

pyFIM

	Release

	0.2

	Date

	Apr 25, 2018

pyFIM is a Python 3 package for analysis of FIMTrack [https://www.uni-muenster.de/PRIA/en/FIM/download.shtml] data. It extracts parameters
from .csv files produced by FIMTrack, performs additional analyses and
facilitates comparison of experiments.

FIMTrack is an object tracker developed by Risse et al. (University of Muenster, Germany). From their Github repository [https://github.com/i-git/FIMTrack]:

“FIMTrack is a larval tracking program to acquire locomotion trajectories and conformation information of Drosophila melanogaster larvae. It is optimized for FIM images. FIM is an acronym for FTIR-based Imaging Method, whereby FTIR is the short form for Frustrated Total Internal Reflection.”

Core Features

	import of .csv files

	extraction of FIMTrack parameters

	built-in additional high-level analyses

	easy handling and comparison of experiments

Contribute

Source Code: https://github.com/schlegelp/pyfim

Issue Tracker: https://github.com/schlegelp/pyfim/issues

Support

If you are having issues, drop me a message: pms70[AT]cam[DOT]ac[DOT]uk

License

pyFIM is licensed under the GNU GPL v3+ license

Acknowledgments

Big thanks to Dimitri Berh, Benjamin Risse, Nils Otto and Christian Klämbt for
sharing their MatLab code.

FIMTrack References

Risse B, Berh D, Otto N, Klämbt C, Jiang X. FIMTrack: An open source tracking and locomotion analysis software for small animals. PLoS Computational Biology. 2017;13(5):e1005530. doi:10.1371/journal.pcbi.1005530.

Risse B, Otto N, Berh D, Jiang X, Klämbt C. FIM Imaging and FIMtrack: Two New Tools Allowing High-throughput and Cost Effective Locomotion Analysis. Journal of Visualized Experiments : JoVE. 2014;(94):52207. doi:10.3791/52207.

Risse B, Thomas S, Otto N, et al. FIM, a Novel FTIR-Based Imaging Method for High Throughput Locomotion Analysis. PLoS ONE. 2013;8(1):e53963. doi:10.1371/journal.pone.0053963.

Table of Contents

	Install

	Introduction

	Built-in Analyses

	Configuration

Indices and tables

	Index

	Module Index

	Search Page

Install

Requirements

pyFIM requires Python 3.3 or higher.

Please make sure you have all these dependencies installed. They are all
available via PIP.

	Pandas [http://pandas.pydata.org/] >= 0.21.0

	Numpy [http://www.scipy.org] >= 1.13.3

	PeakUtils [https://pypi.python.org/pypi/PeakUtils] >= 1.1.0

	tqdm [https://pypi.python.org/pypi/tqdm] >= 4.15.0

Note

If you are on Windows, it is probably easiest to install a scientific
Python distribution such as
Anaconda [https://www.continuum.io/downloads],
Enthought Canopy [https://www.enthought.com/products/canopy/],
Python(x,y) [http://python-xy.github.io/],
WinPython [https://winpython.github.io/], or
Pyzo [http://www.pyzo.org/].
If you use one of these Python distribution, please refer to their online
documentation.

Installation

pyFIM is not listed in the Python Packaging Index but you can install
the current version directly from Github [https://github.com/schlegelp/pyfim] using:

pip install git+git://github.com/schlegelp/pyfim@master

See here [https://pip.pypa.io/en/stable/installing/] how to get PIP.

Depending on your default Python version you may have to specify that you want
pyFIM to be installed for Python 3:

pip3 install git+git://github.com/schlegelp/pyfim@master

Installing from source

Alternatively, you can install pyFIM from source:

	Download the source (tar.gz file) from

https://github.com/schlegelp/pyfim/tree/master/dist

	Unpack and change directory to the source directory

(the one with setup.py).

	Run python setup.py install to build and install

Introduction

This section will teach you the basics of how to use pyFIM.

