
PyFarm Documentation
Release latest

Oliver Palmer, Guido Winkelmann

February 08, 2017

Contents

1 Components 3
1.1 Core . 3
1.2 Master . 3
1.3 Agent . 3

1.3.1 Contributing To PyFarm . 3
1.3.2 Requirements . 13
1.3.3 Installation . 14
1.3.4 License . 18

2 Indices and tables 21

HTTP Routing Table 23

i

ii

PyFarm Documentation, Release latest

Attention: These documents are still undergoing revision

PyFarm is a Python based distributed job system which is intended to be easy to deploy and maintain. Initially de-
veloped for individual use new revisions have been engineered with larger deployments in mind. It’s a system that’s
focused on providing a framework for customized command execution while taking into account resource manage-
ment.

Since this project is under active development, if you have specific questions or comments you’re always welcome to
post to the google groups discussion list or via email to pyfarm@googlegroups.com.

Contents 1

https://groups.google.com/forum/#!forum/pyfarm
mailto:pyfarm@googlegroups.com

PyFarm Documentation, Release latest

2 Contents

CHAPTER 1

Components

PyFarm has several distinct roles that it must fill in order to accomplish what it was designed to do. Because of this
the project has been broken down into three components to help manage scope and limit interdependencies as much
as possible.

1.1 Core

| | Documentation | Source Code

This is the base library which provides a few modules and objects which the other two components of PyFarm use.
The primary purpose of this component is to centralize code basic functionality such as logging and configuration.

1.2 Master

| | Documentation | Source Code

This is the component responsible for storing jobs and tasks to run as well as allocation of work to remote hosts. This
component is the largest of the three components and contains the code necessary to run the web interface, interact
with the relational database, REST APIs and scheduler.

1.3 Agent

| | Documentation | Source Code

This component controls the execution of commands on remote systems as instructed by the master. This component
also contains the job types which are used as a framework for executing commands.

Contents

1.3.1 Contributing To PyFarm

Summary

PyFarm is a Python based project with the goal of creating an easy to use and deploy render farm. The project is
written on top of several existing libraries including SQLAlchemy, Flask, Twisted, and many more. While PyFarm’s
original goal is providing the base for running a render farm it can be used for other types of work as well.

3

https://github.com/pyfarm/pyfarm-core
https://github.com/pyfarm/pyfarm-master
https://github.com/pyfarm/pyfarm-agent
http://www.sqlalchemy.org/
http://flask.pocoo.org/
https://twistedmatrix.com/trac/

PyFarm Documentation, Release latest

As flexible and easy to use as the project may be, contributions from the community are always welcome. There are
many ways one can contribute to the overall project but generally they fall under either documentation, bug fixes,
features, or testing. With that in mind, if you’re looking to contribute to any of these three areas then read on to get
started.

Developer Resources

Below are some resources which are for developers wishing to contribute to PyFarm.

Coding Style

PyFarm developers should follow the conventions set fourth in PEP 8 unless told to do so otherwise. Any exceptions
or more specific example will be noted below and other may be added as time progresses. Coding style is an important
part of PyFarm because it keeps the code consistent and readable which contributes to the overall quality of the source
code.

One final thing to note is that there are places where there’s inconsistencies in style and there always will be. It’s up to
the team to maintain the style so if you spot something inconsistent with this guide while working you should always
feel free to fix it.

For other areas where there’s contention about style the developers should come to a consensus and then add their
findings to this document.

Whitespace Whitespace is an important component of any Python program. The below sets out the standards that
PyFarm follows which in practice is not far off from PEP 8

Tabs and Spaces Follow PEP8 and use spaces. To be more exact when working on PyFarm please use four spaces.
For non-python source code please also use four spaces unless the language you’re working with explicitly does not
allow this.

Basic Syntax Considerations As with the parts above you should follow PEP 8 when considering how you use
Python’s basic syntax structures. Below are some additional considerations that are specific to PyFarm as well as
some short explanations.

Quotations Python has two forms of quotations ’ and ". Functionally there’s not any difference between two
however all code, strings, error messages, etc should use ". The exception to this rule is if you need " inside of a
string, then you should use ’: ’hello "world"’. The reason for this rule is two parts:

• it’s easy to be, and often is, inconsistent when you mix ’ and "

• developers from other languages, such as C++, are more more used to using " for strings instead of ’

Standard Documentation Docstrings are high encouraged for all callable functions, methods, classmethods, and
staticmethods. When creating a docstring please use """ instead of ’’’ to enclose the documentation.

def foo():
"""This is a single line doc string"""

def bar():
"""
This is a multi-line documentation string. When you need to
use multiple lines you should keep the left and right side of

4 Chapter 1. Components

https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008

PyFarm Documentation, Release latest

the opening and closing quotes clear.
"""

