
Pyglet-gui Documentation
Release 0.1

Jorge C. Leitão

Sep 20, 2017

Contents

1 Pyglet-gui at a glance 3
1.1 Hello world . 3
1.2 A Button . 4
1.3 Modifying the button . 5
1.4 This is just part of the whole . 5

2 Overview of the API 7
2.1 Viewers . 7
2.2 Theme and Graphics . 8
2.3 Controllers . 8
2.4 Examples . 8
2.5 Existing user interfaces . 9

3 Viewers 11
3.1 Managed . 11
3.2 Rectangle . 11
3.3 Viewer . 12

4 Containers 15
4.1 Container . 15
4.2 Other containers . 15

5 Controllers 17
5.1 Controller . 17
5.2 Two state controller . 18
5.3 Continuous state controller . 18
5.4 Options and selectors . 18

6 Managers 21
6.1 Viewer Manager . 21
6.2 Controller Manager . 23
6.3 Manager . 24

7 Theme 25
7.1 Graphic elements . 25
7.2 Templates . 26
7.3 Parser . 26

i

8 Button 29

ii

Pyglet-gui Documentation, Release 0.1

Contents:

Contents 1

Pyglet-gui Documentation, Release 0.1

2 Contents

CHAPTER 1

Pyglet-gui at a glance

Pyglet gui was designed to make Graphical User Interfaces (GUI) in Pyglet. Here’s an overview of how you can write
a GUI in Pyglet-gui.

First, a minimal Pyglet:

import pyglet

window = pyglet.window.Window(640, 480, resizable=True, vsync=True)
batch = pyglet.graphics.Batch()

@window.event
def on_draw():

window.clear()
batch.draw()

Hello world

In Pyglet-gui, a GUI always need a Theme. Let’s build one:

from pyglet_gui.theme import Theme

theme = Theme({"font": "Lucida Grande",
"font_size": 12,
"text_color": [255, 0, 0, 255]}, resources_path='')

Don’t worry about the resources_path=’‘ for now. With this theme, we can now create a simple Label:

from pyglet_gui.gui import Label

label = Label('Hello world')

Finally, we create a Manager to initialize a GUI and we run Pyglet app:

3

Pyglet-gui Documentation, Release 0.1

from pyglet_gui.manager import Manager

Manager(label, window=window, theme=theme, batch=batch)

pyglet.app.run()

A Button

Let’s say we now want a Button. Using the same Pyglet’s setup, we create a more complex Theme:

from pyglet_gui.theme import Theme

theme = Theme({"font": "Lucida Grande",
"font_size": 12,
"text_color": [255, 255, 255, 255],
"gui_color": [255, 0, 0, 255],
"button": {

"down": {
"image": {

"source": "button-down.png",
"frame": [8, 6, 2, 2],
"padding": [18, 18, 8, 6]

},
"text_color": [0, 0, 0, 255]

},
"up": {

"image": {
"source": "button.png",
"frame": [6, 5, 6, 3],
"padding": [18, 18, 8, 6]

}
}

}
}, resources_path='theme/')

This is assigning textures for the up and down state of the button.

Compared to the previous example, we added “gui_color” (color of non-text elements) and “button” to the root, and
resources_path=’theme/’. This assumes the image “button.png” and “button-down.png” are in the directory “theme/”
(use Pyglet-gui ones for now).

Again:

from pyglet_gui.buttons import Button

just to print something to the console, is optional.
def callback(is_pressed):

print('Button was pressed to state', is_pressed)

button = Button('Hello world', on_press=callback)

and we run:

from pyglet_gui.manager import Manager

Manager(button, window=window, theme=theme, batch=batch)

4 Chapter 1. Pyglet-gui at a glance

Pyglet-gui Documentation, Release 0.1

pyglet.app.run()

This is the basic idea of Pyglet-gui: you set up a Theme and create the GUI.

The default path of the Pyglet-gui Button is “button”->”up” and “button”->”down”, which, in Pyglet-gui is, repre-
sented by lists: [”button”, “up”] and [”button”, “down”].

Modifying the button

Lets now assume we don’t want the paths [”button”, “up”] and [”button”, “down”], but we want the path [”my_path”,
“up”] and [”my_path”, “down”]. We do:

from pyglet_gui.buttons import Button

class MyButton(Button):
def get_path(self):

path = ['my_path']
if self.is_pressed:

path.append('down')
else:

path.append('up')
return path

button = MyButton('Hello world', on_press=callback)

Pyglet-gui is designed to be reusable. All elements in Pyglet-gui are designed to be subclassed to fulfill the developer’s
need.

This is just part of the whole

This was a minimal overview of how you use Pyglet-gui, but Pyglet-gui is more. It provides a consistent API to define
custom Themes, custom graphics, and, most importantly, user interfaces.

