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This is the home of the documentation for pyDiffMap, an open-source project to develop a robust and accessible
diffusion map code for public use. Code can be found on our github page. Our documentation is currently under
construction, please bear with us.
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CHAPTER 1

Contents

1.1 Overview

docs
tests

This is the home of the documentation for pyDiffMap, an open-source project to develop a robust and accessible
diffusion map code for public use. Our documentation is currently under construction, please bear with us.

¢ Free software: MIT License.

1.1.1 Installation

Pydiffmap is installable using pip. You can install it using the command

’pip install pyDiffMap

You can also install the package directly from the source directly by downloading the package from github and running
the command below, optionally with the “-e” flag for an editable install.

’pip install [source_directory]

1.1.2 Documentation

https://pyDiffMap.readthedocs.io/



http://pydiffmap.readthedocs.io/en/master/?badge=master
https://travis-ci.org/DiffusionMapsAcademics/pyDiffMap
https://codecov.io/gh/DiffusionMapsAcademics/pyDiffMap
https://pyDiffMap.readthedocs.io/
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1.1.3 Development

To run the all tests run:

tox

Note, to combine the coverage data from all the tox environments run:

Windows|

PYTEST_ADDOPTS=--cov—append
tox

Other
PYTEST_ADDOPTS=--cov-append tox

If you don’t have tox installed, you can also run the python tests directly with

’pytest

1.2 Installation

At the command line:

’pip install [source_dir]

1.3 Theory

Diffusion maps is a dimension reduction technique that can be used to discover low dimensional structure in high
dimensional data. It assumes that the data points, which are given as points in a high dimensional metric space, actually
live on a lower dimensional structure. To uncover this structure, diffusion maps builds a neighborhood graph on the
data based on the distances between nearby points. Then a graph Laplacian L is constructed on the neighborhood
graph. Many variants exist that approximate different differential operators. For example, standard diffusion maps
approximates the differential operator

Ef:Af—z(l—a)Vﬁ%

where A is the Laplace Beltrami operator, V is the gradient operator and ¢ is the sampling density. The normalization
parameter o, which is typically between 0.0 and 1.0, determines how much ¢ is allowed to bias the operator L.
Standard diffusion maps on a dataset X, which has to given as a numpy array with different rows corresponding to
different observations, is implemented in pydiffmap as:

mydmap = diffusion_map.DiffusionMap.from_sklearn(epsilon = my_epsilon, alpha = my_
—alpha)
mydmap.fit (X)

Here epsilon is a scale parameter used to rescale distances between data points. We can also choose epsilon
automatically due to an an algorithm by Berry, Harlim and Giannakis:
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mydmap = dm.DiffusionMap.from_sklearn(alpha = my_alpha, epsilon = )

For additional optional arguments of the DiffusionMap class, see usage and documentation.

A variant of diffusion maps, “TMDmap’, unbiases with respect to ¢ and approximates the differential operator
Lf=Af+V(logn) -Vf

where 7 is a ‘target distribution’ that defines the drift term and has to be known up to a normalization constant.
TMDmap is implemented in pydiffmap as:

mydmap = diffusion_map.TMDmap (epsilon = my_epsilon, alpha = 1.0, change_of_
—measure=com_fxn)
mydmap.fit (X)

where com__fxn is function that takes in a coordinate and outputs the value of the target distribution 7 .

1.4 Usage

To use pyDiffMap in a project:

’import pyDiffMap

To initialize a diffusion map object:

diffusion_map.DiffusionMap.from_sklearn(n_evecs = 1, epsilon = 1.0, alpha =

where n_evecs is the number of eigenvectors that are computed, epsilon is a scale parameter used to rescale
distances between data points, alpha is a normalization parameter (typically between 0.0 and 1.0) that influences the
effect of the sampling density, and k is the number of nearest neighbors considered when the kernel is computed. A
larger k means increased accuracy but larger computation time. The from_sklearn command is used because we
are constructing using the scikit-learn nearest neighbor framework. For additional optional arguments, see documen-
tation.

We can also employ automatic epsilon detection due to an algorithm by Berry, Harlim and Giannakis:

’mydmap = dm.DiffusionMap.from_sklearn(n_evecs = 1, alpha = 0.5, epsilon = , k=64)

To fit to a dataset X (array-like, shape (n_query, n_features)):

’mydmap.fit(X)

The diffusion map coordinates can also be accessed directly via:

’dmap = mydmap.fit_transform(X)

This returns an array dmap with shape (n_query, n_evecs). E.g. dmap [ :, 0] is the first diffusion coordinate evaluated
on the data X.

In order to compute diffusion coordinates at the out of sample location(s) Y:

dmap_Y = mydmap.transform(Y)

1.4. Usage 5
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1.5 Jupyter notebook tutorials

1.5.1 The classic swiss roll data set

author: Ralf Banisch

We demonstrate the usage of the diffusion_map class on a two-dimensional manifold embedded in R3.

o
import matplotlib.pyplot as plt
import numpy as np

from mpl toolkits.mplot3d import Axes3D
from pydiffmap import diffusion_map as dm

$matplotlib inline

Create Data
We create the dataset: A noisy sampling of the twodimensional “swiss roll” embedded in R3. The sampling is such
that the density of samples decreases with the distance from the origin (non-uniform sampling).

