

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	PyGLy 0.0.1 documentation

PyGLy

Pure Python OpenGL framework

Concepts

	Transform Spaces
	Co-ordinate Systems

	Transforms

	Transform Spaces

API

	OpenGL functions
	Common Functions

	Common Utilities

	Legacy

	Viewport
	Viewport

	Ratio Viewport

	View Matrices
	View Matrix

	Perspective View Matrix

	Orthogonal View Matrix

	Monkey Patch

	Transform Spaces
	Object Space

	Inertial Space

	Transform Systems
	Transform

	World Transform

	Tree
	Tree Node

	Tree Leaf

	Scene Graph
	Scene Node

	Camera Node

	Render Node

	Render Callback Node

	Rendering
	OpenGL

	Shaders

	Buffers

	Texturing

	Sorting

	Weak Method Reference

Indices and tables

	Index

	Module Index

	Search Page

 Copyright Adam Griffiths.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyGLy 0.0.1 documentation

Transform Spaces

See also

Transform Spaces

Co-ordinate Systems

World Space

The World Space co-ordinate system is the global co-ordinate system in which all objects are located.

When using World Space, we are describing objects in terms of the global origin.

See also

Inertial Space

Local Space

Local Space co-ordinate systems are relative to another object.

Using Local Space simplify the management and upkeep of 3D objects because we can specify them relative to another object.

Example

Image you have two 3D objects: a Soldier object, and a Gun object.

The Soldier and Gun are placed using co-ordinates in World Space.

If the Soldier picks the gun up, how do we keep the Gun positioned on the Soldier’s body?

We can use World Space co-ordinates to place the Gun.
To do this we need to know the Soldier’s position and the position relative to the Soldier to place the gun.
If the Soldier moves, we must re-calculate this value.

Or we could position the Gun using a Local Space co-ordinate system relative to the Soldier.
Using this, we only need to know the position relative to the Soldier to place the gun.
If the Soldier moves, we don’t need to re-calculate anything because the Gun is relative to the Soldier and will move with it.

Transforms

Manipulation of 3D spaces is performed through the use of Transform classes.
These provide access to common functions related to translation and orientation of objects in 3D space.

PyGLy provides two types of Transform classes: Transform, and WorldTransform.
These objects differ in the co-ordinate systems the functions manipulate.

The Transform class implements Local Space manipulations.
Modifications done using the Transform class are performed with no understanding of World Space.
When used outside of a hierarchy, the Transform space is relative to World Space.
When used inside a hierarchy, the Transform space is relative to the parent’s Local Space.

The WorldTransform class implements World Space manipulations.
A WorldTransform object is linked to a Transform object.
Modifications done using the WorldTransform class are performed in World Space.
This can be used to set absolute positioning of an object despite it’s parent’s transform.

The WorldTransform class implements the TreeNode class which adds the concept of a hierarchy.
WorldTransforms can be joined together in a Parent - Child tree (1 parent maximum). This enables the inheritance of parent transforms.

Usage of WorldTransform or Transform objects is not mutually exclusive. Modifications performed on the WorldTransform or the linked Transform object are propagated to each other.

Transform Spaces

Each Transform class exposes two co-ordinate spaces, Object Space, and Inertial Space.

When using Object Space, the X,Y and Z axis inherit the orientation from the Object.
As the Object’s orientation changes, the X,Y and Z axis presented by functions change accordingly.

When using Inertial Space, the X,Y and Z axis remain fixed regardless of the Object’s orientation.

Object Space

The Object Space co-ordinate system’s axis are fixed to the object’s orientation.
As the object is rotated, the Object Space axis will change with the object.

[image: _images/transform_object_space.png]
Object Transform Space.

See also

Object Space

Inertial Space

The Inertial Space co-ordinate system orientation is relative to it’s parent orientation.
When there is no parent, the co-ordinate system is the same as the global World Space.
The Inertial Space axis does not change when the object is rotated.

[image: _images/transform_inertial_space.png]
Inertial Transform Space

See also

Inertial Space

 Copyright Adam Griffiths.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyGLy 0.0.1 documentation

OpenGL functions

Common Functions

Common Utilities

Legacy

 Copyright Adam Griffiths.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyGLy 0.0.1 documentation

Viewport

Viewport

Ratio Viewport

See also

Module pygly.gl
Documentation of the pygly.gl module.
Contains viewport controls.