Endpoint Documentation A large part of PyFarm is pyfarm.master which includes HTTP endpoints serving
as the master’s API. It’s important to document these using the sphinxcontrib.httpdomain syntax so it’s read-
able. Take special note that in the top level url the type and name of the thing being posted is in the url, <str:item>,
however in the examples it’s the real text.

from flask.views import MethodView
class FooItemsAPI(MethodView):

def post(self, item=None):
"""
``POST`` method which

.. http:post:: /api/v1/foo/<str:item> HTTP/1.1

Request

.. sourcecode:: http

POST /api/v1/foo/foobar HTTP/1.1
Accept: application/json

{
"item": "foobar"

}

Response (new item created)

.. sourcecode:: http

HTTP/1.1 201 CREATED
Content-Type: application/json

{
"item": "foobar",
"id": 1

}

:statuscode 200: an existing tag was found and returned
:statuscode 201: a new tag was created

"""

Which ends up looking like this when rendered:

POST /api/v1/foo/<str:item> HTTP/1.1
Request

POST /api/v1/foo/foobar HTTP/1.1
Accept: application/json

{
"item": "foobar"

}

Response (agent newly tagged)

1.3. Agent 5

http://pyfarm.readthedocs.org/projects/pyfarm-master/en/latest/modules/pyfarm.master.html#module-pyfarm.master

PyFarm Documentation, Release latest

HTTP/1.1 201 CREATED
Content-Type: application/json

{
"item": "foobar",
"id": 1

}

statuscode 200 an existing tag was found and returned

statuscode 201 a new tag was created

Line Continuations The default max line length for the project is 80 characters. Anything longer should use a line
continuation if it can’t be split up otherwise.

import continuations should use (), it's cleaner and easier to
modify later on
try:

from httplib import (
BAD_REQUEST, NOT_FOUND, UNAUTHORIZED, INTERNAL_SERVER_ERROR)

except ImportError:
from http.client import (

BAD_REQUEST, NOT_FOUND, UNAUTHORIZED, INTERNAL_SERVER_ERROR)

preferred
message = ("this is a message which you may not be "

"able to fit onto one linet")

but this is ok too
message = "this is a message which you may not be " \

"able to fit onto one line"

preferred
if (a == b and c == d and a == b

or a and b and c and d):
pass

but this is ok too
if a == b and c == d and a == b \

or a and b and c and d:
pass

HTTP Endpoints

URL Formatting The following rules should be applied when constructing an HTTP endpoint:

• endpoints referring to objects should be plural so /items/ instead of /item/

• any endpoint that’s not referring to a specific document should contain a trailing slash: /items/

• endpoints that refer to a specific document shouldn’t contain a trailing slash /items/1

• when working with groups of items under a single item the trailing slash should be added
/items/1/children/

• any endpoint that’s an API should contain a version number /api/v1/items/

6 Chapter 1. Components

PyFarm Documentation, Release latest

Validating Data in API Endpoints Most of the time you’ll want a standard way of validating the incoming request
before you have to deal with it yourself. For this there’s the validate_with_model function that in combination
with before_request will:

• ensure the incoming data to the API is json

• test the incoming data to ensure it has all the required keys

• test to make sure the incoming data does not contain keys that don’t exist in the table

• check to ensure that all data included matches the expected types based on the types in the model

• set flask.g.json if all of the above proceed without problems

• return a useful error message in response to the request if there’s problems

A short example of how this works is below

try:
from httplib import CREATED

except ImportError: # pragma: no cover
from http.client import CREATED

from flask import g
from pyfarm.master.application import app, db
from pyfarm.master.utility import validate_with_model, jsonify
from pyfarm.models.tag import Tag

NOTE: this is an example only, not functional code as it does not
setup the route
@validate_with_model(Tag) # does all the validation in the points above
def put_tag():

model = Tag(**g.json)
db.session.add(model)
db.session.commit()
return jsonify(model.to_dict()), CREATED

Logging

General You are welcome to use the print function on your own but before pushing code or writing tests please
switch to a logger:

from pyfarm.core.logger import getLogger
logger = getLogger("foobar")

The above will create a logger under the proper namespace with a reasonable set of defaults applied. It will also create
it under the proper namespace, in this case pyfarm.foobar.

Warning: The above is not actually true for the agent and job types. Those will require a special logging setup
which is not yet addressed in this guide.

Usage Below are some general guidelines that apply specifically to logging to minimize potential performance prob-
lems and decrease inconsistencies in usage. The following examples assume the code in the section above was run.

