pydanny-event-notes Documentation
Release 45

Daniel Greenfeld

Jan 24, 2018

Contents

Conferences 3
Hackathons 509
Meetups 513
Articles 581
Credits 583

Indices and tables 585

pydanny-event-notes Documentation, Release 45

I’ve been collecting my notes taken over the years into this one location. My intention is to capture all that I've learned
or forgotten, share it with others, and compare that with where I am now.

Contents 1

pydanny-event-notes Documentation, Release 45

2 Contents

CHAPTER 1

Conferences

1.1 EuroPython 2013

venue Florence, Italy

dates July 1 - July 7

Note: The first day of the conference we were asked to give a 3-hour tutorial. We put something together in 48 hours,
but that means I didn’t get many notes in. Nevertheless, it’s been a great conference. :-)

1.1.1 Experiences from Teaching Physics with iPython Notebook

By Anders Lehmann
¢ Associate Professor, AARHUS UNIVERSITY
e Denmark
— Winner of EuroVision

— Birthplace of Sgren Kierkegaard

Intro
* ipython is an awesome tool for teaching
* But could do things better

Teaching Physics

* Physics is considered hard by students

pydanny-event-notes Documentation, Release 45

What is the use?

ElectroMagnetics is abstract

What is a field?

— How do semiconductors work?

What’s good about ipython notebook?

Great tool
Feels lightweight

Like MatLab in a browser that starts counting at zero!

Physics extension

Adds physical quantities
Adds physical constants
Enables check if Units match

Started by: $1oad_ext physics

How do you make physics interesting?

Use real life examples demonstrated in ipython notebook

Be exciting and fun

Experiment

1.2

Introduce ipython as an online calculator
Show that it can use units
Extend by adding small functions

Introduce plotting

DjangoCon Europe 2013 (Django Circus)

Location: Warsaw, Poland
URL.: http:djangocircus.com
Other people’s notes:
— http://reinout.vanrees.org/weblog/tags/djangocon.html

— http://foobacca.github.io/foobacca-event-notes/DjangoConEurope2013/index.html

Chapter 1. Conferences

http:djangocircus.com
http://reinout.vanrees.org/weblog/tags/djangocon.html
http://foobacca.github.io/foobacca-event-notes/DjangoConEurope2013/index.html

pydanny-event-notes Documentation, Release 45

1.2.1 Opening Statements

» Kuba thanked the sponsors and community

* Russell Keith-Magee gave a wonderful eulogy of Malcolm Tredinnick, who passed away on March 17th, 2013.

1.2.2 Django Circus

Keynotes

First Keynote: On the Revolutions

* by Brandon Rhodes

Topic: Nichola Kopernik

¢ Polish Astronomer
¢ Lifted the Earth into the heavens, rather than the Earth was at the bottom of the heavens.

e Lived:

Near-Earth environment

* 300s BC - Aristotle - spherical Earth
* 200s BC - Erathosthenes - radius of Earth
* 100s BC - Hipparchus - distance to Moon

Hard to tell how things worked out

¢ Planets move slowly across the sky
* Retrograde motion

* Didn’t make sense, so Ptolomy came up with a sophisticated way of handling this based off of observations.

People followed this for thousands of years because it matched empirical evidence.

* It was the lack of evidence against Ptolomy that made the case against Galileo.

Kopernik debated Ptolomy

Kopernik read:
* Galileo
» Kepler’s ellipses

¢ Newton theories

1.2. DjangoCon Europe 2013 (Django Circus) 5

pydanny-event-notes Documentation, Release 45

Bradley in 1725 proved Kopernik

¢ Stellar aberration
* Speed of light

¢ Watched the stars move in relation to the Earth’s movement

Note: “It took 1,900 years after the Greeks discovered the distance to the moon for us to determine the distance to a
star.” — Brandon Rhodes

Why did Kopernik debate all the physical evidence for the Earth-centric universe?

* Beauty
¢ Wanted better math

* Made the code pretty

Note: “Kopernik made the most awesome code refactor in history.” — Brandon Rhodes

Kopernik’s model of the solar system made it clear that the Sun was the center of the solar system instead of yet
another object.

TODO - get Brandon’s code models for the Ptolomic and Kopernik solar system models.

Copernican Refactor

Brandon’s new term for any refactor that brings things to the center.

Example: Gadgets that combine automobile cigarette lighters with a USB connector to put power into mobile devices.
* Clean Architecture (http://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html)
* Docopt (https://pypi.python.org/pypi/docopt)
* Django (compared to Python CGI)

Closing

If your code is driving you crazy, think like Kopernik and turn the world upside down.

Second Keynote: Why Django Is Awesome

* by Daniel Greenfeld aka “Pydanny”

Background

* Principal at Cartwheel Web
* Co-author of Two Scoops of Django (https://django.2scoops.org)

6 Chapter 1. Conferences

http://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://pypi.python.org/pypi/docopt
https://django.2scoops.org

pydanny-event-notes Documentation, Release 45

* Fiance of Audrey Roy :)

Why Django is Awesome
Django Is Everywhere

NASA, PBS, Instagram, etc.

Django Lets Us Use Python

Python is awesome!
 Python has Zen
e Python has a style guide

¢ And indentation and such

Django Has Awesome APIs

Requests is known for having an elegant API. Look at sample code from using the Django test client. It’s practically
the same code!

* Example of models and model methods
API conventions encourage clean design:
* Make it easy to separate content from presentation

* Helps us get things done

Django Views are Functions

Function views are very simple. Request —-> Response

Even with class-based views, you have View.as_view () which is basically the same thing.

Django Has Awesome Features

e The admin is what we’re known for. Aka “How to sell Django 101”.
* Shortest admin module possible in 3 lines.
— Don’t hack the admin to force it to bend to NoSQL. Write separate code

— Pydanny will be sprinting on django-admin2

Django’s Full Stack Is Awesome

* Dominates hackathons because you have everything in one place

* Building companies is easy with stock Django/Python. Even if you don’t understand the larger Django ecosys-
tem, you can get amazing things done with it.

1.2. DjangoCon Europe 2013 (Django Circus) 7

pydanny-event-notes Documentation, Release 45

Django Is Part of an Ecosystem

* 30,000 packages on PyPI

* 1,750 packages on https://www.djangopackages.com/

Django Sets the Bar for Documentation

¢ In the Python world, no one says “just read the code” anymore.

 Largely because of Django

Django’s Community is the Best

¢ Humble and listens to criticism

* The more you help people in the community, the more the community helps you. Case study: book had over 125
contributors. We gave free copies and asked the community to do nice things in return. Huge response: readers
volunteered their time to write Django projects for churches, schools, other good deeds around the world.

Call To Action

Be awesome. “I want us to change the world.” Use your knowledge of Django to help people and do good things.

