
pyentity Documentation
Release

pyentity

February 20, 2015

Contents

1 Guide 3
1.1 Tutorial . 3

i

ii

pyentity Documentation, Release

A simple object-document mapper written in python for motor(a driver for MongoDB) and to be used in tornado
applications. Although, motor accomplish the hard task of provide async methods to access mongodb, we still have
to get along with classic python dictionary which force us to create and maintain mapping of dicts-to-instance or
instance-to-dicts.

Simple example using motor directly:

@gen.coroutine
def do_insert():

insert dict with the same attributes found in Product class
product = {’name’:’my cell phone’,’description’:’blach phone’,’price’:10.5}

call motor collection
future = collection.insert(product)
result = yield future

There’s no problem if you prefer to work like this, but you always have to use some kind of mapping for any new added
class in your model and ensure that no changes will break your existing code. In order to release you from boring task
of accessing key/value to know something about your model, we suggest you to work in the following way:

Defining your class:

class Product(Entity):
name = Str()
description = Str()
price = Float()

def __init__(self, name="", description="", price=0.0):
self.name = name
self.description = description
self.price = price

Writing some coroutine functions:

@gen.coroutine
def save_product():

emanager = EntityManager(Product)
product = Product(’book’, ’book of the year’, 35.00)
object_id = yield self.emanager.save(product)

@gen.coroutine
def find_product():

emanager = EntityManager(Product)
saved_product = yield self.emanager.find_one(object_id)
name = saved_product.name
description = saved_product.description
price = saved_product.price

Contents 1

pyentity Documentation, Release

2 Contents

CHAPTER 1

Guide

1.1 Tutorial

We have been working on it

3

	Guide
	Tutorial

