

Welcome to PyFilesystem2’s documentation!

Contents:

	Introduction
	Installing

	Guide
	Why use PyFilesystem?

	Opening Filesystems

	Tree Printing

	Closing

	Directory Information

	Sub Directories

	Working with Files

	Walking

	Moving and Copying

	Concepts
	Paths

	System Paths

	Sandboxing

	Errors

	Resource Info
	Info Objects

	Namespaces

	Missing Namespaces

	Raw Info

	FS URLs
	Format

	URL Parameters

	Opening FS URLS

	Walking
	Walk Methods

	Search Algorithms

	Builtin Filesystems
	App Filesystems

	FTP Filesystem

	Memory Filesystem

	Mount Filesystem

	Multi Filesystem

	OS Filesystem

	Sub Filesystem

	Tar Filesystem

	Temporary Filesystem

	Zip Filesystem

	Implementing Filesystems
	Constructor

	Thread Safety

	Python Versions

	Testing Filesystems

	Essential Methods

	Non - Essential Methods

	Helper Methods

	Creating an extension
	Naming Convention

	Opener

	The setup.py file

	Good Practices

	Let us Know

	Live Example

	External Filesystems

	Reference
	fs.base.FS

	fs.compress

	fs.copy

	fs.enums

	fs.errors

	fs.info

	fs.move

	fs.mode

	fs.opener

	fs.path

	fs.permissions

	fs.tools

	fs.tree

	fs.walk

	fs.wildcard

	fs.wrap

	fs.wrapfs

Indices and tables

	Index

	Module Index

	Search Page

Introduction

PyFilesystem is a Python module that provides a common interface to any
filesystem.

Think of PyFilesystem FS objects as the next logical step to
Python’s file objects. In the same way that file objects abstract a
single file, FS objects abstract an entire filesystem.

Installing

You can install PyFilesystem with pip as follows:

pip install fs

Or to upgrade to the most recent version:

pip install fs --upgrade

Alternatively, if you would like to install from source, you can check
out the code from Github [https://github.com/PyFilesystem/pyfilesystem2].

Guide

The PyFilesytem interface simplifies most aspects of working with files and directories. This guide covers what you need to know about working with FS objects.

Why use PyFilesystem?

If you are comfortable using the Python standard library, you may be wondering; why learn another API for working with files?

The PyFilesystem API is generally simpler than the os and io modules – there are fewer edge cases and less ways to shoot yourself in the foot. This may be reason alone to use it, but there are other compelling reasons you should use import fs for even straightforward filesystem code.

The abstraction offered by FS objects means that you can write code that is agnostic to where your files are physically located. For instance, if you wrote a function that searches a directory for duplicates files, it will work unaltered with a directory on your hard-drive, or in a zip file, on an FTP server, on Amazon S3, etc.

As long as an FS object exists for your chosen filesystem (or any data store that resembles a filesystem), you can use the same API. This means that you can defer the decision regarding where you store data to later. If you decide to store configuration in the cloud, it could be a single line change and not a major refactor.

PyFilesystem can also be beneficial for unit-testing; by swapping the OS filesystem with an in-memory filesystem, you can write tests without having to manage (or mock) file IO. And you can be sure that your code will work on Linux, MacOS, and Windows.

Opening Filesystems

There are two ways you can open a filesystem. The first and most natural way is to import the appropriate filesystem class and construct it.

Here’s how you would open a OSFS (Operating System File System), which maps to the files and directories of your hard-drive:

>>> from fs.osfs import OSFS
>>> home_fs = OSFS("~/")

This constructs an FS object which manages the files and directories under a given system path. In this case, '~/', which is a shortcut for your home directory.

Here’s how you would list the files/directories in your home directory:

>>> home_fs.listdir('/')
['world domination.doc', 'paella-recipe.txt', 'jokes.txt', 'projects']

Notice that the parameter to listdir is a single forward slash, indicating that we want to list the root of the filesystem. This is because from the point of view of home_fs, the root is the directory we used to construct the OSFS.

Also note that it is a forward slash, even on Windows. This is because FS paths are in a consistent format regardless of the platform. Details such as the separator and encoding are abstracted away. See Paths for details.

Other filesystems interfaces may have other requirements for their constructor. For instance, here is how you would open a FTP filesystem:

>>> from ftpfs import FTPFS
>>> debian_fs = FTPFS('ftp.mirror.nl')
>>> debian_fs.listdir('/')
['debian-archive', 'debian-backports', 'debian', 'pub', 'robots.txt']

The second, and more general way of opening filesystems objects, is via an opener which opens a filesystem from a URL-like syntax. Here’s an alternative way of opening your home directory:

>>> from fs import open_fs
>>> home_fs = open_fs('osfs://~/')
>>> home_fs.listdir('/')
['world domination.doc', 'paella-recipe.txt', 'jokes.txt', 'projects']

The opener system is particularly useful when you want to store the physical location of your application’s files in a configuration file.

If you don’t specify the protocol in the FS URL, then PyFilesystem will assume you want a OSFS relative from the current working directory. So the following would be an equivalent way of opening your home directory:

>>> from fs import open_fs
>>> home_fs = open_fs('.')
>>> home_fs.listdir('/')
['world domination.doc', 'paella-recipe.txt', 'jokes.txt', 'projects']

Tree Printing

Calling tree() on a FS object will print an ascii tree view of your filesystem. Here’s an example:

>>> from fs import open_fs
>>> my_fs = open_fs('.')
>>> my_fs.tree()
├── locale
│ └── readme.txt
├── logic
│ ├── content.xml
│ ├── data.xml
│ ├── mountpoints.xml
│ └── readme.txt
├── lib.ini
└── readme.txt

This can be a useful debugging aid!

Closing

FS objects have a close() methd which will perform any required clean-up actions. For many filesystems (notably OSFS), the close method does very little. Other filesystems may only finalize files or release resources once close() is called.

You can call close explicitly once you are finished using a filesystem. For example:

>>> home_fs = open_fs('osfs://~/')
>>> home_fs.settext('reminder.txt', 'buy coffee')
>>> home_fs.close()

If you use FS objects as a context manager, close will be called automatically. The following is equivalent to the previous example:

>>> with open_fs('osfs://~/') as home_fs:
... home_fs.settext('reminder.txt', 'buy coffee')

Using FS objects as a context manager is recommended as it will ensure every FS is closed.

Directory Information

Filesystem objects have a listdir() method which is similar to os.listdir; it takes a path to a directory and returns a list of file names. Here’s an example:

>>> home_fs.listdir('/projects')
['fs', 'moya', 'README.md']

An alternative method exists for listing directories; scandir() returns an iterable of Resource Info objects. Here’s an example:

>>> directory = list(home_fs.scandir('/projects'))
>>> directory
[<dir 'fs'>, <dir 'moya'>, <file 'README.md'>]

Info objects have a number of advantages over just a filename. For instance you can tell if an info object references a file or a directory with the is_dir attribute, without an additional system call. Info objects may also contain information such as size, modified time, etc. if you request it in the namespaces parameter.

Note

The reason that scandir returns an iterable rather than a list, is that it can be more efficient to retrieve directory information in chunks if the directory is very large, or if the information must be retrieved over a network.

Additionally, FS objects have a filterdir() method which extends scandir with the ability to filter directory contents by wildcard(s). Here’s how you might find all the Python files in a directory:

>>> code_fs = OSFS('~/projects/src')
>>> directory = list(code_fs.filterdir('/', files=['*.py']))

By default, the resource information objects returned by scandir and listdir will contain only the file name and the is_dir flag. You can request additional information with the namespaces parameter. Here’s how you can request additional details (such as file size and file modified times):

>>> directory = code_fs.filterdir('/', files=['*.py'], namespaces=['details'])

This will add a size and modified property (and others) to the resource info objects. Which makes code such as this work:

>>> sum(info.size for info in directory)

See Resource Info for more information.

Sub Directories

PyFilesystem has no notion of a current working directory, so you won’t find a chdir method on FS objects. Fortunately you won’t miss it; working with sub-directories is a breeze with PyFilesystem.

You can always specify a directory with methods which accept a path. For instance, home_fs.listdir('/projects') would get the directory listing for the projects directory. Alternatively, you can call opendir() which returns a new FS object for the sub-directory.

For example, here’s how you could list the directory contents of a projects folder in your home directory:

>>> home_fs = open_fs('~/')
>>> projects_fs = home_fs.opendir('/projects')
>>> projects_fs.listdir('/')
['fs', 'moya', 'README.md']

When you call opendir, the FS object returns an instance of a SubFS. If you call any of the methods on a SubFS object, it will be as though you called the same method on the parent filesystem with a path relative to the sub-directory.

The makedir and makedirs methods also return SubFS objects for the newly create directory. Here’s how you might create a new directory in ~/projects and initialize it with a couple of files:

>>> home_fs = open_fs('~/')
>>> game_fs = home_fs.makedirs('projects/game')
>>> game_fs.touch('__init__.py')
>>> game_fs.settext('README.md', "Tetris clone")
>>> game_fs.listdir('/')
['__init__.py', 'README.md']

Working with SubFS objects means that you can generally avoid writing much path manipulation code, which tends to be error prone.

Working with Files

You can open a file from a FS object with open(), which is very similar to io.open in the standard library. Here’s how you might open a file called “reminder.txt” in your home directory:

>>> with open_fs('~/') as home_fs:
... with home_fs.open('reminder.txt') as reminder_file:
... print(reminder_file.read())
buy coffee

In the case of a OSFS, a standard file-like object will be returned. Other filesystems may return a different object supporting the same methods. For instance, MemoryFS will return a io.BytesIO object.

PyFilesystem also offers a number of shortcuts for common file related operations. For instance, getbytes() will return the file contents as a bytes, and gettext() will read unicode text. These methods is generally preferable to explicitly opening files, as the FS object may have an optimized implementation.

Other shortcut methods are setbin(), setbytes(), settext().

Walking

Often you will need to scan the files in a given directory, and any sub-directories. This is known as walking the filesystem.

Here’s how you would print the paths to all your Python files in your home directory:

>>> from fs import open_fs
>>> home_fs = open_fs('~/')
>>> for path in home_fs.walk.files(filter=['*.py']):
... print(path)

The walk attribute on FS objects is instance of a BoundWalker, which should be able to handle most directory walking requirements.

See Walking for more information on walking directories.

Moving and Copying

You can move and copy file contents with move() and copy() methods, and the equivalent movedir() and copydir() methods which operate on directories rather than files.

These move and copy methods are optimized where possible, and depending on the implementation, they may be more performant than reading and writing files.

To move and/or copy files between filesystems (as apposed to within the same filesystem), use the move and copy modules. The methods in these modules accept both FS objects and FS URLS. For instance, the following will compress the contents of your projects folder:

>>> from fs.copy import copy_fs
>>> copy_fs('~/projects', 'zip://projects.zip')

Which is the equivalent to this, more verbose, code:

>>> from fs.copy import copy_fs
>>> from fs.osfs import OSFS
>>> from fs.zipfs import ZipFS
>>> copy_fs(OSFS('~/projects'), ZipFS('projects.zip'))

The copy_fs() and copy_dir() functions also accept a Walker parameter, which can you use to filter the files that will be copied. For instance, if you only wanted back up your python files, you could use something like this:

>>> from fs.copy import copy_fs
>>> from fs.walk import Walker
>>> copy_fs('~/projects', 'zip://projects.zip', walker=Walker(filter=['*.py']))

Concepts

The following describes some core concepts when working with
PyFilesystem. If you are skimming this documentation, pay particular
attention to the first section on paths.

Paths

With the possible exception of the constructor, all paths in a
filesystem are PyFilesystem paths, which have the following
properties:

	Paths are str type in Python3, and unicode in Python2

	Path components are separated by a forward slash (/)

	Paths beginning with a / are absolute

	Paths not beginning with a forward slash are relative

	A single dot (.) means ‘current directory’

	A double dot (..) means ‘previous directory’

Note that paths used by the FS interface will use this format, but the
constructor may not. Notably the OSFS constructor which
requires an OS path – the format of which is platform-dependent.

Note

There are many helpful functions for working with paths in the
path module.

PyFilesystem paths are platform-independent, and will be automatically
converted to the format expected by your operating system – so you
won’t need to make any modifications to your filesystem code to make it
run on other platforms.

System Paths

Not all Python modules can use file-like objects, especially those which
interface with C libraries. For these situations you will need to
retrieve the system path. You can do this with the
getsyspath() method which converts a valid path in the
context of the FS object to an absolute path that would be understood by
your OS.

For example:

>>> from fs.osfs import OSFS
>>> home_fs = OSFS('~/')
>>> home_fs.getsyspath('test.txt')
'/home/will/test.txt'

Not all filesystems map to a system path (for example, files in a
MemoryFS will only ever exists in memory).

If you call getsyspath on a filesystem which doesn’t map to a system
path, it will raise a NoSysPath exception. If you
prefer a look before you leap approach, you can check if a resource
has a system path by calling hassyspath()

Sandboxing

FS objects are not permitted to work with any files outside of their
root. If you attempt to open a file or directory outside the
filesystem instance (with a backref such as "../foo.txt"), a
IllegalBackReference exception will be thrown. This
ensures that any code using a FS object won’t be able to read or modify
anything you didn’t intend it to, thus limiting the scope of any bugs.

Unlike your OS, there is no concept of a current working directory in
PyFilesystem. If you want to work with a sub-directory of an FS object,
you can use the opendir() method which returns another
FS object representing the contents of that sub-directory.

For example, consider the following directory structure. The directory
foo contains two sub-directories; bar and baz:

--foo
 |--bar
 | |--readme.txt
 | `--photo.jpg
 `--baz
 |--private.txt
 `--dontopen.jpg

We can open the foo directory with the following code:

from fs.osfs import OSFS
foo_fs = OSFS('foo')

The foo_fs object can work with any of the contents of bar and
baz, which may not be desirable if we are passing foo_fs to a
function that has the potential to delete files. Fortunately we can
isolate a single sub-directory with the opendir()
method:

bar_fs = foo_fs.opendir('bar')

This creates a completely new FS object that represents everything in
the foo/bar directory. The root directory of bar_fs has been re-
position, so that from bar_fs‘s point of view, the readme.txt and
photo.jpg files are in the root:

--bar
 |--readme.txt
 `--photo.jpg

Note

This sandboxing only works if your code uses the filesystem
interface exclusively. It won’t prevent code using standard OS level
file manipulation.

Errors

PyFilesystem converts errors in to a common exception hierarchy. This
ensures that error handling code can be written once, regardless of the
filesystem being used. See errors for details.

Resource Info

Resource information (or info) describes standard file details such as
name, type, size, etc., and potentially other less-common information
associated with a file or directory.

You can retrieve resource info for a single resource by calling
getinfo(), or by calling scandir()
which returns an iterator of resource information for the contents of
a directory. Additionally, filterdir() can filter the
resources in a directory by type and wildcard.

Here’s an example of retrieving file information:

>>> from fs.osfs import OSFS
>>> fs = OSFS('.')
>>> fs.settext('example.txt', 'Hello, World!')
>>> info = fs.getinfo('example.txt', namespaces=['details'])
>>> info.name
'example.txt'
>>> info.is_dir
False
>>> info.size
13

Info Objects

PyFilesystem exposes the resource information via properties of
Info objects.

Namespaces

All resource information is contained within one of a number of
potential namespaces, which are logical key/value groups.

You can specify which namespace(s) you are interested in with the
namespaces argument to getinfo(). For example, the
following retrieves the details and access namespaces for a
file:

resource_info = fs.getinfo('myfile.txt', namespaces=['details', 'access'])

In addition to the specified namespaces, the fileystem will also return
the basic namespace, which contains the name of the resource, and a
flag which indicates if the resource is a directory.

Basic Namespace

The basic namespace is always returned. It contains the following
keys:

	Name
	Type
	Description

	name
	str
	Name of the resource.

	is_dir
	bool
	A boolean that indicates if the resource
is a directory.

