

pyfootball

pyfootball is a client library for football-data.org [http://api.football-data.org/index] written in Python.

This library was written to allow for easier access to football-data’s resources by abstracting HTTP requests and representing the JSON responses as Python classes.

Warning

pyfootball does not rate limit methods that send HTTP requests to football-data’s endpoints. You are responsible for adhering to the 50-requests-per-minute rule — you risk having your API key revoked and/or your IP banned if you don’t!

Requirements

	A valid API key for football-data. You can request for one here [http://api.football-data.org/register].

	Python 3.5+

	The requests library. pip should handle this for you when installing pyfootball.

Installation

Installation is easy using pip:

$ pip install pyfootball

Example Usage

>>> import pyfootball
>>> f = pyfootball.Football(api_key='your_api_key')
>>> bayern = f.get_team(5)
>>> bayern.market_value
582,225,000 €

User Documentation

	Getting Started

	Data Model
	Competition

	LeagueTable

	Fixture

	Team

	Player

	API
	Football

	Competition

	Team

About

	Frequently Asked Questions

	Support
	Bugs

	Other

	Change Log
	1.0.1 (2016.11.15)

	1.0.0 (2016.10.17)

License

The project is licensed under the MIT license.

Getting Started

In this tutorial, you’ll be introduced to pyfootball’s API as well as its data mapping.

If you’re not familiar with football-data.org, it’d be better for you to get acquainted with it by reading the football-data.org documentation [http://api.football-data.org/documentation] before proceeding with pyfootball.

If you don’t have pyfootball set up, see the home page. Otherwise, let’s get started!

First, you’re going to want to create a Football instance:

>>> import pyfootball
>>> f = pyfootball.Football(api_key='your_api_key')

You can also choose to instantiate Football without any arguments and make
it use an API key obtained from an environmental variable named
PYFOOTBALL_API_KEY. Here is an example in *nix:

$ export PYFOOTBALL_API_KEY='your_api_key'

and then in your program:

>>> import pyfootball
>>> f = pyfootball.Football()

If you provide an invalid API key, an HTTPError exception will be raised.

Note

Instantiating a Football object will use one request out of the 50 allowed per minute by football-data.org’s API. You can see the full list of which functions send requests and which ones don’t at API.

The Football class serves as an entry point for the library. Now, we want to get the data of a team — for example, Manchester United — but since we don’t know its ID in football-data.org’s database, we’re going to have to look it up:

>>> matches = f.search_teams("manchester")
>>> matches
{65: 'Manchester City FC', 66: 'Manchester United FC'}

Football.search_teams(name) queries the database for matches to name and returns key-value pairs of team IDs and team names respectively.

Now that we have Manchester United’s ID, we can get more information about it:

>>> man_utd = f.get_team(66)

Football.get_team(id) returns a Team object. It contains all the information you’d get in a JSON response from football-data.org, along with some cool functions. We can call Team.get_fixtures() to get its fixtures or Team.get_players() to get its players.

Hint

The Football class provides a useful method Football.get_prev_response() to give you information about the most recently-used response. Any time you use a method in the library that sends a HTTP request, this value is updated. You can use it to keep track of useful stuff like response status code or how many requests you have left.

>>> players = man_utd.get_players()

Team.get_players() returns a list of Player objects. Like Team objects, Player objects are objects from JSON responses mapped to Python classes:

>>> players[0].name
Paul Pogba
>>> players[0].market_value
70,000,000 €

A comprehensive list of object models and their attributes are available at Data Model. A full list of functions available are available at API.

Data Model

The data model was designed to keep to the original data’s structure as closely as possible. There were mostly minor changes as a result of following the PEP8 guidelines [https://www.python.org/dev/peps/pep-0008/] such as turning variable names from using camelCase to under_scores.

