

Contents:

	Installation

	Usage
	Introduction

	Basic W3C Functions

	Elucidate Services

	Asynchronous functions

	pyelucidate
	pyelucidate package

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2018-10-12)

	License

PyElucidate

[image: _images/pyelucidate.png]
 [http://badge.fury.io/py/pyelucidate][image: _images/pyelucidate.svg]
 [https://travis-ci.com/digirati-co-uk/pyelucidate]Open Source Python Tools for the Elucidate Annotation Server.

Introduction

Simple Python helpers for working with Elucidate [https://github.com/dlcs/elucidate-server], an Open Annotation and W3C Web Annotation annotation server.

Elucidate uses the W3C Web Annotation Protocol [https://www.w3.org/TR/annotation-protocol/] but also has some useful additional service APIs. See Elucidate’s
usage [https://github.com/dlcs/elucidate-server/blob/master/USAGE.md] documentation for further information.

Full documentation at Readthedocs [https://pyelucidate.readthedocs.io].

Requirements

Python 3.5+

Required python packages are listed in requirements.txt.

Installation

At the command line either via easy_install or pip:

$ easy_install pyelucidate
$ pip install pyelucidate

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv pyelucidate
$ pip install pyelucidate

Usage

Placeholder

PyElucidate uses Python 3.x. No backwards compatibility with Python 2.x is provided.

Feel free to raise Github issues.

If you find an issue you are interested in fixing you can:

	make sure the issue is small and atomic

	Fork the repository

	Clone the repository to your local machine

	Create a new branch for your fix using git checkout -b branch-name-here.

	Fix the issue.

	Commit and push the code to your remote repository.

	Submit a pull request to the pyelucidate repository, with a description of your fix and the issue number.

	The PR will be reviewed by the maintainer [http://github.com/mattmcgrattan] and either merge the PR or response with comments.

License

MIT License

Copyright Digirati Ltd. (c) 2018

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Feedback

If you have any suggestions or questions about PyElucidate feel free to email me
at matt.mcgrattan@digirati.com.

If you encounter any errors or problems with PyElucidate, please let me know!
Open an Issue at the GitHub http://github.com/digirati-co-uk/pyelucidate main repository.

Installation

At the command line either via easy_install or pip:

$ easy_install pyelucidate
$ pip install pyelucidate

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv pyelucidate
$ pip install pyelucidate

Usage

To use PyElucidate in a project:

import pyelucidate

Introduction

The _PyElucidate_ library primarily consists of simple functions with no state, which interact with an instance of the
Elucidate server using the W3C Web Annotation Protocol [https://www.w3.org/TR/annotation-protocol/] but also Elucidate’s additional service APIs.

See Elucidate’s usage [https://github.com/dlcs/elucidate-server/blob/master/USAGE.md] documentation for further information.

Basic W3C Functions

POST a new annotation

This code will create the annotation container based on an MD5 hash of the annotation target, if a container slug is not
passed in as a parameter.

The code will insert the appropriate @context if no @context is provided.

from pyelucidate import pyelucidate

anno = {
 "@context": "http://www.w3.org/ns/anno.jsonld",
 "type": "Annotation",
 "body": [{"value": "Foo", "purpose": "tagging"}],
 "target": {
 "type": "SpecificResource",
 "dcterms:isPartOf": {
 "id": "http://example.org/manifest/foo/manifest.json",
 "type": "sc:Manifest",
 },
 "selector": {
 "type": "FragmentSelector",
 "conformsTo": "http://www.w3.org/TR/media-frags/",
 "value": "xywh=659,1646,174,62",
 },
 "source": "http://example.org/manifest/foo/canvas/274",
 },
 "motivation": "tagging",
}

status_code, anno_id = pyelucidate.create_anno(
 elucidate_base="https://elucidate.example.org", model="w3c", annotation=anno
)
assert status_code == 201
assert anno_id is not None