The keys in this namespace can generally be retrieved very quickly. In
the case of OSFS the namespace can be retrieved without
a potentially expensive system call.

Details Namespace

The details namespace contains the following keys.

	Name
	type
	Description

	accessed
	datetime
	The time the file was last accessed.

	created
	datetime
	The time the file was created.

	metadata_changed
	datetime
	The time of the last metadata (e.g.
owner, group) change.

	modified
	datetime
	The time file data was last changed.

	size
	int
	Number of bytes used to store the
resource. In the case of files,
this is the number of bytes in the
file. For directories, the size is
the overhead (in bytes) used to store
the directory entry.

	type
	ResourceType
	Resource type, one of the values
defined in ResourceType.

The time values (accessed_time, created_time etc.) may be
None if the filesystem doesn’t store that information. The size
and type keys are guaranteed to be available, although type may
be unknown if the filesystem is unable to
retrieve the resource type.

Access Namespace

The access namespace reports permission and ownership information,
and contains the following keys.

	Name
	type
	Description

	gid
	int
	The group ID.

	group
	str
	The group name.

	permissions
	Permissions
	An instance of
Permissions,
which contains the permissions for the
resource.

	uid
	int
	The user ID.

	user
	str
	The user name of the owner.

This namespace is optional, as not all filesystems have a concept of
ownership or permissions. It is supported by OSFS. Some
values may be None if the aren’t supported by the filesystem.

Stat Namespace

The stat namespace contains information reported by a call to
os.stat [https://docs.python.org/3.5/library/stat.html]. This
namespace is supported by OSFS and potentially other
filesystems which map directly to the OS filesystem. Most other
filesystems will not support this namespace.

LStat Namespace

The lstat namespace contains information reported by a call to
os.lstat [https://docs.python.org/3.5/library/stat.html]. This
namespace is supported by OSFS and potentially other
filesystems which map directly to the OS filesystem. Most other
filesystems will not support this namespace.

Link Namespace

The link namespace contains information about a symlink.

	Name
	type
	Description

	target
	str
	A path to the symlink target, or None if
this path is not a symlink.
Note, the meaning of this target is somewhat
filesystem dependent, and may not be a valid
path on the FS object.

Other Namespaces

Some filesystems may support other namespaces not covered here. See the
documentation for the specific filesystem for information on what
namespaces are supported.

You can retrieve such implementation specific resource information
with the get() method.

Note

It is not an error to request a namespace (or namespaces) that the
filesystem does not support. Any unknown namespaces will be
ignored.

Missing Namespaces

Some attributes on the Info objects require that a given namespace be
present. If you attempt to reference them without the namespace being
present (because you didn’t request it, or the filesystem doesn’t
support it) then a MissingInfoNamespace exception
will be thrown. Here’s how you might handle such exceptions:

try:
 print('user is {}'.format(info.user))
except errors.MissingInfoNamespace:
 # No 'access' namespace
 pass

If you prefer a look before you leap approach, you can use use the
has_namespace() method. Here’s an example:

if info.has_namespace('access'):
 print('user is {}'.format(info.user))

See Info for details regarding info attributes.

Raw Info

The Info class is a wrapper around a simple data
structure containing the raw info. You can access this raw info with
the info.raw property.

Note

The following is probably only of interest if you intend to
implement a filesystem yourself.

Raw info data consists of a dictionary that maps the namespace name on
to a dictionary of information. Here’s an example:

{
 'access': {
 'group': 'staff',
 'permissions': ['g_r', 'o_r', 'u_r', 'u_w'],
 'user': 'will'
 },
 'basic': {
 'is_dir': False,
 'name': 'README.txt'
 },
 'details': {
 'accessed': 1474979730.0,
 'created': 1462266356.0,
 'metadata_changed': 1473071537.0,
 'modified': 1462266356.0,
 'size': 79,
 'type': 2
 }
}

Raw resource information contains basic types only (strings, numbers,
lists, dict, None). This makes the resource information simple to
send over a network as it can be trivially serialized as JSON or other
data format.

Because of this requirement, times are stored as
epoch times [https://en.wikipedia.org/wiki/Unix_time]. The Info object
will convert these to datetime objects from the standard library.
Additionally, the Info object will convert permissions from a list of
strings in to a Permissions objects.

FS URLs

PyFilesystem can open a filesystem via an FS URL, which is similar to a URL you might enter in to a browser. FS URLs are useful if you want to specify a filesystem dynamically, such as in a conf file or from the command line.

Format

FS URLs are formatted in the following way:

<protocol>://<username>:<password>@<resource>

The components are as follows:

	<protocol> Identifies the type of filesystem to create. e.g. osfs, ftp.

	<username> Optional username.

	<password> Optional password.

	<resource> A resource, which may be a domain, path, or both.

Here are a few examples:

osfs://~/projects
osfs://c://system32
ftp://ftp.example.org/pub
mem://
ftp://will:daffodil@ftp.example.org/private

If <type> is not specified then it is assumed to be an OSFS, i.e. the following FS URLs are equivalent:

osfs://~/projects
~/projects

Note

The username and passwords fields may not contain a colon (:) or an @ symbol. If you need these symbols they may be percent encoded [https://en.wikipedia.org/wiki/Percent-encoding].

URL Parameters

FS URLs may also be appended with a ? symbol followed by a url-encoded query string. For example:

myprotocol://example.org?key1=value1&key2

The query string would be decoded as {"key1": "value1", "key2": ""}.

Query strings are used to provide additional filesystem-specific information used when opening. See the filesystem documentation for information on what query string parameters are supported.

Opening FS URLS

To open a filesysem with a FS URL, you can use open_fs(), which may be imported and used as follows:

from fs import open_fs
projects_fs = open_fs('osfs://~/projects')

Walking

Walking a filesystem means recursively visiting a directory and any sub-directories. It is a fairly common requirement for copying, searching etc.

To walk a filesystem (or directory) you can construct a Walker object and use its methods to do the walking. Here’s an example that prints the path to every Python file in your projects directory:

>>> from fs import open_fs
>>> from fs.walk import Walker
>>> home_fs = open_fs('~/projects')
>>> walker = Walker(filter=['*.py'])
>>> for path in walker.files(home_fs):
... print(path)

Generally speaking, however, you will only need to construct a Walker object if you want to customize some behavior of the walking algorithm. This is because you can access the functionality of a Walker object via the walk attribute on FS objects. Here’s an example:

>>> from fs import open_fs
>>> home_fs = open_fs('~/projects')
>>> for path in home_fs.walk.files(filter=['*.py']):
... print(path)

Note that the files method above doesn’t require a fs parameter. This is because the walk attribute is a property which returns a BoundWalker object, which associates the filesystem with a walker.

Walk Methods

If you call the walk attribute on a BoundWalker it will return an iterable of Step named tuples with three values; a path to the directory, a list of Info objects for directories, and a list of Info objects for the files. Here’s an example:

for step in home_fs.walk(filter=['*.py']):
 print('In dir {}'.format(step.path))
 print('sub-directories: {!r}'.format(step.dirs))
 print('files: {!r}'.format(step.files))

Note

Methods of BoundWalker invoke a corresponding method on a Walker object, with the bound filesystem.

The walk attribute may appear to be a method, but is in fact a callable object. It supports other convenient methods that supply different information from the walk. For instance, files(), which returns an iterable of file paths. Here’s an example:

for path in home_fs.walk.files(filter=['*.py']):
 print('Python file: {}'.format(path))

The compliment to files is dirs() which returns paths to just the directories (and ignoring the files). Here’s an example:

for dir_path in home_fs.walk.dirs():
 print("{!r} contains sub-directory {}".format(home_fs, dir_path))

The info() method returns a generator of tuples containing a path and an Info object. You can use the is_dir attribute to know if the path refers to a directory or file. Here’s an example:

for path, info in home_fs.walk.info():
 if info.is_dir:
 print("[dir] {}".format(path))
 else:
 print("[file] {}".format(path))

Finally, here’s a nice example that counts the number of bytes of Python code in your home directory:

bytes_of_python = sum(
 info.size
 for info in home_fs.walk.info(namespaces=['details'])
 if not info.is_dir
)

Search Algorithms

There are two general algorithms for searching a directory tree. The first method is “breadth”, which yields resources in the top of the directory tree first, before moving on to sub-directories. The second is “depth” which yields the most deeply nested resources, and works backwards to the top-most directory.

Generally speaking, you will only need the a depth search if you will be deleting resources as you walk through them. The default breadth search is a generally more efficient way of looking through a filesystem. You can specify which method you want with the search parameter on most Walker methods.

Builtin Filesystems

	App Filesystems

	FTP Filesystem

	Memory Filesystem

	Mount Filesystem

	Multi Filesystem

	OS Filesystem

	Sub Filesystem

	Tar Filesystem

	Temporary Filesystem

	Zip Filesystem

App Filesystems

Filesystems for platform-specific application directories.

A collection of filesystems that map to application specific locations
defined by the OS.

These classes abstract away the different requirements for user data
across platforms, which vary in their conventions. They are all
subclasses of OSFS.

	
class fs.appfs.UserDataFS(appname, author=None, version=None, roaming=False, create=True)

	A filesystem for per-user application data.

May also be opened with
open_fs('userdata://appname:author:version').

	Parameters:	
	appname (str) – The name of the application.

	author (str) – The name of the author (used on Windows).

	version (str) – Optional version string, if a unique location
per version of the application is required.

	roaming (bool) – If True, use a roaming profile on
Windows.

	create (bool) – If True (the default) the directory will
be created if it does not exist.

	
class fs.appfs.UserConfigFS(appname, author=None, version=None, roaming=False, create=True)

	A filesystem for per-user config data.

May also be opened with
open_fs('userconf://appname:author:version').

	Parameters:	
	appname (str) – The name of the application.

	author (str) – The name of the author (used on Windows).

	version (str) – Optional version string, if a unique location
per version of the application is required.

	roaming (bool) – If True, use a roaming profile on
Windows.

	create (bool) – If True (the default) the directory will
be created if it does not exist.

	
class fs.appfs.SiteDataFS(appname, author=None, version=None, roaming=False, create=True)

	A filesystem for application site data.

May also be opened with
open_fs('sitedata://appname:author:version').

	Parameters:	
	appname (str) – The name of the application.

	author (str) – The name of the author (used on Windows).

	version (str) – Optional version string, if a unique location
per version of the application is required.

	roaming (bool) – If True, use a roaming profile on
Windows.

	create (bool) – If True (the default) the directory will
be created if it does not exist.

	
class fs.appfs.SiteConfigFS(appname, author=None, version=None, roaming=False, create=True)

	A filesystem for application config data.

May also be opened with
open_fs('siteconf://appname:author:version').

	Parameters:	
	appname (str) – The name of the application.

	author (str) – The name of the author (used on Windows).

	version (str) – Optional version string, if a unique location
per version of the application is required.

	roaming (bool) – If True, use a roaming profile on
Windows.

	create (bool) – If True (the default) the directory will
be created if it does not exist.

	
class fs.appfs.UserCacheFS(appname, author=None, version=None, roaming=False, create=True)

	A filesystem for per-user application cache data.

May also be opened with
open_fs('usercache://appname:author:version').

	Parameters:	
	appname (str) – The name of the application.

	author (str) – The name of the author (used on Windows).

	version (str) – Optional version string, if a unique location
per version of the application is required.

	roaming (bool) – If True, use a roaming profile on
Windows.

	create (bool) – If True (the default) the directory will
be created if it does not exist.

	
class fs.appfs.UserLogFS(appname, author=None, version=None, roaming=False, create=True)

	A filesystem for per-user application log data.

May also be opened with
open_fs('userlog://appname:author:version').

	Parameters:	
	appname (str) – The name of the application.

	author (str) – The name of the author (used on Windows).

	version (str) – Optional version string, if a unique location
per version of the application is required.

	roaming (bool) – If True, use a roaming profile on
Windows.

	create (bool) – If True (the default) the directory will
be created if it does not exist.

FTP Filesystem

Manage resources on a FTP server.

	
class fs.ftpfs.FTPFS(host, user=u'anonymous', passwd=u'', acct=u'', timeout=10, port=21)

	A FTP (File Transport Protocol) Filesystem.

	Parameters:	
	host (str) – A FTP host, e.g. 'ftp.mirror.nl'.

	user (str) – A username (default is 'anonymous')

	passwd – Password for the server, or None for anon.

	acct – FTP account.

	timeout (int) – Timeout for contacting server (in seconds).

	port (int) – Port number (default 21).

	
features

	Get features dict from FTP server.

Memory Filesystem

Create and manage an in-memory filesystems.

	
class fs.memoryfs.MemoryFS

	A filesystem that stores all file and directory information in
memory. This makes them very fast, but non-permanent.

Memory filesystems are useful for caches, temporary data stores,
unit testing, etc.

Memory filesystems require no parameters to their constructor. The
following is how you would create a MemoryFS instance:

mem_fs = MemoryFS()

Mount Filesystem

A Mount FS is a virtual filesystem which can seamlessly map
sub-directories on to other filesystems.

For example, lets say we have two filesystems containing config files
and resources respectively:

[config_fs]
|-- config.cfg
`-- defaults.cfg

[resources_fs]
|-- images
| |-- logo.jpg
| `-- photo.jpg
`-- data.dat

We can combine these filesystems in to a single filesystem with the
following code:

from fs.mountfs import MountFS
combined_fs = MountFS()
combined_fs.mount('config', config_fs)
combined_fs.mount('resources', resources_fs)

This will create a filesystem where paths under config/ map to
config_fs, and paths under resources/ map to resources_fs:

[combined_fs]
|-- config
| |-- config.cfg
| `-- defaults.cfg
`-- resources
 |-- images
 | |-- logo.jpg
 | `-- photo.jpg
 `-- data.dat

Now both filesystems may be accessed with the same path structure:

print(combined_fs.gettext('/config/defaults.cfg'))
read_jpg(combined_fs.open('/resources/images/logo.jpg', 'rb')

	
exception fs.mountfs.MountError

	Thrown when mounts conflict.

	
class fs.mountfs.MountFS(auto_close=True)

	A virtual filesystem that maps directories on to other file-systems.

	Parameters:	auto_close (bool) – If True, the child filesystems will be closed
when the MountFS is closed.

	
mount(path, fs)

	Mounts a host FS object on a given path.

	Parameters:	
	path (str) – A path within the MountFS.

	fs (FS) – A filesystem object or FS URL to mount.

Multi Filesystem

A MultiFS is a filesystem composed of a sequence of other filesystems,
where the directory structure of each overlays the previous filesystem
in the sequence.

One use for such a filesystem would be to selectively override a set of
files, to customize behavior. For example, to create a filesystem that
could be used to theme a web application. We start with the following
directories:

`-- templates
 |-- snippets
 | `-- panel.html
 |-- index.html
 |-- profile.html
 `-- base.html

`-- theme
 |-- snippets
 | |-- widget.html
 | `-- extra.html
 |-- index.html
 `-- theme.html

And we want to create a single filesystem that will load a file from
templates/ only if it isn’t found in theme/. Here’s how we could
do that:

from fs.osfs import OSFS
from fs.multifs import MultiFS

theme_fs = MultiFS()
theme_fs.add_fs('templates', OSFS('templates'))
theme_fs.add_fs('theme', OSFS('theme'))

Now we have a theme_fs filesystem that presents a single view of both
directories:

|-- snippets
| |-- panel.html
| |-- widget.html
| `-- extra.html
|-- index.html
|-- profile.html
|-- base.html
`-- theme.html

	
class fs.multifs.MultiFS(auto_close=True)

	A filesystem that delegates to a sequence of other filesystems.

Operations on the MultiFS will try each ‘child’ filesystem in order,
until it succeeds. In effect, creating a filesystem that combines
the files and dirs of its children.

	
add_fs(name, fs, write=False, priority=0)

	Adds a filesystem to the MultiFS.