Each football-data.org resource [http://api.football-data.org/docs/v1/index.html#_resources] is mapped into an object. Each value in a JSON resource is mapped to an attribute of the object. You can access these values using the syntax Object.attribute. For example:

>>> import pyfootball
>>> f = pyfootball.Football(api_key='your_api_key')
>>> my_team = f.get_team(5)
>>> my_team.name
FC Bayern München

Competition

	Attribute

	Type

	Description

	id

	integer

	The ID of the competition.

	name

	string

	The name of the competition.

	code

	string

	The League Code [http://api.football-data.org/docs/v1/index.html#league_codes] of the competition.

	year

	integer

	The year in which the competition started. For example, the year for a 16/17 competition would be 2016.

	current_matchday

	integer

	The competition’s current matchday.

	number_of_matchdays

	integer

	The number of matchdays in this competition.

	number_of_teams

	integer

	The number of teams competing in this competition.

	number_of_games

	integer

	The number of games in this competition.

	last_updated

	datetime

	The date and time at which this resource was last updated.

LeagueTable

	Attribute

	Type

	Description

	competition_id

	integer

	The competition ID for this league table.

	competition_name

	string

	The competition name for this league table.

	current_matchday

	id

	The current matchday.

	standings

	list

	A list of Standing objects. The list is one-indexed so as to correspond with the position in the table (i.e. standings[1] is the top of the table)

Standing

Each Standing object represents a “row” in the league table.

	Attribute

	Type

	Description

	team_id

	integer

	The team ID.

	team_name

	string

	The team name.

	crest_url

	string

	A link to an image of the team’s crest.

	position

	integer

	The current team’s position.

	games_played

	integer

	The number of games played by this team.

	points

	integer

	The number of points that this team has.

	goals

	integer

	The number of goals scored by this team.

	goals_against

	integer

	The number of goals conceded by this team.

	goal_difference

	integer

	(goals - goals_against)

	wins

	integer

	The number of wins this team has.

	draws

	integer

	The number of draws this team has.

	losses

	integer

	The number of losses this team has.

	home

	dict

	Contains goals, goals_against, wins, draws, and losses keys with integer values that represent home stats.

	away

	dict

	Contains goals, goals_against, wins, draws, and losses keys with integer values that represent away stats.

Fixture

	Attribute

	Type

	Description

	date

	datetime

	The fixture date and time.

	status

	string

	The status of this fixture.

	matchday

	integer

	The matchday on which this fixture is set.

	home_team

	string

	The name of the home team.

	home_team_id

	integer

	The ID of the home team.

	away_team

	string

	The name of the away team.

	away_team_id

	integer

	The ID of the away team.

	competition_id

	integer

	The ID of the competition for this fixture.

	result

	dict

	The result for this fixture. None if the match is not complete. Otherwise, contains home_team_goals and away_team_goals keys with integer values. Some Fixtures have a half_time key set for the score at half time.

	odds

	dict

	The betting odds for this fixture. None if not available. Otherwise, contains home_win, draw and away_win keys with float values.

Team

	Attribute

	Type

	Description

	id

	integer

	The team ID.

	name

	string

	The team name.

	code

	string

	The team code (e.g. Borussia Dortmund’s code is BVB).

	short_name

	string

	The team’s short name.

	market_value

	string

	The collective market value of the team’s squad.

	crest_url

	string

	A link to an image of the team’s crest.

Player

	Attribute

	Type

	Description

	name

	string

	The player’s name.

	position

	string

	The player’s position on the field.

	jersey_number

	integer

	The player’s kit number.

	date_of_birth

	date

	The player’s date of birth.

	nationality

	string

	The player’s nationality.

	contract_until

	date

	The date of the player’s contract expiry with their team.

	market_value

	string

	The player’s market value.

API

For every function that sends a HTTP request, an HTTPError is raised whenever the response status code is 4XX or 5XX which signifies that something went wrong between pyfootball sending the API a request and the API giving a response. If you believe this to be an issue with pyfootball itself, please see Support for more information.