Experiments and Collections

Everython in pyFIM is done by two basic classes: Experiment
and Collection.

pyfim.Experiment extracts data from .csv files, does analyses and
helps you access each parameter. The idea is that you divide data from e.g.
different genotypes into an Experiment each.

As soon as you initialize an Experiment, data is extracted, processed and
additional analyses are run. Data clean up involves:

	removal of objects with too few data points

	filling of gaps in thresholded parameters

	conversion from pixel to mm/mm^2 (optional)

	remove frames at the beginning or end of the tracks

You can fine tune how this and the analyses are done by changing the defaults
in config.py. Please note that changes to the config.py will only take
effect if you restart your Python session. On the fly, you can change the
defaults by e.g.

>>> pyfim.defaults['PIXEL_PER_MM'] = 300

See the Configuration section for details.

pyfim.Collection keep track of your Experiments. Their job is to
generate data tables from attached Experiments collapsing data into
means per larva.

Both these classes generate pandas DataFrames for the data and facilitate
juggling it. I highly recommend getting familiar with pandas:

	pandas tutorials [https://pandas.pydata.org/pandas-docs/stable/tutorials.html]

	pandas visualization [https://pandas.pydata.org/pandas-docs/stable/visualization.html]

Learning by doing

Let’s start off with a simple case: exploring a single Experiment.

>>> import pyfim
>>> import matplotlib.pyplot as plt
>>> # Initialise an experiment using a single CSV file
>>> exp = pyfim.Experiment('/experiments/genotype1/exp1.csv')
... INFO : Data clean-up dropped 51 objects and 0 frames (pyfim)

As you see, 51 objects were dropped during import. That’s because, by default,
object tracks have to have at least 500 frames - if not they are dropped.

Next, get a summary and available parameters:

>>> print(exp)
... <class 'pyfim.core.Experiment'> with: 48 objects; 1800 frames.
... Available parameters: acc_dst, acceleration, area, bending,
... bending_strength, dst_to_origin, go_phase, head_bends, head_x, head_y,
... is_coiled, is_well_oriented, left_bended, mom_dst, mom_x, mom_y,
... mov_direction, pause_turns, perimeter, peristalsis_efficiency,
... peristalsis_frequency, radius_1, radius_2, radius_3, right_bended,
... spine_length, spinepoint_1_x, spinepoint_1_y, spinepoint_2_x,
... spinepoint_2_y, spinepoint_3_x, spinepoint_3_y, stops, tail_x, tail_y,
... velocity

Access to all these data tables is always the same:

>>> exp.acc_dst
... object_1 object_100 object_101 object_102 object_103 \
... 0 0.00000 0.00000 0.00000 0.00000 0.00000
... 1 2.23607 0.00000 2.00000 1.00000 1.00000
... 2 3.65028 1.00000 3.41421 1.00000 3.23607
... 3 3.65028 2.00000 3.41421 2.41421 4.23607
... 4 4.65028 3.41421 4.41421 3.82843 4.23607
... ...

Let’s do some plotting: traces over time

>>> ax = exp.plot_tracks()
>>> plt.show()

[image: Tracks]
Access data tables. Please note that some data tables are 2 dimensional
(e.g. velocity) while others are 1 dimensional (e.g. pause_turns)

>>> velocity = exp.velocity
>>> pause_turns = exp.pause_turns

Get the mean over all objects tracked

>>> mean_velocity = exp.mean('velocity')

Alternatively (for 2 dimensional data tables)

>>> mean_velocity = exp.velocity.mean(axis=0)

The second way also lets you get other metrics

>>> max_velocity = exp.velocity.max(axis=0)

Get all means over all parameters

>>> all_means = exp.mean()

We can also access data by objects:

>>> # Get a list of all tracked objects
>>> exp.objects
... ['object_1',
... 'object_100',
... 'object_101',
... 'object_102',
... 'object_103',
... ...

