
pyFDA: Software Architecture and Filter
API

Christian Münker

pyFDA screenshot

20. Juli 2015

Christian.Muenker@hm.edu

mailto:Christian.Muenker@hm.edu

Inhaltsverzeichnis

Table of Contents 2

1 Overview 2
1.1 Class Structure and Hierarchy . 2
1.2 Libraries and Testing . 3
1.3 Naming Conventions . 4
1.4 simpleeval . 5

2 Input Widgets 5

3 Plot Widgets 5

4 Signaling 5

5 Filter Design Objects 5
5.1 Who needs you? . 6
5.2 Info strings . 7

1 Overview

pyFDA has been written to be extensible and modular, easing the addition of own filter and
analysis modules.

This has (hopefully) been achieved with three central concepts:

Data persistence in a central global dictionary: The file filterbroker.py with module-level
attributes (dictionaries) is imported by all files that need to store and exchange para-
meters, filter designs etc. (https://docs.python.org/3/faq/programming.html#how-do-
i-share-global-variables-across-modules). This global dictionary is also saved to /
loaded from disk using (c)Pickle.

Hierarchical signaling: As the number of input, plot and design widgets increases, it gets
harder to track which widgets need to be updated when. Hence, the information is
collected at each hierarchical level and propagated upwards resp. received and distributed
downwards.

Dynamically imported design files: A tree with all available filter design classes and characte-
ristics is built at the start of the program from all files in the filter_widgets directory.
The actual classes with the design algorithms are imported dynamically when needed,
the GUI is adapted according to the parameters defined in each filter design class. Ad-
ditional widgets can be defined in the design class.

1.1 Class Structure and Hierarchy

The following graphics have been created from the top directory using pyreverse and some
post-processing with LibreOffice (and they are only readable when zoomed in):

pyreverse -o pdf -k -ignore=simpleeval.py,input_target_spec.py -p pyFDA .

https://docs.python.org/3/faq/programming.html#how-do-i-share-global-variables-across-modules
https://docs.python.org/3/faq/programming.html#how-do-i-share-global-variables-across-modules

1 Overview 3

where -k only shows the class names (not the attributes and methods) -p sets the project
name that is the base for the filenames

__init__ filter_design filter_design.bessel filter_design.butter filter_design.cheby1 filter_design.cheby2 filter_design.ellip filter_design.equiripple filter_design.firwin

filter_tree_builder

filterbroker

input_widgets

input_widgets.input_all

input_widgets.input_coeffs input_widgets.input_filesinput_widgets.input_info input_widgets.input_pz input_widgets.input_specs

input_widgets.input_amp_specspyfda_lib_fix_v3 input_widgets.input_filterinput_widgets.input_freq_specs input_widgets.input_order input_widgets.input_weight_specs

plot_widgetsplot_widgets.plot_3d

plot_widgets.plot_utils

plot_widgets.plot_all

plot_widgets.plot_hf plot_widgets.plot_impz plot_widgets.plot_phi plot_widgets.plot_pz plot_widgets.plot_tau_g

pyFDA

Abbildung 1: Packages in pyFDA

Abbildung 2: Class hierarchy in pyFDA (composition diagram)

1.2 Libraries and Testing

No proper testing strategy has been implemented so far (sorry!). However, all files / cu-
stom widgets can be run independently to test for syntactic correctness and basic func-
tionality, especially of GUI elements. This has been achieved by the technique described
in http://stackoverflow.com/questions/11536764/attempted-relative-import-in-non-

package-even-with-init-py :

”
The python import mechanism works relative to the __name__ of the current

file. When you execute a file directly, it doesn’t have it’s usual name, but has
"__main__" as its name instead. So relative imports don’t work.