Football

This class serves as the driver/entry point for this library.

	
class pyfootball.football.Football(api_key=None)

	
	
__init__(api_key=None)

	Takes either an api_key as a keyword argument or tries to access
an environmental variable PYFOOTBALL_API_KEY, then uses the key to
send a test request to make sure that it’s valid. The api_key
kwarg takes precedence over the envvar.

Sends one request to api.football-data.org.

	Parameters

	api_key (string) – The user’s football-data.org API key.

	
get_all_competitions()

	Returns a list of Competition objects representing the current
season’s competitions.

Sends one request to api.football-data.org.

	Returns

	A list of Competition objects.

	
get_all_fixtures()

	Returns a list of all Fixture objects in the specified time frame.
Defaults to the next 7 days or “n7”. TODO: Include timeFrameStart
and timeFrameEnd, and filter for specifying time frame.

Sends one request to api.football-data.org.

	Returns

	A list of Fixture objects.

	
get_comp_fixtures(comp_id)

	Given an ID, returns a list of Fixture objects associated with the
given competition.

Sends one request to api.football-data.org.

	Parameters

	comp_id (integer) – The competition ID.

	Returns

	A list of Fixture objects.

	
get_competition(comp_id)

	Returns a Competition object associated with the competition ID.

Sends one request to api.football-data.org.

	Parameters

	comp_id (integer) – The competition ID.

	Returns

	The Competition object.

	
get_competition_teams(comp_id)

	Given an ID, returns a list of Team objects associated with the
given competition.

Sends one request to api.football-data.org.

	Parameters

	comp_id (integer) – The competition ID.

	Returns

	A list of Team objects.

	
get_fixture(fixture_id)

	Returns a Fixture object associated with the given ID. The response
includes a head-to-head between teams; this will be implemented
in the near future.

Sends one request to api.football-data.org.

	Parameters

	fixture_id (integer) – The fixture ID.

	Returns

	A Fixture object.

	
get_league_table(comp_id)

	Given a competition ID, returns a LeagueTable object for the
league table associated with the competition.

Sends one request to api.football-data.org.

	Parameters

	comp_id (integer) – The competition ID.

	Returns

	A LeagueTable object.

	
get_prev_response()

	Returns information about the most recent response.

	Returns

	A dict containing information about the most recent response.

	
get_team(team_id=None, team_name=None)

	Given an ID, returns a Team object for the team associated with
the ID. If no ID is supplied, checks if name is supplied. Database
is queried using the team name and the first result in the response
is returned. If both ID and name are supplied, ID will be evaluated
and name will be ignored.

Sends one request to api.football-data.org if fetching team by ID; two
requests if fetching team by name.

	Parameters

	
	team_id (integer) – The team ID. Default None.

	team_name (string) – The team name. Default None.

	Returns

	A Team object on success, or None if no

matches are found for the given team_name or ID.

	
get_team_fixtures(team_id)

	Given a team ID, returns a list of Fixture objects associated
with the team.

Sends one request to api.football-data.org.

	Parameters

	team_id (integer) – The team ID.

	Returns

	A list of Fixture objects for the specified team.

	
get_team_players(team_id)

	Given a team ID, returns a list of Player objects associated
with the team.

Sends one request to api.football-data.org.

	Parameters

	team_id (integer) – The team ID.

	Returns

	A list of Player objects based on players in the specified team.

	
search_teams(team_name)

	Given a team name, queries the database for matches and returns
a dictionary containing key-value pairs of their team IDs and
team names.

Sends one request to api.football-data.org.

	Parameters

	team_name (string) – The partial or full team name.

	Returns

	A dict with team ID as keys and team name as values. None if no matches are found for the given team_name.

Competition

	
class pyfootball.models.competition.Competition(data)

	
	
get_fixtures()

	Return a list of Fixture objects representing the fixtures in this
competition for the current season.

