

Welcome to pyfda’s documentation!

Version: 0.2.1

Contents:

	User Manual
	Input Specs

	Input Coeffs

	Input P/Z

	Input Info

	Input Files

	Fixpoint Specs

	Plot H(f)

	Plot Phi(f)

	Plot tau(f)

	Plot P/Z

	Plot h[n]

	Plot 3D

	Customization

	Development
	Software Organization

	Signalling: What’s up?

	Persistence: Where’s the data?

	Main Routines

	Libraries

	Package input_widgets

	Package plot_widgets

	Package filter_designs

	Package fixpoint_widgets

	Literature

	API documentation
	pyfda – Main package

Indices and tables

	Index

	Module Index

	Search Page

User Manual

This part of the documentation is intended to describe the features of pyFDA that are relevant to a user (i.e. non-developer).

Once you have started up pyFDA, you’ll see a screen similar to the following figure:

[image: pyfda screenshot]

Fig. 1 Screenshot of pyfda

	Inputs widgets: On the left-hand side you see tabs for different input widgets, i.e. where you can enter and modify parameters for the filter to be designed

	Plotting widgets can be selected on the right hand side of the application.

	
	Logger window is in the lower part of the plotting window, it can be resized

	or completely closed. The content of the logger window can be selected, copied
or cleared with a right mouse button context menu.

The invidual windows can be resized using the handles (red dots).

Contents

	Input Specs

	Input Coeffs

	Input P/Z

	Input Info

	Input Files

	Fixpoint Specs

Plotting Widgets

	Plot H(f)

	Plot Phi(f)

	Plot tau(f)

	Plot P/Z

	Plot h[n]

	Plot 3D

Customization

You can customize pyfda behaviour in some configuration files:

pyfda.conf

A copy of pyfda/pyfda.conf is created in <USER_HOME>/.pyfda/pyfda.conf
where it can be edited by the user to choose which widgets and filters will be included.
Fixpoint widgets can be assigned to filter designs and one or more user directories can
be defined if you want to develop and integrate your own widgets (it’s not so hard!):

pyfda_log.conf

A copy of pyfda/pyfda_log.conf is created in <USER_HOME>/.pyfda/pyfda_log.conf
where it can be edited to control logging behaviour:

pyfda_rc.py

Layout and some parameters can be customized with the file
pyfda/pyfda_rc.py (within the install directory right now, no user copy).

Input Specs

Fig. 2 shows a typical view of the Specs tab where
you can specify the kind of filter to be designed and its specifications in the
frequency domain:

	Response type (low pass, band pass, …)

	Filter type (IIR for a recursive filter with infinite impulse response or
FIR for a non-recursive filter with finite impulse response)

	Filter class (elliptic, …) allowing you to select the filter design algorithm

[image: Screenshot of specs input window]

Fig. 2 Screenshot of specs input window

Not all combinations of design algorithms and response types are available - you
won’t be offered unavailable combinations and some fields may be greyed out.

Order

The order of the filter, i.e. the number of poles / zeros / delays is
either specified manually or the minimum order can be estimated for many filter
algorithms to fulfill a set of given specifications.

Frequency Unit

In DSP, specifications and frequencies are expressed in different ways:

\[F = \frac{f}{f_S} \textrm{ or }\Omega = \frac{2\pi f}{f_S} = 2\pi F\]

In pyfda, you can enter parameters as absolute frequency \({{f}}\), as
normalized frequency \({{F}}\) w.r.t. to the Sampling Frequency
\({f_S}\) or to the Nyquist Frequency
\(f_{Ny} = f_S / 2\) (Fig. 3):

[image: pyfda displaying normalized frequencies]

Fig. 3 Displaying normalized frequencies

Amplitude Unit

Amplitude specification can be entered as V, dB or W; they are converted
automatically. Conversion depends on the filter type (IIR vs. FIR) and whether
pass or stop band are specified. For details see the conversion functions
pyfda.pyfda_lib.unit2lin() and pyfda.pyfda_lib.lin2unit().

Background Info

Sampling Frequency

One of the most important parameters in a digital signal processing system is
the sampling frequency \({\pmb{f_S}}\), defining the clock frequency with which
the registers (flip-flops) in the system are updated. In a simple DSP system,
the clock frequency of ADC, digital filter and DAC might be identical:

[image: A simple signal processing system]

Fig. 4 A simple signal processing system

Sometimes it makes sense to change the sampling frequency in the processing system
e.g. to reduce the sampling rate of an oversampling ADC or to increase the
clocking frequency of an DAC to ease and improve reconstruction of the analog
signal.

[image: A signal processing system with muliple sampling frequencies]

Fig. 5 A signal processing system with multiple sampling frequencies

Aliasing and Nyquist Frequency

When the sampling frequency is too low, significant information is lost in the
process and the signal cannot be reconstructed without errors (forth image in Fig. 6)
[Smith99]. This effect is called aliasing.

[image: Sampling and aliasing with 4 different sinusoids]

Fig. 6 Sampling with \(f_S = 1000\) Hz of sinusoids with 4 different frequencies

When sampling with \(f_S\), the maximum signal bandwidth \(B\) that can
represented and reconstructed without errors is given by \(B < f_S/2 = f_{Ny}\). This
is also called the Nyquist frequency or bandwidth \(f_{Ny}\).
Some filter design tools and algorithms normalize frequencies w.r.t. to \(f_{Ny}\)
instead of \(f_S\).

Development

More info on this widget can be found under input_specs.

Input Coeffs

Fig. 7 shows a typical view of the b,a tab where
you can view and edit the filter coefficients. Coefficient values are updated
every time you design a new filter or update the poles / zeros.

[image: Screenshot of the coefficients tab for floating point coefficients]

Fig. 7 Screenshot of the coefficients tab for floating point coefficients

In the top row, the display of the coefficients can be disabled as a coefficient
update can be time consuming for high order filters (\(N > 100\)).

Fixpoint

When the format is not float, the fixpoint options are displayed as in
Fig. 8. Here, the format Binary has been set.

[image: Screenshot of the coefficients tab for fixpoint formats]

Fig. 8 Screenshot of the coefficients tab for fixpoint formats

Fixpoint Formats

Coefficients can be displayed in float format (the format returned by the
filter design algorithm) with the maximum precision. This is also called
“Real World Value” (RWV).

Any other format (Binary,
Hex, Decimal, CSD) is a fixpoint format with a fixed number of binary places
which triggers the display of further options. These formats (except for CSD)
are based on the integer value i.e. by simply interpreting the bits as an
integer value INT with the MSB as the sign bit

The scale between floating and fixpoint format is determined by partitioning
of the word length W into integer and fractional places WI and WF.
In general, W = WI + WF + 1 where the “+ 1” accounts for the sign bit.

Three kinds of partioning can be selected in a combo box:

	
	The integer format has no fractional bits, WF = 0 and

	W = WI + 1. This is the format used by migen as well, RWV = INT

	
	The normalized fractional format has no integer bits, WI = 0 and

	W = WF + 1.

	
	The general fractional format has an arbitrary number of fractional

	and integer bits, W = WI + WF + 1.

In any case, scaling is determined by the number of fractional bits,
\(RWV = INT \cdot 2^{-WF}\).

\[F = \frac{f}{f_S} \textrm{ or }\Omega = \frac{2\pi f}{f_S} = 2\pi F\]

It is important to understand that these settings only influence the display
of the coefficients, the frequency response etc. is only updated when the quantize
icon (the staircase) is clicked AND afterwards the changed coefficients are
saved to the dict (downwards arrow). However, when you do a fixpoint simulation
or generate Verilog code from the fixpoint tab, the selected word format is
used for the coefficients.

In addition to setting the position of the binary point you can select the
behaviour for:

	
	Quantization: The very high precision of the floating point format

	needs to be reduced for the fixpoint representation. Here you can select
between floor (truncate the LSBs), round (classical rounding) and
fix (always round to the next smallest magnitude value)

	
	Saturation: When the floating point number is outside the range of

	the fixpoint format, either two’s complement overflow occurs (wrap)
or the value is clipped to the maximum resp. minimum (“saturation”, sat)

The following shows an example of a coefficient in Q2.4 and Q0.3 format
using wrap-around and truncation. It’s easy to see that for simple wrap-around
logic, the sign of the result may change.

S | WI1 | WI0 * WF0 | WF1 | WF2 | WF3 : WI = 2, WF = 4, W = 7
0 | 1 | 0 * 1 | 0 | 1 | 1 = 43 (INT) or 43/16 = 2 + 11/16 (RWV)
 *
 | S * WF0 | WF1 | WF2 : WI = 0, WF = 3, W = 4
 0 * 1 | 0 | 1 = 7 (INT) or 7/8 (RWV)

Development

More info on this widget can be found under input_coeffs.

Input P/Z

Fig. 9 shows a typical view of the P/Z tab where
you can view and edit the filter poles and zeros. Pole / zero values are updated
every time you design a new filter or update the coefficients.

In the top row, the display of poles and zeros can be disabled as an
update can be time consuming for high order filters (\(N > 100\)).

Cartesian format

[image: Screenshot of the pole/zero tab in cartesian format]

Fig. 9 Screenshot of the pole/zero tab in cartesian format

Poles and zeros are displayed in cartesian format (\(x\) and y) by default as shown
in Fig. 9.

Polar format

[image: Screenshot of the pole/zero tab in polar format]

Fig. 10 Screenshot of the pole/zero tab in polar format

Alternatively, poles and zeros can be displayed and edited in polar format
(radius and angle) as shown in Fig. 10. Especially for zeros
which typically sit on the unit circle (\(r = 1\)) this format may be more
suitable.

Development

More info on this widget can be found under input_pz.

Input Info

Fig. 11 shows a typical view of the Info tab where
information on the current filter design and design algorithm is displayed.

[image: Screenshot of the info tab]

Fig. 11 Screenshot of the info tab

In the top row, checkboxes select which information is displayed.

The H(f)
checkbox activates the display of specifications in the frequency domain and
how well they are met. Failed specifications are highlighted in red.

The Doc$ checkbox selects whether docstring info from the corresponding python
module is displayed. The RTF checkbox selects Rich Text Format for the
documentation.

The FiltDict and FiltTree checkboxes are for debugging purposes only.

Development

More info on this widget can be found under input_info.

Input Files

Fig. 12 shows a typical view of the Files tab where
filter designs can be saved and loaded.

[image: Screenshot of the files tab]

Fig. 12 Screenshot of the files tab

Additionally, you can view the python version, paths etc. in the About popup window:

[image: Screenshot of the about pyfda popup window]

Fig. 13 Screenshot of the “About pyfda” popup window

Development

More info on this widget can be found under input_files.

Fixpoint Specs

Overview

The Fixpoint tab (Fig. 14) provides options for
generating and simulating discrete-time filters that
can be implemented in hardware. Hardware implementations for discrete-time filters
usually imply fixpoint arithmetics but this could change in the future as floating point
arithmetics can be implemented on FPGAs using dedicated floating point units (FPUs).

Order and the coefficients have been
calculated by a filter design algorithm from the pyfda.filter_designs package to meet
target filter specifications (usually in the frequency domain).

In this tab, a fixpoint implementation can be selected in the upper left corner
(fixpoint filter implementations
are available only for a few filter design algorithms at the moment, most notably
IIR filters are missing).

The fixpoint format of input word \(Q_X\) and output word
\(Q_Y\) can be adjusted for all fixpoint filters, pressing the “lock” button
makes the format of input and output word identical. Depending on the fixpoint
filter, other formats (coefficients, accumulator) can be set as well.