	Parameters:	
	name (str) – A unique name to refer to the filesystem being
added.

	fs (Filesystem or FS URL.) – The filesystem to add.

	write (bool) – If this value is True, then the fs will be
used as the writeable FS.

	priority (int) – An integer that denotes the priority of the
filesystem being added. Filesystems will be searched in
descending priority order and then by the reverse order they
were added. So by default, the most recently added
filesystem will be looked at first.

	
get_fs(name)

	Get a filesystem from its name.

	Parameters:	name (str) – The name of a filesystem previously added.

	
iterate_fs()

	Get iterator that returns (name, fs) in priority order.

	
which(path, mode=u'r')

	Get a tuple of (name, filesystem) that the given path would map
to.

	Parameters:	
	path (str) – A path on the filesystem.

	mode (str) – A open mode.

OS Filesystem

Manage the filesystem provided by your OS.

In essence an OSFS is a thin layer over the io and os modules in the Python library.

	
class fs.osfs.OSFS(root_path, create=False, create_mode=511)

	Create an OSFS.

	Parameters:	
	root_path (str or path-like) – An OS path or path-like object to the location on
your HD you wish to manage.

	create (bool) – Set to True to create the root directory if it
does not already exist, otherwise the directory should exist
prior to creating the OSFS instance.

	create_mode (int) – The permissions that will be used to create
the directory if create is True and the path doesn’t exist,
defaults to 0o777.

	Raises:	fs.errors.CreateFailed – If root_path does not
exists, or could not be created.

Here are some examples of creating OSFS objects:

current_directory_fs = OSFS('.')
home_fs = OSFS('~/')
windows_system32_fs = OSFS('c://system32')

Sub Filesystem

A SubFS represents a directory in a ‘parent’ filesystem.

	
class fs.subfs.ClosingSubFS(parent_fs, path)

	A version of SubFS which will close its parent automatically.

	
class fs.subfs.SubFS(parent_fs, path)

	A sub-directory on another filesystem.

A SubFS is a filesystem object that maps to a sub-directory of
another filesystem. This is the object that is returned by
opendir().

Tar Filesystem

A filesystem implementation for .tar files.

	
class fs.tarfs.ReadTarFS(file, encoding=u'utf-8')

	A readable tar file.

	
class fs.tarfs.TarFS(wrap_fs)

	Read and write tar files.

There are two ways to open a TarFS for the use cases of reading
a tar file, and creating a new one.

If you open the TarFS with write set to False (the
default), then the filesystem will be a read only filesystem which
maps to the files and directories within the tar file. Files are
decompressed on the fly when you open them.

Here’s how you might extract and print a readme from a tar file:

with TarFS('foo.tar.gz') as tar_fs:
 readme = tar_fs.gettext('readme.txt')

If you open the TarFS with write set to True, then the TarFS
will be a empty temporary filesystem. Any files / directories you
create in the TarFS will be written in to a tar file when the TarFS
is closed. The compression is set from the new file name but may be
set manually with the compression argument.

Here’s how you might write a new tar file containing a readme.txt
file:

with TarFS('foo.tar.xz', write=True) as new_tar:
 new_tar.settext(
 'readme.txt',
 'This tar file was written by PyFilesystem'
)

	Parameters:	
	file (str or file) – An OS filename, or a open file object.

	write (bool) – Set to True to write a new tar file, or False
to read an existing tar file.

	compression (str) – Compression to use (one of the formats
supported by tarfile: xz, gz, bz2, or None).

	temp_fs (str) – An opener string for the temporary filesystem
used to store data prior to tarring.

	
class fs.tarfs.WriteTarFS(file, compression=None, encoding=u'utf-8', temp_fs=u'temp://__tartemp__')

	A writable tar file.

	
write_tar(file=None, compression=None, encoding=None)

	Write tar to a file.

Note

This is called automatically when the TarFS is closed.

	Parameters:	
	file (str or file-like) – Destination file, may be a file name or an open
file object.

	compression – Compression to use (one of the constants
defined in the tarfile module in the stdlib).

Temporary Filesystem

A temporary filesytem is stored in a location defined by your OS (/tmp on linux). The contents are deleted when the filesystem is closed.

A TempFS is a good way of preparing a directory structure in advance, that you can later copy. It can also be used as a temporary data store.

	
class fs.tempfs.TempFS(identifier=None, temp_dir=None, auto_clean=True, ignore_clean_errors=True)

	Create a temporary filesystem.

	Parameters:	
	identifier (str) – A string to distinguish the directory within
the OS temp location, used as part of the directory name.

	temp_dir (str) – An OS path to your temp directory (leave as
None to auto-detect)

	auto_clean (bool) – If True, the directory contents will be
wiped on close.

	ignore_clean_errors (bool) – If True, any errors in the clean
process will be raised. If False, they will be suppressed.

	
clean()

	Clean (delete) temporary files created by this filesystem.

Zip Filesystem

A filesystem implementation for .zip files.

	
class fs.zipfs.ReadZipFS(file, encoding=u'utf-8')

	A readable zip file.

	
class fs.zipfs.WriteZipFS(file, compression=8, encoding=u'utf-8', temp_fs=u'temp://__ziptemp__')

	A writable zip file.

	
write_zip(file=None, compression=None, encoding=None)

	Write zip to a file.

Note

This is called automatically when the ZipFS is closed.

	Parameters:	
	file (str or file-like) – Destination file, may be a file name or an open
file object.

	compression – Compression to use (one of the constants
defined in the zipfile module in the stdlib).

	
class fs.zipfs.ZipFS(wrap_fs)

	Read and write zip files.

There are two ways to open a ZipFS for the use cases of reading
a zip file, and creating a new one.

If you open the ZipFS with write set to False (the
default), then the filesystem will be a read only filesystem which
maps to the files and directories within the zip file. Files are
decompressed on the fly when you open them.

Here’s how you might extract and print a readme from a zip file:

with ZipFS('foo.zip') as zip_fs:
 readme = zip_fs.gettext('readme.txt')

If you open the ZipFS with write set to True, then the ZipFS
will be a empty temporary filesystem. Any files / directories you
create in the ZipFS will be written in to a zip file when the ZipFS
is closed.

Here’s how you might write a new zip file containing a readme.txt
file:

with ZipFS('foo.zip', write=True) as new_zip:
 new_zip.settext(
 'readme.txt',
 'This zip file was written by PyFilesystem'
)

	Parameters:	
	file (str or file) – An OS filename, or a open file object.

	write (bool) – Set to True to write a new zip file, or False
to read an existing zip file.

	compression (int) – Compression to use (one of the constants
defined in the zipfile module in the stdlib).

	temp_fs (str) – An opener string for the temporary filesystem
used to store data prior to zipping.

Implementing Filesystems

With a little care, you can implement a PyFilesystem interface for any filesystem, which will allow it to work interchangeably with any of the built-in FS classes and tools.

To create a PyFilesystem interface, derive a class from FS and implement the Essential Methods. This should give you a working FS class.

Take care to copy the method signatures exactly, including default values. It is also essential that you follow the same logic with regards to exceptions, and only raise exceptions in errors.

Constructor

There are no particular requirements regarding how a PyFilesystem class is constructed, but be sure to call the base class __init__ method with no parameters.

Thread Safety

All Filesystems should be thread-safe. The simplest way to achieve that is by using the _lock attribute supplied by the FS constructor. This is a RLock object from the standard library, which you can use as a context manager, so methods you implement will start something like this:

with self._lock:
 do_something()

You aren’t required to use _lock. Just as long as calling methods on the FS object from multiple threads doesn’t break anything.

Python Versions

PyFilesystem supports Python2.7 and Python3.X. The differences between the two major Python versions are largely managed by the six library.

You aren’t obligated to support the same versions of Python that PyFilesystem itself supports, but it is recommended if your project is for general use.

Testing Filesystems

To test your implementation, you can borrow the test suite used to test the built in filesystems. If your code passes these tests, then you can be confident your implementation will work seamlessly.

Here’s the simplest possible example to test a filesystem class called MyFS:

from fs.test import FSTestCases

class TestMyFS(FSTestCases):

 def make_fs(self):
 # Return an instance of your FS object here
 return MyFS()

You may also want to override some of the methods in the test suite for more targeted testing:

	
class fs.test.FSTestCases

	Basic FS tests.

	
assert_bytes(path, contents)

	Assert a file contains the given bytes.

	Parameters:	
	path (str) – A path on the filesystem.

	contents (bytes) – Bytes to compare.

	
assert_exists(path)

	Assert a path exists.

	Parameters:	path (str) – A path on the filesystem.

	
assert_isdir(path)

	Assert a path is a directory.

	Parameters:	path (str) – A path on the filesystem.

	
assert_isfile(path)

	Assert a path is a file.

	Parameters:	path (str) – A path on the filesystem.

	
assert_not_exists(path)

	Assert a path does not exist.

	Parameters:	path (str) – A path on the filesystem.

	
assert_text(path, contents)

	Assert a file contains the given text.

	Parameters:	
	path (str) – A path on the filesystem.

	contents (str) – Text to compare.

	
destroy_fs(fs)

	Destroy a FS object.

	Parameters:	fs – A FS instance previously opened by
~fs.test.FSTestCases.make_fs.

	
make_fs()

	Return an FS instance.

	
test_geturl_purpose()

	Check an unknown purpose raises a NoURL error

Essential Methods

The following methods MUST be implemented in a PyFilesystem interface.

	getinfo() Get info regarding a file or directory.

	listdir() Get a list of resources in a directory.

	makedir() Make a directory.

	openbin() Open a binary file.

	remove() Remove a file.

	removedir() Remove a directory.

	setinfo() Set resource information.

Non - Essential Methods

The following methods MAY be implemented in a PyFilesystem interface.

These methods have a default implementation in the base class, but may be overridden if you can supply a more optimal version.

Exactly which methods you should implement depends on how and where the data is stored. For network filesystems, a good candidate to implement, is the scandir method which would otherwise call a combination of listdir and getinfo for each file.

In the general case, it is a good idea to look at how these methods are implemented in FS, and only write a custom version if it would be more efficient than the default.

	appendbytes()

	appendtext()

	close()

	copy()

	copydir()

	create()

	desc()

	exists()

	filterdir()

	getbytes()

	gettext()

	getmeta()

	getsize()

	getsyspath()

	gettype()

	geturl()

	hassyspath()

	hasurl()

	isclosed()

	isempty()

	isfile()

	lock()

	movedir()

	makedirs()

	move()

	open()

	opendir()

	removetree()

	scandir()

	setbytes()

	setbin()

	setfile()

	settimes()

	settext()

	touch()

	validatepath()

Helper Methods

These methods SHOULD NOT be implemented.

Implementing these is highly unlikely to be worthwhile.

	getbasic()

	getdetails()

	check()

	match()

	tree()

Creating an extension

Once a filesystem has been implemented, it can be integrated with other
applications and projects using PyFilesystem.

Naming Convention

For visibility in PyPi, we recommend that your package be prefixed with
fs-. For instance if you have implemented an AwesomeFS
PyFilesystem class, your packaged could be be named fs-awesome or
fs-awesomefs.

Opener

In order for your filesystem to be opened with an FS URL
you should define an Opener class.

Here’s an example taken from an Amazon S3 Filesystem:

"""Defines the S3FSOpener."""

__all__ = ['S3FSOpener']

from fs.opener import Opener, OpenerError

from ._s3fs import S3FS

class S3FSOpener(Opener):
 protocols = ['s3']

 def open_fs(self, fs_url, parse_result, writeable, create, cwd):
 bucket_name, _, dir_path = parse_result.resource.partition('/')
 if not bucket_name:
 raise OpenerError(
 "invalid bucket name in '{}'".format(fs_url)
)
 s3fs = S3FS(
 bucket_name,
 dir_path=dir_path or '/',
 aws_access_key_id=parse_result.username or None,
 aws_secret_access_key=parse_result.password or None,
)
 return s3fs

By convention this would be defined in opener.py.

To register the opener you will need to define an entry point [http://setuptools.readthedocs.io/en/latest/setuptools.html?highlight=entry%20points#dynamic-discovery-of-services-and-plugins]
in your setup.py. See below for an example.

The setup.py file

Refer to the setuptools documentation [https://setuptools.readthedocs.io/]
to see how to write a setup.py file. There are only a few things that
should be kept in mind when creating a Pyfilesystem2 extension. Make sure that:

	fs is in the install_requires list. You should reference the
version number with the ~= operator which ensures that the install
will get any bugfix releases of PyFilesystem but not any potentially
breaking changes.

	Ìf you created an opener, include it as an fs.opener entry point,
using the name of the entry point as the protocol to be used.

Here is an minimal setup.py for our project:

from setuptools import setup
setup(
 name='fs-awesomefs', # Name in PyPi
 author="You !",
 author_email="your.email@domain.ext",
 description="An awesome filesystem for pyfilesystem2 !",
 install_requires=[
 "fs~=2.0.5"
],
 entry_points = {
 'fs.opener': [
 'awe = awesomefs.opener:AwesomeFSOpener',
]
 },
 license="MY LICENSE",
 packages=['awesomefs'],
 version="X.Y.Z",
)

Good Practices

Keep track of your achievements! Add the following values to your __init__.py:

	__version__ The version of the extension (we recommend following
Semantic Versioning [http://semver.org/]),

	__author__ Your name(s).

	__author_email__ Your email(s).

	__license__ The module’s license.

Let us Know

Contact us to add your filesystem to the PyFilesystem Wiki [https://www.pyfilesystem.org/page/index-of-filesystems/].

Live Example

See fs.sshfs [https://github.com/althonos/fs.sshfs] for a functioning
PyFilesystem2 extension implementing a Pyfilesystem2 filesystem over
SSH.

External Filesystems

See the following wiki page for a list of filesystems not in the core library, and community contributed filesystems.

https://www.pyfilesystem.org/page/index-of-filesystems/

If you have developed a filesystem that you would like added to the above page, please let us know by opening a Github issue [https://github.com/pyfilesystem/pyfilesystem2/issues].

Reference

	fs.base.FS

	fs.compress

	fs.copy

	fs.enums

	fs.errors

	fs.info

	fs.move

	fs.mode

	fs.opener
	fs.opener.base

	fs.opener.parse

	fs.opener.registry

	fs.opener.errors

	fs.path

	fs.permissions

	fs.tools

	fs.tree

	fs.walk

	fs.wildcard

	fs.wrap
	fs.wrap

	fs.wrapfs

fs.base.FS

The filesystem base class is common to all filesystems. If you
familiarize yourself with this (rather straightforward) API, you can
work with any of the supported filesystems.

	
class fs.base.FS

	Base class for FS objects.

	
appendbytes(path, data)

	Append bytes to the end of a file. Creating the file if it
doesn’t already exists.

	Parameters:	
	path (str) – Path to a file.

	data (bytes) – Bytes to append.

	Raises:	
	ValueError – if data is not bytes.

	fs.errors.ResourceNotFound – if a parent directory of
path does not exist.

	
appendtext(path, text, encoding=u'utf-8', errors=None, newline=u'')

	Append text to a file. Creating the file if it doesn’t already
exists.

	Parameters:	
	path (str) – Path to a file.

	text (str) – Text to append.

	Raises:	
	ValueError – if text is not bytes.

	fs.errors.ResourceNotFound – if a parent directory of
path does not exist.

	
check()

	Check a filesystem may be used.

Will throw a FilesystemClosed if the
filesystem is closed.

	Returns:	None

	Raises:	fs.errors.FilesystemClosed – if the filesystem
is closed.

	
close()

	Close the filesystem and release any resources.

It is important to call this method when you have finished
working with the filesystem. Some filesystems may not finalize
changes until they are closed (archives for example). You may
call this method explicitly (it is safe to call close multiple
times), or you can use the filesystem as a context manager to
automatically close.