Circus: process & socket manager

* By Tarek Ziade
— Works for Mozilla

Circus is a process manager we developped at Mozilla while working on high scalability, we wanted to have a way to
deal with our processes directly from python, and in a better way that’s what possible with the standard library.

Circus uses zeromq in its internals, and thus is easily extensible. We’ll present you how you why we built circus, how
to use it and some core concepts that were useful in the conception of the tool. Also, we’ll demonstrate how easy it is
to plug circus with a Django stack.

Typical Django Deployment

* Nginx > Gunicon > Django + sentry + celery
Supervisord is frequently used for management of these components. Alternatives include:
* Bluepill (less mature)
e upstart (system level - root access needed)
» daemontools (low-level like upstart)

* got, monit, runit, etc.

8 Chapter 1. Conferences

https://www.djangopackages.com/

pydanny-event-notes Documentation, Release 45

Missing features from supervisord

¢ Realtime stdout/stderr
* realtime stats

» powerful web console
* Remote access

* clustering

* event-based plugins

Since those were missing, Tarek launched his own project: Circus!

Technical choices for Circus

* Python

PSUTIL

e ZeroMQ

* TODO - get rest of this

The Core: psutil

Third-party library that is easy to use and pretty elegant:

>>> import psutil

>>> p = psutil.Process (7384)
>>> p.name

'Address book'

>>> p.uids
user

The Messenger: ZeroMQ

* async library for message passing == smart socket
* highly scalable
e transports: ITC, IPC, TCP, PGM (multicast)
e principal patterns
— request
— pub/sub
— push/pull
¢ used by [Python
* PyZMG - zmgq bind + nice I/O event loop adapted from Tornado

1.2. DjangoCon Europe 2013 (Django Circus) 9

pydanny-event-notes Documentation, Release 45

Circus Architecture

TODO - Get a copy of the image from Tarek.

Recap

¢ circusd: daemon that watches all processes

* circusctl: interaction shell

* circus-top: Like top, but only for things Circus is managing
e circus-httpd: Runs the web client

TODO - get the rest of the components from Tarek

Problem

Can’t interact with Django workers because they are supervised by Gunicorn, which is managed by Circus.

Answer: Circus sockets - Not just sockets, but also manage processes.
» Every process managed by Circus is forked from circusd
* circusd creates & opens sockets

* child processes can accept() connection on those sockets

WSGI

* Chaussette: WSGI server that reuses already opened sockets
* Launched with the socket. ..

* TODO - catch up

Benchmarks

Circus + gevent is slightly faster than Gunicorn + gevent.

Upcoming features

* Clustering

* stderr/stdout streaming in the web dashboard

Thanks!

* Docs: http://circus.io
* Code: https://github.com/mozilla-services/circus

* slides: http://blog.ziade.org/slides/djangocon2012/circus.html

10 Chapter 1

. Conferences

http://circus.io
https://github.com/mozilla-services/circus
http://blog.ziade.org/slides/djangocon2012/circus.html

pydanny-event-notes Documentation, Release 45

Processing payments for the paranoid

* By Andy McKay
— @andymckay
— Works at Mozilla
— Presented barefoot
The Mozilla Marketplace is the app store for Firefox OS and this Django powered site takes payments from users.

Combined with issues like localisation, identity and scale - we are processing payments through Django. This talk
will cover the marketplace, the architecture of the system and how we cope with all the paranoia.

Who should be paranoid?

Everyone should be paranoid:
* Developers
e Users
* banks

* Everyone

Mozilla Marketplace

* Powered by Django
* Don’t call it an “app store”
¢ accepts payments

» Powered by open source project ‘zamboni’

Note: Report bugs to Mozilla via their reporting system and they’ll pay you.

Steps for purchase

1. Set up your account with Mozilla
2. Purchase and use an app
3. Mozilla bills your carrier

All powered by Solitude: https://github.com/mozilla/solitude

Vulnerabilities they had to consider
XSS

Over come with * Mozilla Content Security Policy * MDN docs * Github blog

1.2. DjangoCon Europe 2013 (Django Circus) 11

https://github.com/mozilla/solitude
https://developer.mozilla.org/en/docs\protect \begingroup \immediate \write \@unused \def \MessageBreak
 \let \protect \edef Your command was ignored.\MessageBreak Type I <command> <return> to replace it with another command,\MessageBreak or <return> to continue without it. \errhelp \let \def \MessageBreak
(inputenc) \def \errmessage Package inputenc Error: Unicode char ‎ (U+200E)\MessageBreak not set up for use with LaTeX.

See the inputenc package documentation for explanation.
Type H <return> for immediate help \endgroup

pydanny-event-notes Documentation, Release 45

Phishing

* navigator.mozPay
* Trusted UI
* MDN docs

SQL injection

e careful ORM evaluation

Ourselves

* Many penetrations happen internally, not from technical assaults from outside.
* Wrote anonymizing code
* Inside the DB:
— removed personally identifying information
— encrypted other data
* Defended by depth

Tips

* use python-requests
— SSL certs are not handled well by Python’s URLLIB
— Requests does it well
* wrote django-paranoia to help track security things
— Includes something called paranoid_forms. Logs when people try to add or subtract keys to forms.
— includes a special sessions component for Django. Logs when:
% user agent changes

* [P Address changes

Note: Just noticed that @andymckay is presenting barefoot at @djangocon @djangofact #djangocon

The Imaginative Programmer

* by Zed Shaw
— Wrote Learn Python the Hard Way.
* BE-Version: http://learnpythonthehardway.org
* Upcoming Print Version

— Talks super-fast so I can’t keep up.

12 Chapter 1. Conferences

https://developer.mozilla.org/en/docs\protect \begingroup \immediate \write \@unused \def \MessageBreak
 \let \protect \edef Your command was ignored.\MessageBreak Type I <command> <return> to replace it with another command,\MessageBreak or <return> to continue without it. \errhelp \let \def \MessageBreak
(inputenc) \def \errmessage Package inputenc Error: Unicode char ‎ (U+200E)\MessageBreak not set up for use with LaTeX.

See the inputenc package documentation for explanation.
Type H <return> for immediate help \endgroup
http://learnpythonthehardway.org
http://www.amazon.com/Learn-Python-Hard-Way-Introduction/dp/0321884914/ref=sr_1_1?ie=UTF8&qid=1368612258&sr=8-1&tag=cn-001-20

pydanny-event-notes Documentation, Release 45

— True Fact: @zedshaw kicked me in the nuts at @pycon 2009.

In the world of programming nothing is more irritating than the “artist”. Programmers who are all “front-end”, business
guys who are all “ideas”, and designers who can’t draw. I say real programmers don’t need to be artists. Rather, a
programmer needs to have the skills necessary to take their imagination (or other people’s) and translate it into working
software.

