pydbgen

Release 1.0.5

Jun 09, 2021

Contents

Introduction 3
Dependency and Acknowledgement 5
Installation 7
Usage 9
4.1 gen_data_series () . v v v i e e e e e e e e e e 9
42 gen_dataframe () e e e e e e e e e e e 10
43 gen_table () e e e e e e e e e 10
44 gen_excCel () . . i e e e e e e e e e e 11
4.5 Other auxilarry methods available e 12

pydbgen, Release 1.0.5

Authored and maintained by Dr. Tirthajyoti Sarkar, Fremont, USA

Contents 1

https://www.linkedin.com/in/tirthajyoti-sarkar-2127aa7/

pydbgen, Release 1.0.5

2 Contents

CHAPTER 1

Introduction

Often, beginners in SQL or data science struggle with the matter of easy access to a large sample database file (.DB or
.sqlite) for practicing SQL commands. Would it not be great to have a simple tool or library to generate a large
database with multiple tables, filled with data of one’s own choice?

After all, databases break every now and then and it is safest to practice with a randomly generated one :-)

HI, THIS 1S

YOUR SON'G SCHOOL.
WERE HAVING SOME
(OMPUTER TROUBLE.

\%W

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY -

i

DID YOU REALLY
NAME YOUR SON
Rebert'); DROP
TABLE Students;-- 7

!

~ OH. YES. LUITTLE
BOBBY TABRLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEARS STUDENT RECORDS.
T HOPE YOURE HAPPY,

{

AND I HOPE
“~- YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS.

While it is easy to generate random numbers or simple words for Pandas or dataframe operation learning, it is often
non-trivial to generate full data tables with meaningful yet random entries of most commonly encountered fields
in the world of database, such as

* name,
* age,

* birthday,

¢ credit card number,

¢ SSN,
e email id,

* physical address,

pydbgen, Release 1.0.5

e company name,
* job title,

This Python package generates a random database TABLE (or a Pandas dataframe, or an Excel file) based on user’s
choice of data types (database fields). User can specify the number of samples needed. One can also designate a
“PRIMARY KEY” for the database table. Finally, the TABLE is inserted into a new or existing database file of user’s
choice.

Flores
Cody Guelelo Garrett Daniil Litz Abera L\!\’l

Saud Vs e Rosenthal Phorrs Frar
}x:lm “:;al:?[\:v"‘ Colombing vukieali Olivia Craig IIam‘““""‘l-mn..n
Catton Lombardo Igherighe Monreal Whelan Kerkela

Y st
i KK TonyDon Jouhia "D] ekl

IPer Boyer

allee SimonAdam Parsaray PO ploys

Jay Tlm
Elisabeth Joe] off D Ryan 551, Tustin
Kevin Francel hmh M-dmuc 1 pries a‘ 71 Samuel
Cerv mlechard Singer Ned Ilan

Asst Dire (luulllEdd[e
m:fﬂLfﬁﬂé{}g? SOH."R"M'St“e‘VG Joseph.h ,,,leke Da Vls‘&/ﬂlglul.
= Oonnwi 1Detny Todd Jimietr Mark sin

ovber Peter dam u';';\m gy Georze Suaight G "mali\“m‘ Ben
— "‘"J"‘*Ocampo 1 as Sullivan” Kelps Nprell VAR Neationy
Weiss Shroff yonburg Heyman Russell Mishra \dr,s,, ok
+ NI
Entéo Lefion If B (280 Adi ®

Burns Umeh “gits ‘Assil

4 Chapter 1. Introduction

CHAPTER 2

Dependency and Acknowledgement

At its core, pydbgen uses Faker as the default random data generating engine for most of the data types. Original
function is written for few data types such as realistic email and license plate. Also the default phone
number generated by Faker is free-format and does not correspond to US 10 digit format. Therefore, a simple
phone number data type is introduced in pydbgen. The original contribution of pydbgen is to take the sin-
gle data-generating function from Faker and use it cleverly to generate Pandas data series or dataframe or SQLite
database tables as per the specification of the user. Here is the link if you want to look up more about Faker package,

Faker Documentation Home

https://faker.readthedocs.io/en/latest/index.html

pydbgen, Release 1.0.5

6 Chapter 2. Dependency and Acknowledgement

CHAPTER 3

Installation

(On Linux and Windows) You can use pip to install pydbgen:

pip install pydbgen

(On Mac OS), first install pip,

curl https://bootstrap.pypa.io/get-pip.py -0 get-pip.py
python get-pip.py

Then proceed as above.

pydbgen, Release 1.0.5

8 Chapter 3. Installation

CHAPTER 4

Usage

Current version (1.0.0) of pydbgen comes with the following primary methods,
* gen_data_series|()
* gen_dataframe ()
* gen_table ()
* gen_excel ()

The gen_table () method allows you to build a database with as many tables as you want, filled with random data
and fields of your choice. But first, you have to create an object of pydb class:

’ myDB = pydbgen.pydb ()

4.1 gen_data_series()

Returns a Pandas series object with the desired number of entries and data type. Data types available:
» Name, country, city, real (US) cities, US state, zipcode, latitude, longitude
* Month, weekday, year, time, date
¢ Personal email, official email, SSN
* Company, Job title, phone number, license plate
Phone number can be of two types:
e phone_number_simple generates 10 digit US number in xxx-xxx-xxxx format
e phone_number_full may generate an international number with different format

Code example:

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html

pydbgen, Release 1.0.5

se=myDB.gen_data_series (data_type='date')
print (se)

1995-08-09
2001-08-01
1980-06-26
2018-02-18
1972-10-12
1983-11-12
1975-09-04
1970-11-01
1978-03-23
1976-06-03
dtype: object

O 00 J o Ul WDN BHFH O

4.2 gen_dataframe ()

Generates a Pandas dataframe filled with random entries. User can specify the number of rows and data type of the
fields/columns.

