

Welcome to PyGPGME’s documentation!

Contents:

	PyGPGME Cookbook
	Listing All Keys

	Searching for a Specific Key

	Encrypting and Decrypting Files

	Encrypting and Decrypting Bytes and Strings

	Signing

	Verifying a Signature

	Generating Keys

	Using a Passphrase Callback

	Using a Different GPG Base Directory

	PyGPGME API
	Context

	GenkeyResult

	Key

	NewSignature

	Signature

	Helper Objects

	Constants

Indices and tables

	Index

	Module Index

	Search Page

PyGPGME Cookbook

The following recipes illustrate typical use cases of PyGPGME. For a detailed
documentation of the individual classes and methods please refer to the
API documentation.

Listing All Keys

Use Context.keylist() without arguments to get all keys:

from __future__ import print_function
import gpgme

c = gpgme.Context()
for key in c.keylist():
 user = key.uids[0]
 print("Keys for %s (%s):" % (user.name, user.email))
 for subkey in key.subkeys:
 features = []
 if subkey.can_authenticate:
 features.append('auth')
 if subkey.can_certify:
 features.append('cert')
 if subkey.can_encrypt:
 features.append('encrypt')
 if subkey.can_sign:
 features.append('sign')
 print(' %s %s' %(subkey.fpr, ','.join(features)))

Searching for a Specific Key

To search for a key using parts of the key owner’s name or e-mail address, pass
a query to gpgme.Context.keylist():

from __future__ import print_function
import gpgme

c = gpgme.Context()
for key in c.keylist('john'):
 print(key.subkeys[0].fpr)

To get a key via its fingerprint, use gpgme.Context.get_key() instead
(note that you must pass the full fingerprint):

from __future__ import print_function
import gpgme

c = gpgme.Context()
fingerprint = 'key fingerprint to search for'
try:
 key = c.get_key(fingerprint)
 print('%s (%s)' % (key.uids[0].name, key.uids[0].email))
except gpgme.GpgmeError:
 print("No key for fingerprint '%s'." % fingerprint)

Encrypting and Decrypting Files

By default, gpgme.Context.encrypt() returns the encrypted data in binary
form, so make sure to open the ciphertext files in binary mode:

import gpgme

c = gpgme.Context()
recipient = c.get_key("fingerprint of recipient's key")

Encrypt
with open('foo.txt', 'r') as input_file:
 with open('foo.txt.gpg', 'wb') as output_file:
 c.encrypt([recipient], 0, input_file, output_file)

Decrypt
with open('foo.txt.gpg', 'rb') as input_file:
 with open('foo2.txt', 'w') as output_file:
 c.decrypt(input_file, output_file)

If you set gpgme.Context.armor to True then the ciphertext is
encoded in a so-called ASCII-armor string. In that case, the ciphertext file
should be opened in text mode.

The example above uses asymmetric encryption [https://en.wikipedia.org/wiki/Public-key_cryptography], i.e. the data is encrypted
using a public key and can only be decrypted using the corresponding private
key. If you want to use symmetric encryption [https://en.wikipedia.org/wiki/Symmetric-key_algorithm] instead (where encryption
and decryption use the same passphrase) then pass None as the first
argument to gpgme.Context.encrypt(). In that case you will be prompted
for the passphrase.

Encrypting and Decrypting Bytes and Strings

gpgme.Context.encrypt() and gpgme.Context.decrypt() operate
on streams of data (i.e. file-like objects). If you want to encrypt or decrypt
data from bytes variables instead then you need to wrap them in a
suitable buffer (e.g. io.BytesIO):

import io
import gpgme

c = gpgme.Context()
recipient = c.get_key("fingerprint of recipient's key")

plaintext_bytes = io.BytesIO(b'plain binary data')
encrypted_bytes = io.BytesIO()
c.encrypt([recipient], 0, plaintext_bytes, encrypted_bytes)

encrypted_bytes.seek(0) # Return file pointer to beginning of file

decrypted_bytes = io.BytesIO()
c.decrypt(encrypted_bytes, decrypted_bytes)

assert decrypted_bytes.getvalue() == plaintext_bytes.getvalue()