Here’s an example of automatically closing a filesystem:

with OSFS('~/Desktop') as desktop_fs:
 desktop_fs.settext(
 'note.txt',
 "Don't forget to tape Game of Thrones"
)

If you attempt to use a filesystem that has been closed, a
FilesystemClosed exception will be thrown.

	
copy(src_path, dst_path, overwrite=False)

	Copy file contents from src_path to dst_path.

	Parameters:	
	src_path (str) – Path of source file.

	dst_path (str) – Path to destination file.

	Raises:	
	fs.errors.DestinationExists – If dst_path exists,
and overwrite == False.

	fs.errors.ResourceNotFound – If a parent directory of
dst_path does not exist.

	
copydir(src_path, dst_path, create=False)

	Copy the contents of src_path to dst_path.

	Parameters:	
	src_path (str) – Source directory.

	dst_path (str) – Destination directory.

	create (bool) – If True then src_path will be
created if it doesn’t already exist.

	Raises:	fs.errors.ResourceNotFound – If the destination
directory does not exist, and create is not True.

	
create(path, wipe=False)

	Create an empty file.

	Parameters:	
	path (str) – Path to new file in filesystem.

	wipe (bool) – Truncate any existing file to 0 bytes.

	Returns:	True if file was created, False if it already
existed.

	Return type:	bool

The default behavior is to create a new file if one doesn’t
already exist. If wipe == True an existing file will be
truncated.

	
desc(path)

	Return a short descriptive text regarding a path.

	Parameters:	path (str) – A path to a resource on the filesystem.

	Return type:	str

	
exists(path)

	Check if a path maps to a resource.

	Parameters:	path (str) – Path to a resource

	Return type:	bool

A path exists if it maps to any resource (including
a directory).

	
filterdir(path, files=None, dirs=None, exclude_dirs=None, exclude_files=None, namespaces=None, page=None)

	Get an iterator of resource info, filtered by file patterns.

	Parameters:	
	path (str) – A path to a directory on the filesystem.

	files (list) – A list of unix shell-style patterns to filter
file names, e.g. ['*.py'].

	dirs (list) – A list of unix shell-style wildcards to
filter directory names.

	exclude_dirs (list) – An optional list of patterns used to
exclude directories

	exclude_files (list) – An optional list of patterns used to
exclude files.

	namespaces (list) – A list of namespaces to include in
the resource information.

	page (tuple or None) – May be a tuple of (<start>, <end>) indexes to
return an iterator of a subset of the resource info, or
None to iterate over the entire directory. Paging a
directory scan may be necessary for very large directories.

	Returns:	An iterator of Info objects.

	Return type:	iterator

This method enhances scandir() with additional
filtering functionality.

	
getbasic(path)

	Get the basic resource info.

	Parameters:	path (str) – A path on the filesystem.

	Returns:	Resource information object for path.

	Return type:	Info

This method is shorthand for the following:

fs.getinfo(path, namespaces=['basic'])

	
getbytes(path)

	Get the contents of a file as bytes.

	Parameters:	path (str) – A path to a readable file on the filesystem.

	Returns:	file contents

	Return type:	bytes

	Raises:	fs.errors.ResourceNotFound – If path does not
exist.

	
getdetails(path)

	Get the details resource info.

	Parameters:	path (str) – A path on the filesystem.

	Returns:	Resource information object for path.

	Return type:	Info

This method is shorthand for the following:

fs.getinfo(path, namespaces=['details'])

	
getinfo(path, namespaces=None)

	Get information regarding a resource (file or directory) on a
filesystem.

	Parameters:	
	path (str) – A path to a resource on the filesystem.

	namespaces (list or None) – Info namespaces to query (defaults to
‘basic’).

	Returns:	Resource information object.

	Return type:	Info

For more information regarding resource information see
Resource Info.

	
getmeta(namespace=u'standard')

	Get meta information regarding a filesystem.

	Parameters:	
	keys (list or None) – A list of keys to retrieve, or None for all keys.

	namespace (str) – The meta namespace (default is
“standard”).

	Return type:	dict

Meta information is associated with a namespace which may be
specified with the namespace parameter. The default namespace,
"standard", contains common information regarding the
filesystem’s capabilities. Some filesystems may provide other
namespaces which expose less common or implementation specific
information. If a requested namespace is not supported by
a filesystem, then an empty dictionary will be returned.

The "standard" namespace supports the following keys:

	key
	Description

	case_insensitive
	True if this filesystem is case insensitive.

	invalid_path_chars
	A string containing the characters that may
may not be used on this filesystem.

	max_path_length
	Maximum number of characters permitted in a
path, or None for no limit.

	max_sys_path_length
	Maximum number of characters permitted in
a sys path, or None for no limit.

	network
	True if this filesystem requires a network.

	read_only
	True if this filesystem is read only.

	supports_rename
	True if this filesystem supports an
os.rename operation.

Most builtin filesystems will provide all these keys, and third-
party filesystems should do so whenever possible, but a key may
not be present if there is no way to know the value.

Note

Meta information is constant for the lifetime of the
filesystem, and may be cached.

	
getsize(path)

	Get the size (in bytes) of a resource.

	Parameters:	path (str) – A path to a resource.

	Return type:	int

The size of a file is the total number of readable bytes,
which may not reflect the exact number of bytes of reserved
disk space (or other storage medium).

The size of a directory is the number of bytes of overhead
use to store the directory entry.

	
getsyspath(path)

	Get an system path to a resource.

	Parameters:	path (str) – A path on the filesystem.

	Return type:	str

	Raises:	fs.errors.NoSysPath – If there is no corresponding system path.

A system path is one recognized by the OS, that may be used
outside of PyFilesystem (in an application or a shell for
example). This method will get the corresponding system path
that would be referenced by path.

Not all filesystems have associated system paths. Network and
memory based filesystems, for example, may not physically store
data anywhere the OS knows about. It is also possible for some
paths to have a system path, whereas others don’t.

If path doesn’t have a system path,
a NoSysPath exception will be thrown.

Note

A filesystem may return a system path even if no
resource is referenced by that path – as long as it can
be certain what that system path would be.

	
gettext(path, encoding=None, errors=None, newline=u'')

	Get the contents of a file as a string.

	Parameters:	
	path (str) – A path to a readable file on the filesystem.

	encoding (str) – Encoding to use when reading contents in
text mode.

	errors (str) – Unicode errors parameter.

	newline (str) – Newlines parameter.

	Returns:	file contents.

	Raises:	fs.errors.ResourceNotFound – If path does not
exist.

	
gettype(path)

	Get the type of a resource.

	Parameters:	path – A path in the filesystem.

	Returns:	ResourceType

A type of a resource is an integer that identifies the what
the resource references. The standard type integers may be one
of the values in the ResourceType enumerations.

The most common resource types, supported by virtually all
filesystems are directory (1) and file (2), but the
following types are also possible:

	ResourceType
	value

	unknown
	0

	directory
	1

	file
	2

	character
	3

	block_special_file
	4

	fifo
	5

	socket
	6

	symlink
	7

Standard resource types are positive integers, negative values
are reserved for implementation specific resource types.

	
geturl(path, purpose=u'download')

	Get a URL to the given resource.

	Parameters:	
	path (str) – A path on the filesystem

	purpose (str) – A short string that indicates which URL to
retrieve for the given path (if there is more than one). The
default is ‘download’, which should return a URL that
serves the file. Other filesystems may support other values
for purpose.

	Returns:	A URL.

	Return type:	str

	Raises:	fs.errors.NoURL – If the path does not map to a URL.

	
hassyspath(path)

	Check if a path maps to a system path.

	Parameters:	path (str) – A path on the filesystem

	Return type:	bool

	
hasurl(path, purpose=u'download')

	Check if a path has a corresponding URL.

	Parameters:	
	path (str) – A path on the filesystem

	purpose (str) – A purpose parameter, as given in
geturl().

	Return type:	bool

	
isclosed()

	Check if the filesystem is closed.

	
isdir(path)

	Check a path exists and is a directory.

	
isempty(path)

	Check if a directory is empty (contains no files or
directories).

	Parameters:	path (str) – A directory path.

	Return type:	bool

	
isfile(path)

	Check a path exists and is a file.

	
islink(path)

	Check if a path is a symlink.

	Parameters:	path (str) – A path on the filesystem.

	Return type:	bool

	
listdir(path)

	Get a list of the resource names in a directory.

	Parameters:	path (str) – A path to a directory on the filesystem.

	Returns:	list of names, relative to path.

	Return type:	list

	Raises:	
	fs.errors.DirectoryExpected – If path is not a
directory.

	fs.errors.ResourceNotFound – If path does not exist.

This method will return a list of the resources in a directory.
A ‘resource’ is a file, directory, or one of the other types
defined in ResourceType.

	
lock()

	Get a context manager that locks the filesystem.

Locking a filesystem gives a thread exclusive access to it.
Other threads will block until the threads with the lock has
left the context manager. Here’s how you would use it:

with my_fs.lock(): # May block
 # code here has exclusive access to the filesystem

It is a good idea to put a lock around any operations that you
would like to be atomic. For instance if you are copying
files, and you don’t want another thread to delete or modify
anything while the copy is in progress.

Locking with this method is only required for code that calls
multiple filesystem methods. Individual methods are thread safe
already, and don’t need to be locked.

Note

This only locks at the Python level. There is nothing to
prevent other processes from modifying the filesystem
outside of the filesystem instance.

	
makedir(path, permissions=None, recreate=False)

	Make a directory, and return a SubFS for
the new directory.

	Parameters:	
	path (str) – Path to directory from root.

	permissions (Permissions) – Permissions
instance.

	recreate (bool) – Do not raise an error if the directory
exists.

	Return type:	SubFS

	Raises:	
	fs.errors.DirectoryExists – if the path already exists.

	fs.errors.ResourceNotFound – if the path is not found.

	
makedirs(path, permissions=None, recreate=False)

	Make a directory, and any missing intermediate directories.

	Parameters:	
	path (str) – Path to directory from root.

	recreate (bool) – If False (default), it is an error to
attempt to create a directory that already exists. Set to
True to allow directories to be re-created without errors.

	permissions – Initial permissions.

	Returns:	A sub-directory filesystem.

	Return type:	SubFS

	Raises:	
	fs.errors.DirectoryExists – if the path is already
a directory, and recreate is False.

	fs.errors.DirectoryExpected – if one of the ancestors
in the path isn’t a directory.

	
match(patterns, name)

	Check if a name matches any of a list of wildcards.

	Parameters:	
	patterns (list) – A list of patterns, e.g. ['*.py']

	name (str) – A file or directory name (not a path)

	Return type:	bool

If a filesystem is case insensitive (such as Windows) then
this method will perform a case insensitive match (i.e. *.py
will match the same names as *.PY). Otherwise the match will
be case sensitive (*.py and *.PY will match different
names).

>>> home_fs.match(['*.py'], '__init__.py')
True
>>> home_fs.match(['*.jpg', '*.png'], 'foo.gif')
False

If patterns is None, or (['*']), then this method
will always return True.

	
move(src_path, dst_path, overwrite=False)

	Move a file from src_path to dst_path.

	Parameters:	
	src_path (str) – A path on the filesystem to move.

	dst_path (str) – A path on the filesystem where the source
file will be written to.

	overwrite (bool) – If True destination path will be
overwritten if it exists.

	Raises:	
	fs.errors.DestinationExists – If dst_path exists,
and overwrite == False.

	fs.errors.ResourceNotFound – If a parent directory of
dst_path does not exist.

	
movedir(src_path, dst_path, create=False)

	Move contents of directory src_path to dst_path.

	Parameters:	
	src_path (str) – Path to source directory on the filesystem.

	dst_path (str) – Path to destination directory.

	create (bool) – If True, then dst_path will be created if
it doesn’t already exist.

	
open(path, mode=u'r', buffering=-1, encoding=None, errors=None, newline=u'', **options)

	Open a file.

	Parameters:	
	path (str) – A path to a file on the filesystem.

	mode (str) – Mode to open file object.

	buffering (int) – Buffering policy: 0 to switch
buffering off, 1 to select line buffering, >1 to
select a fixed-size buffer, -1 to auto-detect.

	encoding (str) – Encoding for text files (defaults to
utf-8)

	errors (str) – What to do with unicode decode errors (see
stdlib docs [https://docs.python.org/3/library/codecs.html#error-handlers])

	newline (str) – New line parameter (See stdlib docs).

	options – Additional keyword parameters to set
implementation specific options (if required). See
implementation docs for details.

	Return type:	file object

	
openbin(path, mode=u'r', buffering=-1, **options)

	Open a binary file-like object.

	Parameters:	
	path (str) – A path on the filesystem.

	mode (str) – Mode to open file (must be a valid non-text
mode). Since this method only opens binary files, the b in
the mode string is implied.

	buffering (int) – Buffering policy (-1 to use default
buffering, 0 to disable buffering, or positive integer to
indicate buffer size).

	options – Keyword parameters for any additional
information required by the filesystem (if any).

	Return type:	file object

	Raises:	
	fs.errors.FileExpected – If the path is not a file.

	fs.errors.FileExists – If the file exists, and
exclusive mode is specified (x in the mode).

	fs.errors.ResourceNotFound – If path does not exist.

	
opendir(path, factory=None)

	Get a filesystem object for a sub-directory.

	Parameters:	
	path (str) – Path to a directory on the filesystem.

	factory – A callable that when invoked with an FS instance
and path will return a new FS object representing the sub-
directory contents. If no factory is supplied then
SubFS() will be used.

	Returns:	A filesystem object representing a sub-directory.

	Return type:	SubFS

	Raises:	fs.errors.DirectoryExpected – If dst_path does not
exist or is not a directory.

	
remove(path)

	Remove a file.

	Parameters:	path (str) – Path to the file you want to remove.

	Raises:	
	fs.errors.FileExpected – if the path is a directory.

	fs.errors.ResourceNotFound – if the path does not
exist.

	
removedir(path)

	Remove a directory from the filesystem.

	Parameters:	path (str) – Path of the directory to remove.

	Raises:	
	fs.errors.DirectoryNotEmpty – If the directory is not
empty (see removetree() if you want to
remove the directory contents).

	fs.errors.DirectoryExpected – If the path is not a
directory.

	fs.errors.ResourceNotFound – If the path does not
exist.

	fs.errors.RemoveRootError – If an attempt is made to
remove the root directory (i.e. ‘/’).

	
removetree(dir_path)

	Recursively remove the contents of a directory.

This method is similar to removedir(), but will
remove the contents of the directory if it is not empty.

	Parameters:	dir_path (str) – Path to a directory on the filesystem.

	
scandir(path, namespaces=None, page=None)

	Get an iterator of resource info.

	Parameters:	
	path (str) – A path on the filesystem

	namespaces (list) – A sequence of info namespaces.

	page (tuple or None) – May be a tuple of (<start>, <end>) indexes to
return an iterator of a subset of the resource info, or
None to iterator the entire directory. Paging a
directory scan may be necessary for very large directories.

	Return type:	iterator

	
setbinfile(path, file)

	Set a file to the contents of a binary file object.

	Parameters:	
	path (str) – A path on the filesystem.

	file (file object) – A file object open for reading in binary mode.

This method copies bytes from an open binary file to a file on
the filesystem. If the destination exists, it will first be
truncated.

Note that the file object file will not be closed by this
method. Take care to close it after this method completes
(ideally with a context manager). For example:

with open('myfile.bin') as read_file:
 my_fs.setbinfile('myfile.bin', read_file)

	
setbytes(path, contents)

	Copy (bytes) data to a file.

	Parameters:	
	path (str) – Destination path on the filesystem.

	contents (bytes) – A bytes object with data to be written

	
setfile(path, file, encoding=None, errors=None, newline=None)

	Set a file to the contents of a file object.