The next logical step is to have an overview of what Pyglet-gui allows you to do. Thanks for your interest!

1.3. Modifying the button 5

Pyglet-gui Documentation, Release 0.1

6 Chapter 1. Pyglet-gui at a glance

CHAPTER 2

Overview of the API

This document gives an overview of how Pyglet-gui works and what you can do with it.

Pyglet-gui uses Viewers for defining appearance and Controllers for defining behaviour. For instance, a
Button is a subclass of a Viewer (for draw) and of a Controller (for behaviour).

Viewers

A Viewer is characterized by a rectangular bounding box that implements abstract methods to draw Graphical
Elements such as textures, inside it.

In Pyglet-gui, a GUI organizes viewers in a tree: every viewer has a parent Container (a subclass of Viewer with
children viewers) and the root of the tree is a ViewerManager, a special container without parent. This is small
variation of the composite pattern.

This structure is essentially used to minimize the number of operations in the drawing Batch; Pyglet-gui provides two
orthogonal ways to operate on the batch: the top-down and bottom-up:

7

http://en.wikipedia.org/wiki/Composite_pattern

Pyglet-gui Documentation, Release 0.1

• Top-down: when a container wants to reload itself in the batch (e.g. in the initialization of the Manager).

• Bottom-up: when a single Viewer wants to reload itself (e.g. when a Controller changed a viewer’s state).

Pyglet-gui abstracts most of these concepts by a simple interface. The procedure can be decomposed in three steps, as
exemplified in Button source code:

def change_state(self):
self._is_pressed = not self._is_pressed
self.reload()
self.reset_size()

1. the state of the Viewer changes, and that requires a new appearance;

2. reload() the graphics of the Viewer;

3. reset_size() reset size of the viewer bounding box.

If the Viewer changed size when it became pressed, the method reset_size() is propagated to the parent container
and in the tree up to the container that didn’t changed size, which means that a relayout of the GUI is only made to a
certain level in the tree, minimizing Batch operations. The complete references of this API can be found in Viewer.

Theme and Graphics

Pyglet-gui has a graphics API for handling vertex lists and vertex attributes: The developer defines a Theme from a
dictionary, and viewers select the part of the theme they need using a path computed from the viewer’s current state,
get_path().

This Theme is constructed out of a nested dictionary by having Parsers interpreting the dictionary’s content and
populating the Theme with Templates.

These templates are able to generate Graphical Elements that are used by Viewers to compose their appear-
ance.

Controllers

A Controller represents something that can have behavior, such as something triggered by Pyglet events.

Pyglet-gui uses a ControllerManager for handling all window events in the GUI, and the manager uses these
events to call the correct Controllers' handlers.

A handler in a controller is just a method “on_*”: the ControllerManager only handles specific Pyglet events and uses
hasattr() to check which controllers receive those events.

Examples

In the directory “examples” you can find examples of how to instantiate GUIs and how to use the Pyglet-gui to create
elements with custom functionality.

In fact, all Pyglet-gui user interfaces are examples, since they are just subclasses of Controller, Viewer, or both,
that implement custom methods:

• get_path(): used to select the path on the Theme;

• load_graphics() and unload_graphics(): used to load and unload Graphical Elements;

8 Chapter 2. Overview of the API

Pyglet-gui Documentation, Release 0.1

• layout(): used to position the Graphical Elements in the correct place;

• compute_size(): used to compute the size of the Viewer from the graphics it contains;

• on_*: used to handle events.

Existing user interfaces

Below is a list of the existing elements in Pyglet-gui. Elements that are not links are not documented yet and most
probably are not yet covered by a Test Case.

Viewers:

• Graphics: a viewer with a graphic element from the theme.

• Spacer: an empty viewer for filling space in containers.

• Label: a viewer that holds text.

• Document: a viewer that holds Pyglet documents (optionally with a scrollbar).

Controllers:

• TwoStateController: a controller with two states.

• ContinuousStateController: a controller with a float value state.

• Slider: a ContinuousStateController with continuous or discrete states and 3 graphic elements:
a bar, a knob and markers.

Containers:

• Vertical: widgets inside are arranged vertically.

• Horizontal: widgets inside are arranged horizontally.

• Grid: widgets inside are arranged in a grid (you provide a matrix of them).

• Frame: a wrapper that adds a graphical frame around a viewer.

• Scrollable: a wrapper with scrollable content.

End-user controllers:

• Button: a On/Off button with a label and graphics placed on top off each other.

• OneTimeButton: a Button which turns off when is released.

• Checkbox: a Button where the label is placed next to the graphics (and graphics is a checkbox-like button).

• FocusButton: a Button that can have focus and is selectable with TAB.

• HorizontalSlider: an concrete implementation of a Slider, in horizontal position.

• TextInput: a box for writing text.

