

PyDocX

	Installation
	Python & OS Support

	Install using pip

	Upgrade using pip

	Usage
	Converting files using the command line interface

	Converting files using the library directly

	Currently Supported HTML elements

	HTML Styles

	Exceptions

	Conformance
	17.9 Numbering

	Deviations

	Extending PyDocX
	Customizing the HTML Exporter

	Implementing a new exporter

	Export Mixins
	Detect faked superscript and subscript

	Enumerated List Detection
	Supported enumeration sequences

	Supported enumeration patterns

	How to disable enumerated list detection

	Development
	Installing requirements

	Building the documentation locally

	Running tests

	Getting involved

	Coding Standards

	Release process

	Plugins
	Available Plugins

	Release Notes

Installation

Python & OS Support

PyDocX is supported and tested with CPython versions 2.6, 2.7, 3.3, 3.4, and pypy.

PyDocX is supported and tested with Linux and Windows.

Install using pip

$ pip install pydocx

Upgrade using pip

$ pip install -U pydocx

Usage

Converting files using the command line interface

Using the pydocx command,
you can specify the output format
with the input and output files:

$ pydocx --html input.docx output.html

Converting files using the library directly

If you don’t want to mess around
having to create exporters,
you can use the
PyDocX.to_html
helper method:

from pydocx import PyDocX

Pass in a path
html = PyDocX.to_html('file.docx')

Pass in a file object
html = PyDocX.to_html(open('file.docx', 'rb'))

Pass in a file-like object
from cStringIO import StringIO
buf = StringIO()
with open('file.docx') as f:
 buf.write(f.read())

html = PyDocX.to_html(buf)

Of course,
you can do the same using the exporter
class:

from pydocx.export import PyDocXHTMLExporter

Pass in a path
exporter = PyDocXHTMLExporter('file.docx')
html = exporter.export()

Pass in a file object
exporter = PyDocXHTMLExporter(open('file.docx', 'rb'))
html = exporter.export()

Pass in a file-like object
from cStringIO import StringIO
buf = StringIO()
with open('file.docx') as f:
 buf.write(f.read())

exporter = PyDocXHTMLExporter(buf)
html = exporter.export()

Currently Supported HTML elements

	tables
	nested tables

	rowspans

	colspans

	lists in tables

	lists
	list styles

	nested lists

	list of tables

	list of pragraphs

	justification

	images

	styles
	bold

	italics

	underline

	hyperlinks

	headings

HTML Styles

The export class
pydocx.export.PyDocXHTMLExporter
relies on certain
CSS classes being defined
for certain behavior to occur.

Currently these include:

	class pydocx-insert -> Turns the text green.

	class pydocx-delete -> Turns the text red and draws a line through the text.

	class pydocx-center -> Aligns the text to the center.

	class pydocx-right -> Aligns the text to the right.

	class pydocx-left -> Aligns the text to the left.

	class pydocx-comment -> Turns the text blue.

	class pydocx-underline -> Underlines the text.

	class pydocx-caps -> Makes all text uppercase.

	class pydocx-small-caps -> Makes all text uppercase, however truly lowercase letters will be small than their uppercase counterparts.

	class pydocx-strike -> Strike a line through.

	class pydocx-hidden -> Hide the text.

	class pydocx-tab -> Represents a tab within the document.

Additionally,
several list styles are defined
based off the attribute values
listed at:
http://officeopenxml.com/WPnumbering-numFmt.php

	class pydocx-list-style-type-cardinalText -> (1, 2, 3, 4, etc.)

	class pydocx-list-style-type-decimal -> (1, 2, 3, 4, etc.)

	class pydocx-list-style-type-decimalEnclosedCircle -> (1, 2, 3, 4, etc.)

	class pydocx-list-style-type-decimalEnclosedFullstop -> (1, 2, 3, 4, etc.)

	class pydocx-list-style-type-decimalEnclosedParen -> (1, 2, 3, 4, etc.)

	class pydocx-list-style-type-decimalZero -> (01, 02, 03, etc.)

	class pydocx-list-style-type-lowerLetter -> (a, b, c, etc.)

	class pydocx-list-style-type-lowerRoman -> (i, ii, iii, etc.)

	class pydocx-list-style-type-none -> List style is removed

	class pydocx-list-style-type-ordinalText -> (1, 2, 3, 4, etc.)

	class pydocx-list-style-type-upperLetter -> (A, B, C, etc.)

	class pydocx-list-style-type-upperRoman -> (I, II, III, etc.)