Access all parameters for a single object:

>>> obj1_data = exp['object_1']

Plot velocity for the first 5 objects

>>> vel = exp.velocity.iloc[:,:5]
>>> # Smooth over 20 frames
>>> vel = vel.rolling(window=20).mean()
>>> # Plot over time
>>> ax = vel.plot(legend=False)
>>> ax.set_xlabel('frames')
>>> ax.set_ylabel('velocity')
>>> plt.show()

[image: Velocity over time]
Plot some frequency parameters over all objects

>>> param_to_plot = ['head_bends','pause_turns','stops']
>>> ax = exp.mean().loc[param_to_plot].T.plot(kind='box')
>>> ax.set_ylabel('freq [Hz]')
>>> plt.show()

[image: Box plot of parameters]
Next, lets have a look at Collections:

>>> import pyfim
>>> import matplotlib.pyplot as plt

>>> # Initialize Experiments from CSV files in two folders
>>> exp1_folder = '/experiments/genotype1'
>>> exp2_folder = '/experiments/genotype2'
>>> exp1 = pyfim.Experiment(exp1_folder)
>>> exp2 = pyfim.Experiment(exp2_folder)

Initialise a Collection and add the Experiments

>>> coll = pyfim.Collection()
>>> coll.add_data(exp1, label='genotypeI')
>>> coll.add_data(exp2, label='genotypeII')

Get a summary of the Collection

>>> coll
... <class 'pyfim.core.Collection'> with 3 experiments:
... name n_objects n_frames
... 0 genotypeI 46 1800
... 1 genotypeI 46 1800
... 2 genotypeII 47 1800
... Available parameters: tail_x, mom_dst, acc_dst, is_well_oriented, spinepoint_3_y, spine_length, right_bended, spinepoint_1_x, radius_2, peristalsis_frequency, radius_1, acceleration, spinepoint_1_y, area, head_bends, spinepoint_2_y, mom_y, go_phase, peristalsis_efficiency, bending_strength, spinepoint_2_x, tail_y, spinepoint_3_x, velocity, perimeter, pause_turns, head_x, mov_direction, left_bended, dst_to_origin, bending, head_y, is_coiled, radius_3, mom_x, stops

Get and plot a single parameter

>>> mean_acc_dst = coll.acc_dst
>>> ax = mean_acc_dst.plot(kind='box')
>>> ax.set_ylabel('accumulated distance')
>>> plt.show()

[image: Box plot of parameters]
Collections have a built-in plotting function that lets you plot multiple
parameters as boxplots

>>> ax = coll.plot(['head_bends','pause_turns','stops'])
>>> plt.show()

[image: Box plot of parameters]

A special case: Two-Choice Experiments

In two-choice experiments objects can be split into two groups based on some
parameter. Classically, you would have setup in which half the arena has
different conditions than the other. For example: light vs dark or hot vs cold.
For this kind of experiment you might want to:

	Quantify how objects distribute by calculating a preference index (PI)

	Look at individual parameters separated by which side they are on.

For this, you can use the TwoChoiceExperiment. This class
inherits from Experiment - so it can do all of the stuff the
base class can plus some additional stuff like calculating a PI.

An example:

>>> # Set split to be made along x-axis (default)
>>> pyfim.defaults['TC_PARAM'] = 'mom_x'
>>> # Set where to make the split in pixel or mm
>>> pyfim.defaults['TC_BOUNDARY'] = 1000
>>> # Create two-choice experiment
>>> tc_exp = pyfim.TwoChoiceExperiment('/2choice-experiments/1/')
>>> # Get preference index (PI)
>>> tc_exp.preference_index
... 0.8712
>>> # Plot PI over time
>>> tc_exp.PI_over_time.plot()
>>> # Compare other parameters between left and right side of the experiment
>>> comp = tc_exp.split_data()
>>> comp.velocity.plot()

Reference

	Experiment(f[, keep_raw, include_subfolders])

	Class that holds raw data for a set of data.

	Collection()

	Collection of experiments.

	TwoChoiceExperiment(f[, keep_raw, …])

	Variation of Experiment base class that performs additional analyses.

pyfim.Experiment

	
class pyfim.Experiment(f, keep_raw=False, include_subfolders=False)

	Class that holds raw data for a set of data.