Note that gpgme.Context.encrypt() only accepts binary buffers – passing
text buffers like io.StringIO raises gpgme.GpgmeError.
To encrypt string data, you therefore need to encode it to binary first:

import io
import gpgme

c = gpgme.Context()
recipient = c.get_key("fingerprint of recipient's key")

plaintext_string = u'plain text data'
plaintext_bytes = io.BytesIO(plaintext_string.encode('utf8'))
encrypted_bytes = io.BytesIO()
c.encrypt([recipient], 0, plaintext_bytes, encrypted_bytes)

encrypted_bytes.seek(0) # Return file pointer to beginning of file

decrypted_bytes = io.BytesIO()
c.decrypt(encrypted_bytes, decrypted_bytes)
decrypted_string = decrypted_bytes.getvalue().decode('utf8')

assert decrypted_string == plaintext_string

Even if gpgme.Context.armor is true and the encrypted output is text
you still need to use binary buffers. That is not a problem, however, since the
armor uses plain ASCII:

from __future__ import print_function

import io
import gpgme

c = gpgme.Context()
recipient = c.get_key("fingerprint of recipient's key")
c.armor = True # Use ASCII-armor output

plaintext_string = u'plain text data'
plaintext_bytes = io.BytesIO(plaintext_string.encode('utf8'))
encrypted_bytes = io.BytesIO()
c.encrypt([recipient], 0, plaintext_bytes, encrypted_bytes)
encrypted_string = encrypted_bytes.getvalue().decode('ascii')
print(encrypted_string) # Display ASCII armored ciphertext

Re-initialize encrypted bytes data from ASCII armor
encrypted_bytes = io.BytesIO(encrypted_string.encode('ascii'))

decrypted_bytes = io.BytesIO()
c.decrypt(encrypted_bytes, decrypted_bytes)
decrypted_string = decrypted_bytes.getvalue().decode('utf8')

assert decrypted_string == plaintext_string

Signing

FIXME

Verifying a Signature

FIXME

Generating Keys

FIXME

Using a Passphrase Callback

FIXME

Using a Different GPG Base Directory

FIXME

PyGPGME API

Context

	
class gpgme.Context

	Configuration and internal state for cryptographic operations.

This is the main class of gpgme. The constructor takes
no arguments:

ctx = gpgme.Context()

	
armor

	Property indicating whether output should be ASCII-armored or
not. Used by Context.encrypt(),
Context.encrypt_sign(), and Context.sign().

	
card_edit()

	

	
decrypt(ciphertext, plaintext)

	Decrypts the ciphertext and writes out the plaintext.

To decrypt data, you must have one of the recipients’ private keys in
your keyring (for public key encryption) or the passphrase (for
symmetric encryption). If gpg finds the key but needs a passphrase to
unlock it, the .passphrase_cb callback will be used to ask for it.

	Parameters

	
	ciphertext – A file-like object opened for reading,
containing the encrypted data.

	plaintext – A file-like object opened for writing, where
the decrypted data will be written.

See also Context.decrypt_verify() and
Context.encrypt().

	
decrypt_verify(ciphertext, plaintext)

	Decrypt ciphertext and verify signatures.

Like Context.decrypt(), but also checks the signatures
of the ciphertext.

	Returns

	A list of Signature instances (one for each key
that was used in the signature). Note that you need to inspect
the return value to check whether the signatures are valid –
a syntactically correct but invalid signature does not raise
an error!

See also Context.encrypt_sign().

	
delete(key, allow_secret=False)

	

	
edit()

	

	
encrypt(recipients, flags, plaintext, ciphertext)

	Encrypts plaintext so it can only be read by the given recipients.

	Parameters

	
	recipients – A list of Key objects. Only people in possession of
the corresponding private key (for public key encryption) or
passphrase (for symmetric encryption) will be able to decrypt the
result.

	flags – A bitwise OR combination of ENCRYPT_* constants.

	plaintext – A file-like object opened for reading, containing the
data to be encrypted.

	ciphertext – A file-like object opened for writing, where the
encrypted data will be written. If Context.armor is
false then this file should be opened in binary mode.

