

    
      
          
            
  


Welcome to pyGAM’s documentation!
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pyGAM is a package for building Generalized Additive Models in Python,
with an emphasis on modularity and performance. The API will be immediately familiar to anyone with experience
of scikit-learn or scipy.




Installation

pyGAM is on pypi, and can be installed using pip:

pip install pygam





Or via conda-forge, however this is typically less up-to-date:

conda install -c conda-forge pyGAM





You can install the bleeding edge from github using flit.
First clone the repo, cd into the main directory and do:

pip install flit
flit install






Optional

To speed up optimization on large models with constraints, it helps to
have scikit-sparse installed because it contains a slightly faster,
sparse version of Cholesky factorization. The import from
scikit-sparse references nose, so you’ll need that too.

The easiest way is to use Conda:

conda install -c conda-forge scikit-sparse nose





More information is available in the scikit-sparse docs [http://pythonhosted.org/scikit-sparse/overview.html#download].






Dependencies

pyGAM is tested on Python 2.7 and 3.6 and depends on NumPy, SciPy, and progressbar2 (see requirements.txt for version information).

Optional: scikit-sparse.

In addtion to the above dependencies, the datasets submodule relies on Pandas.




Citing pyGAM


Servén D., Brummitt C. (2018). pyGAM: Generalized Additive Models in Python. Zenodo. DOI: 10.5281/zenodo.1208723 [http://doi.org/10.5281/zenodo.1208723]







Contact

To report an issue with pyGAM please use the issue tracker [https://github.com/dswah/pyGAM/issues].




License

GNU General Public License v3.0




Getting Started

If you’re new to pyGAM, read the Tour of pyGAM
for an introduction to the package.
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Quick Start

This quick start will show how to do the following:


	Install everything needed to use pyGAM.


	fit a regression model with custom terms


	search for the best smoothing parameters


	plot partial dependence functions





Install pyGAM


Pip

pip install pygam








Conda

pyGAM is on conda-forge, however this is typically less up-to-date:

conda install -c conda-forge pygam








Bleeding edge

You can install the bleeding edge from github using flit. First clone the repo, cd into the main directory and do:

pip install flit
flit install








Get pandas and matplotlib

pip install pandas matplotlib










Fit a Model

Let’s get to it. First we need some data:


[1]:






from pygam.datasets import wage

X, y = wage()













/home/dswah/miniconda3/envs/pygam36/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88
  return f(*args, **kwds)






Now let’s import a GAM that’s made for regression problems.

Let’s fit a spline term to the first 2 features, and a factor term to the 3rd feature.


[2]:






from pygam import LinearGAM, s, f

gam = LinearGAM(s(0) + s(1) + f(2)).fit(X, y)







Let’s take a look at the model fit:


[3]:






gam.summary()













LinearGAM
=============================================== ==========================================================
Distribution:                        NormalDist Effective DoF:                                     25.1911
Link Function:                     IdentityLink Log Likelihood:                                -24118.6847
Number of Samples:                         3000 AIC:                                            48289.7516
                                                AICc:                                           48290.2307
                                                GCV:                                             1255.6902
                                                Scale:                                           1236.7251
                                                Pseudo R-Squared:                                   0.2955
==========================================================================================================
Feature Function                  Lambda               Rank         EDoF         P > x        Sig. Code
================================= ==================== ============ ============ ============ ============
s(0)                              [0.6]                20           7.1          5.95e-03     **
s(1)                              [0.6]                20           14.1         1.11e-16     ***
f(2)                              [0.6]                5            4.0          1.11e-16     ***
intercept                                              1            0.0          1.11e-16     ***
==========================================================================================================
Significance codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

WARNING: Fitting splines and a linear function to a feature introduces a model identifiability problem
         which can cause p-values to appear significant when they are not.

WARNING: p-values calculated in this manner behave correctly for un-penalized models or models with
         known smoothing parameters, but when smoothing parameters have been estimated, the p-values
         are typically lower than they should be, meaning that the tests reject the null too readily.






Even though we have 3 terms with a total of (20 + 20 + 5) = 45 free variables, the default smoothing penalty (lam=0.6) reduces the effective degrees of freedom to just ~25.

By default, the spline terms, s(...), use 20 basis functions. This is a good starting point. The rule of thumb is to use a fairly large amount of flexibility, and then let the smoothing penalty regularize the model.

However, we can always use our expert knowledge to add flexibility where it is needed, or remove basis functions, and make fitting easier:


[22]:






gam = LinearGAM(s(0, n_splines=5) + s(1) + f(2)).fit(X, y)










Automatically tune the model

By default, spline terms, s() have a penalty on their 2nd derivative, which encourages the functions to be smoother, while factor terms, f() and linear terms l(), have a l2, ie ridge penalty, which encourages them to take on smaller values.

lam, short for \(\lambda\), controls the strength of the regularization penalty on each term. Terms can have multiple penalties, and therefore multiple lam.


[14]:






print(gam.lam)













[[0.6], [0.6], [0.6]]






Our model has 3 lam parameters, currently just one per term.


Let’s perform a grid-search over multiple lam values to see if we can improve our model.

We will seek the model with the lowest generalized cross-validation (GCV) score.



Our search space is 3-dimensional, so we have to be conservative with the number of points we consider per dimension.

Let’s try 5 values for each smoothing parameter, resulting in a total of 5*5*5 = 125 points in our grid.


[15]:






import numpy as np

lam = np.logspace(-3, 5, 5)
lams = [lam] * 3

gam.gridsearch(X, y, lam=lams)
gam.summary()













100% (125 of 125) |######################| Elapsed Time: 0:00:07 Time:  0:00:07












LinearGAM
=============================================== ==========================================================
Distribution:                        NormalDist Effective DoF:                                      9.2948
Link Function:                     IdentityLink Log Likelihood:                                -24119.7277
Number of Samples:                         3000 AIC:                                            48260.0451
                                                AICc:                                           48260.1229
                                                GCV:                                              1244.089
                                                Scale:                                           1237.1528
                                                Pseudo R-Squared:                                   0.2915
==========================================================================================================
Feature Function                  Lambda               Rank         EDoF         P > x        Sig. Code
================================= ==================== ============ ============ ============ ============
s(0)                              [100000.]            5            2.0          7.54e-03     **
s(1)                              [1000.]              20           3.3          1.11e-16     ***
f(2)                              [0.1]                5            4.0          1.11e-16     ***
intercept                                              1            0.0          1.11e-16     ***
==========================================================================================================
Significance codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

WARNING: Fitting splines and a linear function to a feature introduces a model identifiability problem
         which can cause p-values to appear significant when they are not.

WARNING: p-values calculated in this manner behave correctly for un-penalized models or models with
         known smoothing parameters, but when smoothing parameters have been estimated, the p-values
         are typically lower than they should be, meaning that the tests reject the null too readily.






This is quite a bit better. Even though the in-sample \(R^2\) value is lower, we can expect our model to generalize better because the GCV error is lower.

We could be more rigorous by using a train/test split, and checking our model’s error on the test set. We were also quite lazy and only tried 125 values in our hyperopt. We might find a better model if we spent more time searching across more points.


For high-dimensional search-spaces, it is sometimes a good idea to try a randomized search.

We can acheive this by using numpy’s random module:




[16]:






lams = np.random.rand(100, 3) # random points on [0, 1], with shape (100, 3)
lams = lams * 6 - 3 # shift values to -3, 3
lams = 10 ** lams # transforms values to 1e-3, 1e3








[17]:






random_gam =  LinearGAM(s(0) + s(1) + f(2)).gridsearch(X, y, lam=lams)
random_gam.summary()













100% (100 of 100) |######################| Elapsed Time: 0:00:07 Time:  0:00:07












LinearGAM
=============================================== ==========================================================
Distribution:                        NormalDist Effective DoF:                                     15.6683
Link Function:                     IdentityLink Log Likelihood:                                -24115.6727
Number of Samples:                         3000 AIC:                                            48264.6819
                                                AICc:                                           48264.8794
                                                GCV:                                             1247.2011
                                                Scale:                                           1235.4817
                                                Pseudo R-Squared:                                   0.2939
==========================================================================================================
Feature Function                  Lambda               Rank         EDoF         P > x        Sig. Code
================================= ==================== ============ ============ ============ ============
s(0)                              [137.6336]           20           6.3          7.08e-03     **
s(1)                              [128.3511]           20           5.4          1.11e-16     ***
f(2)                              [0.3212]             5            4.0          1.11e-16     ***
intercept                                              1            0.0          1.11e-16     ***
==========================================================================================================
Significance codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

WARNING: Fitting splines and a linear function to a feature introduces a model identifiability problem
         which can cause p-values to appear significant when they are not.

WARNING: p-values calculated in this manner behave correctly for un-penalized models or models with
         known smoothing parameters, but when smoothing parameters have been estimated, the p-values
         are typically lower than they should be, meaning that the tests reject the null too readily.






In this case, our deterministic search found a better model:


[18]:






gam.statistics_['GCV'] < random_gam.statistics_['GCV']








[18]:







True






The statistics_ attribute is populated after the model has been fitted. There are lots of interesting model statistics to check out, although many are automatically reported in the model summary:


[19]:






list(gam.statistics_.keys())








[19]:







['n_samples',
 'm_features',
 'edof_per_coef',
 'edof',
 'scale',
 'cov',
 'se',
 'AIC',
 'AICc',
 'pseudo_r2',
 'GCV',
 'UBRE',
 'loglikelihood',
 'deviance',
 'p_values']









Partial Dependence Functions

One of the most attractive properties of GAMs is that we can decompose and inspect the contribution of each feature to the overall prediction.

This is done via partial dependence functions.

Let’s plot the partial dependence for each term in our model, along with a 95% confidence interval for the estimated function.


[20]:






import matplotlib.pyplot as plt








[21]:






for i, term in enumerate(gam.terms):
    if term.isintercept:
        continue

    XX = gam.generate_X_grid(term=i)
    pdep, confi = gam.partial_dependence(term=i, X=XX, width=0.95)

    plt.figure()
    plt.plot(XX[:, term.feature], pdep)
    plt.plot(XX[:, term.feature], confi, c='r', ls='--')
    plt.title(repr(term))
    plt.show()












[image: ../_images/notebooks_quick_start_27_0.png]
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Note: we skip the intercept term because it has nothing interesting to plot.


[ ]:




















          

      

      

    

  

    
      
          
            
  


A Tour of pyGAM


Introduction

Generalized Additive Models (GAMs) are smooth semi-parametric models of the form:


\[g(\mathbb{E}[y|X]) = \beta_0 + f_1(X_1) + f_2(X_2, X3) + \ldots + f_M(X_N)\]

where X.T = [X_1, X_2, ..., X_N] are independent variables, y is the dependent variable, and g() is the link function that relates our predictor variables to the expected value of the dependent variable.

The feature functions f_i() are built using penalized B splines, which allow us to automatically model non-linear relationships without having to manually try out many different transformations on each variable.

[image: Basis splines]

GAMs extend generalized linear models by allowing non-linear functions of features while maintaining additivity. Since the model is additive, it is easy to examine the effect of each X_i on Y individually while holding all other predictors constant.

The result is a very flexible model, where it is easy to incorporate prior knowledge and control overfitting.




Generalized Additive Models, in general


\[y \sim ExponentialFamily(\mu|X)\]

where


\[g(\mu|X) = \beta_0 + f_1(X_1) + f_2(X_2, X3) + \ldots + f_M(X_N)\]

So we can see that a GAM has 3 components:


	distribution from the exponential family


	link function \(g(\cdot)\)


	functional form with an additive structure \(\beta_0 + f_1(X_1) + f_2(X_2, X3) + \ldots + f_M(X_N)\)





Distribution:

Specified via: GAM(distribution='...')

Currently you can choose from the following:


	'normal'


	'binomial'


	'poisson'


	'gamma'


	'inv_gauss'







Link function:

We specify this using: GAM(link='...')

Link functions take the distribution mean to the linear prediction. So far, the following are available:


	'identity'


	'logit'


	'inverse'


	'log'


	'inverse-squared'







Functional Form:

Speficied in GAM(terms=...) or more simply GAM(...)

In pyGAM, we specify the functional form using terms:


	l() linear terms: for terms like \(X_i\)


	s() spline terms


	f() factor terms


	te() tensor products


	intercept




With these, we can quickly and compactly build models like:


[12]:






from pygam import GAM, s, te

GAM(s(0, n_splines=200) + te(3,1) + s(2), distribution='poisson', link='log')








[12]:







GAM(callbacks=['deviance', 'diffs'], distribution='poisson',
   fit_intercept=True, link='log', max_iter=100,
   terms=s(0) + te(3, 1) + s(2), tol=0.0001, verbose=False)






which specifies that we want a:


	spline function on feature 0, with 200 basis functions


	tensor spline interaction on features 1 and 3


	spline function on feature 2




Note:

GAM(..., intercept=True) so models include an intercept by default.




in Practice…

in pyGAM you can build custom models by specifying these 3 elements, or you can choose from common models:


	LinearGAM identity link and normal distribution


	LogisticGAM logit link and binomial distribution


	PoissonGAM log link and Poisson distribution


	GammaGAM log link and gamma distribution


	InvGauss log link and inv_gauss distribution




The benefit of the common models is that they have some extra features, apart from reducing boilerplate code.






Terms and Interactions

pyGAM can also fit interactions using tensor products via te()


[58]:






from pygam import PoissonGAM, s, te
from pygam.datasets import chicago

X, y = chicago(return_X_y=True)

gam = PoissonGAM(s(0, n_splines=200) + te(3, 1) + s(2)).fit(X, y)







and plot a 3D surface:


[60]:






import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

plt.ion()
plt.rcParams['figure.figsize'] = (12, 8)








[61]:






XX = gam.generate_X_grid(term=1, meshgrid=True)
Z = gam.partial_dependence(term=1, X=XX, meshgrid=True)

ax = plt.axes(projection='3d')
ax.plot_surface(XX[0], XX[1], Z, cmap='viridis')








[61]:







<mpl_toolkits.mplot3d.art3d.Poly3DCollection at 0x7f58f3427cc0>











[image: ../_images/notebooks_tour_of_pygam_12_1.png]




For simple interactions it is sometimes useful to add a by-variable to a term


[10]:






from pygam import LinearGAM, s
from pygam.datasets import toy_interaction

X, y = toy_interaction(return_X_y=True)

gam = LinearGAM(s(0, by=1)).fit(X, y)
gam.summary()













LinearGAM
=============================================== ==========================================================
Distribution:                        NormalDist Effective DoF:                                     20.8449
Link Function:                     IdentityLink Log Likelihood:                              -2317525.6219
Number of Samples:                        50000 AIC:                                          4635094.9336
                                                AICc:                                         4635094.9536
                                                GCV:                                                  0.01
                                                Scale:                                                0.01
                                                Pseudo R-Squared:                                   0.9976
==========================================================================================================
Feature Function                  Lambda               Rank         EDoF         P > x        Sig. Code
================================= ==================== ============ ============ ============ ============
s(0)                              [0.6]                20           19.8         1.11e-16     ***
intercept                                              1            1.0          1.79e-01
==========================================================================================================
Significance codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

WARNING: Fitting splines and a linear function to a feature introduces a model identifiability problem
         which can cause p-values to appear significant when they are not.

WARNING: p-values calculated in this manner behave correctly for un-penalized models or models with
         known smoothing parameters, but when smoothing parameters have been estimated, the p-values
         are typically lower than they should be, meaning that the tests reject the null too readily.









Regression

For regression problems, we can use a linear GAM which models:


\[\mathbb{E}[y|X]=\beta_0+f_1(X_1)+f_2(X_2, X3)+\dots+f_M(X_N)\]


[17]:






from pygam import LinearGAM, s, f
from pygam.datasets import wage

X, y = wage(return_X_y=True)

## model
gam = LinearGAM(s(0) + s(1) + f(2))
gam.gridsearch(X, y)


## plotting
plt.figure();
fig, axs = plt.subplots(1,3);

titles = ['year', 'age', 'education']
for i, ax in enumerate(axs):
    XX = gam.generate_X_grid(term=i)
    ax.plot(XX[:, i], gam.partial_dependence(term=i, X=XX))
    ax.plot(XX[:, i], gam.partial_dependence(term=i, X=XX, width=.95)[1], c='r', ls='--')
    if i == 0:
        ax.set_ylim(-30,30)
    ax.set_title(titles[i]);













100% (11 of 11) |########################| Elapsed Time: 0:00:01 Time:  0:00:01












<Figure size 864x576 with 0 Axes>











[image: ../_images/notebooks_tour_of_pygam_16_2.png]




Even though our model allows coefficients, our smoothing penalty reduces us to just 19 effective degrees of freedom:


[4]:






gam.summary()













LinearGAM
=============================================== ==========================================================
Distribution:                        NormalDist Effective DoF:                                     19.2602
Link Function:                     IdentityLink Log Likelihood:                                -24116.7451
Number of Samples:                         3000 AIC:                                            48274.0107
                                                AICc:                                           48274.2999
                                                GCV:                                             1250.3656
                                                Scale:                                           1235.9245
                                                Pseudo R-Squared:                                   0.2945
==========================================================================================================
Feature Function                  Lambda               Rank         EDoF         P > x        Sig. Code
================================= ==================== ============ ============ ============ ============
s(0)                              [15.8489]            20           6.9          5.52e-03     **
s(1)                              [15.8489]            20           8.5          1.11e-16     ***
f(2)                              [15.8489]            5            3.8          1.11e-16     ***
intercept                         0                    1            0.0          1.11e-16     ***
==========================================================================================================
Significance codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

WARNING: Fitting splines and a linear function to a feature introduces a model identifiability problem
         which can cause p-values to appear significant when they are not.

WARNING: p-values calculated in this manner behave correctly for un-penalized models or models with
         known smoothing parameters, but when smoothing parameters have been estimated, the p-values
         are typically lower than they should be, meaning that the tests reject the null too readily.






With LinearGAMs, we can also check the prediction intervals:


[56]:






from pygam import LinearGAM
from pygam.datasets import mcycle

X, y = mcycle(return_X_y=True)

gam = LinearGAM(n_splines=25).gridsearch(X, y)
XX = gam.generate_X_grid(term=0, n=500)

plt.plot(XX, gam.predict(XX), 'r--')
plt.plot(XX, gam.prediction_intervals(XX, width=.95), color='b', ls='--')

plt.scatter(X, y, facecolor='gray', edgecolors='none')
plt.title('95% prediction interval');














100% (11 of 11) |########################| Elapsed Time: 0:00:00 Time:  0:00:00











[image: ../_images/notebooks_tour_of_pygam_20_1.png]




And simulate from the posterior:


[57]:






# continuing last example with the mcycle dataset
for response in gam.sample(X, y, quantity='y', n_draws=50, sample_at_X=XX):
    plt.scatter(XX, response, alpha=.03, color='k')
plt.plot(XX, gam.predict(XX), 'r--')
plt.plot(XX, gam.prediction_intervals(XX, width=.95), color='b', ls='--')
plt.title('draw samples from the posterior of the coefficients')














100% (11 of 11) |########################| Elapsed Time: 0:00:00 Time:  0:00:00
100% (11 of 11) |########################| Elapsed Time: 0:00:00 Time:  0:00:00
100% (11 of 11) |########################| Elapsed Time: 0:00:00 Time:  0:00:00
100% (11 of 11) |########################| Elapsed Time: 0:00:00 Time:  0:00:00







[57]:







Text(0.5,1,'draw samples from the posterior of the coefficients')











[image: ../_images/notebooks_tour_of_pygam_22_2.png]







Classification

For binary classification problems, we can use a logistic GAM which models:


\[log\left(\frac{P(y=1|X)}{P(y=0|X)}\right)=\beta_0+f_1(X_1)+f_2(X_2, X3)+\dots+f_M(X_N)\]


[11]:






from pygam import LogisticGAM, s, f
from pygam.datasets import default

X, y = default(return_X_y=True)

gam = LogisticGAM(f(0) + s(1) + s(2)).gridsearch(X, y)

fig, axs = plt.subplots(1, 3)
titles = ['student', 'balance', 'income']

for i, ax in enumerate(axs):
    XX = gam.generate_X_grid(term=i)
    pdep, confi = gam.partial_dependence(term=i, width=.95)

    ax.plot(XX[:, i], pdep)
    ax.plot(XX[:, i], confi, c='r', ls='--')
    ax.set_title(titles[i]);














100% (11 of 11) |########################| Elapsed Time: 0:00:04 Time:  0:00:04











[image: ../_images/notebooks_tour_of_pygam_24_1.png]




We can then check the accuracy:


[8]:






gam.accuracy(X, y)








[8]:







0.9739






Since the scale of the Binomial distribution is known, our gridsearch minimizes the Un-Biased Risk Estimator (UBRE) objective:


[9]:






gam.summary()













LogisticGAM
=============================================== ==========================================================
Distribution:                      BinomialDist Effective DoF:                                      3.8047
Link Function:                        LogitLink Log Likelihood:                                   -788.877
Number of Samples:                        10000 AIC:                                             1585.3634
                                                AICc:                                             1585.369
                                                UBRE:                                               2.1588
                                                Scale:                                                 1.0
                                                Pseudo R-Squared:                                   0.4598
==========================================================================================================
Feature Function                  Lambda               Rank         EDoF         P > x        Sig. Code
================================= ==================== ============ ============ ============ ============
f(0)                              [1000.]              2            1.7          4.61e-03     **
s(1)                              [1000.]              20           1.2          0.00e+00     ***
s(2)                              [1000.]              20           0.8          3.29e-02     *
intercept                         0                    1            0.0          0.00e+00     ***
==========================================================================================================
Significance codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

WARNING: Fitting splines and a linear function to a feature introduces a model identifiability problem
         which can cause p-values to appear significant when they are not.

WARNING: p-values calculated in this manner behave correctly for un-penalized models or models with
         known smoothing parameters, but when smoothing parameters have been estimated, the p-values
         are typically lower than they should be, meaning that the tests reject the null too readily.









Poisson and Histogram Smoothing

We can intuitively perform histogram smoothing by modeling the counts in each bin as being distributed Poisson via PoissonGAM.


[10]:






from pygam import PoissonGAM
from pygam.datasets import faithful

X, y = faithful(return_X_y=True)

gam = PoissonGAM().gridsearch(X, y)

plt.hist(faithful(return_X_y=False)['eruptions'], bins=200, color='k');
plt.plot(X, gam.predict(X), color='r')
plt.title('Best Lambda: {0:.2f}'.format(gam.lam[0][0]));













100% (11 of 11) |########################| Elapsed Time: 0:00:00 Time:  0:00:00
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Expectiles

GAMs with a Normal distribution suffer from the limitation of an assumed constant variance. Sometimes this is not an appropriate assumption, because we’d like the variance of our error distribution to vary.

In this case we can resort to modeling the expectiles of a distribution.

Expectiles are intuitively similar to quantiles, but model tail expectations instead of tail mass. Although they are less interpretable, expectiles are much faster to fit, and can also be used to non-parametrically model a distribution.


[52]:






from pygam import ExpectileGAM
from pygam.datasets import mcycle

X, y = mcycle(return_X_y=True)

# lets fit the mean model first by CV
gam50 = ExpectileGAM(expectile=0.5).gridsearch(X, y)

# and copy the smoothing to the other models
lam = gam50.lam

# now fit a few more models
gam95 = ExpectileGAM(expectile=0.95, lam=lam).fit(X, y)
gam75 = ExpectileGAM(expectile=0.75, lam=lam).fit(X, y)
gam25 = ExpectileGAM(expectile=0.25, lam=lam).fit(X, y)
gam05 = ExpectileGAM(expectile=0.05, lam=lam).fit(X, y)













100% (11 of 11) |########################| Elapsed Time: 0:00:00 Time:  0:00:00







[55]:






XX = gam50.generate_X_grid(term=0, n=500)

plt.scatter(X, y, c='k', alpha=0.2)
plt.plot(XX, gam95.predict(XX), label='0.95')
plt.plot(XX, gam75.predict(XX), label='0.75')
plt.plot(XX, gam50.predict(XX), label='0.50')
plt.plot(XX, gam25.predict(XX), label='0.25')
plt.plot(XX, gam05.predict(XX), label='0.05')
plt.legend()








[55]:







<matplotlib.legend.Legend at 0x7f58f816c3c8>
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We fit the mean model by cross-validation in order to find the best smoothing parameter lam and then copy it over to the other models.