	Parameters:	
	path (str) – A path on the filesystem.

	file (file object) – A file object open for reading.

	encoding (str) – Encoding of destination file, or None
for binary.

	errors (str) – How encoding errors should be treated (same
as io.open).

	newline (str) – Newline parameter (same is io.open).

This method will read the contents of a supplied file object,
and write to a file on the filesystem. If the destination
exists, it will first be truncated.

If encoding is supplied, the destination will be opened in
text mode.

Note that the file object file will not be closed by this
method. Take care to close it after this method completes
(ideally with a context manager). For example:

with open('myfile.bin') as read_file:
 my_fs.setfile('myfile.bin', read_file)

	
setinfo(path, info)

	Set info on a resource.

	Parameters:	
	path (str) – Path to a resource on the filesystem.

	info (dict) – Dict of resource info.

	Raises:	fs.errors.ResourceNotFound – If path does not exist
on the filesystem.

This method is the compliment to getinfo and
is used to set info values on a resource.

The info dict should be in the same format as the raw
info returned by getinfo(file).raw. Here’s an example:

details_info = {
 "details":
 {
 "modified_time": time.time()
 }
}
my_fs.setinfo('file.txt', details_info)

	
settext(path, contents, encoding=u'utf-8', errors=None, newline=u'')

	Create or replace a file with text.

	Parameters:	
	contents (str) – Path on the filesystem.

	encoding (str) – Encoding of destination file (default
‘UTF-8).

	errors (str) – Error parameter for encoding (same as
io.open).

	newline (str) – Newline parameter for encoding (same as
io.open).

	
settimes(path, accessed=None, modified=None)

	Set the accessed and modified time on a resource.

	Parameters:	
	accessed – The accessed time, as a datetime, or None
to use the current rime.

	modified – The modified time, or None (the default) to
use the same time as accessed parameter.

	
touch(path)

	Create a new file if path doesn’t exist, or update accessed
and modified times if the path does exist.

This method is similar to the linux command of the same name.

	Parameters:	path (str) – A path to a file on the filesystem.

	
tree(**kwargs)

	Render a tree view of the filesystem to stdout or a file.

The parameters are passed to render().

	
validatepath(path)

	Check if a path is valid on this filesystem, and return a
normalized absolute path.

Many filesystems have restrictions on the format of paths they
support. This method will check that path is valid on the
underlaying storage mechanism and throw a
InvalidPath exception if it is not.

	Parameters:	path (str) – A path

	Returns:	A normalized, absolute path.

	Return type:	str

	Raises:	
	fs.errors.InvalidPath – If the path is invalid.

	fs.errors.FilesystemClosed – if the filesystem
is closed.

	
walk

	Get a BoundWalker object for this filesystem.

fs.compress

This module can compress the contents of a filesystem.

Currently zip and tar are supported.

	
fs.compress.write_tar(src_fs, file, compression=None, encoding=u'utf-8', walker=None)

	Write the contents of a filesystem to a tar file.

	Parameters:	
	file (str or file-like.) – Destination file, may be a file name or an open file
object.

	compression (str) – Compression to use.

	encoding (str) – The encoding to use for filenames. The default is
"utf-8".

	walker (Walker or None) – A Walker instance, or None to use
default walker. You can use this to specify which files you
want to compress.

	
fs.compress.write_zip(src_fs, file, compression=8, encoding=u'utf-8', walker=None)

	Write the contents of a filesystem to a zip file.

	Parameters:	
	file (str or file-like.) – Destination file, may be a file name or an open file
object.

	compression (str) – Compression to use (one of the constants defined
in the zipfile module in the stdlib).

	encoding (str) – The encoding to use for filenames. The default is
"utf-8", use "CP437" if compatibility with WinZip is
desired.

	walker (Walker or None) – A Walker instance, or None to use
default walker. You can use this to specify which files you
want to compress.

fs.copy

Copying files from one filesystem to another.

Functions for copying resources between filesystem.

	
fs.copy.copy_dir(src_fs, src_path, dst_fs, dst_path, walker=None, on_copy=None)

	Copy a directory from one filesystem to another.

	Parameters:	
	src_fs (FS URL or instance) – Source filesystem.

	src_path (str) – A path to a directory on src_fs.

	dst_fs (FS URL or instance) – Destination filesystem.

	dst_path (str) – A path to a directory on dst_fs.

	walker (Walker) – A walker object that will be used to scan for files
in src_fs. Set this if you only want to consider a sub-set
of the resources in src_fs.

	on_copy (Function, with signature (src_fs, src_path, dst_fs,
dst_path).) – A function callback called after a single file copy
is executed.

	
fs.copy.copy_dir_if_newer(src_fs, src_path, dst_fs, dst_path, walker=None, on_copy=None)

	Copy a directory from one filesystem to another. If both source and
destination files exist, the copy is executed only if the source
file is newer than the destination file. In case modification times
of source or destination files are not available, copy is always
executed.

	Parameters:	
	src_fs (FS URL or instance) – Source filesystem.

	src_path (str) – A path to a directory on src_fs.

	dst_fs (FS URL or instance) – Destination filesystem.

	dst_path (str) – A path to a directory on dst_fs.

	walker (Walker) – A walker object that will be used to scan for files
in src_fs. Set this if you only want to consider a sub-set
of the resources in src_fs.

	on_copy (Function, with signature (src_fs, src_path, dst_fs,
dst_path).) – A function callback called after a single file copy
is executed.

	
fs.copy.copy_file(src_fs, src_path, dst_fs, dst_path)

	Copy a file from one filesystem to another. If the destination
exists, and is a file, it will be first truncated.

	Parameters:	
	src_fs (FS URL or instance) – Source filesystem.

	src_path (str) – Path to a file on src_fs.

	dst_fs (FS URL or instance) – Destination filesystem.

	dst_path (str) – Path to a file on dst_fs.

	
fs.copy.copy_file_if_newer(src_fs, src_path, dst_fs, dst_path)

	Copy a file from one filesystem to another. If the destination
exists, and is a file, it will be first truncated. If both source
and destination files exist, the copy is executed only if the source
file is newer than the destination file. In case modification times
of source or destination files are not available, copy is always
executed.

	Parameters:	
	src_fs (FS URL or instance) – Source filesystem.

	src_path (str) – Path to a file on src_fs.

	dst_fs (FS URL or instance) – Destination filesystem.

	dst_path (str) – Path to a file on dst_fs.

	Returns:	True if the file copy was executed, False otherwise.

	
fs.copy.copy_fs(src_fs, dst_fs, walker=None, on_copy=None)

	Copy the contents of one filesystem to another.

	Parameters:	
	src_fs (FS URL or instance) – Source filesystem.

	dst_fs (FS URL or instance) – Destination filesystem.

	walker (Walker) – A walker object that will be used to scan for files
in src_fs. Set this if you only want to consider a sub-set
of the resources in src_fs.

	on_copy (Function, with signature (src_fs, src_path, dst_fs,
dst_path).) – A function callback called after a single file copy
is executed.

	
fs.copy.copy_fs_if_newer(src_fs, dst_fs, walker=None, on_copy=None)

	Copy the contents of one filesystem to another. If both source and
destination files exist, the copy is executed only if the source
file is newer than the destination file. In case modification times
of source or destination files are not available, copy file is
always executed.

	Parameters:	
	src_fs (FS URL or instance) – Source filesystem.

	dst_fs (FS URL or instance) – Destination filesystem.

	walker (Walker) – A walker object that will be used to scan for files
in src_fs. Set this if you only want to consider a sub-set
of the resources in src_fs.

	on_copy (Function, with signature (src_fs, src_path, dst_fs,
dst_path).) – A function callback called after a single file copy
is executed.

	
fs.copy.copy_structure(src_fs, dst_fs, walker=None)

	Copy directories (but not files) from src_fs to dst_fs.

	Parameters:	
	src_fs (FS URL or instance) – Source filesystem.

	dst_fs (FS URL or instance) – Destination filesystem.

	walker (Walker) – A walker object that will be used to scan for files
in src_fs. Set this if you only want to consider a sub-set
of the resources in src_fs.

fs.enums

	
class fs.ResourceType

	Resource Types.

Positive values are reserved, negative values are implementation
dependent.

Most filesystems will support only directory(1) and file(2). Other
types exist to identify more exotic resource types supported
by Linux filesystems.

	
class fs.Seek

	Constants used by file.seek.

These match os.SEEK_CUR, os.SEEK_END, and os.SEEK_SET
from the standard library.

fs.errors

Defines the Exception classes thrown by PyFilesystem objects.

Errors relating to the underlying filesystem are translated in to one of
the following exceptions.

All Exception classes are derived from FSError which
may be used as a catch-all filesystem exception.

	
exception fs.errors.CreateFailed(msg=None)

	An exception thrown when a FS could not be created.

	
exception fs.errors.DestinationExists(path, exc=None, msg=None)

	Exception raised when a target destination already exists.

	
exception fs.errors.DirectoryExists(path, exc=None, msg=None)

	Exception raised when trying to make a directory that already
exists.

	
exception fs.errors.DirectoryExpected(path, exc=None, msg=None)

	Exception raises when a directory was expected.

	
exception fs.errors.DirectoryNotEmpty(path, exc=None, msg=None)

	Exception raised when a directory to be removed is not empty.

	
exception fs.errors.FileExists(path, exc=None, msg=None)

	Exception raises when opening a file in exclusive mode.

	
exception fs.errors.FileExpected(path, exc=None, msg=None)

	Exception raises when a file was expected.

	
exception fs.errors.FilesystemClosed(msg=None)

	An exception thrown when attempting to use a closed filesystem.

	
exception fs.errors.FSError(msg=None)

	Base exception class for the FS module.

	
exception fs.errors.IllegalBackReference(path)

	Exception raised when too many backrefs exist in a path.

This error will occur if the back references in a path would be
outside of the root. For example, "/foo/../../", contains two back
references which would reference a directory above the root.

Note

This exception is a subclass of ValueError as it is not
strictly speaking an issue with a filesystem or resource.

	
exception fs.errors.InsufficientStorage(path=None, exc=None, msg=None)

	Exception raised when operations encounter storage space trouble.

	
exception fs.errors.InvalidCharsInPath(path, msg=None)

	The path contains characters that are invalid on this filesystem.

	
exception fs.errors.InvalidPath(path, msg=None)

	Base exception for fs paths that can’t be mapped on to the
underlaying filesystem.

	
exception fs.errors.MissingInfoNamespace(namespace)

	Raised when an expected namespace was missing.

	
exception fs.errors.NoSysPath(path, msg=None)

	Exception raised when there is no sys path.

	
exception fs.errors.NoURL(path, purpose, msg=None)

	Raised when there is no URL for a given path.

	
exception fs.errors.OperationFailed(path=None, exc=None, msg=None)

	Base exception class for errors associated with a specific operation.

	
exception fs.errors.OperationTimeout(path=None, exc=None, msg=None)

	Filesystem took too long.

	
exception fs.errors.PathError(path, msg=None)

	Exception for errors to do with a path string.

	
exception fs.errors.PermissionDenied(path=None, exc=None, msg=None)

	Permissions error.

	
exception fs.errors.RemoteConnectionError(path=None, exc=None, msg=None)

	Exception raised when operations encounter remote connection trouble.

	
exception fs.errors.RemoveRootError(path=None, exc=None, msg=None)

	Attempt to remove the root directory.

	
exception fs.errors.ResourceError(path, exc=None, msg=None)

	Base exception class for error associated with a specific resource.

	
exception fs.errors.ResourceInvalid(path, exc=None, msg=None)

	Exception raised when a resource is the wrong type.

	
exception fs.errors.ResourceLocked(path, exc=None, msg=None)

	Exception raised when a resource can’t be used because it is locked.

	
exception fs.errors.ResourceNotFound(path, exc=None, msg=None)

	Exception raised when a required resource is not found.

	
exception fs.errors.Unsupported(path=None, exc=None, msg=None)

	Exception raised for operations that are not supported by the FS.

fs.info

	
class fs.info.Info(raw_info, to_datetime=<function epoch_to_datetime>)

	Container for Resource Info, returned by the following methods:

	getinfo()

	scandir()

	filterfir()

	Parameters:	
	raw_info (dict) – A dict containing resource info.

	to_datetime – A callable that converts an epoch time to a
datetime object. The default uses
epoch_to_datetime().

	
accessed

	Get the time this resource was last accessed, or None if not
available.

Requires the "details" namespace.

	Return type:	datetime

	Raises:	MissingInfoNamespace – if the ‘details’
namespace is not in the Info.

	
copy(to_datetime=None)

	Create a copy of this resource info object.

	
created

	Get the time this resource was created, or None if not
available.

Requires the "details" namespace.

	Return type:	datetime

	Raises:	MissingInfoNamespace – if the ‘details’
namespace is not in the Info.

	
get(namespace, key, default=None)

	Get a raw info value.

>>> info.get('access', 'permissions')
['u_r', 'u_w', '_wx']

	Parameters:	
	namespace (str) – A namespace identifier.

	key (str) – A key within the namespace.

	default – A default value to return if either the
namespace or namespace + key is not found.

	
gid

	Get the group id of a resource, or None if not available.

Requires the "access" namespace.

	Return type:	int

	Raises:	MissingInfoNamespace – if the ‘access’
namespace is not in the Info.

	
group

	Get the group of the resource owner, or None if not
available.

Requires the "access" namespace.

	Return type:	str

	Raises:	MissingInfoNamespace – if the ‘access’
namespace is not in the Info.

	
has_namespace(namespace)

	Check if the resource info contains a given namespace.

	Parameters:	namespace (str) – A namespace name.

	Return type:	bool

	
is_dir

	Check if the resource references a directory.

	Return type:	bool

	
is_file

	Check if a resource references a file.

	Return type:	bool

	
is_link

	Check if a resource is a symlink.

	Return type:	bool

	
is_writeable(namespace, key)

	Check if a given key in a namespace is writable (with
setinfo()).

	Parameters:	
	namespace (str) – A namespace identifier.

	key (str) – A key within the namespace.

	Return type:	bool

	
make_path(dir_path)

	Make a path by joining dir_path with the resource name.

	Parameters:	dir_path (str) – A path to a directory.

	Returns:	A path.

	Return type:	str

	
metadata_changed

	Get the time the metadata changed, or None if not
available.

Requires the "details" namespace.

	Return type:	datetime

	Raises:	MissingInfoNamespace – if the ‘details’
namespace is not in the Info.

	
modified

	Get the time the resource was modified, or None if not
available.

Requires the "details" namespace.

	Return type:	datetime

	Raises:	MissingInfoNamespace – if the ‘details’
namespace is not in the Info.

	
name

	Get the resource name.

	Return type:	str

	
permissions

	Get a permissions object, or None if not available.

Requires the "access" namespace.

	Return type:	fs.permissions.Permissions

	Raises:	MissingInfoNamespace – if the ‘access’
namespace is not in the Info.

	
size

	Get the size of the resource, in bytes.

Requires the "details" namespace.

	Return type:	int

	Raises:	MissingInfoNamespace – if the ‘details’
namespace is not in the Info.

	
target

	Get the link target, if this is a symlink, or None if this
is not a symlink.

Requires the "link" namespace.

	Return type:	bool

	Raises:	MissingInfoNamespace – if the ‘link’
namespace is not in the Info.

	
type

	Get the resource type enumeration.

Requires the "details" namespace.

	Type:	ResourceType

	Raises:	MissingInfoNamespace – if the ‘details’
namespace is not in the Info.

	
uid

	Get the user id of a resource, or None if not available.

Requires the "access" namespace.

	Return type:	int

	Raises:	MissingInfoNamespace – if the ‘access’
namespace is not in the Info.

	
user

	Get the owner of a resource, or None if not available.

Requires the "access" namespace.

	Return type:	str

	Raises:	MissingInfoNamespace – if the ‘access’
namespace is not in the Info.

fs.move

Moving files from one filesystem to another.

Functions for moving files between filesystems.

	
fs.move.move_dir(src_fs, src_path, dst_fs, dst_path)

	Move a directory from one filesystem to another.