This talk will contain many of my secrets for turning ideas I have in my mind into real things. I will lean heavily
on the arts, music, and writing, but ultimately this talk will be about implementing software. There will be no fluffy
spirituality or hand waving in this talk, just real tricks to help you make stuff.

Here we go

Talks a quick story about a hipster and an easel in San Francisco. He watched a guy pretend to paint in order to pick
up girls.

Zed read tons of design books, but none of them make any sense. Believes that design education is fucking useless.
He’s been told that since he’s “logical”, he can’t do art. However, he contends that art is logical (composition, form,
etc).

Finds that guitarists are jerks about saying if you aren’t in a band then you aren’t a real musician. However if he says
he builds guitars he gets respect. Until he says he’s a programmer.

Rant about writers: Because his best selling book isn’t non-technical, he’s not considered a real writer.

Rant about not submitting pull requests: He brings developers into Python and Django but isn’t considered to have
contributed.

Note: I ranted yesterday about this but maybe Zed has a point.

Common Threads

* Artists says he’s not an artist because he works on developing technical skills.
» Writers say he’s not a writer because he writes tech books.
* Guitarists say he’s not a musician

* Programmers say he’s not a programmer because he doesn’t submit pull requests.

Proposal

We hack creativity and make it worthless.

Battle Plan

Learn an “imaginative programming process”

Four types of People who Don’t Really Exist

 Technique, No Imagination: Stereotypical Programmer

1.2. DjangoCon Europe 2013 (Django Circus) 13

pydanny-event-notes Documentation, Release 45

* Imagination, No Technique: Stereotypical Biz Dudes
777

777

Zed’s Imaginative Programming Process

1. Perceiving the Imaginative Idea.

Establish the Concept.

Research techniques or tools. Programmers often skip this step.
Refine the concept through composition.

Explore through prototypes

A

Make it real

Examples
Project Zorn

1. Idea: Zed loves mixing colors
Concept: Create site for teaching color similar to euler project.
Research: Find tools to build this

Composition: Make 52 exercises and put it online with interactive parts powered by Django.

A

Prototype: Using Zurb he prototyped the first page: http://projectzorn.com
6. Realize: Start writing exercises at Django Circus

Other ideas:
1. Painting in Poland

2. python-lost

Closing thoughts

* Email yourself your ideas
* Don’t worry about the fear aspect. Make sure you don’t care if people don’t like your stuff.
* Great ideas work best in solitude

* Great implementations work best in teams

Advanced PostgreSQL in Django

* by Christophe Pettus

14 Chapter 1

. Conferences

http://projectzorn.com

pydanny-event-notes Documentation, Release 45

PostgreSQL is the most advanced open-source database on the planet, but (except for GeoDjango) few Django devel-
opers take advantage of its more advanced features. We want to change that!

We’ll talk about custom types (including Admin integration), replication tricks, specialized indexes, unstructured
types such as JSON, stored procedures, and other ways to get maximum functionality and performance out of your
PostgreSQL data store.

Database Agnosticism

* Django has to be able to handle all databases.
» That means it loses special features of individual database systems (PGSQL, MySQL, etc).

» Database migration is a once in a lifetime thing.

What can PostgreSQL do for you

* PostgreSQL has a huge range of built-in types
¢ Most can be used natively in Django

* You can find libraries to support them.

citext

e case insensitive text

* ignores case on comparisons for a field

hstore

* built-in dict-like structure
* Maps to Python dict
¢ Can be indexed and queried for inclusion

* requires custom sql

¢ All the cool kids use NoSQL databases
* Something faster than MongoDB to store your JSON databases
* validated going in

* Not feature rich, but it’s growing

1.2. DjangoCon Europe 2013 (Django Circus) 15

pydanny-event-notes Documentation, Release 45

Others

« UUID
IPv4 and IPv6

* Interval - stores time intervals directly in the database

» See Craig Kersteins’s talk later

Where do we sign up?

Getting it work in Django
* Adapt to psycopg?2
— take string representation of the type and convert to and from the python object.
* Write a Field class for Django
— subclass django.forms.Field
* Create a widget

TODO - ask Christophe for the slides so I can finish this section

Indexes

Django models are great but it’s index creation syntax is somewhat lacking. Multi-column indexes for example

Partial indexes in Django are good:

CREATE INDEX active_orders ON cart_order (status) IF status ==

Custom Constraints

* Django’s database agnosticism is a problem for things like foreign-key handling
* It’s also boring
Tips:

* Push database constraints into the database whenever possible.

Raw SQL

The three-join rule:
* If you are joining more than three tables, use raw SQL
* It turns out that PostgreSQL is really good at multiple joins

* Don’t fall back into iterating over querysets to get data. Use SQL!

16 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Tips:

e Put RAW SQL in the model or manager. Put it in the view and you risk losing it
* Use South
* Don’t be constrained by fear of migrating from one database to another. Choose and use special features

Getting recommendations out of nothing

by Ania Warzecha

Note: Was extremely late to this talk. Which makes me sad because this was clearly a good talk.

How to combine JavaScript & Django in a smart way

by Przemek Lewandowski
* http://sunscrapers.com
* Really nice guy, met him earlier this week.

Have you been using JavaScript more and more when building your web applications? Are you implementing REST
API frequently? If so, you have probably realised that server-side generated content is no longer enough to provide
cutting edge user experience.

I would like to show you how to avoid jQuery callback hell and how to gain more flexibility using MVC on the client
side. I will introduce tools for managing modules in JavaScript and will teach you how to become more productive
with CoffeeScript. I will share my experience of integrating Django and sophisticated JavaScript stack from two points
of view: RESTful API and static files management. Let the trip begin!

Basics

* Django

* Javascript via Coffeescript

Javascript framework considerations

* Backbone didn’t do enough

— Lack of binding mechanism

— no reusable views

— Models are poor
* Backbone & Marionette helped but they were still unhappy
* Angular, very nice

* Ember, very nice

1.2. DjangoCon Europe 2013 (Django Circus) 17

http://sunscrapers.com

pydanny-event-notes Documentation, Release 45

How to use Javascript framework with Coffeescript?

 Use require]S with extra plugins

Coffeescript painless integration

modular code

builder

uglifier

Tools for building JS apps in Django

* django-compressor
¢ django-pipeline

* django-require

Django & APIs for JS apps

¢ django-piston was too long in the tooth
 django-tastypie had an uncomfortable amount of boilerplate
* django-rest-framework was just right.

django-rest-framrwork example:

serializer
class FriendSerializer (serializers.ModelSerializer):

class Meta:
model = Friend
fields = ('id', 'name',)

TODO - add examples from our book, cause we also recommend django-rest-framework.