This practice makes the expectiles less likely to cross.




Custom Models

It’s also easy to build custom models by using the base GAM class and specifying the distribution and the link function:


[27]:






from pygam import GAM
from pygam.datasets import trees

X, y = trees(return_X_y=True)

gam = GAM(distribution='gamma', link='log')
gam.gridsearch(X, y)

plt.scatter(y, gam.predict(X))
plt.xlabel('true volume')
plt.ylabel('predicted volume')














100% (11 of 11) |########################| Elapsed Time: 0:00:01 Time:  0:00:01







[27]:







Text(0,0.5,'predicted volume')
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We can check the quality of the fit by looking at the Pseudo R-Squared:


[28]:






gam.summary()













GAM
=============================================== ==========================================================
Distribution:                         GammaDist Effective DoF:                                     25.3616
Link Function:                          LogLink Log Likelihood:                                   -26.1673
Number of Samples:                           31 AIC:                                              105.0579
                                                AICc:                                             501.5549
                                                GCV:                                                0.0088
                                                Scale:                                               0.001
                                                Pseudo R-Squared:                                   0.9993
==========================================================================================================
Feature Function                  Lambda               Rank         EDoF         P > x        Sig. Code
================================= ==================== ============ ============ ============ ============
s(0)                              [0.001]              20                        2.04e-08     ***
s(1)                              [0.001]              20                        7.36e-06     ***
intercept                         0                    1                         4.39e-13     ***
==========================================================================================================
Significance codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

WARNING: Fitting splines and a linear function to a feature introduces a model identifiability problem
         which can cause p-values to appear significant when they are not.

WARNING: p-values calculated in this manner behave correctly for un-penalized models or models with
         known smoothing parameters, but when smoothing parameters have been estimated, the p-values
         are typically lower than they should be, meaning that the tests reject the null too readily.









Penalties / Constraints

With GAMs we can encode prior knowledge and control overfitting by using penalties and constraints.

Available penalties - second derivative smoothing (default on numerical features) - L2 smoothing (default on categorical features)

Availabe constraints - monotonic increasing/decreasing smoothing - convex/concave smoothing - periodic smoothing [soon…]

We can inject our intuition into our model by using monotonic and concave constraints:


[29]:






from pygam import LinearGAM, s
from pygam.datasets import hepatitis

X, y = hepatitis(return_X_y=True)

gam1 = LinearGAM(s(0, constraints='monotonic_inc')).fit(X, y)
gam2 = LinearGAM(s(0, constraints='concave')).fit(X, y)

fig, ax = plt.subplots(1, 2)
ax[0].plot(X, y, label='data')
ax[0].plot(X, gam1.predict(X), label='monotonic fit')
ax[0].legend()

ax[1].plot(X, y, label='data')
ax[1].plot(X, gam2.predict(X), label='concave fit')
ax[1].legend()








[29]:







<matplotlib.legend.Legend at 0x7fa3970b19e8>











[image: ../_images/notebooks_tour_of_pygam_40_1.png]







API

pyGAM is intuitive, modular, and adheres to a familiar API:


[30]:






from pygam import LogisticGAM, s, f
from pygam.datasets import toy_classification

X, y = toy_classification(return_X_y=True, n=5000)

gam = LogisticGAM(s(0) + s(1) + s(2) + s(3) + s(4) + f(5))
gam.fit(X, y)








[30]:







LogisticGAM(callbacks=[Deviance(), Diffs(), Accuracy()],
   fit_intercept=True, lam=[0.6, 0.6, 0.6, 0.6, 0.6, 0.6],
   max_iter=100,
   terms=s(0) + s(1) + s(2) + s(3) + s(4) + f(5) + intercept,
   tol=0.0001, verbose=False)






Since GAMs are additive, it is also super easy to visualize each individual feature function, f_i(X_i). These feature functions describe the effect of each X_i on y individually while marginalizing out all other predictors:


[31]:






plt.figure()
for i, term in enumerate(gam.terms):
    if term.isintercept:
        continue
    plt.plot(gam.partial_dependence(term=i))
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Current Features


Models

pyGAM comes with many models out-of-the-box:


	GAM (base class for constructing custom models)


	LinearGAM


	LogisticGAM


	GammaGAM


	PoissonGAM


	InvGaussGAM


	ExpectileGAM







Terms


	l() linear terms


	s() spline terms


	f() factor terms


	te() tensor products


	intercept







Distributions


	Normal


	Binomial


	Gamma


	Poisson


	Inverse Gaussian







Link Functions

Link functions take the distribution mean to the linear prediction. These are the canonical link functions for the above distributions:


	Identity


	Logit


	Inverse


	Log


	Inverse-squared







Callbacks

Callbacks are performed during each optimization iteration. It’s also easy to write your own.


	deviance - model deviance


	diffs - differences of coefficient norm


	accuracy - model accuracy for LogisticGAM


	coef - coefficient logging




You can check a callback by inspecting:


[32]:






_ = plt.plot(gam.logs_['deviance'])
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Linear Extrapolation


[33]:






from pygam import LinearGAM
from pygam.datasets import mcycle

X, y = mcycle()

gam = LinearGAM()
gam.gridsearch(X, y)

XX = gam.generate_X_grid(term=0)

m = X.min()
M = X.max()
XX = np.linspace(m - 10, M + 10, 500)
Xl = np.linspace(m - 10, m, 50)
Xr = np.linspace(M, M + 10, 50)

plt.figure()

plt.plot(XX, gam.predict(XX), 'k')
plt.plot(Xl, gam.confidence_intervals(Xl), color='b', ls='--')
plt.plot(Xr, gam.confidence_intervals(Xr), color='b', ls='--')
_ = plt.plot(X, gam.confidence_intervals(X), color='r', ls='--')













100% (11 of 11) |########################| Elapsed Time: 0:00:00 Time:  0:00:00
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User API


Generalized Additive Model Classes



	GAM

	LinearGAM

	GammaGAM

	InvGaussGAM

	LogisticGAM

	PoissonGAM

	ExpectileGAM








Terms


Linear Term


	
pygam.terms.l(feature, lam=0.6, penalties='auto', verbose=False)

	creates an instance of a LinearTerm



	featureint

	Index of the feature to use for the feature function.



	lamfloat or iterable of floats

	Strength of smoothing penalty. Must be a positive float.
Larger values enforce stronger smoothing.

If single value is passed, it will be repeated for every penalty.

If iterable is passed, the length of lam must be equal to the
length of penalties



	penalties{‘auto’, ‘derivative’, ‘l2’, None} or callable or iterable

	Type of smoothing penalty to apply to the term.

If an iterable is used, multiple penalties are applied to the term.
The length of the iterable must match the length of lam.

If ‘auto’, then 2nd derivative smoothing for ‘numerical’ dtypes,
and L2/ridge smoothing for ‘categorical’ dtypes.

Custom penalties can be passed as a callable.






	n_coefsint

	Number of coefficients contributed by the term to the model



	istensorbool

	whether the term is a tensor product of sub-terms



	isinterceptbool

	whether the term is an intercept



	hasconstraintbool

	whether the term has any constraints



	infodict

	contains dict with the sufficient information to duplicate the term









See also


	LinearTerm()

	for developer details














Spline Term


	
pygam.terms.s(feature, n_splines=20, spline_order=3, lam=0.6, penalties='auto', constraints=None, dtype='numerical', basis='ps', by=None, edge_knots=None, verbose=False)

	creates an instance of a SplineTerm



	featureint

	Index of the feature to use for the feature function.



	n_splinesint

	Number of splines to use for the feature function.
Must be non-negative.



	spline_orderint

	Order of spline to use for the feature function.
Must be non-negative.



	lamfloat or iterable of floats

	Strength of smoothing penalty. Must be a positive float.
Larger values enforce stronger smoothing.

If single value is passed, it will be repeated for every penalty.

If iterable is passed, the length of lam must be equal to the
length of penalties



	penalties{‘auto’, ‘derivative’, ‘l2’, None} or callable or iterable

	Type of smoothing penalty to apply to the term.

If an iterable is used, multiple penalties are applied to the term.
The length of the iterable must match the length of lam.

If ‘auto’, then 2nd derivative smoothing for ‘numerical’ dtypes,
and L2/ridge smoothing for ‘categorical’ dtypes.

Custom penalties can be passed as a callable.



	constraints{None, ‘convex’, ‘concave’, ‘monotonic_inc’, ‘monotonic_dec’}

	or callable or iterable

Type of constraint to apply to the term.

If an iterable is used, multiple penalties are applied to the term.



	dtype{‘numerical’, ‘categorical’}

	String describing the data-type of the feature.



	basis{‘ps’, ‘cp’}

	Type of basis function to use in the term.

‘ps’ : p-spline basis


	‘cp’cyclic p-spline basis, useful for building periodic functions.

	by default, the maximum and minimum of the feature values
are used to determine the function’s period.

to specify a custom period use argument edge_knots









edge_knots : optional, array-like of floats of length 2


these values specify minimum and maximum domain of the spline function.

in the case that spline_basis=”cp”, edge_knots determines
the period of the cyclic function.

when edge_knots=None these values are inferred from the data.

default: None





	byint, optional

	Feature to use as a by-variable in the term.

For example, if feature = 2 by = 0, then the term will produce:
x0 * f(x2)






	n_coefsint

	Number of coefficients contributed by the term to the model



	istensorbool

	whether the term is a tensor product of sub-terms



	isinterceptbool

	whether the term is an intercept



	hasconstraintbool

	whether the term has any constraints



	infodict

	contains dict with the sufficient information to duplicate the term









See also


	SplineTerm()

	for developer details














Factor Term


	
pygam.terms.f(feature, lam=0.6, penalties='auto', coding='one-hot', verbose=False)

	creates an instance of a FactorTerm



	featureint

	Index of the feature to use for the feature function.



	lamfloat or iterable of floats

	Strength of smoothing penalty. Must be a positive float.
Larger values enforce stronger smoothing.

If single value is passed, it will be repeated for every penalty.

If iterable is passed, the length of lam must be equal to the
length of penalties



	penalties{‘auto’, ‘derivative’, ‘l2’, None} or callable or iterable

	Type of smoothing penalty to apply to the term.

If an iterable is used, multiple penalties are applied to the term.
The length of the iterable must match the length of lam.

If ‘auto’, then 2nd derivative smoothing for ‘numerical’ dtypes,
and L2/ridge smoothing for ‘categorical’ dtypes.

Custom penalties can be passed as a callable.



	coding{‘one-hot’} type of contrast encoding to use.

	currently, only ‘one-hot’ encoding has been developed.
this means that we fit one coefficient per category.






	n_coefsint

	Number of coefficients contributed by the term to the model



	istensorbool

	whether the term is a tensor product of sub-terms



	isinterceptbool

	whether the term is an intercept



	hasconstraintbool

	whether the term has any constraints



	infodict

	contains dict with the sufficient information to duplicate the term









See also


	FactorTerm()

	for developer details














Tensor Term


	
pygam.terms.te(*args, **kwargs)

	creates an instance of a TensorTerm


This is useful for creating interactions between features, or other terms.

*args : marginal Terms to combine into a tensor product


	featurelist of integers

	Indices of the features to use for the marginal terms.



	n_splineslist of integers

	Number of splines to use for each marginal term.
Must be of same length as feature.



	spline_orderlist of integers

	Order of spline to use for the feature function.
Must be of same length as feature.



	lamfloat or iterable of floats

	Strength of smoothing penalty. Must be a positive float.
Larger values enforce stronger smoothing.

If single value is passed, it will be repeated for every penalty.

If iterable is passed, the length of lam must be equal to the
length of penalties



	penalties{‘auto’, ‘derivative’, ‘l2’, None} or callable or iterable

	Type of smoothing penalty to apply to the term.

If an iterable is used, multiple penalties are applied to the term.
The length of the iterable must match the length of lam.

If ‘auto’, then 2nd derivative smoothing for ‘numerical’ dtypes,
and L2/ridge smoothing for ‘categorical’ dtypes.

Custom penalties can be passed as a callable.



	constraints{None, ‘convex’, ‘concave’, ‘monotonic_inc’, ‘monotonic_dec’}

	or callable or iterable

Type of constraint to apply to the term.

If an iterable is used, multiple penalties are applied to the term.



	dtypelist of {‘numerical’, ‘categorical’}

	String describing the data-type of the feature.

Must be of same length as feature.



	basislist of {‘ps’}

	Type of basis function to use in the term.

‘ps’ : p-spline basis

NotImplemented:
‘cp’ : cyclic p-spline basis

Must be of same length as feature.



	byint, optional

	Feature to use as a by-variable in the term.

For example, if feature = [1, 2] by = 0, then the term will produce:
x0 * te(x1, x2)






	n_coefsint

	Number of coefficients contributed by the term to the model



	istensorbool

	whether the term is a tensor product of sub-terms



	isinterceptbool

	whether the term is an intercept



	hasconstraintbool

	whether the term has any constraints



	infodict

	contains dict with the sufficient information to duplicate the term









See also


	TensorTerm()

	for developer details



















          

      

      

    

  

    
      
          
            
  


GAM


	
class pygam.pygam.GAM(terms='auto', max_iter=100, tol=0.0001, distribution='normal', link='identity', callbacks=['deviance', 'diffs'], fit_intercept=True, verbose=False, **kwargs)

	Bases: pygam.core.Core, pygam.terms.MetaTermMixin

Generalized Additive Model


	Parameters

	
	terms (expression specifying terms to model, optional.) – By default a univariate spline term will be allocated for each feature.

For example:

>>> GAM(s(0) + l(1) + f(2) + te(3, 4))





will fit a spline term on feature 0, a linear term on feature 1,
a factor term on feature 2, and a tensor term on features 3 and 4.




	callbacks (list of str or list of CallBack objects, optional) – Names of callback objects to call during the optimization loop.


	distribution (str [https://docs.python.org/3/library/stdtypes.html#str] or Distribution object, optional) – Distribution to use in the model.


	link (str [https://docs.python.org/3/library/stdtypes.html#str] or Link object, optional) – Link function to use in the model.


	fit_intercept (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Specifies if a constant (a.k.a. bias or intercept) should be
added to the decision function.
Note: the intercept receives no smoothing penalty.


	max_iter (int [https://docs.python.org/3/library/functions.html#int], optional) – Maximum number of iterations allowed for the solver to converge.


	tol (float [https://docs.python.org/3/library/functions.html#float], optional) – Tolerance for stopping criteria.


	verbose (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to show pyGAM warnings.









	
coef_

	Coefficient of the features in the decision function.
If fit_intercept is True, then self.coef_[0] will contain the bias.


	Type

	array, shape (n_classes, m_features)










	
statistics_

	Dictionary containing model statistics like GCV/UBRE scores, AIC/c,
parameter covariances, estimated degrees of freedom, etc.


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
logs_

	Dictionary containing the outputs of any callbacks at each
optimization loop.

The logs are structured as {callback: [...]}


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]
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confidence_intervals(X, width=0.95, quantiles=None)

	estimate confidence intervals for the model.


	Parameters

	
	X (array-like of shape (n_samples, m_features)) – Input data matrix


	width (float on [0,1], optional) – 


	quantiles (array-like of floats in (0, 1), optional) – Instead of specifying the prediciton width, one can specify the
quantiles. So width=.95 is equivalent to quantiles=[.025, .975]






	Returns

	intervals



	Return type

	np.array of shape (n_samples, 2 or len(quantiles))





Notes


	Wood 2006, section 4.9

	Confidence intervals based on section 4.8 rely on large sample results to deal with
non-Gaussian distributions, and treat the smoothing parameters as fixed, when in
reality they are estimated from the data.










	
deviance_residuals(X, y, weights=None, scaled=False)

	method to compute the deviance residuals of the model

these are analogous to the residuals of an OLS.


	Parameters

	
	X (array-like) – Input data array of shape (n_samples, m_features)


	y (array-like) – Output data vector of shape (n_samples,)


	weights (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], optional) – Sample weights.
if None, defaults to array of ones


	scaled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to scale the deviance by the (estimated) distribution scale






	Returns

	deviance_residuals – with shape (n_samples,)



	Return type

	np.array










	
fit(X, y, weights=None)

	Fit the generalized additive model.


	Parameters

	
	X (array-like, shape (n_samples, m_features)) – Training vectors.


	y (array-like, shape (n_samples,)) – Target values,
ie integers in classification, real numbers in
regression)


	weights (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], optional) – Sample weights.
if None, defaults to array of ones






	Returns

	self – Returns fitted GAM object



	Return type

	object [https://docs.python.org/3/library/functions.html#object]










	
generate_X_grid(term, n=100, meshgrid=False)

	create a nice grid of X data

array is sorted by feature and uniformly spaced,
so the marginal and joint distributions are likely wrong

if term is >= 0, we generate n samples per feature,
which results in n^deg samples,
where deg is the degree of the interaction of the term


	Parameters

	
	term (int [https://docs.python.org/3/library/functions.html#int],) – Which term to process.


	n (int [https://docs.python.org/3/library/functions.html#int], optional) – number of data points to create


	meshgrid (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to return a meshgrid (useful for 3d plotting)
or a feature matrix (useful for inference like partial predictions)






	Returns

	
	if meshgrid is False – np.array of shape (n, n_features)
where m is the number of
(sub)terms in the requested (tensor)term.


	else – tuple of len m,
where m is the number of (sub)terms in the requested
(tensor)term.

each element in the tuple contains a np.ndarray of size (n)^m









	Raises

	ValueError : – If the term requested is an intercept
since it does not make sense to process the intercept term.










	
gridsearch(X, y, weights=None, return_scores=False, keep_best=True, objective='auto', progress=True, **param_grids)

	Performs a grid search over a space of parameters for a given
objective


Warning

gridsearch is lazy and will not remove useless combinations
from the search space, eg.

>>> n_splines=np.arange(5,10), fit_splines=[True, False]





will result in 10 loops, of which 5 are equivalent because
fit_splines = False

Also, it is not recommended to search over a grid that alternates
between known scales and unknown scales, as the scores of the
candidate models will not be comparable.




	Parameters

	
	X (array-like) – input data of shape (n_samples, m_features)


	y (array-like) – label data of shape (n_samples,)


	weights (array-like shape (n_samples,), optional) – sample weights


	return_scores (boolean, optional) – whether to return the hyperpamaters and score for each element
in the grid


	keep_best (boolean, optional) – whether to keep the best GAM as self.


	objective ({'auto', 'AIC', 'AICc', 'GCV', 'UBRE'}, optional) – Metric to optimize.
If auto, then grid search will optimize GCV for models with unknown
scale and UBRE for models with known scale.


	progress (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to display a progress bar


	**kwargs – pairs of parameters and iterables of floats, or
parameters and iterables of iterables of floats.

If no parameter are specified, lam=np.logspace(-3, 3, 11) is used.
This results in a 11 points, placed diagonally across lam space.

If grid is iterable of iterables of floats,
the outer iterable must have length m_features.
the cartesian product of the subgrids in the grid will be tested.

If grid is a 2d numpy array,
each row of the array will be tested.

The method will make a grid of all the combinations of the parameters
and fit a GAM to each combination.








	Returns

	
	if return_scores=True – model_scores: dict containing each fitted model as keys and corresponding
objective scores as values


	else – self: ie possibly the newly fitted model










Examples

For a model with 4 terms, and where we expect 4 lam values,
our search space for lam must have 4 dimensions.

We can search the space in 3 ways:

1. via cartesian product by specifying the grid as a list.
our grid search will consider 11 ** 4 points:

>>> lam = np.logspace(-3, 3, 11)
>>> lams = [lam] * 4
>>> gam.gridsearch(X, y, lam=lams)





2. directly by specifying the grid as a np.ndarray.
This is useful for when the dimensionality of the search space
is very large, and we would prefer to execute a randomized search:

>>> lams = np.exp(np.random.random(50, 4) * 6 - 3)
>>> gam.gridsearch(X, y, lam=lams)





3. copying grids for parameters with multiple dimensions.
if we specify a 1D np.ndarray for lam, we are implicitly testing the
space where all points have the same value

>>> gam.gridsearch(lam=np.logspace(-3, 3, 11))





is equivalent to:

>>> lam = np.logspace(-3, 3, 11)
>>> lams = np.array([lam] * 4)
>>> gam.gridsearch(X, y, lam=lams)










	
loglikelihood(X, y, weights=None)

	compute the log-likelihood of the dataset using the current model


	Parameters

	
	X (array-like of shape (n_samples, m_features)) – containing the input dataset


	y (array-like of shape (n,)) – containing target values


	weights (array-like of shape (n,), optional) – containing sample weights






	Returns

	log-likelihood – containing log-likelihood scores



	Return type

	np.array of shape (n,)










	
partial_dependence(term, X=None, width=None, quantiles=None, meshgrid=False)

	Computes the term functions for the GAM
and possibly their confidence intervals.

if both width=None and quantiles=None,
then no confidence intervals are computed


	Parameters

	
	term (int [https://docs.python.org/3/library/functions.html#int], optional) – Term for which to compute the partial dependence functions.


	X (array-like with input data, optional) – if meshgrid=False, then X should be an array-like
of shape (n_samples, m_features).

if meshgrid=True, then X should be a tuple containing
an array for each feature in the term.

if None, an equally spaced grid of points is generated.




	width (float on (0, 1), optional) – Width of the confidence interval.


	quantiles (array-like of floats on (0, 1), optional) – instead of specifying the prediciton width, one can specify the
quantiles. so width=.95 is equivalent to quantiles=[.025, .975].
if None, defaults to width.


	meshgrid (bool [https://docs.python.org/3/library/functions.html#bool], whether to return and accept meshgrids.) – Useful for creating outputs that are suitable for
3D plotting.

Note, for simple terms with no interactions, the output
of this function will be the same for meshgrid=True and
meshgrid=False, but the inputs will need to be different.








	Returns

	
	pdeps (np.array of shape (n_samples,))


	conf_intervals (list of length len(term)) – containing np.arrays of shape (n_samples, 2 or len(quantiles))








	Raises

	ValueError : – If the term requested is an intercept
since it does not make sense to process the intercept term.






See also


	generate_X_grid()

	for help creating meshgrids.












	
predict(X)

	preduct expected value of target given model and input X
often this is done via expected value of GAM given input X


	Parameters

	X (array-like of shape (n_samples, m_features)) – containing the input dataset



	Returns

	y – containing predicted values under the model



	Return type

	np.array of shape (n_samples,)










	
predict_mu(X)

	preduct expected value of target given model and input X


	Parameters

	X (array-like of shape (n_samples, m_features),) – containing the input dataset



	Returns

	y – containing expected values under the model



	Return type

	np.array of shape (n_samples,)










	
sample(X, y, quantity='y', sample_at_X=None, weights=None, n_draws=100, n_bootstraps=5, objective='auto')

	Simulate from the posterior of the coefficients and smoothing params.

Samples are drawn from the posterior of the coefficients and smoothing
parameters given the response in an approximate way. The GAM must
already be fitted before calling this method; if the model has not
been fitted, then an exception is raised. Moreover, it is recommended
that the model and its hyperparameters be chosen with gridsearch
(with the parameter keep_best=True) before calling sample, so that
the result of that gridsearch can be used to generate useful response
data and so that the model’s coefficients (and their covariance matrix)
can be used as the first bootstrap sample.

These samples are drawn as follows. Details are in the reference below.

1. n_bootstraps many “bootstrap samples” of the response (y) are
simulated by drawing random samples from the model’s distribution
evaluated at the expected values (mu) for each sample in X.

2. A copy of the model is fitted to each of those bootstrap samples of
the response. The result is an approximation of the distribution over
the smoothing parameter lam given the response data y.

3. Samples of the coefficients are simulated from a multivariate normal
using the bootstrap samples of the coefficients and their covariance
matrices.

Notes

A gridsearch is done n_bootstraps many times, so keep
n_bootstraps small. Make n_bootstraps < n_draws to take advantage
of the expensive bootstrap samples of the smoothing parameters.


	Parameters

	
	X (array of shape (n_samples, m_features)) – empirical input data


	y (array of shape (n_samples,)) – empirical response vector


	quantity ({'y', 'coef', 'mu'}, default: 'y') – What quantity to return pseudorandom samples of.
If sample_at_X is not None and quantity is either ‘y’ or
‘mu’, then samples are drawn at the values of X specified in
sample_at_X.


	sample_at_X (array of shape (n_samples_to_simulate, m_features) or) – 


	optional (None [https://docs.python.org/3/library/constants.html#None],) – Input data at which to draw new samples.

