
PyeDNA Documentation
Release 1.01

Eric Strong

Sep 01, 2017

Contents

1 1. Introduction 3
1.1 Disclaimer . 3
1.2 Package Organization . 3
1.3 Basic Examples . 4

2 2. Getting Started 5
2.1 Installation . 5
2.2 eDNA Requirements . 5
2.3 Python Requirements . 5
2.4 Python Version Support . 6
2.5 eDNA Version Support . 6
2.6 Importing PyeDNA . 6

3 3. Configuration Information 7
3.1 Service Information . 7
3.2 Tag Information . 7
3.3 Tag Picker . 8

4 4. Pulling Data 9
4.1 Types of Data Pulls . 9
4.2 eDNA Data Compression . 9
4.3 GetHist . 10
4.4 GetMultipleTags . 11

5 5. Pushing Data 13
5.1 Serv Capabilities . 13

6 Change Log 15
6.1 Version 0.14 . 15
6.2 Version 0.15 . 15
6.3 Version 0.16 . 16
6.4 Version 0.17 . 16
6.5 Version 0.17 . 16
6.6 Version 0.18 . 16
6.7 Version 1.01 . 16

7 Indices and tables 17

i

ii

PyeDNA Documentation, Release 1.01

PyeDNA (“pie-dee-en-ay”) is a Python wrapper library for the C++ EzDnaApi, written for data analysts who wish to
work with eDNA data in the context of a pandas DataFrame. By converting eDNA data into a DataFrame, data analysis
can be accomplished using familiar tools like scikit-learn, statsmodels, etc. New functions will be added upon request.

Contents 1

PyeDNA Documentation, Release 1.01

2 Contents

CHAPTER 1

1. Introduction

PyeDNA (“pie-dee-en-ay”) is a Python wrapper library for the C++ EzDnaApi, written for data analysts who wish to
work with eDNA data in the context of a pandas DataFrame. By converting eDNA data into a DataFrame, data analysis
can be accomplished using familiar tools like scikit-learn, statsmodels, etc. New functions will be added upon request.

Disclaimer

PyeDNA is a wrapper library for the API of a data historian called eDNA. eDNA is developed by InStepSoftware,
LLC (http://www.instepsoftware.com/), who holds all rights to the eDNA software. PyeDNA does not contain any
proprietary code, and is merely a wrapper for functions that must be obtained from a legal, licensed version of EzD-
naApi.dll.

This is fan-supported project and is not affiliated in any way with InStepSoftware, LLC. The maintainer enjoys working
with eDNA and wishes them the best. :)

Package Organization

PyeDNA is organized into several namespaces, including:

• calc_config

• ezdna

• serv

The namespace of most interest to the typical user will be the ezdna namespace, which contains methods that are
meant to translate the eDNA API to Pythonic syntax and common libraries, such as pandas. For instance, all the data
pulling and configuration information functions are in this namespace.

The other two namespaces, calc_config and serv, contain more specialized functions. Serv contains functions from the
EzDNAServAPI that are meant to push data into eDNA. These functions are not entirely converted to familiar syntax,
behaving in a more low-level fashion. Calc_config is a namespace meant for parsing a CM.DB file (a sqlite database),

3

http://www.instepsoftware.com/

PyeDNA Documentation, Release 1.01

which each eDNA service contains. Calculations defined in eDNA may be difficult to parse, and this class is meant to
determine which tags are located in which calculations, to determine a dependency structure.

Basic Examples

All of the core data pulling functions are located in the GetHist function, which will return a pandas DataFrame with
the timestamp, value, and status columns. For example, the following code will pull snap data from TESTPNT1 over
a 30-second interval:

> import pyedna.ezdna as dna

> tag = “TESTSITE.TESTSERVICE.TESTPNT1” # format site.service.tag

> start = “12/01/16 01:01:01” # format mm/dd/yy hh:mm:ss

> end = “01/03/17 01:01:01” # format mm/dd/yy hh:mm:ss

> period = “00:00:30” # format hh:mm:ss

> df = dna.GetHist(tag, start, end, period=period, mode=”snap”)

Raw data may be obtained from TESTPNT1 using:

> df = dna.GetHist(tag, start, end, mode=”raw”)

Other supported pull types include Average, Interpolated, Max, and Min. Please refer to eDNA documentation for
more description about these pull types.