In order to be handled correctly by the diffusion_map class, we must ensure the data is a numpy array of shape
(n_points, n_features).

length_phi = 15
length_7Z = 15
sigma = 0.1

m = 10000

phi = length_phi*np.random.rand (m)
xi = np.random.rand (m)

Z = length_Z*np.random.rand (m)
X = 1./6%x(phi + sigma*xi)*np.sin(phi)
Y = 1./6%(phi + sigma*xi)*np.cos (phi)

swiss_roll = np.array([X, Y, Z]).transpose()

(swiss_roll.shape)

(10000, 3)

Run pydiffmap

Now we initialize the diffusion map object and fit it to the dataset. Since we are interested in only the first two diffusion
coordinates we set n_evecs = 2, and since we want to unbias with respect to the non-uniform sampling density we set
alpha = 1.0. The epsilon parameter controls the scale and needs to be adjusted to the data at hand. The k parameter
controls the neighbour lists, a smaller k will increase performance but decrease accuracy.

6 Chapter 1. Contents
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neighbor_params = { : =1, : }

mydmap = dm.DiffusionMap.from_sklearn (n_evecs=2, k=200, epsilon= , alpha=1.0,
—neighbor_params=neighbor_params)

dmap = mydmap.fit_transform(swiss_roll)

’0.015625000000000007 eps fitted

’mydmap.epsilon_fitted

’0.015625000000000007

Visualization

We show the original data set on the right, with points colored according to the first diffusion coordinate. On the left,
we show the diffusion map embedding given by the first two diffusion coordinates. Points are again colored according
to the first diffusion coordinate, which seems to parameterize the ¢ direction. We can see that the diffusion map
embedding ‘unwinds’ the swiss roll.

from pydiffmap.visualization import embedding_plot, data_plot

embedding_plot (mydmap, scatter_kwargs = {

dmap[:,0], : 1)
data_plot (mydmap, dim=3, scatter_kwargs :

{

plt.show ()

1.5. Jupyter notebook tutorials 7
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Embedding given by first two DCs.
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Data coloured with first DC.

To get a bit more information out of the embedding, we can scale the points according to the numerical estimate of
the sampling density (mydmap.q), and color them according to their location in the phi direction. For comparison, we
color the original data set according to ¢ this time.

from pydiffmap.visualization import embedding plot, data_plot

empbedding_plot (mydmap, scatter_kwargs = {'c': phi, 's': mydmap.q, 'cmap': 'Spectral'})
data_plot (mydmap, dim=3, scatter_kwargs = {'cmap': 'Spectral'})
plt.show ()

1.5. Jupyter notebook tutorials 9
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Embedding given by first two DCs.
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Data coloured with first DC.

We can see that points near the center of the swiss roll, where the winding is tight, are closer together in the embedding,
while points further away from the center are more spaced out. Let’s check how the first two diffusion coordinates

correlate with ¢ and Z.

print ('Correlation between \phi and \psi_1"')
print (np.corrcoef (dmap[:,0], phi))

plt.figure(figsize=(16,6))

ax = plt.subplot (121)

ax.scatter (phi, dmapl[:,0])
ax.set_title('First DC against S\phis")
ax.set_xlabel (r'S\phis")

ax.set_ylabel (r's\psi_15")

ax.axis ('tight")

print ('Correlation between Z and \psi_2")
print (np.corrcoef (dmap([:, 1], Z))

ax2 = plt.subplot (122)
ax2.scatter(Z, dmapl[:,1])
ax2.set_title('Second DC against 72")
ax2.set_xlabel ('72")

ax2.set_ylabel (r's$\psi 25")

plt.show ()

1.5. Jupyter notebook tutorials
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Correlation between phi and psi_1

[[1. 0.92408413]
[0.92408413 1. 11
Correlation between Z and psi_2
[[1. 0.97536036]
[0.97536036 1. 11
First DC against ¢ Second DC against Z
0.10 0.10 {
0.05 1 0.05 1
g £ 000
0.00
-0.05 1
-0.05 4
-0.10 4
-0.10 4
0 2 4 6 B 10 b ¥ 0 2 4 6 B 1 2 ¥
] z

1.5.2 Spherical Harmonics

In this notebook we try to reproduce the eigenfunctions of the Laplacian on the 2D sphere embedded in R®. The
eigenfunctions are the spherical harmonics Y, (6, ¢).

import numpy as np

from pydiffmap import diffusion_map as dm
from scipy.sparse import csr_matrix

np.random.seed (100)
import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D
$matplotlib inline

generate data on a Sphere

we sample longitude and latitude uniformly and then transform to R3 using geographical coordinates (latidude is
measured from the equator).

m = 10000
Phi = 2*np.pi*np.random.rand(m) — np.pi
Theta = np.pi*np.random.rand(m) — 0.5%np.pi

X = np.cos (Theta) *np.cos (Phi)

Y = np.cos(Theta)*np.sin (Phi)

7Z = np.sin(Theta)

data = np.array([X, Y, Z]).transpose()

12 Chapter 1. Contents
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run diffusion maps

Now we initialize the diffusion map object and fit it to the dataset. We set n_evecs = 4, and since we want to unbias
with respect to the non-uniform sampling density we set alpha = 1.0. The epsilon parameter controls the scale and
is set here by hand. The k parameter controls the neighbour lists, a smaller k will increase performance but decrease
accuracy.