Only applies for quantity equal to ‘y’ or to ‘mu’.
If None, then sample_at_X is replaced by X.




	weights (np.array of shape (n_samples,)) – sample weights


	n_draws (positive int, optional (default=100)) – The number of samples to draw from the posterior distribution of
the coefficients and smoothing parameters


	n_bootstraps (positive int, optional (default=5)) – The number of bootstrap samples to draw from simulations of the
response (from the already fitted model) to estimate the
distribution of the smoothing parameters given the response data.
If n_bootstraps is 1, then only the already fitted model’s
smoothing parameter is used, and the distribution over the
smoothing parameters is not estimated using bootstrap sampling.


	objective (string, optional (default='auto') – metric to optimize in grid search. must be in
[‘AIC’, ‘AICc’, ‘GCV’, ‘UBRE’, ‘auto’]
if ‘auto’, then grid search will optimize GCV for models with
unknown scale and UBRE for models with known scale.






	Returns

	draws – Simulations of the given quantity using samples from the
posterior distribution of the coefficients and smoothing parameter
given the response data. Each row is a pseudorandom sample.

If quantity == ‘coef’, then the number of columns of draws is
the number of coefficients (len(self.coef_)).

Otherwise, the number of columns of draws is the number of
rows of sample_at_X if sample_at_X is not None or else
the number of rows of X.





	Return type

	2D array of length n_draws





References

Simon N. Wood, 2006. Generalized Additive Models: an introduction with
R. Section 4.9.3 (pages 198–199) and Section 5.4.2 (page 256–257).






	
score(X, y, weights=None)

	method to compute the explained deviance for a trained model for a given X data and y labels


	Parameters

	
	X (array-like) – Input data array of shape (n_samples, m_features)


	y (array-like) – Output data vector of shape (n_samples,)


	weights (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], optional) – Sample weights.
if None, defaults to array of ones






	Returns

	explained deviancce score



	Return type

	np.array() (n_samples,)










	
summary()

	produce a summary of the model statistics


	Parameters

	None – 



	Returns

	



	Return type

	None [https://docs.python.org/3/library/constants.html#None]

















          

      

      

    

  

    
      
          
            
  


LinearGAM


	
class pygam.pygam.LinearGAM(terms='auto', max_iter=100, tol=0.0001, scale=None, callbacks=['deviance', 'diffs'], fit_intercept=True, verbose=False, **kwargs)

	Bases: pygam.pygam.GAM

Linear GAM

This is a GAM with a Normal error distribution, and an identity link.


	Parameters

	
	terms (expression specifying terms to model, optional.) – By default a univariate spline term will be allocated for each feature.

For example:

>>> GAM(s(0) + l(1) + f(2) + te(3, 4))





will fit a spline term on feature 0, a linear term on feature 1,
a factor term on feature 2, and a tensor term on features 3 and 4.




	callbacks (list of str or list of CallBack objects, optional) – Names of callback objects to call during the optimization loop.


	fit_intercept (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Specifies if a constant (a.k.a. bias or intercept) should be
added to the decision function.
Note: the intercept receives no smoothing penalty.


	max_iter (int [https://docs.python.org/3/library/functions.html#int], optional) – Maximum number of iterations allowed for the solver to converge.


	tol (float [https://docs.python.org/3/library/functions.html#float], optional) – Tolerance for stopping criteria.


	verbose (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to show pyGAM warnings.









	
coef_

	Coefficient of the features in the decision function.
If fit_intercept is True, then self.coef_[0] will contain the bias.


	Type

	array, shape (n_classes, m_features)










	
statistics_

	Dictionary containing model statistics like GCV/UBRE scores, AIC/c,
parameter covariances, estimated degrees of freedom, etc.


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
logs_

	Dictionary containing the outputs of any callbacks at each
optimization loop.

The logs are structured as {callback: [...]}


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]









References

Simon N. Wood, 2006
Generalized Additive Models: an introduction with R

Hastie, Tibshirani, Friedman
The Elements of Statistical Learning
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf

Paul Eilers & Brian Marx, 2015
International Biometric Society: A Crash Course on P-splines
http://www.ibschannel2015.nl/project/userfiles/Crash_course_handout.pdf


	
confidence_intervals(X, width=0.95, quantiles=None)

	estimate confidence intervals for the model.


	Parameters

	
	X (array-like of shape (n_samples, m_features)) – Input data matrix


	width (float on [0,1], optional) – 


	quantiles (array-like of floats in (0, 1), optional) – Instead of specifying the prediciton width, one can specify the
quantiles. So width=.95 is equivalent to quantiles=[.025, .975]






	Returns

	intervals



	Return type

	np.array of shape (n_samples, 2 or len(quantiles))





Notes


	Wood 2006, section 4.9

	Confidence intervals based on section 4.8 rely on large sample results to deal with
non-Gaussian distributions, and treat the smoothing parameters as fixed, when in
reality they are estimated from the data.










	
deviance_residuals(X, y, weights=None, scaled=False)

	method to compute the deviance residuals of the model

these are analogous to the residuals of an OLS.


	Parameters

	
	X (array-like) – Input data array of shape (n_samples, m_features)


	y (array-like) – Output data vector of shape (n_samples,)


	weights (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], optional) – Sample weights.
if None, defaults to array of ones


	scaled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to scale the deviance by the (estimated) distribution scale






	Returns

	deviance_residuals – with shape (n_samples,)



	Return type

	np.array










	
fit(X, y, weights=None)

	Fit the generalized additive model.


	Parameters

	
	X (array-like, shape (n_samples, m_features)) – Training vectors.


	y (array-like, shape (n_samples,)) – Target values,
ie integers in classification, real numbers in
regression)


	weights (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], optional) – Sample weights.
if None, defaults to array of ones






	Returns

	self – Returns fitted GAM object



	Return type

	object [https://docs.python.org/3/library/functions.html#object]










	
generate_X_grid(term, n=100, meshgrid=False)

	create a nice grid of X data

array is sorted by feature and uniformly spaced,
so the marginal and joint distributions are likely wrong

if term is >= 0, we generate n samples per feature,
which results in n^deg samples,
where deg is the degree of the interaction of the term


	Parameters

	
	term (int [https://docs.python.org/3/library/functions.html#int],) – Which term to process.


	n (int [https://docs.python.org/3/library/functions.html#int], optional) – number of data points to create


	meshgrid (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to return a meshgrid (useful for 3d plotting)
or a feature matrix (useful for inference like partial predictions)






	Returns

	
	if meshgrid is False – np.array of shape (n, n_features)
where m is the number of
(sub)terms in the requested (tensor)term.


	else – tuple of len m,
where m is the number of (sub)terms in the requested
(tensor)term.

each element in the tuple contains a np.ndarray of size (n)^m









	Raises

	ValueError : – If the term requested is an intercept
since it does not make sense to process the intercept term.










	
get_params(deep=False)

	returns a dict of all of the object’s user-facing parameters


	Parameters

	deep (boolean, default: False) – when True, also gets non-user-facing paramters



	Returns

	



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
gridsearch(X, y, weights=None, return_scores=False, keep_best=True, objective='auto', progress=True, **param_grids)

	Performs a grid search over a space of parameters for a given
objective


Warning

gridsearch is lazy and will not remove useless combinations
from the search space, eg.

>>> n_splines=np.arange(5,10), fit_splines=[True, False]





will result in 10 loops, of which 5 are equivalent because
fit_splines = False

Also, it is not recommended to search over a grid that alternates
between known scales and unknown scales, as the scores of the
candidate models will not be comparable.




	Parameters

	
	X (array-like) – input data of shape (n_samples, m_features)


	y (array-like) – label data of shape (n_samples,)


	weights (array-like shape (n_samples,), optional) – sample weights


	return_scores (boolean, optional) – whether to return the hyperpamaters and score for each element
in the grid


	keep_best (boolean, optional) – whether to keep the best GAM as self.


	objective ({'auto', 'AIC', 'AICc', 'GCV', 'UBRE'}, optional) – Metric to optimize.
If auto, then grid search will optimize GCV for models with unknown
scale and UBRE for models with known scale.


	progress (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to display a progress bar


	**kwargs – pairs of parameters and iterables of floats, or
parameters and iterables of iterables of floats.

If no parameter are specified, lam=np.logspace(-3, 3, 11) is used.
This results in a 11 points, placed diagonally across lam space.

If grid is iterable of iterables of floats,
the outer iterable must have length m_features.
the cartesian product of the subgrids in the grid will be tested.

If grid is a 2d numpy array,
each row of the array will be tested.

The method will make a grid of all the combinations of the parameters
and fit a GAM to each combination.








	Returns

	
	if return_scores=True – model_scores: dict containing each fitted model as keys and corresponding
objective scores as values


	else – self: ie possibly the newly fitted model










Examples

For a model with 4 terms, and where we expect 4 lam values,
our search space for lam must have 4 dimensions.

We can search the space in 3 ways:

1. via cartesian product by specifying the grid as a list.
our grid search will consider 11 ** 4 points:

>>> lam = np.logspace(-3, 3, 11)
>>> lams = [lam] * 4
>>> gam.gridsearch(X, y, lam=lams)





2. directly by specifying the grid as a np.ndarray.
This is useful for when the dimensionality of the search space
is very large, and we would prefer to execute a randomized search:

>>> lams = np.exp(np.random.random(50, 4) * 6 - 3)
>>> gam.gridsearch(X, y, lam=lams)





3. copying grids for parameters with multiple dimensions.
if we specify a 1D np.ndarray for lam, we are implicitly testing the
space where all points have the same value

>>> gam.gridsearch(lam=np.logspace(-3, 3, 11))





is equivalent to:

>>> lam = np.logspace(-3, 3, 11)
>>> lams = np.array([lam] * 4)
>>> gam.gridsearch(X, y, lam=lams)










	
loglikelihood(X, y, weights=None)

	compute the log-likelihood of the dataset using the current model


	Parameters

	
	X (array-like of shape (n_samples, m_features)) – containing the input dataset


	y (array-like of shape (n,)) – containing target values


	weights (array-like of shape (n,), optional) – containing sample weights






	Returns

	log-likelihood – containing log-likelihood scores



	Return type

	np.array of shape (n,)










	
partial_dependence(term, X=None, width=None, quantiles=None, meshgrid=False)

	Computes the term functions for the GAM
and possibly their confidence intervals.

if both width=None and quantiles=None,
then no confidence intervals are computed


	Parameters

	
	term (int [https://docs.python.org/3/library/functions.html#int], optional) – Term for which to compute the partial dependence functions.


	X (array-like with input data, optional) – if meshgrid=False, then X should be an array-like
of shape (n_samples, m_features).

if meshgrid=True, then X should be a tuple containing
an array for each feature in the term.

if None, an equally spaced grid of points is generated.




	width (float on (0, 1), optional) – Width of the confidence interval.


	quantiles (array-like of floats on (0, 1), optional) – instead of specifying the prediciton width, one can specify the
quantiles. so width=.95 is equivalent to quantiles=[.025, .975].
if None, defaults to width.


	meshgrid (bool [https://docs.python.org/3/library/functions.html#bool], whether to return and accept meshgrids.) – Useful for creating outputs that are suitable for
3D plotting.

Note, for simple terms with no interactions, the output
of this function will be the same for meshgrid=True and
meshgrid=False, but the inputs will need to be different.








	Returns

	
	pdeps (np.array of shape (n_samples,))


	conf_intervals (list of length len(term)) – containing np.arrays of shape (n_samples, 2 or len(quantiles))








	Raises

	ValueError : – If the term requested is an intercept
since it does not make sense to process the intercept term.






See also


	generate_X_grid()

	for help creating meshgrids.












	
predict(X)

	preduct expected value of target given model and input X
often this is done via expected value of GAM given input X


	Parameters

	X (array-like of shape (n_samples, m_features)) – containing the input dataset



	Returns

	y – containing predicted values under the model



	Return type

	np.array of shape (n_samples,)










	
predict_mu(X)

	preduct expected value of target given model and input X


	Parameters

	X (array-like of shape (n_samples, m_features),) – containing the input dataset



	Returns

	y – containing expected values under the model



	Return type

	np.array of shape (n_samples,)










	
prediction_intervals(X, width=0.95, quantiles=None)

	estimate prediction intervals for LinearGAM


	Parameters

	
	X (array-like of shape (n_samples, m_features)) – input data matrix


	width (float on [0,1], optional (default=0.95) – 


	quantiles (array-like of floats in [0, 1], default: None)) – instead of specifying the prediciton width, one can specify the
quantiles. so width=.95 is equivalent to quantiles=[.025, .975]






	Returns

	intervals



	Return type

	np.array of shape (n_samples, 2 or len(quantiles))










	
sample(X, y, quantity='y', sample_at_X=None, weights=None, n_draws=100, n_bootstraps=5, objective='auto')

	Simulate from the posterior of the coefficients and smoothing params.

Samples are drawn from the posterior of the coefficients and smoothing
parameters given the response in an approximate way. The GAM must
already be fitted before calling this method; if the model has not
been fitted, then an exception is raised. Moreover, it is recommended
that the model and its hyperparameters be chosen with gridsearch
(with the parameter keep_best=True) before calling sample, so that
the result of that gridsearch can be used to generate useful response
data and so that the model’s coefficients (and their covariance matrix)
can be used as the first bootstrap sample.

These samples are drawn as follows. Details are in the reference below.

1. n_bootstraps many “bootstrap samples” of the response (y) are
simulated by drawing random samples from the model’s distribution
evaluated at the expected values (mu) for each sample in X.

2. A copy of the model is fitted to each of those bootstrap samples of
the response. The result is an approximation of the distribution over
the smoothing parameter lam given the response data y.

3. Samples of the coefficients are simulated from a multivariate normal
using the bootstrap samples of the coefficients and their covariance
matrices.

Notes

A gridsearch is done n_bootstraps many times, so keep
n_bootstraps small. Make n_bootstraps < n_draws to take advantage
of the expensive bootstrap samples of the smoothing parameters.


	Parameters

	
	X (array of shape (n_samples, m_features)) – empirical input data


	y (array of shape (n_samples,)) – empirical response vector


	quantity ({'y', 'coef', 'mu'}, default: 'y') – What quantity to return pseudorandom samples of.
If sample_at_X is not None and quantity is either ‘y’ or
‘mu’, then samples are drawn at the values of X specified in
sample_at_X.


	sample_at_X (array of shape (n_samples_to_simulate, m_features) or) – 


	optional (None [https://docs.python.org/3/library/constants.html#None],) – Input data at which to draw new samples.

Only applies for quantity equal to ‘y’ or to ‘mu’.
If None, then sample_at_X is replaced by X.




	weights (np.array of shape (n_samples,)) – sample weights


	n_draws (positive int, optional (default=100)) – The number of samples to draw from the posterior distribution of
the coefficients and smoothing parameters


	n_bootstraps (positive int, optional (default=5)) – The number of bootstrap samples to draw from simulations of the
response (from the already fitted model) to estimate the
distribution of the smoothing parameters given the response data.
If n_bootstraps is 1, then only the already fitted model’s
smoothing parameter is used, and the distribution over the
smoothing parameters is not estimated using bootstrap sampling.


	objective (string, optional (default='auto') – metric to optimize in grid search. must be in
[‘AIC’, ‘AICc’, ‘GCV’, ‘UBRE’, ‘auto’]
if ‘auto’, then grid search will optimize GCV for models with
unknown scale and UBRE for models with known scale.






	Returns

	draws – Simulations of the given quantity using samples from the
posterior distribution of the coefficients and smoothing parameter
given the response data. Each row is a pseudorandom sample.

If quantity == ‘coef’, then the number of columns of draws is
the number of coefficients (len(self.coef_)).

Otherwise, the number of columns of draws is the number of
rows of sample_at_X if sample_at_X is not None or else
the number of rows of X.





	Return type

	2D array of length n_draws





References

Simon N. Wood, 2006. Generalized Additive Models: an introduction with
R. Section 4.9.3 (pages 198–199) and Section 5.4.2 (page 256–257).






	
score(X, y, weights=None)

	method to compute the explained deviance for a trained model for a given X data and y labels


	Parameters

	
	X (array-like) – Input data array of shape (n_samples, m_features)


	y (array-like) – Output data vector of shape (n_samples,)


	weights (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], optional) – Sample weights.
if None, defaults to array of ones






	Returns

	explained deviancce score



	Return type

	np.array() (n_samples,)










	
set_params(deep=False, force=False, **parameters)

	sets an object’s paramters


	Parameters

	
	deep (boolean, default: False) – when True, also sets non-user-facing paramters


	force (boolean, default: False) – when True, also sets parameters that the object does not already
have


	**parameters (paramters to set) – 






	Returns

	



	Return type

	self










	
summary()

	produce a summary of the model statistics


	Parameters

	None – 



	Returns

	



	Return type

	None [https://docs.python.org/3/library/constants.html#None]

















          

      

      

    

  

    
      
          
            
  


GammaGAM


	
class pygam.pygam.GammaGAM(terms='auto', max_iter=100, tol=0.0001, scale=None, callbacks=['deviance', 'diffs'], fit_intercept=True, verbose=False, **kwargs)

	Bases: pygam.pygam.GAM

Gamma GAM

This is a GAM with a Gamma error distribution, and a log link.

NB
Although canonical link function for the Gamma GLM is the inverse link,
this function can create problems for numerical software because it becomes
difficult to enforce the requirement that the mean of the Gamma distribution
be positive. The log link guarantees this.

If you need to use the inverse link function, simply construct a custom GAM:

>>> from pygam import GAM
>>> gam = GAM(distribution='gamma', link='inverse')






	Parameters

	
	terms (expression specifying terms to model, optional.) – By default a univariate spline term will be allocated for each feature.

For example:

>>> GAM(s(0) + l(1) + f(2) + te(3, 4))





will fit a spline term on feature 0, a linear term on feature 1,
a factor term on feature 2, and a tensor term on features 3 and 4.




	callbacks (list of str or list of CallBack objects, optional) – Names of callback objects to call during the optimization loop.


	fit_intercept (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Specifies if a constant (a.k.a. bias or intercept) should be
added to the decision function.
Note: the intercept receives no smoothing penalty.


	max_iter (int [https://docs.python.org/3/library/functions.html#int], optional) – Maximum number of iterations allowed for the solver to converge.


	tol (float [https://docs.python.org/3/library/functions.html#float], optional) – Tolerance for stopping criteria.


	verbose (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to show pyGAM warnings.









	
coef_

	Coefficient of the features in the decision function.
If fit_intercept is True, then self.coef_[0] will contain the bias.


	Type

	array, shape (n_classes, m_features)










	
statistics_

	Dictionary containing model statistics like GCV/UBRE scores, AIC/c,
parameter covariances, estimated degrees of freedom, etc.


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
logs_

	Dictionary containing the outputs of any callbacks at each
optimization loop.

The logs are structured as {callback: [...]}


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]









References

Simon N. Wood, 2006
Generalized Additive Models: an introduction with R

Hastie, Tibshirani, Friedman
The Elements of Statistical Learning
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf

Paul Eilers & Brian Marx, 2015
International Biometric Society: A Crash Course on P-splines
http://www.ibschannel2015.nl/project/userfiles/Crash_course_handout.pdf


	
confidence_intervals(X, width=0.95, quantiles=None)

	estimate confidence intervals for the model.


	Parameters

	
	X (array-like of shape (n_samples, m_features)) – Input data matrix


	width (float on [0,1], optional) – 


	quantiles (array-like of floats in (0, 1), optional) – Instead of specifying the prediciton width, one can specify the
quantiles. So width=.95 is equivalent to quantiles=[.025, .975]






	Returns

	intervals



	Return type

	np.array of shape (n_samples, 2 or len(quantiles))





Notes


	Wood 2006, section 4.9

	Confidence intervals based on section 4.8 rely on large sample results to deal with
non-Gaussian distributions, and treat the smoothing parameters as fixed, when in
reality they are estimated from the data.










	
deviance_residuals(X, y, weights=None, scaled=False)

	method to compute the deviance residuals of the model

these are analogous to the residuals of an OLS.


	Parameters

	
	X (array-like) – Input data array of shape (n_samples, m_features)


	y (array-like) – Output data vector of shape (n_samples,)


	weights (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], optional) – Sample weights.
if None, defaults to array of ones


	scaled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to scale the deviance by the (estimated) distribution scale






	Returns

	deviance_residuals – with shape (n_samples,)



	Return type

	np.array










	
fit(X, y, weights=None)

	Fit the generalized additive model.


	Parameters

	
	X (array-like, shape (n_samples, m_features)) – Training vectors.


	y (array-like, shape (n_samples,)) – Target values,
ie integers in classification, real numbers in
regression)


	weights (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], optional) – Sample weights.
if None, defaults to array of ones






	Returns

	self – Returns fitted GAM object



	Return type

	object [https://docs.python.org/3/library/functions.html#object]










	
generate_X_grid(term, n=100, meshgrid=False)

	create a nice grid of X data

array is sorted by feature and uniformly spaced,
so the marginal and joint distributions are likely wrong

if term is >= 0, we generate n samples per feature,
which results in n^deg samples,
where deg is the degree of the interaction of the term


	Parameters

	
	term (int [https://docs.python.org/3/library/functions.html#int],) – Which term to process.


	n (int [https://docs.python.org/3/library/functions.html#int], optional) – number of data points to create


	meshgrid (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to return a meshgrid (useful for 3d plotting)
or a feature matrix (useful for inference like partial predictions)






	Returns

	
	if meshgrid is False – np.array of shape (n, n_features)
where m is the number of
(sub)terms in the requested (tensor)term.


	else – tuple of len m,
where m is the number of (sub)terms in the requested
(tensor)term.

each element in the tuple contains a np.ndarray of size (n)^m









	Raises

	ValueError : – If the term requested is an intercept
since it does not make sense to process the intercept term.










	
get_params(deep=False)

	returns a dict of all of the object’s user-facing parameters


	Parameters

	deep (boolean, default: False) – when True, also gets non-user-facing paramters



	Returns

	



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
gridsearch(X, y, weights=None, return_scores=False, keep_best=True, objective='auto', progress=True, **param_grids)

	Performs a grid search over a space of parameters for a given
objective


Warning

gridsearch is lazy and will not remove useless combinations
from the search space, eg.

>>> n_splines=np.arange(5,10), fit_splines=[True, False]





will result in 10 loops, of which 5 are equivalent because
fit_splines = False

Also, it is not recommended to search over a grid that alternates
between known scales and unknown scales, as the scores of the
candidate models will not be comparable.




	Parameters

	
	X (array-like) – input data of shape (n_samples, m_features)


	y (array-like) – label data of shape (n_samples,)


	weights (array-like shape (n_samples,), optional) – sample weights


	return_scores (boolean, optional) – whether to return the hyperpamaters and score for each element
in the grid


	keep_best (boolean, optional) – whether to keep the best GAM as self.


	objective ({'auto', 'AIC', 'AICc', 'GCV', 'UBRE'}, optional) – Metric to optimize.
If auto, then grid search will optimize GCV for models with unknown
scale and UBRE for models with known scale.


	progress (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to display a progress bar


	**kwargs – pairs of parameters and iterables of floats, or
parameters and iterables of iterables of floats.

If no parameter are specified, lam=np.logspace(-3, 3, 11) is used.
This results in a 11 points, placed diagonally across lam space.

If grid is iterable of iterables of floats,
the outer iterable must have length m_features.
the cartesian product of the subgrids in the grid will be tested.

If grid is a 2d numpy array,
each row of the array will be tested.

The method will make a grid of all the combinations of the parameters
and fit a GAM to each combination.








	Returns

	
	if return_scores=True – model_scores: dict containing each fitted model as keys and corresponding
objective scores as values


	else – self: ie possibly the newly fitted model










Examples

For a model with 4 terms, and where we expect 4 lam values,
our search space for lam must have 4 dimensions.