Post a new annotation to a specified container (“foo”):

from pyelucidate import pyelucidate
import requests

anno = {
 "@context": "http://www.w3.org/ns/anno.jsonld",
 "type": "Annotation",
 "body": [{"value": "Foo", "purpose": "tagging"}],
 "target": {
 "type": "SpecificResource",
 "dcterms:isPartOf": {
 "id": "http://example.org/manifest/foo/manifest.json",
 "type": "sc:Manifest",
 },
 "selector": {
 "type": "FragmentSelector",
 "conformsTo": "http://www.w3.org/TR/media-frags/",
 "value": "xywh=659,1646,174,62",
 },
 "source": "http://example.org/manifest/foo/canvas/274",
 },
 "motivation": "tagging",
}

status_code, anno_id = pyelucidate.create_anno(
 elucidate_base="https://elucidate.example.org", model="w3c", annotation=anno,
 container="foo"
)
container_contents = requests.get("https://elucidate.example.org/foo/")
assert status_code == 201
assert anno_id is not None
assert container_contents.status_code == 200

GET an annotation

Will fetch the annotation and return annotation plus the ETag for the annotation.

from pyelucidate import pyelucidate
import json

annotation, etag = pyelucidate.read_anno("https://elucidate.example.org/annotation/w3c"
 "/36b74ab23429078e9a8631ed4a471095/0ef3db79-c6a0-4755-a0a1-8ba660f81e93")

DELETE an annotation

The W3C Web Annotation Protocol requires an If-Match header with the ETag for the
annotation. This function requires the ETag to be provided.

If dry_run is True (the default), the function will return a 204 without deleting the annotation.

The example below shows fetching an annotation, checking the purpose for the body, and deleting the annotation.

from pyelucidate import pyelucidate

annotation, etag = pyelucidate.read_anno("https://elucidate.example.org/annotation/w3c"
 "/36b74ab23429078e9a8631ed4a471095/0ef3db79-c6a0-4755-a0a1-8ba660f81e93")

if annotation["body"]["purpose"] == "tagging":
 status = pyelucidate.delete_anno(anno_uri = annotation["id"], etag=etag, dry_run=False)
 assert status == 204

CREATE a container

It is also possible to create a container, before POSTing any annotations.

Note that elucidate_uri contains the full path, including the model w3c, and not just the base elucidate URI.

from pyelucidate import pyelucidate

status_code = pyelucidate.create_container(
 container_name="bar",
 label="A test container",
 elucidate_uri="https://elucidate.example.org/annotation/w3c/",
)

assert status_code in [200, 201]

This code will check if the container already exists, before creating, so can be run repeatedly if required.

PUT an updated annotation

The W3C Web Annotation Protocol requires an If-Match header with the ETag for the
annotation. This function requires the ETag to be provided.

If dry_run is True (the default), the function will return a 200 without updating the annotation.

The example below shows fetching an annotation, updating the body, and updating the annotation.

from pyelucidate import pyelucidate

annotation, etag = pyelucidate.read_anno("https://elucidate.example.org/annotation/w3c"
 "/36b74ab23429078e9a8631ed4a471095/0ef3db79-c6a0-4755-a0a1-8ba660f81e93")

Change the annotation body value
annotation["body"]["value"] = "foo"

Put the update annotation
status_code = pyelucidate.update_anno(anno_uri=annotation["id"], anno_content=annotation, etag=etag, dry_run=False)

Check the result
annotation, etag = pyelucidate.read_anno("https://elucidate.example.org/annotation/w3c"
 "/36b74ab23429078e9a8631ed4a471095/0ef3db79-c6a0-4755-a0a1-8ba660f81e93")
assert annotation["body"]["value"] == "foo"

Elucidate Services

Elucidate provides a number of additional services which extend the W3C Web Annotation Protocol.

Query by body source

Query Elucidate for all annotations with a specified body source.

Typical usage:

For tagging annotations, where the target is tagged with a particular topic URI, return all annotations
that have been tagged with that topic URI.

For example, to find all annotations, tagged with https://omeka.example.org/topic/virtual:person/mary+smith:

from pyelucidate import pyelucidate

annotations = pyelucidate.items_by_body_source(elucidate="http://elucidate.example.org",
 strict=True,
 topic="https://omeka.example.org/topic/virtual:person/mary+smith")

identifiers for annotations with body source
anno_ids = [a["id"] for a in annotations]

This function is a generator that yields the annotations.

The strict parameter sets whether Elucidate does a prefix style search or looks for an exact match.

Query by target

Query Elucidate for all annotations with a specified target.

Typical usage:

For a IIIF canvas, return all annotations with that canvas as target.