Static files management

* django.contrib.statisfiles
* django-storages
* django-cumulus

* django-require

Closing thoughts

* Never stop trying new solutions

18 Chapter 1. Conferences

https://django.2scoops.org

pydanny-event-notes Documentation, Release 45

Thread Profiling in Python

by Amjith Ramamujam
* Works for http://newrelic.com
* Slides: https://speakerdeck.com/amjith/thread-profiling-in-python

This talk will give a tour of different profiling techniques available for Python applications. We’ll cover specific mod-
ules in Python for doing function profiling and line level profiling. We’ll show the short comings of such mechanisms
in production and discuss how to do sampled profiling of specific functions. We’ll finish with statistical profilers that
use thread stack interrogation.

What’s profiling?

cProfile for profiling the performance of something

Usage:

python -m CProfile sample.py

For big projects it can be big in response, so use RunSnakeRun (wxPython app) which gives you better data.

Google uses profiler and displays the results in their search engine. Which is why it’s good to use in production.
Unfortunately profiling eats up performance. So what do you do?

Targeted Profiling

¢ Profile critical functions

* Do hybird stuff

New Relic targets

¢ Web frameworks

Django, flask, etc

View layer

template layer

SQL calls

Threads for profiling

example:

import threading

t = threading.Thread(target-handler)
t.setDaemon (True)

t.start ()

time.sleep(0.1)

Pros:

1.2. DjangoCon Europe 2013 (Django Circus) 19

http://newrelic.com
https://speakerdeck.com/amjith/thread-profiling-in-python

pydanny-event-notes Documentation, Release 45

* Cross platform

* mod_wsgi compliant
Cons:

¢ Inaccurate for CPI tasks

 can’t interrupt C-extensions

Inquire into what’s going on

>>> import sys

>>> frames = sys._current_frame ()
>>> print (frames)

{1234: <frame>}

>>> import traceback

>>> traceback.extract_stack (frame)
(...stuff here...)

Collate
Attempt 1: Default dictionary

* Uniquely identify a function

Note: Trying to figure out how to document what he’s doing here. TODO: Get Amyjith’s images. :P

Existing Tools

* plop - Uses signals and d3.js
— Open sourced by Drop box

— Size of bubble shows how expensive the thread is for the system

Summary

* No green threads is low overhead

e CPython & PyPy have high overhead

Grand Finale

Deterministic profiler + statistical profiler is how they assemble the data. Newrelic merged the profilers so the data is
much better.

20 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Migrating The Future

by Andrew Godwin
* Works at http://lanyrd.com
* Django core developer

It’s been almost five years since South was first released, and in that time many things have changed - now it’s time
for a new migration system, built into Django itself and with new features and a solid foundation based on those five
years of learning. Hear the problems in both running this kind of open source project as well as those of dealing with
five different database backends, and how both you and South can learn from them.

Kickstarter

e Wanted £2,500 pounds
¢ Got £17,952 pounds from 502 backers

What’s wrong with South

* 5 years of learning, lessons learned
* Poor VCS branching, two people commit to same place
* Huge migration file size is too big

* Migration sets get too large

New modules

* django.db.migrations
— Migration commands
— autodetection
— The public API, as it were
* django.db.backends.schema
— SQL generation
— Database abstraction
Databases supported
* PostgreSQL - yes
* MySQL - yes
* SQLite - yes
* Oracle - hopefully
MSSQL - hopefully
* DB2 - maybe

* MongoDB - maybe

1.2. DjangoCon Europe 2013 (Django Circus) 21

http://lanyrd.com

pydanny-event-notes Documentation, Release 45

New migration format

Note: TODO get this later, the code samples are on a black background.

e Shrink the size of migration

Dependency Management

If you and another developer both add a new migration with the same name, South sorts in ASCII sort order. Which is
a serious problem if you miss a dependency

* South dependencies are driven now by a specification value in the Migration module
* Auto-Merges migrations when there is no conflicting migrations

* Can squash all the migrations into one big migration!

How is it going?

Working 2-3 days a week on this full-time
Working on it:
* Schema backends: Mostly done, ready for merge
* Migration code: Still going, most complex part
Upcoming

* Field API changes: This Field needs to be able to inform migrations what’s going on

Resources

Code: https://github.com/andrewgodwin/django/tree/schema-alteration ~ Blog: http://aerocode.org/category/
django-diaries email: andrew @aerocode.org

Working to do this for all of us, so give him feedback!

Having Your Pony and Committing It Too

by Jacob Burch
* Works for @revsys
* Contributed to django.core.cache

* Not in AUTHORS file of Django (yet)

73

For many years before 2012, the topic at the tip of every argument-seeking tongue at Django Conferences was “’when
is Django going to get on Github?”” Getting the core framework on the social coding site was the first stride in breaking
down the barriers to having anyone and everyone not only having a pony, but getting it into core too. Now that this
important step is almost a year in, just how easy is it to take the step from end-user to core-contributor? Delightfully
Easy.

22 Chapter 1. Conferences

https://github.com/andrewgodwin/django/tree/schema-alteration
http://aerocode.org/category/django-diaries
http://aerocode.org/category/django-diaries
mailto:andrew@aerocode.org

pydanny-event-notes Documentation, Release 45

So easy, that I’ll be breaking every rule I know in giving a talk and actually attempting to get a feature from idea, to
code, to request, to a live haggle-and-debate session with core contributors in-audience, to pull request to (hopefully!)
merge all within 30 minutes. Advice from a variety previous contributors on will be provided throughout the demon-
stration, including tips for getting very small bugs fixed quickly to strategies for getting necessary groundswell for

larger full-feature ideas.

Not covered

* You need to know virtualenv/git
» Large overview of Django’s core code

* Advice in what to get involved in

Thoughts

* It’s scary to start contributing to Django
* It seems labrythine, and it is.
¢ It can take a while to get core code in

]

Max Weber describes politics as “the slow boring of hard boards’
Russell Keith-Magee

Confident vs Bold

* Follow the wikipedia motto: “Be Bold” — Alex Gaynor

* You are not your code — Marty Alchin

Before you do anything with Django

* Fork Django
* git clone your repo
e ./runtestspy —--settings=test_sqglite

* Da not pass GO until tests run*

Forms of Contribute

* Bug Fixes are a great place to start
¢ Minor Contributions

* Major Contributions

. Open source is much the same. —

1.2. DjangoCon Europe 2013 (Django Circus)

23

pydanny-event-notes Documentation, Release 45

Bug Fixes

1. Write a test
Have it break
Fix the code until tests pass

Test against regressions

A

Fix is not necessarily free from discussion

Major Contributions

Do your homework
e Search trac
 Search django-developers

¢ Become familiar with the code you’re proposing.

Minor Additions

 Follow same steps as major contribitions

Risking against everything we are supposed to do

¢ Coding live

* Submitting to Django live

Russ is talking

Ticket #9595 in Django

Note: Video of Jacob Talking while he starts coding began here.