We can search the space in 3 ways:

1. via cartesian product by specifying the grid as a list.
our grid search will consider 11 ** 4 points:

>>> lam = np.logspace(-3, 3, 11)
>>> lams = [lam] * 4
>>> gam.gridsearch(X, y, lam=lams)





2. directly by specifying the grid as a np.ndarray.
This is useful for when the dimensionality of the search space
is very large, and we would prefer to execute a randomized search:

>>> lams = np.exp(np.random.random(50, 4) * 6 - 3)
>>> gam.gridsearch(X, y, lam=lams)





3. copying grids for parameters with multiple dimensions.
if we specify a 1D np.ndarray for lam, we are implicitly testing the
space where all points have the same value

>>> gam.gridsearch(lam=np.logspace(-3, 3, 11))





is equivalent to:

>>> lam = np.logspace(-3, 3, 11)
>>> lams = np.array([lam] * 4)
>>> gam.gridsearch(X, y, lam=lams)










	
loglikelihood(X, y, weights=None)

	compute the log-likelihood of the dataset using the current model


	Parameters

	
	X (array-like of shape (n_samples, m_features)) – containing the input dataset


	y (array-like of shape (n,)) – containing target values


	weights (array-like of shape (n,), optional) – containing sample weights






	Returns

	log-likelihood – containing log-likelihood scores



	Return type

	np.array of shape (n,)










	
partial_dependence(term, X=None, width=None, quantiles=None, meshgrid=False)

	Computes the term functions for the GAM
and possibly their confidence intervals.

if both width=None and quantiles=None,
then no confidence intervals are computed


	Parameters

	
	term (int [https://docs.python.org/3/library/functions.html#int], optional) – Term for which to compute the partial dependence functions.


	X (array-like with input data, optional) – if meshgrid=False, then X should be an array-like
of shape (n_samples, m_features).

if meshgrid=True, then X should be a tuple containing
an array for each feature in the term.

if None, an equally spaced grid of points is generated.




	width (float on (0, 1), optional) – Width of the confidence interval.


	quantiles (array-like of floats on (0, 1), optional) – instead of specifying the prediciton width, one can specify the
quantiles. so width=.95 is equivalent to quantiles=[.025, .975].
if None, defaults to width.


	meshgrid (bool [https://docs.python.org/3/library/functions.html#bool], whether to return and accept meshgrids.) – Useful for creating outputs that are suitable for
3D plotting.

Note, for simple terms with no interactions, the output
of this function will be the same for meshgrid=True and
meshgrid=False, but the inputs will need to be different.








	Returns

	
	pdeps (np.array of shape (n_samples,))


	conf_intervals (list of length len(term)) – containing np.arrays of shape (n_samples, 2 or len(quantiles))








	Raises

	ValueError : – If the term requested is an intercept
since it does not make sense to process the intercept term.






See also


	generate_X_grid()

	for help creating meshgrids.












	
predict(X)

	preduct expected value of target given model and input X
often this is done via expected value of GAM given input X


	Parameters

	X (array-like of shape (n_samples, m_features)) – containing the input dataset



	Returns

	y – containing predicted values under the model



	Return type

	np.array of shape (n_samples,)










	
predict_mu(X)

	preduct expected value of target given model and input X


	Parameters

	X (array-like of shape (n_samples, m_features),) – containing the input dataset



	Returns

	y – containing expected values under the model



	Return type

	np.array of shape (n_samples,)










	
sample(X, y, quantity='y', sample_at_X=None, weights=None, n_draws=100, n_bootstraps=5, objective='auto')

	Simulate from the posterior of the coefficients and smoothing params.

Samples are drawn from the posterior of the coefficients and smoothing
parameters given the response in an approximate way. The GAM must
already be fitted before calling this method; if the model has not
been fitted, then an exception is raised. Moreover, it is recommended
that the model and its hyperparameters be chosen with gridsearch
(with the parameter keep_best=True) before calling sample, so that
the result of that gridsearch can be used to generate useful response
data and so that the model’s coefficients (and their covariance matrix)
can be used as the first bootstrap sample.

These samples are drawn as follows. Details are in the reference below.

1. n_bootstraps many “bootstrap samples” of the response (y) are
simulated by drawing random samples from the model’s distribution
evaluated at the expected values (mu) for each sample in X.

2. A copy of the model is fitted to each of those bootstrap samples of
the response. The result is an approximation of the distribution over
the smoothing parameter lam given the response data y.

3. Samples of the coefficients are simulated from a multivariate normal
using the bootstrap samples of the coefficients and their covariance
matrices.

Notes

A gridsearch is done n_bootstraps many times, so keep
n_bootstraps small. Make n_bootstraps < n_draws to take advantage
of the expensive bootstrap samples of the smoothing parameters.


	Parameters

	
	X (array of shape (n_samples, m_features)) – empirical input data


	y (array of shape (n_samples,)) – empirical response vector


	quantity ({'y', 'coef', 'mu'}, default: 'y') – What quantity to return pseudorandom samples of.
If sample_at_X is not None and quantity is either ‘y’ or
‘mu’, then samples are drawn at the values of X specified in
sample_at_X.


	sample_at_X (array of shape (n_samples_to_simulate, m_features) or) – 


	optional (None [https://docs.python.org/3/library/constants.html#None],) – Input data at which to draw new samples.

Only applies for quantity equal to ‘y’ or to ‘mu’.
If None, then sample_at_X is replaced by X.




	weights (np.array of shape (n_samples,)) – sample weights


	n_draws (positive int, optional (default=100)) – The number of samples to draw from the posterior distribution of
the coefficients and smoothing parameters


	n_bootstraps (positive int, optional (default=5)) – The number of bootstrap samples to draw from simulations of the
response (from the already fitted model) to estimate the
distribution of the smoothing parameters given the response data.
If n_bootstraps is 1, then only the already fitted model’s
smoothing parameter is used, and the distribution over the
smoothing parameters is not estimated using bootstrap sampling.


	objective (string, optional (default='auto') – metric to optimize in grid search. must be in
[‘AIC’, ‘AICc’, ‘GCV’, ‘UBRE’, ‘auto’]
if ‘auto’, then grid search will optimize GCV for models with
unknown scale and UBRE for models with known scale.






	Returns

	draws – Simulations of the given quantity using samples from the
posterior distribution of the coefficients and smoothing parameter
given the response data. Each row is a pseudorandom sample.

If quantity == ‘coef’, then the number of columns of draws is
the number of coefficients (len(self.coef_)).

Otherwise, the number of columns of draws is the number of
rows of sample_at_X if sample_at_X is not None or else
the number of rows of X.





	Return type

	2D array of length n_draws





References

Simon N. Wood, 2006. Generalized Additive Models: an introduction with
R. Section 4.9.3 (pages 198–199) and Section 5.4.2 (page 256–257).






	
score(X, y, weights=None)

	method to compute the explained deviance for a trained model for a given X data and y labels


	Parameters

	
	X (array-like) – Input data array of shape (n_samples, m_features)


	y (array-like) – Output data vector of shape (n_samples,)


	weights (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], optional) – Sample weights.
if None, defaults to array of ones






	Returns

	explained deviancce score



	Return type

	np.array() (n_samples,)










	
set_params(deep=False, force=False, **parameters)

	sets an object’s paramters


	Parameters

	
	deep (boolean, default: False) – when True, also sets non-user-facing paramters


	force (boolean, default: False) – when True, also sets parameters that the object does not already
have


	**parameters (paramters to set) – 






	Returns

	



	Return type

	self










	
summary()

	produce a summary of the model statistics


	Parameters

	None – 



	Returns

	



	Return type

	None [https://docs.python.org/3/library/constants.html#None]

















          

      

      

    

  

    
      
          
            
  


InvGaussGAM


	
class pygam.pygam.InvGaussGAM(terms='auto', max_iter=100, tol=0.0001, scale=None, callbacks=['deviance', 'diffs'], fit_intercept=True, verbose=False, **kwargs)

	Bases: pygam.pygam.GAM

Inverse Gaussian GAM

This is a GAM with a Inverse Gaussian error distribution, and a log link.

NB
Although canonical link function for the Inverse Gaussian GLM is the inverse squared link,
this function can create problems for numerical software because it becomes
difficult to enforce the requirement that the mean of the Inverse Gaussian distribution
be positive. The log link guarantees this.

If you need to use the inverse squared link function, simply construct a custom GAM:

>>> from pygam import GAM
>>> gam = GAM(distribution='inv_gauss', link='inv_squared')






	Parameters

	
	terms (expression specifying terms to model, optional.) – By default a univariate spline term will be allocated for each feature.

For example:

>>> GAM(s(0) + l(1) + f(2) + te(3, 4))





will fit a spline term on feature 0, a linear term on feature 1,
a factor term on feature 2, and a tensor term on features 3 and 4.




	callbacks (list of str or list of CallBack objects, optional) – Names of callback objects to call during the optimization loop.


	fit_intercept (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Specifies if a constant (a.k.a. bias or intercept) should be
added to the decision function.
Note: the intercept receives no smoothing penalty.


	max_iter (int [https://docs.python.org/3/library/functions.html#int], optional) – Maximum number of iterations allowed for the solver to converge.


	tol (float [https://docs.python.org/3/library/functions.html#float], optional) – Tolerance for stopping criteria.


	verbose (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to show pyGAM warnings.









	
coef_

	Coefficient of the features in the decision function.
If fit_intercept is True, then self.coef_[0] will contain the bias.


	Type

	array, shape (n_classes, m_features)










	
statistics_

	Dictionary containing model statistics like GCV/UBRE scores, AIC/c,
parameter covariances, estimated degrees of freedom, etc.


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
logs_

	Dictionary containing the outputs of any callbacks at each
optimization loop.

The logs are structured as {callback: [...]}


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]









References

Simon N. Wood, 2006
Generalized Additive Models: an introduction with R

Hastie, Tibshirani, Friedman
The Elements of Statistical Learning
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf

Paul Eilers & Brian Marx, 2015
International Biometric Society: A Crash Course on P-splines
http://www.ibschannel2015.nl/project/userfiles/Crash_course_handout.pdf


	
confidence_intervals(X, width=0.95, quantiles=None)

	estimate confidence intervals for the model.


	Parameters

	
	X (array-like of shape (n_samples, m_features)) – Input data matrix


	width (float on [0,1], optional) – 


	quantiles (array-like of floats in (0, 1), optional) – Instead of specifying the prediciton width, one can specify the
quantiles. So width=.95 is equivalent to quantiles=[.025, .975]






	Returns

	intervals



	Return type

	np.array of shape (n_samples, 2 or len(quantiles))





Notes


	Wood 2006, section 4.9

	Confidence intervals based on section 4.8 rely on large sample results to deal with
non-Gaussian distributions, and treat the smoothing parameters as fixed, when in
reality they are estimated from the data.










	
deviance_residuals(X, y, weights=None, scaled=False)

	method to compute the deviance residuals of the model

these are analogous to the residuals of an OLS.


	Parameters

	
	X (array-like) – Input data array of shape (n_samples, m_features)


	y (array-like) – Output data vector of shape (n_samples,)


	weights (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], optional) – Sample weights.
if None, defaults to array of ones


	scaled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to scale the deviance by the (estimated) distribution scale






	Returns

	deviance_residuals – with shape (n_samples,)



	Return type

	np.array










	
fit(X, y, weights=None)

	Fit the generalized additive model.


	Parameters

	
	X (array-like, shape (n_samples, m_features)) – Training vectors.


	y (array-like, shape (n_samples,)) – Target values,
ie integers in classification, real numbers in
regression)


	weights (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], optional) – Sample weights.
if None, defaults to array of ones






	Returns

	self – Returns fitted GAM object



	Return type

	object [https://docs.python.org/3/library/functions.html#object]










	
generate_X_grid(term, n=100, meshgrid=False)

	create a nice grid of X data

array is sorted by feature and uniformly spaced,
so the marginal and joint distributions are likely wrong

if term is >= 0, we generate n samples per feature,
which results in n^deg samples,
where deg is the degree of the interaction of the term


	Parameters

	
	term (int [https://docs.python.org/3/library/functions.html#int],) – Which term to process.


	n (int [https://docs.python.org/3/library/functions.html#int], optional) – number of data points to create


	meshgrid (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to return a meshgrid (useful for 3d plotting)
or a feature matrix (useful for inference like partial predictions)






	Returns

	
	if meshgrid is False – np.array of shape (n, n_features)
where m is the number of
(sub)terms in the requested (tensor)term.


	else – tuple of len m,
where m is the number of (sub)terms in the requested
(tensor)term.

each element in the tuple contains a np.ndarray of size (n)^m









	Raises

	ValueError : – If the term requested is an intercept
since it does not make sense to process the intercept term.










	
get_params(deep=False)

	returns a dict of all of the object’s user-facing parameters


	Parameters

	deep (boolean, default: False) – when True, also gets non-user-facing paramters



	Returns

	



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
gridsearch(X, y, weights=None, return_scores=False, keep_best=True, objective='auto', progress=True, **param_grids)

	Performs a grid search over a space of parameters for a given
objective


Warning

gridsearch is lazy and will not remove useless combinations
from the search space, eg.

>>> n_splines=np.arange(5,10), fit_splines=[True, False]





will result in 10 loops, of which 5 are equivalent because
fit_splines = False

Also, it is not recommended to search over a grid that alternates
between known scales and unknown scales, as the scores of the
candidate models will not be comparable.




	Parameters

	
	X (array-like) – input data of shape (n_samples, m_features)


	y (array-like) – label data of shape (n_samples,)


	weights (array-like shape (n_samples,), optional) – sample weights


	return_scores (boolean, optional) – whether to return the hyperpamaters and score for each element
in the grid


	keep_best (boolean, optional) – whether to keep the best GAM as self.


	objective ({'auto', 'AIC', 'AICc', 'GCV', 'UBRE'}, optional) – Metric to optimize.
If auto, then grid search will optimize GCV for models with unknown
scale and UBRE for models with known scale.


	progress (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to display a progress bar


	**kwargs – pairs of parameters and iterables of floats, or
parameters and iterables of iterables of floats.

If no parameter are specified, lam=np.logspace(-3, 3, 11) is used.
This results in a 11 points, placed diagonally across lam space.

If grid is iterable of iterables of floats,
the outer iterable must have length m_features.
the cartesian product of the subgrids in the grid will be tested.

If grid is a 2d numpy array,
each row of the array will be tested.

The method will make a grid of all the combinations of the parameters
and fit a GAM to each combination.








	Returns

	
	if return_scores=True – model_scores: dict containing each fitted model as keys and corresponding
objective scores as values


	else – self: ie possibly the newly fitted model










Examples

For a model with 4 terms, and where we expect 4 lam values,
our search space for lam must have 4 dimensions.

We can search the space in 3 ways:

1. via cartesian product by specifying the grid as a list.
our grid search will consider 11 ** 4 points:

>>> lam = np.logspace(-3, 3, 11)
>>> lams = [lam] * 4
>>> gam.gridsearch(X, y, lam=lams)





2. directly by specifying the grid as a np.ndarray.
This is useful for when the dimensionality of the search space
is very large, and we would prefer to execute a randomized search:

>>> lams = np.exp(np.random.random(50, 4) * 6 - 3)
>>> gam.gridsearch(X, y, lam=lams)





3. copying grids for parameters with multiple dimensions.
if we specify a 1D np.ndarray for lam, we are implicitly testing the
space where all points have the same value

>>> gam.gridsearch(lam=np.logspace(-3, 3, 11))





is equivalent to:

>>> lam = np.logspace(-3, 3, 11)
>>> lams = np.array([lam] * 4)
>>> gam.gridsearch(X, y, lam=lams)










	
loglikelihood(X, y, weights=None)

	compute the log-likelihood of the dataset using the current model


	Parameters

	
	X (array-like of shape (n_samples, m_features)) – containing the input dataset


	y (array-like of shape (n,)) – containing target values


	weights (array-like of shape (n,), optional) – containing sample weights






	Returns

	log-likelihood – containing log-likelihood scores



	Return type

	np.array of shape (n,)










	
partial_dependence(term, X=None, width=None, quantiles=None, meshgrid=False)

	Computes the term functions for the GAM
and possibly their confidence intervals.

if both width=None and quantiles=None,
then no confidence intervals are computed


	Parameters

	
	term (int [https://docs.python.org/3/library/functions.html#int], optional) – Term for which to compute the partial dependence functions.


	X (array-like with input data, optional) – if meshgrid=False, then X should be an array-like
of shape (n_samples, m_features).

if meshgrid=True, then X should be a tuple containing
an array for each feature in the term.

if None, an equally spaced grid of points is generated.




	width (float on (0, 1), optional) – Width of the confidence interval.


	quantiles (array-like of floats on (0, 1), optional) – instead of specifying the prediciton width, one can specify the
quantiles. so width=.95 is equivalent to quantiles=[.025, .975].
if None, defaults to width.


	meshgrid (bool [https://docs.python.org/3/library/functions.html#bool], whether to return and accept meshgrids.) – Useful for creating outputs that are suitable for
3D plotting.

Note, for simple terms with no interactions, the output
of this function will be the same for meshgrid=True and
meshgrid=False, but the inputs will need to be different.








	Returns

	
	pdeps (np.array of shape (n_samples,))


	conf_intervals (list of length len(term)) – containing np.arrays of shape (n_samples, 2 or len(quantiles))








	Raises

	ValueError : – If the term requested is an intercept
since it does not make sense to process the intercept term.






See also


	generate_X_grid()

	for help creating meshgrids.












	
predict(X)

	preduct expected value of target given model and input X
often this is done via expected value of GAM given input X


	Parameters

	X (array-like of shape (n_samples, m_features)) – containing the input dataset



	Returns

	y – containing predicted values under the model



	Return type

	np.array of shape (n_samples,)










	
predict_mu(X)

	preduct expected value of target given model and input X


	Parameters

	X (array-like of shape (n_samples, m_features),) – containing the input dataset



	Returns

	y – containing expected values under the model



	Return type

	np.array of shape (n_samples,)










	
sample(X, y, quantity='y', sample_at_X=None, weights=None, n_draws=100, n_bootstraps=5, objective='auto')

	Simulate from the posterior of the coefficients and smoothing params.

Samples are drawn from the posterior of the coefficients and smoothing
parameters given the response in an approximate way. The GAM must
already be fitted before calling this method; if the model has not
been fitted, then an exception is raised. Moreover, it is recommended
that the model and its hyperparameters be chosen with gridsearch
(with the parameter keep_best=True) before calling sample, so that
the result of that gridsearch can be used to generate useful response
data and so that the model’s coefficients (and their covariance matrix)
can be used as the first bootstrap sample.

These samples are drawn as follows. Details are in the reference below.

1. n_bootstraps many “bootstrap samples” of the response (y) are
simulated by drawing random samples from the model’s distribution
evaluated at the expected values (mu) for each sample in X.

2. A copy of the model is fitted to each of those bootstrap samples of
the response. The result is an approximation of the distribution over
the smoothing parameter lam given the response data y.

3. Samples of the coefficients are simulated from a multivariate normal
using the bootstrap samples of the coefficients and their covariance
matrices.

Notes

A gridsearch is done n_bootstraps many times, so keep
n_bootstraps small. Make n_bootstraps < n_draws to take advantage
of the expensive bootstrap samples of the smoothing parameters.


	Parameters

	
	X (array of shape (n_samples, m_features)) – empirical input data


	y (array of shape (n_samples,)) – empirical response vector


	quantity ({'y', 'coef', 'mu'}, default: 'y') – What quantity to return pseudorandom samples of.
If sample_at_X is not None and quantity is either ‘y’ or
‘mu’, then samples are drawn at the values of X specified in
sample_at_X.


	sample_at_X (array of shape (n_samples_to_simulate, m_features) or) – 


	optional (None [https://docs.python.org/3/library/constants.html#None],) – Input data at which to draw new samples.

Only applies for quantity equal to ‘y’ or to ‘mu’.
If None, then sample_at_X is replaced by X.




	weights (np.array of shape (n_samples,)) – sample weights


	n_draws (positive int, optional (default=100)) – The number of samples to draw from the posterior distribution of
the coefficients and smoothing parameters


	n_bootstraps (positive int, optional (default=5)) – The number of bootstrap samples to draw from simulations of the
response (from the already fitted model) to estimate the
distribution of the smoothing parameters given the response data.
If n_bootstraps is 1, then only the already fitted model’s
smoothing parameter is used, and the distribution over the
smoothing parameters is not estimated using bootstrap sampling.


	objective (string, optional (default='auto') – metric to optimize in grid search. must be in
[‘AIC’, ‘AICc’, ‘GCV’, ‘UBRE’, ‘auto’]
if ‘auto’, then grid search will optimize GCV for models with
unknown scale and UBRE for models with known scale.






	Returns

	draws – Simulations of the given quantity using samples from the
posterior distribution of the coefficients and smoothing parameter
given the response data. Each row is a pseudorandom sample.

If quantity == ‘coef’, then the number of columns of draws is
the number of coefficients (len(self.coef_)).

Otherwise, the number of columns of draws is the number of
rows of sample_at_X if sample_at_X is not None or else
the number of rows of X.





	Return type

	2D array of length n_draws





References

Simon N. Wood, 2006. Generalized Additive Models: an introduction with
R. Section 4.9.3 (pages 198–199) and Section 5.4.2 (page 256–257).






	
score(X, y, weights=None)

	method to compute the explained deviance for a trained model for a given X data and y labels


	Parameters

	
	X (array-like) – Input data array of shape (n_samples, m_features)


	y (array-like) – Output data vector of shape (n_samples,)


	weights (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], optional) – Sample weights.
if None, defaults to array of ones






	Returns

	explained deviancce score



	Return type

	np.array() (n_samples,)










	
set_params(deep=False, force=False, **parameters)

	sets an object’s paramters


	Parameters

	
	deep (boolean, default: False) – when True, also sets non-user-facing paramters


	force (boolean, default: False) – when True, also sets parameters that the object does not already
have


	**parameters (paramters to set) – 






	Returns

	



	Return type

	self










	
summary()

	produce a summary of the model statistics


	Parameters

	None – 



	Returns

	



	Return type

	None [https://docs.python.org/3/library/constants.html#None]

















          

      

      

    

  

    
      
          
            
  


LogisticGAM


	
class pygam.pygam.LogisticGAM(terms='auto', max_iter=100, tol=0.0001, callbacks=['deviance', 'diffs', 'accuracy'], fit_intercept=True, verbose=False, **kwargs)

	Bases: pygam.pygam.GAM

Logistic GAM

This is a GAM with a Binomial error distribution, and a logit link.


	Parameters

	
	terms (expression specifying terms to model, optional.) – By default a univariate spline term will be allocated for each feature.

For example:

>>> GAM(s(0) + l(1) + f(2) + te(3, 4))





will fit a spline term on feature 0, a linear term on feature 1,
a factor term on feature 2, and a tensor term on features 3 and 4.




	callbacks (list of str or list of CallBack objects, optional) – Names of callback objects to call during the optimization loop.


	fit_intercept (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Specifies if a constant (a.k.a. bias or intercept) should be
added to the decision function.
Note: the intercept receives no smoothing penalty.


	max_iter (int [https://docs.python.org/3/library/functions.html#int], optional) – Maximum number of iterations allowed for the solver to converge.


	tol (float [https://docs.python.org/3/library/functions.html#float], optional) – Tolerance for stopping criteria.


	verbose (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to show pyGAM warnings.









	
coef_

	Coefficient of the features in the decision function.
If fit_intercept is True, then self.coef_[0] will contain the bias.


	Type

	array, shape (n_classes, m_features)










	
statistics_

	Dictionary containing model statistics like GCV/UBRE scores, AIC/c,
parameter covariances, estimated degrees of freedom, etc.


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
logs_

	Dictionary containing the outputs of any callbacks at each
optimization loop.

The logs are structured as {callback: [...]}


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]









References

Simon N. Wood, 2006
Generalized Additive Models: an introduction with R

Hastie, Tibshirani, Friedman
The Elements of Statistical Learning
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf

Paul Eilers & Brian Marx, 2015
International Biometric Society: A Crash Course on P-splines
http://www.ibschannel2015.nl/project/userfiles/Crash_course_handout.pdf


	
accuracy(X=None, y=None, mu=None)

	computes the accuracy of the LogisticGAM


	Parameters

	
	note (X or mu must be defined. defaults to mu) – 


	X (array-like of shape (n_samples, m_features), optional (default=None)) – containing input data


	y (array-like of shape (n,)) – containing target data


	mu (array-like of shape (n_samples,), optional (default=None) – expected value of the targets given the model and inputs






	Returns

	



	Return type

	float in [0, 1]










	
confidence_intervals(X, width=0.95, quantiles=None)

	estimate confidence intervals for the model.