eps = 0.01
mydmap = dm.DiffusionMap.from_sklearn(n_evecs=4, epsilon=eps, alpha=1.0, k=400)
mydmap.fit_transform(data)
test_evals = -4./eps* (mydmap.evals = 1)
(test_evals)

0.01 eps fitted
[1116.4945497 1143.35090854 1147.22344311 2378.50043128]

The true eigenfunctions here are spherical harmonics Y, (6, ¢) and the true eigenvalues are \; = I(I + 1). The
eigenfunction corresponding to [ = 0 is the constant function, which we ommit. Since [ = 1 has multiplicity three,
this gives the benchmark eigenvalues [2, 2, 2, 6].

real_evals = np.array([2, 2, 2, 6])

test_evals = —4./eps* (mydmap.evals = 1)

eval_error = np.abs (test_evals-real_evals)/real_evals
(test_evals)
(eval_error)

[1116.4945497 1143.35090854 1147.22344311 2378.50043128]
[557.24727485 570.67545427 572.61172156 395.41673855]

visualisation

With pydiffmap’s visualization toolbox, we can get a quick look at the embedding produced by the first two diffusion
coordinates and the data colored by the first eigenfunction.

from pydiffmap.visualization import embedding_plot, data_plot

.

embedding_plot (mydmap, dim=3, scatter_kwargs = {'c
—'"Spectral'})

mydmap.dmap[:,0], 'cmap':

plt.show ()

1.5. Jupyter notebook tutorials 13
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Embedding given by first three DCs.

005 :
¥ 0010 -0.015

data_plot (mydmap, dim=3, scatter_kwargs = {'cmap': 'Spectral'})
plt.show()
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Data coloured with first DC.
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Rotating the dataset

There is rotational symmetry in this dataset. To remove it, we define the ‘north pole’ to be the point where the first
diffusion coordinate attains its maximum value.

northpole = np.argmax (mydmap.dmap[:,0])
north = data[northpole, :]
phi_n = Phi[northpole]
theta_n = Thetal[northpole]
R = np.array([[np.sin(theta_n)*np.cos(phi_n), np.sin(theta_n)*np.sin(phi_n), -np.
—cos (theta_n) ],
[-np.sin(phi_n), np.cos(phi_n), 0],
[np.cos (theta_n) *np.cos (phi_n), np.cos(theta_n)*np.sin(phi_n), np.
—sin(theta_n)]1])

data_rotated = np.dot (R,data.transpose())
data_rotated. shape

(3, 10000)

Now that the dataset is rotated, we can check how well the first diffusion coordinate approximates the first spherical
harmonic Y3} (6, ¢) = sin(9) = Z.

1.5. Jupyter notebook tutorials 15
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print ('Correlation between \phi and \psi_1")
print (np.corrcoef (mydmap.dmap[:,0], data_rotated[2,:]))

plt.figure(figsize=(16,6))

ax = plt.subplot (121)

ax.scatter (data_rotated[2, :], mydmap.dmap[:,0])
ax.set_title('First DC against $75")
ax.set_xlabel (r'szs")

ax.set_ylabel (r's\psi_15")

ax.axis ('tight")

ax2 = plt.subplot (122,projection="3d")

ax2.scatter (data_rotated[0, :],data_rotated[l, :],data_rotated[2,:], c=mydmap.dmapl:,0],
— cmap=plt.cm.Spectral)

#ax2.view_init (75, 10

ax2.set_title('sphere dataset rotated, color according to $\psi_1$")
ax2.set_xlabel ('X")

axz2.set_ylabel ('Y")

ax2.set_zlabel('2")

plt.show ()

Correlation between phi and psi_1
[[1. 0.99915563]
[0.99915563 1. 11

First DC against Z

0.02 4 sphere dataset rotated, color according to gy

0.01

—0.01 A

—0.02 1

-100 -075 -050 -025 000 025 050 075 100

1.5.3 2D Four-well potential

import matplotlib.pyplot as plt
import numpy as np

from mpl_toolkits.mplot3d import Axes3D
from pydiffmap import diffusion_map as dm

$matplotlib inline

Load sampled data: discretized Langevin dynamics at temperature T=1, friction 1, and time step size dt=0.01, with
double-well potentials in x and y, with higher barrier in y.

16 Chapter 1. Contents
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X=np.load ( )
(X.shape)

def DW1 (x) :
return 2.0x (np.linalg.norm(x) **2=1.0) *x%2

def DW2 (x) :
return 4.0x (np.linalg.norm(x) **2=1.0) *%2

def DW(x) :
return DW1 (x[0]) + DW1l(x[1])

from matplotlib import cm
mx=5

xe=np.linspace (-mx, mx, 100)
ye=np.linspace (-mx, mx, 100)
energyContours=np.zeros ((100, 100))
for i in (0, (xe)):
for j in (0, (ye)):
xtmp=np.array([xe[i], vyeljl] )
energyContours|[j, 1]=DW (xtmp)

levels = np.arange(0, 10, 0.5)

plt.contour (xe, ye, energyContours, levels, cmap=cm.coolwarm)

plt.scatter (X[:,0], X[:,1], s=5, c= )
plt.xlabel ( )

plt.ylabel ( )

plt.xlim([=-2,2])
plt.ylim([-2,2]

plt.show ()