See also Context.encrypt_sign() and Context.decrypt().

	
encrypt_sign(recipients, flags, plaintext, ciphertext)

	Encrypt and sign plaintext.

Works like Context.encrypt(), but the ciphertext is also
signed using all keys listed in Context.signers.

	Returns

	A list of NewSignature instances (one for each
key in Context.signers).

See also Context.decrypt_verify().

	
export()

	

	
genkey(params, public=None, secret=None)

	Generate a new key pair.

The functionality of this method depends on the crypto backend set
via Context.protocol. This documentation only covers PGP/GPG
(i.e. PROTOCOL_OpenPGP).

The generated key pair is automatically added to the key ring. Use
Context.set_engine_info() to configure the location of the
key ring files.

	Parameters

	
	params – A string containing the parameters for key generation.
The general syntax is as follows:

<GnupgKeyParms format="internal">
 Key-Type: RSA
 Key-Length: 2048
 Name-Real: Jim Joe
 Passphrase: secret passphrase
 Expire-Date: 0
</GnupgKeyParms>

For a detailed listing of the available options please refer to the
GPG key generation documentation [https://www.gnupg.org/documentation/manuals/gnupg/Unattended-GPG-key-generation.html].

	public – Must be None.

	secret – Must be None.

	Returns

	An instance of gpgme.GenkeyResult.

	
get_key(fingerprint, secret=False)

	Finds a key with the given fingerprint (a string of hex digits) in
the user’s keyring.

	Parameters

	
	fingerprint – Fingerprint of the key to look for

	secret – If true, only private keys will be returned.

If no key can be found, raises GpgmeError.

	Returns

	A Key instance.

	
import_()

	

	
include_certs()

	

	
keylist(query=None, secret=False)

	Searches for keys matching the given pattern(s).

	Parameters

	
	query – If None or not supplied, the KeyIter
fetches all available keys. If a string, it fetches keys matching
the given pattern (such as a name or email address). If a sequence
of strings, it fetches keys matching at least one of the given
patterns.

	secret – If true, only secret keys will be returned.

	Returns

	A KeyIter instance.

	
keylist_mode

	Default key listing behavior.

Controls which keys Context.keylist() returns. The value is a
bitwise OR combination of one or multiple of the KEYLIST_MODE_*
constants. Defaults to KEYLIST_MODE_LOCAL.

	
passphrase_cb()

	

	
pinentry_mode()

	

	
progress_cb()

	

	
protocol

	The protocol used for talking to the backend. Accepted values are one
of the PROTOCOL_* constants.

	
set_engine_info(protocol, executable, config_dir)

	Configure a crypto backend.

Updates the configuration of the crypto backend for the given protocol.
If this function is used then it must be called before any crypto
operation is performed on the context.

	Parameters

	
	protocol – One of the PROTOCOL_* constants specifying which
crypto backend is to be configured. Note that this does not change
which crypto backend is actually used, see
Context.protocol for that.

	executable – The path to the executable implementing the
protocol. If None then the default will be used.

	config_dir – The path of the configuration directory of the crypto
backend. If None then the default will be used.

	
set_locale()

	

	
sign(plaintext, signed, mode=gpgme.SIG_MODE_NORMAL)

	Sign plaintext to certify and timestamp it.

The plaintext is signed using all keys listed in
Context.signers.

	Parameters

	
	plaintext – A file-like object opened for reading, containing
the plaintext to be signed.

	signed – A file-like object opened for writing, where the
signature data will be written. The signature data may contain the
plaintext or not, see the mode parameter. If
Context.armor is false and mode is not
SIG_MODE_CLEAR then the file should be opened in binary
mode.

	mode – One of the SIG_MODE_* constants.

	Returns

	A list of NewSignature instances (one for each
key in Context.signers).

	
signers

	List of Key instances used for signing with
sign() and encrypt_sign().

	
textmode()

	

	
verify(signature, signedtext, plaintext)

	Verify signature(s) and extract plaintext.

signature is a file-like object opened for reading, containing the
signature data.