2.5. Existing user interfaces 9

Pyglet-gui Documentation, Release 0.1

10 Chapter 2. Overview of the API

CHAPTER 3

Viewers

This section describes how the viewer API works and how you can use it.

Managed

class pyglet_gui.core.Managed
A managed is an abstract class from where all GUI elements derive from. Like the name suggests, it is managed
by a Manager. It is attached to a manager using

set_manager()
Sets the manager of this class.

This class exposes important attributes of the manager such as the theme and (manager’s) batch. It represents
the idea that any controller or viewer in Pyglet-gui are managed by a Manager.

get_batch()
Returns a dictionary of the form {‘batch’: batch, ‘group’: group} where group is a string from the available
drawing groups of the manager.

theme
A read-only property that returns its manager’s theme.

Rectangle

class pyglet_gui.core.Rectangle
A geometric rectangle represented by x, y, width and height. It is used for different operations in Pyglet-gui.

x, y
The position of the rectangle

width, height
The size of the rectangle

11

Pyglet-gui Documentation, Release 0.1

is_inside()

Parameters

• x –

• y –

Returns True if point (x,y) lies inside the rectangle

set_position()

Parameters

• x –

• y –

Setter for (x, y).

Viewer

class pyglet_gui.core.Viewer
A viewer, subclass of Managed and Rectangle, is generic way of displaying Pyglet-gui elements in a win-
dow.

Viewers are organized in a tree structure where the manager is always the root, the nodes are Containers,
and viewers are leafs.

Viewers can have graphical elements that have to be defined by subclasses and are loaded by
load_graphics().

In Pyglet-gui, the viewer’s appearance is defined by the path it chooses from the Theme, defined in
get_path().

get_path()
Returns the viewer’s path on the theme.

get_path() can return a different path depending on the viewer’s state, for example, in pyglet-gui’s
Button:

def get_path(self):
path = ['button']
if self.is_pressed():

path.append('down')
else:

path.append('up')
return path

leads to a different appearance depending on whether the button is pressed or not.

To draw elements, a viewer assigns graphical elements to its manager’s batch using get_batch() This is
done by calling generate() for each of its graphics in the method

load_graphics()
Method used to generate() graphics this viewer owns. It normally calls get_path() to retrieve the
specific subset of theme it needs:

theme = self.theme[self.get_path()]

followed by calls of the form:

12 Chapter 3. Viewers

Pyglet-gui Documentation, Release 0.1

self._button = theme['image'].generate(color=theme['gui_color'], **self.get_
→˓batch('background'))
_button is now a loaded graphic element.

Analogously, a viewer has to define the method unload_graphics() to deconstruct the generated graphics
from load.

unload_graphics()
Method used to unload graphics loaded in load_graphics().

Example:

_button is a loaded graphic element.
self._button.unload()

Most of the times, load and unload are called consecutively: when the viewer wants to change its appearance,
e.g. because it changed its state, it has to unload itself to remove the graphics from the batch, and load them
again using the new path. Pyglet-gui provides the method reload() for that:

reload()
Calls unload followed by load. Used in the bottom-up drawing scheme when the element change its state
(e.g. by an event).

This is used to update the graphics whenever the Viewer changed state.

One important feature of a viewer is that it is not supposed to overlap with other viewers from the same GUI.
This means that is its parent who decides its position. The method compute_size() returns the computed
size of the viewer from the Graphics it has.

compute_size()
Computes the size of the viewer and returns the tuple (width, height). Implementation is made by sub-
classes.

The size must include all graphics and possible children the viewer has; this is the bounding box of the
viewer to avoid overlaps.

The default implementation returns (self.width, self.height).

When the parent has the size of all its children, it sets the position of the Viewer, using set_position():

set_position()

Parameters

• x –

• y –

A setter for the position of the viewer. Calls layout() after to ensure the graphics are also set.

layout()
Places graphical elements in the correct positions in relation to the viewer’s position.

Default implementations does nothing.

What defines the functionality of the viewer is the method reset_size(), which is worth transliterating:

def reset_size(self, reset_parent=True):
width, height = self.compute_size()

if out size changes
if self.width != width or self.height != height:

self.width, self.height = width, height

3.3. Viewer 13

Pyglet-gui Documentation, Release 0.1

This will eventually call our layout
if reset_parent:

self.parent.reset_size(reset_parent)
else, the parent is never affected and thus we layout.
else:

self.layout()

reset_size()

Parameters reset_parent – A boolean, see below.

The case reset_parent = False updates the viewer size and layout() if the size changed. This call is
what we call a top-down draw: it is called when it was the parent’s initiative to reset_size of the viewer.

The reset_parent = True does the same but, if the size changes, it also calls the parent’s reset_size. This
call is the bottom-up draw: the child decided to trigger a reset_size.

In the button-up, the parent will re-calculate its own size, and calls reset_size of all children, with re-
set_parent = False. This ensures that all its children are affected by the size change of one of them.