1.5. Jupyter notebook tutorials
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]
LA

-20 -15 -10 -05 0.0 0.5 10 15 20

Compute diffusion map embedding

mydmap = dm.DiffusionMap.from_sklearn(n_evecs = 2, epsilon = .1, alpha = 0.5, k=400,
—metric='euclidean')
dmap = mydmap.fit_transform (X)

0.1 eps fitted

Visualization

We plot the first two diffusion coordinates against each other, colored by the x coordinate

from pydiffmap.visualization import embedding_ plot
embedding_plot (mydmap, scatter_kwargs = {'c': X[:,0], 's': 5, 'cmap': 'coolwarm'})

plt.show ()

18 Chapter 1. Contents
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Embedding given by first two DCs.
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#from matplotlib import cm
#plt.scatter (dmap[:,0], dmap[:,1], c=X[:,0], s=5, cmap=cm.coolwarm)

#clb=plt.colorbar/()

#clb.set_label ('X coordinate')

#plt.xlabel ('First dominant eigenvector')
#plt.ylabel ('Second dominant eigenvector')
#plt.title('Diffusion Map Embedding')

#plt.show ()

We visualize the data again, colored by the first eigenvector this time.

from pydiffmap.visualization import data_plot

data_plot (mydmap, scatter_kwargs = {'s': 5, 'cmap': 'coolwarm'})
plt.show()

1.5. Jupyter notebook tutorials 19
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Data coloured with first DC.

Target measure diffusion map

Compute Target Measure Diffusion Map with target distribution pi(q) = exp(-beta V(q)) with inverse temperature beta
= 1. TMDmap can be seen as a special case where the weights are the target distribution, and alpha=1.

V=DW

beta=1

change_of_measure = lambda x: np.exp(-beta * V(x))
mytdmap = dm.TMDmap (alpha=1.0, n_evecs = 2, epsilon = .1,

k=400, change_of_measure=change_of_measure)
tmdmap = mytdmap.fit_transform(X)

0.1 eps fitted

embedding_plot (mytdmap, scatter_kwargs = {'c': X[:,0], 's': 5, 'cmap': 'coolwarm'})

plt.show()
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Embedding given by first two DCs.

0.06 -

0.04 -

0.02 1

“-I'ﬁ-m

—0.06 1

—0.08 -0.06 —-0.04 —0.02 000 002 004 006 0.08
0]

From the sampling at temperature 1/beta =1, we can compute diffusion map embedding at lower temperature T_low =
1/beta_low using TMDmap with target measure pi(q) = exp(-beta_low V(q)). Here we set beta_low = 10, and use the
data obtained from sampling at higher temperature, i.e. pi(q) = exp(-beta V(q)) with beta = 1.

V=DW

beta_2=10

change_of_measure_2 = lambda x: np.exp(=beta_2 * V(x))
mytdmap2 = dm.TMDmap (alpha=1.0, n_evecs = 2, epsilon = .1,

k=400, change_of_measure=change_of_measure_2)
tmdmap2 = mytdmap2.fit_transform(X)

0.1 eps fitted

embedding_plot (mytdmap2, scatter_kwargs = {'c': X[:,0], 's': 5, 'cmap': 'coolwarm'})

plt.show ()

1.5. Jupyter notebook tutorials 21
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Embedding given by first two DCs.
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Kernel density estimate

We can compute kernel density estimate using kde used in the diffusion map computation.

plt.scatter (X[:,0], X[:,1], ¢ = mytdmap.q, s=5, cmap=cm.coolwarm)

clb=plt.colorbar ()

clb.set_label ('g")

plt.xlabel ('First dominant eigenvector')
plt.ylabel ('Second dominant eigenvector')
plt.title ('TMDmap Embedding, beta=1")

plt.show ()
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TMDmap Embedding, beta=1
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Now we check how well we can approximate the target distribution by the formula in the paper (left dominant eigen-
vector times KDE).

import scipy.sparse.linalg as spsl
L = mytdmap.L
[evals, evecs] = spsl.eigs(L.transpose(),k=1, which="LR")

phi = np.real (evecs.ravel())

g_est
g_est

phixmytdmap.q
g_est/sum(g_est)

target_distribution = np.array([change_of_measure (Xi) for Xi in X])
g_exact = target_distribution/sum(target_distribution)
print(np.linalg.norm(qg_est — g_exact, 1))

0.040391461721631335

visualize both. there is no visible difference.

plt.figure(figsize=(16,6))

ax = plt.subplot (121)
SCl = ax.scatter(X[:,0], X[:,1], ¢ = g_est, s=5, cmap=cm.coolwarm, vmin=0, vmax=2E-4)

ax.set_xlabel ('x")
ax.set_ylabel ('y")
ax.set_title('estimate of pi')
plt.colorbar (SCl, ax=ax)

(continues on next page)
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(continued from previous page)

ax2 = plt.subplot (122)
SC2 = ax2.scatter(X[:,0], X[:,1], ¢ = g_exact, s=5, cmap=cm.coolwarm, vmin=0, vmax=2E-
—4)

plt.colorbar (SC2, ax=ax2)

ax2.set_xlabel ('x")
ax2.set_ylabel('y")
ax2.set_title('exact pi'")

plt.show()

estimate of pi exact pi
0.000200 0.000200

15

0.000175 0.000175

10 4

r0.000150 r0.000150

0.5

r0.000125 r0.000125

F0.000100 F0.000100

r0.000075 r0.000075

0.000050 0.000050

0.000025 0.000025

T T T T T T T 0.000000 T T T T T T T 0.000000

1.5.4 Diffusion maps with general metric

In this notebook, we illustrate how to use an optional metric in the diffusion maps embedding.