	Parameters

	
	f ({filename, folder, file object}) –

	Provide either:

	
	a CSV file name

	a CSV file object

	single folder

	list of the above

Lists of files will be merged and objects (columns) will be
renumbered.

	keep_raw (bool, optional) – If False, will discard raw data after extraction to save
memory.

	include_subfolders (bool, optional) – If True and folder is provided, will also search
subfolders for .csv files.

Examples

>>> # Generate an experiment from all csv files in one folder
>>> folder = 'users/downloads/genotype1'
>>> exp = pyfim.Experiment(folder)
>>> # See available analysis
>>> exp.parameters
... ['acc_dst', 'acceleration', 'area', 'bending',...
>>> # Access data
>>> exp.dst_to_origin.head()
... object_1 object_13 object_15 object_18 object_19 ... 0 0.00000 0.00000 NaN NaN NaN
... 1 2.23607 0.00000 NaN NaN NaN
... 2 3.60555 1.41421 NaN NaN NaN
... 3 3.60555 2.82843 NaN NaN NaN
... 4 4.47214 4.24264 0.0 NaN NaN
>>> # Plot data individual objects over time
>>> ax = exp.dst_to_origin.plot()
>>> plt.show()
>>> # Get mean of all values
>>> exp.mean()

	
__init__(f, keep_raw=False, include_subfolders=False)

	

Methods

	__init__(f[, keep_raw, include_subfolders])

	

	analyze(p)

	Returns analysis for given parameter.

	clean_data()

	Cleans up the data.

	extract_data()

	Extracts parameters from .csv file.

	mean([p])

	Return mean of given parameter over given parameter.

	plot_tracks([obj, ax])

	Plots traces of tracked objects.

	sanity_check()

	Does a sanity check of attached data.

pyfim.Collection

	
class pyfim.Collection

	Collection of experiments. This allows you to easily collect and plot
data from multi experiments.

Examples

>>> # Initialise two experiments from CSVs in a folder
>>> exp1 = pyfim.Experiment('users/data/genotype1')
>>> exp2 = pyfim.Experiment('users/data/genotype2')
>>> # Initialise collection and add data
>>> c = pyfim.Collection()
>>> c.add_data(exp1, 'Genotype I')
>>> c.add_data(exp2, 'Genotype II')
>>> # Get a summary
>>> c
... <class 'pyfim.core.Collection'> with 2 experiments:
... name n_objects n_frames
... 0 Genotype I 47 1800
... 1 Genotype II 46 1800
... Available parameters: mom_y, perimeter, peristalsis_frequency,
... radius_3, pause_turns, spinepoint_2_x, acc_dst, ...
>>> # Access data
>>> c.peristalsis_frequency
>>> # Plot as boxplot
>>> ax = c.peristalsis_frequency.plot(kind='box')
>>> plt.show()

	
__init__()

	

Methods

	__init__()

	

	add_data(x[, label, keep_raw])

	Add data (e.g.

	extract_data()

	Get the mean over all parameters.

	plot([param])

	Plots a set of parameters from this pyFIM Collection.

	summary()

	Gives a summary of the data in this analysis.

pyfim.TwoChoiceExperiment

	
class pyfim.TwoChoiceExperiment(f, keep_raw=False, include_subfolders=False)

	Variation of Experiment base class that performs
additional analyses.

	
__init__(f, keep_raw=False, include_subfolders=False)

	

Methods

	__init__(f[, keep_raw, include_subfolders])

	

	analyze(p)

	Returns analysis for given parameter.

	clean_data()

	Cleans up the data.

	extract_data()

	Extracts parameters from .csv file.

	mean([p])

	Return mean of given parameter over given parameter.

	plot_tracks([obj, ax])

	Plots traces of tracked objects.

	sanity_check()

	Does a sanity check of attached data.

	split_data()

	Split data into experiment and control.

	two_choice_analyses()

	Performs additional two-choice analyses.