This call can be further propagated to the parent’s parent in order to accommodate the size changes of all
elements.

In situations where an event was triggered (e.g. by a Controller), the bottom-up is the correct way,
thus reset_size() should be called after reload(). For example, Pyglet-gui’s pyglet_gui.button.
Button uses:

def change_state(self):
self._is_pressed = not self._is_pressed
self.reload()
self.reset_size()

Finally, the viewer implements a delete(), used for deleting the element

delete()
Used to delete the viewer: calls unload_graphics() and undo initialization.

14 Chapter 3. Viewers

CHAPTER 4

Containers

Container

class pyglet_gui.containers.Container
A Viewer that contain other viewers. This is an abstract and base class of all containers in Pyglet-gui and is
used to group viewers and position them in specific ways.

In the Viewer API, a container is a node in the tree of viewers.

While viewers only have to load graphics, a container has to load both its graphics and its content. Thus, the
container provides two aditional methods:

load_content()
Loads all viewers in the container

unload_content()
Unloads all viewers in the container

Both these methods are already correctly called during a reload().

The getters and setters of content are:

content
A read-only property returning the content of the container.

add(viewer)
Adds the viewer to the container’s content.

remove(viewer)
Removes the viewer from the container’s content.

Other containers

class pyglet_gui.containers.Wrapper
A wrapper is a container that contains one and only one Viewer. It follows the decorator pattern.

15

http://en.wikipedia.org/wiki/Decorator_pattern

Pyglet-gui Documentation, Release 0.1

It does not have any graphical appearance and is used by Pyglet-gui for creating more interesting elements such
as the ViewerManager.

16 Chapter 4. Containers

CHAPTER 5

Controllers

A viewer, by itself, cannot be interacted by events; it is a static element. On the other hand, a Controller is a
dynamic element that does not have a geometric representation and is not able to draw itself on the screen.

To provide functionality to a viewer, or to provide drawing features to a controller, Pyglet-gui mixes both.

This section introduces the API for controllers.

Controller

class pyglet_gui.core.Controller
A controller is an abstract class that represents something that can be controlled.

The main functionality of a controller is to attach itself to a list of controllers of the ControllerManager.

set_manager()
Sets its manager and calls:

manager.add_controller(self)

When mixing a Controller with a Viewer, the controller has to be the first parent-class or you have to write
a custom set_manager().

This way, the ControllerManager can dispatch calls when it handles events from the Pyglet’s window.
To a controller receive events (e.g. “on_press”), it has to have the method implemented (i.e. the manager uses
hasattr() to decide if it sends the event to the controller or not). The signature of the method must be the
same same as of Pyglet (or, if you want, the one ControllerManager calls).

To receive mouse events, the controller has to define hit_test(x, y)(), which returns True if the point (x,
y) is inside the controller and False otherwise.

17

Pyglet-gui Documentation, Release 0.1

Two state controller

The simplest example of a controller is one that flips between two states. Pyglet-gui provides a simple abstraction of
such behavior in the TwoStateController.

class pyglet_gui.controllers.TwoStateController
A Controller with two possible values characterized by the read-only property is_pressed. This con-
troller accepts the following arguments:

Parameters

• on_press – An optional callback function of one boolean argument that is called when
the controller changes state.

• is_pressed – An optional boolean for deciding the state on initialization.

is_pressed
True if in one state, False in the other.

This controller has the method

change_state()
Flips the state of the controller and calls on_press if it is defined.

Continuous state controller

Another example of a useful controller is a controller with a continuous set of values within an interval. Pyglet-gui
provides a simple abstraction of such behavior in the ContinuousStateController.

class pyglet_gui.controllers.ContinuousStateController
A Controller with a state in a continuous interval [min_value, max_value] characterized by the read-only
property value.

Parameters

• value – The initial value. Default to 0

• min_value – Default to 0.0

• max_value – Default to 1.0

• on_set – An optional callback function of one float argument that is called when the
controller changes value.

value
The value of the controller. A read-only property.

This controller has the method

set_value()
The setter for the value. Calls on_set if it is defined. The value must belong to [min_value, max_value].

Options and selectors

One useful GUI less trivial example of a controller is selector: a menu with a set of options, and the user can choose
one and only one. Pyglet-gui provides an abstraction of such behavior in the Option and Selector.

18 Chapter 5. Controllers

Pyglet-gui Documentation, Release 0.1

class pyglet_gui.controllers.Option
A Controller with a name and a parent selector. The name is used as an id in the parent selector. This
controller is initialized by a name and a parent:

Parameters

• name – Mandatory string

• parent – Mandatory Selector.

and has one method

select()
Makes him the current selection of the parent.

class pyglet_gui.controllers.Selector
An abstract class with a set of options labeled by a string. The arguments are

Parameters

• options – Mandatory list of strings identifying the options.