Exceptions

There is only one custom exception (MalformedDocxException).
It is raised if either the xml or zipfile libraries raise an exception.

Conformance

Open Office XML is standardized by
ECMA-376 [http://www.ecma-international.org/publications/standards/Ecma-376.htm].

To the greatest degree possible,
PyDocX intends to conform with this
and subsequent standards.

17.9 Numbering

	Section
	Description
	Implemented

	17.9.1
	abstractNum
	true

	17.9.2
	abstractNumId
	true

	17.9.3
	ilvl
	true

	17.9.4
	isLgl
	false

	17.9.5
	lvl (override)
	false

	17.9.6
	lvl
	true

	17.9.7
	lvlJc
	false

	17.9.8
	lvlOverride
	false

	17.9.9
	lvlPictPulletId
	false

	17.9.10
	lvlRestart
	false

	17.9.11
	lvlText
	false

	17.9.12
	multiLevelType
	false

	17.9.13
	name
	false

	17.9.14
	nsid
	false

	17.9.15
	num
	true

	17.9.16
	numbering
	true

	17.9.17
	numFmt
	true

	17.9.18
	numId
	true

	17.9.19
	numIdMacAtCleanup
	false

	17.9.20
	numPicBullet
	false

	17.9.21
	numStyleLink
	false

	17.9.22
	pPr
	false

	17.9.23
	pStyle
	false

	17.9.24
	rPr
	false

	17.9.25
	start
	false

	17.9.26
	startOverride
	false

	17.9.27
	styleLink
	false

	17.9.28
	suff
	false

	17.9.29
	tmpl
	false

Deviations

In some cases,
it was necessary to deviate
from the specification.
Such deviations
should be only done
with justification,
and minimally.
All intended deviations
shall be documented here.
Any undocumented deviations
are bugs.

Missing val attribute in underline tag

	In the event that the
val attribute
is missing
from a u (ST_Underline type),
we treat the underline as off,
or none.
See also
http://msdn.microsoft.com/en-us/library/ff532016%28v=office.12%29.aspx

If the val attribute is not specified,
Word defaults to the value defined
in the style hierarchy
and then to no underline.

Extending PyDocX

Customizing the HTML Exporter

Basic HTML exporting
is implemented in
pydocx.export.html.PyDocXHTMLExporter.
To override default behavior,
simply extend the class
and implement the desired methods.
Here are a few examples
to show you what is possible:

class MyPyDocXHTMLExporter(PyDocXExporter):

 def __init__(self, path):
 # Handle dstrike the same as italic
 self.export_run_property_dstrike = self.export_run_property_italic

 super(MyPyDocXHTMLExporter, self).__init__(path=path)

 # Perform specific pre-processing
 def export(self):
 self.delete_only_FOO_text_nodes()
 return super(MyPyDocXHTMLExporter, self).export()

 def delete_only_FOO_text_nodes(self):
 # Delete all text nodes that match 'FOO' exactly
 document = self.main_document_part.document
 for body_child in document.body.children:
 if isinstance(body_child, wordprocessing.Paragraph):
 paragraph = body_child
 for paragraph_child in paragraph.children:
 if isinstance(paragraph_child, wordprocessing.Run):
 run = paragraph_child
 for run_child in run.children[:]:
 if isinstance(run_child, wordprocessing.Text):
 text = run_child
 if text.text == 'FOO'
 run.children.remove(text)

 # Don't display head
 def head(self):
 return
 # The exporter expects all methods to return a generator
 yield # this syntax causes an empty generator to be returned

 # Ignore page break
 def get_break_tag(self, br):
 if br.is_page_break():
 pass
 else:
 return super(MyPyDocXHTMLExporter, self).get_break_tag(br)

 # Do not show deleted runs
 def export_deleted_run(self, deleted_run):
 return
 yield

 # Custom table tag
 def get_table_tag(self, table):
 attrs = {
 'class': 'awesome-table',
 }
 return HtmlTag('table', **attrs)

 # By default, the HTML exporter wraps inserted runs in a span with
 # class="pydocx-insert". This example overrides that method to skip
 # that behavior by jumping to the base implementation.
 def export_inserted_run(self, inserted_run):
 return super(PyDocXExporter, self).export_inserted_run(inserted_run)