 Copyright Adam Griffiths.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyGLy 0.0.1 documentation

View Matrices

View Matrix

Perspective View Matrix

Orthogonal View Matrix

 Copyright Adam Griffiths.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyGLy 0.0.1 documentation

Monkey Patch

 Copyright Adam Griffiths.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyGLy 0.0.1 documentation

Transform Spaces

See also

Transform Systems

Object Space

Inertial Space

 Copyright Adam Griffiths.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyGLy 0.0.1 documentation

Transform Systems

See also

Transform Spaces
Transform Spaces

Transform

World Transform

 Copyright Adam Griffiths.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyGLy 0.0.1 documentation

Tree

Tree Node

Tree Leaf

	
class pygly.tree_leaf.TreeLeaf[source]

	Base class for Tree Leaf objects.

Supports a single parent.
Cannot have children.

	
__init__()[source]

	Creates a tree leaf object.

	
parent

	The current parent of the node or None
if there isn’t one.

This is an @property decorated method which allows
retrieval and assignment of the scale value.

	
predecessors()[source]

	Returns successive parents of the node.

Generator function that allows iteration
up the tree.

 Copyright Adam Griffiths.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyGLy 0.0.1 documentation

Scene Graph

Scene Node

Camera Node

Render Node

Render Callback Node

See also

	Class pygly.render_node.RenderNode

	Documentation of the pygly.render_node.RenderNode class, the parent of this class.

 Copyright Adam Griffiths.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyGLy 0.0.1 documentation

Rendering

OpenGL

Shaders

Buffers

	
class pygly.vertex_array.VertexArray[source]

	Wraps OpenGL Vertex Array Objects.

Provides wrappers around standard functions and higher level
wrappers with PyGLy.BufferRegion interfaces.

Example:

vs = Shader(GL_VERTEX_SHADER, shader_source['vert'])
fs = Shader(GL_FRAGMENT_SHADER, shader_source['frag'])
shader = ShaderProgram(vs, fs)

a basic triangle
vertices = numpy.array(
 [
 # X Y Z R G B
 ((0.0, 1.0, 0.0), (1.0, 0.0, 0.0)),
 ((-2.0,-1.0, 0.0), (0.0, 1.0, 0.0)),
 ((2.0,-1.0, 0.0), (0.0, 0.0, 1.0)),
],
 dtype = [
 ('position','float32',(3,)),
 ('colour','float32',(3,))
]
)
buffer = DtypeVertexBuffer(
 vertices.dtype,
 GL_ARRAY_BUFFER,
 GL_STATIC_DRAW,
 data = vertices
)

vao = VertexArray()

vao.bind()
buffer.bind()
buffer.set_attribute_pointer_dtype(shader, 'in_position', 'position')
buffer.set_attribute_pointer_dtype(shader, 'in_colour', 'colour')
buffer.unbind()
vao.unbind()

Warning

This is an OpenGL Core function (>=3.0) and should not be
called for Legacy profile applications (<=2.1).

	
__init__()[source]

	

	
bind()[source]

	

	
handle

	

	
unbind()[source]

	

Texturing

Sorting

 Copyright Adam Griffiths.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	PyGLy 0.0.1 documentation

Weak Method Reference

Provides an implementation of a WeakMethodReference
for weak references to functions and methods.

The standard weakref module in Python cannot store
references to non-bound functions and should not
be used to perform this task.

Code borrowed from the following places:
http://code.activestate.com/recipes/81253/
http://stackoverflow.com/questions/3942303/how-does-a-python-set-check-if-two-objects-are-equal-what-methods-does-an-o

	
class pygly.weak_method_reference.WeakMethodReference(function=None)[source]

	Provides the ability to store a weak pointer to
class members on top of the existing weakref functionality
provided by python.

This class also provides comparison operators to
allow proper usage in containers such as set([]).

The ability to change the weak reference is not
supported to prevent mutability. This is important
for container support as the object hash would
change after storing it.

	
__init__(function=None)[source]

	Initialises the weak reference with
a function or class method.

	Args:

	function: The object to store a weak reference to.
This can be a class, object, method or function.

	
is_alive()[source]

	Check if the referenced object is valid.

The equivalent to ‘not is_dead()’
Make a positive method call because double negatives suck

	
is_dead()[source]

	Check if the referenced object is invalid.

	Returns:

	True if the referenced callable was a bound method and
the instance no longer exists. Otherwise, return False.