• labels – Optional list of strings with the same length of options labeling the options.

• on_select – Optional callback function that will receive one argument, the selected op-
tion name.

• selected – Optional string (belonging to “options” setting a initially-selected item.

This class has two methods:

select()
Selects the option name and, if defined, calls on_select.

deselect()
Deselects the current selected option, if any is selected.

5.4. Options and selectors 19

Pyglet-gui Documentation, Release 0.1

20 Chapter 5. Controllers

CHAPTER 6

Managers

In Pyglet-gui, each independent GUI is a Manager, a subclass of both ViewerManager and
ControllerManager.

This section provides the relevant references for understanding how Manager works and how you can use it.

This section is the most complex of this documentation because it glues different APIs together. The references of the
classes are themselves divided in APIs, so it is hopefully easier to understand.

Viewer Manager

ViewerManagerGroup

Each Manager is independent of each other, but they are drawn on the same window, so, they need different vertex
groups to know which one is drawn on top. A ViewerManagerGroup is defined for that:

class pyglet_gui.manager.ViewerManagerGroup
A Pyglet’s ordered group, i.e. a drawing group that preserves ordering with a unique ordering on instances of
ViewerManagerGroup.

This group uses its own order, own_order, to distinguish itself from other Pyglet’s Ordered groups.

own_order
The same value as order, used for comparisons between ViewerManagerGroup.

This group defines __eq__, __lt__ and __hash__ that compare against ViewerManagerGroup using
own_order and against other ordered groups using order.

The different ViewerManagerGroup don’t know each other, but always know if they are on top of all.

is_on_top()
Returns true if the particular instance is on top amongst all instances of ViewerManagerGroup.

To set this group to be the top group, use pop_to_top():

21

Pyglet-gui Documentation, Release 0.1

pop_to_top()
Sets own_order to the highest value amongst all instances of ViewerManagerGroup, ensuring
the instance becomes the top.

ViewerManager

class pyglet_gui.manager.ViewerManager
A manager of Viewers. A ViewerManager is a subclass of pyglet_gui.containers.Wrapper that
exposes important features of Pyglet-gui.

Because it is a container, it is part of the tree structure used by Pyglet-gui to draw viewers. However, this
container is special in the sense that it does not have a parent, and thus it only pyglet_gui.core.Viewer.
reset_size() with reset_parent=False, i.e. it only uses the top-down drawing.

One consequence is that because no one sets its position, it sets its own position, from a position computed from
get_position().

Because it is the root of the tree, it exposes attributes required for drawing to its viewers. They are the
pyglet_gui.theme.theme.Theme, the Batch and batch groups.

theme
The pyglet_gui.theme.theme.Theme of this manager. A read-only property defined in the ini-
tialization.

One theme can be shared among different ViewerManagers.

batch
The Batch of the manager. A read-only property defined on the initialization.

If no batch is provided in initialization, this Manager defines its own batch and exposes a draw() method.

A Pyglet Batch can be shared among ViewerManagers and is exposed by each viewer by the method
pyglet_gui.core.Managed.get_batch().

Because Pyglet-gui Theme API uses groups for drawing, the ViewerManager is responsible for defining such
groups to its viewers.

The first group required is for the ViewerManager itself, such that different ViewerManagers can be drawn in
the same window. This is implemented in the root_group:

root_group
A ViewerManagerGroup used by ViewerManagers to decide which manager is on top of each other
(on drawing). It is exposed as a read-only property.

Because there can be several managers on the same window, the viewer implements the method
pop_to_top():

pop_to_top()
Calls ViewerManagerGroup.pop_to_top().

For drawing viewers, this manager has 4 sub-groups exposed by the attribute group:

group
A dictionary of 4 key-strings: ‘panel’, ‘background’, ‘foreground’, ‘highlight’ mapping to 4 py-
glet.graphics.OrderedGroup with orders 10, 20, 30 and 40 respectively.

When a graphic element is generated by the Viewer, the viewer has to decide which group to use to
that element. This property is exposed in each viewer by the method pyglet_gui.core.Managed.
get_batch().

22 Chapter 6. Managers

Pyglet-gui Documentation, Release 0.1

window
A Pyglet window where the ViewerManager lives, exposed as a property.

The manager uses Pyglet’s window to know where it has to be positioned, and to assign itself as an handler.

This property is writable to assign another window to the manager.

get_position()
Computes and returns its position (x, y) on its window.

Used with pyglet_gui.core.Viewer.set_position() to set the position of this manager in
the window.

Controller Manager

class pyglet_gui.manager.ControllerManager
A controller manager is the class responsible for managing Pyglet-gui Controllers.