If signature is a normal or cleartext signature (i.e. created using
SIG_MODE_NORMAL or SIG_MODE_CLEAR) then
signedtext must be None and plaintext a file-like object
opened for writing that will contain the extracted plaintext.

If signature is a detached signature (i.e. created using
SIG_MODE_DETACHED) then signedtext should contain a
file-like object opened for reading containing the signed text and
plaintext must be None.

	Returns

	A list of Signature instances (one for each key
that was used in signature). Note that you need to inspect the
return value to check whether the signatures are valid – a
syntactically correct but invalid signature does not raise an
error!

GenkeyResult

	
class gpgme.GenkeyResult

	Key generation result.

Instances of this class are usually obtained as the return value
of Context.genkey().

	
fpr

	String containing the fingerprint of the generated key. If both a
primary and a subkey were generated then this is the fingerprint of
the primary key. For crypto backends that do not provide key
fingerprints this is None.

	
primary

	True if a primary key was generated.

	
sub

	True if a sub key was generated.

Key

	
class gpgme.Key

	
	
revoked

	True if the key has been revoked.

	
expired

	True if the key has expired.

	
disabled

	True if the key is disabled.

	
invalid

	True if the key is invalid. This might have several reasons. For
example, for the S/MIME backend it will be set during key listing if the
key could not be validated due to a missing certificates or unmatched
policies.

	
can_encrypt

	True if the key (i.e. one of its subkeys) can be used for encryption.

	
can_sign

	True if the key (i.e. one of its subkeys) can be used to create
signatures.

	
can_certify

	True if the key (i.e. one of its subkeys) can be used to create key
certificates.

	
secret

	True if the key is a secret key. Note that this will always be true even
if the corresponding subkey flag may be false (offline/stub keys). This
is only set if a listing of secret keys has been requested or if
KEYLIST_MODE_WITH_SECRET is active.

	
can_authenticate

	True if the key (i.e. one of its subkeys) can be used for
authentication.

	
protocol

	The protocol supported by this key. See the PROTOCOL_* constants.

	
issuer_serial

	If Key.protocol is PROTOCOL_CMS then this is the
issuer serial.

	
issuer_name

	If Key.protocol is PROTOCOL_CMS then this is the
issuer name.

	
chain_id

	If Key.protocol is PROTOCOL_CMS then this is the
chain ID, which can be used to built the certificate chain.

	
owner_trust

	If Key.protocol is PROTOCOL_OpenPGP then this is
the owner trust.

	
subkeys

	List of the key’s subkeys as instances of Subkey. The first
subkey in the list is the primary key and usually available.

	
uids

	List of the key’s user IDs as instances of UserId. The first
user ID in the list is the main (or primary) user ID.

	
keylist_mode

	The keylist mode that was active when the key was retrieved. See
Context.keylist_mode.

NewSignature

	
class gpgme.NewSignature

	Data for newly created signatures.

Instances of this class are usually obtained as the result value of
Context.sign() or Context.encrypt_sign().

Signature

	
class gpgme.Signature

	Signature verification data.

Instances of this class are usually obtained as the return value of
Context.verify() or Context.decrypt_verify().

	
exp_timestamp

	Expiration timestamp of the signature, or 0 if the signature does
not expire.

	
fpr

	Fingerprint string.

	
notations

	A list of notation data in the form of tuples (name, value).

	
status

	If an error occurred during verification (for example because the
signature is not valid) then this attribute contains a corresponding
GpgmeError instance. Otherwise it is None.

	
summary

	A bit array encoded as an integer containing general information
about the signature. Combine this value with one of the SIGSUM_*
constants using bitwise AND.

	
timestamp

	Creation timestamp of the signature.

	
validity

	Validity of the signature. See Signature.validity_reason.

	
validity_reason

	If a signature is not valid this may provide a reason why. See
Signature.validity.

	
wrong_key_usage

	True if the key was not used according to its policy.

