f2

re
s.

2.5. Module contents 33

pyhht Documentation, Release 0.0.1

34 Chapter 2. pyhht package

CHAPTER 3

pyhht

35

pyhht Documentation, Release 0.0.1

36 Chapter 3. pyhht

CHAPTER 4

PyHHT Examples

• Reassigned spectrogram of a signal having sinusoidal frequency modulation

time

fr
e
q
u
e
n
cy

signal

time

fr
e
q
u
e
n
cy

mode #1

time

fr
e
q
u
e
n
cy

mode #2

time

fr
e
q
u
e
n
cy

mode #3

37

pyhht Documentation, Release 0.0.1

38 Chapter 4. PyHHT Examples

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

39

pyhht Documentation, Release 0.0.1

40 Chapter 5. Indices and tables

Bibliography

[1] Huang H. et al. 1998 ‘The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-
stationary time series analysis.’ Procedings of the Royal Society 454, 903-995

[2] Zhao J., Huang D. 2001 ‘Mirror extending and circular spline function for empirical mode decomposition method’.
Journal of Zhejiang University (Science) V.2, No.3, 247-252

[3] Gabriel Rilling, Patrick Flandrin, Paulo Gonçalves, June 2003: ‘On Empirical Mode Decomposition and its Algo-
rithms’, IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03

[4] Gabriel Rilling, Patrick Flandrin, Paulo Gonçalves, Jonathan M. Lilly. Bivariate Empirical Mode Decomposition.
10 pages, 3 figures. Submitted to Signal Processing Letters, IEEE. Matlab/C codes and additional .. 2007. <ensl-
00137611>

[1] Huang H. et al. 1998 ‘The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-
stationary time series analysis.’ Procedings of the Royal Society 454, 903-995

[2] Zhao J., Huang D. 2001 ‘Mirror extending and circular spline function for empirical mode decomposition method’.
Journal of Zhejiang University (Science) V.2, No.3, 247-252

[3] Gabriel Rilling, Patrick Flandrin, Paulo Gonçalves, June 2003: ‘On Empirical Mode Decomposition and its Algo-
rithms’, IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03

[4] Gabriel Rilling, Patrick Flandrin, Paulo Gonçalves, Jonathan M. Lilly. Bivariate Empirical Mode Decomposition.
10 pages, 3 figures. Submitted to Signal Processing Letters, IEEE. Matlab/C codes and additional .. 2007. <ensl-
00137611>

41

pyhht Documentation, Release 0.0.1

42 Bibliography

Python Module Index

p
pyhht, 28
pyhht.emd, 21
pyhht.utils, 25
pyhht.visualization, 27

43

pyhht Documentation, Release 0.0.1

44 Python Module Index

Index

Symbols
__init__() (pyhht.EmpiricalModeDecomposition

method), 29
__init__() (pyhht.emd.EmpiricalModeDecomposition

method), 22

B
boundary_conditions() (in module pyhht.utils), 25

D
decompose() (pyhht.emd.EmpiricalModeDecomposition

method), 23
decompose() (pyhht.EmpiricalModeDecomposition

method), 30

E
EMD (in module pyhht), 28
EMD (in module pyhht.emd), 21
EmpiricalModeDecomposition (class in pyhht), 28
EmpiricalModeDecomposition (class in pyhht.emd), 21
extr() (in module pyhht.utils), 25

G
get_envelops() (in module pyhht.utils), 26

I
inst_freq() (in module pyhht.utils), 26
io() (pyhht.emd.EmpiricalModeDecomposition method),

23
io() (pyhht.EmpiricalModeDecomposition method), 31

K
keep_decomposing() (py-

hht.emd.EmpiricalModeDecomposition
method), 24

keep_decomposing() (py-
hht.EmpiricalModeDecomposition method),
31

M
mean_and_amplitude() (py-

hht.emd.EmpiricalModeDecomposition
method), 24

mean_and_amplitude() (py-
hht.EmpiricalModeDecomposition method),
31

P
plot_imfs() (in module pyhht), 32
plot_imfs() (in module pyhht.visualization), 27
pyhht (module), 28
pyhht.emd (module), 21
pyhht.utils (module), 25
pyhht.visualization (module), 27

S
stop_EMD() (pyhht.emd.EmpiricalModeDecomposition

method), 24
stop_EMD() (pyhht.EmpiricalModeDecomposition

method), 31
stop_sifting() (pyhht.emd.EmpiricalModeDecomposition

method), 24
stop_sifting() (pyhht.EmpiricalModeDecomposition

method), 31

45

	PyHHT Tutorials
	Limitations of the Fourier Transform: Need For a Data Driven Approach
	Motivation for Hilbert Spectral Analysis
	Using PyHHT: EMD and Hilbert Spectral Analysis

	pyhht package
	Submodules
	pyhht.emd module
	pyhht.utils module
	pyhht.visualization module
	Module contents

	pyhht
	PyHHT Examples
	Indices and tables
	Bibliography
	Python Module Index