Built-in Analyses

This section gives you an overview of the additional analyses that are
performed when you initialize an experiment. They are based on MatLab code
kindly shared by Dimitri Berh (Klaembt lab, University of Muenster, Germany):

Documentation

Base analyses

	stops(exp)

	Calculates frequency of stops [Hz] for each object.

	stop_duration(exp)

	Calculates mean duration of a stop.

	pause_turns(exp)

	Calculates the frequency of pause-turns [Hz] for each object.

	bending_strength(exp[, during])

	Calculates the median (!) bending strength for each object.

	head_bends(exp)

	Calculates the head bend frequency [Hz] for each object.

	peristalsis_efficiency(exp)

	Calculates the peristalsis efficiency for each object.

	peristalsis_frequency(exp)

	Calculates the peristalsis frequency [Hz] for each object.

	binary_phases(x[, mode, min_len])

	Low-level function: Extracts phases from binary indicators such as “go_phase” or “is_coiled”.

Two-choice analyses

	preference_index(exp)

	Calculates the preference index (PI) for a two choice experiment:

	PI_over_time(exp)

	Calculates the preference index (PI) for a two choice experiment over time:

pyfim.analysis.stops

	
pyfim.analysis.stops(exp)

	Calculates frequency of stops [Hz] for each object. This analysis is
based on MatLab code by Dimitri Berh (University of Muenster, Germany).

Notes

This function counts the phases in which go_phase is zero. You can
finetune this behaviour by adjusting the following parameter in the
config file:

	MIN_STOP_PHASE: minimum number of frames for a stop-phase

	Parameters

	exp (pyfim.Experiment) – Experiment holding the raw data.

	Returns

	Stop frequency [Hz]

	Return type

	pandas.DataFrame

pyfim.analysis.stop_duration

	
pyfim.analysis.stop_duration(exp)

	Calculates mean duration of a stop. This analysis is based on MatLab
code by Dimitri Berh (University of Muenster, Germany).

Notes

This function measures the average length of phases in which go_phase is
zero. You can finetune this behaviour by adjusting the following parameter
in the config file:

	MIN_STOP_PHASE: minimum number of frames for a stop

	Parameters

	exp (pyfim.Experiment) – Experiment holding the raw data.

	Returns

	Mean stop duration [Frames]

	Return type

	pandas.DataFrame

pyfim.analysis.pause_turns

	
pyfim.analysis.pause_turns(exp)

	Calculates the frequency of pause-turns [Hz] for each object. This
analysis is based on MatLab code by Dimitri Berh (University of Muenster,
Germany).

	Parameters

	exp (pyfim.Experiment) – Experiment holding the raw data.

Notes

This function counts the number of pause-turns by (1) finding pauses and
(2) determining if the movement direction before and after the pause
differs sufficiently. You can finetune this behaviour by changing the
following parameters in the config file:

	MIN_STOP_TIME: minimum number of frames for a pause to be counted as one.

	MIN_GO_TIME: minimum frames before and after the pause to be counted as pause-turn.

	TURN_ANGLE_THRESHOLD: minimum angular difference in movement direction before and after the pause.

	Returns

	Pause-Turn frequency [Hz]

	Return type

	pandas.DataFrame

pyfim.analysis.bending_strength

	
pyfim.analysis.bending_strength(exp, during=None)

	Calculates the median (!) bending strength for each object. This
analysis is based on MatLab code by Dimitri Berh (University of Muenster,
Germany).

	Parameters

	
	exp (pyfim.Experiment) – Experiment holding the raw data.

	during ({'stop','go', None}, optional) – Use to restrict to stop or go-phases.

Notes

This function determines the bending strength by (1) taking all bending
angles, (2) thresholding them and (3) getting the median bending angle.
You can finetune this behaviour using the following parameter in the
config file:

	BENDING_ANGLE_THRESHOLD_FOR_BENDING_STRENGTH: minimum bending angle

	Returns

	Median bending strengths [angle] – Returns NaN if no bends.