	Parameters:	
	src_fs (FS URL or instance) – Source filesystem.

	src_path (str) – A path to a directory on src_fs.

	dst_fs (FS URL or instance) – Destination filesystem.

	dst_path (str) – A path to a directory on dst_fs.

	
fs.move.move_file(src_fs, src_path, dst_fs, dst_path)

	Move a file from one filesystem to another.

	Parameters:	
	src_fs (FS URL or instance) – Source filesystem.

	src_path (str) – Path to a file on src_fs.

	dst_fs (str) – Destination filesystem.

	dst_fs – Path to a file on dst_fs.

	
fs.move.move_fs(src_fs, dst_fs)

	Move the contents of a filesystem to another filesystem.

	Parameters:	
	src_fs (FS URL or instance) – Source filesystem.

	dst_fs (FS URL or instance) – Destination filesystem.

fs.mode

Tools for managing mode strings (as used in open() and
openbin()).

	
class fs.mode.Mode(mode)

	A mode object provides properties that can be used to interrogate
the mode
strings [https://docs.python.org/3/library/functions.html#open] used
when opening files.

	Parameters:	mode (str) – A mode string, as used by io.open.

	Raises:	ValueError – If the mode string is invalid.

Here’s an example of typical use:

>>> mode = Mode('rb')
>>> mode.reading
True
>>> mode.writing
False
>>> mode.binary
True
>>> mode.text
False

	
appending

	Check if a mode permits appending.

	
binary

	Check if a mode specifies binary.

	
create

	Check if the mode would create a file.

	
exclusive

	Check if the mode require exclusive creation.

	
reading

	Check if the mode permits reading.

	
text

	Check if a mode specifies text.

	
to_platform()

	Get a mode string for the current platform.

Currently, this just removes the ‘x’ on PY2 because PY2 doesn’t
support exclusive mode.

	
to_platform_bin()

	Get a binary mode string for the current platform.

Currently, this just removes the ‘x’ on PY2 because PY2 doesn’t
support exclusive mode.

	
truncate

	Check if a mode would truncate an existing file.

	
updating

	Check if a mode permits updating (reading and writing).

	
validate(_valid_chars=frozenset([u'a', u'b', u'+', u'r', u't', u'w', u'x']))

	Validate the mode string.

	Raises:	ValueError – if the mode contains invalid chars.

	
validate_bin()

	Validate a mode for opening a binary file.

	Raises:	ValueError – if the mode contains invalid chars.

	
writing

	Check if a mode permits writing.

	
fs.mode.check_readable(mode)

	Check a mode string allows reading.

	Parameters:	mode (str) – A mode string, e.g. "rt"

	Return type:	bool

	
fs.mode.check_writable(mode)

	Check a mode string allows writing.

	Parameters:	mode (str) – A mode string, e.g. "wt"

	Return type:	bool

	
fs.mode.validate_open_mode(mode)

	Check mode parameter of open() is valid.

	Parameters:	mode (str) – Mode parameter.

	Raises:	ValueError if mode is not valid.

	
fs.mode.validate_openbin_mode(mode, _valid_chars=frozenset([u'a', u'b', u'+', u'r', u'w', u'x']))

	Check mode parameter of openbin() is valid.

	Parameters:	mode (str) – Mode parameter.

	Raises:	ValueError if mode is not valid.

fs.opener

Open filesystems from a URL.

fs.opener.base

Defines the Opener abstract base class.

	
class fs.opener.base.Opener

	The opener base class.

An opener is responsible for opening a filesystem for a given
protocol.

	
open_fs(fs_url, parse_result, writeable, create, cwd)

	Open a filesystem object from a FS URL.

	Parameters:	
	fs_url (str) – A filesystem URL

	parse_result (ParseResult) – A parsed filesystem URL.

	writeable (bool) – True if the filesystem must be writeable.

	create (bool) – True if the filesystem should be created if
it does not exist.

	cwd (str) – The current working directory (generally only
relevant for OS filesystems).

	Returns:	FS object

fs.opener.parse

Parses FS URLs in to their constituent parts.

	
class fs.opener.parse.ParseResult

	A named tuple containing fields of a parsed FS URL.

	protocol The protocol part of the url, e.g. osfs or
ftp.

	username A username, or None .

	password An password, or None.

	resource A resource, typically a domain and path, e.g.
ftp.example.org/dir

	params An dictionary of parameters extracted from the query
string.

	path An optional path within the filesystem.

	
fs.opener.parse.parse_fs_url(fs_url)

	Parse a Filesystem URL and return a
ParseResult, or raise
ParseError (subclass of ValueError) if the FS URL is
not value.

	Parameters:	fs_url (str) – A filesystem URL

	Return type:	ParseResult

fs.opener.registry

Defines the Registry, which maps protocols and FS URLs to their
respective Opener.

	
class fs.opener.registry.Registry(default_opener=u'osfs')

	A registry for Opener instances.

	
get_opener(protocol)

	Get the opener class associated to a given protocol.

	Parameters:	protocol (str) – A filesystem protocol.

	Return type:	Opener.

	Raises:	
	UnsupportedProtocol – If no opener
could be found.

	EntryPointLoadingError – If the returned entry
point is not an Opener subclass or could not be loaded
successfully.

	
manage_fs(*args, **kwds)

	A context manager opens / closes a filesystem.

	Parameters:	
	fs_url (str or FS) – A FS instance or a FS URL.

	create (bool) – If True, then create the filesystem if
it doesn’t already exist.

	writeable (bool) – If True, then the filesystem should
be writeable.

	cwd (str) – The current working directory, if opening a
OSFS.

Sometimes it is convenient to be able to pass either a FS object
or an FS URL to a function. This context manager handles the
required logic for that.

Here’s an example:

def print_ls(list_fs):
 """List a directory."""
 with manage_fs(list_fs) as fs:
 print(" ".join(fs.listdir()))

This function may be used in two ways. You may either pass
either a str, as follows:

print_list('zip://projects.zip')

Or, an FS instance:

from fs.osfs import OSFS
projects_fs = OSFS('~/')
print_list(projects_fs)

	
open(fs_url, writeable=True, create=False, cwd=u'.', default_protocol=u'osfs')

	Open a filesystem from a FS URL. Returns a tuple of a filesystem
object and a path. If there is no path in the FS URL, the path
value will be None.

	Parameters:	
	fs_url (str) – A filesystem URL

	writeable (bool) – True if the filesystem must be writeable.

	create (bool) – True if the filesystem should be created if
it does not exist.

	cwd (str or None) – The current working directory.

	Return type:	Tuple of (<filesystem>, <path from url>)

	
open_fs(fs_url, writeable=True, create=False, cwd=u'.', default_protocol=u'osfs')

	Open a filesystem object from a FS URL (ignoring the path
component).

	Parameters:	
	fs_url (str) – A filesystem URL.

	writeable (bool) – True if the filesystem must be writeable.

	create (bool) – True if the filesystem should be created if
it does not exist.

	cwd (str) – The current working directory (generally only
relevant for OS filesystems).

	default_protocol (str) – The protocol to use if one is not
supplied in the FS URL (defaults to "osfs").

	Returns:	FS object

	
protocols

	A list of supported protocols.

fs.opener.errors

Errors raised when attempting to open a filesystem.

	
exception fs.opener.errors.EntryPointError

	Raised by the registry when an entry point cannot be loaded.

	
exception fs.opener.errors.OpenerError

	Base class for opener related errors.

	
exception fs.opener.errors.ParseError

	Raised when attempting to parse an invalid FS URL.

	
exception fs.opener.errors.UnsupportedProtocol

	May be raised if no opener could be found for a given
protocol.

fs.path

Useful functions for working with PyFilesystem paths.
This is broadly similar to the standard os.path module but works
with paths in the canonical format expected by all FS objects (that is,
separated by forward slashes and with an optional leading slash).

See Paths for an explanation of PyFilesystem paths.

	
fs.path.abspath(path)

	Convert the given path to an absolute path.

Since FS objects have no concept of a current directory, this
simply adds a leading / character if the path doesn’t already
have one.

	Parameters:	path (str) – A PyFilesytem path.

	Returns:	An absolute path.

	Return type:	str

	
fs.path.basename(path)

	Return the basename of the resource referenced by a path.

This is always equivalent to the ‘tail’ component of the value
returned by split(path).

	Parameters:	path (str) – A PyFilesytem path.

	Return type:	str

>>> basename('foo/bar/baz')
'baz'
>>> basename('foo/bar')
'bar'
>>> basename('foo/bar/')
''

	
fs.path.combine(path1, path2)

	Join two paths together.

	Parameters:	
	path1 (str) – A PyFilesytem path.

	path2 (str) – A PyFilesytem path.

	Return type:	str

This is faster than join(), but only works when the
second path is relative, and there are no back references in either
path.

>>> combine("foo/bar", "baz")
'foo/bar/baz'

	
fs.path.dirname(path)

	Return the parent directory of a path.

This is always equivalent to the ‘head’ component of the value
returned by split(path).

	Parameters:	path (str) – A PyFilesytem path.

	Return type:	str

>>> dirname('foo/bar/baz')
'foo/bar'
>>> dirname('/foo/bar')
'/foo'
>>> dirname('/foo')
'/'

	
fs.path.forcedir(path)

	Ensure the path ends with a trailing forward slash

	Parameters:	path – A PyFilesytem path.

	Return type:	bool

>>> forcedir("foo/bar")
'foo/bar/'
>>> forcedir("foo/bar/")
'foo/bar/'

	
fs.path.frombase(path1, path2)

	Get the final path of path2 that isn’t in path1.

	Parameters:	
	path1 (str) – A PyFilesytem path.

	path2 (str) – A PyFilesytem path.

	Return type:	str

>>> frombase('foo/bar/', 'foo/bar/baz/egg')
'baz/egg'

	
fs.path.isabs(path)

	Check if a path is an absolute path.

	Parameters:	path (str) – A PyFilesytem path.

	Return type:	bool

	
fs.path.isbase(path1, path2)

	Check if path1 is a base of path2.

	Parameters:	
	path1 (str) – A PyFilesytem path.

	path2 (str) – A PyFilesytem path.

	Return type:	bool

	
fs.path.isdotfile(path)

	Detect if a path references a dot file, i.e. a resource who’s name
starts with a ‘.’

	Parameters:	path (str) – Path to check.

	Return type:	bool

>>> isdotfile('.baz')
True
>>> isdotfile('foo/bar/.baz')
True
>>> isdotfile('foo/bar.baz')
False

	
fs.path.isparent(path1, path2)

	Check if path1 is a parent directory of path2.

	Parameters:	
	path1 (str) – A PyFilesytem path.

	path2 (str) – A PyFilesytem path.

	Return type:	bool

>>> isparent("foo/bar", "foo/bar/spam.txt")
True
>>> isparent("foo/bar/", "foo/bar")
True
>>> isparent("foo/barry", "foo/baz/bar")
False
>>> isparent("foo/bar/baz/", "foo/baz/bar")
False

	
fs.path.issamedir(path1, path2)

	Check if two paths reference a resource in the same directory.

	Parameters:	
	path1 (str) – A PyFilesytem path.

	path2 (str) – A PyFilesytem path.

	Return type:	bool

>>> issamedir("foo/bar/baz.txt", "foo/bar/spam.txt")
True
>>> issamedir("foo/bar/baz/txt", "spam/eggs/spam.txt")
False

	
fs.path.iswildcard(path)

	Check if a path ends with a wildcard.

	Parameters:	path (int) – An FS path.

	Return type:	bool

>>> iswildcard('foo/bar/baz.*')
True
>>> iswildcard('foo/bar')
False

	
fs.path.iteratepath(path)

	Iterate over the individual components of a path.

>>> iteratepath('/foo/bar/baz')
['foo', 'bar', 'baz']

	Parameters:	path (str) – Path to iterate over.

	Returns:	A list of path components.

	Return type:	list

	
fs.path.join(*paths)

	Join any number of paths together.

	Parameters:	paths – Paths to join are given in positional arguments.

	Return type:	str

>>> join('foo', 'bar', 'baz')
'foo/bar/baz'
>>> join('foo/bar', '../baz')
'foo/baz'
>>> join('foo/bar', '/baz')
'/baz'

	
fs.path.normpath(path)

	Normalize a path.

This function simplifies a path by collapsing back-references
and removing duplicated separators.

	Parameters:	path (str) – Path to normalize.

	Returns:	A valid FS path.

	Type:	str

>>> normpath("/foo//bar/frob/../baz")
'/foo/bar/baz'
>>> normpath("foo/../../bar")
Traceback (most recent call last)
 ...
IllegalBackReference: Too many backrefs in 'foo/../../bar'

	
fs.path.recursepath(path, reverse=False)

	Get intermediate paths from the root to the given path.

	Parameters:	
	path (str) – A PyFilesystem path

	reverse (bool) – Reverses the order of the paths.

	Returns:	A list of paths.

	Return type:	list

>>> recursepath('a/b/c')
['/', '/a', '/a/b', '/a/b/c']

	
fs.path.relativefrom(base, path)

	Return a path relative from a given base path, i.e. insert backrefs
as appropriate to reach the path from the base.

	Parameters:	
	base (str) – Path to a directory.

	path (atr) – Path you wish to make relative.

>>> relativefrom("foo/bar", "baz/index.html")
'../../baz/index.html'

	
fs.path.relpath(path)

	Convert the given path to a relative path.

This is the inverse of abspath(), stripping a leading '/' from
the path if it is present.

	Parameters:	path (str) – Path to adjust

	Return type:	str

>>> relpath('/a/b')
'a/b'

	
fs.path.split(path)

	Split a path into (head, tail) pair.

This function splits a path into a pair (head, tail) where ‘tail’ is
the last pathname component and ‘head’ is all preceding components.

	Parameters:	path (str) – Path to split

	Returns:	tuple of (head, tail)

	Return type:	tuple

>>> split("foo/bar")
('foo', 'bar')
>>> split("foo/bar/baz")
('foo/bar', 'baz')
>>> split("/foo/bar/baz")
('/foo/bar', 'baz')

	
fs.path.splitext(path)

	Split the extension from the path, and returns the path (up to the
last ‘.’ and the extension).

	Parameters:	path – A path to split

	Returns:	tuple of (path, extension)

	Return type:	tuple

>>> splitext('baz.txt')
('baz', '.txt')
>>> splitext('foo/bar/baz.txt')
('foo/bar/baz', '.txt')

fs.permissions

An abstract permissions container.

	
class fs.permissions.Permissions(names=None, mode=None, user=None, group=None, other=None, sticky=None, setuid=None, setguid=None)

	An abstraction for file system permissions.

	Parameters:	
	names (list) – A list of permissions.

	mode (int) – A mode integer.

	user (str) – A triplet of user permissions, e.g. "rwx" or
"r--"

	group (str) – A triplet of group permissions, e.g. "rwx"
or "r--"

	other (str) – A triplet of other permissions, e.g. "rwx"
or "r--"

	sticky (bool) – A boolean for the sticky bit.

	setuid (bool) – A boolean for the setuid bit.

	setguid (bool) – A boolean for the setuid bit.

Permissions objects store information regarding the permissions
on a resource. It supports Linux permissions, but is generic enough
to manage permission information from almost any filesystem.

>>> from fs.permissions import Permissions
>>> p = Permissions(user='rwx', group='rw-', other='r--')
>>> print(p)
rwxrw-r--
>>> p.mode
500
>>> oct(p.mode)
'0764'

	
add(*permissions)

	Add permission(s).

	Parameters:	permissions – Permission name(s).

	
as_str()

	Get a linux-style string representation of permissions.

	
check(*permissions)

	Check if one or more permissions are enabled.

	Parameters:	permissions – Permission name(s).

	Returns:	True if all given permissions are set.

	Rtype bool:	

	
copy()

	Make a copy of this permissions object.

	
classmethod create(init=None)

	Create a permissions object from an initial value.