1.3. Agent 7

http://pyfarm.readthedocs.org/projects/pyfarm-master/en/latest/modules/pyfarm.master.utility.html#pyfarm.master.utility.validate_with_model
http://pyfarm.readthedocs.org/projects/pyfarm-master/en/latest/modules/pyfarm.master.application.html#pyfarm.master.application.before_request

PyFarm Documentation, Release latest

Log Formatting When providing arguments to the logger use lazy formatting

greeting = "morning"
logger.info("good %s", greeting)

Use %r For Objects Instead of repr() Instead of always calling repr() on the object just use the %r string formatter

data = {"true": True, "none", None}
logger.info("data: %r", data)

Exceptions and Errors At some point you’ll have to handle or produce exception within PyFarm. Depending on
where in the code base you’re working the patterns may vary so please see below for more information.

Suppressing All Exceptions Always use try: except Exception when you must suppress all unhandled
exceptions. It’s also advised that you log the original exception message too so we can find and better handle these
errors in the future.

try:
foobar()

always document exactly why you're suppressing
all unhandled exceptions. Generally speaking there
are **very few** cases where this should ever be a standard
practice.
except Exception as e:

logger.exception(e) # this is sometimes skipped
logger.warning("unhandled exception: %s", e)
pass

Custom Exceptions PyFarm used to throw more custom exceptions but since then nearly all of the code has switched
back to using standard exceptions. In the event a custom exception must be created it should follow the general pattern
below.

class PyFarmBaseException(Exception):
"""The base exception which all PyFarm exceptions derive from"""
pass

you may optional subclass from a related builtin type too
class FileHandlingError(PyFarmBaseException):

"""Raised when there's a problem handling files"""
pass

Throwing Exceptions Inside A Request When working with pyfarm.master you’ll often need to throw excep-
tions that will be used as responses to a request. There’s a couple of ways to do this:

Default Method This is the standard method for throwing exceptions in the web application in response to a request.
The below code will cause pyfarm.master.errors.error_400() to produce an error response to the request
depending on the mimietype. For example if the incoming request it application/json the below will construct
a json response.

8 Chapter 1. Components

http://pyfarm.readthedocs.org/projects/pyfarm-master/en/latest/modules/pyfarm.master.html#module-pyfarm.master

PyFarm Documentation, Release latest

try:
from httplib import BAD_REQUEST

except ImportError: # pragma: no cover
from http.client import BAD_REQUEST

from flask import g, abort
from pyfarm.master.application import app

@app.route("/foobar/")
def foobar():

NOTE: like logging incomplete or single sentences should
start with a lower case letter
g.error = "something went wrong"
abort(BAD_REQUEST)

Alternate Method Although uncommon in other cases it may make sense to response directly when there’s a prob-
lem.

try:
from httplib import BAD_REQUEST

except ImportError: # pragma: no cover
from http.client import BAD_REQUEST

from flask import g, abort
from pyfarm.master.application import app
from pyfarm.master.utilities import jsonify

@app.route("/foobar/")
def foobar():

NOTE: like logging incomplete or single sentences should
start with a lower case letter
return jsonify(error="something went wrong"), BAD_REQUEST

Platform Specific Code PyFarm is a cross-platform application and because of this some consideration about sup-
port multi-platforms in the same code base must be considered.

Import Handling Imports for platform specific modules should be setup like below. This is better than simply
except ImportError: pass because the exception thrown in the event of misuse will make more sense. In
cases where you’ve tried the best you can to determine the proper coarse of action raise an exception that describes the
situation best.

try:
from os import fork

except ImportError:
fork = NotImplemented

try:
import win32process

except ImportError:
win32process = NotImplemented

if fork is NotImplemented and win32process is not NotImplemented:
subprocess.Popen(
commands, creationflags=win32process.DETACHED_PROCESS)

1.3. Agent 9

PyFarm Documentation, Release latest

elif fork is not NotImplemented:
os.fork()

else:
raise NotImplemented(

"failed to determine correct way to launch process")

Internal Logic Handling If you’re not working with imports like above and you just need to know what platform
you’re on use constants from pyfarm.core.enums.

from pyfarm.core.enums import (
LINUX, MAC, WINDOWS, POSIX, CASE_SENSITIVE_ENVIRONMENT,
CASE_SENSITIVE_ENVIRONMENT)

Supporting Multiple Python Versions PyFarm supports Python 2.6+ in most modules except for pyfarm.agent
or pyfarm.jobtypes which currently supports only Python 2.6 and Python 2.7 due to problems with Twisted and
Python 3.x. Because of this certain considerations must be made when working on the project.

Checking Python Versions pyfarm.core.enums has some special constants for getting the current Python
version. There are other ways of checking the Python version however these constants are provided for consistency
and readability.

from pyfarm.core.enums import PY26, PY26, PY2, PY3

Type Information Certain types consolidated or removed when Python 3 was released. Because of this some of the
older ways of checking for basic types had to change. Again pyfarm.core.enums should be used for consistent
and clean behavior across Python versions.

from pyfarm.core.enums import STRING_TYPES, NUMERIC_TYPES

2.x vs. 3.x Version Specific Python Imports Certain built-in imports where also consolidated or renamed when
Python 3 came about. Rather than using constants to do a version check let Python’s import system do the work for
you.