Multiple tags can be pulled (in Raw mode) at the same time using:

> tags = [”TESTSITE.TESTSERVICE.TESTPNT1”, “TESTSITE.TESTSERVICE.TESTPNT2”, “TEST-
SITE.TESTSERVICE.TESTPNT3”, “TESTSITE.TESTSERVICE.TESTPNT4”]

> df = dna.GetMultipleTags(tags, start, end)

A list of connected services may be obtained using GetServices:

> services = dna.GetServices()

A list of point information for a given service can be found using GetPoints:

> points = dna.GetPoints(“TESTSITE.TESTSERVICE”)

4 Chapter 1. 1. Introduction

CHAPTER 2

2. Getting Started

Installation

If Python is already installed on your computer, PyeDNA can be installed using PyPI by opening a command window
and typing:

pip install pyedna

Upgrading to a new version of pyedna can be accomplished by:

pip install pyedna –upgrade

The source code of pyedna is hosted on GitHub at:

https://github.com/drericstrong/pyedna

eDNA Requirements

PyeDNA currently requires that a legal, licensed version of the EzDnaApi be located in the following directory:

C:Program Files (x86)eDNAEzDnaApi64.dll

If your EzDNAApi is in a different location, each namespace contains a method called LoadDll which can be used to
specify the correct location:

LoadDll(“CORRECT_LOCATION”)

Python Requirements

Required libraries: numba, numpy, pandas

A requirements.txt document is located in the GitHub repository, and all package requirements can be installed using
the following line in a command window:

5

https://github.com/drericstrong/pyedna

PyeDNA Documentation, Release 1.01

pip install -r requirements.txt

Numba is required to significantly speed up the base-level data pull, and numpy and pandas are used for ease of data
processing. It is very unlikely that these requirements will change in the future.

Python Version Support

Currently, PyeDNA only supports Python 3.2+ and is not compatible with Python 2. Testing confirms that PyeDNA
will not work on Python 2 without some adjustments to the codebase. If this is important to you, please make a pull
request at:

https://github.com/drericstrong/pyedna

The package maintainer welcomes collaboration.

eDNA Version Support

Only the 64-bit version of the eDNA API is supported in the current release. I am having trouble getting the 32-bit
version to work. It may be an issue with my particular API file. Again, if 32-bit support is important to you, please
contact me for collaboration.

Importing PyeDNA

PyeDNA is usually imported into a script using the following line:

import pyedna.ezdna as dna

Warning- since pyedna is connection-based, importing PyeDNA will always have direct side effects. When the mod-
ule is imported, PyeDNA will attempt to connect to all available eDNA services. If none are available, a warning will
be thrown, and the user’s eDNA connection should be checked. If services are available, the number of available ser-
vices will be printed to the console (the maintainer apologizes for this intrusion, but it was determined to be necessary
to provide visibility for connection issues unrelated to PyeDNA behavior).

6 Chapter 2. 2. Getting Started

https://github.com/drericstrong/pyedna

CHAPTER 3

3. Configuration Information

PyeDNA contains a number of functions which allow the user to pull configuration information from current eDNA
services and points. These functions are located in the pyedna.ezdna namespace.

Warning- One of the most common mistakes when using PyeDNA is not to specify the full eDNA tag when using the
module. Unless otherwise specified, tags should always be specified by their full Site.Service.Tag designation.

All code in this section assumes that PyeDNA has been imported using:

import pyedna.ezdna as dna

Service Information

eDNA contains a number of services, which each contain many tags. When PyeDNA is imported, it attempts to
connect to all available services and will print the number of available eDNA services.

A list of all connection services can be obtained using:

dna.GetServices()

The above function will return a pandas DataFrame with the following columns:

• Name

• Description

• Type

• Status

Tag Information

Each service contains a number of tags, which define a block of time-based data storage. Connecting to a service
allows access to all of its tags, which can be found using the following command:

7

PyeDNA Documentation, Release 1.01

dna.GetPoints(“EDNA_SERVICE”)

The above function will return a pandas DataFrame with all the points from the eDNA service, also including infor-
mation such as:

• Tag

• Current Value

• Current Time

• Current Status

• Description

• Units

More specific information about a single point can be obtained using:

dna.GetRTFull(“SITE.SERVICE.TAG”)

The tag description alone can be found by:

dna.GetTagDescription(“SITE.SERVICE.TAG”)

Determining if a tag exists in any connected service can be accomplished by:

dna.DoesIDExist(“SITE.SERVICE.TAG”)

The above function will return either TRUE or FALSE. Ensure that proper spelling and the full Site.Service.Tag format
is used.