	Parameters

	
	X (array-like of shape (n_samples, m_features)) – Input data matrix


	width (float on [0,1], optional) – 


	quantiles (array-like of floats in (0, 1), optional) – Instead of specifying the prediciton width, one can specify the
quantiles. So width=.95 is equivalent to quantiles=[.025, .975]






	Returns

	intervals



	Return type

	np.array of shape (n_samples, 2 or len(quantiles))





Notes


	Wood 2006, section 4.9

	Confidence intervals based on section 4.8 rely on large sample results to deal with
non-Gaussian distributions, and treat the smoothing parameters as fixed, when in
reality they are estimated from the data.










	
deviance_residuals(X, y, weights=None, scaled=False)

	method to compute the deviance residuals of the model

these are analogous to the residuals of an OLS.


	Parameters

	
	X (array-like) – Input data array of shape (n_samples, m_features)


	y (array-like) – Output data vector of shape (n_samples,)


	weights (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], optional) – Sample weights.
if None, defaults to array of ones


	scaled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to scale the deviance by the (estimated) distribution scale






	Returns

	deviance_residuals – with shape (n_samples,)



	Return type

	np.array










	
fit(X, y, weights=None)

	Fit the generalized additive model.


	Parameters

	
	X (array-like, shape (n_samples, m_features)) – Training vectors.


	y (array-like, shape (n_samples,)) – Target values,
ie integers in classification, real numbers in
regression)


	weights (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], optional) – Sample weights.
if None, defaults to array of ones






	Returns

	self – Returns fitted GAM object



	Return type

	object [https://docs.python.org/3/library/functions.html#object]










	
generate_X_grid(term, n=100, meshgrid=False)

	create a nice grid of X data

array is sorted by feature and uniformly spaced,
so the marginal and joint distributions are likely wrong

if term is >= 0, we generate n samples per feature,
which results in n^deg samples,
where deg is the degree of the interaction of the term


	Parameters

	
	term (int [https://docs.python.org/3/library/functions.html#int],) – Which term to process.


	n (int [https://docs.python.org/3/library/functions.html#int], optional) – number of data points to create


	meshgrid (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to return a meshgrid (useful for 3d plotting)
or a feature matrix (useful for inference like partial predictions)






	Returns

	
	if meshgrid is False – np.array of shape (n, n_features)
where m is the number of
(sub)terms in the requested (tensor)term.


	else – tuple of len m,
where m is the number of (sub)terms in the requested
(tensor)term.

each element in the tuple contains a np.ndarray of size (n)^m









	Raises

	ValueError : – If the term requested is an intercept
since it does not make sense to process the intercept term.










	
get_params(deep=False)

	returns a dict of all of the object’s user-facing parameters


	Parameters

	deep (boolean, default: False) – when True, also gets non-user-facing paramters



	Returns

	



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
gridsearch(X, y, weights=None, return_scores=False, keep_best=True, objective='auto', progress=True, **param_grids)

	Performs a grid search over a space of parameters for a given
objective


Warning

gridsearch is lazy and will not remove useless combinations
from the search space, eg.

>>> n_splines=np.arange(5,10), fit_splines=[True, False]





will result in 10 loops, of which 5 are equivalent because
fit_splines = False

Also, it is not recommended to search over a grid that alternates
between known scales and unknown scales, as the scores of the
candidate models will not be comparable.




	Parameters

	
	X (array-like) – input data of shape (n_samples, m_features)


	y (array-like) – label data of shape (n_samples,)


	weights (array-like shape (n_samples,), optional) – sample weights


	return_scores (boolean, optional) – whether to return the hyperpamaters and score for each element
in the grid


	keep_best (boolean, optional) – whether to keep the best GAM as self.


	objective ({'auto', 'AIC', 'AICc', 'GCV', 'UBRE'}, optional) – Metric to optimize.
If auto, then grid search will optimize GCV for models with unknown
scale and UBRE for models with known scale.


	progress (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to display a progress bar


	**kwargs – pairs of parameters and iterables of floats, or
parameters and iterables of iterables of floats.

If no parameter are specified, lam=np.logspace(-3, 3, 11) is used.
This results in a 11 points, placed diagonally across lam space.

If grid is iterable of iterables of floats,
the outer iterable must have length m_features.
the cartesian product of the subgrids in the grid will be tested.

If grid is a 2d numpy array,
each row of the array will be tested.

The method will make a grid of all the combinations of the parameters
and fit a GAM to each combination.








	Returns

	
	if return_scores=True – model_scores: dict containing each fitted model as keys and corresponding
objective scores as values


	else – self: ie possibly the newly fitted model










Examples

For a model with 4 terms, and where we expect 4 lam values,
our search space for lam must have 4 dimensions.

We can search the space in 3 ways:

1. via cartesian product by specifying the grid as a list.
our grid search will consider 11 ** 4 points:

>>> lam = np.logspace(-3, 3, 11)
>>> lams = [lam] * 4
>>> gam.gridsearch(X, y, lam=lams)





2. directly by specifying the grid as a np.ndarray.
This is useful for when the dimensionality of the search space
is very large, and we would prefer to execute a randomized search:

>>> lams = np.exp(np.random.random(50, 4) * 6 - 3)
>>> gam.gridsearch(X, y, lam=lams)





3. copying grids for parameters with multiple dimensions.
if we specify a 1D np.ndarray for lam, we are implicitly testing the
space where all points have the same value

>>> gam.gridsearch(lam=np.logspace(-3, 3, 11))





is equivalent to:

>>> lam = np.logspace(-3, 3, 11)
>>> lams = np.array([lam] * 4)
>>> gam.gridsearch(X, y, lam=lams)










	
loglikelihood(X, y, weights=None)

	compute the log-likelihood of the dataset using the current model


	Parameters

	
	X (array-like of shape (n_samples, m_features)) – containing the input dataset


	y (array-like of shape (n,)) – containing target values


	weights (array-like of shape (n,), optional) – containing sample weights






	Returns

	log-likelihood – containing log-likelihood scores



	Return type

	np.array of shape (n,)










	
partial_dependence(term, X=None, width=None, quantiles=None, meshgrid=False)

	Computes the term functions for the GAM
and possibly their confidence intervals.

if both width=None and quantiles=None,
then no confidence intervals are computed


	Parameters

	
	term (int [https://docs.python.org/3/library/functions.html#int], optional) – Term for which to compute the partial dependence functions.


	X (array-like with input data, optional) – if meshgrid=False, then X should be an array-like
of shape (n_samples, m_features).

if meshgrid=True, then X should be a tuple containing
an array for each feature in the term.

if None, an equally spaced grid of points is generated.




	width (float on (0, 1), optional) – Width of the confidence interval.


	quantiles (array-like of floats on (0, 1), optional) – instead of specifying the prediciton width, one can specify the
quantiles. so width=.95 is equivalent to quantiles=[.025, .975].
if None, defaults to width.


	meshgrid (bool [https://docs.python.org/3/library/functions.html#bool], whether to return and accept meshgrids.) – Useful for creating outputs that are suitable for
3D plotting.

Note, for simple terms with no interactions, the output
of this function will be the same for meshgrid=True and
meshgrid=False, but the inputs will need to be different.








	Returns

	
	pdeps (np.array of shape (n_samples,))


	conf_intervals (list of length len(term)) – containing np.arrays of shape (n_samples, 2 or len(quantiles))








	Raises

	ValueError : – If the term requested is an intercept
since it does not make sense to process the intercept term.






See also


	generate_X_grid()

	for help creating meshgrids.












	
predict(X)

	preduct binary targets given model and input X


	Parameters

	X (array-like of shape (n_samples, m_features), optional (default=None)) – containing the input dataset



	Returns

	y – containing binary targets under the model



	Return type

	np.array of shape (n_samples,)










	
predict_mu(X)

	preduct expected value of target given model and input X


	Parameters

	X (array-like of shape (n_samples, m_features),) – containing the input dataset



	Returns

	y – containing expected values under the model



	Return type

	np.array of shape (n_samples,)










	
predict_proba(X)

	preduct targets given model and input X


	Parameters

	X (array-like of shape (n_samples, m_features), optional (default=None) – containing the input dataset



	Returns

	y – containing expected values under the model



	Return type

	np.array of shape (n_samples,)










	
sample(X, y, quantity='y', sample_at_X=None, weights=None, n_draws=100, n_bootstraps=5, objective='auto')

	Simulate from the posterior of the coefficients and smoothing params.

Samples are drawn from the posterior of the coefficients and smoothing
parameters given the response in an approximate way. The GAM must
already be fitted before calling this method; if the model has not
been fitted, then an exception is raised. Moreover, it is recommended
that the model and its hyperparameters be chosen with gridsearch
(with the parameter keep_best=True) before calling sample, so that
the result of that gridsearch can be used to generate useful response
data and so that the model’s coefficients (and their covariance matrix)
can be used as the first bootstrap sample.

These samples are drawn as follows. Details are in the reference below.

1. n_bootstraps many “bootstrap samples” of the response (y) are
simulated by drawing random samples from the model’s distribution
evaluated at the expected values (mu) for each sample in X.

2. A copy of the model is fitted to each of those bootstrap samples of
the response. The result is an approximation of the distribution over
the smoothing parameter lam given the response data y.

3. Samples of the coefficients are simulated from a multivariate normal
using the bootstrap samples of the coefficients and their covariance
matrices.

Notes

A gridsearch is done n_bootstraps many times, so keep
n_bootstraps small. Make n_bootstraps < n_draws to take advantage
of the expensive bootstrap samples of the smoothing parameters.


	Parameters

	
	X (array of shape (n_samples, m_features)) – empirical input data


	y (array of shape (n_samples,)) – empirical response vector


	quantity ({'y', 'coef', 'mu'}, default: 'y') – What quantity to return pseudorandom samples of.
If sample_at_X is not None and quantity is either ‘y’ or
‘mu’, then samples are drawn at the values of X specified in
sample_at_X.


	sample_at_X (array of shape (n_samples_to_simulate, m_features) or) – 


	optional (None [https://docs.python.org/3/library/constants.html#None],) – Input data at which to draw new samples.

Only applies for quantity equal to ‘y’ or to ‘mu’.
If None, then sample_at_X is replaced by X.




	weights (np.array of shape (n_samples,)) – sample weights


	n_draws (positive int, optional (default=100)) – The number of samples to draw from the posterior distribution of
the coefficients and smoothing parameters


	n_bootstraps (positive int, optional (default=5)) – The number of bootstrap samples to draw from simulations of the
response (from the already fitted model) to estimate the
distribution of the smoothing parameters given the response data.
If n_bootstraps is 1, then only the already fitted model’s
smoothing parameter is used, and the distribution over the
smoothing parameters is not estimated using bootstrap sampling.


	objective (string, optional (default='auto') – metric to optimize in grid search. must be in
[‘AIC’, ‘AICc’, ‘GCV’, ‘UBRE’, ‘auto’]
if ‘auto’, then grid search will optimize GCV for models with
unknown scale and UBRE for models with known scale.






	Returns

	draws – Simulations of the given quantity using samples from the
posterior distribution of the coefficients and smoothing parameter
given the response data. Each row is a pseudorandom sample.

If quantity == ‘coef’, then the number of columns of draws is
the number of coefficients (len(self.coef_)).

Otherwise, the number of columns of draws is the number of
rows of sample_at_X if sample_at_X is not None or else
the number of rows of X.





	Return type

	2D array of length n_draws





References

Simon N. Wood, 2006. Generalized Additive Models: an introduction with
R. Section 4.9.3 (pages 198–199) and Section 5.4.2 (page 256–257).






	
score(X, y)

	method to compute the accuracy for a trained model for a given X data and y labels


	Parameters

	
	X (array-like) – Input data array of shape (n_samples, m_features)


	y (array-like) – Output data vector of shape (n_samples,)






	Returns

	accuracy score



	Return type

	np.array() (n_samples,)










	
set_params(deep=False, force=False, **parameters)

	sets an object’s paramters


	Parameters

	
	deep (boolean, default: False) – when True, also sets non-user-facing paramters


	force (boolean, default: False) – when True, also sets parameters that the object does not already
have


	**parameters (paramters to set) – 






	Returns

	



	Return type

	self










	
summary()

	produce a summary of the model statistics


	Parameters

	None – 



	Returns

	



	Return type

	None [https://docs.python.org/3/library/constants.html#None]

















          

      

      

    

  

    
      
          
            
  


PoissonGAM


	
class pygam.pygam.PoissonGAM(terms='auto', max_iter=100, tol=0.0001, callbacks=['deviance', 'diffs'], fit_intercept=True, verbose=False, **kwargs)

	Bases: pygam.pygam.GAM

Poisson GAM

This is a GAM with a Poisson error distribution, and a log link.


	Parameters

	
	terms (expression specifying terms to model, optional.) – By default a univariate spline term will be allocated for each feature.

For example:

>>> GAM(s(0) + l(1) + f(2) + te(3, 4))





will fit a spline term on feature 0, a linear term on feature 1,
a factor term on feature 2, and a tensor term on features 3 and 4.




	callbacks (list of str or list of CallBack objects, optional) – Names of callback objects to call during the optimization loop.


	fit_intercept (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Specifies if a constant (a.k.a. bias or intercept) should be
added to the decision function.
Note: the intercept receives no smoothing penalty.


	max_iter (int [https://docs.python.org/3/library/functions.html#int], optional) – Maximum number of iterations allowed for the solver to converge.


	tol (float [https://docs.python.org/3/library/functions.html#float], optional) – Tolerance for stopping criteria.


	verbose (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to show pyGAM warnings.









	
coef_

	Coefficient of the features in the decision function.
If fit_intercept is True, then self.coef_[0] will contain the bias.


	Type

	array, shape (n_classes, m_features)










	
statistics_

	Dictionary containing model statistics like GCV/UBRE scores, AIC/c,
parameter covariances, estimated degrees of freedom, etc.


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
logs_

	Dictionary containing the outputs of any callbacks at each
optimization loop.

The logs are structured as {callback: [...]}


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]









References

Simon N. Wood, 2006
Generalized Additive Models: an introduction with R

Hastie, Tibshirani, Friedman
The Elements of Statistical Learning
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf

Paul Eilers & Brian Marx, 2015
International Biometric Society: A Crash Course on P-splines
http://www.ibschannel2015.nl/project/userfiles/Crash_course_handout.pdf


	
confidence_intervals(X, width=0.95, quantiles=None)

	estimate confidence intervals for the model.


	Parameters

	
	X (array-like of shape (n_samples, m_features)) – Input data matrix


	width (float on [0,1], optional) – 


	quantiles (array-like of floats in (0, 1), optional) – Instead of specifying the prediciton width, one can specify the
quantiles. So width=.95 is equivalent to quantiles=[.025, .975]






	Returns

	intervals



	Return type

	np.array of shape (n_samples, 2 or len(quantiles))





Notes


	Wood 2006, section 4.9

	Confidence intervals based on section 4.8 rely on large sample results to deal with
non-Gaussian distributions, and treat the smoothing parameters as fixed, when in
reality they are estimated from the data.










	
deviance_residuals(X, y, weights=None, scaled=False)

	method to compute the deviance residuals of the model

these are analogous to the residuals of an OLS.


	Parameters

	
	X (array-like) – Input data array of shape (n_samples, m_features)


	y (array-like) – Output data vector of shape (n_samples,)


	weights (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], optional) – Sample weights.
if None, defaults to array of ones


	scaled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to scale the deviance by the (estimated) distribution scale






	Returns

	deviance_residuals – with shape (n_samples,)



	Return type

	np.array










	
fit(X, y, exposure=None, weights=None)

	Fit the generalized additive model.


	Parameters

	
	X (array-like, shape (n_samples, m_features)) – Training vectors, where n_samples is the number of samples
and m_features is the number of features.


	y (array-like, shape (n_samples,)) – Target values (integers in classification, real numbers in
regression)
For classification, labels must correspond to classes.


	exposure (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], default: None) – containing exposures
if None, defaults to array of ones


	weights (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], default: None) – containing sample weights
if None, defaults to array of ones






	Returns

	self – Returns fitted GAM object



	Return type

	object [https://docs.python.org/3/library/functions.html#object]










	
generate_X_grid(term, n=100, meshgrid=False)

	create a nice grid of X data

array is sorted by feature and uniformly spaced,
so the marginal and joint distributions are likely wrong

if term is >= 0, we generate n samples per feature,
which results in n^deg samples,
where deg is the degree of the interaction of the term


	Parameters

	
	term (int [https://docs.python.org/3/library/functions.html#int],) – Which term to process.


	n (int [https://docs.python.org/3/library/functions.html#int], optional) – number of data points to create


	meshgrid (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to return a meshgrid (useful for 3d plotting)
or a feature matrix (useful for inference like partial predictions)






	Returns

	
	if meshgrid is False – np.array of shape (n, n_features)
where m is the number of
(sub)terms in the requested (tensor)term.


	else – tuple of len m,
where m is the number of (sub)terms in the requested
(tensor)term.

each element in the tuple contains a np.ndarray of size (n)^m









	Raises

	ValueError : – If the term requested is an intercept
since it does not make sense to process the intercept term.










	
get_params(deep=False)

	returns a dict of all of the object’s user-facing parameters


	Parameters

	deep (boolean, default: False) – when True, also gets non-user-facing paramters



	Returns

	



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
gridsearch(X, y, exposure=None, weights=None, return_scores=False, keep_best=True, objective='auto', **param_grids)

	performs a grid search over a space of parameters for a given objective

NOTE:
gridsearch method is lazy and will not remove useless combinations
from the search space, eg.

>>> n_splines=np.arange(5,10), fit_splines=[True, False]





will result in 10 loops, of which 5 are equivalent because
even though fit_splines==False

it is not recommended to search over a grid that alternates
between known scales and unknown scales, as the scores of the
candidate models will not be comparable.


	Parameters

	
	X (array) – input data of shape (n_samples, m_features)


	y (array) – label data of shape (n_samples,)


	exposure (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], default: None) – containing exposures
if None, defaults to array of ones


	weights (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], default: None) – containing sample weights
if None, defaults to array of ones


	return_scores (boolean, default False) – whether to return the hyperpamaters
and score for each element in the grid


	keep_best (boolean) – whether to keep the best GAM as self.
default: True


	objective (string, default: 'auto') – metric to optimize. must be in [‘AIC’, ‘AICc’, ‘GCV’, ‘UBRE’, ‘auto’]
if ‘auto’, then grid search will optimize GCV for models with unknown
scale and UBRE for models with known scale.


	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], default {'lam': np.logspace(-3, 3, 11)}) – pairs of parameters and iterables of floats, or
parameters and iterables of iterables of floats.

if iterable of iterables of floats, the outer iterable must have
length m_features.

the method will make a grid of all the combinations of the parameters
and fit a GAM to each combination.








	Returns

	
	if return_values == True –


	model_scoresdict

	Contains each fitted model as keys and corresponding
objective scores as values







	else – self, ie possibly the newly fitted model















	
loglikelihood(X, y, exposure=None, weights=None)

	compute the log-likelihood of the dataset using the current model


	Parameters

	
	X (array-like of shape (n_samples, m_features)) – containing the input dataset


	y (array-like of shape (n,)) – containing target values


	exposure (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], default: None) – containing exposures
if None, defaults to array of ones


	weights (array-like of shape (n,)) – containing sample weights






	Returns

	log-likelihood – containing log-likelihood scores



	Return type

	np.array of shape (n,)










	
partial_dependence(term, X=None, width=None, quantiles=None, meshgrid=False)

	Computes the term functions for the GAM
and possibly their confidence intervals.

if both width=None and quantiles=None,
then no confidence intervals are computed


	Parameters

	
	term (int [https://docs.python.org/3/library/functions.html#int], optional) – Term for which to compute the partial dependence functions.


	X (array-like with input data, optional) – if meshgrid=False, then X should be an array-like
of shape (n_samples, m_features).

if meshgrid=True, then X should be a tuple containing
an array for each feature in the term.

if None, an equally spaced grid of points is generated.




	width (float on (0, 1), optional) – Width of the confidence interval.


	quantiles (array-like of floats on (0, 1), optional) – instead of specifying the prediciton width, one can specify the
quantiles. so width=.95 is equivalent to quantiles=[.025, .975].
if None, defaults to width.


	meshgrid (bool [https://docs.python.org/3/library/functions.html#bool], whether to return and accept meshgrids.) – Useful for creating outputs that are suitable for
3D plotting.

Note, for simple terms with no interactions, the output
of this function will be the same for meshgrid=True and
meshgrid=False, but the inputs will need to be different.








	Returns

	
	pdeps (np.array of shape (n_samples,))


	conf_intervals (list of length len(term)) – containing np.arrays of shape (n_samples, 2 or len(quantiles))








	Raises

	ValueError : – If the term requested is an intercept
since it does not make sense to process the intercept term.






See also


	generate_X_grid()

	for help creating meshgrids.












	
predict(X, exposure=None)

	preduct expected value of target given model and input X
often this is done via expected value of GAM given input X


	Parameters

	
	X (array-like of shape (n_samples, m_features), default: None) – containing the input dataset


	exposure (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], default: None) – containing exposures
if None, defaults to array of ones






	Returns

	y – containing predicted values under the model



	Return type

	np.array of shape (n_samples,)










	
predict_mu(X)

	preduct expected value of target given model and input X


	Parameters

	X (array-like of shape (n_samples, m_features),) – containing the input dataset



	Returns

	y – containing expected values under the model



	Return type

	np.array of shape (n_samples,)










	
sample(X, y, quantity='y', sample_at_X=None, weights=None, n_draws=100, n_bootstraps=5, objective='auto')

	Simulate from the posterior of the coefficients and smoothing params.

Samples are drawn from the posterior of the coefficients and smoothing
parameters given the response in an approximate way. The GAM must
already be fitted before calling this method; if the model has not
been fitted, then an exception is raised. Moreover, it is recommended
that the model and its hyperparameters be chosen with gridsearch
(with the parameter keep_best=True) before calling sample, so that
the result of that gridsearch can be used to generate useful response
data and so that the model’s coefficients (and their covariance matrix)
can be used as the first bootstrap sample.

These samples are drawn as follows. Details are in the reference below.

1. n_bootstraps many “bootstrap samples” of the response (y) are
simulated by drawing random samples from the model’s distribution
evaluated at the expected values (mu) for each sample in X.

2. A copy of the model is fitted to each of those bootstrap samples of
the response. The result is an approximation of the distribution over
the smoothing parameter lam given the response data y.

3. Samples of the coefficients are simulated from a multivariate normal
using the bootstrap samples of the coefficients and their covariance
matrices.

Notes

A gridsearch is done n_bootstraps many times, so keep
n_bootstraps small. Make n_bootstraps < n_draws to take advantage
of the expensive bootstrap samples of the smoothing parameters.


	Parameters

	
	X (array of shape (n_samples, m_features)) – empirical input data


	y (array of shape (n_samples,)) – empirical response vector


	quantity ({'y', 'coef', 'mu'}, default: 'y') – What quantity to return pseudorandom samples of.
If sample_at_X is not None and quantity is either ‘y’ or
‘mu’, then samples are drawn at the values of X specified in
sample_at_X.


	sample_at_X (array of shape (n_samples_to_simulate, m_features) or) – 


	optional (None [https://docs.python.org/3/library/constants.html#None],) – Input data at which to draw new samples.

Only applies for quantity equal to ‘y’ or to ‘mu’.
If None, then sample_at_X is replaced by X.




	weights (np.array of shape (n_samples,)) – sample weights


	n_draws (positive int, optional (default=100)) – The number of samples to draw from the posterior distribution of
the coefficients and smoothing parameters


	n_bootstraps (positive int, optional (default=5)) – The number of bootstrap samples to draw from simulations of the
response (from the already fitted model) to estimate the
distribution of the smoothing parameters given the response data.
If n_bootstraps is 1, then only the already fitted model’s
smoothing parameter is used, and the distribution over the
smoothing parameters is not estimated using bootstrap sampling.


	objective (string, optional (default='auto') – metric to optimize in grid search. must be in
[‘AIC’, ‘AICc’, ‘GCV’, ‘UBRE’, ‘auto’]
if ‘auto’, then grid search will optimize GCV for models with
unknown scale and UBRE for models with known scale.






	Returns

	draws – Simulations of the given quantity using samples from the
posterior distribution of the coefficients and smoothing parameter
given the response data. Each row is a pseudorandom sample.

If quantity == ‘coef’, then the number of columns of draws is
the number of coefficients (len(self.coef_)).

Otherwise, the number of columns of draws is the number of
rows of sample_at_X if sample_at_X is not None or else
the number of rows of X.