Python 2.x imports should always go first since
most studios and operating systems that ship with Python
still default to 2.x
try:

from UserDict import UserDict
except ImportError: # pragma: no cover

from collections import UserDict

for objects or functions that were renamed
try:

_range = xrange
except NameError: # pragma: no cover

_range = range

for attributes which have changed
data = {}
try:

items = data.iteritems

10 Chapter 1. Components

http://pyfarm.readthedocs.org/projects/pyfarm-core/en/latest/modules/pyfarm.core.enums.html#module-pyfarm.core.enums
http://pyfarm.readthedocs.org/projects/pyfarm-agent/en/latest/modules/pyfarm.agent.html#module-pyfarm.agent
http://pyfarm.readthedocs.org/projects/pyfarm-agent/en/latest/modules/pyfarm.jobtypes.html#module-pyfarm.jobtypes
http://pyfarm.readthedocs.org/projects/pyfarm-core/en/latest/modules/pyfarm.core.enums.html#module-pyfarm.core.enums
http://pyfarm.readthedocs.org/projects/pyfarm-core/en/latest/modules/pyfarm.core.enums.html#module-pyfarm.core.enums

PyFarm Documentation, Release latest

except AttributeError:
items = data.items

Backwards Compatible Imports Sometimes you’ll need access to new functions or modules that don’t with what-
ever Python version or package you’re working with. In these situations, like with version specific Python imports,
you should use the import system to make the decision for you.

NOTE: Python 2.6 and up includes json, which is what PyFarm requires,
this is just an example
try:

import json
except ImportError: # pragma: no cover

import simplejson as json

Project Structure

Sub-Projects

The project is broken down into several smaller sub-projects to aid in long term maintenance and isolation of code
scope. Generally speaking there are two kinds of sub-projects, supporting and operational. Supporting sub-projects
support all consumers of the project in some capacity (ex. documentation or deployment tools). Operations sub-
projects contain the code which operate PyFarm (ex. agent or master). See the below table to get familiar with the
various sub-projects as they will be referenced later on:

1.3. Agent 11

PyFarm Documentation, Release latest

Table 1.1: Sub-Projects of PyFarm
Sub-Project Type Description
pyfarm-docs Supporting

• source code to documentation
in restructured text form

• pushes to this repository will:

– build docs at
https://readthedocs.org/builds/pyfarm/

pyfarm-core Operations
• common library used by all

other operational type sub-
projects containing standard li-
brary backports, enums, basic
file handling, base logger, gen-
eral utilities, and system infor-
mation collection

• setup.py does not specify all
dependencies, the consuming
sub-project will do this instead
(ex. pyfarm-agent specifies the
dependencies that the system
information library needs)

• pushes to this repository will:

– build at
https://travis-
ci.org/pyfarm/pyfarm-
core

– collect coverage at
https://coveralls.io/r/pyfarm/pyfarm-
core

pyfarm-agent Operations
• contains the code which runs

on a remote host which can
run jobs, update the master on
a host’s resources, and track
progress of individual com-
mands

• pushes to this repository will:

– build at
https://travis-
ci.org/pyfarm/pyfarm-
agent

– collect coverage at
https://coveralls.io/r/pyfarm/pyfarm-
agent

• code which wraps around an
individual command to provide
handling for failures, log emis-
sions, and other conditionals
related to job execution

pyfarm-master Operations
• contains the code which runs

the web ui which serves as an
administrative interface

• contains the database models
which store and retrieve data
from the database

• defines and hosts the REST api
• pushes to this repository will:

– build at
https://travis-
ci.org/pyfarm/pyfarm-
master

– collect coverage at
https://coveralls.io/r/pyfarm/pyfarm-
master

12 Chapter 1. Components

https://github.com/pyfarm/pyfarm-docs
https://readthedocs.org/builds/pyfarm/
https://github.com/pyfarm/pyfarm-core
https://travis-ci.org/pyfarm/pyfarm-core
https://travis-ci.org/pyfarm/pyfarm-core
https://travis-ci.org/pyfarm/pyfarm-core
https://coveralls.io/r/pyfarm/pyfarm-core
https://coveralls.io/r/pyfarm/pyfarm-core
https://github.com/pyfarm/pyfarm-agent
https://travis-ci.org/pyfarm/pyfarm-agent
https://travis-ci.org/pyfarm/pyfarm-agent
https://travis-ci.org/pyfarm/pyfarm-agent
https://coveralls.io/r/pyfarm/pyfarm-agent
https://coveralls.io/r/pyfarm/pyfarm-agent
https://github.com/pyfarm/pyfarm-master
https://travis-ci.org/pyfarm/pyfarm-master
https://travis-ci.org/pyfarm/pyfarm-master
https://travis-ci.org/pyfarm/pyfarm-master
https://coveralls.io/r/pyfarm/pyfarm-master
https://coveralls.io/r/pyfarm/pyfarm-master

PyFarm Documentation, Release latest

Attention: This document is a draft

1.3.2 Requirements

This document covers the basic requirements for installation and operation of PyFarm. These are the requirements to
run PyFarm itself regardless of the service being executed. These requirements do not cover the software PyFarm may
be executing or the infrastructure required.