 # Hide hidden runs
 def export_run(self, run):
 properties = run.effective_properties
 if properties.vanish:
 return
 elif properties.hidden:
 return
 results = super(MyPyDocXHTMLExporter, self).export_run(run)
 for result in results:
 yield result

Implementing a new exporter

If you want to implement an exporter
for an unsupported markup language,
you can do that
by extending
pydocx.export.base.PyDocXExporter
as needed.
For example,
this shows how you might
create a custom exporter
for the FML,
or Foo Markup Language:

class PyDocXFOOExporter(PyDocXExporter):

 # The "FOO" markup language denotes breaks using "\"
 def export_break(self):
 yield '\\'

 def export_document(self, document):
 yield 'START OF DOC'
 results = super(PyDocXFOOExporter, self).export_document(self, document)
 for result in results:
 yield result
 yield 'END OF DOC'

 # Text must be wrapped in ()
 def export_text(self, text):
 yield '({0})'.format(text.text)

 # Tables are denoted by []
 def export_table(self, table):
 yield '['
 results = super(PyDocXFOOExporter, self).export_table(self, table)
 for result in results:
 yield result
 yield ']'

 # Table rows are denoted by { }
 def export_table_row(self, table_row):
 yield '{'
 results = super(PyDocXFOOExporter, self).export_table_row(self, table_row)
 for result in results:
 yield result
 yield '}'

 # Table cells are denoted by < >
 def export_table_row(self, table_cell):
 yield '<'
 results = super(PyDocXFOOExporter, self).export_table_cell(self, table_cell)
 for result in results:
 yield result
 yield '>'

The base exporter implementation
expects all methods
to return a generator.
For this reason,
it is not possible
to have an empty
method (pass)
or have a method
that just returns None.
The one caveat
is the special syntax
that causes a method
to return an empty
generator:

def empty_generator():
 return
 yield

This implementation
is consistent with the
“only generators”
rule,
and is actually
computationally faster
than returning
an empty list.

Export Mixins

Export mixins
provide standardized
optional overrides
for specific use cases.
They exist in
pydocx.export.mixins.
Each mixin is defined as a class
in its own module.

Detect faked superscript and subscript

Useful if you want
runs of text
that are styled smaller
(relative to surrounding text)
and positioned
either above
or below
the surrounding text
to be treated as super/subscript.

Example usage:

from pydocx.export.mixins import FakedSuperscriptAndSubscriptExportMixin

class CustomExporter(
 FakedSuperscriptAndSubscriptExportMixin,
 PyDocXHTMLExporter,
):
 pass

Enumerated List Detection

The default behavior
in PyDocX
is to convert
“faked” enumerated lists
into “real” enumerated lists.

A “faked” enumerated list
is a sequence of paragraphs
in which the numbering
has been explicitly
typed.
Additionally,
the spacing
across levels
is manually set
either using
tab characters,
or indentation.
For example:

1. Apple
2. Banana
 a. Chiquita
 b. Dole
3. Carrot

Conversely,
a “real” enumerated list
is a sequence of paragraphs
in which the numbering,
and spacing,
is automatic:

	Apple

	Banana
	Chiquita

	Dole

	Carrot

Supported enumeration sequences

	arabic numberals: 1, 2, 3, ...

	uppercase alphabet characters A, B, C, ..., Z, AA, AB, ... AZ, ...

	lowercase alphabet characters a, b, c, ..., z, aa, ab, ... az, ...

	uppercase Roman numberals: I, II, III, IV, ...

	lowercase Roman numberals: i, ii, iii, iv, ...

Supported enumeration patterns

	Digit followed by a dot plus space: “1. ”, “A. ”, “a. ”, “I. ”, “i. “

	Surrounded by parentheses: “(1)”, “(A)”, “(a)”, “(I)”, “(i)”

	Digit followed by a parenthesis: “1)”, “A)”, “a)”, “I)”, “i)”

How to disable enumerated list detection

Extend the exporter
to override
the numbering_span_builder_class
class variable
as follows:

from pydocx.export.numbering_span import BaseNumberingSpanBuilder

class CustomExporter(PyDocXHTMLExporter):
 numbering_span_builder_class = BaseNumberingSpanBuilder

Development

Installing requirements

Using pip

$ pip install -r requirements/docs.txt -r requirements/testing.txt

Using terrarium [https://github.com/PolicyStat/terrarium]

Terrarium will package up and compress a virtualenv for you based on pip
requirements and then let you ship that environment around.