import matplotlib.pyplot as plt
import numpy as np

from mpl toolkits.mplot3d import Axes3D
from pydiffmap import diffusion_map as dm

$matplotlib inline

We import trajectory of two particles connected by a double-well potential, which is a function of a radius: V(r)
= V_DW(r). The dimer was simulated at 300K with Langevin dynamics using OpenMM. The obvious collective
variable is the radius case and we demonstrate how the first dominant eigenvector obtained from the diffusion map
clearly correlates with this reaction coordinate. As a metric, we use the root mean square deviation (RMSD) from the
package https://pypi.python.org/pypi/rmsd/1.2.5.

traj=np.load('Data/dimer_ trajectory.npy"')

energy=np.load('Data/dimer energy.npy')

print ('Loaded trajectory of '+repr(len(traj))+' steps of dimer molecule: '4repr(traj.
—shape([l])+' particles in dimension '+repr(traj.shapel2])+'.")

Loaded trajectory of 1000 steps of dimer molecule: 2 particles in dimension 3.
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def compute_radius (X) :
return np.linalg.norm(X[:,0,:]=-X[:,1,:]1, 2, axis=l)

fig = plt.figure(figsize=[16,6])
ax = fig.add_subplot (121)

radius= compute_radius (traj)

cax2 = ax.scatter(range (len(radius)), radius, c=radius, s=20,alpha=0.90,cmap=plt.cm.
—Spectral)
cbar = fig.colorbar (cax2)

cbar.set_label ('Radius")
ax.set_xlabel ('Simulation steps')
ax.set_ylabel ('Radius’")

ax2 = fig.add_subplot (122, projection='3d")

ax2.scatter(traj(i,0,0], trajl(i,O0,1], traj(i,0,2], c='b', s=100, alpha=0.90,
—edgecolors='none', depthshade=True,)
ax2.scatter(traj(i,1,0], trajfi,1,1]1, trajli,1,2], c='r', s=100, alpha=0.90,

—edgecolors='none', depthshade=True,)

ax2.set_xlim([-L, LJ])
ax2.set_ylim([-L, L])
ax2.set_zlim([-L, LJ)

ax2.set_xlabel ('X
ax2.set_ylabel ('Y")
ax2.set_zlabel ('Z

plt.show()
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# download from https://pypi.python.org/pypi/rmsd/1.2.5
import rmsd

(continues on next page)
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(continued from previous page)

def myRMSDmetric(arrl, arr2):

nwn

This function is built under the assumption that the

Require om sklearn r _graph: The

—arrays as turn ting the d
Input:
Insi
Output:

nwn

nParticles = (arrl) / 3;
assert (nParticles == (nParticles))
X1 = arrl.reshape ( (nParticles), 3 )
X2 = arr2.reshape ( (nParticles), 3 )
X1l = X1 = rmsd.centroid(X1)
X2 = X2 = rmsd.centroid(X2)

return rmsd.kabsch_rmsd (X1, X2)

Compute diffusion map embedding using the rmsd metric from above.

epsilon=0.05

Xresh=traj.reshape(traj.shape[0], traj.shapel[l]*traj.shapel2])

mydmap = dm.DiffusionMap.from_sklearn(n_evecs = 1, epsilon = epsilon, alpha = 0.5
—k=1000, metric=myRMSDmetric)

dmap = mydmap.fit_transform(Xresh)

r

0.05 eps fitted

Plot the dominant eigenvector over radius, to show the correlation with this collective variable.

evecs = mydmap.evecs

fig = plt.figure(figsize=[16,6])
ax = fig.add_subplot (121)

ax.scatter (compute_radius (traj), evecs[:,0], c=evecs|[:,0], s=10, cmap=plt.cm.Spectral)
ax.set_xlabel ('F
ax.set_ylabel ('Dominant eigenvector')

Radius ')

ax2 = fig.add_subplot (122)

cax2 = ax2.scatter (compute_radius(traj), energy, c=evecs[:,0], s=10, cmap=plt.cm.
—Spectral)

ax2.set_xlabel ('Radius")
ax2.set_ylabel ('Potential Energy')
cbar = fig.colorbar (cax?2)
cbar.set_label ('Dominant eigenvector
plt.show ()
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1.6 Reference

1.6.1 diffusion_map

Routines and Class definitions for the diffusion maps algorithm.

class pydiffmap.diffusion_map.DiffusionMap (kernel_object, alpha=0.5, n_evecs=1,

weight_fxn=None, density_fxn=None, band-
width_normalize=False, oos="nystroem’)

Diffusion Map object for data analysis

Parameters

References

kernel_object (Kernel object.) — Kernel object that outputs the values of the kernel. Must
have the method .fit(X) and .compute() methods. Any epsilon desired for normalization
should be stored at kernel_object.epsilon_fitted and any bandwidths should be located at
kernel_object.bandwidths.

alpha (scalar, optional) — Exponent to be used for the left normalization in constructing the
diffusion map.

n_evecs (int, optional) — Number of diffusion map eigenvectors to return

weight_fxn (callable or None, optional) — Callable function that take in a point, and outputs
the value of the weight matrix at those points.

density_fxn (callable or None, optional) — Callable function that take in X, and outputs the
value of the density of X. Used instead of kernel density estimation in the normalisation.

bandwidth_normalize (boolean, optional) — If true, normalize the final constructed transi-
tion matrix by the bandwidth as described in Berry and Harlim. [1]_

00s (‘nystroem’ or ‘power’, optional) — Method to use for out-of-sample extension.

construct_Lmat (X)
Builds the transition matrix, but does NOT compute the eigenvectors. This is useful for applications where
the transition matrix itself is the object of interest.