In general, Ovfl. combo boxes determine overflow behaviour (Two’s complement
wrap around or saturation), Quant. combo boxes select quantization behaviour
between rounding, truncation (“floor”) or round-towards-zero (“fix”). These methods
may not all be implemented for each fixpoint filter. Truncation is easiest to
implement but has an average bias of -1/2 LSB, in contrast, rounding has no bias
but requires an additional adder. Only rounding-towards-zero guarantees that the
magnitude of the rounded number is not larger than the input, thus preventing
limit cycles in recursive filters.

[image: Fixpoint parameter entry widget]

Fig. 14 Fixpoint parameter entry widget

Typical simulation results are shown in Fig. 15
(time domain) and Fig. 16 (frequency domain).

[image: Screenshot of fixpoint simulation results (time domain)]

Fig. 15 Fixpoint simulation results (time domain)

Fixpoint filters are inherently non-linear due to quantization and saturation effects,
that’s why frequency characteristics can only be derived by running a transient
simulation and calculating the Fourier response afterwards:

[image: Screenshot of fixpoint simulation results (frequency domain)]

Fig. 16 Fixpoint simulation results (frequency domain)

Configuration

The configuration file pyfda.conf lists the fixpoint classes to be used,
e.g. DF1 and DF2. pyfda.tree_builder.Tree_Builder parses this file
and writes all fixpoint modules
into the list fb.fixpoint_widgets_list. The input widget
pyfda.input_widgets.input_fixpoint_specs.Input_Fixpoint_Specs constructs a combo box from this list
with references to all successfully imported fixpoint modules.
The currently selected fixpoint widget (e.g. DF1) is imported from
pyfda.fixpoint_widgets together with the referenced image.

Development

More info on this widget can be found under input_widgets.input_fixpoint_specs.

Plot H(f)

Fig. 17 shows a typical view of the |H(f)| tab for plotting the
magnitude frequency response.

[image: Screenshot of the plot hf tab]

Fig. 17 Screenshot of the |H(f)| tab

You can plot magnitude, real or imaginary part in V (linear), W (squared) or dB
(log. scale).

Zero phase removes the linear phase as calculated from the filter order.
There is no check whether the design actually is linear phase, that’s why results
may be nonsensical. When the unit is dB or W , this option makes no sense and is
not available. It also makes no sense when the magnitude of H(f) is plotted, but
it might be interesting to look at the resulting phase.

Depending on the Inset combo box, a small inset plot of the frequency reponse
is displayed, changes of zoom, unit etc. only have an influence on the main plot
(“fixed”) or the inset plot (“edit”). This way, you can e.g. zoom into pass band
and stop band in the same plot. The handling still has some rough edges.

Show specs displays the specifications; the display makes little sense when
re(H) or im(H) is plotted.

Phase overlays a plot of the phase, the unit can be set in the phase tab.

Development

More info on this widget can be found under plot_hf.

Plot Phi(f)

Fig. 18 shows a typical view of the \(\pmb{\varphi(f)}\) tab for plotting the
phase response of an elliptical filter (IIR).

[image: Screenshot of the phi tab]

Fig. 18 Screenshot of the \(\varphi(f)\) tab

You can select the unit for the phase and whether the phase will be wrapped
between \(-\pi \ldots \pi\) or not.

Development

More info on this widget can be found under plot_phi.

Plot tau(f)

Fig. 19 shows a typical view of the \(\pmb{\tau(f)}\) tab for plotting the
group delay, here, an elliptical filter (IIR) is shown.

[image: Screenshot of the tau tab]

Fig. 19 Screenshot of the \(\tau(f)\) tab

There are no user servicable parts on this tab.

Development

More info on this widget can be found under plot_tau_g.

Plot P/Z

Fig. 20 shows a typical view of the P/Z tab for plotting
poles and zeros, here, an elliptical filter (IIR) is shown.

[image: Screenshot of the P/Z tab]

Fig. 20 Screenshot of the P/Z tab

Optionally, the magnitude frequency response can be plotted around the unit circle
to show the influence of poles and zeros (Fig. 21).

[image: Screenshot of the P/Z tab with hf]

Fig. 21 Screenshot of the P/Z tab with overlayed H(f) plot

Development

More info on this widget can be found under plot_pz.

Plot h[n]

Fig. 22 shows a typical view of the h[n] tab for plotting
the transient response and its Fourier transformation, here, an elliptical filter (IIR) is shown.

[image: Screenshot of the h[n] tab (time domain)]

Fig. 22 Screenshot of the h[n] tab (time domain)

There are a lot of options in this tab:

	Time / Frequency

	These vertical tabs select between the time (transient) and frequency (spectral)
domain. Signals are calculated in the time domain and then transformed using
Fourier transform. For an transform of periodic signals without leakage effect,
(“smeared” spectral lines) take care that:

	The filter has settled sufficiently. Select a suitable value of N0.

	The number of data points N is chosen in such a way that an integer
number of periods is transformed.

	The FFT window is set (in the Frequency tab) to rectangular. Other windows
work as well but they distribute spectral lines over several bins. When it
is not possible to capture an integer number of periods, use another window
as the rectangular window has the worst leakage effect.

	View

	What will be plotted and how.

	Stimulus

	Select the stimulus, its frequency, DC-content, noise … When the BL checkbox
is checked, the signal is bandlimited to the Nyquist frequency. Some signals
have strong harmonic content which produces aliasing. This can be seen best
in the frequency domain (e.g. for a sawtooth signal with f = 0.15). The
stimulus options can be hidden with the checkbox Stim. Options.

DC and Different sorts of noise can be added.

	Run

	Usually, plots are updated as soon as an option has been changed. This can
be disabled with the Auto checkbox for cases where the simulation takes
a long time (e.g. for some fixpoint simulations)

The Fourier transform of the transient signal can be viewed in the vertical tab
“Frequency” (Fig. 23). This is especially important for fixpoint
simulations where the frequency response cannot be calculated analytically.

[image: Screenshot of the h[n] tab (frequency domain)]

Fig. 23 Screenshot of the h[n] tab (frequency domain)

Development

More info on this widget can be found under plot_impz.

Plot 3D

Fig. 24 shows a typical view of the 3D tab for 3D visualizations
of the magnitude frequency response and poles / zeros. Fig. 24 is a
surface plot which looks nice but takes the longest time to compute.

[image: Screenshot of the 3D tab (surface plot)]

Fig. 24 Screenshot of the 3D tab (surface plot)

You can plot 3D visualizations of \(|H(z)|\) as well as \(|H(e^{j\omega})|\)
along the unit circle (UC).

For faster visualizations, start with a mesh plot (Fig. 25)
or a contour plot
and switch to a surface plot when you are pleased with scale and view.

[image: Screenshot of the 3D tab (mesh plot)]

Fig. 25 Screenshot of the 3D tab (mesh plot)

Development

More info on this widget can be found under plot_3d.

Development

This part of the documentation describes the features of pyFDA that are relevant for developers.

Contents:

	Software Organization

	Signalling: What’s up?

	Persistence: Where’s the data?

	Main Routines

	Libraries

	Package input_widgets

	Package plot_widgets

	Package filter_designs

	Package fixpoint_widgets

Software Organization

The software is organized as shown in the following figure

[image: pyfda class structure]

Fig. 26 pyfda Organization

	Communication:

	The modules communicate via Qt’s signal-slot mechanism (see: Signalling: What’s up?).

	Data Persistence:

	Common data is stored in dicts that can be accessed globally (see: Persistence: Where’s the data?).

	Customization:

	The software can be customized a.o. via the file conf.py (see: Customization).

Signalling: What’s up?

The figure above shows the general pyfda hierarchy. When parameters or settings are
changed in a widget, a Qt signal is emitted that can be processed by other widgets
with a sig_rx slot for receiving information. The dict dict_sig is attached
to the signal as a “payload”, providing information about the sender and the type
of event . sig_rx is connected to the
process_sig_rx() method that processes the dict.

Many Qt signals can be connected to one Qt slot and one signal to many slots,
so signals of input and plot widgets are collected in
pyfda.input_widgets.input_tab_widgets
and pyfda.plot_widgets.plot_tab_widgets respectively and connected collectively.

When a redraw / calculations can take a long time, it makes sense to perform these
operations only when the widget is visible and store the need for a redraw in a flag.

class MyWidget(QWidget):
 sig_resize = pyqtSignal() # emit a local signal upon resize
 sig_rx = pyqtSignal(object) # incoming signal
 sig_tx = pyqtSignal(object) # outgoing signal

 def __init__(self, parent):
 super(MyWidget, self).__init__(parent)
 self.data_changed = True # initialize flags
 self.view_changed = True
 self.filt_changed = True
 self.sig_rx.connect(self.process_sig_rx)
 # usually done in method ``_construct_UI()``

 def process_sig_rx(self, dict_sig=None):
 """
 Process signals coming in via subwidgets and sig_rx
 """
 if dict_sig['sender'] == __name__: # only needed when a ``sig_tx signal`` is fired
 logger.debug("Infinite loop detected")
 return

 if self.isVisible():
 if 'data_changed' in dict_sig or self.data_changed:
 self.recalculate_some_data() # this may take time ...
 self.data_changed = False
 if 'view_changed' in dict_sig and dict_sig['view_changed'] == 'new_limits'\
 or self.view_changed:
 self._update_my_plot() # ... while this just updates the display
 self.view_changed = False
 if 'filt_changed' in dict_sig or self.filt_changed:
 self.update_wdg_UI() # new filter needs new UI options
 self.filt_changed = False
 else:
 if 'data_changed' in dict_sig or 'view_changed' in dict_sig:
 self.data_changed = True
 self.view_changed = True
 if 'filt_changed' in dict_sig:
 self.filt_changed = True

Information is transmitted via the global sig_tx signal:

dict_sig = {'sender':__name__, 'fx_sim':'set_results', 'fx_results':self.fx_results}
self.sig_tx.emit(dict_sig)

The following dictionary keys are generally used, individual ones can be created
as needed.

	‘sender’

	Fully qualified name of the sending widget, usually given as __name__.
The sender name is needed a.o. to prevent infinite loops which may occur
when the rx event is connected to the tx signal.

	‘filt_changed’

	A different filter type (response type, algorithm, …) has been
selected or loaded, requiring an update of the UI in some widgets.

	‘data_changed’

	A filter has been designed and the actual data (e.g. coefficients)
has changed, you can add the (short) name or a data description as the dict value.
When this key is sent, most widgets have to be updated.

	‘specs_changed’

	Filter specifications have changed - this will influence only
a few widgets like the plot_hf widget that plots the filter specifications
as an overlay or the input_info widget that compares filter performance
to filter specifications.

	‘view_changed’

	When e.g. the range of the frequency axis is changed from
\(0 \ldots f_S/2\) to \(-f_S/2 \ldots f_S/2\), this information can
be propagated with the 'view_changed' key.

	‘ui_changed’

	Propagate a change of the UI to other widgets, examples are:

	'ui_changed':'csv' for a change of CSV import / export options

	'ui_changed':'resize' when the parent window has been resized

	'ui_changed':'tab' when a different tab has been selected

	‘fx_sim’

	Signal the phase / status of a fixpoint simulation (‘finished’, ‘error’)

Persistence: Where’s the data?

At startup, a dictionary is constructed with information about the filter
classes and their methods. The central dictionary fb.dict is initialized.

Main Routines

pyfda.pyfda_dirs

pyfda.tree_builder

pyfda.pyfda_lib

pyfda.filter_factory

Dynamic parameters and settings are exchanged via the dictionaries in this file.
Importing filterbroker.py runs the module once, defining all module variables
which have a global scope like class variables and can be imported like

>>> import filter_factory as ff
>>> myfil = ff.fil_factory

	
class pyfda.filter_factory.FilterFactory

	This class implements a filter factory that (re)creates the globally accessible
filter instance fil_inst from module path and class name, passed as strings.

	
call_fil_method(method, fil_dict, fc=None)

	Instantiate the filter design class passed as string fc with the
globally accessible handle fil_inst. If fc = None, use the previously
instantiated filter design class.