	Return type

	2D array of length n_draws





References

Simon N. Wood, 2006. Generalized Additive Models: an introduction with
R. Section 4.9.3 (pages 198–199) and Section 5.4.2 (page 256–257).






	
score(X, y, weights=None)

	method to compute the explained deviance for a trained model for a given X data and y labels


	Parameters

	
	X (array-like) – Input data array of shape (n_samples, m_features)


	y (array-like) – Output data vector of shape (n_samples,)


	weights (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], optional) – Sample weights.
if None, defaults to array of ones






	Returns

	explained deviancce score



	Return type

	np.array() (n_samples,)










	
set_params(deep=False, force=False, **parameters)

	sets an object’s paramters


	Parameters

	
	deep (boolean, default: False) – when True, also sets non-user-facing paramters


	force (boolean, default: False) – when True, also sets parameters that the object does not already
have


	**parameters (paramters to set) – 






	Returns

	



	Return type

	self










	
summary()

	produce a summary of the model statistics


	Parameters

	None – 



	Returns

	



	Return type

	None [https://docs.python.org/3/library/constants.html#None]

















          

      

      

    

  

    
      
          
            
  


ExpectileGAM

from pygam import ExpectileGAM
from pygam.datasets import mcycle

X, y = mcycle(return_X_y=True)

# lets fit the mean model first by CV
gam50 = ExpectileGAM(expectile=0.5).gridsearch(X, y)

# and copy the smoothing to the other models
lam = gam50.lam

# now fit a few more models
gam95 = ExpectileGAM(expectile=0.95, lam=lam).fit(X, y)
gam75 = ExpectileGAM(expectile=0.75, lam=lam).fit(X, y)
gam25 = ExpectileGAM(expectile=0.25, lam=lam).fit(X, y)
gam05 = ExpectileGAM(expectile=0.05, lam=lam).fit(X, y)





from matplotlib import pyplot as plt

XX = gam50.generate_X_grid(term=0, n=500)

plt.scatter(X, y, c='k', alpha=0.2)
plt.plot(XX, gam95.predict(XX), label='0.95')
plt.plot(XX, gam75.predict(XX), label='0.75')
plt.plot(XX, gam50.predict(XX), label='0.50')
plt.plot(XX, gam25.predict(XX), label='0.25')
plt.plot(XX, gam05.predict(XX), label='0.05')
plt.legend()





[image: pyGAM expectiles]

	
class pygam.pygam.ExpectileGAM(terms='auto', max_iter=100, tol=0.0001, scale=None, callbacks=['deviance', 'diffs'], fit_intercept=True, expectile=0.5, verbose=False, **kwargs)

	Bases: pygam.pygam.GAM

Expectile GAM

This is a GAM with a Normal distribution and an Identity Link,
but minimizing the Least Asymmetrically Weighted Squares


	Parameters

	
	terms (expression specifying terms to model, optional.) – By default a univariate spline term will be allocated for each feature.

For example:

>>> GAM(s(0) + l(1) + f(2) + te(3, 4))





will fit a spline term on feature 0, a linear term on feature 1,
a factor term on feature 2, and a tensor term on features 3 and 4.




	callbacks (list of str or list of CallBack objects, optional) – Names of callback objects to call during the optimization loop.


	fit_intercept (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Specifies if a constant (a.k.a. bias or intercept) should be
added to the decision function.
Note: the intercept receives no smoothing penalty.


	max_iter (int [https://docs.python.org/3/library/functions.html#int], optional) – Maximum number of iterations allowed for the solver to converge.


	tol (float [https://docs.python.org/3/library/functions.html#float], optional) – Tolerance for stopping criteria.


	verbose (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to show pyGAM warnings.









	
coef_

	Coefficient of the features in the decision function.
If fit_intercept is True, then self.coef_[0] will contain the bias.


	Type

	array, shape (n_classes, m_features)










	
statistics_

	Dictionary containing model statistics like GCV/UBRE scores, AIC/c,
parameter covariances, estimated degrees of freedom, etc.


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
logs_

	Dictionary containing the outputs of any callbacks at each
optimization loop.

The logs are structured as {callback: [...]}


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]









References

Simon N. Wood, 2006
Generalized Additive Models: an introduction with R

Hastie, Tibshirani, Friedman
The Elements of Statistical Learning
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf

Paul Eilers & Brian Marx, 2015
International Biometric Society: A Crash Course on P-splines
http://www.ibschannel2015.nl/project/userfiles/Crash_course_handout.pdf


	
confidence_intervals(X, width=0.95, quantiles=None)

	estimate confidence intervals for the model.


	Parameters

	
	X (array-like of shape (n_samples, m_features)) – Input data matrix


	width (float on [0,1], optional) – 


	quantiles (array-like of floats in (0, 1), optional) – Instead of specifying the prediciton width, one can specify the
quantiles. So width=.95 is equivalent to quantiles=[.025, .975]






	Returns

	intervals



	Return type

	np.array of shape (n_samples, 2 or len(quantiles))





Notes


	Wood 2006, section 4.9

	Confidence intervals based on section 4.8 rely on large sample results to deal with
non-Gaussian distributions, and treat the smoothing parameters as fixed, when in
reality they are estimated from the data.










	
deviance_residuals(X, y, weights=None, scaled=False)

	method to compute the deviance residuals of the model

these are analogous to the residuals of an OLS.


	Parameters

	
	X (array-like) – Input data array of shape (n_samples, m_features)


	y (array-like) – Output data vector of shape (n_samples,)


	weights (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], optional) – Sample weights.
if None, defaults to array of ones


	scaled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to scale the deviance by the (estimated) distribution scale






	Returns

	deviance_residuals – with shape (n_samples,)



	Return type

	np.array










	
fit(X, y, weights=None)

	Fit the generalized additive model.


	Parameters

	
	X (array-like, shape (n_samples, m_features)) – Training vectors.


	y (array-like, shape (n_samples,)) – Target values,
ie integers in classification, real numbers in
regression)


	weights (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], optional) – Sample weights.
if None, defaults to array of ones






	Returns

	self – Returns fitted GAM object



	Return type

	object [https://docs.python.org/3/library/functions.html#object]










	
fit_quantile(X, y, quantile, max_iter=20, tol=0.01, weights=None)

	fit ExpectileGAM to a desired quantile via binary search


	Parameters

	
	X (array-like, shape (n_samples, m_features)) – Training vectors, where n_samples is the number of samples
and m_features is the number of features.


	y (array-like, shape (n_samples,)) – Target values (integers in classification, real numbers in
regression)
For classification, labels must correspond to classes.


	quantile (float on (0, 1)) – desired quantile to fit.


	max_iter (int [https://docs.python.org/3/library/functions.html#int], default: 20) – maximum number of binary search iterations to perform


	tol (float > 0, default: 0.01) – maximum distance between desired quantile and fitted quantile


	weights (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], default: None) – containing sample weights
if None, defaults to array of ones






	Returns

	self



	Return type

	fitted GAM object










	
generate_X_grid(term, n=100, meshgrid=False)

	create a nice grid of X data

array is sorted by feature and uniformly spaced,
so the marginal and joint distributions are likely wrong

if term is >= 0, we generate n samples per feature,
which results in n^deg samples,
where deg is the degree of the interaction of the term


	Parameters

	
	term (int [https://docs.python.org/3/library/functions.html#int],) – Which term to process.


	n (int [https://docs.python.org/3/library/functions.html#int], optional) – number of data points to create


	meshgrid (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to return a meshgrid (useful for 3d plotting)
or a feature matrix (useful for inference like partial predictions)






	Returns

	
	if meshgrid is False – np.array of shape (n, n_features)
where m is the number of
(sub)terms in the requested (tensor)term.


	else – tuple of len m,
where m is the number of (sub)terms in the requested
(tensor)term.

each element in the tuple contains a np.ndarray of size (n)^m









	Raises

	ValueError : – If the term requested is an intercept
since it does not make sense to process the intercept term.










	
get_params(deep=False)

	returns a dict of all of the object’s user-facing parameters


	Parameters

	deep (boolean, default: False) – when True, also gets non-user-facing paramters



	Returns

	



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
gridsearch(X, y, weights=None, return_scores=False, keep_best=True, objective='auto', progress=True, **param_grids)

	Performs a grid search over a space of parameters for a given
objective


Warning

gridsearch is lazy and will not remove useless combinations
from the search space, eg.

>>> n_splines=np.arange(5,10), fit_splines=[True, False]





will result in 10 loops, of which 5 are equivalent because
fit_splines = False

Also, it is not recommended to search over a grid that alternates
between known scales and unknown scales, as the scores of the
candidate models will not be comparable.




	Parameters

	
	X (array-like) – input data of shape (n_samples, m_features)


	y (array-like) – label data of shape (n_samples,)


	weights (array-like shape (n_samples,), optional) – sample weights


	return_scores (boolean, optional) – whether to return the hyperpamaters and score for each element
in the grid


	keep_best (boolean, optional) – whether to keep the best GAM as self.


	objective ({'auto', 'AIC', 'AICc', 'GCV', 'UBRE'}, optional) – Metric to optimize.
If auto, then grid search will optimize GCV for models with unknown
scale and UBRE for models with known scale.


	progress (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to display a progress bar


	**kwargs – pairs of parameters and iterables of floats, or
parameters and iterables of iterables of floats.

If no parameter are specified, lam=np.logspace(-3, 3, 11) is used.
This results in a 11 points, placed diagonally across lam space.

If grid is iterable of iterables of floats,
the outer iterable must have length m_features.
the cartesian product of the subgrids in the grid will be tested.

If grid is a 2d numpy array,
each row of the array will be tested.

The method will make a grid of all the combinations of the parameters
and fit a GAM to each combination.








	Returns

	
	if return_scores=True – model_scores: dict containing each fitted model as keys and corresponding
objective scores as values


	else – self: ie possibly the newly fitted model










Examples

For a model with 4 terms, and where we expect 4 lam values,
our search space for lam must have 4 dimensions.

We can search the space in 3 ways:

1. via cartesian product by specifying the grid as a list.
our grid search will consider 11 ** 4 points:

>>> lam = np.logspace(-3, 3, 11)
>>> lams = [lam] * 4
>>> gam.gridsearch(X, y, lam=lams)





2. directly by specifying the grid as a np.ndarray.
This is useful for when the dimensionality of the search space
is very large, and we would prefer to execute a randomized search:

>>> lams = np.exp(np.random.random(50, 4) * 6 - 3)
>>> gam.gridsearch(X, y, lam=lams)





3. copying grids for parameters with multiple dimensions.
if we specify a 1D np.ndarray for lam, we are implicitly testing the
space where all points have the same value

>>> gam.gridsearch(lam=np.logspace(-3, 3, 11))





is equivalent to:

>>> lam = np.logspace(-3, 3, 11)
>>> lams = np.array([lam] * 4)
>>> gam.gridsearch(X, y, lam=lams)










	
loglikelihood(X, y, weights=None)

	compute the log-likelihood of the dataset using the current model


	Parameters

	
	X (array-like of shape (n_samples, m_features)) – containing the input dataset


	y (array-like of shape (n,)) – containing target values


	weights (array-like of shape (n,), optional) – containing sample weights






	Returns

	log-likelihood – containing log-likelihood scores



	Return type

	np.array of shape (n,)










	
partial_dependence(term, X=None, width=None, quantiles=None, meshgrid=False)

	Computes the term functions for the GAM
and possibly their confidence intervals.

if both width=None and quantiles=None,
then no confidence intervals are computed


	Parameters

	
	term (int [https://docs.python.org/3/library/functions.html#int], optional) – Term for which to compute the partial dependence functions.


	X (array-like with input data, optional) – if meshgrid=False, then X should be an array-like
of shape (n_samples, m_features).

if meshgrid=True, then X should be a tuple containing
an array for each feature in the term.

if None, an equally spaced grid of points is generated.




	width (float on (0, 1), optional) – Width of the confidence interval.


	quantiles (array-like of floats on (0, 1), optional) – instead of specifying the prediciton width, one can specify the
quantiles. so width=.95 is equivalent to quantiles=[.025, .975].
if None, defaults to width.


	meshgrid (bool [https://docs.python.org/3/library/functions.html#bool], whether to return and accept meshgrids.) – Useful for creating outputs that are suitable for
3D plotting.

Note, for simple terms with no interactions, the output
of this function will be the same for meshgrid=True and
meshgrid=False, but the inputs will need to be different.








	Returns

	
	pdeps (np.array of shape (n_samples,))


	conf_intervals (list of length len(term)) – containing np.arrays of shape (n_samples, 2 or len(quantiles))








	Raises

	ValueError : – If the term requested is an intercept
since it does not make sense to process the intercept term.






See also


	generate_X_grid()

	for help creating meshgrids.












	
predict(X)

	preduct expected value of target given model and input X
often this is done via expected value of GAM given input X


	Parameters

	X (array-like of shape (n_samples, m_features)) – containing the input dataset



	Returns

	y – containing predicted values under the model



	Return type

	np.array of shape (n_samples,)










	
predict_mu(X)

	preduct expected value of target given model and input X


	Parameters

	X (array-like of shape (n_samples, m_features),) – containing the input dataset



	Returns

	y – containing expected values under the model



	Return type

	np.array of shape (n_samples,)










	
sample(X, y, quantity='y', sample_at_X=None, weights=None, n_draws=100, n_bootstraps=5, objective='auto')

	Simulate from the posterior of the coefficients and smoothing params.

Samples are drawn from the posterior of the coefficients and smoothing
parameters given the response in an approximate way. The GAM must
already be fitted before calling this method; if the model has not
been fitted, then an exception is raised. Moreover, it is recommended
that the model and its hyperparameters be chosen with gridsearch
(with the parameter keep_best=True) before calling sample, so that
the result of that gridsearch can be used to generate useful response
data and so that the model’s coefficients (and their covariance matrix)
can be used as the first bootstrap sample.

These samples are drawn as follows. Details are in the reference below.

1. n_bootstraps many “bootstrap samples” of the response (y) are
simulated by drawing random samples from the model’s distribution
evaluated at the expected values (mu) for each sample in X.

2. A copy of the model is fitted to each of those bootstrap samples of
the response. The result is an approximation of the distribution over
the smoothing parameter lam given the response data y.

3. Samples of the coefficients are simulated from a multivariate normal
using the bootstrap samples of the coefficients and their covariance
matrices.

Notes

A gridsearch is done n_bootstraps many times, so keep
n_bootstraps small. Make n_bootstraps < n_draws to take advantage
of the expensive bootstrap samples of the smoothing parameters.


	Parameters

	
	X (array of shape (n_samples, m_features)) – empirical input data


	y (array of shape (n_samples,)) – empirical response vector


	quantity ({'y', 'coef', 'mu'}, default: 'y') – What quantity to return pseudorandom samples of.
If sample_at_X is not None and quantity is either ‘y’ or
‘mu’, then samples are drawn at the values of X specified in
sample_at_X.


	sample_at_X (array of shape (n_samples_to_simulate, m_features) or) – 


	optional (None [https://docs.python.org/3/library/constants.html#None],) – Input data at which to draw new samples.

Only applies for quantity equal to ‘y’ or to ‘mu’.
If None, then sample_at_X is replaced by X.




	weights (np.array of shape (n_samples,)) – sample weights


	n_draws (positive int, optional (default=100)) – The number of samples to draw from the posterior distribution of
the coefficients and smoothing parameters


	n_bootstraps (positive int, optional (default=5)) – The number of bootstrap samples to draw from simulations of the
response (from the already fitted model) to estimate the
distribution of the smoothing parameters given the response data.
If n_bootstraps is 1, then only the already fitted model’s
smoothing parameter is used, and the distribution over the
smoothing parameters is not estimated using bootstrap sampling.


	objective (string, optional (default='auto') – metric to optimize in grid search. must be in
[‘AIC’, ‘AICc’, ‘GCV’, ‘UBRE’, ‘auto’]
if ‘auto’, then grid search will optimize GCV for models with
unknown scale and UBRE for models with known scale.






	Returns

	draws – Simulations of the given quantity using samples from the
posterior distribution of the coefficients and smoothing parameter
given the response data. Each row is a pseudorandom sample.

If quantity == ‘coef’, then the number of columns of draws is
the number of coefficients (len(self.coef_)).

Otherwise, the number of columns of draws is the number of
rows of sample_at_X if sample_at_X is not None or else
the number of rows of X.





	Return type

	2D array of length n_draws





References

Simon N. Wood, 2006. Generalized Additive Models: an introduction with
R. Section 4.9.3 (pages 198–199) and Section 5.4.2 (page 256–257).






	
score(X, y, weights=None)

	method to compute the explained deviance for a trained model for a given X data and y labels


	Parameters

	
	X (array-like) – Input data array of shape (n_samples, m_features)


	y (array-like) – Output data vector of shape (n_samples,)


	weights (array-like shape (n_samples,) or None [https://docs.python.org/3/library/constants.html#None], optional) – Sample weights.
if None, defaults to array of ones






	Returns

	explained deviancce score



	Return type

	np.array() (n_samples,)










	
set_params(deep=False, force=False, **parameters)

	sets an object’s paramters


	Parameters

	
	deep (boolean, default: False) – when True, also sets non-user-facing paramters


	force (boolean, default: False) – when True, also sets parameters that the object does not already
have


	**parameters (paramters to set) – 






	Returns

	



	Return type

	self










	
summary()

	produce a summary of the model statistics


	Parameters

	None – 



	Returns

	



	Return type

	None [https://docs.python.org/3/library/constants.html#None]

















          

      

      

    

  

    
      
          
            
  


Developer API



	Terms

	Distributions

	Links

	Callbacks

	Penalties









          

      

      

    

  

    
      
          
            
  


Terms


	
class pygam.terms.Term(feature, lam=0.6, dtype='numerical', fit_linear=False, fit_splines=True, penalties='auto', constraints=None, verbose=False)

	Bases: pygam.core.Core


	
build_columns(X, verbose=False)

	construct the model matrix columns for the term


	Parameters

	
	X (array-like) – Input dataset with n rows


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to show warnings






	Returns

	



	Return type

	scipy sparse array with n rows










	
build_constraints(coef, constraint_lam, constraint_l2)

	builds the GAM block-diagonal constraint matrix in quadratic form
out of constraint matrices specified for each feature.

behaves like a penalty, but with a very large lambda value, ie 1e6.


	Parameters

	
	coefs (array-like containing the coefficients of a term) – 


	constraint_lam (float [https://docs.python.org/3/library/functions.html#float],) – penalty to impose on the constraint.

typically this is a very large number.




	constraint_l2 (float [https://docs.python.org/3/library/functions.html#float],) – loading to improve the numerical conditioning of the constraint
matrix.

typically this is a very small number.








	Returns

	C



	Return type

	sparse CSC matrix containing the model constraints in quadratic form










	
classmethod build_from_info(info)

	build a Term instance from a dict


	Parameters

	
	cls (class) – 


	info (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – contains all information needed to build the term






	Returns

	



	Return type

	Term instance










	
build_penalties(verbose=False)

	builds the GAM block-diagonal penalty matrix in quadratic form
out of penalty matrices specified for each feature.

each feature penalty matrix is multiplied by a lambda for that feature.

so for m features:
P = block_diag[lam0 * P0, lam1 * P1, lam2 * P2, … , lamm * Pm]


	Parameters

	None – 



	Returns

	P



	Return type

	sparse CSC matrix containing the model penalties in quadratic form










	
compile(X, verbose=False)

	method to validate and prepare data-dependent parameters


	Parameters

	
	X (array-like) – Input dataset


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to show warnings






	Returns

	



	Return type

	None [https://docs.python.org/3/library/constants.html#None]










	
hasconstraint

	bool, whether the term has any constraints






	
info

	get information about this term


	Returns

	



	Return type

	dict containing information to duplicate this term










	
isintercept

	




	
istensor

	




	
n_coefs

	Number of coefficients contributed by the term to the model










	
class pygam.terms.LinearTerm(feature, lam=0.6, penalties='auto', verbose=False)

	Bases: pygam.terms.Term


	
build_columns(X, verbose=False)

	construct the model matrix columns for the term


	Parameters

	
	X (array-like) – Input dataset with n rows


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to show warnings






	Returns

	



	Return type

	scipy sparse array with n rows










	
build_constraints(coef, constraint_lam, constraint_l2)

	builds the GAM block-diagonal constraint matrix in quadratic form
out of constraint matrices specified for each feature.

behaves like a penalty, but with a very large lambda value, ie 1e6.


	Parameters

	
	coefs (array-like containing the coefficients of a term) – 


	constraint_lam (float [https://docs.python.org/3/library/functions.html#float],) – penalty to impose on the constraint.

typically this is a very large number.




	constraint_l2 (float [https://docs.python.org/3/library/functions.html#float],) – loading to improve the numerical conditioning of the constraint
matrix.

typically this is a very small number.








	Returns

	C



	Return type

	sparse CSC matrix containing the model constraints in quadratic form










	
classmethod build_from_info(info)

	build a Term instance from a dict


	Parameters

	
	cls (class) – 


	info (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – contains all information needed to build the term






	Returns

	



	Return type

	Term instance










	
build_penalties(verbose=False)

	builds the GAM block-diagonal penalty matrix in quadratic form
out of penalty matrices specified for each feature.

each feature penalty matrix is multiplied by a lambda for that feature.

so for m features:
P = block_diag[lam0 * P0, lam1 * P1, lam2 * P2, … , lamm * Pm]


	Parameters

	None – 



	Returns

	P



	Return type

	sparse CSC matrix containing the model penalties in quadratic form










	
compile(X, verbose=False)

	method to validate and prepare data-dependent parameters


	Parameters

	
	X (array-like) – Input dataset


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to show warnings






	Returns

	



	Return type

	None [https://docs.python.org/3/library/constants.html#None]










	
get_params(deep=False)

	returns a dict of all of the object’s user-facing parameters


	Parameters

	deep (boolean, default: False) – when True, also gets non-user-facing paramters



	Returns

	



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
hasconstraint

	bool, whether the term has any constraints






	
info

	get information about this term


	Returns

	



	Return type

	dict containing information to duplicate this term










	
isintercept

	




	
istensor

	




	
n_coefs

	Number of coefficients contributed by the term to the model






	
set_params(deep=False, force=False, **parameters)

	sets an object’s paramters


	Parameters

	
	deep (boolean, default: False) – when True, also sets non-user-facing paramters


	force (boolean, default: False) – when True, also sets parameters that the object does not already
have


	**parameters (paramters to set) – 






	Returns

	



	Return type

	self














	
class pygam.terms.SplineTerm(feature, n_splines=20, spline_order=3, lam=0.6, penalties='auto', constraints=None, dtype='numerical', basis='ps', by=None, edge_knots=None, verbose=False)

	Bases: pygam.terms.Term


	
build_columns(X, verbose=False)

	construct the model matrix columns for the term


	Parameters

	
	X (array-like) – Input dataset with n rows


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to show warnings






	Returns

	



	Return type

	scipy sparse array with n rows










	
build_constraints(coef, constraint_lam, constraint_l2)

	builds the GAM block-diagonal constraint matrix in quadratic form
out of constraint matrices specified for each feature.

behaves like a penalty, but with a very large lambda value, ie 1e6.


	Parameters

	
	coefs (array-like containing the coefficients of a term) – 


	constraint_lam (float [https://docs.python.org/3/library/functions.html#float],) – penalty to impose on the constraint.

typically this is a very large number.




	constraint_l2 (float [https://docs.python.org/3/library/functions.html#float],) – loading to improve the numerical conditioning of the constraint
matrix.

typically this is a very small number.