	Parameters:	init – May be None for equivalent for 0o777 permissions,
a mode integer, or a list of permission names.

	Returns:	mode integer, that may be used by os.makedir
(amongst others).

>>> Permissions.create(None)
Permissions(user='rwx', group='rwx', other='rwx')
>>> Permissions.create(0o700)
Permissions(user='rwx', group='', other='')
>>> Permissions.create(['u_r', 'u_w', 'u_x'])
Permissions(user='rwx', group='', other='')

	
dump()

	Get a list suitable for serialization.

	
g_r

	Boolean for ‘g_r’ permission.

	
g_w

	Boolean for ‘g_w’ permission.

	
g_x

	Boolean for ‘g_x’ permission.

	
classmethod get_mode(init)

	Convert an initial value to a mode integer.

	
classmethod load(permissions)

	Load a serialized permissions object.

	
mode

	Mode integer.

	
o_r

	Boolean for ‘o_r’ permission.

	
o_w

	Boolean for ‘o_w’ permission.

	
o_x

	Boolean for ‘o_x’ permission.

	
classmethod parse(ls)

	Parse permissions in linux notation.

	
remove(*permissions)

	Remove permission(s).

	Parameters:	permissions – Permission name(s).

	
setguid

	Boolean for ‘setguid’ permission.

	
setuid

	Boolean for ‘setuid’ permission.

	
sticky

	Boolean for ‘sticky’ permission.

	
u_r

	Boolean for ‘u_r’ permission.

	
u_w

	Boolean for ‘u_w’ permission.

	
u_x

	Boolean for ‘u_x’ permission.

	
fs.permissions.make_mode(init)

	Make a mode integer from an initial value.

fs.tools

A collection of functions that operate on filesystems and tools.

	
fs.tools.copy_file_data(src_file, dst_file, chunk_size=None)

	Copy data from one file object to another.

	Parameters:	
	src_file (file-like) – File open for reading.

	dst_file (file-like) – File open for writing.

	chunk_size (int) – Number of bytes to copy at a time (or
None to use sensible default).

	
fs.tools.get_intermediate_dirs(fs, dir_path)

	Get paths of intermediate directories required to create a new
directory.

	Parameters:	
	fs – A FS object.

	dir_path (str) – A path to a new directory on the filesystem.

	Returns:	A list of paths.

	Return type:	list

	Raises:	fs.errors.DirectoryExpected – If a path component
references a file and not a directory.

	
fs.tools.remove_empty(fs, path)

	Remove all empty parents.

	Parameters:	
	fs – A FS object.

	path (str) – Path to a directory on the filesystem.

fs.tree

Render a text tree view, with optional color in terminals.

Render a FS object as text tree views.

	
fs.tree.render(fs, path=u'/', file=None, encoding=None, max_levels=5, with_color=None, dirs_first=True, exclude=None, filter=None)

	Render a directory structure in to a pretty tree.

	Parameters:	
	fs (A FS instance) – A filesystem.

	file (file or None) – An open file-like object to render the tree, or
None for stdout.

	max_levels (int) – Maximum number of levels to display, or None
for no maximum.

	with_color (bool) – Enable terminal color output, or None to
auto-detect terminal.

	dirs_first (bool) – Show directories first.

	exclude (list) – Option list of directory patterns to exclude
from the tree render.

	filter – Optional list of files patterns to match in the tree
render.

	Return type:	tuple

	Returns:	A tuple of (<directory count>, <file count>).

fs.walk

The machinery for walking a filesystem. See Walking for details.

	
class fs.walk.BoundWalker(fs, walker_class=<class 'fs.walk.Walker'>)

	A class that binds a Walker instance to a FS
object.

	Parameters:	
	fs – A FS object.

	walker_class – A WalkerBase sub-class. The
default uses Walker.

You will typically not need to create instances of this class
explicitly. Filesystems have a walk property which returns a
BoundWalker object.

>>> import fs
>>> home_fs = fs.open_fs('~/')
>>> home_fs.walk
BoundWalker(OSFS('/Users/will', encoding='utf-8'))

A BoundWalker is callable. Calling it is an alias for
walk().

	
dirs(path=u'/', **kwargs)

	Walk a filesystem, yielding absolute paths to directories.

	Parameters:	
	path (str) – A path to a directory.

	ignore_errors (bool) – If true, any errors reading a
directory will be ignored, otherwise exceptions will be
raised.

	on_error (callable) – If ignore_errors is false, then
this callable will be invoked with a path and the exception
object. It should return True to ignore the error, or False
to re-raise it.

	search (str) – If 'breadth' then the directory will be
walked top down. Set to 'depth' to walk bottom up.

	exclude_dirs (list) – A list of patterns that will be used
to filter out directories from the walk, e.g. ['*.svn',
'*.git'].

	Returns:	An iterable of directory paths (absolute from the FS
root).

This method invokes dirs() with the bound
FS object.

	
files(path=u'/', **kwargs)

	Walk a filesystem, yielding absolute paths to files.

	Parameters:	
	path (str) – A path to a directory.

	ignore_errors (bool) – If true, any errors reading a
directory will be ignored, otherwise exceptions will be
raised.

	on_error (callable) – If ignore_errors is false, then
this callable will be invoked with a path and the exception
object. It should return True to ignore the error, or False
to re-raise it.

	search (str) – If 'breadth' then the directory will be
walked top down. Set to 'depth' to walk bottom up.

	filter (list) – If supplied, this parameter should be a list
of file name patterns, e.g. ['*.py']. Files will only be
returned if the final component matches one of the
patterns.

	exclude_dirs (list) – A list of patterns that will be used
to filter out directories from the walk, e.g. ['*.svn',
'*.git'].

	Returns:	An iterable of file paths (absolute from the
filesystem root).

This method invokes files() with the bound
FS object.

	
info(path=u'/', namespaces=None, **kwargs)

	Walk a filesystem, yielding tuples of (<absolute path>,
<resource info>).

	Parameters:	
	path (str) – A path to a directory.

	ignore_errors (bool) – If true, any errors reading a
directory will be ignored, otherwise exceptions will be
raised.

	on_error (callable) – If ignore_errors is false, then
this callable will be invoked with a path and the exception
object. It should return True to ignore the error, or False
to re-raise it.

	search (str) – If 'breadth' then the directory will be
walked top down. Set to 'depth' to walk bottom up.

	filter (list) – If supplied, this parameter should be a list
of file name patterns, e.g. ['*.py']. Files will only be
returned if the final component matches one of the
patterns.

	exclude_dirs (list) – A list of patterns that will be used
to filter out directories from the walk, e.g. ['*.svn',
'*.git'].

	Returns:	An iterable Info objects.

This method invokes info() with the bound
FS object.

	
walk(path=u'/', namespaces=None, **kwargs)

	Walk the directory structure of a filesystem.

	Parameters:	
	path (str) – A path to a directory.

	ignore_errors (bool) – If true, any errors reading a
directory will be ignored, otherwise exceptions will be
raised.

	on_error (callable) – If ignore_errors is false, then
this callable will be invoked with a path and the exception
object. It should return True to ignore the error, or False
to re-raise it.

	search (str) – If 'breadth' then the directory will be
walked top down. Set to 'depth' to walk bottom up.

	filter (list) – If supplied, this parameter should be a list
of file name patterns, e.g. ['*.py']. Files will only be
returned if the final component matches one of the
patterns.

	exclude_dirs (list) – A list of patterns that will be used
to filter out directories from the walk, e.g. ['*.svn',
'*.git'].

	Returns:	Step iterator.

The return value is an iterator of (<path>, <dirs>, <files>)
named tuples, where <path> is an absolute path to a
directory, and <dirs> and <files> are a list of
Info objects for directories and files
in <path>.

Here’s an example:

home_fs = open_fs('~/')
walker = Walker(filter=['*.py'])
for path, dirs, files in walker.walk(home_fs, namespaces=['details']):
 print("[{}]".format(path))
 print("{} directories".format(len(dirs)))
 total = sum(info.size for info in files)
 print("{} bytes {}".format(total))

This method invokes walk() with bound FS
object.

	
class fs.walk.Step(path, dirs, files)

	
	
dirs

	Alias for field number 1

	
files

	Alias for field number 2

	
path

	Alias for field number 0

	
class fs.walk.Walker(ignore_errors=False, on_error=None, search=u'breadth', filter=None, exclude_dirs=None)

	A walker object recursively lists directories in a filesystem.

	Parameters:	
	ignore_errors (bool) – If true, any errors reading a
directory will be ignored, otherwise exceptions will be
raised.

	on_error (callable) – If ignore_errors is false, then
this callable will be invoked with a path and the exception
object. It should return True to ignore the error, or False
to re-raise it.

	search (str) – If 'breadth' then the directory will be
walked top down. Set to 'depth' to walk bottom up.

	filter (list) – If supplied, this parameter should be a list of
filename patterns, e.g. ['*.py']. Files will only be
returned if the final component matches one of the patterns.

	exclude_dirs (list) – A list of patterns that will be used
to filter out directories from the walk. e.g. ['*.svn',
'*.git'].

	
classmethod bind(fs)

	This binds in instance of the Walker to a given filesystem, so
that you won’t need to explicitly provide the filesystem as a
parameter. Here’s an example of binding:

>>> from fs import open_fs
>>> from fs.walk import Walker
>>> home_fs = open_fs('~/')
>>> walker = Walker.bind(home_fs)
>>> for path in walker.files(filter=['*.py']):
... print(path)

Unless you have written a customized walker class, you will be
unlikely to need to call this explicitly, as filesystem objects
already have a walk attribute which is a bound walker
object. Here’s how you might use it:

>>> from fs import open_fs
>>> home_fs = open_fs('~/')
>>> for path in home_fs.walk.files(filter=['*.py']):
... print(path)

	Parameters:	fs – A filesystem object.

	Returns:	a BoundWalker

	
check_file(fs, info)

	Check if a filename should be included in the walk. Override to
exclude files from the walk.

	Parameters:	
	fs (FS) – A FS object.

	info – A Info object.

	Return type:	bool

	
check_open_dir(fs, info)

	Check if a directory should be opened. Override to exclude
directories from the walk.

	Parameters:	
	fs (FS) – A FS object.

	info – A Info object.

	Return type:	bool

	
filter_files(fs, infos)

	Filters a sequence of resource Info objects.

The default implementation filters those files for which
check_file() returns True.

	Parameters:	
	fs (FS) – A FS object.

	infos (list) – A list of Info instances.

	Return type:	list

	
walk(fs, path=u'/', namespaces=None)

	Walk the directory structure of a filesystem.

	Parameters:	
	fs – A FS object.

	path (str) – a path to a directory.

	namespaces (list) – A list of additional namespaces to add
to the Info objects.

	Returns:	Step iterator.

The return value is an iterator of (<path>, <dirs>, <files>)
named tuples, where <path> is an absolute path to a
directory, and <dirs> and <files> are a list of
Info objects for directories and files
in <path>.

Here’s an example:

home_fs = open_fs('~/')
walker = Walker(filter=['*.py'])
for path, dirs, files in walker.walk(home_fs, namespaces=['details']):
 print("[{}]".format(path))
 print("{} directories".format(len(dirs)))
 total = sum(info.size for info in files)
 print("{} bytes {}".format(total))

	
class fs.walk.WalkerBase

	The base class for a Walker.

To create a custom walker, implement
walk() in a sub-class.

See Walker() for a fully featured walker object that
should be adequate for all but your most exotic directory walking
needs.

	
dirs(fs, path=u'/')

	Walk a filesystem, yielding absolute paths to directories.

	Parameters:	
	fs (str) – A FS object.

	path (str) – A path to a directory.

	
files(fs, path=u'/')

	Walk a filesystem, yielding absolute paths to files.

	Parameters:	
	fs – A FS object.

	path (str) – A path to a directory.

	Returns:	An iterable of file paths.

	
info(fs, path=u'/', namespaces=None)

	Walk a filesystem, yielding tuples of (<absolute path>,
<resource info>).

	Parameters:	
	fs (str) – A FS object.

	path (str) – A path to a directory.

	namespaces (list) – A list of additional namespaces to add
to the Info objects.

	Returns:	An iterable of Info objects.

	
walk(fs, path=u'/', namespaces=None)

	Walk the directory structure of a filesystem.

	Parameters:	
	fs – A FS object.

	path (str) – a path to a directory.

	namespaces (list) – A list of additional namespaces to add
to the Info objects.

	Returns:	Iterator of Step named tuples.

fs.wildcard

Match wildcard filenames.

	
fs.wildcard.get_matcher(patterns, case_sensitive)

	Get a callable that checks a list of names matches the given
wildcard patterns.

	Parameters:	
	patterns (list) – A list of wildcard pattern. e.g. ["*.py",
"*.pyc"]

	case_sensitive (bool) – If True, then the callable will be case
sensitive, otherwise it will be case insensitive.

	Return type:	callable

Here’s an example:

>>> import wildcard
>>> is_python = wildcard.get_macher(['*.py'])
>>> is_python('__init__.py')
>>> True
>>> is_python('foo.txt')
>>> False

	
fs.wildcard.imatch(pattern, name)

	Test whether name matches pattern, ignoring
case differences.

	Parameters:	
	pattern (str) – A wildcard pattern. e.g. "*.py"

	name (str) – A filename

	Return type:	bool

	
fs.wildcard.imatch_any(patterns, name)

	Test if a name matches at least one of a list of patterns, ignoring
case differences. Will return True if patterns is an empty
list.

	Parameters:	
	patterns (list) – A list of wildcard pattern. e.g. ["*.py",
"*.pyc"]

	name (str) – A filename.

	Return type:	bool

	
fs.wildcard.match(pattern, name)

	Test whether name matches pattern.

	Parameters:	
	pattern (str) – A wildcard pattern. e.g. "*.py"

	name (str) – A filename

	Return type:	bool

	
fs.wildcard.match_any(patterns, name)

	Test if a name matches at least one of a list of patterns. Will
return True if patterns is an empty list.

	Parameters:	
	patterns (list) – A list of wildcard pattern. e.g. ["*.py",
"*.pyc"]

	name (str) – A filename.

	Return type:	bool

fs.wrap

fs.wrap

A collection of WrapFS objects that modify the
behavior of another filesystem.

Here’s an example that opens a filesystem then makes it read only:

from fs import open_fs
from fs.wrap import read_only

projects_fs = open_fs('~/projects')
read_only_projects_fs = read_only(projects_fs)

Will raise ResourceReadOnly exception
read_only_projects_fs.remove('__init__.py')

	
class fs.wrap.WrapCachedDir(wrap_fs)

	Caches filesystem directory information.

This filesystem caches directory information retrieved from a
scandir call. This may speed up code that calls isdir,
isfile, or gettype too frequently.

Note

Using this wrap will prevent changes to directory information
being visible to the filesystem object. Consequently it is best
used only in a fairly limited scope where you don’t expected
anything on the filesystem to change.

	
class fs.wrap.WrapReadOnly(wrap_fs)

	Makes a Filesystem read-only. Any call that would would write data
or modify the filesystem in any way will raise a
ResourceReadOnly exception.

	
fs.wrap.cache_directory(fs)

	Make a filesystem that caches directory information.

	Parameters:	fs – A FS object.

	Returns:	A filesystem that caches results of scandir, isdir
and other methods which read directory information.

	
fs.wrap.read_only(fs)

	Make a read-only filesystem.

	Parameters:	fs – A FS object.

	Returns:	A read only version of fs.

fs.wrapfs

	
class fs.wrapfs.WrapFS(wrap_fs)

	”
A proxy for a filesystem object.

This class exposes an filesystem interface, where the data is
stored on another filesystem(s), and is the basis for
SubFS and other virtual filesystems.

	
delegate_fs()

	Get the filesystem.

This method should return a filesystem for methods not
associated with a path, e.g. getmeta().

	
delegate_path(path)

	Encode a path for proxied filesystem.