Next, call the design method passed as string method of the instantiated
filter design class.

	Parameters

	
	method (string) – The name of the design method to be called (e.g. ‘LPmin’)

	fil_dict (dictionary) – A dictionary with all the filter specs that is passed to the actual
filter design routine. This is usually a copy of fb.fil[0]
The results of the filter design routine are written back to the same dict.

	fc (string (optional, default: None)) – The name of the filter design class to be instantiated. When nothing
is specified, the last filter selection is used.

	Returns

	err_code –

	one of the following error codes:

	
	-1

	filter design operation has been cancelled by user

	0

	filter design method exists and is callable

	16

	passed method name is not a string

	17

	filter design method does not exist in class

	18

	filter design error containing “order is too high”

	19

	filter design error containing “failure to converge”

	99

	unknown error

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

Examples

>>> call_fil_method("LPmin", fil[0], fc="cheby1")

The example first creates an instance of the filter class ‘cheby1’ and
then performs the actual filter design by calling the method ‘LPmin’,
passing the global filter dictionary fil[0] as the parameter.

	
create_fil_inst(fc, mod=None)

	Create an instance of the filter design class passed as a string fc
from the module found in fb.filter_classes[fc].
This dictionary has been collected by tree_builder.py.

The instance can afterwards be globally referenced as fil_inst.

	Parameters

	
	fc (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the filter design class to be instantiated (e.g. ‘cheby1’ or ‘equiripple’)

	mod (str [https://docs.python.org/3/library/stdtypes.html#str] (optional, default = None)) – Fully qualified name of the filter module. When not specified, it is
read from the global dict fb.filter_classes[fc]['mod']

	Returns

	err_code –

	one of the following error codes:

	
	-1

	filter design class was instantiated successfully

	0

	filter instance exists, no re-instantiation necessary

	1

	filter module not found by FilterTreeBuilder

	2

	filter module found by FilterTreeBuilder but could not be imported

	3

	filter class could not be instantiated

	4

	unknown error during instantiation

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

Examples

>>> create_fil_instance('cheby1')
>>> fil_inst.LPmin(fil[0])

The example first creates an instance of the filter class ‘cheby1’ and
then performs the actual filter design by calling the method ‘LPmin’,
passing the global filter dictionary fil[0] as the parameter.

	
pyfda.filter_factory.fil_factory = <pyfda.filter_factory.FilterFactory object>

	Class instance of FilterFactory that can be accessed in other modules

	
pyfda.filter_factory.fil_inst = None

	Instance of current filter design class (e.g. “cheby1”), globally accessible

>>> import filter_factory as ff
>>> ff.fil_factory.create_fil_instance('cheby1') # create instance of dynamic class
>>> ff.fil_inst.LPmin(fil[0]) # design a filter

pyfda.filterbroker

Dynamic parameters and settings are exchanged via the dictionaries in this file.
Importing filterbroker.py runs the module once, defining all module variables
which have a global scope like class variables and can be imported like

>>> import filterbroker as fb
>>> myfil = fb.fil[0]

The entries in this file are only used as initial / default entries and to
demonstrate the structure of the global dicts and lists.
These initial values are also handy for module-level testing where some useful
settings of the variables is required.

Notes

Alternative approaches for data persistence could be the packages shelve or pickleshare
More info on data persistence and storing / accessing global variables:

	http://stackoverflow.com/questions/13034496/using-global-variables-between-files-in-python

	http://stackoverflow.com/questions/1977362/how-to-create-module-wide-variables-in-python

	http://pymotw.com/2/articles/data_persistence.html

	http://stackoverflow.com/questions/9058305/getting-attributes-of-a-class

	http://stackoverflow.com/questions/2447353/getattr-on-a-module

	
pyfda.filterbroker.base_dir = ''

	Project base directory

	
pyfda.filterbroker.clipboard = None

	Handle to central clipboard instance

	
pyfda.filterbroker.design_filt_state = 'changed'

	“ok”, “changed”, “error”, “failed”

	Type

	State of filter design

	
pyfda.filterbroker.filter_classes = {'Bessel': {'mod': 'pyfda.filter_designs.bessel', 'name': 'Bessel'}, 'Butter': {'mod': 'pyfda.filter_designs.butter', 'name': 'Butterworth'}, 'Cheby1': {'mod': 'pyfda.filter_designs.cheby1', 'name': 'Chebychev 1'}, 'Cheby2': {'mod': 'pyfda.filter_designs.cheby2', 'name': 'Chebychev 2'}, 'Ellip': {'mod': 'pyfda.filter_designs.ellip', 'name': 'Elliptic'}, 'EllipZeroPhz': {'mod': 'pyfda.filter_designs.ellip_zero', 'name': 'EllipZeroPhz'}, 'Equiripple': {'mod': 'pyfda.filter_designs.equiripple', 'name': 'Equiripple'}, 'Firwin': {'mod': 'pyfda.filter_designs.firwin', 'name': 'Windowed FIR'}, 'MA': {'mod': 'pyfda.filter_designs.ma', 'name': 'Moving Average'}, 'Manual_FIR': {'mod': 'pyfda.filter_designs.manual', 'name': 'Manual'}, 'Manual_IIR': {'mod': 'pyfda.filter_designs.manual', 'name': 'Manual'}}

	The keys of this dictionary are the names of all found filter classes, the values
are the name to be displayed e.g. in the comboboxes and the fully qualified
name of the module containing the class.

pyfda.pyfda_io_lib

Libraries

pyfda.pyfda_fix_lib

pyfda.pyfda_fix_lib.Fixed

Package input_widgets

This package contains the widgets for entering / selecting parameters
for the filter design.

input_tab_widgets

Tabbed container for all input widgets

	
class pyfda.input_widgets.input_tab_widgets.InputTabWidgets(parent)

	Create a tabbed widget for all input subwidgets in the list fb.input_widgets_list.
This list is compiled at startup in pyfda.tree_builder.Tree_Builder.

	
log_rx(dict_sig=None)

	Enable self.sig_rx.connect(self.log_rx) above for debugging.

input_specs

Widget stacking all subwidgets for filter specification and design. The actual
filter design is started here as well.

	
class pyfda.input_widgets.input_specs.Input_Specs(parent)

	Build widget for entering all filter specs

	
load_dict()

	Reload all specs/parameters entries from global dict fb.fil[0],
using the “load_dict” methods of the individual classes

	
process_sig_rx(dict_sig=None, propagate=False)

	Process signals coming in via subwidgets and sig_rx

All signals terminate here unless the flag propagate=True.

The sender name of signals coming in from local subwidgets is changed to
its parent widget (input_specs) to prevent infinite loops.

	
process_sig_rx_local(dict_sig=None)

	Flag signals coming in from local subwidgets with propagate=True before
proceeding with processing in process_sig_rx.

	
quit_program()

	When <QUIT> button is pressed, send ‘quit_program’

	
start_design_filt()

	Start the actual filter design process:

	store the entries of all input widgets in the global filter dict.

	call the design method, passing the whole dictionary as the
argument: let the design method pick the needed specs

	update the input widgets in case weights, corner frequencies etc.
have been changed by the filter design method

	the plots are updated via signal-slot connection

	
update_UI(dict_sig={})

	update_UI is called every time the filter design method or order
(min / man) has been changed as this usually requires a different set of
frequency and amplitude specs.

At this time, the actual filter object instance has been created from
the name of the design method (e.g. ‘cheby1’) in select_filter.py.
Its handle has been stored in fb.fil_inst.

fb.fil[0] (currently selected filter) is read, then general information
for the selected filter type and order (min/man) is gathered from
the filter tree [fb.fil_tree], i.e. which parameters are needed, which
widgets are visible and which message shall be displayed.

Then, the UIs of all subwidgets are updated using their “update_UI” method.

	
pyfda.input_widgets.input_specs.classes = {'Input_Specs': 'Specs'}

	display name

	Type

	Dict containing class name

select_filter

Subwidget for selecting the filter, consisting of combo boxes for:
- Response Type (LP, HP, Hilbert, …)
- Filter Type (IIR, FIR, CIC …)
- Filter Class (Butterworth, …)

	
class pyfda.input_widgets.select_filter.SelectFilter(parent)

	Construct and read combo boxes for selecting the filter, consisting of the
following hierarchy:

	Response Type rt (LP, HP, Hilbert, …)

	Filter Type ft (IIR, FIR, CIC …)

	Filter Class (Butterworth, …)

Every time a combo box is changed manually, the filter tree for the selected
response resp. filter type is read and the combo box(es) further down in
the hierarchy are populated according to the available combinations.

sig_tx({‘filt_changed’}) is emitted and propagated to input_filter_specs.py
where it triggers the recreation of all subwidgets.

	
load_dict()

	Reload comboboxes from filter dictionary to update changed settings
after loading a filter design from disk.
load_dict uses the automatism of _set_response_type etc.
of checking whether the previously selected filter design method is
also available for the new combination.

	
load_filter_order(enb_signal=False)

	
	Called by set_design_method or from InputSpecs (with enb_signal = False),

	load filter order setting from fb.fil[0] and update widgets

input_coeffs

Widget for displaying and modifying filter coefficients

	
class pyfda.input_widgets.input_coeffs.Input_Coeffs(parent)

	Create widget with a (sort of) model-view architecture for viewing /
editing / entering data contained in self.ba which is a list of two numpy
arrays:

	self.ba[0] contains the numerator coefficients (“b”)

	self.ba[1] contains the denominator coefficients (“a”)

The list don’t neccessarily have the same length but they are always defined.
For FIR filters, self.ba[1][0] = 1, all other elements are zero.

The length of both lists can be egalized with self._equalize_ba_length().

Views / formats are handled by the ItemDelegate() class.

	
load_dict()

	Load all entries from filter dict fb.fil[0][‘ba’] into the coefficient
list self.ba and update the display via self._refresh_table().

The filter dict is a “normal” 2D-numpy float array for the b and a coefficients
while the coefficient register self.ba is a list of two float ndarrays to allow
for different lengths of b and a subarrays while adding / deleting items.

	
process_sig_rx(dict_sig=None)

	Process signals coming from sig_rx

	
qdict2ui()

	Triggered by:
- process_sig_rx() if self.fx_specs_changed or dict_sig[‘fx_sim’] == ‘specs_changed’
-
Set the UI from the quantization dict and update the fixpoint object.
When neither WI == 0 nor WF == 0, set the quantization format to general
fractional format qfrac.

	
quant_coeffs()

	Quantize selected / all coefficients in self.ba and refresh QTableWidget

	
ui2qdict()

	Triggered by modifying
ui.cmbFormat, ui.cmbQOvfl, ui.cmbQuant, ui.ledWF, ui.ledWI
or ui.ledW (via _W_changed())
or ui.cmbQFrmt (via _set_number_format())
or ui.ledScale() (via _set_scale())
or ‘qdict2ui()’ via _set_number_format()

Read out the settings of the quantization comboboxes.