How to make a proposal

* Don’t communicate entitlement
* Don’t focus only on your own needs
* Be decent
* State the problem clearly
* Confidence: propose a clear solution
* Show your homework

— Previous tickets/attempts

— Potential downsides/drawbacks

24

Chapter 1. Conferences

https://code.djangoproject.com/ticket/9595

pydanny-event-notes Documentation, Release 45

— Humility: Unsure of aspect? Ask!

Code

e Make the code work
* Document your work

¢ Make the code follow standards

Stay within pep8 mostly

respect existing style

linters are your friend

comments are must

get a peer code review before submitting

* Document and boldly defend design decisions (wiki)

Note: Video of Jacob Talking while he starts coding ended here.

Review

* Your ego is not on the line.

e Humility: No, really.

Lack of Review

» Patience: Core members are people

¢ Pro-active: Send polite, friendly follow up messages often

Review: Part 1 of n

¢ Confidence: Do not give up or get angry if changes must be mad.
* Follow up quickly
* Email tag can be frustrating

* #djang-dev can help

Note: Russell reviewed the code here

1.2. DjangoCon Europe 2013 (Django Circus) 25

pydanny-event-notes Documentation, Release 45

Fractal Architectures

by Laurens Van Houtven

An alternative take on Django’s traditional layered web service architecture.

Note: Was very late.

Concept

Use many tiny servers with tiny Twisted powered web servers with tiny instances of SQLite3 as the backend. Each
user gets their own mini-server!

Backend
Twisted

Cause he’s a core dev and is asynchronous. We could use Django.

SQLite3

* It’s in the Python stdlib
* Wrapped by Axiom, a Python library, documented at http://lvh.com/axiombook

» Using SQLite3 means it’s the same development environment as production - because how for developers Post-
greSQL is NOT set up the same locally as production.

Static Assets / Long term storage

* Uses a CDN like AWS, OpenStack Swift, or something else.

* Good for handling of micro-instance failure

Two Ways for Better Performance

¢ Do less stuff
¢ Make stuff run faster

If you off-put stuff from one server onto a database server, cache server, et al, then even in-database center latency will
become an issue. His approach is to put everything on one tiny server per user and reduce latency between machines
to nothing.

This is the concept of Data Locality.

26 Chapter 1. Conferences

http://lvh.com/axiombook

pydanny-event-notes Documentation, Release 45

Devil’s Advocacy

* Unusual design might make it hard to get more developer help.
* Weird separation.
* Data is weird, maybe not good for big data. But 99% of sites don’t have actual big data.

* Transaction support doesn’t work.

Thoughts

* Crazy, fun idea

* Sometimes it’s good to try the insanity and see what happens

Getting past the Django ORM limitations with Postgres

by Craig Kersteins
* Heroku guy
* http://craigkerstiens.com
* https://twitter.com/craigkerstiens

With most frameworks the ORM attempts to treat all databases equally, this results in developers being limited in how
many advantages they can take of their database. In particular Postgres has many features which developers would
love to take advantage of but are not easily accessible via the Django ORM.

Note: I’'m going to mention the https://www.djangopackages.com/grids/g/postgresql-integration/ grid.

Public Service Announcements

* Postgres.app

Why PostgreSQL?

* It’s the emacs of databases
— Platform to build things on
— Many built-in extensions

» Datatypes

¢ Conditional index

Limitations with Django

¢ The ORM works with too many different databases

¢ Lowest common denominator

1.2. DjangoCon Europe 2013 (Django Circus) 27

http://craigkerstiens.com
https://twitter.com/craigkerstiens
https://www.djangopackages.com/grids/g/postgresql-integration/

pydanny-event-notes Documentation, Release 45

— Django ORM has few datatypes
— Indexes are limited compared to pure PostgreSQL

But Django isn’t too bad

What PostgreSQL does that’s cool

Datatypes:
* Arrays datatype
* hstore
— does what MongoDB does but inside of PostgreSQL!
— Stores in JSON
— Getting better in PostgreSQL 9.4

Queueing

Normally doing this in a database is a bad idea. So we use Redis and other resources. PostgreSQL has pub/sub and
makes a great queue. You can get it working via celery with:

pip install celery trunk

Text Search

Instead of Lucene, Sphinx, or Solr you can use PostgreSQL for full text search.

Note: Is there a Django extension?

Indexes

You should generally use a BTREE index. Depending on your use case, you may need other indexes.

Flip to Read Only Mode

If you need to do system changes, you can make your site output only by turning on PostgreSQL’s read-only mode.
How cool is that?

Connections for Django

* Django right now doesn’t have persistent DB connections (not until Django 1.6 anyway)

* It has to reconnect all the time to the database, which is a performance hit.

28 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

PostgreSQL resources

e My favorite is this PostgreSQL book.

The Web of Stuff

By Zachary Voase
* Cook
* Eat
o lift
* makes stuff
— Was making stuff for Ford for big presentations
— Interactive trade show experiences

As software developers, the world of hardware can seem confusing but alluring. Small computers are now cheap
enough that useful products can be built for less than $100. But the real value from the Internet of Things comes
from networking. In this talk, I’ll introduce you to basic hardware hacking, and show you how Web, mobile and
microcontroller technologies can be brought together using Django—with surprising and playful results.

Act | - Little Data

» Computers are getting big again because of server farms and huge number crunching efforts
* Economy of size goes in both directions. Not just big data, but little Data

As backend developers it’s easy to forget that often with all the servers and code and automation we forget that at some
point deep in the chain there is a a human being interaction with the system. Example: Cell Phone

. epigraph:

The maker movement is an effort by computers to liberate themselves from their human,
—overlords. —— Zachary Voase

Note: Zach tempted the demo gods by demonstrating something that used Arduino, Github, Django, Heroku,
Foursquare to do something. Alas, the demo gods were not kind. The internet was very flaky. Still, his device
was really cool.

Act Il - Personal Development

* Tutorials are useful for beginners
» Advanced experts might need references

¢ In-between beginner and advanced it’s hard to get good.

Note: This in-between spot was the original target of Two Scoops of Django.

1.2. DjangoCon Europe 2013 (Django Circus) 29

http://www.2scoops.co/high-perf-postgresql/
https://2scoops.org

pydanny-event-notes Documentation, Release 45

Resources

* https://github.com/zacharyvoase/swipecheck
* “Getting started with Arduino”

¢ “The Art of Electronics”

Bleed for Speed: Django for Rapid Prototyping

By Rob Spectre
* http://twilio.com director of evangelism
* https://twitter.com/@dNOt

Come one, come all to the DjangoCon sideshow to see feats of inhuman speed as we take Django for a spin with
rapid prototyping. Tossing security, performance, and maintainability out the tent, Rob Spectre shows a 30 minutes of
tips and tricks for building rapid prototypes on Django gained over dozens of hackathons. Find the fastest path from
startproject to a publicly accessible endpoint. Discover the reusable apps that cut down your hack’s implementation
time in half. Marvel at the testing techniques that will minimize demo-killing broken code. Step right up ladies and
gents and see the framework forged in the newsroom furnace blast your entirely temporary project across hackathon
deadline.

