

 Navigation

 	
 index

 	
 next |

 	PyDy Distribution 0.2.0 documentation

PyDy Package’s documentation!

This is the central page for all PyDy’s Documentation.

PyDy

[image: https://travis-ci.org/pydy/pydy.png?branch=master]
 [https://travis-ci.org/pydy/pydy]PyDy [http://pydy.org], short for Python Dynamics, is a tool kit written in and accessed through
the Python programming language that utilizes an array of scientific tools to
study multibody dynamics. The goal is to have a modular framework and
eventually a physics abstraction layer which utilizes a variety of backend that
can provide the user with their desired workflow, including:

	Model specification

	Equation of motion generation

	Simulation

	Visualization

	Publication

We started by building the SymPy [http://sympy.org] mechanics package [http://docs.sympy.org/latest/modules/physics/mechanics/index.html] which provides an API
for building models and generating the symbolic equations of motion for complex
multibody systems and have more recently developed two packages, pydy.codegen
and pydy.viz, for simulation and visualization of the models. The remaining
tools currently used in the PyDy workflow are popular scientific Python
packages such as NumPy [http://numpy.scipy.org], SciPy [http://www.scipy.org/scipylib/index.html], IPython [http://ipython.org], and matplotlib [http://matplotlib.org] (i.e. the SciPy
stack) which provide additional code for numerical analyses, simulation, and
visualization.

Installation

The PyDy workflow has hard dependecies on these Python packages:

	Python >= 2.7

	setuptools

SciPy Stack

	SymPy [http://sympy.org] >= 0.7.4.1

	NumPy [http://numpy.scipy.org] >= 1.6.1

	SciPy [http://www.scipy.org/scipylib/index.html] >= 0.9.0

	IPython [http://ipython.org] >= 0.13.0

It’s best to install the SciPy Stack dependencies using the instructions [http://www.scipy.org/install.html]
provided on the SciPy website.

Once the dependencies are installed, the package can be installed from PyPi
using:

$ easy_install pydy

or:

$ pip install pydy

For system wide installs you will need root permissions (perhaps prepend
commands with sudo).

You can also grab the source and then install[1].

Using the zip download:

$ wget https://github.com/pydy/pydy/archive/master.zip
$ unzip pydy-master.zip
$ cd pydy-master
$ python setup.py install

Using Git:

$ git clone https://github.com/pydy/pydy.git
$ cd pydy
$ python setup.py install

	[1]	Note that this is the latest development version. Specific releases
can be found here: https://github.com/pydy/pydy/releases
or by checking out a tag with Git.

Development Environment

Development Dependencies

Tests require nose:

	nose: 1.3.0

Isolated Virtual Environment Installation

The following installation assumes you have virtualenvwrapper [https://pypi.python.org/pypi/virtualenvwrappe://pypi.python.org/pypi/virtualenvwrapper] and all the
dependencies needed to build the packages:

$ mkvirtualenv pydy-dev
(pydy-dev)$ pip install numpy scipy cython nose theano sympy
(pydy-dev)$ pip install matplotlib # make sure to do this after numpy
(pydy-dev)$ git clone git@github.com:pydy/pydy.git
(pydy-dev)$ cd pydy
(pydy-dev)$ python setup.py develop

Run the tests:

(pydy-dev)$ nosetests

For the Javascript tests the Jasmine and blanket.js libraries are used. Both
of these libraries are included in pydy-viz with the source. To run the
Javascript tests, go to the javascript library directory:

$ cd pydy/viz/static/js

Then run a simple HTTP Server with Python (the server is required due to some
cross browser issues with blanket.js):

$ python -m SimpleHTTPServer

Now visit http://localhost:8000/SpecRunner.html in a webgl compliant browser.

Run the benchmark to test the n-link pendulum problem.:

(pydy-dev)$ python bin/benchmark_pydy_code_gen.py <max # of links> <# of time steps>

Usage

Simply import the modules and functions when in a Python interpreter:

>>> from sympy import symbols
>>> from sympy.physics import mechanics
>>> from pydy import codegen, viz

Documentation

The documentation is hosted at http://pydy-viz.readthedocs.org but you can also
build them from source using the following instructions:

Requires:

	Sphinx

	numpydoc

pip install sphinx numpydoc

To build the HTML docs:

$ sphinx-build -b html docs/src docs/build

View:

$ firefox docs/build/index.html

Code Generation

This package provides code generation facilities for PyDy [http://pydy.org]. For now, it
generates functions that can evaluate the right hand side of the ordinary
differential equations generated with sympy.physics.mechanics [http://docs.sympy.org/latest/modules/physics/mechanics] with three
different backends: SymPy’s lambdify [http://docs.sympy.org/latest/modules/utilities/lambdify.html#sympy.utilities.lambdify.lambdify], Theano [http://deeplearning.net/software/theano/], and Cython [http://cython.org/].