	
	Store them in the filter dict fb.fil[0][‘fxqc’][‘QCB’] and as class

	attributes in the fixpoint object self.myQ

	Emit a signal with ‘view_changed’:’q_coeff’

	Refresh the table

	
class pyfda.input_widgets.input_coeffs.ItemDelegate(parent)

	The following methods are subclassed to replace display and editor of the
QTableWidget.

	displayText() displays the data stored in the table in various number formats

	createEditor() creates a line edit instance for editing table entries

	setEditorData() pass data with full precision and in selected format to editor

	setModelData() pass edited data back to model (self.ba)

Editing the table triggers setModelData() but does not emit a signal outside
this class, only the ui.butSave button is highlighted. When it is pressed,
a signal with ‘data_changed’:’input_coeffs’ is produced in class Input_Coeffs.
Additionally, a signal is emitted with ‘view_changed’:’q_coeff’ by ui2qdict()?!

	
createEditor(parent, options, index)

	Neet to set editor explicitly, otherwise QDoubleSpinBox instance is
created when space is not sufficient?!
editor: instance of e.g. QLineEdit (default)
index: instance of QModelIndex
options: instance of QStyleOptionViewItemV4

	
displayText(text, locale)

	Display text with selected fixpoint base and number of places

text: string / QVariant from QTableWidget to be rendered
locale: locale for the text

The instance parameter myQ.ovr_flag is set to +1 or -1 for positive /
negative overflows, else it is 0.

	
initStyleOption(option, index)

	Initialize option with the values using the index index. When the
item (0,1) is processed, it is styled especially. All other items are
passed to the original initStyleOption() which then calls displayText().
Afterwards, check whether an fixpoint overflow has occured and color item
background accordingly.

	
setEditorData(editor, index)

	Pass the data to be edited to the editor:
- retrieve data with full accuracy from self.ba (in float format)
- requantize data according to settings in fixpoint object
- represent it in the selected format (int, hex, …)

editor: instance of e.g. QLineEdit
index: instance of QModelIndex

	
setModelData(editor, model, index)

	When editor has finished, read the updated data from the editor,
convert it back to floating point format and store it in both the model
(= QTableWidget) and in self.ba. Finally, refresh the table item to
display it in the selected format (via float2frmt()).

editor: instance of e.g. QLineEdit
model: instance of QAbstractTableModel
index: instance of QModelIndex

	
text(item)

	Return item text as string transformed by self.displayText()

	
pyfda.input_widgets.input_coeffs.classes = {'Input_Coeffs': 'b,a'}

	display name

	Type

	Dict containing class name

input_pz

Widget for displaying and modifying filter Poles and Zeros

	
class pyfda.input_widgets.input_pz.Input_PZ(parent)

	Create the window for entering exporting / importing and saving / loading data

	
cmplx2frmt(text, places=-1)

	Convert number “text” (real or complex or string) to the format defined
by cmbPZFrmt.

	Returns

	string

	
eventFilter(source, event)

	Filter all events generated by the QLineEdit widgets. Source and type
of all events generated by monitored objects are passed to this eventFilter,
evaluated and passed on to the next hierarchy level.

	When a QLineEdit widget gains input focus (QEvent.FocusIn), display
the stored value from filter dict with full precision

	When a key is pressed inside the text field, set the spec_edited flag
to True.

	When a QLineEdit widget loses input focus (QEvent.FocusOut), store
current value in linear format with full precision (only if
spec_edited == True) and display the stored value in selected format

	
frmt2cmplx(text, default=0.0)

	Convert format defined by cmbPZFrmt to real or complex

	
load_dict()

	Load all entries from filter dict fb.fil[0][‘zpk’] into the Zero/Pole/Gain list
self.zpk and update the display via self._refresh_table().
The explicit np.array(…) statement enforces a deep copy of fb.fil[0],
otherwise the filter dict would be modified inadvertedly. dtype=object
needs to be specified to create a numpy array from the nested lists with
differing lengths without creating the deprecation warning

“Creating an ndarray from ragged nested sequences (which is a list-or-tuple of
lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated.”

The filter dict fb.fil[0][‘zpk’] is a list of numpy float ndarrays for z / p / k values
self.zpk is an array of float ndarrays with different lengths of z / p / k subarrays
to allow adding / deleting items.

	
process_sig_rx(dict_sig=None)

	Process signals coming from sig_rx

	
setup_signal_slot()

	Setup setup signal-slot connections

	
class pyfda.input_widgets.input_pz.ItemDelegate(parent)

	The following methods are subclassed to replace display and editor of the
QTableWidget.

	displayText() displays the data stored in the table in various number formats

	createEditor() creates a line edit instance for editing table entries

	setEditorData() pass data with full precision and in selected format to editor

	setModelData() pass edited data back to model (self.zpk)

	
createEditor(parent, options, index)

	Neet to set editor explicitly, otherwise QDoubleSpinBox instance is
created when space is not sufficient?!
editor: instance of e.g. QLineEdit (default)
index: instance of QModelIndex
options: instance of QStyleOptionViewItemV4

	
displayText(text, locale)

	Display text with selected format (cartesian / polar - to be implemented)
and number of places

text: string / QVariant from QTableWidget to be rendered
locale: locale for the text

	
initStyleOption(option, index)

	Initialize option with the values using the index index. All items are
passed to the original initStyleOption() which then calls displayText().

Afterwards, check whether a pole (index.column() == 1)is outside the
UC and color item background accordingly (not implemented yet).

	
setEditorData(editor, index)

	Pass the data to be edited to the editor:
- retrieve data with full accuracy (places=-1) from zpk (in float format)
- represent it in the selected format (Cartesian, polar, …)

editor: instance of e.g. QLineEdit
index: instance of QModelIndex

	
setModelData(editor, model, index)

	When editor has finished, read the updated data from the editor,
convert it to complex format and store it in both the model
(= QTableWidget) and in zpk. Finally, refresh the table item to
display it in the selected format (via to be defined) and normalize
the gain.

editor: instance of e.g. QLineEdit
model: instance of QAbstractTableModel
index: instance of QModelIndex

	
text(item)

	Return item text as string transformed by self.displayText()

	
class pyfda.input_widgets.input_pz.ItemDelegateAnti(parent)

	The following methods are subclassed to replace display and editor of the
QTableWidget.

displayText() displays number with n_digits without sacrificing precision of
the data stored in the table.

	
displayText(self, value: Any, locale: QLocale) → str

	

	
pyfda.input_widgets.input_pz.classes = {'Input_PZ': 'P/Z'}

	display name

	Type

	Dict containing class name

input_info

Widget for displaying infos about filter and filter design method and debugging infos as well

	
class pyfda.input_widgets.input_info.Input_Info(parent)

	Create widget for displaying infos about filter specs and filter design method

	
load_dict()

	update docs and filter performance

	
process_sig_rx(dict_sig=None)

	Process signals coming from sig_rx

	
pyfda.input_widgets.input_info.classes = {'Input_Info': 'Info'}

	display name

	Type

	Dict containing class name

input_files

input_fixpoint_specs

The configuration file pyfda.conf lists which fixpoint classes (e.g. FIR_DF
and IIR_DF1) can be used with which filter design algorithm.
tree_builder parses this file and writes all fixpoint modules
into the list fb.fixpoint_widgets_list. The input widget
pyfda.input_widgets.input_fixpoint_specs constructs a combo box from this list
with references to all successfully imported fixpoint modules. The currently
selected fixpoint widget (e.g. FIR_DF) is imported from Package fixpoint_widgets
together with the referenced picture.

Each fixpoint module / class contains a widget that is constructed using helper
classes from fixpoint_widgets.fixpoint_helpers.py. The widgets allow entering
fixpoint specifications like word lengths and formats for input, output and
internal structures (like an accumulator) for each class. It also contains a
reference to a picture showing the filter topology.

Details of the mechanism and the module are described in input_widgets.input_fixpoint_specs.

Package plot_widgets

Package providing widgets for plotting various time and frequency dependent filter
properties

plot_tab_widgets

Create a tabbed widget for all plot subwidgets in the list fb.plot_widgets_list.
This list is compiled at startup in pyfda.tree_builder.Tree_Builder, it is
kept as a module variable in pyfda.filterbroker.

	
class pyfda.plot_widgets.plot_tab_widgets.PlotTabWidgets(parent)

	
	
eventFilter(source, event)

	Filter all events generated by the QTabWidget. Source and type of all
events generated by monitored objects are passed to this eventFilter,
evaluated and passed on to the next hierarchy level.

This filter stops and restarts a one-shot timer for every resize event.
When the timer generates a timeout after 500 ms, current_tab_redraw() is
called by the timer.

	
log_rx(dict_sig=None)

	Enable self.sig_rx.connect(self.log_rx) above for debugging.

plot_hf

The Plot_Hf class constructs the widget to plot the magnitude
frequency response |H(f)| of the filter either in linear or logarithmic
scale. Optionally, the magnitude specifications and the phase
can be overlayed.

	
class pyfda.plot_widgets.plot_hf.Plot_Hf(parent)

	Widget for plotting |H(f)|, frequency specs and the phase

	
align_y_axes(ax1, ax2)

	Sets tick marks of twinx axes to line up with total number of
ax1 tick marks

	
calc_hf()

	(Re-)Calculate the complex frequency response H(f)

	
draw()

	Re-calculate |H(f)| and draw the figure

	
draw_inset()

	Construct / destruct second axes for an inset second plot

	
draw_phase(ax)

	Draw phase on second y-axis in the axes system passed as the argument

	
init_axes()

	Initialize and clear the axes (this is run only once)

	
plot_spec_limits(ax)

	Plot the specifications limits (F_SB, A_SB, …) as hatched areas with borders.

	
process_sig_rx(dict_sig=None)

	Process signals coming from the navigation toolbar and from sig_rx

	
redraw()

	Redraw the canvas when e.g. the canvas size has changed

	
update_view()

	Draw the figure with new limits, scale etc without recalculating H(f)

	
pyfda.plot_widgets.plot_hf.classes = {'Plot_Hf': '|H(f)|'}

	display name

	Type

	Dict containing class name

plot_phi

Widget for plotting phase frequency response phi(f)

	
class pyfda.plot_widgets.plot_phi.Plot_Phi(parent)

	
	
calc_resp()

	(Re-)Calculate the complex frequency response H(f)

	
draw()

	Main entry point:
Re-calculate |H(f)| and draw the figure

	
init_axes()

	Initialize and clear the axes - this is only called once

	
process_sig_rx(dict_sig=None)

	Process signals coming from the navigation toolbar and from sig_rx

	
redraw()

	Redraw the canvas when e.g. the canvas size has changed

	
unit_changed()

	Unit for phase display has been changed, emit a ‘view_changed’ signal
and continue with drawing.

	
update_view()

	Draw the figure with new limits, scale etc without recalculating H(f)

	
pyfda.plot_widgets.plot_phi.classes = {'Plot_Phi': 'φ(f)'}

	display name

	Type

	Dict containing class name

plot_tau_g

Widget for plotting the group delay

	
class pyfda.plot_widgets.plot_tau_g.Plot_tau_g(parent)

	Widget for plotting the group delay

	
calc_tau_g()

	(Re-)Calculate the complex frequency response H(f)

	
init_axes()

	Initialize the axes and set some stuff that is not cleared by
ax.clear() later on.

	
process_sig_rx(dict_sig=None)

	Process signals coming from the navigation toolbar and from sig_rx

	
redraw()

	Redraw the canvas when e.g. the canvas size has changed

	
update_view()

	Draw the figure with new limits, scale etc without recalculating H(f)

	
pyfda.plot_widgets.plot_tau_g.classes = {'Plot_tau_g': 'tau_g'}

	display name

	Type

	Dict containing class name

plot_pz

Widget for plotting poles and zeros

	
class pyfda.plot_widgets.plot_pz.Plot_PZ(parent)

	
	
draw_Hf(r=2)

	Draw the magnitude frequency response around the UC

	
draw_pz()

	(re)draw P/Z plot

	
init_axes()

	Initialize and clear the axes (this is only run once)

	
process_sig_rx(dict_sig=None)

	Process signals coming from the navigation toolbar and from sig_rx

	
redraw()

	Redraw the canvas when e.g. the canvas size has changed

	
update_view()

	Draw the figure with new limits, scale etcs without recalculating H(f)
– not yet implemented, just use draw() for the moment

	
zplane(b=None, a=1, z=None, p=None, k=1, pn_eps=0.001, analog=False, plt_ax=None, plt_poles=True, style='square', anaCircleRad=0, lw=2, mps=10, mzs=10, mpc='r', mzc='b', plabel='', zlabel='')

	Plot the poles and zeros in the complex z-plane either from the
coefficients (b,`a) of a discrete transfer function `H`(`z) (zpk = False)
or directly from the zeros and poles (z,p) (zpk = True).