Helper Objects

Stuff that’s mostly used internally, but it’s good to know it’s there.

	
class gpgme.KeyIter

	Iterable yielding Key instances for keylist results.

	
gpgme.gpgme_version

	Version string of libgpgme used to build this module.

	
class gpgme.GpgmeError

	

	
class gpgme.ImportResult

	

	
class gpgme.KeySig

	

	
class gpgme.Subkey

	

	
class gpgme.UserId

	

Constants

Protocol Selection

The following constants can be used as value for Context.protocol.
They are also returned via Key.protocol.

	
gpgme.PROTOCOL_OpenPGP

	This specifies the OpenPGP protocol.

	
gpgme.PROTOCOL_CMS

	This specifies the Cryptographic Message Syntax.

	
gpgme.PROTOCOL_ASSUAN

	1 Under development. Please ask on
gnupg-devel@gnupg.org for help.

	
gpgme.PROTOCOL_G13

	1 Under development. Please ask on
gnupg-devel@gnupg.org for help.

	
gpgme.PROTOCOL_UISERVER

	1 Under development. Please ask on
gnupg-devel@gnupg.org for help.

	
gpgme.PROTOCOL_SPAWN

	1 Special protocol for use with gpgme_op_spawn.

	
gpgme.PROTOCOL_UNKNOWN

	1 Reserved for future extension. You may use this to
indicate that the used protocol is not known to the application.
Currently, GPGME does not accept this value in any operation, though,
except for gpgme_get_protocol_name.

Key Listing Mode

Bitwise OR combinations of the following constants can be used as values for
Context.keylist_mode.

	
gpgme.KEYLIST_MODE_LOCAL

	Specifies that the local keyring should be searched. This is the default.

	
gpgme.KEYLIST_MODE_EXTERN

	Specifies that an external source should be searched. The type of external
source is dependant on the crypto engine used and whether it is combined
with KEYLIST_MODE_LOCAL. For example, it can be a remote
keyserver or LDAP certificate server.

	
gpgme.KEYLIST_MODE_SIGS

	Specifies that the key signatures should be included in the listed keys.

	
gpgme.KEYLIST_MODE_SIG_NOTATIONS

	1 Specifies that the signature notations on key signatures
should be included in the listed keys. This only works if
KEYLIST_MODE_SIGS is also enabled.

	
gpgme.KEYLIST_MODE_WITH_SECRET

	1 Returns information about the presence of a corresponding
secret key in a public key listing. A public key listing with this mode is
slower than a standard listing but can be used instead of a second run to
list the secret keys. This is only supported for GnuPG versions >= 2.1.

	
gpgme.KEYLIST_MODE_EPHEMERAL

	1 Specifies that keys flagged as ephemeral are included in
the listing.

	
gpgme.KEYLIST_MODE_VALIDATE

	1 Specifies that the backend should do key or certificate
validation and not just get the validity information from an internal
cache. This might be an expensive operation and is in general not useful.
Currently only implemented for the S/MIME backend and ignored for other
backends.

Encryption Flags

Bitwise OR combinations of the following constants can be used for the
flags parameter of Context.encrypt() and
Context.encrypt_sign().

	
gpgme.ENCRYPT_ALWAYS_TRUST

	Specifies that all the recipients in recp should be trusted, even if
the keys do not have a high enough validity in the keyring. This
flag should be used with care; in general it is not a good idea to
use any untrusted keys.

	
gpgme.ENCRYPT_NO_ENCRYPT_TO

	1 Specifies that no default or hidden default recipients as
configured in the crypto backend should be included. This can be useful for
managing different user profiles.

	
gpgme.ENCRYPT_NO_COMPRESS

	1 Specifies that the plaintext shall not be compressed before
it is encrypted. This is in some cases useful if the length of the encrypted
message may reveal information about the plaintext.

	
gpgme.ENCRYPT_PREPARE

	1 Used with the UI Server protocol to prepare an encryption.

	
gpgme.ENCRYPT_EXPECT_SIGN

	1 Used with the UI Server protocol to advise the UI server to
expect a sign command.

Signing Modes

The following constants can be used for the mode parameter of
Context.sign().

	
gpgme.SIG_MODE_NORMAL

	A normal signature is made, the output includes the plaintext and the
signature. Context.armor is respected.

	
gpgme.SIG_MODE_DETACHED

	A detached signature is created. Context.armor is respected.

	
gpgme.SIG_MODE_CLEAR

	A cleartext signature is created. Context.armor is ignored.