	Parameters:	path (str) – A path on the fileystem.

	Returns:	a tuple of <filesystem>, <new path>

	Return type:	tuple

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 fs	

 	
 	
 fs.appfs	

 	
 	
 fs.compress	

 	
 	
 fs.copy	

 	
 	
 fs.errors	

 	
 	
 fs.ftpfs	

 	
 	
 fs.info	

 	
 	
 fs.memoryfs	

 	
 	
 fs.mode	

 	
 	
 fs.mountfs	

 	
 	
 fs.move	

 	
 	
 fs.multifs	

 	
 	
 fs.opener.base	

 	
 	
 fs.opener.errors	

 	
 	
 fs.opener.parse	

 	
 	
 fs.opener.registry	

 	
 	
 fs.osfs	

 	
 	
 fs.path	

 	
 	
 fs.permissions	

 	
 	
 fs.subfs	

 	
 	
 fs.tarfs	

 	
 	
 fs.tempfs	

 	
 	
 fs.tools	

 	
 	
 fs.tree	

 	
 	
 fs.walk	

 	
 	
 fs.wildcard	

 	
 	
 fs.wrap	

 	
 	
 fs.wrapfs	

 	
 	
 fs.zipfs	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

A

 	
 	abspath() (in module fs.path)

 	accessed (fs.info.Info attribute)

 	add() (fs.permissions.Permissions method)

 	add_fs() (fs.multifs.MultiFS method)

 	appendbytes() (fs.base.FS method)

 	appending (fs.mode.Mode attribute)

 	appendtext() (fs.base.FS method)

 	
 	as_str() (fs.permissions.Permissions method)

 	assert_bytes() (fs.test.FSTestCases method)

 	assert_exists() (fs.test.FSTestCases method)

 	assert_isdir() (fs.test.FSTestCases method)

 	assert_isfile() (fs.test.FSTestCases method)

 	assert_not_exists() (fs.test.FSTestCases method)

 	assert_text() (fs.test.FSTestCases method)

B

 	
 	basename() (in module fs.path)

 	binary (fs.mode.Mode attribute)

 	
 	bind() (fs.walk.Walker class method)

 	BoundWalker (class in fs.walk)

C

 	
 	cache_directory() (in module fs.wrap)

 	check() (fs.base.FS method)

 	(fs.permissions.Permissions method)

 	check_file() (fs.walk.Walker method)

 	check_open_dir() (fs.walk.Walker method)

 	check_readable() (in module fs.mode)

 	check_writable() (in module fs.mode)

 	clean() (fs.tempfs.TempFS method)

 	close() (fs.base.FS method)

 	ClosingSubFS (class in fs.subfs)

 	combine() (in module fs.path)

 	copy() (fs.base.FS method)

 	(fs.info.Info method)

 	(fs.permissions.Permissions method)

 	
 	copy_dir() (in module fs.copy)

 	copy_dir_if_newer() (in module fs.copy)

 	copy_file() (in module fs.copy)

 	copy_file_data() (in module fs.tools)

 	copy_file_if_newer() (in module fs.copy)

 	copy_fs() (in module fs.copy)

 	copy_fs_if_newer() (in module fs.copy)

 	copy_structure() (in module fs.copy)

 	copydir() (fs.base.FS method)

 	create (fs.mode.Mode attribute)

 	create() (fs.base.FS method)

 	(fs.permissions.Permissions class method)

 	created (fs.info.Info attribute)

 	CreateFailed

D

 	
 	delegate_fs() (fs.wrapfs.WrapFS method)

 	delegate_path() (fs.wrapfs.WrapFS method)

 	desc() (fs.base.FS method)

 	DestinationExists

 	destroy_fs() (fs.test.FSTestCases method)

 	DirectoryExists

 	
 	DirectoryExpected

 	DirectoryNotEmpty

 	dirname() (in module fs.path)

 	dirs (fs.walk.Step attribute)

 	dirs() (fs.walk.BoundWalker method)

 	(fs.walk.WalkerBase method)

 	dump() (fs.permissions.Permissions method)

E

 	
 	EntryPointError

 	
 	exclusive (fs.mode.Mode attribute)

 	exists() (fs.base.FS method)

F

 	
 	features (fs.ftpfs.FTPFS attribute)

 	FileExists

 	FileExpected

 	files (fs.walk.Step attribute)

 	files() (fs.walk.BoundWalker method)

 	(fs.walk.WalkerBase method)

 	FilesystemClosed

 	filter_files() (fs.walk.Walker method)

 	filterdir() (fs.base.FS method)

 	forcedir() (in module fs.path)

 	frombase() (in module fs.path)

 	FS (class in fs.base)

 	fs.appfs (module)

 	fs.compress (module)

 	fs.copy (module)

 	fs.errors (module)

 	fs.ftpfs (module)

 	fs.info (module)

 	fs.memoryfs (module)

 	fs.mode (module)

 	fs.mountfs (module)

 	
 	fs.move (module)

 	fs.multifs (module)

 	fs.opener.base (module)

 	fs.opener.errors (module)

 	fs.opener.parse (module)

 	fs.opener.registry (module)

 	fs.osfs (module)

 	fs.path (module)

 	fs.permissions (module)

 	fs.subfs (module)

 	fs.tarfs (module)

 	fs.tempfs (module)

 	fs.tools (module)

 	fs.tree (module)

 	fs.walk (module)

 	fs.wildcard (module)

 	fs.wrap (module)

 	fs.wrapfs (module)

 	fs.zipfs (module)

 	FSError

 	FSTestCases (class in fs.test)

 	FTPFS (class in fs.ftpfs)

G

 	
 	g_r (fs.permissions.Permissions attribute)

 	g_w (fs.permissions.Permissions attribute)

 	g_x (fs.permissions.Permissions attribute)

 	get() (fs.info.Info method)

 	get_fs() (fs.multifs.MultiFS method)

 	get_intermediate_dirs() (in module fs.tools)

 	get_matcher() (in module fs.wildcard)

 	get_mode() (fs.permissions.Permissions class method)

 	get_opener() (fs.opener.registry.Registry method)

 	getbasic() (fs.base.FS method)

 	
 	getbytes() (fs.base.FS method)

 	getdetails() (fs.base.FS method)

 	getinfo() (fs.base.FS method)

 	getmeta() (fs.base.FS method)

 	getsize() (fs.base.FS method)

 	getsyspath() (fs.base.FS method)

 	gettext() (fs.base.FS method)

 	gettype() (fs.base.FS method)

 	geturl() (fs.base.FS method)

 	gid (fs.info.Info attribute)

 	group (fs.info.Info attribute)

H

 	
 	has_namespace() (fs.info.Info method)

 	
 	hassyspath() (fs.base.FS method)

 	hasurl() (fs.base.FS method)

I

 	
 	IllegalBackReference

 	imatch() (in module fs.wildcard)

 	imatch_any() (in module fs.wildcard)

 	Info (class in fs.info)

 	info() (fs.walk.BoundWalker method)

 	(fs.walk.WalkerBase method)

 	InsufficientStorage

 	InvalidCharsInPath

 	InvalidPath

 	is_dir (fs.info.Info attribute)

 	is_file (fs.info.Info attribute)

 	is_link (fs.info.Info attribute)

 	is_writeable() (fs.info.Info method)

 	
 	isabs() (in module fs.path)

 	isbase() (in module fs.path)

 	isclosed() (fs.base.FS method)

 	isdir() (fs.base.FS method)

 	isdotfile() (in module fs.path)

 	isempty() (fs.base.FS method)

 	isfile() (fs.base.FS method)

 	islink() (fs.base.FS method)

 	isparent() (in module fs.path)

 	issamedir() (in module fs.path)

 	iswildcard() (in module fs.path)

 	iterate_fs() (fs.multifs.MultiFS method)

 	iteratepath() (in module fs.path)

J

 	
 	join() (in module fs.path)

L

 	
 	listdir() (fs.base.FS method)

 	
 	load() (fs.permissions.Permissions class method)

 	lock() (fs.base.FS method)

M

 	
 	make_fs() (fs.test.FSTestCases method)

 	make_mode() (in module fs.permissions)

 	make_path() (fs.info.Info method)

 	makedir() (fs.base.FS method)

 	makedirs() (fs.base.FS method)

 	manage_fs() (fs.opener.registry.Registry method)

 	match() (fs.base.FS method)

 	(in module fs.wildcard)

 	match_any() (in module fs.wildcard)

 	MemoryFS (class in fs.memoryfs)

 	metadata_changed (fs.info.Info attribute)

 	MissingInfoNamespace

 	
 	Mode (class in fs.mode)

 	mode (fs.permissions.Permissions attribute)

 	modified (fs.info.Info attribute)

 	mount() (fs.mountfs.MountFS method)

 	MountError

 	MountFS (class in fs.mountfs)

 	move() (fs.base.FS method)

 	move_dir() (in module fs.move)

 	move_file() (in module fs.move)

 	move_fs() (in module fs.move)

 	movedir() (fs.base.FS method)

 	MultiFS (class in fs.multifs)

N

 	
 	name (fs.info.Info attribute)

 	normpath() (in module fs.path)

 	
 	NoSysPath

 	NoURL

O

 	
 	o_r (fs.permissions.Permissions attribute)

 	o_w (fs.permissions.Permissions attribute)

 	o_x (fs.permissions.Permissions attribute)

 	open() (fs.base.FS method)

 	(fs.opener.registry.Registry method)

 	open_fs() (fs.opener.base.Opener method)

 	(fs.opener.registry.Registry method)

 	
 	openbin() (fs.base.FS method)

 	opendir() (fs.base.FS method)

 	Opener (class in fs.opener.base)

 	OpenerError

 	OperationFailed

 	OperationTimeout

 	OSFS (class in fs.osfs)

P

 	
 	parse() (fs.permissions.Permissions class method)

 	parse_fs_url() (in module fs.opener.parse)

 	ParseError

 	ParseResult (class in fs.opener.parse)

 	path (fs.walk.Step attribute)

 	
 	PathError

 	PermissionDenied

 	Permissions (class in fs.permissions)

 	permissions (fs.info.Info attribute)

 	protocols (fs.opener.registry.Registry attribute)

R

 	
 	read_only() (in module fs.wrap)

 	reading (fs.mode.Mode attribute)

 	ReadTarFS (class in fs.tarfs)

 	ReadZipFS (class in fs.zipfs)

 	recursepath() (in module fs.path)

 	Registry (class in fs.opener.registry)

 	relativefrom() (in module fs.path)

 	relpath() (in module fs.path)

 	RemoteConnectionError

 	remove() (fs.base.FS method)

 	(fs.permissions.Permissions method)

 	
 	remove_empty() (in module fs.tools)

 	removedir() (fs.base.FS method)

 	RemoveRootError

 	removetree() (fs.base.FS method)

 	render() (in module fs.tree)

 	ResourceError

 	ResourceInvalid

 	ResourceLocked

 	ResourceNotFound

 	ResourceType (class in fs)

S

 	
 	scandir() (fs.base.FS method)

 	Seek (class in fs)

 	setbinfile() (fs.base.FS method)

 	setbytes() (fs.base.FS method)

 	setfile() (fs.base.FS method)

 	setguid (fs.permissions.Permissions attribute)

 	setinfo() (fs.base.FS method)

 	settext() (fs.base.FS method)

 	settimes() (fs.base.FS method)

 	
 	setuid (fs.permissions.Permissions attribute)

 	SiteConfigFS (class in fs.appfs)

 	SiteDataFS (class in fs.appfs)

 	size (fs.info.Info attribute)

 	split() (in module fs.path)

 	splitext() (in module fs.path)

 	Step (class in fs.walk)

 	sticky (fs.permissions.Permissions attribute)

 	SubFS (class in fs.subfs)

T

 	
 	TarFS (class in fs.tarfs)

 	target (fs.info.Info attribute)

 	TempFS (class in fs.tempfs)

 	test_geturl_purpose() (fs.test.FSTestCases method)

 	text (fs.mode.Mode attribute)

 	
 	to_platform() (fs.mode.Mode method)

 	to_platform_bin() (fs.mode.Mode method)

 	touch() (fs.base.FS method)

 	tree() (fs.base.FS method)

 	truncate (fs.mode.Mode attribute)

 	type (fs.info.Info attribute)

U

 	
 	u_r (fs.permissions.Permissions attribute)

 	u_w (fs.permissions.Permissions attribute)

 	u_x (fs.permissions.Permissions attribute)

 	uid (fs.info.Info attribute)

 	Unsupported

 	UnsupportedProtocol

 	
 	updating (fs.mode.Mode attribute)

 	user (fs.info.Info attribute)

 	UserCacheFS (class in fs.appfs)

 	UserConfigFS (class in fs.appfs)

 	UserDataFS (class in fs.appfs)

 	UserLogFS (class in fs.appfs)

V

 	
 	validate() (fs.mode.Mode method)

 	validate_bin() (fs.mode.Mode method)

 	
 	validate_open_mode() (in module fs.mode)

 	validate_openbin_mode() (in module fs.mode)

 	validatepath() (fs.base.FS method)

W

 	
 	walk (fs.base.FS attribute)

 	walk() (fs.walk.BoundWalker method)

 	(fs.walk.Walker method)

 	(fs.walk.WalkerBase method)

 	Walker (class in fs.walk)

 	WalkerBase (class in fs.walk)

 	which() (fs.multifs.MultiFS method)

 	WrapCachedDir (class in fs.wrap)

 	
 	WrapFS (class in fs.wrapfs)

 	WrapReadOnly (class in fs.wrap)

 	write_tar() (fs.tarfs.WriteTarFS method)

 	(in module fs.compress)

 	write_zip() (fs.zipfs.WriteZipFS method)

 	(in module fs.compress)

 	WriteTarFS (class in fs.tarfs)

 	WriteZipFS (class in fs.zipfs)

 	writing (fs.mode.Mode attribute)

Z

 	
 	ZipFS (class in fs.zipfs)

 _static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Welcome to PyFilesystem2's documentation!

 		Introduction

 		Installing

 		Guide

 		Why use PyFilesystem?

 		Opening Filesystems

 		Tree Printing

 		Closing

 		Directory Information

 		Sub Directories

 		Working with Files

 		Walking

 		Moving and Copying

 		Concepts

 		Paths

 		System Paths

 		Sandboxing

 		Errors

 		Resource Info

 		Info Objects

 		Namespaces

 		Basic Namespace

 		Details Namespace

 		Access Namespace

 		Stat Namespace

 		LStat Namespace

 		Link Namespace

 		Other Namespaces

 		Missing Namespaces

 		Raw Info

 		FS URLs

 		Format

 		URL Parameters

 		Opening FS URLS

 		Walking

 		Walk Methods

 		Search Algorithms

 		Builtin Filesystems

 		App Filesystems

 		FTP Filesystem

 		Memory Filesystem

 		Mount Filesystem

 		Multi Filesystem

 		OS Filesystem

 		Sub Filesystem

 		Tar Filesystem

 		Temporary Filesystem

 		Zip Filesystem

 		Implementing Filesystems

 		Constructor

 		Thread Safety

 		Python Versions

 		Testing Filesystems

 		Essential Methods

 		Non - Essential Methods

 		Helper Methods

 		Creating an extension

 		Naming Convention

 		Opener

 		The setup.py file

 		Good Practices

 		Let us Know

 		Live Example

 		External Filesystems

 		Reference

 		fs.base.FS

 		fs.compress

 		fs.copy

 		fs.enums

 		fs.errors

 		fs.info

 		fs.move

 		fs.mode

 		fs.opener

 		fs.opener.base

 		fs.opener.parse

 		fs.opener.registry

 		fs.opener.errors

 		fs.path

 		fs.permissions

 		fs.tools

 		fs.tree

 		fs.walk

 		fs.wildcard

 		fs.wrap

 		fs.wrap

 		fs.wrapfs

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