Optional Dependencies

To enable different code generation backends, you can install the various
optional dependencies:

	Cython: >=0.15.1

	Theano: >=0.6.0

Usage

This is an example of a simple 1 degree of freedom system: a mass, spring,
damper system under the influence of gravity and a force:

/ / / / / / / / /

 | | | | g
 \ | | | V
k / --- c |
 | | | x, v
 -------- V
 | m | -----

 | F
 V

Derive the system:

from sympy import symbols
import sympy.physics.mechanics as me

mass, stiffness, damping, gravity = symbols('m, k, c, g')

position, speed = me.dynamicsymbols('x v')
positiond = me.dynamicsymbols('x', 1)
force = me.dynamicsymbols('F')

ceiling = me.ReferenceFrame('N')

origin = me.Point('origin')
origin.set_vel(ceiling, 0)

center = origin.locatenew('center', position * ceiling.x)
center.set_vel(ceiling, speed * ceiling.x)

block = me.Particle('block', center, mass)

kinematic_equations = [speed - positiond]

force_magnitude = mass * gravity - stiffness * position - damping * speed + force
forces = [(center, force_magnitude * ceiling.x)]

particles = [block]

kane = me.KanesMethod(ceiling, q_ind=[position], u_ind=[speed],
 kd_eqs=kinematic_equations)
kane.kanes_equations(forces, particles)

Store the expressions and symbols in sequences for the code generation:

mass_matrix = kane.mass_matrix_full
forcing_vector = kane.forcing_full
constants = (mass, stiffness, damping, gravity)
coordinates = (position,)
speeds = (speed,)
specified = (force,)

Now generate the function needed for numerical evaluation of the ODEs. The
generator can use various back ends: lambdify, theano, or cython:

from pydy.codegen.code import generate_ode_function

evaluate_ode = generate_ode_function(mass_matrix, forcing_vector, constants,
 coordinates, speeds, specified,
 generator='lambdify')

Integrate the equations of motion under the influence of a specified sinusoidal
force:

from numpy import array, linspace, sin
from scipy.integrate import odeint

x0 = array([0.1, -1.0])
args = {'constants': array([1.0, 1.0, 0.2, 9.8]),
 'specified': lambda x, t: sin(t)}
t = linspace(0.0, 10.0, 1000)

y = odeint(evaluate_ode, x0, t, args=(args,))

Plot the results:

import matplotlib.pyplot as plt

plt.plot(t, y)
plt.legend((str(position), str(speed)))
plt.show()

Visualization (viz)

Visualization of multibody systems generated with PyDy.

Related Packages

	https://github.com/cdsousa/sympybotics

	https://pypi.python.org/pypi/Hamilton

	https://pypi.python.org/pypi/arboris

	https://pypi.python.org/pypi/PyODE

	https://pypi.python.org/pypi/odeViz

	https://pypi.python.org/pypi/ARS

	https://pypi.python.org/pypi/pymunk

Release Notes

0.2.0

	Merged pydy_viz, pydy_code_gen, and pydy_examples into the source tree.

	Added a method to output “static” visualizations from a Scene object.

	Dropped the matplotlib dependency and now only three.js colors are valid.

	Added joint torques to the n_pendulum model.

	Added basic examples for codegen and viz.

	Graceful fail if theano or cython are not present.

	Shapes can now use sympy symbols for geometric dimensions.

codegen package

	codegen API

viz package

	Introduction

	API
	Python Modules Reference

	JavaScript functions Reference

Questions

If you have any question about installation, or any general question, feel free
to visit the IRC channel at irc.freenode.net, channel #pydy. In addition,
our mailing list [http://groups.google.com/group/pydy] is an excellent source of community support.

If you think there’s a bug or you would like to request a feature, please open
an issue [https://github.com/PythonDynamics/pydy-viz/issues].

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013-2014, PyDy Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyDy Distribution 0.2.0 documentation

codegen API

 Copyright 2013-2014, PyDy Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyDy Distribution 0.2.0 documentation

Introduction

The viz package in pydy is designed to facilitate browser based animations for
PyDy framework.

Typically the plugin is used to generate animations for multibody systems. The
systems are defined with sympy.physics.mechanics, solved numerically with the
codegen package and scipy, and then visualized with this package. But the
required data for the animations can theorectically be generated by other
methods and passed into a Scene object.