1.6. Reference
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Parameters X (array-like, shape (n_query, n_features)) — Data upon which to construct the
diffusion map.

Returns self (the object itself)

fit (X)
Fits the data.

Parameters X (array-like, shape (n_query, n_features)) — Data upon which to construct the
diffusion map.

Returns self (the object itself)

fit_transform(X)
Fits the data and returns diffusion coordinates. equivalent to calling dmap.fit(X).transform(x).

Parameters X (array-like, shape (n_query, n_features)) — Data upon which to construct the
diffusion map.

Returns phi (numpy array, shape (n_query, n_eigenvectors)) — Transformed value of the given
values.

classmethod from sklearn (alpha=0.5, k=64, kernel_type="gaussian’,  epsilon="bgh’,
n_evecs=1, neighbor_params=None, metric="euclidean’, met-
ric_params=None, weight_fxn=None, density_fxn=None, band-

width_type=None, bandwidth_normalize=False, oos="nystroem’)
Builds the diffusion map using a kernel constructed using the Scikit-learn nearest neighbor object. Pa-

rameters are largely the same as the constructor, but in place of the kernel object it take the following
parameters.

Parameters
* Kk (int, optional) — Number of nearest neighbors over which to construct the kernel.

* kernel_type (string, optional) — Type of kernel to construct. Currently the only option is
‘gaussian’, but more will be implemented.

* epsilon (string or scalar, optional) — Method for choosing the epsilon. Currently, the
only options are to provide a scalar (epsilon is set to the provided scalar) ‘bgh’ (Berry,
Giannakis and Harlim), and ‘bgh_generous’ (‘bgh’ method, with answer multiplied by 2.

 neighbor_params (dict or None, optional) — Optional parameters for the nearest Neighbor
search. See scikit-learn NearestNeighbors class for details.

e metric (string, optional) — Metric for distances in the kernel. Default is ‘euclidean’. The
callable should take two arrays as input and return one value indicating the distance be-
tween them.

* metric_params (dict or None, optional) — Optional parameters required for the metric
given.

* bandwidth_type (callable, number, string, or None, optional) — Type of bandwidth to use
in the kernel. If None (default), a fixed bandwidth kernel is used. If a callable function,
the data is passed to the function, and the bandwidth is output (note that the function must
take in an entire dataset, not the points 1-by-1). If a number, e.g. -.25, a kernel density
estimate is performed, and the bandwidth is taken to be gq**(input_number). For a string
input, the input is assumed to be an evaluatable expression in terms of the dimension d, e.g.
“-1/(d+2)”. The dimension is then estimated, and the bandwidth is set to q**(evaluated
input string).
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Examples

# setup neighbor_params list with as many jobs as CPU cores and kd_tree neighbor search. >>> neigh-
bor_params = {‘n_jobs’: -1, ‘algorithm’: ‘kd_tree’} # initialize diffusion map object with the top two
eigenvalues being computed, epsilon set to 0.1 # and alpha set to 1.0. >>> mydmap = Diffusion-
Map.from_sklearn(n_evecs = 2, epsilon = .1, alpha = 1.0, neighbor_params = neighbor_params)

References

transform (Y)
Performs Nystroem out-of-sample extension to calculate the values of the diffusion coordinates at each
given point.

Parameters Y (array-like, shape (n_query, n_features)) — Data for which to perform the out-of-
sample extension.

Returns phi (numpy array, shape (n_query, n_eigenvectors)) — Transformed value of the given
values.

class pydiffmap.diffusion_map.TMDmap (alpha=0.5, k=64, kernel_type=’'gaussian’, ep-
silon="bgh’, n_evecs=1, neighbor_params=None,

metric="euclidean’, metric_params=None,
change_of _measure=None, density_fxn=None, band-
width_type=None, bandwidth_normalize=False,

00s="nystroem’)
Implementation of the TargetMeasure diffusion map. This provides a more convenient interface for some hy-
perparameter selection for the general diffusion object. It takes the same parameters as the base Diffusion Map
object. However, rather than taking a weight function, it takes as input a change of measure function.

Parameters change_of_measure (callable, optional) — Function that takes in a point and evaluates
the change-of-measure between the density otherwise stationary to the diffusion map and the
desired density.

pydiffmap.diffusion_map.nystroem_oos (dmap_object, Y)
Performs Nystroem out-of-sample extension to calculate the values of the diffusion coordinates at each given
point.

Parameters

* dmap_object (DiffusionMap object) — Diffusion map upon which to perform the out-of-
sample extension.

* Y (array-like, shape (n_query, n_features)) — Data for which to perform the out-of-sample
extension.