PyElucidate provides a single asynchronous function (see below), but a non-asynchronous version can be done with
PyElucidate’s helper functions.

Search by annotation target:

from pyelucidate import pyelucidate
import requests
import json

generate a search to Elucidate, using Elucidate's search API to search target id and target source
search_uri = pyelucidate.gen_search_by_target_uri(elucidate_base="https://elucidate.example.org", model="w3c",
 target_uri="http://iiif.example.org/iiif/manfiest/1/canvas/4",
 field=["id", "source"])

r = requests.get(search_uri)

annotations = []

if r.status_code == requests.codes.ok:
 for page in pyelucidate.annotation_pages(r.json()): # PyElucidate helper for handling activity streams paging.
 annotations.extend(requests.get(page).json()["items"])

print(json.dumps(annotations, indent=4))

Search by container (assumes the container is an MD5 hash of the target URI, which is usual practice on Digirati’s
DLCS projects):

from pyelucidate import pyelucidate
import requests
import json

generate a search to Elucidate, using Elucidate's search API to request a container's contents
search_uri = pyelucidate.gen_search_by_container_uri(elucidate_base="https://elucidate.glam-dev.org", model="w3c",
 target_uri="http://iiif.example.org/iiif/manfiest/1/canvas/4")

r = requests.get(search_uri)

annotations = []

if r.status_code == requests.codes.ok:
 for page in pyelucidate.annotation_pages(r.json()): # PyElucidate helper for handling activity streams paging.
 annotations.extend(requests.get(page).json()["items"])

print(json.dumps(annotations, indent=4))

Parents by body source

Query Elucidate for all annotations with a specified body source, and return a list of parents.

Typical usage:

For tagging annotations, where the target is tagged with a particular topic URI, return all parent manifests for
canvases that have been tagged with that topic URI.

N.B. this code sets strict=True on the Elucidate query.

from pyelucidate import pyelucidate

parents = pyelucidate.parents_by_topic(elucidate="http://elucidate.example.org",
 topic="https://omeka.example.org/topic/virtual:person/mary+smith")

print(list(set(parents)))

Bulk update

Placeholder

Bulk delete

Placeholder

Asynchronous functions

Elucidate provides a number of additional services which extend the W3C Web Annotation Protocol. PyElucidate provides
asynchronous versions of these functions which can make parallel requests for efficient return of results.

pyelucidate

	pyelucidate package
	Submodules

	pyelucidate.pyelucidate module

	Module contents

pyelucidate package

Submodules

pyelucidate.pyelucidate module

	
annotation_pages(result: Optional[dict]) → Optional[str]

	Generator which yields URLs for annotation pages from an Activity Streams paged result set.
Works by looking for the “last” page in the paged result set and incrementing between 0 and
last.

Does not request each page and examine “next” or “previous”.

For example, given an Activity Streams paged result set which contains:

{"last": "https://elucidate.example.org/annotation/w3c/services/search/body?page=3&fields
=source&value=FOO&desc=1"}

Will yield:

https://elucidate.example.org/annotation/w3c/services/search/body?fields=source&value=FOO&desc=1&page=0

https://elucidate.example.org/annotation/w3c/services/search/body?fields=source&value=FOO&desc=1&page=1

https://elucidate.example.org/annotation/w3c/services/search/body?fields=source&value=FOO&desc=1&page=2

https://elucidate.example.org/annotation/w3c/services/search/body?fields=source&value=FOO&desc=1&page=3

	Parameters

	result – Activity Streams paged result set

	Returns

	Activity Streams page URIs.

	
async_items_by_container(elucidate: str, container: Optional[str] = None, target_uri: Optional[str] = None, header_dict: Optional[dict] = None, **kwargs) → Optional[dict]

	Asynchronously yield annotations from a query by container to Elucidate.

Container can be hashed from target URI, or provided

	Parameters

	
	elucidate – Elucidate server, e.g. https://elucidate.example.org

	target_uri – URI from target source and id, e.g. ‘https://manifest.example.org/manifest/1’

	container – container path

	header_dict – dict of headers

	Returns

	annotation object

	
async_items_by_creator(elucidate: str, creator_id: str, **kwargs) → dict

	Asynchronously yield annotations from a query by creator to Elucidate.

Async requests all of the annotation pages before yielding.