Summary

• Python Depending on the module being used, different versions of Python may be supported. Eventually Python
2.5 support will be dropped however this likely will not happen until Python 3.0 support is added. In any case,
notice will be provided well in advance of a release if any of the below changes.

Table 1.2: Module Specific Python Ver-
sion Support

Module Python Version
pyfarm.core 2.6-3.3+
pyfarm.master 2.7-3.3+
pyfarm.agent 2.6-2.7

• Operation System Linux, Mac, and Windows. Some features may be limited on disabled on certain platforms.

• Memory 64MB of memory, more may be required to run some components

• Storage 128MB of disk space

Database

PyFarm stores a large amount of the information it needs to operate in a relational database. Cross database support is
provided by SQLAlchemy, for more information on supported databases see this document.

Python

There’s not currently a requirements.txt file associated with this project because of the differences in dependencies
between Python versions. PyFarm however can still be installed into a virtual environment using pip::

pip install -e . --egg

By doing this you pip will download and install all the necessary requirements for your specific Python version and
platform.

Supported Software (Job Types)

PyFarm 1.0.0 provides several job types out of the box. Each of these software packages will have their own require-
ments as well so please visit the manufacturers website for more information.

• Maya

• Houdini

• Nuke

1.3. Agent 13

http://pyfarm.readthedocs.org/projects/pyfarm-core/en/latest/modules/pyfarm.core.html#module-pyfarm.core
http://pyfarm.readthedocs.org/projects/pyfarm-master/en/latest/modules/pyfarm.master.html#module-pyfarm.master
http://pyfarm.readthedocs.org/projects/pyfarm-agent/en/latest/modules/pyfarm.agent.html#module-pyfarm.agent
http://www.sqlalchemy.org/
http://docs.sqlalchemy.org/en/rel_0_8/dialects/index.html

PyFarm Documentation, Release latest

If you wish to request a new builtin type or check the integration status of one checkout their tickets on github

Attention: This document is a draft

1.3.3 Installation

These instructions cover the general installation of PyFarm’s components. Please note they may vary between plat-
forms though these differences are usually noted.

For reference, these instructions have been tested on the following platforms:

• Debian 7.1 64-bit

• Windows 7 Professional w/SP1 32-bit

• Windows XP Professional w/SP3 32-bit

Python Setup

Before installing PyFarm you must install Python. Below are the various steps required to install the base Python
interpreter and associated libraries. When linked to a web page instead of a download please locate the installer
package for your architecture and download it.

Windows

Windows requires a little extra work in order to setup Python. Unlike platforms such as Linux which make installing
a compatible C-compiler a simple task Windows adds a few extra steps.

Required Downloads

1. 7-zip - to extract the ISO

2. Visual Studio 2008 Express w/SP1 - used to compile C extensions on the fly

3. Python 2.7 MSI Installer - interpreter to run PyFarm

4. setuptools - contains easy_install (used later on)

Installation

1. 7-zip - execute the installation package and follow the steps on the screen

2. Visual Studio 2008 Express

(a) Right click on the ISO file and select 7-zip -> Extract to “VS2008ExpressWithSP1ENUX1504728”.
After this is complete you are free to delete the ISO image if you wish.

(b) Run (double click) VS2008ExpressWithSP1ENUX1504728Setup.hta

(c) When the setup begins you will be prompted with a few different additions to choose from. Select
“Microsoft Visual C++ 2008 Express Edition”

(d) Accept the EULA and continue forward.

(e) There should be two boxes checked for additional components to install:

• Microsoft Silverlight Runtime

14 Chapter 1. Components

https://github.com/pyfarm/pyfarm-jobtypes/issues?state=open
http://www.7-zip.org/download.html
http://download.microsoft.com/download/E/8/E/E8EEB394-7F42-4963-A2D8-29559B738298/VS2008ExpressWithSP1ENUX1504728.iso
http://python.org/download/releases/2.7.5/
https://pypi.python.org/packages/source/s/setuptools/setuptools-1.1.5.tar.gz

PyFarm Documentation, Release latest

• Microsoft SQL Server 2008 Express Edition

These components are not required and you are welcome to uncheck them to save time and space.