It has a list of controllers assigned to him and is responsible for calling its handlers.

controllers
The list of controllers assigned to him. Exposed as a read-only property.

add_controller()
Appends the controller to controllers.

remove_controller()
Removes the controller from controllers.

This manager assumes the user is only interested in using one controller at the time. It tracks down the mouse
position and tests when the mouse entered in a controller bounding box, saving that controller as the current
“hovering” controller.

When the mouse is pressed, the “hovering” controller also becomes the “focus” controller. These are unique
within a manager because Containers don’t overlap viewers.

The class exposes two methods for this behaviour:

set_focus()
Sets the controller to be the focus of the manager. If controllers have the method, it calls on_lose_focus
and on_gain_focus of the old focus and new focus respectively.

set_hover()
Sets the controller to be the hover of the manager. If controllers have the method, it calls on_lose_highlight
and on_gain_highlight of the old hover and new hover respectively.

The focus controller is the only controller to receive keystrokes and other events.

In this manager, the keystroke TAB and SHIFT+TAB are handled to navigate (to the front and to the back) in
the list of controllers, to give focus to them. This is useful for keyboard driven GUIs.

This manager has two other special controllers, the “wheel target” and “wheel hint” (in case wheel target don’t
handle the event), used to handle mouse wheel events. This is useful for allowing scrollbars to receive wheel
events without requiring the user to click on them to “focus it”.

set_wheel_target()
Sets the wheel target to be the controller. The controller has to have the method on_mouse_scroll.

set_wheel_hint()
Sets the wheel hint to be the controller. The controller has to have the method on_mouse_scroll.

6.2. Controller Manager 23

Pyglet-gui Documentation, Release 0.1

Manager

class pyglet_gui.manager.Manager
The manager is the Pyglet-gui main element for initializing a new GUI in Pyglet-gui. It is a subclass of both
ViewerManager and ControllerManager which overrides some of the on_* methods to give some
functionality to the ViewerManager.

Parameters

• content – The content of this manager. An instance of Viewer.

• theme – The Theme of this manager. An instance of Theme.

• window – The window of this manager. An instance of Pyglet Window.

• batch – An optional Batch for this manager. If set, must be an instance of Pyglet Batch.

• group – An optional Group, parent of the group this manager uses. Must be a Pyglet Group

• is_movable – If False, this manager is not movable.

• anchor – A anchor option to position this manager in relation to the window. Default to
ALIGN_CENTER.

• offset – The offset of this manager in relation to the anchor point.

Besides the implementation of ViewerManager and ControllerManager, the manager implements its own mov-
ability: it can be dragged if the parameter ‘is_movable’ is true.

24 Chapter 6. Managers

CHAPTER 7

Theme

Pyglet-gui Theme API defines a systematic approach for mapping a set of resources (e.g. “image.png”) and attributes
(e.g. color, padding) to lists of vertices and vertex attributes.

The API works as follows:

• The user defines a set of attributes and sources of static resources in a JSON file;

• A set of Parsers translate that to Templates;

• A theme.Theme, a nested dictionary, holds these templates with a unique identifier by a path (e.g. [’button’,
‘up’])

• A theme.Theme is passed to the pyglet_gui.manager.ViewerManager,

and Viewers load concrete graphical elements, GraphicElement using the path.

This document explains how this API works in detail. It starts by explaining Graphic elements, goes to Templates,
Parsers, Theme, and ends in the JSON file.

Graphic elements

class elements.GraphicElement
A graphical element is a subclass of pyglet_gui.core.Rectangle and an abstract class that represents
something with a set of vertices and a set of rules to assign a set of attributes (e.g. color, texture coordinate) to
those vertices.

A GraphicalElement is normally instantiated by a templates.Template. The initialization needs a batch
and a group to assign its vertices to a group in the batch.

A graphical element provides three methods for accessing its size:

get_content_region()
Returns the tuple (x, y, width, height) with its region.

get_content_size()
Returns the tuple (width, height) with the size this element.

25

Pyglet-gui Documentation, Release 0.1

get_needed_size()
Returns the tuple (width, height) with the size required for this element.

After the element is initialized, its size and position can be updated using update():

update(x, y, width, height)
Updates the position and size of the graphics, updating its vertex list in the Batch.

When it is no longer needed, it can be destroyed using unload():

unload()
Removes the vertex list from the Batch.

Pyglet-gui provides two concrete implementations of a Graphical element:

class elements.TextureGraphicElement
A subclass of GraphicElement representing a rectangle of vertices with a texture.

class elements.FrameTextureGraphicElement
A subclass of GraphicElement representing 9 rectangles, as represented in the figure

Fig. 7.1: How the FrameTextureGraphicElement maps an image into a rectangle. Notice that if the rectan-
gle changes size, each of the 9 rectangles will increase independently, and the image will be stretched on each one
independently.

The elements.GraphicElement.get_content_size() is overridden to return the size of the inner
rectangle.

