

 Navigation

 	
 index

 	
 next |

 	Python data pipelines similar to R 0.1.0 documentation

Welcome to Python data pipelines’s documentation!

Contents:

	Python data pipelines
	Features

	Documentation

	License

	Credits

	Installation
	Stable release

	From sources

	Background

	Usage
	Simple pipeline verbs

	A more complex example: grouped and ungrouped aggregation on a pandas DataFrame

	Limitiations

	Usage as function and pipeline verb

	Rules and conventions

	Missing parts

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2016-10-22)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Jan Schulz.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python data pipelines similar to R 0.1.0 documentation

Python data pipelines

 [https://pypi.python.org/pypi/pydatapipes]
 [https://travis-ci.org/janschulz/pydatapipes][image: Documentation Status]
 [https://pydatapipes.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/janschulz/pydatapipes/]
Features

This package implements the basics for building pipelines similar to magrittr in R. Pipelines are
created using >>. Internally it uses singledispatch [https://docs.python.org/3/library/functools.html#functools.singledispatch] to provide a way for a unified API
for different kinds of inputs (SQL databases, HDF, simple dicts, ...).

Basic example what can be build with this package:

>>> from my_library import append_col
>>> import pandas as pd

>>> pd.DataFrame({"a" : [1,2,3]}) >> append_col(x=3)
 a X
0 1 3
1 2 3
2 3 3

In the future, this package might also implement the verbs from the R packages dplyr [https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html] and
tidyr [https://cran.r-project.org/web/packages/tidyr/index.html] for pandas.DataFrame and or I will fold this into one of the other available
implementation of dplyr [https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html] style pipelines/verbs for pandas.

Documentation

The documentaiton can be found on ReadTheDocs [https://readthedocs.org/]: https://pydatapipes.readthedocs.io

License

Free software: MIT license

Credits

	magrittr [https://cran.r-project.org/web/packages/magrittr/vignettes/magrittr.html] and it’s usage in dplyr [https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html] / tidyr [https://cran.r-project.org/web/packages/tidyr/index.html] for the idea of using pipelines in that ways

	lots of python implementations of dplyr style pipelines: dplython [https://github.com/dodger487/dplython], pandas_ply [https://github.com/coursera/pandas-ply], dfply [https://github.com/kieferk/dfply]

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

 Copyright 2016, Jan Schulz.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python data pipelines similar to R 0.1.0 documentation

Installation

Stable release

To install Python data pipelines similar to R, run this command in your terminal:

$ pip install pydatapipes

This is the preferred method to install Python data pipelines, as it will always install the most
recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Python data pipelines similar to R can be downloaded from the Github repo [https://github.com/janschulz/pydatapipes].

You can either clone the public repository:

$ git clone git://github.com/janschulz/pydatapipes

Or download the tarball [https://github.com/janschulz/pydatapipes/tarball/master]:

$ curl -OL https://github.com/janschulz/pydatapipes/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

 Copyright 2016, Jan Schulz.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python data pipelines similar to R 0.1.0 documentation

Background

Since a few years, pipelines (via %>% of the magrittr
package [https://cran.r-project.org/web/packages/magrittr/vignettes/magrittr.html])
are quite popular in R and the grown ecosystem of the
“tidyverse” [https://blog.rstudio.org/2016/09/15/tidyverse-1-0-0/]
is built around pipelines. Having tried both the pandas syntax (e.g.
chaining like df.groupby().mean() or plain
function2(function1(input))) and the R’s pipeline syntax, I have to
admit that I like the pipeline syntax a lot more.

In my opinion the strength of R’s pipeline syntax is:

	The same verbs can be used for different inputs (there are SQL
backends for
dplyr [https://cran.r-project.org/web/packages/dplyr/vignettes/new-sql-backend.html]),
thanks to R’s single-dispatch mechanism (called S3
objects [http://adv-r.had.co.nz/S3.html]).

	Thanks to using function instead of class methods, it’s also more
easily extendable (for a new method on pandas.DataFrame you have
to add that to the pandas repository or you need to use monkey
patching). Fortunatelly, both functions and singledispatch are also
available in python :-)

	It uses normal functions as pipline parts:
input %>% function() is equivalent to function(input).
Unfortunately, this isn’t easily matched in python, as pythons
evaluation rules would first evaluate function() (e.g. call
functions without any input). So one has to make function()
return a helper object which can then be used as a pipeline part.