History Lesson

In the American civil war, there were naval battles. They had boats, and they had the Battle of Mobile Bay. Rear
Admiral Bueugard led a fleet in with a simple battle of going between the fort on the left and the mines on the right to
bash at the enemy.

The problem was that during the beginning one of the ships sailed right into the minefield and sunk. The admiral was
crazy so would climb to the top of the mast and shout orders to the battle.

In his insanity he commanded the fleet to drive through the mines/torpedoes. And he said, “Damn the torpedoes drive
straight ahead”. He knew that the mines/torpedoes were old and could be driven through.

What does this have to do with Django?

Sometimes when faced with a daunting task, you have to take the bit between your teeth and plow straight ahead.

24 hour prototyping

* Do it outside of hackathons
* Great for tech and concept discovery

* Throw away that code!

Why Django?

Rob’s claim: Django is the best for rapid prototyping development.
¢ Django was built explicitly for rapid prototyping development. Out of the newsroom and into production. Today.
* Django is flexible.

* Django has an incredible community. Have a problem?

30 Chapter 1. Conferences

https://github.com/zacharyvoase/swipecheck
http://www.amazon.com/Getting-Started-Arduino-Massimo-Banzi/dp/1449309879/ref=sr_1_1?ie=UTF8&qid=1368700709&sr=8-1&tag=cn-001-20
http://www.amazon.com/Art-Electronics-Paul-Horowitz/dp/0521370957/ref=sr_1_1?s=books&ie=UTF8&qid=1368700859&sr=1-1&tag=cn-001-20
http://twilio.com
https://twitter.com/@dN0t

pydanny-event-notes Documentation, Release 45

Jump on IRC!
Read the docs!

Stack Overflow!

— Read Two Scoops of Django!

¢ Bottom line: Gets more stuff done!

How to speed up Django development

Initial setup

Note: Disclaimer: Rob really promoted our book. We had no idea before the conference he was going to do this.

* Read Two Scoops of Django chapter 2 & 3. Much of it is summarized in https://github.com/twoscoops/
django-twoscoops-project

— Suggests add a procfile, which we have as a pull request we may review during the sprints.

* You can use Mozilla’s Play-Doh as well

Static Files

* Use the defaults as much as possible
¢ Nice API
¢ Bad: Documentation needs revision.

* Brunch (http://brunch.io/) is nice for compiling everything

Deployment

* Heroku is nice, and works in Europe now!
* You can also use AWS: Learn configuration management (chef/puppet/salt stack etc).

* Salt Stack call-out: https://github.com/esacteksab/salt-states

Packages to use
Build the RESTFUL API

Do it RIGHT away so the front end person can work
* Rob prefers django-tastypie

* These days prefer django-rest-framework now.

1.2. DjangoCon Europe 2013 (Django Circus) 31

https://2scoops.org
https://2scoops.org
https://2scoops.org
https://github.com/twoscoops/django-twoscoops-project
https://github.com/twoscoops/django-twoscoops-project
http://brunch.io/
https://github.com/esacteksab/salt-states

pydanny-event-notes Documentation, Release 45

Social Auth

¢ django-social-auth
— Gajillions of auth services it supports
— Takes some work to set up
* django-allauth
— Fast setup
— Doesn’t have as many auth services it supports
* South
* celery
— Unfair advantage for Python/Django in competitions
— Setup is a pain

— Secret: You can use the database for hackathons and not worry about setting up a real queue engine

Testing

* Why would you test in a short time space?
* On the contrary: Why wouldn’t you test?

* Knowing your views all return 200 tests means you don’t make the same results in writing code or demoing the
project

More notes:
* Django tests are fast/easy to write

* Angular]S has a great testing tool. Even if you don’t use that many of it’s features, check out testacular.

Conclusion

When faced with a difficult problem, sometimes its good to plow straight ahead.

Growing Open Source Seeds

By Kenneth Reitz
e Heroku guy
* https://twitter.com/kennethreitz
* https://github.com/kennethreitz
¢ Creator of python-requests

This talk will be an in-depth review of the stages that most open source projects go though, and the decisions their
maintainers face. Requests will be used as an example — lessons learned and best practices will be covered.

32 Chapter 1. Conferences

https://twitter.com/kennethreitz
https://github.com/kennethreitz

pydanny-event-notes Documentation, Release 45

Once upon a time...

The Facebook SDK Python library
 Facebook rarely updated it
* Became unworkable
* People complained, got on Hacker News
* Disabled comments

Now replaced by http://pythonforfacebook.com

Public Source Projects

* Company open sources code
* Doesn’t maintain it: motivations are unclear

* Really sucks for users of the code

On the other hand.. Gittip!

* Platform for sustainable development

 Everything is open source, including internal discussions, interviews with media, etc
» Everything is an issue

* Major decisions are voted on github.

¢ Interviewed with journalists are live-streamed

“I’m not building Gittip, I'm building the community that’s building Gittip.” — Chad Whitacre

Shared Investments

 Shared ownership, extreme transparency

* New contributors get involved by following a documented process
* Low risk. High bus-factor

* See also: Python, Django, Firefox, jQUery...

HTTP for Humans

python-requests
* One of the most installed PyPI projects

» Key difference between gittip/django and requests: Kenneth makes all the decisions

1.2. DjangoCon Europe 2013 (Django Circus) 33

http://pythonforfacebook.com

pydanny-event-notes Documentation, Release 45

Dictatorship Projects

* Totalitarian BDFL owns everything
* Dictator makes all decisions

* Community feedback is encouraged, but users with feedback should have no expectation of change.

Lessons Learned

* Be Cordial be on your way
— Contributors
+ Keep all interactions with a maintainer as respectful as possible
+ They have likely donated a significant amount of time and energy into their project
— Maintainers
be immensely thankful to all contributors
% They are the lifeblood of your project
* Jgnore non-constructive feedback

* Some people just take things too seriously

Avoiding Burnout
Sustainability

* One of the biggest challenges for open source

* Everyone has a limited amount of time in the day

Learn to do less

* When an issue or pull request comes into the repo, two other developers usually triage it.
* This saves an immense amount of time

* I can focus my time on larger issues.

Learn to say no

» Saying ‘No’ is really important
* Learn to do it nicely
Simple Code is Good. Complex code is bad.