	Parameters

	
	elucidate – Elucidate server, e.g. https://elucidate.example.org

	creator_id – URI from target source and id, e.g. ‘https://manifest.example.org/manifest/1’

	Returns

	annotation object

	
async_items_by_target(elucidate: str, target_uri: str, **kwargs) → dict

	Asynchronously yield annotations from a query by topic to Elucidate.

Async requests all of the annotation pages before yielding.

	Parameters

	
	elucidate – Elucidate server, e.g. https://elucidate.example.org

	target_uri – URI from target source and id, e.g. ‘https://manifest.example.org/manifest/1’

	Returns

	annotation object

	
async_items_by_topic(elucidate: str, topic: str, **kwargs) → dict

	Asynchronously yield annotations from a query by topic to Elucidate.

Does an asynchronous get for all the annotations, and then yields the annotations with
optional transformation provided by the “trans_function” arg.

	Parameters

	
	elucidate – Elucidate server, e.g. https://elucidate.example.org

	topic – URI from body source, e.g. ‘https://topics.example.org/people/mary+jones’

	Returns

	annotation object

	
async_manifests_by_topic(elucidate: str, topic: Optional[str] = None) → Optional[list]

	Asynchronously fetch the results from a topic query to Elucidate and yield manifest URIs

N.B. assumption, if passed a string for target, rather than an object,
that manifest and canvas URI patterns follow old API DLCS/Presley model.

	Parameters

	
	elucidate – URL for Elucidate server, e.g. https://elucidate.example.org

	topic – URL for body source, e.g. https://topics.example.org/people/mary+jones

	Returns

	manifest URI

	
batch_delete_target(target_uri: str, elucidate_uri: str, dry_run: bool = True) → int

	Use Elucidate’s batch delete API to delete everything with a given target id or target source
URI.

https://github.com/dlcs/elucidate-server/blob/master/USAGE.md#batch-delete

	Parameters

	
	target_uri – URI to delete

	elucidate_uri – URI of the Elucidate server, e.g. https://elucidate.example.org

	dry_run – if True, do not actually delete, just log request and return a 200

	Returns

	status code

	
batch_delete_topic(topic_id: str, elucidate_base: str, dry_run: bool = True) → Tuple[int, str]

	Use Elucidate’s batch update apis to delete all instances of a topic URI.

https://github.com/dlcs/elucidate-server/blob/master/USAGE.md#batch-delete

	Parameters

	
	topic_id – topic id to delete

	elucidate_base – elucidate base URI, e.g. https://elucidate.example.org

	dry_run – if True, will simply log and then return a 200

	Returns

	tuple - http POST status code, JSON POSTed (as string)

	
batch_update_body(new_topic_id: str, old_topic_ids: list, elucidate_base: str, dry_run: bool = True) → Tuple[int, dict]

	Use Elucidate’s bulk update APIs to replace all instances of each of a list of body source or
id URIs (aka a topic) with the new URI (aka topic).

https://github.com/dlcs/elucidate-server/blob/master/USAGE.md#batch-update

	Parameters

	
	new_topic_id – topic ids to use, string

	old_topic_ids – topic ids to replace, list

	elucidate_base – elucidate base URI, e.g. https://elucidate.example.org

	dry_run – if True, will simply log JSON and URI and then return a 200

	Returns

	POST status code

	
create_anno(elucidate_base: str, annotation: dict, target: Optional[str] = None, container: Optional[str] = None, model: Optional[str] = 'w3c') → Tuple[int, Optional[str]]

	POST an annotation to Elucidate, can be optionally passed a container, if container is None
will use the MD5 hash of the manifest or canvas target URI as the container name.

If no @context is provided, the code will insert the appropriate context based on the model.

	Parameters

	
	elucidate_base – base URI for the annotation server, e.g. https://elucidate.example.org

	target – target for the annotation (optional), will attempt to parse anno for target
if not present

	annotation – annotation object

	container – container name (optional), will use hash of target uri if not present

	model – oa or w3c

	Returns

	status code from Elucidate, annotation id (or none)

	
create_container(container_name: str, label: str, elucidate_uri: str) → int

	Create an annotation container with a container name and label.