You can use import some_library directly if you have this above your imports:

]]
]]]1 if __name__ == ’__main__’ and __package__ is None:
]]]2 from os import sys, path
]]]3 sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))
]]

You can use the __package__ attribute to ensure that an executable script files
in a package can relatively import other modules from within the same package.
The __package__ attribute tells that file what name it’s supposed to have in the
package hierarchy. See http://www.python.org/dev/peps/pep-0366/ for details.“

In this project, the following libraries and common files from the top level directory are used:

20. Juli 2015

http://stackoverflow.com/questions/11536764/attempted-relative-import-in-non-package-even-with-init-py
http://stackoverflow.com/questions/11536764/attempted-relative-import-in-non-package-even-with-init-py
http://www.python.org/dev/peps/pep-0366/

4 Inhaltsverzeichnis

filterbroker.py : This is the central file used as the data exchange hub where global dictionaries
are defined (see section xxx).

pyfda_lib.py : This library contains some DSP and general helper functions.

pyfda_fixlib.py : This library contains the fast fixpoint classes and methods.

simpleeval.py : With the help of this library simple expressions can be evaluated in line edit
fields (see section xxx).

”
If you have a script script.py in package pack.subpack, then setting it’s

__package__ to pack.subpack will let you do from ..module import something
to import something from pack.module. Note that, as the documentation says,
you still have to have the top-level package on the system path. This is already
the way things work for imported modules. The only thing __package__ does is
let you use that behavior for directly-executed scripts as well.“

Another option is using the -m option of the python interpreter. However, you can’t run
python -m core_test from within the tests subdirectory - it has to be from the parent, or
you have to add the parent to the path.

1.3 Naming Conventions

The following conventions have been adopted for naming instance names of UI widgets and
layouts:

QtGui Widgets

lblXXX: QLabels

cmbXXX: QComboBox

chkXXX: QCheckBox

butXXX: QPushButton

tblXXX: QTableWidget

frmXXX: QFrame

ledXXX: QLineedit

tabXXX: QTabWidget

spcXXX: QSpacerItem

QtGui Layouts

layVXXX: QVBoxLayout

layHXXX: QHBoxLayout

layGXXX: QGridLayout

QtCore sigXXX Signals

Prof. Dr. Christian Münker

2 Input Widgets 5

1.4 simpleeval

2 Input Widgets

3 Plot Widgets

4 Signaling

When a filter design has been changed, this information is propagated through the hierarchy
to various input and plot widgets using Qt’s signal-slot mechanism.

pyFDA

Plot3D PlotHf PlotImpz PlotPZPlotPhi PlotTauG

PlotAll

plot_widgets

InputFilterInputAmpSpecs

InputSpecsInputCoeffs InputPZ

InputFreqSpecs

InputInfo

InputOrder

InputFiles

InputWeightSpecs

InputAll

sFD, sSC

input_widgets

sFD

sFD
sFD

sSC sSC sSC sSCsSC

sFD, sSC

sigFilterDesigned = sFD
sigSpecsChanged = sSC

Abbildung 3: Signaling across hierarchies in pyFDA

Individual widgets generate signals when the filter specs have been changed or a new filter
has been designed:

]]
]]]1 from PyQt4.QtCore import pyqtSignal
]]]2 ...
]]]3 class MyTopClass(QtGui.QWidget):
]]]4

]]]5 sigSpecsChanged = pyqtSignal()
]]]6 sigFilterDesigned = pyqtSignal()
]]]7 ...
]]]8 def myInputWidget(self):
]]]9 self.sigSpecsChanged.emit()
]]]10 self.sigFilterDesigned.emit()
]]

where sigSpecsChanged signifies that specifications have been changed (no replot necessary)
and sigFilterDesigned that the filter design is finished.

5 Filter Design Objects

The structure of a filter file and the attributes and methods that need to be provided are
described in this section.

When starting pyFDA, filter_tree_builder.py is run, extracting the relevant information
from all *.py files found in the subdirectory filter design and building a hierachical tree in
filter_broker.py.

20. Juli 2015

6 Inhaltsverzeichnis

InputSpecsInputCoeffs InputPZ InputInfoInputFiles

sFD, sSC

input_widgets.py

sFD

sFD
sFD

InputWidgets

sFD, sSC sigFilterDesigned = sFD
sigSpecsChanged = sSC

Abbildung 4: Signaling between input widgets (component: input widgets.py)

When adding new filter objects my_filter.py to an pyFDA installation, two things need to
be kept in mind:

• copying it to the filter_widgets directory

• adding a line with the filename to the list of filter files Init.txt in the same directory.

5.1 Who needs you?

A filter design object is instantiated dynamically every time the filter design method is changed
in

input_widgets/input_filter.py in SelectFilter.setDesignMethod()

The handle to this object is stored in filterbroker.py in filObj.