Templates

For generating graphical elements, Pyglet-gui uses the concept of template.

class templates.Template
An abstract class that provides the method generate() to return a new instance of a elements.
GraphicalElement (or subclass of).

A template is normally instantiated by a Parser, when the Theme is being loaded.

generate(color, batch, group)
Returns a new instance of a elements.GraphicalElement. It is an abstract method.

Pyglet-gui provides two concrete implementations of templates:

class templates.TextureTemplate
A Template that generates a elements.TextureGraphicElement.

class templates.FrameTextureTemplate
A TextureTemplate that generates a FrameTextureGraphicElement.

Parser

class parsers.Parser
A parser is a class responsible for parsing elements during the Theme loading. The Theme has a set of parsers
and they read “string-keys” and interpret the values of those keys into a Template.

26 Chapter 7. Theme

Pyglet-gui Documentation, Release 0.1

condition_fulfilled(key)
This abstract method receives a string and returns a boolean value when it is able to interpret that key. If
two parsers accept the same key, the first in the list of parsers in the Theme is chosen.

parse_element(element)
This abstract method receives a dictionary and returns a Template, effectively interpreting the element.

class parsers.TextureParser
A concrete parser that accepts the key “image”, and interprets it into a TextureTemplate or a
FrameTextureTemplate.

7.3. Parser 27

Pyglet-gui Documentation, Release 0.1

28 Chapter 7. Theme

CHAPTER 8

Button

Pyglet-gui ships a standard button and two variations of it. A Button is a mixing of:

• TwoStateController

• Viewer

because it is a controllable viewer with two states (“is pressed” and “is not pressed”).

class pyglet_gui.buttons.Button
A TwoStateController and Viewer represented as a label and texture drawn on top of each other.

Parameters

• label – The string written in the button.

• is_pressed – True if the button starts pressed

• on_press – A callback function of one argument called when the button is pressed (op-
tional).

Attributes:

label
The label of the button (a string).

Accepted events:

on_mouse_press()
Switches the state of the button.

[button, down], [button, up]:
default path in the theme.

class pyglet_gui.buttons.OneTimeButton
A Button that changes back to its original state when the mouse is released.

Parameters

• label – The string written in the button.

29

Pyglet-gui Documentation, Release 0.1

• on_release – A callback function of one argument called when the button is released
(optional).

Accepted events:

on_mouse_release()
Switches the state back and calls the callback if the mouse was released inside the button.

[button, down], [button, up]
default path in the theme.

class pyglet_gui.buttons.Checkbox

A button drawn as a checkbox icon with the label on the side.

Parameters

• label – A string written in the button graphics.

• is_pressed – True if the button starts pressed

• on_press – A callback function of one argument called when the button is pressed (op-
tional).

• align – Whether the label is left or right of the checkbox.

• padding – The distance from the label to the checkbox.

['checkbox', 'checked'], ['checkbox', 'unchecked']
default path in the theme.

class pyglet_gui.buttons.FocusButton
A Button that is focusable and thus can be selected with TAB.

Parameters

• label – The string written in the button.

• is_pressed – True if the button starts pressed

• on_press – A callback function of one argument called when the button is pressed (op-
tional).

Accepted events:

on_mouse_press()
Switches the state of the button.

on_key_press()
If the Button have focus and ENTER is pressed the state of the button is switched.

[button, down], [button, up]
default path in the theme.

30 Chapter 8. Button

Index

A
add() (pyglet_gui.containers.Container method), 15
add_controller() (pyglet_gui.manager.ControllerManager

method), 23

B
batch (pyglet_gui.manager.ViewerManager attribute), 22
Button (class in pyglet_gui.buttons), 29

C
change_state() (pyglet_gui.controllers.TwoStateController

method), 18
Checkbox (class in pyglet_gui.buttons), 30
compute_size() (pyglet_gui.core.Viewer method), 13
condition_fulfilled() (pyglet_gui.theme.parsers.Parser

method), 26
Container (class in pyglet_gui.containers), 15
content (pyglet_gui.containers.Container attribute), 15
ContinuousStateController (class in py-

glet_gui.controllers), 18
Controller (class in pyglet_gui.core), 17
ControllerManager (class in pyglet_gui.manager), 23
controllers (pyglet_gui.manager.ControllerManager at-

tribute), 23

D
delete() (pyglet_gui.core.Viewer method), 14
deselect() (pyglet_gui.controllers.Selector method), 19