$ terrarium install requirements/*.txt

Building the documentation locally

	Install the documentation requirements:

$ pip install -r requirements/docs.txt

	Change directory to docs and run make html:

$ cd docs
$ make html

	Load HTML documentation in a web browser of your choice:

$ firefox docs/_build/html/index.html

Running tests

	Install the development requirements:

$ pip install -r requirements/testing.txt

	Run make test lint
in the project root.
This will
run nosetests
with coverage
and also
display any
flake8 errors.

$ make test lint

To run all tests against all supported versions of python,
use tox.

Running tests with tox

tox allows us to use
one command to
run tests against
all versions of python
that we support.

Setting up tox

	Decide how you want to manage multiple python versions.

	System level using a package manager such as apt-get.
This approach will likely require adding additional
apt-get sources
in order to install
alternative versions of python.

	Use pyenv [https://github.com/yyuu/pyenv-installer#installation]
to manage and install multiple python versions.
After installation,
see the
pyenv command reference [https://github.com/yyuu/pyenv/blob/master/COMMANDS.md].

	Install tox.

$ pip install tox

	Configure tox [http://tox.readthedocs.org/en/latest].

Running tox

Now that you have tox setup, you just need to run the command tox from the project root directory.

$ tox

Getting involved

The PyDocX project welcomes help in any of the following ways:

	Making pull requests on github for code,
tests and documentation.

	Participating on open issues and pull requests,
reviewing changes

Coding Standards

	All python source files must be
PEP8 [http://legacy.python.org/dev/peps/pep-0008]
compliant.

	All python source files must include the following import declaration
at the top of the file:

from __future__ import (
 absolute_import,
 print_function,
 unicode_literals,
)

Unicode Data

	All stream data is assumed to be a UTF-8 bytestream unless specified
otherwise.
What this means is that when you are writing test cases for a particular function,
any input data you define which would have otherwise have come from a file source
must be encoded as UTF-8.

Release process

PyDocX adheres to
Semantic versioning
v2.0.0 [http://semver.org/spec/v2.0.0.html].

	Update
CHANGELOG [https://github.com/CenterForOpenScience/pydocx/blob/master/CHANGELOG.rst].

	Bump the version number in
__init__.py [https://github.com/CenterForOpenScience/pydocx/blob/master/pydocx/__init__.py]
on master.

	Tag the version.

	Push to PyPI

make release

Plugins

You may find yourself needing
a feature in PyDocX that doesn’t exist
in the core library.

If it’s something that should exist, the
PyDocX project is always open to new
contributions. Details of how to contibute
can be found in Development.

For things that don’t fit in the core
library, it’s easy to build a plugin
based on the Extending PyDocX and
Export Mixins sections.

If you do build a plugin, edit this
documentation and add it below so that
other developers can find it.

Available Plugins

	Plugin
	Description

	pydocx-resize-images [https://github.com/jhubert/pydocx-resize-images]
	Resizes large images to the dimensions they are in the docx file

	pydocx-s3-images [https://github.com/jhubert/pydocx-s3-images]
	Uploads images to S3 instead of returning Data URIs

Release Notes

dev

	Internal links and anchors are now retained. Thanks, sunu! #222 [https://github.com/CenterForOpenScience/pydocx/pull/222]

0.9.10

	No longer error when processing margin positions with decimal points.

0.9.9

	Rect elements now correctly handle image data

0.9.8

	Textboxes can now contain tables.

	Pict elements can now contain Rect elements.

0.9.7

	Text colors other than black and white are no longer ignored

	Textboxes have been implemented. We no longer lose the content inside of
them.

	Markup compatibility has been implemented. We always use the Fallback for
AlternateContent tags.

0.9.6

	Fixed issue in PyDocX CLI tool and added new test cases for the same

0.9.5

	Simple and Complex field hyperlinks now support bookmarks / internal anchors

0.9.4

	Faked lists inside tables are correctly converted to real lists

0.9.3

	Headings inside a complex field no longer fail to ignore styles

0.9.2

	Fixed issue where multiple complex fields in the same paragraph would cause
content to disappear.

0.9.1

	Added EmbeddedObject support with Shape

0.9.0

	Implemented complex and simple field hyperlinks.