When only b is given, an FIR filter with all poles at the origin is assumed.

	Parameters

	
	b (array_like) – Numerator coefficients (transversal part of filter)
When b is not None, poles and zeros are determined from the coefficients
b and a

	a (array_like (optional, default = 1 for FIR-filter)) – Denominator coefficients (recursive part of filter)

	z (array_like, default = None) – Zeros
When b is None, poles and zeros are taken directly from z and p

	p (array_like, default = None) – Poles

	analog (boolean (default: False)) – When True, create a P/Z plot suitable for the s-plane, i.e. suppress
the unit circle (unless anaCircleRad > 0) and scale the plot for
a good display of all poles and zeros.

	pn_eps (float [https://docs.python.org/3/library/functions.html#float] (default : 1e-2)) – Tolerance for separating close poles or zeros

	plt_ax (handle to axes for plotting (default: None)) – When no axes is specified, the current axes is determined via plt.gca()

	plt_poles (Boolean (default : True)) – Plot poles. This can be used to suppress poles for FIR systems
where all poles are at the origin.

	style (string (default: 'square')) – Style of the plot, for style == ‘square’ make scale of x- and y-
axis equal.

	mps (integer (default: 10)) – Size for pole marker

	mzs (integer (default: 10)) – Size for zero marker

	mpc (char (default: 'r')) – Pole marker colour

	mzc (char (default: 'b')) – Zero marker colour

	lw (integer (default: 2)) – Linewidth for unit circle

	zlabel (plabel,) – This string is passed to the plot command for poles and zeros and
can be displayed by legend()

	Returns

	z, p, k

	Return type

	ndarray

Notes

	
pyfda.plot_widgets.plot_pz.classes = {'Plot_PZ': 'P / Z'}

	display name

	Type

	Dict containing class name

plot_impz

Widget for plotting impulse and general transient responses

	
class pyfda.plot_widgets.plot_impz.Plot_Impz(parent)

	Construct a widget for plotting impulse and general transient responses

	
calc_auto(autorun=None)

	Triggered when checkbox “Autorun” is clicked.
Enable or disable the “Run” button depending on the setting of the
checkbox.
When checkbox is checked (autorun == True passed via signal-
slot connection), automatically run impz().

	
calc_fft()

	(Re-)calculate FFTs of stimulus self.X, quantized stimulus self.X_q
and response self.Y using the window function self.ui.win.

	
calc_response()

	(Re-)calculate ideal filter response self.y from stimulus self.x and
the filter coefficients using lfilter(), sosfilt() or filtfilt().

Set the flag self.cmplx when response self.y or stimulus self.x
are complex and make warning field visible.

	
calc_stimulus()

	(Re-)calculate stimulus self.x

	
draw(arg=None)

	(Re-)draw the figure without recalculation. When triggered by a signal-
slot connection from a button, combobox etc., arg is a boolean or an
integer representing the state of the widget. In this case,
needs_redraw is set to True.

	
draw_data(plt_style, ax, x, y, bottom=0, label='', plt_fmt=None, mkr=False, mkr_fmt=None, **args)

	Plot x, y data (numpy arrays with equal length) in a plot style defined
by plt_style.

	Parameters

	
	plt_style (str [https://docs.python.org/3/library/stdtypes.html#str]) – one of “line”, “stem”, “step”, “dots”

	ax (matplotlib axis) – Handle to the axis where signal is

	x (array-like) – x-axis: time or frequency data

	y (array-like) – y-data

	bottom (float [https://docs.python.org/3/library/functions.html#float]) – Bottom line for stem plot. The default is 0.

	label (str [https://docs.python.org/3/library/stdtypes.html#str]) – Plot label

	plt_fmt (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – General styles (color, linewidth etc.) for plotting. The default is None.

	mkr (bool [https://docs.python.org/3/library/functions.html#bool]) – Plot a marker for every data point if enabled

	mkr_fmt (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Marker styles

	args (dictionary with additional keys and values. As they might not be) – compatible with every plot style, they have to be added individually

	Returns

	

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
draw_freq()

	(Re-)draw the frequency domain mplwidget

	
draw_response_fx(dict_sig=None)

	Get Fixpoint results and plot them

	
draw_time()

	(Re-)draw the time domain mplwidget

	
fx_select(fx=None)

	Select between fixpoint and floating point simulation.
Parameter fx can be:

	str “Fixpoint” or “Float” when called directly

	int 0 or 1 when triggered by changing the index of combobox
self.ui.cmb_sim_select (signal-slot-connection)

In both cases, the index of the combobox is updated according to the
passed argument. If the index has been changed since last time,
self.needs_calc is set to True and the run button is set to “changed”.

When fixpoint simulation is selected, all corresponding widgets are made
visible. self.fx_sim is set to True.

If self.fx_sim has changed, self.needs_calc is set to True.

	
impz(arg=None)

	
	Triggered by:

	
	construct_UI() [Initialization]

	Pressing “Run” button, passing button state as a boolean

	Activating “Autorun” via self.calc_auto()

	‘fx_sim’ : ‘specs_changed’

	

Calculate response and redraw it.

Stimulus and response are only calculated if self.needs_calc == True.

	
process_sig_rx(dict_sig=None)

	Process signals coming from
- the navigation toolbars (time and freq.)
- local widgets (impz_ui) and
- plot_tab_widgets() (global signals)

	
redraw()

	Redraw the currently visible canvas when e.g. the canvas size has changed

	
pyfda.plot_widgets.plot_impz.classes = {'Plot_Impz': 'y[n]'}

	display name

	Type

	Dict containing class name

plot_3d

Widget for plotting |H(z)| in 3D

	
class pyfda.plot_widgets.plot_3d.Plot_3D(parent)

	Class for various 3D-plots:
- lin / log line plot of H(f)
- lin / log surf plot of H(z)
- optional display of poles / zeros

	
draw()

	Main drawing entry point: perform the actual plot

	
draw_3d()

	Draw various 3D plots

	
init_axes()

	Initialize and clear the axes to get rid of colorbar
The azimuth / elevation / distance settings of the camera are restored
after clearing the axes. See
http://stackoverflow.com/questions/4575588/matplotlib-3d-plot-with-pyqt4-in-qtabwidget-mplwidget

	
process_sig_rx(dict_sig=None)

	Process signals coming from the navigation toolbar and from sig_rx

	
redraw()

	Redraw the canvas when e.g. the canvas size has changed

	
pyfda.plot_widgets.plot_3d.classes = {'Plot_3D': '3D'}

	display name

	Type

	Dict containing class name

Package filter_designs

Package providing various algorithms for FIR and IIR filter design.

pyfda.filter_designs.bessel

Design Bessel filters (LP, HP, BP, BS) with fixed or minimum order, return
the filter design in zeros, poles, gain (zpk) format

This class is re-instantiated dynamically every time the filter design method
is selected, reinitializing instance attributes.

	API version info:

	
	1.0

	initial working release

	1.1

	
	copy A_PB -> A_PB2 and A_SB -> ``A_SB2 for BS / BP designs

	mark private methods as private

	1.2

	new API using fil_save (enable SOS features)

	1.3

	new public methods destruct_UI and construct_UI (no longer
called by __init__)

	1.4

	
	module attribute filter_classes contains class name and combo box name instead of class attribute name

	FRMT is now a class attribute

	2.0

	Specify the parameters for each subwidget as tuples in a dict where the
first element controls whether the widget is visible and / or enabled.
This dict is now called self.rt_dict. When present, the dict self.rt_dict_add
is read and merged with the first one.

	2.1

	Remove empty methods construct_UI and destruct_UI and attributes
self.wdg and self.hdl

	2.2

	Rename filter_classes -> classes, remove Py2 compatibility

	
class pyfda.filter_designs.bessel.Bessel

	Design Bessel filters (LP, HP, BP, BS) with fixed or minimum order, return
the filter design in zeros, poles, gain (zpk) format

	
ft = None

	filter type

	
info = None

	filter variants

	
pyfda.filter_designs.bessel.classes = {'Bessel': 'Bessel'}

	display name

	Type

	Dict containing class name

Package fixpoint_widgets

This package contains widgets and fixpoint descriptions for simulating filter
designs with fixpoint arithmetics and for converting filter designs to Verilog
using the migen library. These Verilog netlists can be synthesized e.g. on an FPGA.

Hardware implementations for discrete-time filters usually imply fixpoint
arithmetics but this could change in the future as floating point arithmetics
can be implemented on FPGAs using dedicated floating point units (FPUs).

Filter topologies are defined in the corresponding classes and can be implemented
in hardware. The filter topologies use the order and the coefficients that have
been determined by a filter design algorithm from the pyfda.filter_designs
package for a target filter specification (usually in the frequency domain). Filter
coefficients are quantized according to the settings in the fixpoint widget.

Each fixpoint module / class contains a widget that is constructed using helper
classes from fixpoint_widgets.fixpoint_helpers. The widgets allow entering
fixpoint specifications like word lengths and formats for input, output and
internal structures (like an accumulator) for each class. It also contains a
reference to a picture showing the filter topology.

The configuration file pyfda.conf lists which fixpoint classes (e.g. FIR_DF
and IIR_DF1) can be used with which filter design algorithm.
tree_builder parses this file and writes all fixpoint modules
into the list fb.fixpoint_widgets_list.

The widgets are selected and instantiated in the widget input_widgets.input_fixpoint_specs.

The input widget
pyfda.input_widgets.input_fixpoint_specs constructs a combo box from this list
with references to all successfully imported fixpoint modules. The currently
selected fixpoint widget (e.g. FIR_DF) is imported from Package fixpoint_widgets
together with the referenced picture.

First, a filter widget is instantiated as self.fx_wdg_inst (after the previous
one has been destroyed).

Next, fx_wdg_inst.construct_fixp_filter() constructs an instance fixp_filter
of a migen filter class (of e.g. pyfda.fixpoint_widgets.fir_df).

The widget’s methods

	response = fx_wdg_inst.run_sim(stimulus)

	fx_wdg_inst.to_verilog()

are used for bit-true simulations and for generating Verilog code for the filter.

input_widgets.input_fixpoint_specs

A fixpoint filter for a given filter design is selected in this widget

Widget for simulating fixpoint filters and generating Verilog Code

	
class pyfda.input_widgets.input_fixpoint_specs.Input_Fixpoint_Specs(parent)

	Create the widget that holds the dynamically loaded fixpoint filter ui

	
embed_fixp_img(img_file)

	Embed image as self.img_fixp, either in png or svg format

	Parameters

	
	img_file – str

	and file name to image file (path) –

	
eventFilter(source, event)

	Filter all events generated by monitored QLabel, only resize events are
processed here, generating a sig_resize signal. All other events
are passed on to the next hierarchy level.

	
exportHDL()

	Synthesize HDL description of filter

	
fx_sim_init()

	Initialize fix-point simulation:

	Update the fxqc_dict containing all quantization information

	Setup a filter instance for migen simulation

	Request a stimulus signal

	
fx_sim_set_stimulus(dict_sig)

	
	Get fixpoint stimulus from dict_sig in integer format

	Pass it to the fixpoint filter and calculate the fixpoint response

	Send the reponse to the plotting widget

	
process_sig_rx(dict_sig=None)

	Process signals coming in via subwidgets and sig_rx

Play PingPong with a stimulus & plot widget:

	fx_sim_init(): Request stimulus by sending ‘fx_sim’:’get_stimulus’

	
	fx_sim_set_stimulus(): Receive stimulus from widget in ‘fx_sim’:’send_stimulus’

	and pass it to HDL object for simulation

	Send back HDL response to widget via ‘fx_sim’:’set_response’

	
resize_img()

	Triggered when self (the widget) is resized, consequently the image
inside QLabel is resized to completely fill the label while keeping
the aspect ratio.