The frontend is based on three.js, a popular interface to the WebGraphics
Library (WegGL). The package provides a Python wrapper for some basic
functionality for Three.js i.e Geometries, Lights, Cameras etc.

 Copyright 2013-2014, PyDy Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyDy Distribution 0.2.0 documentation

API

All the module specific docs have some test cases, which will prove helpful in
understanding the usage of the particular module.

	Python Modules Reference
	Shapes

	VisualizationFrame

	Cameras

	Lights

	Scene

	JavaScript functions Reference
	Canvas

	canvas/initialize.js

	canvas/addObjects.js

	canvas/animate.js

 Copyright 2013-2014, PyDy Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyDy Distribution 0.2.0 documentation

 	API

Python Modules Reference

	Shapes
	Shape

	Cube

	Cylinder

	Cone

	Sphere

	Circle

	Plane

	Tetrahedron

	Octahedron

	Icosahedron

	Torus

	TorusKnot

	Tube

	Mesh

	VisualizationFrame

	Cameras
	Perspective Camera

	Orthographic Camera

	Lights
	PointLight

	Scene

 Copyright 2013-2014, PyDy Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyDy Distribution 0.2.0 documentation

 	API

 	Python Modules Reference

Shapes

Shape

Cube

Cylinder

Cone

Sphere

Circle

Plane

Tetrahedron

Octahedron

Icosahedron

Torus

TorusKnot

Tube

Mesh

 Copyright 2013-2014, PyDy Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyDy Distribution 0.2.0 documentation

 	API

 	Python Modules Reference

VisualizationFrame

 Copyright 2013-2014, PyDy Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyDy Distribution 0.2.0 documentation

 	API

 	Python Modules Reference

Cameras

Perspective Camera

Orthographic Camera

 Copyright 2013-2014, PyDy Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyDy Distribution 0.2.0 documentation

 	API

 	Python Modules Reference

Lights

PointLight

 Copyright 2013-2014, PyDy Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyDy Distribution 0.2.0 documentation

 	API

 	Python Modules Reference

Scene

 Copyright 2013-2014, PyDy Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	PyDy Distribution 0.2.0 documentation

 	API

JavaScript functions Reference

Canvas

Canvas is the base class for handling all the animation and visualization
generation.

canvas/initialize.js

Constructor:

This function acts as a class constructor for Canvas class It takes the JSON
Object variable as the argument, which contains all the data in the JSON
format. It binds onClick methods of certain Divs on the frontend with some
Canvas.prototype functions.

Canvas.prototype.initialize

This prototype function initializes the starting canvas, on which all the
visualizations are drawn.

It adds following to the canvas:

	A Primary Camera

	Primary Trackball Controls

	A Primary Light

	Axes

	Grid

	A Div for displaying total number of frames.

	A Div for displaying the current frame animation is
running on.

canvas/addObjects.js

Canvas.prototype.addControls

This prototype function initializes the Primary Controls, which were defined in
Canvas.prototype.initialize function.

It generates a controlsID, which contains the return value of
requestAnimationFrame, and can be used to call cancelAnimationFrame, for
stopping mouse controlled animation.

Canvas.prototype.resetControls

This prototype function simply calls the controls reset method for the Primary
Controls(canvas.prototype.primaryControls).

Canvas.prototype.addCameras

This prototype function parses the JSON Object for cameras and adds them to the
scene. All the cameras are stored in a Canvas.cameras object, which is an
instance of THREE.Object3D();

Canvas.prototype.addLights

This prototype function parses the JSON Object for lights and adds them to the
scene. All the lights are stored in a Canvas.lights object, which is an
instance of THREE.Object3D();

Canvas.prototype.addFrames

This prototype function parses the JSON Object for frames and adds them to the
scene. All the frames are stored in a Canvas.frames object, which is an
instance of THREE.Object3D();

canvas/animate.js

Canvas.prototype.startAnimation

This prototype function kick starts the animation. It iterates over the frames
and apply transformation matrices from Simulation Matrix of that frame,
iteratively. By default animation is done for a single loop, which can be
changed to looped by the check button from the UI.

Canvas.prototype.pauseAnimation

This prototype function pauses the animation, but retains the current animation
frame.

Canvas.prototype.stopAnimation

This prototype function stops the animation, and resets current animation frame
to 0.

 Copyright 2013-2014, PyDy Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	PyDy Distribution 0.2.0 documentation

Index

 Copyright 2013-2014, PyDy Authors.
 Created using Sphinx 1.2.2.

 _static/minus.png

_static/comment.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		PyDy Distribution 0.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013-2014, PyDy Authors.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