	Return type

	pandas.DataFrame

pyfim.analysis.head_bends

	
pyfim.analysis.head_bends(exp)

	Calculates the head bend frequency [Hz] for each object. This analysis
is based on MatLab code by Dimitri Berh (University of Muenster, Germany).

	Parameters

	exp (pyfim.Experiment) – Experiment holding the raw data.

Notes

This function determines the number of head bends by (1) taking all
bending angles, (2) thresholding them and (3) counting the number of
bending phases of a given minimum length. You can finetune this behaviour
using the following parameters in the config file:

	BENDING_ANGLE_THRESHOLD: minimum bending angle

	MIN_BENDED_PHASE: minimum consecutive number of frames above angle threshold

	Returns

	Mean head bending frequencies [Hz]

	Return type

	pandas.DataFrame

pyfim.analysis.peristalsis_efficiency

	
pyfim.analysis.peristalsis_efficiency(exp)

	Calculates the peristalsis efficiency for each object. The unit is
depending on the input data: [pixel/peristalsis] or [mm/peristalsis].
This analysis is based on MatLab code by Dimitri Berh (University of
Muenster, Germany).

	Parameters

	exp (pyfim.Experiment) – Experiment holding the raw data.

Notes

This function determines the number of peristalses by performing peak
detection of the object’s area in its go-phases. The efficieny is the
distance (in pixel or mm) per peristalsis. You can finetune this behaviour
using the following parameters in the config file:

	MIN_GO_PHASE: minimum length of the go phases

	MIN_PEAK_DIST: minimal distance in frames between peristalses

	Returns

	Mean peristalsis efficiency [Hz]

	Return type

	pandas.DataFrame

pyfim.analysis.peristalsis_frequency

	
pyfim.analysis.peristalsis_frequency(exp)

	Calculates the peristalsis frequency [Hz] for each object. This
analysis is based on MatLab code by Dimitri Berh (University of Muenster,
Germany).

	Parameters

	exp (pyfim.Experiment) – Experiment holding the raw data.

Notes

This function determines the number of peristalses by performing peak
detection of the object’s area in its go-phases. You can finetune this
behaviour using the following parameters in the config file:

	MIN_GO_PHASE: minimum length of the go phases

	MIN_PEAK_DIST: minimal distance in frames between peristalses

	Returns

	Mean peristalsis frequencies [Hz]

	Return type

	pandas.DataFrame

pyfim.analysis.binary_phases

	
pyfim.analysis.binary_phases(x, mode='ON', min_len=1)

	Low-level function: Extracts phases from binary indicators such as
“go_phase” or “is_coiled”.

	Parameters

	
	x ((list, np.ndarray, pd.Series)) – Must be consist of True/False or 0/1. E.g. [0,0,0,1,1,1,0,1,1]

	mode ({'ON','OFF','ALL'}, optional) –
	Phases to return. For above example:

	
	’ON’, will return [(3,6),(7,9)]

	’OFF’, will return [(0,3),(6,7)]

	’ALL’ will return [(0,3),(3,6),(6,7),(7,9)]

	min_len (int, optional) –

	Returns

	

	Return type

	Indices of phases

pyfim.analysis.preference_index

	
pyfim.analysis.preference_index(exp)

	Calculates the preference index (PI) for a two choice experiment:

PI = (exp-control)/(exp+control)

with exp and control being the number of objects on the experimental
and the control side, respectively.

Based on code by Sebastian Hueckesfeld (University of Bonn, Germany).

Notes

This function counts the number of objects in rolling windows of 10s on either side of a boundary.
You can finetune this behaviour by adjusting the following parameters in
the config file:

	TC_PARAM: parameter used to split data (e.g. “mom_x” for split along x-axis)

	TC_BOUNDARY: boundary between control and experiment

	TC_CONTROL_SIDE: defines which side is the control

	TC_COUNT_WINDOW: rolling window (in frames) over which to count max objects

	TC_SMOOTHING_WINDOW : rolling window (in frames) over which to smooth PI

	TC_CUT_HEAD: set to ignore the first X frames for PI calculation. Can be fraction (e.g. 0.75) of total frames.