	Parameters

	
	container_name – name of the container

	label – label for the container

	elucidate_uri – uri for the annotation server, including full path, e.g.
https://elucidate.example.org/annotation/w3c/

	Returns

	POST request status code

	
delete_anno(anno_uri: str, etag: str, dry_run: bool = True) → int

	Delete an individual annotation, requires etag.

Optionally, can be run as a dry run which will not delete the annotation.

	Parameters

	
	anno_uri – URI for annotation

	etag – ETag

	dry_run – if True, log and return a 204

	Returns

	return DELETE request status code

	
fetch(url: str, session: aiohttp.client.ClientSession) → dict

	Asynchronously fetch a url, using specified ClientSession.

	
fetch_all(urls: list, connector_limit: int = 5) → _asyncio.Future

	Launch async requests for all web pages in list of urls.

	Parameters

	
	urls – list of URLs to fetch

	connector_limit – integer for max parallel connections

:return results from requests

	
format_results(annotation_list: Optional[list], request_uri: str) → Optional[dict]

	Takes a list of annotations and returns as a standard Presentation API
Annotation List.

	Parameters

	
	annotation_list – list of annotations

	request_uri – the URI to use for the @id

:return dict or None

	
gen_search_by_container_uri(elucidate_base: str, target_uri: Optional[str], model: str = 'w3c') → Optional[str]

	Return the annotation container uri for a target. Assumes that the container URI
is an md5 hash of the target URI (as per current DLCS general practice).

This URI can be passed to other functions to return the result of the query.

	Parameters

	
	elucidate_base – base URI for the annotation server, e.g. https://elucidate.example.org

	target_uri – target URI to search for, e.g. IIIF Presentation API manifest or canvas URI

	model – oa or w3c

	Returns

	uri

	
gen_search_by_target_uri(target_uri: Optional[str], elucidate_base: str, model: str = 'w3c', field=None) → Optional[str]

	Returns a search URI for searching Elucidate for a target using Elucidate’s basic search API.

This URI can be passed to other functions to return the result of the query.

	Parameters

	
	model – oa or w3c, defaults to w3c.

	elucidate_base – base URI for the annotation server, e.g. https://elucidate.example.org

	target_uri – target URI to search for, e.g. a IIIF Presentatiion API canvas or manifest

URI
:param field: list of fields to search on, defaults to both source and id
:return: uri

	
get_items(uri: str) → Optional[dict]

	Page through an ActivityStreams paged result set, yielding
each page’s items one at a time.

	Parameters

	uri – Request URI, e.g. provided by gen_search_by_target_uri()

	Returns

	item

	
identify_target(annotation_content: dict) → Optional[str]

	Identify the base level target for an annotation, for

https://example.org/foo#XYWH=0,0,200,200

output

https://example.org/foo

If the annotation has multiple targets, return just base level target for the first.

	Parameters

	annotation_content – annotation dict

	Returns

	uri

	
iiif_batch_delete_by_manifest(manifest_uri: str, elucidate_uri: str, dry_run: bool = True) → bool

	Provides a IIIF aware wrapper around the _batch_delete_by_target_ function. Requests a IIIF
Presentation API manifest and deletes all of the annotations with the canvas or the manifest
URIs as their target.

Use Elucidate’s batch delete API to delete everything with a given target id or target source
URI.

https://github.com/dlcs/elucidate-server/blob/master/USAGE.md#batch-delete

	Parameters

	
	manifest_uri – URI of IIIF Presentation API manifest (must be de-referenceable)

	elucidate_uri – base URI for Elucidate, e.g. https://elucidate.example.org

	dry_run – if True, will not actually delete the content

	Returns

	boolean for status, True if no errors, False if error on any delete operation.

	
iiif_iterative_delete_by_manifest(manifest_uri: str, elucidate_uri: str, method: str = 'search', dry_run: bool = True) → bool

	Provides a IIIF aware wrapper around the iterative_delete_by_target function.

Iteratively delete all annotations for every canvas in a IIIF Presentation manifest and for the
IIIF Presentation API manifest itself.

Requests annotations either by container or by target URI and iteratively deletes the
annotations by id, one at a time, using HTTP DELETE.

Does not use Elucidate’s batch delete APIs.