Tag Picker

A dialog box containing the native eDNA “tag picker” can be brought up using:

dna.SelectPoint()

Unfortunately, only the single point version is supported at this time. Support for multiple tags is expected to be
available in the future.

8 Chapter 3. 3. Configuration Information

CHAPTER 4

4. Pulling Data

Data from each defined eDNA tag can be obtained by the functions in this section.

Warning- One of the most common mistakes when using PyeDNA is not to specify the full eDNA tag when using the
module. Unless otherwise specified, tags should always be specified by their full Site.Service.Tag designation.

Danger- Please read the data compression section to understand what is actually happening when data is pulled in
“raw” mode- it will affect your data analysis.

All code in this section assumes that PyeDNA has been imported using:

import pyedna.ezdna as dna

Types of Data Pulls

As defined by eDNA, several different types of data pulls may be accomplished:

• Avg: Finds the arithmetic mean of values over a window defined by the time span.

• Interp: Interpolates values over a window defined by the time span.

• Min: Finds the minimum value over a window defined by the time span.

• Max: Finds the maximum value over a window defined by the time span.

• Raw: Pulls data exactly as it is stored in the database (read data compression below)

• Snap: Finds the last data point over a window defined by the time span.

PyeDNA provides functionality for all of these methods.

eDNA Data Compression

The eDNA database only stores data points when either the value or status of the point changes. This allows the data
files to be compressed, which is advantageous for transfer over a low-speed or expensive medium. However, this

9

PyeDNA Documentation, Release 1.01

compression presents some issues for data analysis that the user must be aware of.

First, data gaps may occur over the time period if data transfer is interrupted in some way. These data gaps may be
hard to notice in practice, especially if the user is pulling data with the “Snap” method. Since “Snap” will find the last
data point at each time window, the “last” data point will be the data point right before the data gap. This causes a
“flat-lining” behavior that is usually obvious if the data gap is large enough. It is strongly recommended that the user
implement some kind of gap-detection algorithm if gaps are frequent and “Snap” mode is being used.

Second, data pulled using “Raw” mode is not appropriate for many types of statistical analysis. Since “Raw” mode
pulls compressed data as it is actually stored in the database, the frequency of common data points is reduced compared
to uncommon data points. Hence, statistical analysis will be skewed towards outliers. It is recommended that the user
typically use “Snap” mode to prevent this situation, especially if the data sampling rate is known a priori. However,
take care about data gaps when using “Snap” mode, as mentioned above.

Please refer to eDNA documentation for more information.

GetHist

The main data pulling functionality is contained in the dna.GetHist function. GetHist will return a pandas DataFrame
with the requested data, providing easy access to more advanced data analysis tools in Python.

The start date and end date of the data pull must be specified as input parameters. Warning- eDNA prefers the date in
this format:

mm/dd/yy hh:mm:ss

While other formats may work, please specify your dates in this format, for safety.

By default, the column label of the DataFrame will be the eDNA tag name, but by specifying the parameter
desc_as_label=True, the eDNA description can be used instead. Otherwise, a custom label can be specified by
label=”CUSTOM_LABEL”.

Each of the six data pulling methods mentioned above are supported in this function by supplying the parameter
mode=”X”. The default data pulling mode is raw:

• avg

• interp

• min

• max

• raw

• snap

By default, the data returned in the pandas DataFrame will use a numpy DateTime as the index. However, if the native
eDNA UTC time is requested using utc=True, the index will be an integer instead. The speed of the data pull will
actually be slightly improved if utc=True is selected.

High-speed data can be obtained using the parameter high_speed=True. Take care that high speed data is required,
because it can significantly slow down the data pull.

Legacy data pulling functions are still available, but have been consolidated into GetHist:

• dna.GetHistAvg

• dna.GetHistInterp

• dna.GetHistMax

• dna.GetHistMin

10 Chapter 4. 4. Pulling Data

PyeDNA Documentation, Release 1.01

• dna.GetHistRaw

• dna.GetHistSnap

GetMultipleTags

dna.GetMultipleTags is a convenience function designed to prepare data from multiple tags simultaneously. It may
save the user a large amount of time, but it’s important to understand what’s happening behind the scenes to determine
if this function will meet your needs.