	TC_CUT_TAIL: set to ignore the last X frames for PI calculation. Can be fraction (e.g. 0.1) of total frames.

	Parameters

	exp (pyfim.Experiment) – Experiment holding the raw data.

	Returns

	PI

	Return type

	float

pyfim.analysis.PI_over_time

	
pyfim.analysis.PI_over_time(exp)

	Calculates the preference index (PI) for a two choice experiment over time:

PI = (exp-control)/(exp+control)

with exp and control being the number of objects on the experimental
and the control side, respectively.

Based on code by Sebastian Hueckesfeld (University of Bonn, Germany).

Notes

This function counts the number of objects in rolling windows of 10s on either side of a boundary.
You can finetune this behaviour by adjusting the following parameters in
the config file:

	TC_PARAM: parameter used to split data (e.g. “mom_x” for split along x-axis)

	TC_BOUNDARY: boundary between control and experiment

	TC_CONTROL_SIDE: defines which side is the control

	TC_COUNT_WINDOW: rolling window (in frames) over which to count max objects

	TC_SMOOTHING_WINDOW : rolling window (in frames) over which to smooth PI

	Parameters

	exp (pyfim.Experiment) – Experiment holding the raw data.

	Returns

	PI over time

	Return type

	pandas.DataFrame

Configuration

When you initialize a Experiment, raw data is extracted from
the .csv(s) and cleaned-up. Then, additional analyses are performed. You can
fine tune the clean up and the analyses by changing default parameters.

Upon importing pyfim, defaults are loaded from config.py in the pyFIM
directory. You can either change the defaults in the file which will affect
all subsequent sessions (persistent, does not work on-the-fly!) or change the
defaults in the current session (temporary, only for this session).

Making lasting changes

Open a Python session, import pyFIM and get it’s location:

>>> import pyfim
>>> pyfim.__file__
... '/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/pyfim/__init__.py'

Next, navigate to the pyFIM directory, open config.py and make your changes.

Making temporary changes

You can change defaults for the current session.

>>> import pyfim
>>> # Defaults are stored as dictionary
>>> pyfim.defaults
... {'AREA_PARAMS': ['area'],
... 'BENDING_ANGLE_THRESHOLD': 45,
... 'BENDING_ANGLE_THRESHOLD_FOR_BENDING_STRENGTH': 20,
... 'CUT_TABLE_HEAD': False, ...
>>> # Change some parameter
>>> pyfim.defaults['MIN_STOP_TIME'] = 10

What is what

The config.py is well documented and superseeds this document but here is a
list of relevant parameters:

Config parameters

	Function

	Variable

	Desciption

	Import

	FILE_FORMAT

	File format to search for

	Import

	DELIMITER

	Delimiter in CSV file

	Import

	PIXEL2MM

	If True pixel coords are converted to mm or mm^2

	Import

	PIXEL_PER_MM

	Adjust this according to your setup

	Import

	SPATIAL_PARAMS

	List parameters that can be converted to mm

	Import

	AREA_PARAMS

	List parameters that can be converted to mm^2

	Import

	FPS

	Frames per second

	Import

	CUT_TABLE_HEAD

	Remove first N Frames

	Import

	CUT_TABLE_TAIL

	Remove last N Frames

	Import

	REMOVE_NANS

	Remove objects without any values

	Import

	MIN_TRACK_LENGTH

	Minimum track length in frames

	Import

	FILL_GAPS

	Fill sub-threshold gaps within thresholded columns: [0 1 1 0 0 1 1] -> [0 1 1 1 1 1 1]