(f) Click next and continue with the installation. If the installation fails check to make sure you don’t
have any pending updates for windows or a reboot scheduled because of a new driver.

3. Python

(a) Start the installation

(b) Install for all users in the default location

(c) Open a run dialog or hold down the windows key and ‘r’. When the dialog opens type ‘run’ (no
quotes) and hit enter.

(d) When the terminal opens type ‘python’ and hit enter (again, no quotes). If you get something like
this:

'python' is not recognized as an internal or external command,
operable program or batch file.

Then we’ll need to add some things to %PATH% to continue: Warning: be careful editing these settings, deleting existing paths could cause damage to
your installation

i. Right click on Computer and select Properties

ii. For Windows along the left side select you’ll select “Advanced System Settings”. If you’re
running Windows XP, skip this step.

iii. In the dialog that opens select Advanced (if it’s not already) then click the “Environment Vari-
ables” button in the bottom right

iv. In the lower half of the window there’s a “System Variables” section, select “Path” and then
click “Edit”

v. in the “Variable value” field add this to the end:

;C:\Python27;C:\Python27\Scripts

(e) Right click on the setuptools gzipped tar (.tar.gz) and select 7-zip -> extract here

(f) Navigate down into the ‘dist’ directory it produces and do the same thing on the file inside that
directory

(g) Once that’s complete open up a command window using run and run the setup.py file. It should look
something like this:

C:\Users\dev>python C:\Users\dev\Downloads\dist\setuptools-1.1.5\setup.py install

(h) Now easy_install pip:

C:\Users\dev>easy_install pip
Searching for pip
Reading https://pypi.python.org/simple/pip/
Best match: pip 1.4.1
Downloading https://pypi.python.org/packages/source/p/pip/pip-1.4.1.tar.gz#md5=6afbb46aeb48abac658d4df742bff714
Processing pip-1.4.1.tar.gz
Writing c:\users\dev\appdata\local\temp\easy_install-g3mjsb\pip-1.4.1\setup.cfg
Running pip-1.4.1\setup.py -q bdist_egg --dist-dir c:\users\dev\appdata\local\temp\easy_install-g3mjsb\pip-1.4.1\egg-dist-tmp-cthuvm
warning: no files found matching '*.html' under directory 'docs'

1.3. Agent 15

PyFarm Documentation, Release latest

warning: no previously-included files matching '*.rst' found under directory 'docs_build'
no previously-included directories found matching 'docs_build_sources'
Adding pip 1.4.1 to easy-install.pth file
Installing pip-script.py script to C:\Python27\Scripts
Installing pip.exe script to C:\Python27\Scripts
Installing pip.exe.manifest script to C:\Python27\Scripts
Installing pip-2.7-script.py script to C:\Python27\Scripts
Installing pip-2.7.exe script to C:\Python27\Scripts
Installing pip-2.7.exe.manifest script to C:\Python27\Scripts

Installed c:\python27\lib\site-packages\pip-1.4.1-py2.7.egg
Processing dependencies for pip
Finished processing dependencies for pip

(i) Then pip install virtualenv:

C:\Users\dev>pip install virtualenv
Downloading/unpacking virtualenv
Downloading virtualenv-1.10.1.tar.gz (1.3MB): 1.3MB downloaded
Running setup.py egg_info for package virtualenv

warning: no files found matching '*.egg' under directory 'virtualenv_support'
warning: no previously-included files matching '*' found under directory 'docs_templates'
warning: no previously-included files matching '*' found under directory 'docs_build'

Installing collected packages: virtualenv
Running setup.py install for virtualenv

warning: no files found matching '*.egg' under directory 'virtualenv_support'
warning: no previously-included files matching '*' found under directory 'docs_templates'
warning: no previously-included files matching '*' found under directory 'docs_build'
Installing virtualenv-script.py script to C:\Python27\Scripts
Installing virtualenv.exe script to C:\Python27\Scripts
Installing virtualenv.exe.manifest script to C:\Python27\Scripts
Installing virtualenv-2.7-script.py script to C:\Python27\Scripts
Installing virtualenv-2.7.exe script to C:\Python27\Scripts
Installing virtualenv-2.7.exe.manifest script to C:\Python27\Scripts

Successfully installed virtualenv
Cleaning up...

(j) And now a quick test of the whole system. Your results will vary but it should look something like
this and say “Successfully installed psutil” towards the end:

C:\Users\dev>virtualenv test
New python executable in test\Scripts\python.exe
Installing Setuptools..
...............done.
Installing Pip...
...done.