	Parameters

	
	dry_run – if True, will not actually delete

	method – identify the annotations to delete via container (hash) or search (Elucidate

query)
:param manifest_uri: URI for IIIF Presentation API manifest.
:param elucidate_uri: Elucidate base URI, e.g. https://elucidate.example.org
:return: boolean success or fail

	
iiif_iterative_delete_by_manifest_async_get(manifest_uri: str, elucidate_uri: str, dry_run: bool = True) → bool

	Delete all annotations for every canvas in a IIIF manifest and for the manifest.

Uses asynchronous code to parallel get the search results to build the annotation list.

N.B. does NOT do an async DELETE. Delete is sequential.

	Parameters

	
	dry_run – if True, will not actually delete, just prints URIs

	manifest_uri – uri for IIIF manifest

	elucidate_uri – Elucidate base uri

	Returns

	boolean success or fail

	
item_ids(item: dict) → Optional[str]

	Small helper function to yield identifier URI(s) for item from an Activity Streams item.
Will yield both ‘@id’ and ‘id’ values.

	Parameters

	item – Item from an activity streams page

	Returns

	uri

	
items_by_body_source(elucidate: str, topic: str, strict: bool = True) → dict

	Generator to yield annotations from query to Elucidate by body source.

For example, for a W3C web annotation, with body:

{"body": [
 {
 "type": "SpecificResource",
 "format": "application/html",
 "creator": "https://montague.example.org/",
 "generator": "https://montague.example.org//nlp/",
 "purpose": "tagging",
 "source": "https://www.example.org/themes/foo"
 }
]}

This function will query Elucidate for all annotations with body id or body source ==
“https://www.example.org/themes/foo”.

If strict = False, this would match both:

https://www.example.org/themes/foo

and

https://www.example.org/themes/foobar

If strict = True, only annotations with an exact match on the body source will be returned.

	Parameters

	
	elucidate – URL for Elucidate server, e.g. https://elucidate.example.org

	topic – URI for body source, e.g. https://www.example.org/themes/foo

	strict – if strict, use strict = True.

	Returns

	annotation dict

	
iterative_delete_by_target(target: str, elucidate_base: str, search_method: str = 'container', dryrun: bool = True) → bool

	Delete all annotations in a container for a target URI. Works by querying for the
annotations and then iteratively deleting them one at a time.

Note, that this is _not_ an operation using Elucidate’s batch delete APIs.

Negative: could be slow, and involve many consecutive HTTP requests

Positive: as the code is handling the annotations one at a time, it will not time out
with very large result sets.

The function can build the list of annotations to delete using either:

the Elucidate search by target API,

or a hash of the target URI to get a container URI.

N.B. choosing the container method assumes that container ID as an MD5 hash of the target URI.

	Parameters

	
	dryrun – if True, will not actually delete, just logs and returns True (for success)

	search_method – ‘container’ (hash of target URI) or ‘search’ (Elucidate query by target)

	target – target URI

	elucidate_base – base URI for Elucidate, e.g. https://elucidate.example.org

	Returns

	boolean success or fail, True if no errors on _any_ request.

	
iterative_delete_by_target_async_get(target: str, elucidate_base: str, dryrun: bool = True) → bool

	Delete all annotations in a container for a target uri. Works by querying for the
annotations and then iteratively deleting them one at a time. Not a bulk delete operation
using Elucidate’s bulk APIs.

N.B. Negative: could be slow, and involve many HTTP requests, Positive: doesn’t really matter
how big the result set is, it won’t time out, as handling the annotations one at a time.

Asynchronous query using the Elucidate search by target API to fetch the list of annotations to
delete.

DELETE is not asychronous, but sequential.

	Parameters

	
	dryrun – if True, will not actually delete, just logs and returns True (for success)

	target – target uri

	elucidate_base – base URI for Elucidate, e.g. https://elucidate.example.org

	Returns

	boolean success or fail, True if no errors on _any_ request.

	
mirador_oa(w3c_body: dict) → dict

	Transform a single W3C Web Annotation Body (e.g. as produced by Montague) and returns
formatted for Open Annotation in the Mirador client.

	Parameters

	w3c_body – annotation body

	Returns

	transformed annotation body

	
parent_from_annotation(content: dict) → Optional[str]

	Parse W3C web annotation and attempt to yield URI for parent object
the annotation target is part of.

A typical use would be to return the parent IIIF Presentation API manifest URI
for an annotation on a IIIF Presentation API canvas or fragment of a canvas.