Signature Verification

The following bit masks can be used to extract individual bits from
Signature.summary using bitwise AND.

	
gpgme.SIGSUM_VALID

	The signature is fully valid.

	
gpgme.SIGSUM_GREEN

	The signature is good but one might want to display some extra information.
Check the other bits.

	
gpgme.SIGSUM_RED

	The signature is bad. It might be useful to check other bits and display
more information, i.e. a revoked certificate might not render a signature
invalid when the message was received prior to the cause for the
revocation.

	
gpgme.SIGSUM_KEY_REVOKED

	The key or at least one certificate has been revoked.

	
gpgme.SIGSUM_KEY_EXPIRED

	The key or one of the certificates has expired.

	
gpgme.SIGSUM_SIG_EXPIRED

	The signature has expired.

	
gpgme.SIGSUM_KEY_MISSING

	Can’t verify due to a missing key or certificate.

	
gpgme.SIGSUM_CRL_MISSING

	The certificate revocation list (or an equivalent mechanism) is not
available.

	
gpgme.SIGSUM_CRL_TOO_OLD

	The available certificate revocation list is too old.

	
gpgme.SIGSUM_BAD_POLICY

	A policy requirement was not met.

	
gpgme.SIGSUM_SYS_ERROR

	A system error occured.

	1(1,2,3,4,5,6,7,8,9,10,11,12,13)

	This constant is defined by the gpgme library, but
is currently missing in pygpgme.

 Python Module Index

 g

 		 	

 		
 g	

 	
 	
 gpgme	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	armor (gpgme.Context attribute)

C

 	
 	can_authenticate (gpgme.Key attribute)

 	can_certify (gpgme.Key attribute)

 	can_encrypt (gpgme.Key attribute)

 	
 	can_sign (gpgme.Key attribute)

 	card_edit() (gpgme.Context method)

 	chain_id (gpgme.Key attribute)

 	Context (class in gpgme)

D

 	
 	decrypt() (gpgme.Context method)

 	decrypt_verify() (gpgme.Context method)

 	
 	delete() (gpgme.Context method)

 	disabled (gpgme.Key attribute)

E

 	
 	edit() (gpgme.Context method)

 	encrypt() (gpgme.Context method)

 	ENCRYPT_ALWAYS_TRUST (in module gpgme)

 	ENCRYPT_EXPECT_SIGN (in module gpgme)

 	ENCRYPT_NO_COMPRESS (in module gpgme)

 	
 	ENCRYPT_NO_ENCRYPT_TO (in module gpgme)

 	ENCRYPT_PREPARE (in module gpgme)

 	encrypt_sign() (gpgme.Context method)

 	exp_timestamp (gpgme.Signature attribute)

 	expired (gpgme.Key attribute)

 	export() (gpgme.Context method)

F

 	
 	fpr (gpgme.GenkeyResult attribute)

 	(gpgme.Signature attribute)

G

 	
 	genkey() (gpgme.Context method)

 	GenkeyResult (class in gpgme)

 	get_key() (gpgme.Context method)

 	
 	gpgme (module)

 	gpgme_version (in module gpgme)

 	GpgmeError (class in gpgme)

I

 	
 	import_() (gpgme.Context method)

 	ImportResult (class in gpgme)

 	include_certs() (gpgme.Context method)

 	
 	invalid (gpgme.Key attribute)

 	issuer_name (gpgme.Key attribute)

 	issuer_serial (gpgme.Key attribute)

K

 	
 	Key (class in gpgme)

 	KeyIter (class in gpgme)

 	keylist() (gpgme.Context method)

 	keylist_mode (gpgme.Context attribute)

 	(gpgme.Key attribute)

 	KEYLIST_MODE_EPHEMERAL (in module gpgme)