The core behavior of GetMultipleTags is to:

1. Pull data from multiple eDNA tags (supplied via a list) using GetHist(mode=”raw”)

2. Remove any duplicated indices (this happens sometimes in eDNA and will cause the concatenation to fail)

3. Concatenate all the DataFrames using an outer join (time indices which are not shared will be filled with None)

4. Fill the None values using a “fill-forward” algorithm

If data is to be used for statistical analysis, it is strongly recommended that the user adjust the parameter sam-
pling_rate=”X”, since data is being pulled using “Raw” mode in this function. The format of the sampling_rate
parameter uses pandas resampling notation. For instance, “1S” means 1 second, and “5M” means 5 minutes. Refers
to pandas documentation for more information.

The parameter fill_limit can be used to specify how many data points are filled-forward in step 4 above. If fill_limit is
set to 0, the data will not be filled-forward at all.

verify_time=True can be used to ensure that no duplicate time indices exist after the concatenation, which will
sometimes occur when more than 10 tags are being concatenated. Unfortunately, this will significantly slow down the
data pull.

As with GetHist above, the parameters desc_as_label and utc may also be specified.

4.4. GetMultipleTags 11

PyeDNA Documentation, Release 1.01

12 Chapter 4. 4. Pulling Data

CHAPTER 5

5. Pushing Data

PyeDNA contains the ability to push data to an eDNA database. The functions in this section are primarily contained
in the “serv” namepace.

Warning- This namespace is still under development, but many of the main functions should be working correctly.

All code in this section assumes that PyeDNA has been imported using:

import pyedna.serv as serv

Serv Capabilities

PyeDNA exposes the following eZDNAServApi functions:

• AddAnalogShortIdRecord

• AddAnalogShortIdRecordNoStatus

• AddDigitalShortIdRecord

• AddAnalogShortIdMsecRecord

• AddAnalogShortIdMsecRecordNoStatus

• AddDigitalShortIdMsecRecord

• FlushShortIdRecords

More information about these functions can be found in eDNA documentation.

13

PyeDNA Documentation, Release 1.01

14 Chapter 5. 5. Pushing Data

CHAPTER 6

Change Log

Version 0.14

• FEATURE- GetServices allows you to get all connected eDNA service information

• FEATURE- GetPoints allows you to get information about all points in a service

• FEATURE- Number of connected services are printed when library is imported

• Better error handling for eDNA connection drops

• Before a data pull, there is now error checking to see if a point exists

• GetMultipleTags no longer automatically resamples and forward-fills data. The user should be in control of this.

Version 0.15

• FEATURE- In the pulling functions, you can now use the desc_as_label parameter to use the point description
as the DataFrame column name.

• FEATURE- In the pulling functions, you can now specify a custom column label.

• Better handling of non-ASCII characters in descriptions and units

• GetRTFull never returned a point description- alternative written

• Improved handling of unicode errors- non-Unicode characters are now ignored

• Consistency between ezdna and serv file formatting and dll calls

• Beginnings of a unit test framework

• Miscellaneous code cleanup

15

PyeDNA Documentation, Release 1.01

Version 0.16

• MAJOR- Refactoring of all GetHistX methods into GetHist. Please use the “mode” parameter to specify the
type of history call. Old methods still available.

• New DEPENDENCY- Numba

• Significant speed increase due to JIT compilation

• Bugfix in __init__ header

• Project documentation

Version 0.17

• Bugfix in GetHist related to “switch” statement

• Minor documentation fixes

• Mocking the dna_dll variable so that RTD documentation can be automatically created

Version 0.17

• Bugfix- minor issue with a duplicated last point in every data pull

• Bugfix where GetPoints and GetServices did not return the first entry (due to eDNA apparently treating these
functions in a completely different way than the GetHist functions)

• Fixed issue in GetMultipleTags where the pandas function drop_duplicates() removed too many rows. Removed
duplicate indices only, instead.

Version 0.18

• Updated logo

• New and improved documentation

• Import function updated

• Minor bugfixes

Version 1.01

• Re-released using the 1.X scheme to fix versioning control (developer mistake)

• No other major updates

16 Chapter 6. Change Log

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

17

	1. Introduction
	Disclaimer
	Package Organization
	Basic Examples

	2. Getting Started
	Installation
	eDNA Requirements
	Python Requirements
	Python Version Support
	eDNA Version Support
	Importing PyeDNA

	3. Configuration Information
	Service Information
	Tag Information
	Tag Picker

	4. Pulling Data
	Types of Data Pulls
	eDNA Data Compression
	GetHist
	GetMultipleTags

	5. Pushing Data
	Serv Capabilities

	Change Log
	Version 0.14
	Version 0.15
	Version 0.16
	Version 0.17
	Version 0.17
	Version 0.18
	Version 1.01

	Indices and tables

