
pyhamcrest_metamatchers
Documentation

Timofey Danshin

Dec 12, 2018

Contents

1 Code Documentation 3
1.1 matches . 4
1.2 doesnt_match . 4
1.3 with_description . 4
1.4 with_mismatch_description . 4

i

ii

pyhamcrest_metamatchers Documentation

So that you can match your matchers with matchers, while you are writing matchers!

But seriously: Hamcrest and hamcrest-style matchers help in writing modular and reusable tests, but for that the
matchers themselves must be reliable. Now you can develop your own custom matchers and be sure that they are. All
you need to do is to test them using metamatchers.

Contents 1

pyhamcrest_metamatchers Documentation

2 Contents

CHAPTER 1

Code Documentation

Metamatcher is a matcher that checks that another matcher behaves correctly.

When new matchers are developed, it is vital to check that they match as expected and produce helpful desriptions and
mismatch_descriptions.

This metamatcher does exactly that.

Say, you have written a matcher called is_twice_as_big_as, and you want it to compare ints. You intend to use
it like this:

assert_that(4, is_twice_as_big_as(2))

Under the hood, the following is called:

is_twice_as_big_as(2)._matches(4)

Keeping that in mind, here’s how you can check your matcher with the metamatcher:

def test_is_twice_as_big_as(...)
assert_that(

Your initialized matcher
is_twice_as_big_as(2),
The metamatcher specifying the value for matching
matches(4)

)

This will fail if your is_twice_as_big_as matcher doesn’t match.

To check that your matcher produces the correct description:

def test_is_twice_as_big_as(...)
assert_that(

is_twice_as_big_as(2),
matches(4).with_description("An int twice as big as <2>")

)

3

pyhamcrest_metamatchers Documentation

This will fail if your is_twice_as_big_as matcher doesn’t match, if the description it produces is wrong, or
both.

You can also check that your matcher doesn’t match in certain situations. To do that, use the doesnt_match
function, and to check the mismatch description, call the with_mismatch_description method.

Note, that you can use the with_description method with the doesnt_match metamatcher, but calling
with_mismatch_description with the matches flavour of the metamatcher, will throw an exception.

1.1 matches

pyhamcrest_metamatchers.metamatchers.matches(a_matcher)
Checks that the matcher under test matches the value

Parameters a_matcher – The matcher that needs to be checked.

Returns pyhamcrest_metamatchers.metamatchers.MetaMatcher

1.2 doesnt_match

pyhamcrest_metamatchers.metamatchers.doesnt_match(a_matcher)
Checks that the matcher under test doesn’t match the value

Parameters a_matcher – The matcher that needs to be checked.

Returns pyhamcrest_metamatchers.metamatchers.MetaMatcher

1.3 with_description

MetaMatcher.with_description(description)
Adds the check for the description generated by the matcher that is being tested. If this method is not called, the
matcher will not check the description at all.

If this method _is_ called, then the description, generated by the matcher under test, will be checked. If the
actual description doesn’t match the one set here, the metamatcher will not match.

1.4 with_mismatch_description

MetaMatcher.with_mismatch_description(mismatch_description)
Adds the check for the mismatch description generated by the matcher being tested. The logic is the same as
with :pyhamcrest_metamatchers.metamatchers.MetaMatcher.with_description()

The goal of this project is to write a number of utility entities to facilitate the development of proper hamcrest style
matchers.

For now we have a metamatcher, that is a matcher that can check that a matcher under development behaves properly,
that is it matches whatever it is supposed to match, and it doesn’t match whatever it isn’t suppsed to, and that it
produces the correct descriptions and mismatch descriptions. Here is a code example to that effect:

4 Chapter 1. Code Documentation

https://travis-ci.com/ibolit/pyhamcrest_metamatchers

pyhamcrest_metamatchers Documentation

def test_is_twice_as_big_as(...)
assert_that(

is_twice_as_big_as(2),
matches(4).with_description("An int twice as big as <2>")

)

def test_is_twice_as_big_as_not_matching(...)
assert_that(

is_twice_as_big_as(2),
doesnt_match(7)\

.with_description("An int twice as big as <2>")\

.with_mismatch_description("was <7>")
)

1.4. with_mismatch_description 5

pyhamcrest_metamatchers Documentation

6 Chapter 1. Code Documentation

Index

D
doesnt_match() (in module pyham-

crest_metamatchers.metamatchers), 4

M
matches() (in module pyham-

crest_metamatchers.metamatchers), 4

W
with_description() (pyham-

crest_metamatchers.metamatchers.MetaMatcher
method), 4

with_mismatch_description() (pyham-
crest_metamatchers.metamatchers.MetaMatcher
method), 4

7

	Code Documentation
	matches
	doesnt_match
	with_description
	with_mismatch_description