The code makes the assumption that, if passed a string for target, rather than an object,
that manifest and canvas URI patterns follow the model used by the RESTful DLCS API model.

On this pattern, a canvas with URI:

https://example.org/iiif/foo/canvas/c1

will have a parent manifest with URI:

https://example.org/iiif/foo/manifest

This assumption may not, and probably will not, hold for other sources.

If the annotation has a “dcterms:isPartOf” field within the target, the value of
“dcterms:isPartOf” will be returned. If there are a list of annotation targets, the first
parent will be returned.

	Parameters

	content – annotation object

	Returns

	target parent URI

	
parents_by_topic(elucidate: str, topic: str) → Optional[str]

	Generator parses results from an Elucidate topic search request, and yields parent/manifest
URIs.

The code makes the assumption that, if passed a string for target, rather than an object,
that manifest and canvas URI patterns follow the model used by the RESTful DLCS API model.

On this pattern, a canvas with URI:

https://example.org/iiif/foo/canvas/c1

will have a parent manifest with URI:

https://example.org/iiif/foo/manifest

This assumption may not, and probably will not, hold for other sources.

	Parameters

	
	elucidate – URL for Elucidate server, e.g. https://elucidate.example.org

	topic – URL for body source, e.g. https://topics.example.org/people/mary+jones

	Returns

	manifest URI

	
read_anno(anno_uri: str) -> (typing.Union[str, NoneType], typing.Union[str, NoneType])

	GET an annotation from Elucidate, returns a tuple of annotation content and ETag

	Parameters

	anno_uri – URI for annotation

	Returns

	annotation content, etag

	
remove_keys(d: dict, keys: list) → dict

	Remove keys from a dictionary.

	Parameters

	
	d – dict to edit

	keys – list of keys to remove

	Returns

	dict with keys removed

	
set_query_field(url: str, field: str, value: Union[int, str], replace: bool = False)

	Parse out the different parts of a URL, and optionally replace a query string parameter,
before return the unparsed new URL.

	Parameters

	
	url – URL to parse

	field – field where the value should be replaced

	value – replacement value

	replace – boolean, if True, replace query string parameter

	Returns

	unparsed URL

	
target_extract(json_dict: dict, fake_selector: bool = False) → Optional[str]

	Extract the target and turn into a simple ‘on’.

Optionally, fake a selector, e.g. for whole canvas annotations, generate a target XYWH bounding
box at top left.

	Parameters

	
	fake_selector – if True, create a top left 50px box and associate with that.

	json_dict – annotation content as dictionary

	Returns

	string for the target URI

	
transform_annotation(item: dict, flatten_at_ids: bool = True, transform_function: Optional[Callable] = None) → Optional[dict]

	Transform an annotation given an arbitrary
function that is passed in.

For example, W3C to OA using “mirador_oa”.

The function will remove keys not used in the Open Annotation model.

If no transform_function is provided the annotation will be returned unaltered.

	Parameters

	
	item – annotation

	flatten_at_ids – if True replace @id dict with simple “@id” : “foo”

	transform_function – function to pass the annotation through

	Returns

	

	
update_anno(anno_uri: str, anno_content: dict, etag: str, dry_run: bool = True) → int

	Update an individual annotation, requires etag.

Optionally, can be run as a dry run which will not update the annotation but will return a 200.

	Parameters

	
	anno_uri – URI for annotation

	anno_content – the annotation content

	etag – ETag

	dry_run – if True, log and return a 200

	Returns

	return PUT request status code

	
uri_contract(uri: str) → Optional[str]

	Contract a URI to just the schema, netloc, and path

For example, for:

https://example.org/foo#XYWH=0,0,200,200

	Returns

	//example.org/foo

	Return type

	https

	Parameters

	uri – URI to contract

	Returns

	contracted URI

Module contents

Contributing

Contributions are welcome, and they are greatly appreciated!

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/digirati-co-uk/pyelucidate/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

PyElucidate could always use more documentation, whether as part of the
official PyElucidate docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/digirati-co-uk/pyelucidate/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

Get Started!

Ready to contribute? Here’s how to set up pyelucidate for
local development.