 Copyright Adam Griffiths.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	PyGLy 0.0.1 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pygly	

 	
 	
 pygly.tree_leaf	

 	
 	
 pygly.vertex_array	

 	
 	
 pygly.weak_method_reference	

 Copyright Adam Griffiths.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	PyGLy 0.0.1 documentation

Index

 _
 | B
 | H
 | I
 | P
 | T
 | U
 | V
 | W

_

 	

 	__init__() (pygly.tree_leaf.TreeLeaf method)

 	

 	(pygly.vertex_array.VertexArray method)

 	(pygly.weak_method_reference.WeakMethodReference method)

B

 	

 	bind() (pygly.vertex_array.VertexArray method)

H

 	

 	handle (pygly.vertex_array.VertexArray attribute)

I

 	

 	is_alive() (pygly.weak_method_reference.WeakMethodReference method)

 	

 	is_dead() (pygly.weak_method_reference.WeakMethodReference method)

P

 	

 	parent (pygly.tree_leaf.TreeLeaf attribute)

 	predecessors() (pygly.tree_leaf.TreeLeaf method)

 	pygly.tree_leaf (module)

 	

 	pygly.vertex_array (module)

 	pygly.weak_method_reference (module)

T

 	

 	TreeLeaf (class in pygly.tree_leaf)

U

 	

 	unbind() (pygly.vertex_array.VertexArray method)

V

 	

 	VertexArray (class in pygly.vertex_array)

W

 	

 	WeakMethodReference (class in pygly.weak_method_reference)

 Copyright Adam Griffiths.
 Created using Sphinx 1.3.1.

 _static/file.png

_static/plus.png

_static/transform_object_space.png

_static/comment.png

_static/down-pressed.png

_modules/pygly/tree_leaf.html

 Navigation

 		
 index

 		
 modules |

 		PyGLy 0.0.1 documentation »

 		Module code »

 Source code for pygly.tree_leaf

[docs]class TreeLeaf(object):
 """Base class for Tree Leaf objects.

 Supports a single parent.
 Cannot have children.
 """

[docs] def __init__(self):
 """Creates a tree leaf object.
 """
 super(TreeLeaf, self).__init__()

 self._parent = None

 @property
 def parent(self):
 """The current parent of the node or None
 if there isn't one.

 This is an @property decorated method which allows
 retrieval and assignment of the scale value.
 """
 if self._parent != None:
 return self._parent()
 return None

[docs] def predecessors(self):
 """Returns successive parents of the node.

 Generator function that allows iteration
 up the tree.
 """
 parent = self.parent
 while parent != None:
 yield parent
 parent = parent.parent

 © Copyright Adam Griffiths.
 Created using Sphinx 1.3.1.

_modules/pygly/weak_method_reference.html

 Navigation

 		
 index

 		
 modules |

 		PyGLy 0.0.1 documentation »

 		Module code »

 Source code for pygly.weak_method_reference

'''
Provides an implementation of a WeakMethodReference
for weak references to functions and methods.

The standard weakref module in Python cannot store
references to non-bound functions and should not
be used to perform this task.

Code borrowed from the following places:
http://code.activestate.com/recipes/81253/
http://stackoverflow.com/questions/3942303/how-does-a-python-set-check-if-two-objects-are-equal-what-methods-does-an-o
'''

import weakref
import new

[docs]class WeakMethodReference(object):
 """Provides the ability to store a weak pointer to
 class members on top of the existing weakref functionality
 provided by python.

 This class also provides comparison operators to
 allow proper usage in containers such as set([]).

 The ability to change the weak reference is not
 supported to prevent mutability. This is important
 for container support as the object hash would
 change after storing it.
 """

[docs] def __init__(self, function = None):
 """Initialises the weak reference with
 a function or class method.

 Args:
 function: The object to store a weak reference to.
 This can be a class, object, method or function.
 """
 super(WeakMethodReference, self).__init__()

 try:
 if function.im_self is not None:
 # bound method
 self._obj = weakref.ref(function.im_self)
 else:
 # unbound method
 self._obj = None
 self._func = function.im_func
 self._class = function.im_class
 except AttributeError:
 # not a method
 self._obj = None
 self._func = function
 self._class = None

 def __call__(self):
 """
 Returns:
 Returns a new bound-method like the original, or
 the original function if refers just to a function or
 unbound method.
 Returns None if the original object doesn't exist
 """
 if self.is_dead():
 return None
 if self._obj is not None:
 # we have an instance: return a bound method
 return new.instancemethod(
 self._func,
 self._obj(),
 self._class
)
 else:
 # we don't have an instance: return just the
 # function
 return self._func

[docs] def is_dead(self):
 """Check if the referenced object is invalid.