“Open source makes the world a better place. Please, don’t make it complicated.” — Kenneth Reitz

34 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Mock your database

by Marc Tamlyn
* https://twitter.com/mjtamlyn
* Pivotal figure in the giant Django CBV documentation refactor for 1.5

Databases are slow. Well, if the goal is 1 millisecond per test they are anyway. We want to avoid interacting with the
database as much as possible when testing, especially if the tests aren’t anything to do with the queries.

This talk will look at various ways of avoiding those pesky database queries and making tests faster!

Your database is slow

e When you are testing, hitting the database is slow. Connections, writing to disk, getting down to SQL, etc
* Why do you care?
* We want SPEED!

» The faster your test goes, the better.

Example

def test_naive (self):

label = RecordLabel.objects.create()
artist = Artist.objects.create()
track = Track.objects.create()

etc

* 8 database queries
* 5.2 seconds for 1000 runs on PostgreSQL
* 3.2 seconds for 1000 runs on SQLite3 running in memoery

Doesn’t seem slow, but what if we are testing 40 models this way? Test factories make this worse!

Class Based Views: Untangling the Mess

by Dr. Russell Keith-Magee
* Django Core Developer since January 2006
* DSF President since June 2010
* CTO and co-founder of TradesCloud

Why CBVs?

Introduced in Django 1.3 in 2011. What’s the history?

1.2. DjangoCon Europe 2013 (Django Circus) 35

https://twitter.com/mjtamlyn

pydanny-event-notes Documentation, Release 45

History per 2005

* Django is for building websites
* Views are for displaying content
 There are lots of refactorable things to do

¢ Generic views could handle all of this:

Display template

Display object or list of objects

Handle forms

Every view is a function

Configuration via arguments

Problems with function based generic views

* Configuration options limited by urls.py args
* No control over logic flow

¢ No re-use between views

Warning: Another thing against function-based generic views was that people can and do implement their own
broken CBV system. Leaky states is a serious issue. Don’t roll your own unless you really understand

Django 1.3

* They kept trying to get CBVs into Django starting with Django 1.0.

What went wrong

» Fundamental confusion over purpose
* Confusion over implementation choices
* Ravioli code
— Luke Plant described the effort as bad code.
— “You don’t know what’s in the ravioli.”
— Steep learning curve
* Bad documentation
— Russell takes the blame for the problems.

— Myself, Marc Tamlyn, and others worked to make it work.

36 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Purpose

Class-Based views are an object-oriented analog for function based views.
* Class based views
* Class based Generic Views
Because we are subclassing a base class, we get tons of extra options.
* automatic OPTIONS request handling
* automatic naive HEAD request handling

¢ automatic HTTP 405 on unknown verbs

CB Generic Views

* Uses Class Based Views as a base
* Creates analogs of the old generic views

* Addresses limits of functional approach

Implementation Choices

* See details of the debate at https://code.djangoproject.com/wiki/ClassBasedViews
* A class that is instantiated as a view
* Problems:

— What gets instantiated?

— How does it gets instantiated?

Once per process or request?

What’s the lifespan?

What about state? (race conditions!!!)

How does it work with urls.py?

How do you configure things?

¢ Django’s admin system is a CBV
— Implemented using simple __call__ ()
— Doesn’t have HTTP Verb support

— Suffers from serious state issues

Warning: Don’t put self on Django admin objects or you will cause state issues.

Other concept design:
* Change the urls.py contract

— Current: a callable

1.2. DjangoCon Europe 2013 (Django Circus)

37

https://code.djangoproject.com/wiki/ClassBasedViews

pydanny-event-notes Documentation, Release 45

— Change to: A callable or a class

— The problem is that this would have forced them to change a lot of source code and make things under the

hood much more complex.

* Decision: keep the urls.py contract clear

Ravioli

¢ Goal: Replace FBV generics with CBV generics
* Make it easy to extend
» Unfortunately complex class hierarchy
* However...
— Allows for maximum reuse of core logic
— Extremely flexible for inserting new logic

— Easy to add your own mixins

Documentation

* Bad as originally designed
* Much better now

¢ Still need framework decisions needed

Note: Use django-braces to fill out the missing pieces of CBVs.

Where to from here?

¢ Add new features?

* Did they solve the wrong problem? Modern problems:

Multiple forms/formsets per page

Conditional forms

Continuous scrolling, not pagination
AHAX support
PJAX

Multiple “actions” per page

Call to Action

* IN discussion: Do you mean CBV or CBGV?
* Docs can still be improved. YESSS!!!!
* #18830 - FormCollection

38

Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

» Experiment with APIs. Django’s admin is a useful case study

Documentation Ideas for CBVs during the sprints

Note: I’'m not working on Django CBV documentation during the sprints. However, I’'m open to suggesting paths to
take:

¢ Tutorials in the CBVs section of the core Django documents.
* More working code examples

¢ Flow charts!

Dynamic Models

by Juergen Schackmann

Django has been built on the assumption to have upfront static data models; i.e. the developer implements them
completely before deployment. However, there are numerous real-world uses cases that require to have dynamic
models that can be created and amended by users or some kind of user actions. Examples could be: customizable
products for a shop, unique content types to represent web site content in a CMS or online surveys that are created on
the fly.

There are various conceptual options to solve this problem. The most prominent ones are: a) Entity Attribute Value
Models, b) Pickeld Fields and Pickeld Models, c) Database DDL operations at run-time Most of which have been
discussed intensively and the Django community has developed numerous apps. I will compare the various approaches
and apps in terms of usability, speed, features, sweet spots and preferred use cases. This will support any future
evaluation for a specific project. But it will hopefully also trigger a fruitful community discussion on the importance
of this feature for Django in comparison with other applications and frameworks like Zope/Plone, Magento etc.

How to do it

* Entity attribute values
— Table columns become rows in another table’s rows
— Performance issues

* Serialized Dictionary Django apps
— Dangerous because of use of Pickle

— Problematic because of lack of searchability (this is mitigated via tools like PostgreSQL hstore or Mon-
goDB)

* Runtime schema updates

Allow updates of the database schema by non-technical user action
* This sounds kind of of risky

— Dynamic models problematic since it can interfere of how the database is designed.

Complexity is another issue. How do you keep the database from going nuts from user action?

Database integrity is a major issue.

Column updates is a really nasty issue. For example, the database has to lock the for minutes or hours.

1.2. DjangoCon Europe 2013 (Django Circus) 39

pydanny-event-notes Documentation, Release 45

Prehistorical Python: Patterns past their prime

by Lennart Regebro
¢ Freelancer
* Django, Pyramid, and Zope guy
* One of the tech reviewers of Two Scoops of Django!
* Author of Porting Python Python 3
— worth it if you are upgrading from Python 2 to 3!

There are many idioms and patterns that used to be a best practice but isn’t anymore, thanks to changes in Python.
Despite that they often show up even in new code, and some of these patterns are even explained to be Good Ideas at
stackoverflow and similar.