 	
 	KEYLIST_MODE_EXTERN (in module gpgme)

 	KEYLIST_MODE_LOCAL (in module gpgme)

 	KEYLIST_MODE_SIG_NOTATIONS (in module gpgme)

 	KEYLIST_MODE_SIGS (in module gpgme)

 	KEYLIST_MODE_VALIDATE (in module gpgme)

 	KEYLIST_MODE_WITH_SECRET (in module gpgme)

 	KeySig (class in gpgme)

N

 	
 	NewSignature (class in gpgme)

 	
 	notations (gpgme.Signature attribute)

O

 	
 	owner_trust (gpgme.Key attribute)

P

 	
 	passphrase_cb() (gpgme.Context method)

 	pinentry_mode() (gpgme.Context method)

 	primary (gpgme.GenkeyResult attribute)

 	progress_cb() (gpgme.Context method)

 	protocol (gpgme.Context attribute)

 	(gpgme.Key attribute)

 	
 	PROTOCOL_ASSUAN (in module gpgme)

 	PROTOCOL_CMS (in module gpgme)

 	PROTOCOL_G13 (in module gpgme)

 	PROTOCOL_OpenPGP (in module gpgme)

 	PROTOCOL_SPAWN (in module gpgme)

 	PROTOCOL_UISERVER (in module gpgme)

 	PROTOCOL_UNKNOWN (in module gpgme)

R

 	
 	revoked (gpgme.Key attribute)

S

 	
 	secret (gpgme.Key attribute)

 	set_engine_info() (gpgme.Context method)

 	set_locale() (gpgme.Context method)

 	SIG_MODE_CLEAR (in module gpgme)

 	SIG_MODE_DETACHED (in module gpgme)

 	SIG_MODE_NORMAL (in module gpgme)

 	sign() (gpgme.Context method)

 	Signature (class in gpgme)

 	signers (gpgme.Context attribute)

 	SIGSUM_BAD_POLICY (in module gpgme)

 	SIGSUM_CRL_MISSING (in module gpgme)

 	SIGSUM_CRL_TOO_OLD (in module gpgme)

 	
 	SIGSUM_GREEN (in module gpgme)

 	SIGSUM_KEY_EXPIRED (in module gpgme)

 	SIGSUM_KEY_MISSING (in module gpgme)

 	SIGSUM_KEY_REVOKED (in module gpgme)

 	SIGSUM_RED (in module gpgme)

 	SIGSUM_SIG_EXPIRED (in module gpgme)

 	SIGSUM_SYS_ERROR (in module gpgme)

 	SIGSUM_VALID (in module gpgme)

 	status (gpgme.Signature attribute)

 	sub (gpgme.GenkeyResult attribute)

 	Subkey (class in gpgme)

 	subkeys (gpgme.Key attribute)

 	summary (gpgme.Signature attribute)

T

 	
 	textmode() (gpgme.Context method)

 	
 	timestamp (gpgme.Signature attribute)

U

 	
 	uids (gpgme.Key attribute)

 	
 	UserId (class in gpgme)

V

 	
 	validity (gpgme.Signature attribute)

 	
 	validity_reason (gpgme.Signature attribute)

 	verify() (gpgme.Context method)

W

 	
 	wrong_key_usage (gpgme.Signature attribute)

 nav.xhtml

 Table of Contents

 		
 Welcome to PyGPGME’s documentation!

 		
 PyGPGME Cookbook

 		
 Listing All Keys

 		
 Searching for a Specific Key

 		
 Encrypting and Decrypting Files

 		
 Encrypting and Decrypting Bytes and Strings

 		
 Signing

 		
 Verifying a Signature

 		
 Generating Keys

 		
 Using a Passphrase Callback

 		
 Using a Different GPG Base Directory

 		
 PyGPGME API

 		
 Context

 		
 GenkeyResult

 		
 Key

 		
 NewSignature

 		
 Signature

 		
 Helper Objects

 		
 Constants

 		
 Protocol Selection

 		
 Key Listing Mode

 		
 Encryption Flags

 		
 Signing Modes

 		
 Signature Verification

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