 Returns:
 True if the referenced callable was a bound method and
 the instance no longer exists. Otherwise, return False.
 """
 if self._obj is None and self._func is not None:
 return False
 if self._obj is not None and self._obj() is None:
 return True
 return False

[docs] def is_alive(self):
 """Check if the referenced object is valid.

 The equivalent to 'not is_dead()'
 Make a positive method call because double negatives suck
 """
 return not self.is_dead()

 def __eq__(self, other):
 """Provides an 'equal' operator.

 .. note::
 Enables comparison between different weak
 pointer objects that point to the same
 object based on the contents instead of the
 object pointer.
 """
 return (
 isinstance(other, self.__class__) \
 and self.__dict__ == other.__dict__
)

 def __ne__(self, other):
 """Provides a 'not-equal' operator.

 .. note::
 Enables comparison between different weak
 pointer objects that point to the same
 object based on the contents instead of the
 object pointer.
 """
 return not self.__eq__(other)

 def __hash__(self):
 """Generates a hash value for the stored reference.

 .. note::
 This method is provided to allow comparison of
 references inside of containers like set([])
 http://stackoverflow.com/questions/3942303/how-does-a-python-set-check-if-two-objects-are-equal-what-methods-does-an-o
 """
 return hash((self._obj, self._func, self._class))

 © Copyright Adam Griffiths.
 Created using Sphinx 1.3.1.

_static/minus.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		PyGLy 0.0.1 documentation »

 All modules for which code is available

		pygly.tree_leaf

		pygly.vertex_array

		pygly.weak_method_reference

 © Copyright Adam Griffiths.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_modules/pygly/vertex_array.html

 Navigation

 		
 index

 		
 modules |

 		PyGLy 0.0.1 documentation »

 		Module code »

 Source code for pygly.vertex_array

import ctypes

from OpenGL import GL

[docs]class VertexArray(object):
 """Wraps OpenGL Vertex Array Objects.

 Provides wrappers around standard functions and higher level
 wrappers with PyGLy.BufferRegion interfaces.

 Example::

 vs = Shader(GL_VERTEX_SHADER, shader_source['vert'])
 fs = Shader(GL_FRAGMENT_SHADER, shader_source['frag'])
 shader = ShaderProgram(vs, fs)

 # a basic triangle
 vertices = numpy.array(
 [
 # X Y Z R G B
 ((0.0, 1.0, 0.0), (1.0, 0.0, 0.0)),
 ((-2.0,-1.0, 0.0), (0.0, 1.0, 0.0)),
 ((2.0,-1.0, 0.0), (0.0, 0.0, 1.0)),
],
 dtype = [
 ('position','float32',(3,)),
 ('colour','float32',(3,))
]
)
 buffer = DtypeVertexBuffer(
 vertices.dtype,
 GL_ARRAY_BUFFER,
 GL_STATIC_DRAW,
 data = vertices
)

 vao = VertexArray()

 vao.bind()
 buffer.bind()
 buffer.set_attribute_pointer_dtype(shader, 'in_position', 'position')
 buffer.set_attribute_pointer_dtype(shader, 'in_colour', 'colour')
 buffer.unbind()
 vao.unbind()

 .. warning:: This is an OpenGL Core function (>=3.0) and should not be
 called for Legacy profile applications (<=2.1).
 """

[docs] def __init__(self):
 super(VertexArray, self).__init__()

 self._handle = GL.glGenVertexArrays(1)

 @property
 def handle(self):
 return self._handle

[docs] def bind(self):
 GL.glBindVertexArray(self.handle)

[docs] def unbind(self):
 GL.glBindVertexArray(0)

 © Copyright Adam Griffiths.
 Created using Sphinx 1.3.1.

_images/transform_inertial_space.png

search.html

 Navigation

 		
 index

 		
 modules |

 		PyGLy 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright Adam Griffiths.
 Created using Sphinx 1.3.1.

_images/transform_object_space.png

_static/comment-close.png

_static/transform_inertial_space.png

_static/ajax-loader.gif

_static/down.png

_static/comment-bright.png

_static/up.png