	Fork [https://github.com/digirati-co-uk/pyelucidate/fork] the pyelucidate repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/pyelucidate.git

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass style and unit
tests, including testing other Python versions with tox:

$ tox

To get tox, just pip install it.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy.
Check https://travis-ci.org/digirati-co-uk/pyelucidate
under pull requests for active pull requests or run the tox command and
make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test test/test_pyelucidate.py

Credits

Development Lead

	Matt McGrattan <matt.mcgrattan@digirati.com>

Contributors

History

0.1.0 (2018-10-12)

	First release on PyPI.

License

The MIT License (MIT)

Copyright (c) 2018 Digirati

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyelucidate	

 	
 	
 pyelucidate.pyelucidate	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | I
 | M
 | P
 | R
 | S
 | T
 | U

A

 	
 	annotation_pages() (in module pyelucidate.pyelucidate)

 	async_items_by_container() (in module pyelucidate.pyelucidate)

 	async_items_by_creator() (in module pyelucidate.pyelucidate)

 	
 	async_items_by_target() (in module pyelucidate.pyelucidate)

 	async_items_by_topic() (in module pyelucidate.pyelucidate)

 	async_manifests_by_topic() (in module pyelucidate.pyelucidate)

B

 	
 	batch_delete_target() (in module pyelucidate.pyelucidate)

 	
 	batch_delete_topic() (in module pyelucidate.pyelucidate)

 	batch_update_body() (in module pyelucidate.pyelucidate)

C

 	
 	create_anno() (in module pyelucidate.pyelucidate)

 	
 	create_container() (in module pyelucidate.pyelucidate)

D

 	
 	delete_anno() (in module pyelucidate.pyelucidate)

F

 	
 	fetch() (in module pyelucidate.pyelucidate)

 	
 	fetch_all() (in module pyelucidate.pyelucidate)

 	format_results() (in module pyelucidate.pyelucidate)

G

 	
 	gen_search_by_container_uri() (in module pyelucidate.pyelucidate)

 	
 	gen_search_by_target_uri() (in module pyelucidate.pyelucidate)

 	get_items() (in module pyelucidate.pyelucidate)

I

 	
 	identify_target() (in module pyelucidate.pyelucidate)

 	iiif_batch_delete_by_manifest() (in module pyelucidate.pyelucidate)

 	iiif_iterative_delete_by_manifest() (in module pyelucidate.pyelucidate)

 	iiif_iterative_delete_by_manifest_async_get() (in module pyelucidate.pyelucidate)

 	
 	item_ids() (in module pyelucidate.pyelucidate)

 	items_by_body_source() (in module pyelucidate.pyelucidate)

 	iterative_delete_by_target() (in module pyelucidate.pyelucidate)

 	iterative_delete_by_target_async_get() (in module pyelucidate.pyelucidate)

M

 	
 	mirador_oa() (in module pyelucidate.pyelucidate)

P

 	
 	parent_from_annotation() (in module pyelucidate.pyelucidate)

 	parents_by_topic() (in module pyelucidate.pyelucidate)

 	
 	pyelucidate (module)

 	pyelucidate.pyelucidate (module)

R

 	
 	read_anno() (in module pyelucidate.pyelucidate)

 	
 	remove_keys() (in module pyelucidate.pyelucidate)

S

 	
 	set_query_field() (in module pyelucidate.pyelucidate)

T

 	
 	target_extract() (in module pyelucidate.pyelucidate)

 	
 	transform_annotation() (in module pyelucidate.pyelucidate)

U

 	
 	update_anno() (in module pyelucidate.pyelucidate)

 	
 	uri_contract() (in module pyelucidate.pyelucidate)

 _static/ajax-loader.gif

_images/pyelucidate.png
Ppypi package 03.1

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Contents:

 		
 Installation

 		
 Usage

 		
 Introduction

 		
 Basic W3C Functions

 		
 POST a new annotation

 		
 GET an annotation

 		
 DELETE an annotation

 		
 CREATE a container

 		
 PUT an updated annotation

 		
 Elucidate Services

 		
 Query by body source

 		
 Query by target

 		
 Parents by body source

 		
 Bulk update

 		
 Bulk delete

 		
 Asynchronous functions

 		
 pyelucidate

 		
 pyelucidate package

 		
 Submodules

 		
 pyelucidate.pyelucidate module

 		
 Module contents

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.0 (2018-10-12)

 		
 License

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