Returns phi (numpy array, shape (n_query, n_eigenvectors)) — Transformed value of the given val-
ues.

pydiffmap.diffusion_map.power_oos (dmap_object, Y)
Performs out-of-sample extension to calculate the values of the diffusion coordinates at each given point using
the power-like method.

Parameters

* dmap_object (DiffusionMap object) — Diffusion map upon which to perform the out-of-
sample extension.

* Y (array-like, shape (n_query, n_features)) — Data for which to perform the out-of-sample
extension.
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Returns phi (numpy array, shape (n_query, n_eigenvectors)) — Transformed value of the given val-
ues.

1.6.2 kernel

A class to implement diffusion kernels.

class pydiffmap.kernel.Kernel (kernel_type="gaussian’, epsilon="bgh’, k=64, neigh-
bor_params=None, metric="euclidean’, metric_params=None,

bandwidth_type=None)
Class abstracting the evaluation of kernel functions on the dataset.

Parameters

» kernel_type (string or callable, optional) — Type of kernel to construct. Currently the only
option is ‘gaussian’ (the default), but more will be implemented.

* epsilon (string, optional) — Method for choosing the epsilon. Currently, the only options
are to provide a scalar (epsilon is set to the provided scalar) ‘bgh’ (Berry, Giannakis and
Harlim), and ‘bgh_generous’ (‘bgh’ method, with answer multiplied by 2.

* k (int, optional) — Number of nearest neighbors over which to construct the kernel.

* neighbor_params (dict or None, optional) — Optional parameters for the nearest Neighbor
search. See scikit-learn NearestNeighbors class for details.

* metric (string, optional) — Distance metric to use in constructing the kernel. This can be
selected from any of the scipy.spatial.distance metrics, or a callable function returning the
distance.

* metric_params (dict or None, optional) — Optional parameters required for the metric
given.

* bandwidth_type (callable, number, string, or None, optional) — Type of bandwidth to use
in the kernel. If None (default), a fixed bandwidth kernel is used. If a callable function, the
data is passed to the function, and the bandwidth is output (note that the function must take
in an entire dataset, not the points 1-by-1). If a number, e.g. -.25, a kernel density estimate is
performed, and the bandwidth is taken to be q**(input_number). For a string input, the input
is assumed to be an evaluatable expression in terms of the dimension d, e.g. “-1/(d+2)”. The
dimension is then estimated, and the bandwidth is set to q**(evaluated input string).

build_bandwidth_f£xn (bandwidth_type)
Parses an input string or function specifying the bandwidth.

Parameters bandwidth_fxn (string or number or callable) — Bandwidth to use. If a number,
taken to be the beta parameter in [1]_. If a string, taken to again be beta, but with an evaluat-
able expression as a function of the intrinsic dimension d, e.g. ‘1/(d+2)’. If a function, taken
to be a function that outputs the bandwidth.

References
choose_optimal_epsilon (epsilon=None)
Chooses the optimal value of epsilon and automatically detects the dimensionality of the data.

Parameters epsilon (string or scalar, optional) — Method for choosing the epsilon. Currently,
the only options are to provide a scalar (epsilon is set to the provided scalar) or ‘bgh’ (Berry,
Giannakis and Harlim).

Returns self (the object itself)

30 Chapter 1. Contents



pydiffmap, Release 0.2.0.1

compute (Y=None, return_bandwidths=False)
Computes the sparse kernel matrix.

Parameters

* Y (array-like, shape (n_query, n_features), optional.) — Data against which to calculate
the kernel values. If not provided, calculates against the data provided in the fit.

* return_bandwidths (boolean, optional) — If True, also returns the computed bandwidth
for each y point.

Returns
* K (array-like, shape (n_query_X, n_query_Y)) — Values of the kernel matrix.

* y_bandwidths (array-like, shape (n_query_y)) — Bandwidth evaluated at each point Y.
Only returned if return_bandwidths is True.

fit (X)
Fits the kernel to the data X, constructing the nearest neighbor tree.

Parameters X (array-like, shape (n_query, n_features)) — Data upon which to fit the nearest
neighbor tree.

Returns self (the object itself)

class pydiffmap.kernel.NNKDE (neighbors, k=8)
Class building a kernel density estimate with a variable bandwidth built from the k nearest neighbors.

Parameters

* neighbors (scikit-learn NearestNeighbors object) — NearestNeighbors object to use in con-
structing the KDE.

* k (int, optional) — Number of nearest neighbors to use in the construction of the bandwidth.
This must be less or equal to the number of nearest neighbors used by the nearest neighbor
object.

compute (V)
Computes the density at each query point in Y.

Parameters Y (array-like, shape (n_query, n_features)) — Data against which to calculate the
kernel values. If not provided, calculates against the data provided in the fit.

Returns q (array-like, shape (n_query)) — Density evaluated at each point Y.

fit ()
Fits the kde object to the data provided in the nearest neighbor object.

pydiffmap.kernel.choose_optimal_epsilon_BGH (scaled_distsq, epsilons=None)

Calculates the optimal epsilon for kernel density estimation according to the criteria in Berry, Giannakis, and

Harlim.
Parameters
o scaled_distsq (numpy array) — Values for scaled distance squared values, in no particular
order or shape. (This is the exponent in the Gaussian Kernel, aka the thing that gets divided
by epsilon).
* epsilons (array-like, optional) — Values of epsilon from which to choose the optimum. If
not provided, uses all powers of 2. from 2/-40 to 240
Returns

* epsilon (float) — Estimated value of the optimal length-scale parameter.
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* d (int) — Estimated dimensionality of the system.