C:\Users\dev>test\Scripts\activate
(test) C:\Users\dev>
(test) C:\Users\dev>pip install psutil
Downloading/unpacking psutil
You are installing an externally hosted file. Future versions of pip will default to disallowing externally hosted files.
You are installing a potentially insecure and unverifiable file. Future versions of pip will default to disallowing insecure files.
Downloading psutil-1.0.1.tar.gz (159kB): 159kB downloaded
Running setup.py egg_info for package psutil

16 Chapter 1. Components

PyFarm Documentation, Release latest

Installing collected packages: psutil
Running setup.py install for psutil

building '_psutil_mswindows' extension
C:\Program Files\Microsoft Visual Studio 9.0\VC\BIN\cl.exe /c /nologo /Ox /MD /W3 /GS- /DNDEBUG -D_WIN32_WINNT=0x0601 -D_AVAIL_WINVER_=0x0601 -IC:\Python27\include -IC:\Users\dev\test\PC /Tcpsutil/_psutil_mswindows.c /Fobuild\temp.wi

se\psutil/_psutil_mswindows.obj
_psutil_mswindows.c
psutil/_psutil_mswindows.c(307) : warning C4013: 'get_process_info' undefined; assuming extern returning int
psutil/_psutil_mswindows.c(568) : warning C4047: 'function' : 'LPSTR' differs in levels of indirection from 'wchar_t (*)[260]'
psutil/_psutil_mswindows.c(568) : warning C4024: 'GetProcessImageFileNameA' : different types for formal and actual parameter 2
psutil/_psutil_mswindows.c(602) : warning C4133: 'function' : incompatible types - from 'PROCESS_MEMORY_COUNTERS_EX *' to 'PPROCESS_MEMORY_COUNTERS'
psutil/_psutil_mswindows.c(2091) : warning C4047: 'function' : 'PDWORD_PTR' differs in levels of indirection from 'PDWORD_PTR *'
psutil/_psutil_mswindows.c(2091) : warning C4024: 'GetProcessAffinityMask' : different types for formal and actual parameter 2
psutil/_psutil_mswindows.c(2091) : warning C4047: 'function' : 'PDWORD_PTR' differs in levels of indirection from 'PDWORD_PTR *'
psutil/_psutil_mswindows.c(2091) : warning C4024: 'GetProcessAffinityMask' : different types for formal and actual parameter 3
psutil/_psutil_mswindows.c(2413) : warning C4005: '_ARRAYSIZE' : macro redefinition

C:\Program Files\Microsoft SDKs\Windows\v6.0A\include\winnt.h(1021) : see previous definition of '_ARRAYSIZE'
psutil/_psutil_mswindows.c(2482) : warning C4047: 'function' : 'LPSTR' differs in levels of indirection from 'LPTSTR [261]'
psutil/_psutil_mswindows.c(2482) : warning C4024: 'GetVolumeInformationA' : different types for formal and actual parameter 7
C:\Program Files\Microsoft Visual Studio 9.0\VC\BIN\cl.exe /c /nologo /Ox /MD /W3 /GS- /DNDEBUG -D_WIN32_WINNT=0x0601 -D_AVAIL_WINVER_=0x0601 -IC:\Python27\include -IC:\Users\dev\test\PC /Tcpsutil/_psutil_common.c /Fobuild\temp.win32

psutil/_psutil_common.obj
_psutil_common.c
C:\Program Files\Microsoft Visual Studio 9.0\VC\BIN\cl.exe /c /nologo /Ox /MD /W3 /GS- /DNDEBUG -D_WIN32_WINNT=0x0601 -D_AVAIL_WINVER_=0x0601 -IC:\Python27\include -IC:\Users\dev\test\PC /Tcpsutil/arch/mswindows/process_info.c /Fobui

-2.7\Release\psutil/arch/mswindows/process_info.obj
process_info.c
psutil/arch/mswindows/process_info.c(36) : warning C4013: 'AccessDenied' undefined; assuming extern returning int
psutil/arch/mswindows/process_info.c(36) : warning C4047: 'return' : 'HANDLE' differs in levels of indirection from 'int'
psutil/arch/mswindows/process_info.c(42) : warning C4013: 'NoSuchProcess' undefined; assuming extern returning int
C:\Program Files\Microsoft Visual Studio 9.0\VC\BIN\cl.exe /c /nologo /Ox /MD /W3 /GS- /DNDEBUG -D_WIN32_WINNT=0x0601 -D_AVAIL_WINVER_=0x0601 -IC:\Python27\include -IC:\Users\dev\test\PC /Tcpsutil/arch/mswindows/process_handles.c /Fo

n32-2.7\Release\psutil/arch/mswindows/process_handles.obj
process_handles.c
psutil/arch/mswindows/process_handles.c(203) : warning C4022: 'NtDuplicateObject' : pointer mismatch for actual parameter 2
C:\Program Files\Microsoft Visual Studio 9.0\VC\BIN\cl.exe /c /nologo /Ox /MD /W3 /GS- /DNDEBUG -D_WIN32_WINNT=0x0601 -D_AVAIL_WINVER_=0x0601 -IC:\Python27\include -IC:\Users\dev\test\PC /Tcpsutil/arch/mswindows/security.c /Fobuild\t