This doesn’t really work at the moment.

	
update_fxqc_dict()

	Update the fxqc dictionary before simulation / HDL generation starts.

	
wdg_dict2ui()

	Trigger an update of the fixpoint widget UI when view (i.e. fixpoint
coefficient format) or data have been changed outside this class. Additionally,
pass the fixpoint quantization widget to update / restore other subwidget
settings.

Set the RUN button to “changed”.

	
pyfda.input_widgets.input_fixpoint_specs.classes = {'Input_Fixpoint_Specs': 'Fixpoint'}

	display name

	Type

	Dict containing class name

pyfda.fixpoint_widgets.fir_df

Widget for specifying the parameters of a direct-form DF1 FIR filter

	
class pyfda.fixpoint_widgets.fir_df.FIR_DF_wdg(parent)

	Widget for entering word formats & quantization, also instantiates fixpoint
filter class FilterFIR.

	
construct_fixp_filter()

	Construct an instance of the fixpoint filter object using the settings from
the ‘fxqc’ quantizer dict

	
dict2ui()

	Update all parts of the UI that need to be updated when specs have been
changed outside this class, e.g. coefficients and coefficient wordlength.
This also provides the initial setting for the widgets when the filter has
been changed.

This is called from one level above by
pyfda.input_widgets.input_fixpoint_specs.Input_Fixpoint_Specs.

	
run_sim(stimulus)

	Pass stimuli and run filter simulation, see
https://reconfig.io/2018/05/hello_world_migen
https://github.com/m-labs/migen/blob/master/examples/sim/fir.py

	
tb_wdg_stim(stimulus, outputs)

	use stimulus list from widget as input to filter

	
to_verilog(**kwargs)

	Convert the migen description to Verilog

	
ui2dict()

	Read out the quantization subwidgets and store their settings in the central
fixpoint dictionary fb.fil[0][‘fxqc’] using the keys described below.

Coefficients are quantized with these settings in the subdictionary under
the key ‘b’.

Additionally, these subdictionaries are returned to the caller
(input_fixpoint_specs) where they are used to update fb.fil[0]['fxqc']

	Parameters

	None –

	Returns

	
	fxqc_dict (dict) – containing the following keys and values:

	- ‘QCB’ (dictionary with coefficients quantization settings)

	- ‘QA’ (dictionary with accumulator quantization settings)

	- ‘b’ (list of coefficients in integer format)

	
update_accu_settings()

	Calculate number of extra integer bits needed in the accumulator (bit
growth) depending on the coefficient area (sum of absolute coefficient
values) for cmbW == ‘auto’ or depending on the number of coefficients
for cmbW == ‘full’. The latter works for arbitrary coefficients but
requires more bits.

The new values are written to the fixpoint coefficient dict
fb.fil[0][‘fxqc’][‘QA’].

	
update_q_coeff(dict_sig)

	Update coefficient quantization settings and coefficients.

The new values are written to the fixpoint coefficient dict as
fb.fil[0][‘fxqc’][‘QCB’] and
fb.fil[0][‘fxqc’][‘b’].

	
pyfda.fixpoint_widgets.fir_df.classes = {'FIR_DF_wdg': 'FIR_DF'}

	display name

	Type

	Dict containing widget class name

Literature

References

	JOS

	Julius O. Smith III, “Numerical Computation of Group Delay” in
“Introduction to Digital Filters with Audio Applications”,
Center for Computer Research in Music and Acoustics (CCRMA),
Stanford University, http://ccrma.stanford.edu/~jos/filters/Numerical_Computation_Group_Delay.html, referenced 2014-04-02,

	Lyons

	Richard Lyons, “Understanding Digital Signal Processing”, 3rd Ed.,
Prentice Hall, 2010.

	Smith99

	Steven W. Smith, “The Scientist and Engineer’s Guide to
Digital Signal Processing”, 3rd Ed., 1999, https://www.DSPguide.com

API documentation

pyfda – Main package

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyfda	

 	
 	
 pyfda.filter_designs	

 	
 	
 pyfda.filter_designs.bessel	

 	
 	
 pyfda.filter_factory	

 	
 	
 pyfda.filterbroker	

 	
 	
 pyfda.fixpoint_widgets.fir_df	

 	
 	
 pyfda.input_widgets.input_coeffs	

 	
 	
 pyfda.input_widgets.input_fixpoint_specs	

 	
 	
 pyfda.input_widgets.input_info	

 	
 	
 pyfda.input_widgets.input_pz	

 	
 	
 pyfda.input_widgets.input_specs	

 	
 	
 pyfda.input_widgets.input_tab_widgets	

 	
 	
 pyfda.input_widgets.select_filter	

 	
 	
 pyfda.plot_widgets.plot_3d	

 	
 	
 pyfda.plot_widgets.plot_hf	

 	
 	
 pyfda.plot_widgets.plot_impz	

 	
 	
 pyfda.plot_widgets.plot_phi	

 	
 	
 pyfda.plot_widgets.plot_pz	

 	
 	
 pyfda.plot_widgets.plot_tab_widgets	

 	
 	
 pyfda.plot_widgets.plot_tau_g	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | I
 | L
 | P
 | Q
 | R
 | S
 | T
 | U
 | W
 | Z

A

 	
 	align_y_axes() (pyfda.plot_widgets.plot_hf.Plot_Hf method)

B

 	
 	base_dir (in module pyfda.filterbroker)

 	
 	Bessel (class in pyfda.filter_designs.bessel)

C

 	
 	calc_auto() (pyfda.plot_widgets.plot_impz.Plot_Impz method)

 	calc_fft() (pyfda.plot_widgets.plot_impz.Plot_Impz method)

 	calc_hf() (pyfda.plot_widgets.plot_hf.Plot_Hf method)

 	calc_resp() (pyfda.plot_widgets.plot_phi.Plot_Phi method)

 	calc_response() (pyfda.plot_widgets.plot_impz.Plot_Impz method)

 	calc_stimulus() (pyfda.plot_widgets.plot_impz.Plot_Impz method)

 	calc_tau_g() (pyfda.plot_widgets.plot_tau_g.Plot_tau_g method)

 	call_fil_method() (pyfda.filter_factory.FilterFactory method)

 	classes (in module pyfda.filter_designs.bessel)

 	(in module pyfda.fixpoint_widgets.fir_df)

 	(in module pyfda.input_widgets.input_coeffs)

 	(in module pyfda.input_widgets.input_fixpoint_specs)

 	(in module pyfda.input_widgets.input_info)

 	(in module pyfda.input_widgets.input_pz)

 	(in module pyfda.input_widgets.input_specs)

 	(in module pyfda.plot_widgets.plot_3d)

 	(in module pyfda.plot_widgets.plot_hf)

 	(in module pyfda.plot_widgets.plot_impz)

 	(in module pyfda.plot_widgets.plot_phi)

 	(in module pyfda.plot_widgets.plot_pz)

 	(in module pyfda.plot_widgets.plot_tau_g)

 	
 	clipboard (in module pyfda.filterbroker)

 	cmplx2frmt() (pyfda.input_widgets.input_pz.Input_PZ method)

 	construct_fixp_filter() (pyfda.fixpoint_widgets.fir_df.FIR_DF_wdg method)

 	create_fil_inst() (pyfda.filter_factory.FilterFactory method)

 	createEditor() (pyfda.input_widgets.input_coeffs.ItemDelegate method)

 	(pyfda.input_widgets.input_pz.ItemDelegate method)

D

 	
 	design_filt_state (in module pyfda.filterbroker)

 	dict2ui() (pyfda.fixpoint_widgets.fir_df.FIR_DF_wdg method)

 	displayText() (pyfda.input_widgets.input_coeffs.ItemDelegate method)

 	(pyfda.input_widgets.input_pz.ItemDelegate method)

 	(pyfda.input_widgets.input_pz.ItemDelegateAnti method)

 	draw() (pyfda.plot_widgets.plot_3d.Plot_3D method)

 	(pyfda.plot_widgets.plot_hf.Plot_Hf method)

 	(pyfda.plot_widgets.plot_impz.Plot_Impz method)

 	(pyfda.plot_widgets.plot_phi.Plot_Phi method)

 	
 	draw_3d() (pyfda.plot_widgets.plot_3d.Plot_3D method)

 	draw_data() (pyfda.plot_widgets.plot_impz.Plot_Impz method)

 	draw_freq() (pyfda.plot_widgets.plot_impz.Plot_Impz method)

 	draw_Hf() (pyfda.plot_widgets.plot_pz.Plot_PZ method)

 	draw_inset() (pyfda.plot_widgets.plot_hf.Plot_Hf method)

 	draw_phase() (pyfda.plot_widgets.plot_hf.Plot_Hf method)

 	draw_pz() (pyfda.plot_widgets.plot_pz.Plot_PZ method)

 	draw_response_fx() (pyfda.plot_widgets.plot_impz.Plot_Impz method)

 	draw_time() (pyfda.plot_widgets.plot_impz.Plot_Impz method)

E

 	
 	embed_fixp_img() (pyfda.input_widgets.input_fixpoint_specs.Input_Fixpoint_Specs method)

 	eventFilter() (pyfda.input_widgets.input_fixpoint_specs.Input_Fixpoint_Specs method)

 	(pyfda.input_widgets.input_pz.Input_PZ method)

 	(pyfda.plot_widgets.plot_tab_widgets.PlotTabWidgets method)

 	
 	exportHDL() (pyfda.input_widgets.input_fixpoint_specs.Input_Fixpoint_Specs method)

F

 	
 	fil_factory (in module pyfda.filter_factory)

 	fil_inst (in module pyfda.filter_factory)

 	filter_classes (in module pyfda.filterbroker)

 	FilterFactory (class in pyfda.filter_factory)

 	FIR_DF_wdg (class in pyfda.fixpoint_widgets.fir_df)

 	
 	frmt2cmplx() (pyfda.input_widgets.input_pz.Input_PZ method)

 	ft (pyfda.filter_designs.bessel.Bessel attribute)

 	fx_select() (pyfda.plot_widgets.plot_impz.Plot_Impz method)

 	fx_sim_init() (pyfda.input_widgets.input_fixpoint_specs.Input_Fixpoint_Specs method)

 	fx_sim_set_stimulus() (pyfda.input_widgets.input_fixpoint_specs.Input_Fixpoint_Specs method)

I

 	
 	impz() (pyfda.plot_widgets.plot_impz.Plot_Impz method)

 	info (pyfda.filter_designs.bessel.Bessel attribute)

 	init_axes() (pyfda.plot_widgets.plot_3d.Plot_3D method)

 	(pyfda.plot_widgets.plot_hf.Plot_Hf method)

 	(pyfda.plot_widgets.plot_phi.Plot_Phi method)

 	(pyfda.plot_widgets.plot_pz.Plot_PZ method)

 	(pyfda.plot_widgets.plot_tau_g.Plot_tau_g method)

 	initStyleOption() (pyfda.input_widgets.input_coeffs.ItemDelegate method)

 	(pyfda.input_widgets.input_pz.ItemDelegate method)

 	
 	Input_Coeffs (class in pyfda.input_widgets.input_coeffs)

 	Input_Fixpoint_Specs (class in pyfda.input_widgets.input_fixpoint_specs)

 	Input_Info (class in pyfda.input_widgets.input_info)

 	Input_PZ (class in pyfda.input_widgets.input_pz)

 	Input_Specs (class in pyfda.input_widgets.input_specs)

 	InputTabWidgets (class in pyfda.input_widgets.input_tab_widgets)

 	ItemDelegate (class in pyfda.input_widgets.input_coeffs)

 	(class in pyfda.input_widgets.input_pz)

 	ItemDelegateAnti (class in pyfda.input_widgets.input_pz)