The actual design methods (LP, HP, ...) are called dynamically in input_widgets/input_specs.py
in InputSpecs.startDesignFilt().

An example for a design method is

]]
]]]1 def LPman(self, fil_dict):
]]]2 self.get_params(fil_dict)
]]]3 self.save(fil_dict, sig.ellip(self.N, self.A_PB, self.A_SB, self.F_PB,
]]]4 btype=’low’, analog = False, output = frmt))
]]

with the single parameter fil_dict, that supplies the global filter dictionary containing all
parameters and the designed filter as well.

The local helper function get_params() extracts parameters from the global filter dictionary
and scales the parameters if required (as in the case for ellip routines):

Prof. Dr. Christian Münker

5 Filter Design Objects 7

]]
]]]1 def get_params(self, fil_dict):
]]]2 """
]]]3 Translate parameters from the passed dictionary to instance
]]]4 parameters, scaling / transforming them if needed.
]]]5 """
]]]6 self.N = fil_dict[’N’]
]]]7 self.F_PB = fil_dict[’F_PB’] * 2 # Frequencies are normalized to f_Nyq
]]

The local helper function save() saves the filter design back to the dictionary and the filter
order and corner frequencies if they have been calculated by a minimum order algorithm.

]]
]]]1 def save(self, fil_dict, arg):
]]]2 """
]]]3 Store results of filter design in the global filter dictionary. Corner
]]]4 frequencies calculated for minimum filter order are also stored in the
]]]5 dictionary to allow for a smooth manual filter design.
]]]6 """
]]]7 pyfda_lib.save_fil(fil_dict, arg, frmt, __name__)
]]]8

]]]9 if self.F_PBC is not None: # has corner frequency been calculated?
]]]10 fil_dict[’N’] = self.N # yes, update filterbroker
]]]11 if np.isscalar(self.F_PBC): # HP or LP - a single corner frequency
]]]12 fil_dict[’F_PBC’] = self.F_PBC / 2.
]]]13 else: # BP or BS - two corner frequencies (BP or BS)
]]]14 fil_dict[’F_PBC’] = self.F_PBC[0] / 2.
]]]15 fil_dict[’F_PBC2’] = self.F_PBC[1] / 2.
]]

The method

5.2 Info strings

All information that is displayed in input_widget/input_info.py in a QtGui.QTextBrowser()
widget is provided in the multi line strings self.info and self.info_doc in Mark-
Down format. They are analyzed and converted to HTML using publish_string from
docutils.core. self.info contains self-written information on the filter design method,
self.info_doc optionally collects python docstrings. See an excerpt from ellip.py:

]]
]]]1 self.info = """
]]]2 **Elliptic filters**
]]]3

]]]4 (also known as Cauer filters) have a constant ripple :math:‘A_PB‘ resp.
]]]5 :math:‘A_SB‘ in both pass- and stopband(s).
]]]6

]]]7 For the filter design, the order :math:‘N‘, minimum stopband attenuation
]]]8 :math:‘A_SB‘, the passband ripple :math:‘A_PB‘ and
]]]9 the critical frequency / frequencies :math:‘F_PB‘ where the gain drops below
]]]10 :math:‘-A_PB‘ have to be specified.
]]]11

]]]12 **Design routines:**
]]]13

]]]14 ‘‘scipy.signal.ellip()‘‘
]]]15 ‘‘scipy.signal.ellipord()‘‘
]]]16 """
]]]17

]]]18 self.info_doc = []
]]]19 self.info_doc.append(’ellip()\n========’)

20. Juli 2015

8 Inhaltsverzeichnis

]]]20 self.info_doc.append(sig.ellip.__doc__)
]]]21 self.info_doc.append(’ellipord()\n==========’)
]]]22 self.info_doc.append(ellipord.__doc__)
]]

Prof. Dr. Christian Münker

	Table of Contents
	1 Overview
	1.1 Class Structure and Hierarchy
	1.2 Libraries and Testing
	1.3 Naming Conventions
	1.4 simpleeval

	2 Input Widgets
	3 Plot Widgets
	4 Signaling
	5 Filter Design Objects
	5.1 Who needs you?
	5.2 Info strings