\Release\psutil/arch/mswindows/security.obj
security.c
psutil/arch/mswindows/security.c(86) : warning C4996: 'strcpy': This function or variable may be unsafe. Consider using strcpy_s instead. To disable deprecation, use _CRT_SECURE_NO_WARNINGS. See online help for details.
C:\Program Files\Microsoft Visual Studio 9.0\VC\BIN\link.exe /DLL /nologo /INCREMENTAL:NO /LIBPATH:C:\Python27\Libs /LIBPATH:C:\Users\dev\test\libs /LIBPATH:C:\Users\dev\test\PCbuild psapi.lib kernel32.lib advapi32.lib shell32.lib ne

hlpapi.lib wtsapi32.lib /EXPORT:init_psutil_mswindows build\temp.win32-2.7\Release\psutil/_psutil_mswindows.obj build\temp.win32-2.7\Release\psutil/_psutil_common.obj build\temp.win32-2.7\Release\psutil/arch/mswindows/process_info.obj bu
2-2.7\Release\psutil/arch/mswindows/process_handles.obj build\temp.win32-2.7\Release\psutil/arch/mswindows/security.obj /OUT:build\lib.win32-2.7_psutil_mswindows.pyd /IMPLIB:build\temp.win32-2.7\Release\psutil_psutil_mswindows.lib /MAN
ld\temp.win32-2.7\Release\psutil_psutil_mswindows.pyd.manifest

Creating library build\temp.win32-2.7\Release\psutil_psutil_mswindows.lib and object build\temp.win32-2.7\Release\psutil_psutil_mswindows.exp

Successfully installed psutil
Cleaning up...

(test) C:\Users\dev>python -c "import psutil; print psutil"
<module 'psutil' from 'C:\Users\dev\test\lib\site-packages\psutil__init__.pyc'>

Linux

Linux generally won’t require very much to be done to get started and in most cases is already setup for you. That
said, it wouldn’t hurt to run the steps below to be sure. The following commands will need to be executed either as
root or using the sudo command.

Debian Based Systems

1.3. Agent 17

PyFarm Documentation, Release latest

aptitude -y install python python-setuptools python-virtualenv build-essential

Red Hat Based Systems TODO instructions needed here

1.3.4 License

PyFarm is licensed under the terms and conditions of the Apache 2.0 license. The original text of this license may
either be downloaded or viewed on the web. A formatted version with the same text as the original is also available
below.

1. Definitions

License shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through
9 of this document.

Licensor shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

Legal Entity shall mean the union of the acting entity and all other entities that control, are controlled by, or are under
common control with that entity. For the purposes of this definition, “control” means (i) the power, direct or indirect,
to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent
(50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

You (or Your) shall mean an individual or Legal Entity exercising permissions granted by this License.

Source form shall mean the preferred form for making modifications, including but not limited to software source
code, documentation source, and configuration files.

Object form shall mean any form resulting from mechanical transformation or translation of a Source form, including
but not limited to compiled object code, generated documentation, and conversions to other media types.

Work shall mean the work of authorship, whether in Source or Object form, made available under the License, as
indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix
below).

Derivative Works shall mean any work, whether in Source or Object form, that is based on (or derived from) the
Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an
original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

Contribution shall mean any work of authorship, including the original version of the Work and any modifications or
additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work
by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, “submitted” means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of dis-
cussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated
in writing by the copyright owner as “Not a Contribution.”

Contributor shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been
received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-
exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly

18 Chapter 1. Components

http://www.apache.org/licenses/LICENSE-2.0

PyFarm Documentation, Release latest

display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims
licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated
within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

1.3. Agent 19

PyFarm Documentation, Release latest

5. Submission of Contributions

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to
the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you
may have executed with Licensor regarding such Contributions.

6. Trademarks

This License does not grant permission to use the trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides
its Contributions) on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determin-
ing the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of
permissions under this License.

8. Limitation of Liability

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by
applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to
You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising
as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of
goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even
if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability

While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any
other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

20 Chapter 1. Components

CHAPTER 2

Indices and tables

• genindex

• search

21

PyFarm Documentation, Release latest

22 Chapter 2. Indices and tables

HTTP Routing Table

/api
POST /api/v1/foo/<str:item> HTTP/1.1, 5

23

PyFarm Documentation, Release latest

24 HTTP Routing Table

Index

P
Python Enhancement Proposals

PEP 8, 4

25

	Components
	Core
	Master
	Agent
	Contributing To PyFarm
	Requirements
	Installation
	License

	Indices and tables
	HTTP Routing Table