L

 	
 	load_dict() (pyfda.input_widgets.input_coeffs.Input_Coeffs method)

 	(pyfda.input_widgets.input_info.Input_Info method)

 	(pyfda.input_widgets.input_pz.Input_PZ method)

 	(pyfda.input_widgets.input_specs.Input_Specs method)

 	(pyfda.input_widgets.select_filter.SelectFilter method)

 	
 	load_filter_order() (pyfda.input_widgets.select_filter.SelectFilter method)

 	log_rx() (pyfda.input_widgets.input_tab_widgets.InputTabWidgets method)

 	(pyfda.plot_widgets.plot_tab_widgets.PlotTabWidgets method)

P

 	
 	Plot_3D (class in pyfda.plot_widgets.plot_3d)

 	Plot_Hf (class in pyfda.plot_widgets.plot_hf)

 	Plot_Impz (class in pyfda.plot_widgets.plot_impz)

 	Plot_Phi (class in pyfda.plot_widgets.plot_phi)

 	Plot_PZ (class in pyfda.plot_widgets.plot_pz)

 	plot_spec_limits() (pyfda.plot_widgets.plot_hf.Plot_Hf method)

 	Plot_tau_g (class in pyfda.plot_widgets.plot_tau_g)

 	PlotTabWidgets (class in pyfda.plot_widgets.plot_tab_widgets)

 	process_sig_rx() (pyfda.input_widgets.input_coeffs.Input_Coeffs method)

 	(pyfda.input_widgets.input_fixpoint_specs.Input_Fixpoint_Specs method)

 	(pyfda.input_widgets.input_info.Input_Info method)

 	(pyfda.input_widgets.input_pz.Input_PZ method)

 	(pyfda.input_widgets.input_specs.Input_Specs method)

 	(pyfda.plot_widgets.plot_3d.Plot_3D method)

 	(pyfda.plot_widgets.plot_hf.Plot_Hf method)

 	(pyfda.plot_widgets.plot_impz.Plot_Impz method)

 	(pyfda.plot_widgets.plot_phi.Plot_Phi method)

 	(pyfda.plot_widgets.plot_pz.Plot_PZ method)

 	(pyfda.plot_widgets.plot_tau_g.Plot_tau_g method)

 	process_sig_rx_local() (pyfda.input_widgets.input_specs.Input_Specs method)

 	
 	pyfda (module)

 	pyfda.filter_designs (module)

 	pyfda.filter_designs.bessel (module)

 	pyfda.filter_factory (module)

 	pyfda.filterbroker (module)

 	pyfda.fixpoint_widgets.fir_df (module)

 	pyfda.input_widgets.input_coeffs (module)

 	pyfda.input_widgets.input_fixpoint_specs (module)

 	pyfda.input_widgets.input_info (module)

 	pyfda.input_widgets.input_pz (module)

 	pyfda.input_widgets.input_specs (module)

 	pyfda.input_widgets.input_tab_widgets (module)

 	pyfda.input_widgets.select_filter (module)

 	pyfda.plot_widgets.plot_3d (module)

 	pyfda.plot_widgets.plot_hf (module)

 	pyfda.plot_widgets.plot_impz (module)

 	pyfda.plot_widgets.plot_phi (module)

 	pyfda.plot_widgets.plot_pz (module)

 	pyfda.plot_widgets.plot_tab_widgets (module)

 	pyfda.plot_widgets.plot_tau_g (module)

Q

 	
 	qdict2ui() (pyfda.input_widgets.input_coeffs.Input_Coeffs method)

 	
 	quant_coeffs() (pyfda.input_widgets.input_coeffs.Input_Coeffs method)

 	quit_program() (pyfda.input_widgets.input_specs.Input_Specs method)

R

 	
 	redraw() (pyfda.plot_widgets.plot_3d.Plot_3D method)

 	(pyfda.plot_widgets.plot_hf.Plot_Hf method)

 	(pyfda.plot_widgets.plot_impz.Plot_Impz method)

 	(pyfda.plot_widgets.plot_phi.Plot_Phi method)

 	(pyfda.plot_widgets.plot_pz.Plot_PZ method)

 	(pyfda.plot_widgets.plot_tau_g.Plot_tau_g method)

 	
 	resize_img() (pyfda.input_widgets.input_fixpoint_specs.Input_Fixpoint_Specs method)

 	run_sim() (pyfda.fixpoint_widgets.fir_df.FIR_DF_wdg method)

S

 	
 	SelectFilter (class in pyfda.input_widgets.select_filter)

 	setEditorData() (pyfda.input_widgets.input_coeffs.ItemDelegate method)

 	(pyfda.input_widgets.input_pz.ItemDelegate method)

 	
 	setModelData() (pyfda.input_widgets.input_coeffs.ItemDelegate method)

 	(pyfda.input_widgets.input_pz.ItemDelegate method)

 	setup_signal_slot() (pyfda.input_widgets.input_pz.Input_PZ method)

 	start_design_filt() (pyfda.input_widgets.input_specs.Input_Specs method)

T

 	
 	tb_wdg_stim() (pyfda.fixpoint_widgets.fir_df.FIR_DF_wdg method)

 	text() (pyfda.input_widgets.input_coeffs.ItemDelegate method)

 	(pyfda.input_widgets.input_pz.ItemDelegate method)

 	
 	to_verilog() (pyfda.fixpoint_widgets.fir_df.FIR_DF_wdg method)

U

 	
 	ui2dict() (pyfda.fixpoint_widgets.fir_df.FIR_DF_wdg method)

 	ui2qdict() (pyfda.input_widgets.input_coeffs.Input_Coeffs method)

 	unit_changed() (pyfda.plot_widgets.plot_phi.Plot_Phi method)

 	update_accu_settings() (pyfda.fixpoint_widgets.fir_df.FIR_DF_wdg method)

 	update_fxqc_dict() (pyfda.input_widgets.input_fixpoint_specs.Input_Fixpoint_Specs method)

 	
 	update_q_coeff() (pyfda.fixpoint_widgets.fir_df.FIR_DF_wdg method)

 	update_UI() (pyfda.input_widgets.input_specs.Input_Specs method)

 	update_view() (pyfda.plot_widgets.plot_hf.Plot_Hf method)

 	(pyfda.plot_widgets.plot_phi.Plot_Phi method)

 	(pyfda.plot_widgets.plot_pz.Plot_PZ method)

 	(pyfda.plot_widgets.plot_tau_g.Plot_tau_g method)

W

 	
 	wdg_dict2ui() (pyfda.input_widgets.input_fixpoint_specs.Input_Fixpoint_Specs method)

Z

 	
 	zplane() (pyfda.plot_widgets.plot_pz.Plot_PZ method)

 _static/png_pdf/packages_pyFDA.png
PYFDA input_widg

ts.input_amp_specs

PYFDA input_widgets. input_filter

PYFDA input_widgets. input_freq_specs

PYFDA input_widg

ts.nput_order

PYFDA input_widg

ts.input_weight_specs

PYFDA plot_widgets.plot_utils

//7

PYFDA.input_widgets.input_files

pYFDA input_widgets input_info

PYFDA input_widg

cinput_specs

PYFDA filterbroker | | pyFDA.input_widgets

PYFDA plot_widgets

i

PYFDA

PYFDA filter_design

PYFDA filter_design. chebyl

PYFDA filter_design.cheby2

PYFDA filter_design.equiripple

PYFDA filter_design firwin

PYFDA filter_tree_builder

7

_— 1

PYFDA plot_wi

ts.plot_Iif

PYFDA plot_widgets.plot_phi

f

/

PYFDA plot_widg

ts.plot_all

PYFDA pyFDA

PYFDA plot_widgets.mpl_pyqt4_widget

PYFDA plot_widgets plotTest

_images/pyfda_input_files.png
Specs ba P/Z Info Fies | Fixpoint

Save Filter

Load Filter

About.

_images/pyfda_input_files_about.png
pyfda Version 0.2 (c) 2013 - 2019 Christian Miinker
Design, analyze and synthesize digita ftters. Docs @ pyfda.rtfd.org (pdf)

08: Windows 7
User Name: None
Software Versions
cyder 0100
docutils 0.14
‘matplotiib 3.0.3
i installed

1162

5.9.6

3.7.3 (64 Bit)

121

115

Directories

\Users\Christian Muenker
\daten\design\python\git\pyfdapyfda
\Users\Christian Muenker\.pyfda

Temp: C:\Users\CHRIST~2\AppData\Local\Temp.

Logging Files
Config: C:\Users\Christian Muenker\.pyfda\pyfda_log.conf
Output: C:\Users\|CHRIST~2\AppData\Local\Temp\.pyfda\pyfdalog

(o | [l

_images/pyfda_input_coeffs_fixpoint.png
Specs| ba |P/z Info Files Fixpoint

(o0 <) [Fodiona <) w- [ic |
[Fr ~] = 5] |8
e=1 .1 Scale= 2

ovil.: [wrap -] Quant.: floor_~] ¥
MSB, = 1 15B = 6.1042-05

Max = 0.999969482421875

=

2] oo ooo100uoti0001
= onorooomosinion
] oo.o00o000ions
] oo-0011100011000
[oo.o00o00sions
7 eworooomosiaion

_images/pyfda_input_coeffs_float.png
-0.0505
-0.0307
0.03276
0.1464
0.2585
03054
0.2585

_images/pyfda_input_pz_cartesian.png
Specs ba | P/Z Info Files Fixpoint

Q| [Cartesian_ ~| 5 =] Digits |Cavsal
k= 0.00469
FIRIEEENES

for < 0.0001

070085

0.024456+0.9997)
-0.024456-0.9997] 0.7101+0.34701)
-1 07101034701
0.39283+0.91961) 0.7366+0.56938)
0.39283-0.91961) 0.7366-0.56938)

_images/pyfda_input_pz_polar.png
| 17 £1.5053 rad 070085
1= £-1.5953 rad 079036 = £0.45455 rad
3 -1 0.79036 = £-0.45455 rad
| 1= 411671120 0.93101 * 20.65805 rad
|17 £-1.1671 rad 0.93101 = £-0.65805 rad

_images/pyfda_input_fixpoint.png
R0 evron - pyon P LRl

Specs ba P/Z Info Fies Fixpoint
Direct-Form (DF) FIR Fiter
[FRoE) Gt P ooy,

Sim. HDL.

Create HDL

Input Format @y: OV Quant.

_images/pyfda_input_info.png
Specs ba P/Z Info |Fies Fixpoint

H(f) [Docs

RTF [JFiDict [FiltTree

0.1 00200 0.0224
o2 [s
03122 nan 110757 nan 2583606
008256 nan 0.194 nan 10225

‘men
Equiripple filters e

have the steepest rate of transition between the
frequency response’s passband and stopband of all FIR
filters. This comes at the expense of constant ripple
(equiripple) Ars and Ass in both pass and stop band.