	Import

	MAX_GAP_SIZE

	Max gap size

	Import

	THRESHOLDED_PARAMS

	Parameters to fill gaps for

	Head bends

	BENDING_ANGLE_THRESHOLD

	Minimum angle to be counted as bend

	Head bends

	MIN_BENDED_PHASE

	Minimum consecutive frames spend bent

	Stops

	MIN_STOP_PHASE

	Minimum number of frames for a stop

	Peristalses

	MIN_PEAK_DIST

	Minimum frames between peristalses

	Pause-turns

	MIN_STOP_TIME

	Minimum length of pause in frames

	Pause-turns

	MIN_GO_TIME

	Minimum frames of go phase before and after pause

	Pause-turns

	TURN_ANGLE_THRESHOLD

	Minimum anglular difference in movement direction before vs after pause

	Pause-turns

	DIRECTION_SMOOTHING

	Direction will be smoother over X frames

	Bend strength

	BENDING_ANGLE_THRESHOLD_FOR_BENDING_STRENGTH

	Minimum angle for bending strength

	Two-Choice

	TC_PARAM

	Parameter used to split data (e.g. “mom_x” for split along x-axis)

	Two-Choice

	TC_BOUNDARY

	Boundary between control and experiment

	Two-Choice

	TC_CONTROL_SIDE

	Defines which side is the control

	PreferenceIndex

	TC_COUNT_WINDOW

	Rolling window over which to count objects on either side

	PreferenceIndex

	TC_SMOOTHING_WINDOW

	Rolling window over which to smooth preference index (PI)

	PreferenceIndex

	TC_CUT_HEAD

	Ignore the first X frames for PI calculation

	PreferenceIndex

	TC_CUT_TAIL

	Ignore the last X frames for PI calculation

Index

 _
 | B
 | C
 | E
 | H
 | P
 | S
 | T

_

 	
 	__init__() (pyfim.Collection method)

 	(pyfim.Experiment method)

 	(pyfim.TwoChoiceExperiment method)

B

 	
 	bending_strength() (in module pyfim.analysis)

 	
 	binary_phases() (in module pyfim.analysis)

C

 	
 	Collection (class in pyfim)

E

 	
 	Experiment (class in pyfim)

H

 	
 	head_bends() (in module pyfim.analysis)

P

 	
 	pause_turns() (in module pyfim.analysis)

 	peristalsis_efficiency() (in module pyfim.analysis)

 	
 	peristalsis_frequency() (in module pyfim.analysis)

 	PI_over_time() (in module pyfim.analysis)

 	preference_index() (in module pyfim.analysis)

S

 	
 	stop_duration() (in module pyfim.analysis)

 	
 	stops() (in module pyfim.analysis)

T

 	
 	TwoChoiceExperiment (class in pyfim)

 _static/plus.png

_static/file.png

_static/minus.png

_images/acc_dst.png
accumulated distance

1200 -

o

1000 o
800 A
600 A
400 A
200 A

0 1 T
genotypel genotypell

_images/multi_box.png
0.25 A

0.20 A

©

=

(O]
1

head bends

0.10 A

0.05 A

0.00 A

T

genotypel genotypell

0.08 A

0.06

0.04 -

pause turns

0.02 A

0.00 A

T

genotypel genotypell

stops

0.20 A

0.15 A

0.10 A

0.05 A

0.00 A

oo @

genotypel genotypell

_static/up-pressed.png

_static/up.png

_images/param_box.png
freq [Hz]

0.175 A

(@]
0.150 - o
0.125 - 8
© (@]
0.100 - o
(@]
0.075 A S
0.050 - °
(@]
(@]
0.025 - 6

head_bends pause_turns stops

_images/tracks.png
2000 A

10b0 1500 2000

500

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_images/velocity.png
T T T T
ot S 1 e 1
22222

nav.xhtml

 Table of Contents

 		
 pyFIM

 		
 Install

 		
 Requirements

 		
 Installation

 		
 Installing from source

 		
 Introduction

 		
 Experiments and Collections

 		
 Learning by doing

 		
 A special case: Two-Choice Experiments

 		
 Reference

 		
 Built-in Analyses

 		
 Documentation

 		
 Base analyses

 		
 Two-choice analyses

 		
 Configuration

 		
 Making lasting changes

 		
 Making temporary changes

 		
 What is what

_static/comment-bright.png

_static/ajax-loader.gif