	This includes a significant change to the API. The export methods are now all
called twice. The results are discarded in the first pass. In first pass
(self.first_pass == True), you can now track information that will be used to
make decisions in the second pass. The notable example where this technique
is used is implementing complex fields. Because the export methods are called
twice, some exporter extensions that perform lossly operations on the
document structure may need to ignore processing during the first pass.

	The function signature of the get_hyperlink_tag has changed. It
previously accepted a Hyperlink instance. Now it only accepts
target_uri.

0.8.5

	Styled whitespace is no longer ignored. Previously, this would result in
certain configurations with words grouped together without spaces.

0.8.4

	Headings now preserve italic, webHidden and vanish styles

0.8.3

	Decimal font sizes are now handled properly

0.8.2

	Paragraphs that have numbering definitions with a level number format of None
are no longer considered list items.

0.8.1

	Headings in lists no longer break numbering. By default, in the HTML
exporter, headings in lists are represented using the “strong” tag,
regardless of the heading level.

0.8.0

	Note: This release consists of significant changes to the internal API and is not
backwards compatible with prior versions

	Removed ConvertRootUpperRomanListToHeadingMixin

	Fixed issue where the same image referenced multiple times would not
display correctly after the first instance

	Removed the preprocessor and re-implemented the functionality into the exporter

	Re-implemented the exporter into a top-down generator algorithm

	Implemented the necessary object classes for each element type (Paragraph,
Run, Text, etc)

	Implemented enumerated list detection and conversion to numbering lists

0.7.0

	Added support for python 3.4

	Added support for pypy

	No longer adding list-style-type attribute to ordered list tags.
We are now using a class to indicate these.

	Faked sub/super handling is no longer handled by default.
Instead,
that handling is implemented in a new mixin class.
See pydocx.export.mixins

	pydocx.wordml and pydocx.openxml
have been merged into pydocx.openxml.packaging
to better mirror the MS implementation structure.

	pydocx.models.styles
has been moved to
pydocx.openxml.wordprocessing.*

	pydocx.managers.styles
has been merged into
pydocx.openxml.wordprocessing.style_definition_part

	Added
XmlCollection
field type,
now used by openxml.wordprocessing.styles.Style

	Implemented several model classes for Numbering.

	Added numbering property to the numbering definitions part.

	XmlModels now define their own tags

	Simplified importing PyDocX

	Header processing now occurs in the exporter rather than the pre-processor

	PyDocXExporter.heading signature has changed from accepting
heading_level which was an HTML tag
to accepting
heading_style_name
which is the raw style name of the heading.

	The convert_root_level_upper_roman
option has been replaced
with an optional mixin
pydocx.export.mixins.ConvertRootUpperRomanListToHeadingMixin.

	Preprocessor no longer manages table membership.
Instead, that is handled in the base iterative parser.

	ConvertRootUpperRomanListToHeadingMixin
would fail for paragraphs that had no properties.

0.6.0

	Moved parsers to export module

	Renamed DocxParser to PyDocXExporter

	Renamed Docx2Html to PyDocXHTMLExporter

	Eliminated all improper usages of the find_first utility function

	Added support for NumberingDefinitionsPart to the
WordprocessingDocumentFactory

0.5.1

	Fixed issue #116 - Don’t assume the first sz of an rPr actually is a direct
child of that rPr.

0.5.0

	Moved CLI to __main__

	Moved tests to root-level module

0.4.4

	Specify charset in rendered HTML

	Added support for using defusedxml to mitigate XML vulnerabilities.

0.4.3

	Allow a file-like object to be passed into the DocXParser constructor.

	Added basic support for footnotes.

0.4.2

	Fixed a problem with calculating image sizes

0.4.01

	Take into account run position and size to apply superscript and subscript
tags to runs that would look like they have superscript and subscript tags
but are being faked due to positioning and sizing.

0.4.00

	External images are now handled. This causes a backwards incompatible change
with all handers related to images.

0.3.23

	Added support for style basedOn property

0.3.22

	Fixed a bug in which the run paragraph mark properties were used as run
properties (pPr > rPr within a style definition)

	Fixed a bug in which the run paragraph properties defined a global style
identifier, any of those styles defined globally were ignored.

	Fixed a bug which allowed run properties to reference paragraph properties,
and paragraph properties to reference run properties. Such instances are now
ignored.