	R’s delayed evaluation rules make it easy to evaluate arguments in
the context of the pipeline, e.g. df %>% select(x) would be
converted to the equivalent of pandas df[["x"]], e.g. the name of
the variable will be used in the selection. In python it would either
error (if x is not defined) or (if x was defined, e.g.
x = "column"), would take the value of x, e.g.
df[["column"]]. For this, some workarounds exist by using helper
objects like select(X.x), e.g. pandas-ply and its
``Symbolic expression` <https://github.com/coursera/pandas-ply>`__.

There exist a few implementation of dplyr like pipeline verbs for python
(e.g. pandas
itself [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.pipe.html],
pandas-ply [https://github.com/coursera/pandas-ply] (uses method
chaining instead of a pipe operator),
dplython [https://github.com/dodger487/dplython], and
dfply [https://github.com/kieferk/dfply]), but they all focus on
implementing dplyr style pipelines for pandas.DataFrames and I
wanted to try out a simpler but more general approach to pipelines.

 Copyright 2016, Jan Schulz.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python data pipelines similar to R 0.1.0 documentation

Usage

Simple pipeline verbs

For end users wanting to build a new pipeline verb or add pipeline
functionality to a new data source, there are two functions to build new
pipeline parts:

from pydatapipes.pipes import singledispatch_pipeverb, make_pipesource
import pandas as pd

generic version which defines the API and should raise NotImplementedError
@singledispatch_pipeverb
def append_col(input, x = 1):
 """Appends x to the data source"""
 raise NotImplementedError("append_col is not implemented for data of type %s" % type(input))

concrete implementation for pandas.DataFrame
@append_col.register(pd.DataFrame)
def append_col_df(input, x = 1):
 # always ensure that you return new data!
 copy = input.copy()
 copy["X"] = x
 return copy

ensure that pd.DataFrame is useable as a pipe source
make_pipesource(pd.DataFrame)

This can then be used in a pipeline:

import pandas as pd
print(pd.DataFrame({"a" : [1,2,3]}) >> append_col(x=3))

 a X
0 1 3
1 2 3
2 3 3

The above example implements a pipeline verb for pandas.DataFrame,
but due to the useage of singledispatch, this is generic. By
implementing additional append_col_<data_source_type>() functions
and registering it with the original append_col function, the
append_col function can be used with other data sources, e.g. SQL
databases, HDF5, or even builtin data types like list or dict:

@append_col.register(list)
def append_col_df(input, x = 1):
 return input + [x]

[1, 2] >> append_col()

[1, 2, 1]

If a verb has no actual implementation for a data source, it will simply
raise an NotImplementedError:

try:
 1 >> append_col()
except NotImplementedError as e:
 print(e)

append_col is not implemented for data of type <class 'int'>

A more complex example: grouped and ungrouped aggregation on a pandas DataFrame

singledispatch also makes it easy to work with grouped and ungrouped
pd.DataFrames:

@singledispatch_pipeverb
def groupby(input, columns):
 """Group the input by columns"""
 raise NotImplementedError("groupby is not implemented for data of type %s" % type(input))

@groupby.register(pd.DataFrame)
def groupby_DataFrame(input, columns):
 """Group a DataFrame"""
 return input.groupby(columns)

@singledispatch_pipeverb
def summarize_mean(input):
 """Summarize the input via mean aggregation"""
 raise NotImplementedError("summarize_mean is not implemented for data of type %s" % type(input))

@summarize_mean.register(pd.DataFrame)
def summarize_mean_DataFrame(input):
 """Summarize a DataFrame via mean aggregation"""
 return input.mean()

@summarize_mean.register(pd.core.groupby.GroupBy)
def summarize_mean_GroupBy(input):
 """Summarize a grouped DataFrame via mean aggregation"""
 return input.mean()

df = pd.DataFrame({"a" : [1, 2, 3, 4], "b": [1, 1, 2, 2]})

print(df >> summarize_mean())

a 2.5
b 1.5
dtype: float64

print(df >> groupby("b") >> summarize_mean())

 a
b
1 1.5
2 3.5

Limitiations

Compared to R’s implementation in the
magrittr [https://cran.r-project.org/web/packages/magrittr/vignettes/magrittr.html]
package, input >> verb(x) can’t be used as verb(input, x).