	Returns

	C



	Return type

	sparse CSC matrix containing the model constraints in quadratic form










	
classmethod build_from_info(info)

	build a Term instance from a dict


	Parameters

	
	cls (class) – 


	info (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – contains all information needed to build the term






	Returns

	



	Return type

	Term instance










	
build_penalties(verbose=False)

	builds the GAM block-diagonal penalty matrix in quadratic form
out of penalty matrices specified for each feature.

each feature penalty matrix is multiplied by a lambda for that feature.

so for m features:
P = block_diag[lam0 * P0, lam1 * P1, lam2 * P2, … , lamm * Pm]


	Parameters

	None – 



	Returns

	P



	Return type

	sparse CSC matrix containing the model penalties in quadratic form










	
compile(X, verbose=False)

	method to validate and prepare data-dependent parameters


	Parameters

	
	X (array-like) – Input dataset


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to show warnings






	Returns

	



	Return type

	None [https://docs.python.org/3/library/constants.html#None]










	
get_params(deep=False)

	returns a dict of all of the object’s user-facing parameters


	Parameters

	deep (boolean, default: False) – when True, also gets non-user-facing paramters



	Returns

	



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
hasconstraint

	bool, whether the term has any constraints






	
info

	get information about this term


	Returns

	



	Return type

	dict containing information to duplicate this term










	
isintercept

	




	
istensor

	




	
n_coefs

	Number of coefficients contributed by the term to the model






	
set_params(deep=False, force=False, **parameters)

	sets an object’s paramters


	Parameters

	
	deep (boolean, default: False) – when True, also sets non-user-facing paramters


	force (boolean, default: False) – when True, also sets parameters that the object does not already
have


	**parameters (paramters to set) – 






	Returns

	



	Return type

	self














	
class pygam.terms.FactorTerm(feature, lam=0.6, penalties='auto', coding='one-hot', verbose=False)

	Bases: pygam.terms.SplineTerm


	
build_columns(X, verbose=False)

	construct the model matrix columns for the term


	Parameters

	
	X (array-like) – Input dataset with n rows


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to show warnings






	Returns

	



	Return type

	scipy sparse array with n rows










	
build_constraints(coef, constraint_lam, constraint_l2)

	builds the GAM block-diagonal constraint matrix in quadratic form
out of constraint matrices specified for each feature.

behaves like a penalty, but with a very large lambda value, ie 1e6.


	Parameters

	
	coefs (array-like containing the coefficients of a term) – 


	constraint_lam (float [https://docs.python.org/3/library/functions.html#float],) – penalty to impose on the constraint.

typically this is a very large number.




	constraint_l2 (float [https://docs.python.org/3/library/functions.html#float],) – loading to improve the numerical conditioning of the constraint
matrix.

typically this is a very small number.








	Returns

	C



	Return type

	sparse CSC matrix containing the model constraints in quadratic form










	
classmethod build_from_info(info)

	build a Term instance from a dict


	Parameters

	
	cls (class) – 


	info (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – contains all information needed to build the term






	Returns

	



	Return type

	Term instance










	
build_penalties(verbose=False)

	builds the GAM block-diagonal penalty matrix in quadratic form
out of penalty matrices specified for each feature.

each feature penalty matrix is multiplied by a lambda for that feature.

so for m features:
P = block_diag[lam0 * P0, lam1 * P1, lam2 * P2, … , lamm * Pm]


	Parameters

	None – 



	Returns

	P



	Return type

	sparse CSC matrix containing the model penalties in quadratic form










	
compile(X, verbose=False)

	method to validate and prepare data-dependent parameters


	Parameters

	
	X (array-like) – Input dataset


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to show warnings






	Returns

	



	Return type

	None [https://docs.python.org/3/library/constants.html#None]










	
get_params(deep=False)

	returns a dict of all of the object’s user-facing parameters


	Parameters

	deep (boolean, default: False) – when True, also gets non-user-facing paramters



	Returns

	



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
hasconstraint

	bool, whether the term has any constraints






	
info

	get information about this term


	Returns

	



	Return type

	dict containing information to duplicate this term










	
isintercept

	




	
istensor

	




	
n_coefs

	Number of coefficients contributed by the term to the model






	
set_params(deep=False, force=False, **parameters)

	sets an object’s paramters


	Parameters

	
	deep (boolean, default: False) – when True, also sets non-user-facing paramters


	force (boolean, default: False) – when True, also sets parameters that the object does not already
have


	**parameters (paramters to set) – 






	Returns

	



	Return type

	self














	
class pygam.terms.TensorTerm(*args, **kwargs)

	Bases: pygam.terms.SplineTerm, pygam.terms.MetaTermMixin


	
build_columns(X, verbose=False)

	construct the model matrix columns for the term


	Parameters

	
	X (array-like) – Input dataset with n rows


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to show warnings






	Returns

	



	Return type

	scipy sparse array with n rows










	
build_constraints(coef, constraint_lam, constraint_l2)

	builds the GAM block-diagonal constraint matrix in quadratic form
out of constraint matrices specified for each feature.


	Parameters

	
	coefs (array-like containing the coefficients of a term) – 


	constraint_lam (float [https://docs.python.org/3/library/functions.html#float],) – penalty to impose on the constraint.

typically this is a very large number.




	constraint_l2 (float [https://docs.python.org/3/library/functions.html#float],) – loading to improve the numerical conditioning of the constraint
matrix.

typically this is a very small number.








	Returns

	C



	Return type

	sparse CSC matrix containing the model constraints in quadratic form










	
classmethod build_from_info(info)

	build a TensorTerm instance from a dict


	Parameters

	
	cls (class) – 


	info (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – contains all information needed to build the term






	Returns

	



	Return type

	TensorTerm instance










	
build_penalties()

	builds the GAM block-diagonal penalty matrix in quadratic form
out of penalty matrices specified for each feature.

each feature penalty matrix is multiplied by a lambda for that feature.

so for m features:
P = block_diag[lam0 * P0, lam1 * P1, lam2 * P2, … , lamm * Pm]


	Parameters

	None – 



	Returns

	P



	Return type

	sparse CSC matrix containing the model penalties in quadratic form










	
compile(X, verbose=False)

	method to validate and prepare data-dependent parameters


	Parameters

	
	X (array-like) – Input dataset


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to show warnings






	Returns

	



	Return type

	None [https://docs.python.org/3/library/constants.html#None]










	
get_params(deep=False)

	returns a dict of all of the object’s user-facing parameters


	Parameters

	deep (boolean, default: False) – when True, also gets non-user-facing paramters



	Returns

	



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
hasconstraint

	bool, whether the term has any constraints






	
info

	get information about this term


	Returns

	



	Return type

	dict containing information to duplicate this term










	
isintercept

	




	
istensor

	




	
n_coefs

	Number of coefficients contributed by the term to the model






	
set_params(deep=False, force=False, **parameters)

	sets an object’s paramters


	Parameters

	
	deep (boolean, default: False) – when True, also sets non-user-facing paramters


	force (boolean, default: False) – when True, also sets parameters that the object does not already
have


	**parameters (paramters to set) – 






	Returns

	



	Return type

	self














	
class pygam.terms.TermList(*terms, **kwargs)

	Bases: pygam.core.Core, pygam.terms.MetaTermMixin


	
build_columns(X, term=-1, verbose=False)

	construct the model matrix columns for the term


	Parameters

	
	X (array-like) – Input dataset with n rows


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to show warnings






	Returns

	



	Return type

	scipy sparse array with n rows










	
build_constraints(coefs, constraint_lam, constraint_l2)

	builds the GAM block-diagonal constraint matrix in quadratic form
out of constraint matrices specified for each feature.

behaves like a penalty, but with a very large lambda value, ie 1e6.


	Parameters

	
	coefs (array-like containing the coefficients of a term) – 


	constraint_lam (float [https://docs.python.org/3/library/functions.html#float],) – penalty to impose on the constraint.

typically this is a very large number.




	constraint_l2 (float [https://docs.python.org/3/library/functions.html#float],) – loading to improve the numerical conditioning of the constraint
matrix.

typically this is a very small number.








	Returns

	C



	Return type

	sparse CSC matrix containing the model constraints in quadratic form










	
classmethod build_from_info(info)

	build a TermList instance from a dict


	Parameters

	
	cls (class) – 


	info (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – contains all information needed to build the term






	Returns

	



	Return type

	TermList instance










	
build_penalties()

	builds the GAM block-diagonal penalty matrix in quadratic form
out of penalty matrices specified for each feature.

each feature penalty matrix is multiplied by a lambda for that feature.

so for m features:
P = block_diag[lam0 * P0, lam1 * P1, lam2 * P2, … , lamm * Pm]


	Parameters

	None – 



	Returns

	P



	Return type

	sparse CSC matrix containing the model penalties in quadratic form










	
compile(X, verbose=False)

	method to validate and prepare data-dependent parameters


	Parameters

	
	X (array-like) – Input dataset


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to show warnings






	Returns

	



	Return type

	None [https://docs.python.org/3/library/constants.html#None]










	
get_coef_indices(i=-1)

	get the indices for the coefficients of a term in the term list


	Parameters

	i (int [https://docs.python.org/3/library/functions.html#int]) – by default int=-1, meaning that coefficient indices are returned
for all terms in the term list



	Returns

	



	Return type

	list of integers










	
get_params(deep=False)

	returns a dict of all of the object’s user-facing parameters


	Parameters

	deep (boolean, default: False) – when True, also gets non-user-facing paramters



	Returns

	



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
hasconstraint

	bool, whether the term has any constraints






	
info

	get information about the terms in the term list


	Returns

	



	Return type

	dict containing information to duplicate the term list










	
n_coefs

	Total number of coefficients contributed by the terms in the model






	
pop(i=None)

	remove the ith term from the term list


	Parameters

	i (int [https://docs.python.org/3/library/functions.html#int], optional) – term to remove from term list

by default the last term is popped.





	Returns

	term



	Return type

	Term










	
set_params(deep=False, force=False, **parameters)

	sets an object’s paramters


	Parameters

	
	deep (boolean, default: False) – when True, also sets non-user-facing paramters


	force (boolean, default: False) – when True, also sets parameters that the object does not already
have


	**parameters (paramters to set) – 






	Returns

	



	Return type

	self

















          

      

      

    

  

    
      
          
            
  


Distributions

Distributions


	
class pygam.distributions.BinomialDist(levels=1)

	Bases: pygam.distributions.Distribution

Binomial Distribution


	
V(mu)

	glm Variance function

computes the variance of the distribution


	Parameters

	mu (array-like of length n) – expected values



	Returns

	variance



	Return type

	np.array of length n










	
deviance(y, mu, scaled=True)

	model deviance

for a bernoulli logistic model, this is equal to the twice the
negative loglikelihod.


	Parameters

	
	y (array-like of length n) – target values


	mu (array-like of length n) – expected values


	scaled (boolean, default: True) – whether to divide the deviance by the distribution scaled






	Returns

	deviances



	Return type

	np.array of length n










	
log_pdf(y, mu, weights=None)

	computes the log of the pdf or pmf of the values under the current distribution


	Parameters

	
	y (array-like of length n) – target values


	mu (array-like of length n) – expected values


	weights (array-like shape (n,) or None [https://docs.python.org/3/library/constants.html#None], default: None) – sample weights
if None, defaults to array of ones






	Returns

	pdf/pmf



	Return type

	np.array of length n










	
sample(mu)

	Return random samples from this Normal distribution.


	Parameters

	mu (array-like of shape n_samples or shape (n_simulations, n_samples)) – expected values



	Returns

	random_samples



	Return type

	np.array of same shape as mu














	
class pygam.distributions.Distribution(name=None, scale=None)

	Bases: pygam.core.Core


	
phi(y, mu, edof, weights)

	GLM scale parameter.
for Binomial and Poisson families this is unity
for Normal family this is variance


	Parameters

	
	y (array-like of length n) – target values


	mu (array-like of length n) – expected values


	edof (float [https://docs.python.org/3/library/functions.html#float]) – estimated degrees of freedom


	weights (array-like shape (n,) or None [https://docs.python.org/3/library/constants.html#None], default: None) – sample weights
if None, defaults to array of ones






	Returns

	scale



	Return type

	estimated model scale










	
sample(mu)

	Return random samples from this distribution.


	Parameters

	mu (array-like of shape n_samples or shape (n_simulations, n_samples)) – expected values



	Returns

	random_samples



	Return type

	np.array of same shape as mu














	
class pygam.distributions.GammaDist(scale=None)

	Bases: pygam.distributions.Distribution

Gamma Distribution


	
V(mu)

	glm Variance function

computes the variance of the distribution


	Parameters

	mu (array-like of length n) – expected values



	Returns

	variance



	Return type

	np.array of length n










	
deviance(y, mu, scaled=True)

	model deviance

for a bernoulli logistic model, this is equal to the twice the
negative loglikelihod.


	Parameters

	
	y (array-like of length n) – target values


	mu (array-like of length n) – expected values


	scaled (boolean, default: True) – whether to divide the deviance by the distribution scaled






	Returns

	deviances



	Return type

	np.array of length n










	
log_pdf(y, mu, weights=None)

	computes the log of the pdf or pmf of the values under the current distribution


	Parameters

	
	y (array-like of length n) – target values


	mu (array-like of length n) – expected values


	weights (array-like shape (n,) or None [https://docs.python.org/3/library/constants.html#None], default: None) – containing sample weights
if None, defaults to array of ones






	Returns

	pdf/pmf



	Return type

	np.array of length n










	
sample(mu)

	Return random samples from this Gamma distribution.


	Parameters

	mu (array-like of shape n_samples or shape (n_simulations, n_samples)) – expected values



	Returns

	random_samples



	Return type

	np.array of same shape as mu














	
class pygam.distributions.InvGaussDist(scale=None)

	Bases: pygam.distributions.Distribution

Inverse Gaussian (Wald) Distribution


	
V(mu)

	glm Variance function

computes the variance of the distribution


	Parameters

	mu (array-like of length n) – expected values



	Returns

	variance



	Return type

	np.array of length n










	
deviance(y, mu, scaled=True)

	model deviance

for a bernoulli logistic model, this is equal to the twice the
negative loglikelihod.


	Parameters

	
	y (array-like of length n) – target values


	mu (array-like of length n) – expected values


	scaled (boolean, default: True) – whether to divide the deviance by the distribution scaled






	Returns

	deviances



	Return type

	np.array of length n










	
log_pdf(y, mu, weights=None)

	computes the log of the pdf or pmf of the values under the current distribution


	Parameters

	
	y (array-like of length n) – target values


	mu (array-like of length n) – expected values


	weights (array-like shape (n,) or None [https://docs.python.org/3/library/constants.html#None], default: None) – containing sample weights
if None, defaults to array of ones






	Returns

	pdf/pmf



	Return type

	np.array of length n










	
sample(mu)

	Return random samples from this Inverse Gaussian (Wald) distribution.


	Parameters

	mu (array-like of shape n_samples or shape (n_simulations, n_samples)) – expected values



	Returns

	random_samples



	Return type

	np.array of same shape as mu














	
class pygam.distributions.NormalDist(scale=None)

	Bases: pygam.distributions.Distribution

Normal Distribution


	
V(mu)

	glm Variance function.


	if

	Y ~ ExpFam(theta, scale=phi)



	such that

	E[Y] = mu = b’(theta)



	and

	Var[Y] = b’‘(theta) * phi / w



	then we seek V(mu) such that we can represent Var[y] as a fn of mu:

	Var[Y] = V(mu) * phi



	ie

	V(mu) = b’‘(theta) / w






	Parameters

	mu (array-like of length n) – expected values



	Returns

	V(mu)



	Return type

	np.array of length n










	
deviance(y, mu, scaled=True)

	model deviance

for a gaussian linear model, this is equal to the SSE


	Parameters

	
	y (array-like of length n) – target values


	mu (array-like of length n) – expected values


	scaled (boolean, default: True) – whether to divide the deviance by the distribution scaled






	Returns

	deviances



	Return type

	np.array of length n










	
log_pdf(y, mu, weights=None)

	computes the log of the pdf or pmf of the values under the current distribution


	Parameters

	
	y (array-like of length n) – target values


	mu (array-like of length n) – expected values


	weights (array-like shape (n,) or None [https://docs.python.org/3/library/constants.html#None], default: None) – sample weights
if None, defaults to array of ones






	Returns

	pdf/pmf



	Return type

	np.array of length n










	
sample(mu)

	Return random samples from this Normal distribution.

Samples are drawn independently from univariate normal distributions
with means given by the values in mu and with standard deviations
equal to the scale attribute if it exists otherwise 1.0.


	Parameters

	mu (array-like of shape n_samples or shape (n_simulations, n_samples)) – expected values



	Returns

	random_samples



	Return type

	np.array of same shape as mu














	
class pygam.distributions.PoissonDist

	Bases: pygam.distributions.Distribution

Poisson Distribution


	
V(mu)

	glm Variance function

computes the variance of the distribution


	Parameters

	mu (array-like of length n) – expected values



	Returns

	variance



	Return type

	np.array of length n










	
deviance(y, mu, scaled=True)

	model deviance

for a bernoulli logistic model, this is equal to the twice the
negative loglikelihod.


	Parameters

	
	y (array-like of length n) – target values


	mu (array-like of length n) – expected values


	scaled (boolean, default: True) – whether to divide the deviance by the distribution scaled






	Returns

	deviances



	Return type

	np.array of length n










	
log_pdf(y, mu, weights=None)

	computes the log of the pdf or pmf of the values under the current distribution


	Parameters

	
	y (array-like of length n) – target values


	mu (array-like of length n) – expected values


	weights (array-like shape (n,) or None [https://docs.python.org/3/library/constants.html#None], default: None) – containing sample weights
if None, defaults to array of ones






	Returns

	pdf/pmf



	Return type

	np.array of length n










	
sample(mu)

	Return random samples from this Poisson distribution.


	Parameters

	mu (array-like of shape n_samples or shape (n_simulations, n_samples)) – expected values



	Returns

	random_samples



	Return type

	np.array of same shape as mu














	
pygam.distributions.divide_weights(V)

	




	
pygam.distributions.multiply_weights(deviance)

	







          

      

      

    

  

    
      
          
            
  


Links


	
class pygam.links.Link(name=None)

	Bases: pygam.core.Core






	
class pygam.links.IdentityLink

	Bases: pygam.links.Link


	
gradient(mu, dist)

	derivative of the link function wrt mu


	Parameters

	
	mu (array-like of legth n) – 


	dist (Distribution instance) – 






	Returns

	grad



	Return type

	np.array of length n










	
link(mu, dist)

	glm link function
this is useful for going from mu to the linear prediction


	Parameters

	
	mu (array-like of legth n) – 


	dist (Distribution instance) – 






	Returns

	lp



	Return type

	np.array of length n










	
mu(lp, dist)

	glm mean function, ie inverse of link function
this is useful for going from the linear prediction to mu


	Parameters

	
	lp (array-like of legth n) – 


	dist (Distribution instance) – 






	Returns

	mu



	Return type

	np.array of length n














	
class pygam.links.InvSquaredLink

	Bases: pygam.links.Link


	
gradient(mu, dist)

	derivative of the link function wrt mu


	Parameters

	
	mu (array-like of legth n) – 


	dist (Distribution instance) – 






	Returns

	grad



	Return type

	np.array of length n










	
link(mu, dist)

	glm link function
this is useful for going from mu to the linear prediction


	Parameters

	
	mu (array-like of legth n) – 


	dist (Distribution instance) – 






	Returns

	lp



	Return type

	np.array of length n










	
mu(lp, dist)

	glm mean function, ie inverse of link function
this is useful for going from the linear prediction to mu


	Parameters

	
	lp (array-like of legth n) – 


	dist (Distribution instance) – 






	Returns

	mu



	Return type

	np.array of length n














	
class pygam.links.LogitLink

	Bases: pygam.links.Link


	
gradient(mu, dist)

	derivative of the link function wrt mu


	Parameters

	
	mu (array-like of legth n) – 


	dist (Distribution instance) – 






	Returns

	grad



	Return type

	np.array of length n










	
link(mu, dist)

	glm link function
this is useful for going from mu to the linear prediction


	Parameters

	
	mu (array-like of legth n) – 


	dist (Distribution instance) – 






	Returns

	lp



	Return type

	np.array of length n










	
mu(lp, dist)

	glm mean function, ie inverse of link function
this is useful for going from the linear prediction to mu


	Parameters

	
	lp (array-like of legth n) – 


	dist (Distribution instance) – 






	Returns

	mu



	Return type

	np.array of length n














	
class pygam.links.LogLink

	Bases: pygam.links.Link


	
gradient(mu, dist)

	derivative of the link function wrt mu


	Parameters

	
	mu (array-like of legth n) – 


	dist (Distribution instance) – 






	Returns

	grad



	Return type

	np.array of length n










	
link(mu, dist)

	glm link function
this is useful for going from mu to the linear prediction


	Parameters

	
	mu (array-like of legth n) – 


	dist (Distribution instance) – 






	Returns

	lp



	Return type

	np.array of length n










	
mu(lp, dist)

	glm mean function, ie inverse of link function
this is useful for going from the linear prediction to mu


	Parameters

	
	lp (array-like of legth n) – 


	dist (Distribution instance) – 






	Returns

	mu



	Return type

	np.array of length n

















          

      

      

    

  

    
      
          
            
  


Callbacks


	
class pygam.callbacks.CallBack(name=None)

	Bases: pygam.core.Core

CallBack class






	
class pygam.callbacks.Accuracy

	Bases: pygam.callbacks.CallBack


	
on_loop_start(y, mu)

	runs the method at start of each optimization loop


	Parameters

	
	y (array-like of length n) – target data


	mu (array-like of length n) – expected value data






	Returns

	accuracy



	Return type

	np.array of length n














	
class pygam.callbacks.Coef

	Bases: pygam.callbacks.CallBack


	
on_loop_start(gam)

	runs the method at start of each optimization loop


	Parameters

	gam (float [https://docs.python.org/3/library/functions.html#float]) – 



	Returns

	coef_



	Return type

	list of floats














	
class pygam.callbacks.Deviance

	Bases: pygam.callbacks.CallBack

Deviance CallBack class


	
on_loop_start(gam, y, mu)

	runs the method at loop start


	Parameters

	
	gam (GAM instance) – 


	y (array-like of length n) – target data


	mu (array-like of length n) – expected value data






	Returns

	deviance



	Return type

	np.array of length n














	
class pygam.callbacks.Diffs

	Bases: pygam.callbacks.CallBack


	
on_loop_end(diff)

	runs the method at end of each optimization loop


	Parameters

	diff (float [https://docs.python.org/3/library/functions.html#float]) – 



	Returns

	diff



	Return type

	float [https://docs.python.org/3/library/functions.html#float]














	
pygam.callbacks.validate_callback(callback)

	validates a callback’s on_loop_start and on_loop_end methods


	Parameters

	callback (Callback object) – 



	Returns

	



	Return type

	validated callback










	
pygam.callbacks.validate_callback_data(method)

	wraps a callback’s method to pull the desired arguments from the vars dict
also checks to ensure the method’s arguments are in the vars dict


	Parameters

	method (callable) – 



	Returns

	



	Return type

	validated callable













          

      

      

    

  

    
      
          
            
  


Penalties

Penalty matrix generators


	
pygam.penalties.concave(n, coef)

	Builds a penalty matrix for P-Splines with continuous features.
Penalizes violation of a concave feature function.


	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – number of splines


	coef (array-like) – coefficients of the feature function






	Returns

	penalty matrix



	Return type

	sparse csc matrix of shape (n,n)










	
pygam.penalties.convex(n, coef)

	Builds a penalty matrix for P-Splines with continuous features.
Penalizes violation of a convex feature function.


	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – number of splines


	coef (array-like) – coefficients of the feature function






	Returns

	penalty matrix



	Return type

	sparse csc matrix of shape (n,n)










	
pygam.penalties.convexity_(n, coef, convex=True)

	Builds a penalty matrix for P-Splines with continuous features.
Penalizes violation of convexity in the feature function.


	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – number of splines


	coef (array-like) – coefficients of the feature function


	convex (bool [https://docs.python.org/3/library/functions.html#bool], default: True) – whether to enforce convex, or concave functions






	Returns

	penalty matrix



	Return type

	sparse csc matrix of shape (n,n)










	
pygam.penalties.derivative(n, coef, derivative=2, periodic=False)

	Builds a penalty matrix for P-Splines with continuous features.
Penalizes the squared differences between basis coefficients.


	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – number of splines


	coef (unused) – for compatibility with constraints


	derivative (int [https://docs.python.org/3/library/functions.html#int], default: 2) – which derivative do we penalize.
derivative is 1, we penalize 1st order derivatives,
derivative is 2, we penalize 2nd order derivatives, etc






	Returns

	penalty matrix



	Return type

	sparse csc matrix of shape (n,n)










	
pygam.penalties.l2(n, coef)

	Builds a penalty matrix for P-Splines with categorical features.
Penalizes the squared value of each basis coefficient.


	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – number of splines


	coef (unused) – for compatibility with constraints






	Returns

	penalty matrix



	Return type

	sparse csc matrix of shape (n,n)










	
pygam.penalties.monotonic_dec(n, coef)

	Builds a penalty matrix for P-Splines with continuous features.
Penalizes violation of a monotonic decreasing feature function.