0.3.21

	We are once again supporting files that are missing images.

0.3.20

	Fixed a problem with list nesting. We were marking list items as the first list item in error.

0.3.19

	Added support for python 3.3

	Fixed a problem with list nesting with nested sublists that have the same ilvl.

0.3.18

	Fixed an issue with marking runs as underline when they were not supposed to be.

0.3.17

	Fixed path issue on Windows for Zip archives

	Fixed attribute typo when attempting to generate an error message for a missing required resource

0.3.16

	CHANGELOG.md was missing from the MANIFEST in 0.3.15 which would cause the setup to fail.

0.3.15

	Use inline span to define styles instead of div

	Use ems for HTML widths instead of pixels

	If a property value is off, it is now considered disabled

0.3.14

	Use paths from _rels/.rels instead of hardcoding

0.3.13

	Significant performance gains for documents with a large number of table cells.

	Significant performance gains for large documents.

0.3.12

	Added command line support to convert from docx to either html or markdown.

0.3.11

	The non breaking hyphen tag was not correctly being imported. This issue
has been fixed.

0.3.10

	Found and optimized a fairly large performance issue with tables that had large amounts of content within a single cell, which includes nested tables.

0.3.9

	We are now respecting the <w:tab/> element.
We are putting a space in everywhere they happen.

	Each styling can have a default defined based on values in styles.xml.
These default styles can be overwritten using the rPr on the actual r tag.
These default styles defined in styles.xml are actually being respected now.

0.3.8

	If zipfile fails to open the passed in file,
we are now raising
MalformedDocxException
instead of
BadZipFIle.

0.3.7

	Some inline tags
(most notably the underline tag)
could have a val of none
and that would signify that the style is disabled.
A val of none is now correctly handled.

0.3.6

	It is possible for a docx file to not contain a numbering.xml file
but still try to use lists.
Now if this happens all lists get converted to paragraphs.

0.3.5

	Not all docx files contain a styles.xml file.
We are no longer assuming they do.

0.3.4

	It is possible for w:t tags to have text set to None.
This no longer causes an error when escaping that text.

0.3.3

	In the event that cElementTree has a problem parsing the document,
a MalformedDocxException is raised
instead of a
SyntaxError

0.3.2

	We were not taking into account that vertical merges should have a continue attribute,
but sometimes they do not,
and in those cases word assumes the continue attribute.
We updated the parser to handle the cases in which the continue attribute is not there.

	We now correctly handle documents with unicode character in the namespace.

	In rare cases,
some text would be output with a style when it should not have been.
This issue has been fixed.

0.3.1

	Added support for several more OOXML tags including:
	caps

	smallCaps

	strike

	dstrike

	vanish

	webHidden

More details in the README.

0.3.0

	We switched from using
stock xml.etree.ElementTree to
using xml.etree.cElementTree.
This has resulted in a fairly significant speed increase for python 2.6

	It is now possible to create your own pre processor to do additional pre processing.

	Superscripts and subscripts are now extracted correctly.

0.2.1

	Added a changelog

	Added the version in pydocx.__init__

	Fixed an issue with duplicating content if there was indentation or justification on a p element that had multiple t tags.

Index

 _static/up-pressed.png

_static/comment-bright.png

_static/minus.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down.png

nav.xhtml

 Table of Contents

 		PyDocX

 		Installation

 		Python & OS Support

 		Install using pip

 		Upgrade using pip

 		Usage

 		Converting files using the command line interface

 		Converting files using the library directly

 		Currently Supported HTML elements

 		HTML Styles

 		Exceptions

 		Conformance

 		17.9 Numbering

 		Deviations

 		Missing val attribute in underline tag

 		Extending PyDocX

 		Customizing the HTML Exporter

 		Implementing a new exporter

 		Export Mixins

 		Detect faked superscript and subscript

 		Enumerated List Detection

 		Supported enumeration sequences

 		Supported enumeration patterns

 		How to disable enumerated list detection

 		Development

 		Installing requirements

 		Using pip

 		Using terrarium

 		Building the documentation locally

 		Running tests

 		Running tests with tox

 		Getting involved

 		Coding Standards

 		Unicode Data

 		Release process

 		Plugins

 		Available Plugins

 		Release Notes

_static/plus.png

_static/down-pressed.png

_static/comment.png