‘The fitter-coefficients are calculated in such a way that
the transfer function minimizes the maximum error
(Minimax design) between the desired gain and the

_images/pyfda_plot_3d.png
MOl @) < P/z b D

ACN QR e EME &

x=1.92005 ,y=1.8068 ,z=-1.09304

3D-Plot of [H(e!?)| and |H(z)|

Gl T 1204 wBuc ez [fur <) [Remar <) Ougning Aphe (0)

Polar Bottom: -80 B [¥] H(f) Contour2D [reverse Colorbar stride (°)

_images/pyfda_plot_3d_mesh.png
HOI o) () P/Z b[-]-

ACN + QR 2 EME g O e e

3D-Plot of [H(e!?)| and |H(z)|

15

10

05 oo
Im

@iog. Top: 1204 d8uC @Rz RavBu_r -] [Lighting Alpha ()

Polar Bottom: -80 d8 7] H()

[Contour2p (7] reverse [Colorbar stride (7)

_images/ADC_DAC_single_fs.png
digital

Dig.
Filter

4 Interpolation
s filter H (f)

_images/SMP_aliasing.png
0s

05

i, =10Hz
sigt

0000 0005 0010 0.015 0.020

-0s

2= 50HZ

0015 0020 0.025

1,04 Fig = Juig/ fs = 0.47)

us
U
.
s s i’ »
oflfyg, =470HZ Lo f —950H20r50HZ7|
B Y T T Y TR ey SRS T ¥ e} TRCY (T Ty 5

/s>

0.030

_images/ADC_DAC_multi_fs.png
analog = >:< X fy, = >< < fg, = >< X fg, 3 >:< analog
O x i xlk XK xgIml o yydm] oy, (n] y3[n]§ vt Ya®)

S P —-<AID [n e —{IR —-|H(el“) l_. t | H, (e 12) |— DIA>—> Hip ()

@ 13) 0 00

Down DSV
sampling sampllng

_images/pyfda_dev_classes_overview.png
pckg: input_widgets

InputTabWidgets

-I DPYFDA |e-

PlotTabwidgets| Pekg ¢ plot_widgets:

Input_PZ Input_Info

Input_Fixpoint_Specs

[

Input_Coeffs| [Input Specs| [mput Files

TreeBuilder

InputOrder] | [InputTargetSpecs

[inputweightspecs]

T]

[SelectFilter] [lnputampSpecs| [iputFreqspecs] [InputFreqUnits

essel g Dynamic
instance
quiripple L1il_inst

pckg: filter_designs

[Filterbroker (fb)|
.AI[0] = {..}

L]

Plot_Phi Plot Impz | | [Plot 3D

Plot TauG Plot Hf| | [Plot PZ

MplWidget

H
MyMpl Toolbar.

fx_wdg_inst T

ckg: fixpoint

widgets

_images/pyfda_plot_hf.png
HOI o) =« P/z hin] 3D

ACN QR e EME &

Magnitude Frequency Response

0.0 0.1 0.2 0.3 0.4 0.5
F=flfs=Q/2n >

[[HL =) [@ =) O 2ero phose Tnst (=] @ Show Specs 1 phase

nav.xhtml

 Table of Contents

 		
 Welcome to pyfda’s documentation!

 		
 User Manual

 		
 Input Specs

 		
 Order

 		
 Frequency Unit

 		
 Amplitude Unit

 		
 Background Info

 		
 Development

 		
 Input Coeffs

 		
 Fixpoint

 		
 Development

 		
 Input P/Z

 		
 Cartesian format

 		
 Polar format

 		
 Development

 		
 Input Info

 		
 Development

 		
 Input Files

 		
 Development

 		
 Fixpoint Specs

 		
 Overview

 		
 Configuration

 		
 Development

 		
 Plot H(f)

 		
 Development

 		
 Plot Phi(f)

 		
 Development

 		
 Plot tau(f)

 		
 Development

 		
 Plot P/Z

 		
 Development

 		
 Plot h[n]

 		
 Development

 		
 Plot 3D

 		
 Development

 		
 Customization

 		
 pyfda.conf

 		
 pyfda_log.conf

 		
 pyfda_rc.py

 		
 Development

 		
 Software Organization

 		
 Signalling: What’s up?

 		
 Persistence: Where’s the data?

 		
 Main Routines

 		
 pyfda.pyfda_dirs

 		
 pyfda.tree_builder

 		
 pyfda.pyfda_lib

 		
 pyfda.filter_factory

 		
 pyfda.filterbroker

 		
 pyfda.pyfda_io_lib

 		
 Libraries

 		
 pyfda.pyfda_fix_lib

 		
 pyfda.pyfda_fix_lib.Fixed

 		
 Package input_widgets

 		
 input_tab_widgets

 		
 input_specs

 		
 select_filter

 		
 input_coeffs

 		
 input_pz

 		
 input_info

 		
 input_files

 		
 input_fixpoint_specs

 		
 Package plot_widgets

 		
 plot_tab_widgets

 		
 plot_hf

 		
 plot_phi

 		
 plot_tau_g

 		
 plot_pz

 		
 plot_impz

 		
 plot_3d

 		
 Package filter_designs

 		
 pyfda.filter_designs.bessel

 		
 Package fixpoint_widgets

 		
 input_widgets.input_fixpoint_specs

 		
 pyfda.fixpoint_widgets.fir_df

 		
 Literature

 		
 API documentation

 		
 pyfda – Main package

_images/pyfda_plot_phi.png
LH(e®) inrad -

IH(1 | @ «(f) P/z hIn] 3D

ACN QR e EME &

Phase Frequency Response

T T T
0.0 0.1 0.2 0.3
F=flfs=Q/2n -

5 Wropped Phase

0.4 0.5

_images/pyfda_plot_pz.png
MO o) =(f) P/Z hin] 3D

ACN QR e EME &

Pole / Zero Plot

1.0 o

Imaginary axis
°
5
1

-1.0 -

[
‘t\ /*

X\
\

=15 -1.0 =05 0.0 0.5
Real axis

[T show [H(R)I

T
10

15

_images/pyfda_plot_impz.png
MO o(f) =(f) P/z hin] 3D

Ao +Qha @RE &

System Response to Bandlimited Rect. Signal

i

Frequency

ylnlinV-

T T T T T T T T T
0 25 50 75 100 125 150 175 200

n-

Stimulus [Cde [FFT Window

° f= 0.01 £ DC= 0.0

stim. Options

_images/pyfda_plot_impz_f.png
MO o) =(f) P/z hin] 3D

g - x=0.4814 y=-4.51839
3
EAon +Q%a EEE &
¥ System Response to Bandlimited Rect. Signal w/ Gaussian Noise
§
§
= —— Py =-3.69 dBW
NENBW = 0 dB
= CGAIN =1
@
° =
< @
= £
& <
®
= &
x
r T T T T 1
0.0 0.1 0.2 0.3 0.4 0.5
F=flfs=0Q/2n -
View: Response Stimulus d8:min. 120 Window:
Signal: o= 00001
Stimulus: A= 1.0 ° f;= 008 fe
i oc= 00
Auto Np= 20 N= 200

_images/pyfda_screenshot_hn_fix_f.png
PyFDA -

Specs ba P/Z Info Fies
Direct-Form (DF) FIR Fite
[FRoE) Gt P ooy,

Sim. HDL.

Create HDL

Input Format @y: OV Quant.

HOI o) ()

ACN QR e EME &

Time

Frequency

X, Y(el?)] in dBW

=20

-40

-60

-100

=120

Fixpoint System Response to Sinusoidal Signal

—— Px=-218dBW | 0

—— Pxg=-2.52 dBW
—— Py =-7.06 dBW

NENBW =0dB [~ O

I T T T
0.0 0.1 0.2 0.3

F=flfs=Q/2n -

Response [Lne__~) stimuus ([ne__=] stim.<q> [Une® =] [9db Bottom = 120

RUN

[Fopont =) DA M= 0 w= 2w

Py in dBW

d8 Window: [Rect.] B show

[mt. scale

7 stim. Options

_images/pyfda_screenshot_hn_fix_t.png
PyFDA -

Specs ba P/Z Info Files Fixpoint

Direct-For FIR Fittes
Stncaro PR oy
Sim. HDL Create HDL
Input Format @y: OV Quant.
alo .5

HOI o () P/Z

ACN QR e EME &

Fixpoint System Response to Sinusoidal Signal

40

Frequency [Ti ‘

30

204

10— |

ylnlinV-
°
]

Response [Stem® 7] stmuus [Tne

Sana: Az
i P

c | [Fopoint v] Wlauto M= 0

Stimulus:

125 150 175
n-
~] stm<q>[Uner -] [ds [FFT Window Min/max.
@=0 °fi= 002 £
pc= 00
@m0 °fi= 003 £
= 200 Tnt. scale. Stim. Options

_images/pyfda_plot_pz_hf.png
Imaginary axis

MO of) =« P/Z

ACN QR e EME &

1 30

20

15 o

1.0 —

05 —

0.0 o

!

o

o
1

|

N

o
1

|

N

n
1

|

N

o
1

Pole / Zero Plot

9] show [H()| 7] Log. Scale (. Radius

Real axis

_images/pyfda_plot_tau_g.png
M@ o A P/z hin] 3D

ACN QR e EME &

Group Delay 14

T4(el)/Ts >

T T
0.2 0.3

F=flfs=Q/2n >
__men

0.5

_images/pyfda_specs_FIR_MHz.png
Specs ba P/Z Info Files Fixpoint
Lowpass - FIR ~ Equiripple -

Grid Density |16

Order: Minimum N= 10

fs 13

Frequency in MHz Amplitude in |[dB ~
Fsg 2.6 Asp

Weight Specifications Reset
i,

W 1

_images/pyfda_specs_Hf.png
Al py"DA - Python Fiter Desi

Fop 04

3

Fa

and Anal =1
I PP
z00m rect
[Bondpass -] [-] [elipnc o
order: @ Minimum = [Magnitude Frequency Response
0 ; =N
FILTER i 0.05 -
104 0.00 4 -
~0.05 -
-0.10 4 -
—20+ : =0.15 L
i —0.20 -
/‘
B -30
= 0.24 0.26 0.28 0.30
3 -404
T
 — N //// V/ //
!
EE— —60 {LL Ll L /
Enter maximum pass band ripple Aps, minimum stop
band attenuation Ass and the corresponding corner ~70 : : :
of nd bar) nd Fog .
frequences of pass nd 40p band(s) e 2nd s 0.0 0.1 0.2 0.3 0.5
F=flfs=Q/2n -
(AL Jn@ =) Dzeopwse hetfeii x] @stowspees [phose
 —
[INFO] Filter designed with order = 5 -
[INFO] Start filter design using method 'Ellip.BPmin"
[INFO] Filter designed with order =4 o
[WARIING] Frequencies must differ by at least 0.0001 pe|

_images/pyfda_specs_fs.png
Specs | b,a Pz Info Files Fixpoint

Lowpass ~ FR ~ | [Equiripple -

Grid Density |16

Order: Minimum N 10
Target Specifications
Frequency in fs Amplitude in |[dB ~
Fsg 0.2 Asp
Weight Speci Reset

Weg 1

Wes 1

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/up.png

_static/pyfda_icon.png

_static/png_pdf/classes_pyFDA.png
plotall

DICEE pltPhi

PlotHf

PlotPhi

InputFiles

mplwidget /mplwidget

Filter TreeBuilder

MpIWidget InputAmpSpecs | | InputFreqSpecs | | InputOrder | | InputWeightSpecs SelectFilter | | MPL Widget MPL_Widget
uplToolbar Canvas \toolbar anvas
MyMplToolbar MyMplCanvas | | MyNavigationToolbar | | MyMplCanvas | | MyNavigationToolbar | | chebyl cheby2 | | equiripple firwin

_static/png_pdf/2019-classes_pyFDA.png
pckg: input_widgets

InputTabWidgets

-I DPYFDA |e-

PlotTabwidgets| Pekg ¢ plot_widgets:

Input_PZ Input_Info

Input_Fixpoint_Specs

[

Input_Coeffs| [Input Specs| [mput Files

TreeBuilder

InputOrder] | [InputTargetSpecs

[inputweightspecs]

T]

[SelectFilter] [lnputampSpecs| [iputFreqspecs] [InputFreqUnits

essel g Dynamic
instance
quiripple L1il_inst

pckg: filter_designs

[Filterbroker (fb)|
.AI[0] = {..}

L]

Plot_Phi Plot Impz | | [Plot 3D

Plot TauG Plot Hf| | [Plot PZ

MplWidget

H
MyMpl Toolbar.

fx_wdg_inst T

ckg: fixpoint

widgets

_static/png_pdf/HM_logo_2.png