	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – number of splines


	coef (array-like) – coefficients of the feature function






	Returns

	penalty matrix



	Return type

	sparse csc matrix of shape (n,n)










	
pygam.penalties.monotonic_inc(n, coef)

	Builds a penalty matrix for P-Splines with continuous features.
Penalizes violation of a monotonic increasing feature function.


	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – number of splines


	coef (array-like, coefficients of the feature function) – 






	Returns

	penalty matrix



	Return type

	sparse csc matrix of shape (n,n)










	
pygam.penalties.monotonicity_(n, coef, increasing=True)

	Builds a penalty matrix for P-Splines with continuous features.
Penalizes violation of monotonicity in the feature function.


	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – number of splines


	coef (array-like) – coefficients of the feature function


	increasing (bool [https://docs.python.org/3/library/functions.html#bool], default: True) – whether to enforce monotic increasing, or decreasing functions






	Returns

	penalty matrix



	Return type

	sparse csc matrix of shape (n,n)










	
pygam.penalties.none(n, coef)

	Build a matrix of zeros for features that should go unpenalized


	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – number of splines


	coef (unused) – for compatibility with constraints






	Returns

	penalty matrix



	Return type

	sparse csc matrix of shape (n,n)










	
pygam.penalties.periodic(n, coef, derivative=2, _penalty=<function derivative>)

	




	
pygam.penalties.sparse_diff(array, n=1, axis=-1)

	A ported sparse version of np.diff.
Uses recursion to compute higher order differences


	Parameters

	
	array (sparse array) – 


	n (int [https://docs.python.org/3/library/functions.html#int], default: 1) – differencing order


	axis (int [https://docs.python.org/3/library/functions.html#int], default: -1) – axis along which differences are computed






	Returns

	diff_array – same shape as input array,
but ‘axis’ dimension is smaller by ‘n’.



	Return type

	sparse array










	
pygam.penalties.wrap_penalty(p, fit_linear, linear_penalty=0.0)

	tool to account for unity penalty on the linear term of any feature.

Example

p = wrap_penalty(derivative, fit_linear=True)(n, coef)


	Parameters

	
	p (callable.) – penalty-matrix-generating function.


	fit_linear (boolean.) – whether the current feature has a linear term or not.


	linear_penalty (float [https://docs.python.org/3/library/functions.html#float], default: 0.) – penalty on the linear term






	Returns

	wrapped_p – modified penalty-matrix-generating function



	Return type

	callable













          

      

      

    

  

    
      
          
            

   Python Module Index


   
   p
   


   
     		 	

     		
       p	

     
       	[image: -]
       	
       pygam	
       

     
       	
       	   
       pygam.distributions	
       

     
       	
       	   
       pygam.penalties	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | S
 | T
 | V
 | W
 


A


  	
      	Accuracy (class in pygam.callbacks)


  

  	
      	accuracy() (pygam.pygam.LogisticGAM method)


  





B


  	
      	BinomialDist (class in pygam.distributions)


      	build_columns() (pygam.terms.FactorTerm method)

      
        	(pygam.terms.LinearTerm method)


        	(pygam.terms.SplineTerm method)


        	(pygam.terms.TensorTerm method)


        	(pygam.terms.Term method)


        	(pygam.terms.TermList method)


      


      	build_constraints() (pygam.terms.FactorTerm method)

      
        	(pygam.terms.LinearTerm method)


        	(pygam.terms.SplineTerm method)


        	(pygam.terms.TensorTerm method)


        	(pygam.terms.Term method)


        	(pygam.terms.TermList method)


      


  

  	
      	build_from_info() (pygam.terms.FactorTerm class method)

      
        	(pygam.terms.LinearTerm class method)


        	(pygam.terms.SplineTerm class method)


        	(pygam.terms.TensorTerm class method)


        	(pygam.terms.Term class method)


        	(pygam.terms.TermList class method)


      


      	build_penalties() (pygam.terms.FactorTerm method)

      
        	(pygam.terms.LinearTerm method)


        	(pygam.terms.SplineTerm method)


        	(pygam.terms.TensorTerm method)


        	(pygam.terms.Term method)


        	(pygam.terms.TermList method)


      


  





C


  	
      	CallBack (class in pygam.callbacks)


      	Coef (class in pygam.callbacks)


      	coef_ (pygam.pygam.ExpectileGAM attribute)

      
        	(pygam.pygam.GAM attribute)


        	(pygam.pygam.GammaGAM attribute)


        	(pygam.pygam.InvGaussGAM attribute)


        	(pygam.pygam.LinearGAM attribute)


        	(pygam.pygam.LogisticGAM attribute)


        	(pygam.pygam.PoissonGAM attribute)


      


      	compile() (pygam.terms.FactorTerm method)

      
        	(pygam.terms.LinearTerm method)


        	(pygam.terms.SplineTerm method)


        	(pygam.terms.TensorTerm method)


        	(pygam.terms.Term method)


        	(pygam.terms.TermList method)


      


  

  	
      	concave() (in module pygam.penalties)


      	confidence_intervals() (pygam.pygam.ExpectileGAM method)

      
        	(pygam.pygam.GAM method)


        	(pygam.pygam.GammaGAM method)


        	(pygam.pygam.InvGaussGAM method)


        	(pygam.pygam.LinearGAM method)


        	(pygam.pygam.LogisticGAM method)


        	(pygam.pygam.PoissonGAM method)


      


      	convex() (in module pygam.penalties)


      	convexity_() (in module pygam.penalties)


  





D


  	
      	derivative() (in module pygam.penalties)


      	Deviance (class in pygam.callbacks)


      	deviance() (pygam.distributions.BinomialDist method)

      
        	(pygam.distributions.GammaDist method)


        	(pygam.distributions.InvGaussDist method)


        	(pygam.distributions.NormalDist method)


        	(pygam.distributions.PoissonDist method)


      


      	deviance_residuals() (pygam.pygam.ExpectileGAM method)

      
        	(pygam.pygam.GAM method)


        	(pygam.pygam.GammaGAM method)


        	(pygam.pygam.InvGaussGAM method)


        	(pygam.pygam.LinearGAM method)


        	(pygam.pygam.LogisticGAM method)


        	(pygam.pygam.PoissonGAM method)


      


  

  	
      	Diffs (class in pygam.callbacks)


      	Distribution (class in pygam.distributions)


      	divide_weights() (in module pygam.distributions)


  





E


  	
      	ExpectileGAM (class in pygam.pygam)


  





F


  	
      	f() (in module pygam.terms), [1]


      	FactorTerm (class in pygam.terms)


      	fit() (pygam.pygam.ExpectileGAM method)

      
        	(pygam.pygam.GAM method)


        	(pygam.pygam.GammaGAM method)


        	(pygam.pygam.InvGaussGAM method)


        	(pygam.pygam.LinearGAM method)


        	(pygam.pygam.LogisticGAM method)


        	(pygam.pygam.PoissonGAM method)


      


  

  	
      	fit_quantile() (pygam.pygam.ExpectileGAM method)


  





G


  	
      	GAM (class in pygam.pygam)


      	GammaDist (class in pygam.distributions)


      	GammaGAM (class in pygam.pygam)


      	generate_X_grid() (pygam.pygam.ExpectileGAM method)

      
        	(pygam.pygam.GAM method)


        	(pygam.pygam.GammaGAM method)


        	(pygam.pygam.InvGaussGAM method)


        	(pygam.pygam.LinearGAM method)


        	(pygam.pygam.LogisticGAM method)


        	(pygam.pygam.PoissonGAM method)


      


      	get_coef_indices() (pygam.terms.TermList method)


      	get_params() (pygam.pygam.ExpectileGAM method)

      
        	(pygam.pygam.GammaGAM method)


        	(pygam.pygam.InvGaussGAM method)


        	(pygam.pygam.LinearGAM method)


        	(pygam.pygam.LogisticGAM method)


        	(pygam.pygam.PoissonGAM method)


        	(pygam.terms.FactorTerm method)


        	(pygam.terms.LinearTerm method)


        	(pygam.terms.SplineTerm method)


        	(pygam.terms.TensorTerm method)


        	(pygam.terms.TermList method)


      


  

  	
      	gradient() (pygam.links.IdentityLink method)

      
        	(pygam.links.InvSquaredLink method)


        	(pygam.links.LogLink method)


        	(pygam.links.LogitLink method)


      


      	gridsearch() (pygam.pygam.ExpectileGAM method)

      
        	(pygam.pygam.GAM method)


        	(pygam.pygam.GammaGAM method)


        	(pygam.pygam.InvGaussGAM method)


        	(pygam.pygam.LinearGAM method)


        	(pygam.pygam.LogisticGAM method)


        	(pygam.pygam.PoissonGAM method)


      


  





H


  	
      	hasconstraint (pygam.terms.FactorTerm attribute)

      
        	(pygam.terms.LinearTerm attribute)


        	(pygam.terms.SplineTerm attribute)


        	(pygam.terms.TensorTerm attribute)


        	(pygam.terms.Term attribute)


        	(pygam.terms.TermList attribute)


      


  





I


  	
      	IdentityLink (class in pygam.links)


      	info (pygam.terms.FactorTerm attribute)

      
        	(pygam.terms.LinearTerm attribute)


        	(pygam.terms.SplineTerm attribute)


        	(pygam.terms.TensorTerm attribute)


        	(pygam.terms.Term attribute)


        	(pygam.terms.TermList attribute)


      


      	InvGaussDist (class in pygam.distributions)


      	InvGaussGAM (class in pygam.pygam)


      	InvSquaredLink (class in pygam.links)


  

  	
      	isintercept (pygam.terms.FactorTerm attribute)

      
        	(pygam.terms.LinearTerm attribute)


        	(pygam.terms.SplineTerm attribute)


        	(pygam.terms.TensorTerm attribute)


        	(pygam.terms.Term attribute)


      


      	istensor (pygam.terms.FactorTerm attribute)

      
        	(pygam.terms.LinearTerm attribute)


        	(pygam.terms.SplineTerm attribute)


        	(pygam.terms.TensorTerm attribute)


        	(pygam.terms.Term attribute)


      


  





L


  	
      	l() (in module pygam.terms), [1]


      	l2() (in module pygam.penalties)


      	LinearGAM (class in pygam.pygam)


      	LinearTerm (class in pygam.terms)


      	Link (class in pygam.links)


      	link() (pygam.links.IdentityLink method)

      
        	(pygam.links.InvSquaredLink method)


        	(pygam.links.LogLink method)


        	(pygam.links.LogitLink method)


      


      	log_pdf() (pygam.distributions.BinomialDist method)

      
        	(pygam.distributions.GammaDist method)


        	(pygam.distributions.InvGaussDist method)


        	(pygam.distributions.NormalDist method)


        	(pygam.distributions.PoissonDist method)


      


      	LogisticGAM (class in pygam.pygam)


  

  	
      	LogitLink (class in pygam.links)


      	loglikelihood() (pygam.pygam.ExpectileGAM method)

      
        	(pygam.pygam.GAM method)


        	(pygam.pygam.GammaGAM method)


        	(pygam.pygam.InvGaussGAM method)


        	(pygam.pygam.LinearGAM method)


        	(pygam.pygam.LogisticGAM method)


        	(pygam.pygam.PoissonGAM method)


      


      	LogLink (class in pygam.links)


      	logs_ (pygam.pygam.ExpectileGAM attribute)

      
        	(pygam.pygam.GAM attribute)


        	(pygam.pygam.GammaGAM attribute)


        	(pygam.pygam.InvGaussGAM attribute)


        	(pygam.pygam.LinearGAM attribute)


        	(pygam.pygam.LogisticGAM attribute)


        	(pygam.pygam.PoissonGAM attribute)


      


  





M


  	
      	monotonic_dec() (in module pygam.penalties)


      	monotonic_inc() (in module pygam.penalties)


      	monotonicity_() (in module pygam.penalties)


      	mu() (pygam.links.IdentityLink method)

      
        	(pygam.links.InvSquaredLink method)


        	(pygam.links.LogLink method)


        	(pygam.links.LogitLink method)


      


  

  	
      	multiply_weights() (in module pygam.distributions)


  





N


  	
      	n_coefs (pygam.terms.FactorTerm attribute)

      
        	(pygam.terms.LinearTerm attribute)


        	(pygam.terms.SplineTerm attribute)


        	(pygam.terms.TensorTerm attribute)


        	(pygam.terms.Term attribute)


        	(pygam.terms.TermList attribute)


      


  

  	
      	none() (in module pygam.penalties)


      	NormalDist (class in pygam.distributions)


  





O


  	
      	on_loop_end() (pygam.callbacks.Diffs method)


      	on_loop_start() (pygam.callbacks.Accuracy method)

      
        	(pygam.callbacks.Coef method)


        	(pygam.callbacks.Deviance method)


      


  





P


  	
      	partial_dependence() (pygam.pygam.ExpectileGAM method)

      
        	(pygam.pygam.GAM method)


        	(pygam.pygam.GammaGAM method)


        	(pygam.pygam.InvGaussGAM method)


        	(pygam.pygam.LinearGAM method)


        	(pygam.pygam.LogisticGAM method)


        	(pygam.pygam.PoissonGAM method)


      


      	periodic() (in module pygam.penalties)


      	phi() (pygam.distributions.Distribution method)


      	PoissonDist (class in pygam.distributions)


      	PoissonGAM (class in pygam.pygam)


      	pop() (pygam.terms.TermList method)


      	predict() (pygam.pygam.ExpectileGAM method)

      
        	(pygam.pygam.GAM method)


        	(pygam.pygam.GammaGAM method)


        	(pygam.pygam.InvGaussGAM method)


        	(pygam.pygam.LinearGAM method)


        	(pygam.pygam.LogisticGAM method)


        	(pygam.pygam.PoissonGAM method)


      


  

  	
      	predict_mu() (pygam.pygam.ExpectileGAM method)

      
        	(pygam.pygam.GAM method)


        	(pygam.pygam.GammaGAM method)


        	(pygam.pygam.InvGaussGAM method)


        	(pygam.pygam.LinearGAM method)


        	(pygam.pygam.LogisticGAM method)


        	(pygam.pygam.PoissonGAM method)


      


      	predict_proba() (pygam.pygam.LogisticGAM method)


      	prediction_intervals() (pygam.pygam.LinearGAM method)


      	pygam.distributions (module)


      	pygam.penalties (module)


  





S


  	
      	s() (in module pygam.terms), [1]


      	sample() (pygam.distributions.BinomialDist method)

      
        	(pygam.distributions.Distribution method)


        	(pygam.distributions.GammaDist method)


        	(pygam.distributions.InvGaussDist method)


        	(pygam.distributions.NormalDist method)


        	(pygam.distributions.PoissonDist method)


        	(pygam.pygam.ExpectileGAM method)


        	(pygam.pygam.GAM method)


        	(pygam.pygam.GammaGAM method)


        	(pygam.pygam.InvGaussGAM method)


        	(pygam.pygam.LinearGAM method)


        	(pygam.pygam.LogisticGAM method)


        	(pygam.pygam.PoissonGAM method)


      


      	score() (pygam.pygam.ExpectileGAM method)

      
        	(pygam.pygam.GAM method)


        	(pygam.pygam.GammaGAM method)


        	(pygam.pygam.InvGaussGAM method)


        	(pygam.pygam.LinearGAM method)


        	(pygam.pygam.LogisticGAM method)


        	(pygam.pygam.PoissonGAM method)


      


      	set_params() (pygam.pygam.ExpectileGAM method)

      
        	(pygam.pygam.GammaGAM method)


        	(pygam.pygam.InvGaussGAM method)


        	(pygam.pygam.LinearGAM method)


        	(pygam.pygam.LogisticGAM method)


        	(pygam.pygam.PoissonGAM method)


        	(pygam.terms.FactorTerm method)


        	(pygam.terms.LinearTerm method)


        	(pygam.terms.SplineTerm method)


        	(pygam.terms.TensorTerm method)


        	(pygam.terms.TermList method)


      


  

  	
      	sparse_diff() (in module pygam.penalties)


      	SplineTerm (class in pygam.terms)


      	statistics_ (pygam.pygam.ExpectileGAM attribute)

      
        	(pygam.pygam.GAM attribute)


        	(pygam.pygam.GammaGAM attribute)


        	(pygam.pygam.InvGaussGAM attribute)


        	(pygam.pygam.LinearGAM attribute)


        	(pygam.pygam.LogisticGAM attribute)


        	(pygam.pygam.PoissonGAM attribute)


      


      	summary() (pygam.pygam.ExpectileGAM method)

      
        	(pygam.pygam.GAM method)


        	(pygam.pygam.GammaGAM method)


        	(pygam.pygam.InvGaussGAM method)


        	(pygam.pygam.LinearGAM method)


        	(pygam.pygam.LogisticGAM method)


        	(pygam.pygam.PoissonGAM method)


      


  





T


  	
      	te() (in module pygam.terms), [1]


      	TensorTerm (class in pygam.terms)


  

  	
      	Term (class in pygam.terms)


      	TermList (class in pygam.terms)


  





V


  	
      	V() (pygam.distributions.BinomialDist method)

      
        	(pygam.distributions.GammaDist method)


        	(pygam.distributions.InvGaussDist method)


        	(pygam.distributions.NormalDist method)


        	(pygam.distributions.PoissonDist method)


      


  

  	
      	validate_callback() (in module pygam.callbacks)


      	validate_callback_data() (in module pygam.callbacks)


  





W


  	
      	wrap_penalty() (in module pygam.penalties)


  







          

      

      

    

  

    
      
          
            
  


Terms


Linear Term


	
pygam.terms.l(feature, lam=0.6, penalties='auto', verbose=False)

	creates an instance of a LinearTerm



	featureint

	Index of the feature to use for the feature function.



	lamfloat or iterable of floats

	Strength of smoothing penalty. Must be a positive float.
Larger values enforce stronger smoothing.

If single value is passed, it will be repeated for every penalty.

If iterable is passed, the length of lam must be equal to the
length of penalties



	penalties{‘auto’, ‘derivative’, ‘l2’, None} or callable or iterable

	Type of smoothing penalty to apply to the term.

If an iterable is used, multiple penalties are applied to the term.
The length of the iterable must match the length of lam.

If ‘auto’, then 2nd derivative smoothing for ‘numerical’ dtypes,
and L2/ridge smoothing for ‘categorical’ dtypes.

Custom penalties can be passed as a callable.






	n_coefsint

	Number of coefficients contributed by the term to the model



	istensorbool

	whether the term is a tensor product of sub-terms



	isinterceptbool

	whether the term is an intercept



	hasconstraintbool

	whether the term has any constraints



	infodict

	contains dict with the sufficient information to duplicate the term









See also


	LinearTerm()

	for developer details














Spline Term


	
pygam.terms.s(feature, n_splines=20, spline_order=3, lam=0.6, penalties='auto', constraints=None, dtype='numerical', basis='ps', by=None, edge_knots=None, verbose=False)

	creates an instance of a SplineTerm



	featureint

	Index of the feature to use for the feature function.



	n_splinesint

	Number of splines to use for the feature function.
Must be non-negative.



	spline_orderint

	Order of spline to use for the feature function.
Must be non-negative.



	lamfloat or iterable of floats

	Strength of smoothing penalty. Must be a positive float.
Larger values enforce stronger smoothing.

If single value is passed, it will be repeated for every penalty.

If iterable is passed, the length of lam must be equal to the
length of penalties



	penalties{‘auto’, ‘derivative’, ‘l2’, None} or callable or iterable

	Type of smoothing penalty to apply to the term.

If an iterable is used, multiple penalties are applied to the term.
The length of the iterable must match the length of lam.

If ‘auto’, then 2nd derivative smoothing for ‘numerical’ dtypes,
and L2/ridge smoothing for ‘categorical’ dtypes.

Custom penalties can be passed as a callable.



	constraints{None, ‘convex’, ‘concave’, ‘monotonic_inc’, ‘monotonic_dec’}

	or callable or iterable

Type of constraint to apply to the term.

If an iterable is used, multiple penalties are applied to the term.



	dtype{‘numerical’, ‘categorical’}

	String describing the data-type of the feature.



	basis{‘ps’, ‘cp’}

	Type of basis function to use in the term.

‘ps’ : p-spline basis


	‘cp’cyclic p-spline basis, useful for building periodic functions.

	by default, the maximum and minimum of the feature values
are used to determine the function’s period.

to specify a custom period use argument edge_knots









edge_knots : optional, array-like of floats of length 2


these values specify minimum and maximum domain of the spline function.

in the case that spline_basis=”cp”, edge_knots determines
the period of the cyclic function.

when edge_knots=None these values are inferred from the data.

default: None





	byint, optional

	Feature to use as a by-variable in the term.

For example, if feature = 2 by = 0, then the term will produce:
x0 * f(x2)






	n_coefsint

	Number of coefficients contributed by the term to the model



	istensorbool

	whether the term is a tensor product of sub-terms



	isinterceptbool

	whether the term is an intercept



	hasconstraintbool

	whether the term has any constraints



	infodict

	contains dict with the sufficient information to duplicate the term









See also


	SplineTerm()

	for developer details














Factor Term


	
pygam.terms.f(feature, lam=0.6, penalties='auto', coding='one-hot', verbose=False)

	creates an instance of a FactorTerm



	featureint

	Index of the feature to use for the feature function.



	lamfloat or iterable of floats

	Strength of smoothing penalty. Must be a positive float.
Larger values enforce stronger smoothing.

If single value is passed, it will be repeated for every penalty.

If iterable is passed, the length of lam must be equal to the
length of penalties



	penalties{‘auto’, ‘derivative’, ‘l2’, None} or callable or iterable

	Type of smoothing penalty to apply to the term.

If an iterable is used, multiple penalties are applied to the term.
The length of the iterable must match the length of lam.

If ‘auto’, then 2nd derivative smoothing for ‘numerical’ dtypes,
and L2/ridge smoothing for ‘categorical’ dtypes.

Custom penalties can be passed as a callable.



	coding{‘one-hot’} type of contrast encoding to use.

	currently, only ‘one-hot’ encoding has been developed.
this means that we fit one coefficient per category.






	n_coefsint

	Number of coefficients contributed by the term to the model



	istensorbool

	whether the term is a tensor product of sub-terms



	isinterceptbool

	whether the term is an intercept



	hasconstraintbool

	whether the term has any constraints



	infodict

	contains dict with the sufficient information to duplicate the term









See also


	FactorTerm()

	for developer details














Tensor Term


	
pygam.terms.te(*args, **kwargs)

	creates an instance of a TensorTerm


This is useful for creating interactions between features, or other terms.

*args : marginal Terms to combine into a tensor product


	featurelist of integers

	Indices of the features to use for the marginal terms.



	n_splineslist of integers

	Number of splines to use for each marginal term.
Must be of same length as feature.



	spline_orderlist of integers

	Order of spline to use for the feature function.
Must be of same length as feature.



	lamfloat or iterable of floats

	Strength of smoothing penalty. Must be a positive float.
Larger values enforce stronger smoothing.

If single value is passed, it will be repeated for every penalty.

If iterable is passed, the length of lam must be equal to the
length of penalties



	penalties{‘auto’, ‘derivative’, ‘l2’, None} or callable or iterable

	Type of smoothing penalty to apply to the term.

If an iterable is used, multiple penalties are applied to the term.
The length of the iterable must match the length of lam.

If ‘auto’, then 2nd derivative smoothing for ‘numerical’ dtypes,
and L2/ridge smoothing for ‘categorical’ dtypes.

Custom penalties can be passed as a callable.



	constraints{None, ‘convex’, ‘concave’, ‘monotonic_inc’, ‘monotonic_dec’}

	or callable or iterable

Type of constraint to apply to the term.

If an iterable is used, multiple penalties are applied to the term.



	dtypelist of {‘numerical’, ‘categorical’}

	String describing the data-type of the feature.

Must be of same length as feature.



	basislist of {‘ps’}

	Type of basis function to use in the term.

‘ps’ : p-spline basis

NotImplemented:
‘cp’ : cyclic p-spline basis

Must be of same length as feature.



	byint, optional

	Feature to use as a by-variable in the term.

For example, if feature = [1, 2] by = 0, then the term will produce:
x0 * te(x1, x2)






	n_coefsint

	Number of coefficients contributed by the term to the model



	istensorbool

	whether the term is a tensor product of sub-terms



	isinterceptbool

	whether the term is an intercept



	hasconstraintbool

	whether the term has any constraints



	infodict

	contains dict with the sufficient information to duplicate the term









See also


	TensorTerm()

	for developer details
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