

pyhamcrest_metamatchers

So that you can match your matchers with matchers, while you are writing matchers!

But seriously: Hamcrest and hamcrest-style matchers help in writing modular
and reusable tests, but for that the matchers themselves must be reliable.
Now you can develop your own custom matchers and be sure that they are.
All you need to do is to test them using metamatchers.

	Code Documentation
	matches

	doesnt_match

	with_description

	with_mismatch_description

[image: _images/pyhamcrest_metamatchers.svg]
 [https://travis-ci.com/ibolit/pyhamcrest_metamatchers]The goal of this project is to write a number of utility entities to facilitate the development of proper hamcrest style
matchers.

For now we have a metamatcher, that is a matcher that can check that a matcher under development behaves
properly, that is it matches whatever it is supposed to match, and it doesn’t match whatever it isn’t suppsed to, and
that it produces the correct descriptions and mismatch descriptions. Here is a code example to that effect:

def test_is_twice_as_big_as(...)
 assert_that(
 is_twice_as_big_as(2),
 matches(4).with_description("An int twice as big as <2>")
)

def test_is_twice_as_big_as_not_matching(...)
 assert_that(
 is_twice_as_big_as(2),
 doesnt_match(7)\
 .with_description("An int twice as big as <2>")\
 .with_mismatch_description("was <7>")
)

Code Documentation

Metamatcher is a matcher that checks that another matcher behaves correctly.

When new matchers are developed, it is vital to check that they match
as expected and produce helpful desriptions and mismatch_descriptions.

This metamatcher does exactly that.

Say, you have written a matcher called is_twice_as_big_as, and you want it
to compare ints. You intend to use it like this:

assert_that(4, is_twice_as_big_as(2))

Under the hood, the following is called:

is_twice_as_big_as(2)._matches(4)

Keeping that in mind, here’s how you can check your matcher with the
metamatcher:

def test_is_twice_as_big_as(...)
 assert_that(
 # Your initialized matcher
 is_twice_as_big_as(2),
 # The metamatcher specifying the value for matching
 matches(4)
)

This will fail if your is_twice_as_big_as matcher doesn’t match.

To check that your matcher produces the correct description:

def test_is_twice_as_big_as(...)
 assert_that(
 is_twice_as_big_as(2),
 matches(4).with_description("An int twice as big as <2>")
)

This will fail if your is_twice_as_big_as matcher doesn’t match,
if the description it produces is wrong, or both.

You can also check that your matcher doesn’t match in certain situations.
To do that, use the doesnt_match function, and to check the mismatch
description, call the with_mismatch_description method.

Note, that you can use the with_description method with the
doesnt_match metamatcher, but calling with_mismatch_description
with the matches flavour of the metamatcher, will throw an exception.

matches

	
pyhamcrest_metamatchers.metamatchers.matches(a_matcher)

	Checks that the matcher under test matches the value

	Parameters

	a_matcher – The matcher that needs to be checked.

	Returns

	pyhamcrest_metamatchers.metamatchers.MetaMatcher

doesnt_match

	
pyhamcrest_metamatchers.metamatchers.doesnt_match(a_matcher)

	Checks that the matcher under test doesn’t match the value

	Parameters

	a_matcher – The matcher that needs to be checked.

	Returns

	pyhamcrest_metamatchers.metamatchers.MetaMatcher

with_description

	
MetaMatcher.with_description(description)

	Adds the check for the description generated by the matcher that
is being tested. If this method is not called, the matcher will not
check the description at all.

If this method _is_ called, then the description, generated by the
matcher under test, will be checked. If the actual description doesn’t
match the one set here, the metamatcher will not match.

with_mismatch_description

	
MetaMatcher.with_mismatch_description(mismatch_description)

	Adds the check for the mismatch description generated by the
matcher being tested. The logic is the same as with
:pyhamcrest_metamatchers.metamatchers.MetaMatcher.with_description()

Index

 D
 | M
 | W

D

 	
 	doesnt_match() (in module pyhamcrest_metamatchers.metamatchers)

M

 	
 	matches() (in module pyhamcrest_metamatchers.metamatchers)

W

 	
 	with_description() (pyhamcrest_metamatchers.metamatchers.MetaMatcher method)

 	
 	with_mismatch_description() (pyhamcrest_metamatchers.metamatchers.MetaMatcher method)

 nav.xhtml

 Table of Contents

 		
 pyhamcrest_metamatchers

 		
 Code Documentation

 		
 matches

 		
 doesnt_match

 		
 with_description

 		
 with_mismatch_description

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