Sends one request to api.football-data.org.

	Returns

	A list of Fixture objects.

	
get_league_table()

	Return the league table for this competition.

Sends one request to api.football-data.org.

	Returns

	A LeagueTable object.

	
get_teams()

	Return a list of Team objects representing the teams in this
competition for the current season.

Sends one request to api.football-data.org.

	Returns

	A list of Team objects.

Team

	
class pyfootball.models.team.Team(data)

	
	
get_fixtures()

	Return a list of Fixture objects representing this season’s
fixtures for the current team.

Sends one request to api.football-data.org.

	Returns

	A list of Fixture objects.

	
get_players()

	Return a list of Player objects representing players on the current
team.

Sends one request to api.football-data.org.

	Returns

	A list of Player objects.

Frequently Asked Questions

Intentionally left empty for now.

Support

Bugs

If you believe you’ve found a bug with the library, feel free to create an issue on our issue tracker with information on how to reproduce the problem.

The pyfootball issue tracker is located at https://github.com/xozzo/pyfootball/issues.

Other

For anything else, like questions on how to use the library or why something is behaving the way it is, you can tweet me @timorthi [https://www.twitter.com/timorthi].

Change Log

1.0.1 (2016.11.15)

	[FEATURE] The Football object now uses either a kwarg or an envvar PYFOOTBALL_API_KEY to obtain an API key.

	[FIX] Fixed models not returning expected data types. Namely, numerical types were being returned as strings.

	[DEV] Wrote tests that cover most of the library.

	[DEV] Added Travis CI integration.

	[OTHER] Removed To-Do List from README file.

	[OTHER] Added a CONTRIBUTING file including contributing guidelines.

1.0.0 (2016.10.17)

	Initial release! :)

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyfootball	

 	
 	
 pyfootball.football	

 	
 	
 pyfootball.models.competition	

 	
 	
 pyfootball.models.team	

Index

 _
 | C
 | F
 | G
 | P
 | S
 | T

_

 	
 	__init__() (pyfootball.football.Football method)

C

 	
 	Competition (class in pyfootball.models.competition)

F

 	
 	Football (class in pyfootball.football)

G

 	
 	get_all_competitions() (pyfootball.football.Football method)

 	get_all_fixtures() (pyfootball.football.Football method)

 	get_comp_fixtures() (pyfootball.football.Football method)

 	get_competition() (pyfootball.football.Football method)

 	get_competition_teams() (pyfootball.football.Football method)

 	get_fixture() (pyfootball.football.Football method)

 	get_fixtures() (pyfootball.models.competition.Competition method)

 	(pyfootball.models.team.Team method)

 	
 	get_league_table() (pyfootball.football.Football method)

 	(pyfootball.models.competition.Competition method)

 	get_players() (pyfootball.models.team.Team method)

 	get_prev_response() (pyfootball.football.Football method)

 	get_team() (pyfootball.football.Football method)

 	get_team_fixtures() (pyfootball.football.Football method)

 	get_team_players() (pyfootball.football.Football method)

 	get_teams() (pyfootball.models.competition.Competition method)

P

 	
 	pyfootball.football (module)

 	
 	pyfootball.models.competition (module)

 	pyfootball.models.team (module)

S

 	
 	search_teams() (pyfootball.football.Football method)

T

 	
 	Team (class in pyfootball.models.team)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 pyfootball

 		
 Getting Started

 		
 Data Model

 		
 Competition

 		
 LeagueTable

 		
 Standing

 		
 Fixture

 		
 Team

 		
 Player

 		
 API

 		
 Football

 		
 Competition

 		
 Team

 		
 Frequently Asked Questions

 		
 Support

 		
 Bugs

 		
 Other

 		
 Change Log

 		
 1.0.1 (2016.11.15)

 		
 1.0.0 (2016.10.17)

_static/up-pressed.png

_static/up.png