E
elements.FrameTextureGraphicElement (class in py-

glet_gui.theme), 26
elements.GraphicElement (class in pyglet_gui.theme), 25
elements.TextureGraphicElement (class in py-

glet_gui.theme), 26

F
FocusButton (class in pyglet_gui.buttons), 30

G
generate() (pyglet_gui.theme.templates.Template

method), 26
get_batch() (pyglet_gui.core.Managed method), 11
get_content_region() (py-

glet_gui.theme.elements.GraphicElement
method), 25

get_content_size() (pyglet_gui.theme.elements.GraphicElement
method), 25

get_needed_size() (pyglet_gui.theme.elements.GraphicElement
method), 25

get_path() (pyglet_gui.core.Viewer method), 12
get_position() (pyglet_gui.manager.ViewerManager

method), 23
group (pyglet_gui.manager.ViewerManager attribute), 22

I
is_inside() (pyglet_gui.core.Rectangle method), 11
is_on_top() (pyglet_gui.manager.ViewerManagerGroup

method), 21
is_pressed (pyglet_gui.controllers.TwoStateController at-

tribute), 18

L
label (pyglet_gui.buttons.Button attribute), 29
layout() (pyglet_gui.core.Viewer method), 13
load_content() (pyglet_gui.containers.Container method),

15
load_graphics() (pyglet_gui.core.Viewer method), 12

M
Managed (class in pyglet_gui.core), 11
Manager (class in pyglet_gui.manager), 24

O
on_key_press() (pyglet_gui.buttons.FocusButton

method), 30
on_mouse_press() (pyglet_gui.buttons.Button method),

29

31

Pyglet-gui Documentation, Release 0.1

on_mouse_press() (pyglet_gui.buttons.FocusButton
method), 30

on_mouse_release() (pyglet_gui.buttons.OneTimeButton
method), 30

OneTimeButton (class in pyglet_gui.buttons), 29
Option (class in pyglet_gui.controllers), 18
own_order (pyglet_gui.manager.ViewerManagerGroup

attribute), 21

P
parse_element() (pyglet_gui.theme.parsers.Parser

method), 27
parsers.Parser (class in pyglet_gui.theme), 26
parsers.TextureParser (class in pyglet_gui.theme), 27
pop_to_top() (pyglet_gui.manager.ViewerManager

method), 22
pop_to_top() (pyglet_gui.manager.ViewerManagerGroup

method), 22

R
Rectangle (class in pyglet_gui.core), 11
reload() (pyglet_gui.core.Viewer method), 13
remove() (pyglet_gui.containers.Container method), 15
remove_controller() (py-

glet_gui.manager.ControllerManager method),
23

reset_size() (pyglet_gui.core.Viewer method), 14
root_group (pyglet_gui.manager.ViewerManager at-

tribute), 22

S
select() (pyglet_gui.controllers.Option method), 19
select() (pyglet_gui.controllers.Selector method), 19
Selector (class in pyglet_gui.controllers), 19
set_focus() (pyglet_gui.manager.ControllerManager

method), 23
set_hover() (pyglet_gui.manager.ControllerManager

method), 23
set_manager() (pyglet_gui.core.Controller method), 17
set_manager() (pyglet_gui.core.Managed method), 11
set_position() (pyglet_gui.core.Rectangle method), 12
set_position() (pyglet_gui.core.Viewer method), 13
set_value() (pyglet_gui.controllers.ContinuousStateController

method), 18
set_wheel_hint() (pyglet_gui.manager.ControllerManager

method), 23
set_wheel_target() (py-

glet_gui.manager.ControllerManager method),
23

T
templates.FrameTextureTemplate (class in py-

glet_gui.theme), 26
templates.Template (class in pyglet_gui.theme), 26

templates.TextureTemplate (class in pyglet_gui.theme),
26

theme (pyglet_gui.core.Managed attribute), 11
theme (pyglet_gui.manager.ViewerManager attribute), 22
TwoStateController (class in pyglet_gui.controllers), 18

U
unload() (pyglet_gui.theme.elements.GraphicElement

method), 26
unload_content() (pyglet_gui.containers.Container

method), 15
unload_graphics() (pyglet_gui.core.Viewer method), 13
update() (pyglet_gui.theme.elements.GraphicElement

method), 26

V
value (pyglet_gui.controllers.ContinuousStateController

attribute), 18
Viewer (class in pyglet_gui.core), 12
ViewerManager (class in pyglet_gui.manager), 22
ViewerManagerGroup (class in pyglet_gui.manager), 21

W
window (pyglet_gui.manager.ViewerManager attribute),

22
Wrapper (class in pyglet_gui.containers), 15

32 Index

	Pyglet-gui at a glance
	Hello world
	A Button
	Modifying the button
	This is just part of the whole

	Overview of the API
	Viewers
	Theme and Graphics
	Controllers
	Examples
	Existing user interfaces

	Viewers
	Managed
	Rectangle
	Viewer

	Containers
	Container
	Other containers

	Controllers
	Controller
	Two state controller
	Continuous state controller
	Options and selectors

	Managers
	Viewer Manager
	Controller Manager
	Manager

	Theme
	Graphic elements
	Templates
	Parser

	Button