The problem here is that verb(x) under the hood constructs a helper
object (PipeVerb) which is used in the rshift operation. At the time
of calling verb(...), we can’t always be sure whether we want an
object which can be used in the pipeline or already compute the result.
As an example consider a verb merge(*additional_data). You could
call that as data >> merge(first, second) to indicate that you want
all three (data, first, and second) merged. On the other
hand, merge(first, second) is also valid (“merge first and
second together).

Usage as function and pipeline verb

To help work around this problem, the convenience decorator
singledispatch_pipeverb is actually not the best option if you want
to create reuseable pipline verbs. Instead, the
singledispatch_pipeverb decorator is also available in two parts, so
that one can both expose the original function (with singledispatch
enabled) and the final pipeline verb version:

#from pydatapipes.pipes import pipeverb, singledispatch

first use singledispatch on the original function, but define it with a trailing underscore
@singledispatch
def my_verb_(input, x=1, y=2):
 raise NotImplemented("my_verb is not implemented for data of type %s" % type(input))

afterwards convert the original function to the pipeline verb:
my_verb = pipeverb(my_verb_)

concrete implementations can be registered on both ``my_verb`` and ``my_verb_``
@my_verb_.register(list)
def my_verb_df(input, x=1, y=2):
 return input + [x, y]

A user can now use both versions:

[1] >> my_verb(x=2, y=3)

[1, 2, 3]

my_verb_([9], x=2, y=3)

[9, 2, 3]

Rules and conventions

To work as a pipline verb, functions must follow these rules:

	Pipelines assume that the verbs itself are side-effect free, i.e.
they do not change the inputs of the data pipeline. This means that
actual implementations of a verb for a specific data source must
ensure that the input is not changed in any way, e.g. if you want to
pass on a changed value of a pd.DataFrame, make a copy first.

	The initial function (not the actual implementations for a specific
data source) should usually do nothing but simply raise
NotImplementedError, as it is called for all other types of data
sources.

The strength of the tidyverse is it’s coherent API design. To ensure a
coherent API for pipeline verbs, it would be nice if verbs would follow
these conventions:

	Pipeline verbs should actually be named as verbs, e.g. use
input >> summarize() instead of input >> Summary()

	If you expose both the pipeline verb and a normal function (which can
be called directly), the pipeline verb should get the “normal” verb
name and the function version should get an underscore _
appended: x >> verb() -> verb_(x)

	The actual implementation function of a verb() for a data source
of class Type should be called verb_Type(...), e.g.
select_DataFrame()

Missing parts

So what is missing? Quite a lot :-)

	Symbolic expressions: e.g. select(X.x) instead of select("x")

	Helper for dplyr style column selection (e.g.
select(starts_with("y2016_")) and
select(X[X.first_column:X.last_column]))

	all the dplyr, tidyr, ... verbs which make the tidyverse so great

Some of this is already implemented in the other dplyr like python libs
(pandas-ply [https://github.com/coursera/pandas-ply],
dplython [https://github.com/dodger487/dplython], and
dfply [https://github.com/kieferk/dfply]), so I’m not sure how to go
on. I really like my versions of pipelines but duplicating the works of
them feels like a waste of time. So my next step is seeing if it’s
possible to integrate this with one of these solutions, probably dfply
as that looks the closest implementation.

 Copyright 2016, Jan Schulz.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python data pipelines similar to R 0.1.0 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/janschulz/pydatapipes/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Python data pipelines similar to R could always use more documentation, whether as part of the
official Python data pipelines similar to R docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/janschulz/pydatapipes/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up pydatapipes for local development.

	Fork the pydatapipes repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/pydatapipes.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv pydatapipes
$ cd pydatapipes/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 pydatapipes tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/janschulz/pydatapipes/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_pipes

 Copyright 2016, Jan Schulz.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Python data pipelines similar to R 0.1.0 documentation

Credits

Development Lead

	Jan Schulz <jasc@gmx.net>

Contributors

None yet. Why not be the first?

 Copyright 2016, Jan Schulz.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Python data pipelines similar to R 0.1.0 documentation

History

0.1.0 (2016-10-22)

	First release on PyPI.

 Copyright 2016, Jan Schulz.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Python data pipelines similar to R 0.1.0 documentation

Index

 Copyright 2016, Jan Schulz.
 Created using Sphinx 1.3.5.

 _static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/file.png

search.html

 Navigation

 		
 index

 		Python data pipelines similar to R 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Jan Schulz.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