* Name, country, city, real (US) cities, US state, zipcode, latitude, longitude
* Month, weekday, year, time, date
¢ Personal email, official email, SSN
* Company, Job title, phone number, license plate
Customization choices are following:

* real_email: If True and if a person’s name is also included in the fields, a realistic email will be generated
corresponding to the name of the person. For example, Tirtha Sarkar name with this choice enabled, will
generate emails like TSarkar21@gmail.comor Sarkar.Tirtha@att.net.

e real_city: If True, areal US city’s name will be picked up from a list (included as a text data file with the
installation package). Otherwise, a fictitious city name will be generated.

* phone_simple: If True, a 10 digit US number in the format xxx-xxx-xxxx will be generated. Otherwise,
an international number with different format may be returned.

Code example:

testdf=myDB.gen_dataframe (
25,fields="name', 'city', '"phone',
'license_plate', 'email',
real_email=True,phone_simple=True

)

4.3 gen_table ()

Attempts to create a table in a database (.db) file using Python’s built-in SQLite engine. User can specify various
data types to be included as database table fields.

All data types (fields) in the SQLite table will be of VARCHAR type. Data types available:

* Name, country, city, real (US) cities, US state, zipcode, latitude, longitude

10 Chapter 4. Usage

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html

pydbgen, Release 1.0.5

* Month, weekday, year, time, date

¢ Personal email, official email, SSN

* Company, Job title, phone number, license plate
Customization choices are following:

* real_email: If True and if a person’s name is also included in the fields, a realistic email will be generated
corresponding to the name of the person. For example, Tirtha Sarkar name with this choice enabled, will
generate emails like TSarkar21@gmail.comor Sarkar.Tirtha@att.net.

e real_city: If True, areal US city’s name will be picked up from a list (included as a text data file with the
installation package). Otherwise, a fictitious city name will be generated.

e phone_simple: If True, a 10 digit US number in the format xxx-xxx-xxxx will be generated. Otherwise,
an international number with different format may be returned.

e db_file: Name of the database where the TABLE will be created or updated. Default database name will be
chosen if not specified by user.

* table_name: Name of the table, to be chosen by user. Default table name will be chosen if not specified by
user.

e primarykey: User can choose a PRIMARY KEY from among the various fields. If nothing specified, the
first data field will be made PRIMARY KEY. If user chooses a field, which is not in the specified list, an error
will be thrown and no table will be generated.

Code example:

myDB.gen_table (

20,fields=["name', 'city', 'job_title', "phone', 'company', 'email'],
db_file="TestDB.db',table_name='People',

primarykey='name', real_city=False

)

4.4 gen_excel ()

Attempts to create an Excel file using Pandas excel_writer function. User can specify various data types to be included.
All data types (fields) in the Excel file will be of text type. Data types available:

* Name, country, city, real (US) cities, US state, zipcode, latitude, longitude
* Month, weekday, year, time, date
¢ Personal email, official email, SSN
* Company, Job title, phone number, license plate
Customization choices are following:

* real_email: If True and if a person’s name is also included in the fields, a realistic email will be generated
corresponding to the name of the person. For example, Tirtha Sarkar name with this choice enabled, will
generate emails like TSarkar21@gmail.comor Sarkar.Tirtha@att.net.

e real_city: If True, areal US city’s name will be picked up from a list (included as a text data file with the
installation package). Otherwise, a fictitious city name will be generated.

* phone_simple: If True, a 10 digit US number in the format xxx-xxx-xxxx will be generated. Otherwise,
an international number with different format may be returned.

4.4. gen_excel () 11

pydbgen, Release 1.0.5

e filename: Name of the Excel file to be created or updated. Default file name will be chosen if not specified

by user.

Code example:

myDB.gen_excel (15, fields=["'name', 'year', 'email', 'license_plate'],
filename="'TestExcel.xlsx', real_email=True)

4.5 Other auxilarry methods available

Few other auxilarry functions available in this package.

* Realistic email with a given name as seed:

for _ in range(10):
print (myDB.realistic_email ('Tirtha Sarkar'))

Sarkar.Tirthab59@zoho.com
Sarkar.Tirtha@hotmail.com
Sarkar.Tirtha8l@yandex.com
TSarkar@mail.com
TSarkar65@yahoo.com
Tirtha.S36@mail.com
Tirtha_SQ@yandex.com
Tirtha.S@aol.com
Sarkar.Tirtha@mail.com
Tirtha.Sarkar8l@comcast.net

License plate in few different style (1,2, or 3):

for _ in range(10):
print (myDB.license_plate())

10AG936
LTZ-6460
ODQ-846
SKNW713
MEX-8256
6WMH396
00X-2780
O0OD-124
RXY-8865
JZV-3326

12

Chapter 4. Usage

	Introduction
	Dependency and Acknowledgement
	Installation
	Usage
	gen_data_series()
	gen_dataframe()
	gen_table()
	gen_excel()
	Other auxilarry methods available