Notes

This code explicitly assumes the kernel is gaussian, for now.

References

The algorithm given is based on [1]_. If you use this code, please cite them.

1.6.3 visualization

Some convenient visalisation routines.

pydiffmap.visualization.data_plot (dmap_instance, n_evec=1, dim=2, scatter_kwargs=None,

show=True)
Creates diffusion map embedding scatterplot. By default, the first two diffusion coordinates are plotted against

each other. This only plots against the first two or three (as controlled by ‘dim’ parameter) dimensions of the
data, however: effectively this assumes the data is two resp. three dimensional.

Parameters
* dmap_instance (DiffusionMap Instance) — An instance of the DiffusionMap class.
* n_evec (int, optional) — The eigenfunction that should be used to color the plot.

* dim (int, optional, 2 or 3.) — Optional argument that controls if a two- or three dimensional
plot is produced.

* scatter_kwargs (dict, optional) — Optional arguments to be passed to the scatter plot, e.g.
point color, point size, colormap, etc.

» show (boolean, optional) — If true, calls plt.show()
Returns fig (pyplot figure object) — Figure object where everything is plotted on.

pydiffmap.visualization.embedding_plot (dmap_instance, dim=2, scatter_kwargs=None,

show=True)
Creates diffusion map embedding scatterplot. By default, the first two diffusion coordinates are plotted against

each other.
Parameters
* dmap_instance (DiffusionMap Instance) — An instance of the DiffusionMap class.

 dim (int, optional, 2 or 3.) — Optional argument that controls if a two- or three dimensional
plot is produced.

* scatter_kwargs (dict, optional) — Optional arguments to be passed to the scatter plot, e.g.
point color, point size, colormap, etc.

» show (boolean, optional) — If true, calls plt.show()

Returns fig (pyplot figure object) — Figure object where everything is plotted on.

Examples

[P}

# Plots the top two diffusion coords, colored by the first coord. >>> scatter_kwargs = {‘s’: 2, ‘¢’: my-
dmap.dmapl:,0], ‘cmap’: ‘viridis’} >>> embedding_plot(mydmap, scatter_kwargs)

32 Chapter 1. Contents



pydiffmap, Release 0.2.0.1

1.7 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

1.7.1 Bug reports

When reporting a bug please include:
* Your operating system name and version.
* Any details about your local setup that might be helpful in troubleshooting.

¢ Detailed steps to reproduce the bug.

1.7.2 Documentation improvements

pyDiffMap could always use more documentation, whether as part of the official pyDiffMap docs, in docstrings, or
even on the web in blog posts, articles, and such.

1.7.3 Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/DiffusionMapsAcademics/pyDiffMap/issues.
If you are proposing a feature:

» Explain in detail how it would work.

* Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that code contributions are welcome :)

1.7.4 Development

To set up python-pydiffmap for local development:
1. Fork python-pydiffmap (look for the “Fork” button).
2. Clone your fork locally:

’git clone git@github.com:your_name_here/python-pydiffmap.git

3. Create a branch for local development:

’git checkout =b name-of-your-bugfix—-or—-feature

Now you can make your changes locally.

4. When you’re done making changes, run all the checks, doc builder and spell checker with tox one command:

’tox

5. Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes.
git push origin name-of-your-bugfix—or-feature

n
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6. Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.
For merging, you should:

1. Include passing tests (run tox)'.

2. Update documentation when there’s new API, functionality etc.

3. Add a note to CHANGELOG . rst about the changes.

4. Add yourself to AUTHORS . rst.

Tips

To run a subset of tests:

’tox —e envname —-— py.test -k test_myfeature ‘

To run all the test environments in parallel (you need to pip install detox):

[aeton |
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1.10 Changelog

0.2.0.1 (2019-02-04) New Features ~~~~~~~~~~~~ * Added a more generous epsilon procedure for convenience.

1 If you don’t have all the necessary python versions available locally you can rely on Travis - it will run the tests for each change you add in the
pull request.
It will be slower though ...
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1.10.1 0.2.0 (2019-02-01)
New Features

* Added support for user-provided kernel functions.

Added a utility for building a sparse matrix from a function on the data.

(Re)added separate TMDmap class wrapping base diffusion map class to allow for easier construction of
TMDmaps.

Added ability to explicitly provide the sampled density for g*alpha normalization.
Added Variable Bandwidth Diffusion Maps.

* Added a new out-of-sample extension method that should work for variable bandwidth methods.

Tweaks and Modifications

* Changed from exp”(-d”2) to exp”(-d*2/4) convention.

* Moved weight functionality into a function provided on initialization, rather than input values, and added a
helper function that allows values to be read from a lookup table.

* Improved the Diffusion Map test suite.

* Moved out-of-sample routines into separate functions.

* Moved matrix symmetrization into newly made utility file.

* Adjusted constructor for the diffusion map to take the kernel object directly.

Bugfixes

* Fixed bug where weight matrices were not included for out of sample extension.

Other

¢ Moved to MIT license.

1.10.2 0.1.0 (2017-12-06)

* Fixed setup.py issues.

1.10.3 0.1.0 (2017-12-06)

* Added base functionality to the code.
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