This talk will bring out the most common of these patterns so you know what they are, and why you should avoid
them.

Defaultdict

python 2.5

from collections import defaultdict
data = defaultdict ()

datalkey] = value

Python 2.5-
Exists still in Django 1.5.1
django/db/models/sqgl/query.py
if key in data:
datalkey] .add (value)
else:
datalkey] = set ([value])

Sets

Unique values

e Unordered

Fast lookup

Python built-in in 2.4

Sets before sets

d = {}
for each in list_of_things:
d[each] = None

list_of_things = d.keys /()

40 Chapter 1. Conferences

https://2scoops.org
https://gumroad.com/l/python3

pydanny-event-notes Documentation, Release 45

Sorting

new way — missed the old ways
retval = set ()
for tn in template_nmes:
retval.update (search_python (python_code, tn))
retval = sorted(retval)

Conditional Expressions

old way
django 1.5.1 django/db/models/related.py
first_choice = include_blank and blank_choice = []

new way
first_choice = blank_choice if include_blank else []

Constants and Loops

outside vs inside
PyPy is 33x slower on this one!
each » 5 %+ a_var

Note: Thought: Evaliate your constants outside the loop

String Concatenation

The 'fastest' way
self._leftover = b''.join([bytes, self._leftover])

adding is faster than using the .join() method used above. WTF?!?

Explaining the ‘WTF?!?’

* Looping over a list of strings and adding them together is slow.
 Using .join with a list of strings is fast.

* If you add just two strings, adding them is faster.

1.2.3 PyWaw

PyWaW is short for the Python Warsaw Meetup Group. Which met a couple days before.

1.2. DjangoCon Europe 2013 (Django Circus)

pydanny-event-notes Documentation, Release 45

Django 1.6 and Beyond

By Russell Keith-Magee
* Django core team developer
* President of the Django Software Foundation
* @freakboy3742
e PhDin...

This is Russell’s vision for what is happening in Django, but nothing is concrete because Django is a volunteer project.

What’s missing?

Good frameworks don’t come from academia, they come from projects solving real problems.

—Jacob Kaplan-Moss

Things likely to happen

* App Refactor
— Application name is fixed. For example, ‘coupons’ in admin will retain that name.
— What goes into an app?
— Probably not in 1.6, maybe in 1.7.
* Schema Migration
— South ought to be in core.
— Andrew Godwin is working on it.
— The plumbing is the backend, the porcelain is how users interact with it.
* Composite Primary Keys
— Easy concept to explain, hard to implement with all the existing pieces.
¢ Increased decoupling
— Pieces of Django core are getting moved out.
— Local flavor is getting moved out.
* Admin 2.0
— A lot of things it could do but it doesn’t.
— Many third-party skins
— Current version not using CBVs but they could be.
* Release Schedule
— Averaged a release every 11 months
— OMBG this means we have to update Two Scoops of Django faster. :P
* Singleton Cleanup

— The settings a’la django.conf.settings.

42 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

— It’s a problem that really needs to be fixed.

— Considering breaking backwards compatibility.

Long Term Predictions (low accuracy)

* Better sharing with the rest of the Python world.
- WSGI
— SQLAIchemy
- NoSQL
* Probably not happening because it would only allow for a subset of the Django ORM functionality
* What about the ORM?
* Extinction-level events (Django is a great framework for 2005, but it’s 2013)
— Django doesn’t handle real-time.
— Server/client separation
Javascript frameworks are not chosen yet.
% Sourcemaps are making the debugging of compiled Javascript framework
— Mobile
* Objective-C
* Java
x HTMLS
* How do we make great ideas happen?

— Decisions are made to those who show up.

1.3 Pycon 2013

Note: We arrived a few days late so my notes don’t start until Saturday morning.

1.3.1 Dynamic Code Patterns: Extending Your Applications with Plugins

Python makes loading code dynamically easy, allowing you to configure and extend your application by discovering
and loading extensions at runtime. This presentation will discuss the techniques for dynamic code loading used in
several well-known applications and weigh the pros and cons of each approach.

by Doug Hellmann

The applications studied include:
¢ Mercurial
* Sphinx

e Trac

1.3. Pycon 2013 43

pydanny-event-notes Documentation, Release 45

* virtualenvwrapper
* Django

* nose

e ceilometer

* OpenStack CLI

e cliff

Cliff

cliff is a framework for building command line programs and is where Doug did his research for his talk.
* https://github.com/dreamhost/cliff
* https://pypi.python.org/pypi/cliff
* https://cliff.readthedocs.org/en/latest/

see also https://github.com/dreamhost/stevedore

How plugins work?

Discovery

File/Explicit: Mercurial
File/Scan: Diamond/Blogofile

» Import reference / Explicit: Django, Mercurial, Pyramid, Spginx, Nova

* Import reference / Scan: 1 or 2

Enabling

» Explicit: Django, Pyramid, SQLAlchemy, Blogofile, Mercurial, Trac, Sphinx

* Implicit: virtualenvwrapper, cliff

Importing

¢ Custom: Django, Pyramid, Sphinx, Diamond, Nova, Nose, SQLAlchemy, Blogofile
* pkg_resources: Trac, Nose, SQLAlchemy, Blogofile

API Enforcement

¢ Convention is easier but Base Class / Interface is more stable

* Doug used Abstract Base Classes for cliff

44 Chapter 1. Conferences

https://github.com/dreamhost/cliff
https://pypi.python.org/pypi/cliff
https://cliff.readthedocs.org/en/latest/
https://github.com/dreamhost/stevedore

pydanny-event-notes Documentation, Release 45

What Doug did for cliff

Discovery / Importing

* Entry points

¢ Be consistent

Enabling

» Explicit disabling
* Automatic disabling

Summary: Everything is turned on by default.

Integration

* Fine
* Inspect

» Application owns relationship

API enforcement

¢ Abstract base Classes

¢ Duck Typing

Invocation

e Storage - Driver

* Notifications - Dispatcher

1.3.2 Porting Django apps to Python 3

Django 1.5 now supports Python 3, so now’s the time to start thinking about porting your apps and sites. Come see
how! TI’ll talk about the porting techniques that work, and present two case studies: porting a site, and porting a
reusable app.

by Jacob Kaplan-Moss
* Django co-creator and BDFL

* https://github.com/jacobian / https://twitter.com/jacobian

1.3. Pycon 2013 45

https://github.com/jacobian
https://twitter.com/jacobian

pydanny-event-notes Documentation, Release 45

Do | want to use Python 3?

Python 3 has fewer warts

e urllib /urllib2 replaced with urlparse

* std library cleanup

* funky syntax is killed

e print() is a function!

* super() syntax is better!

* unicode no longer sucks!

Can | use Python 3?

A solid maybe. Missing pieces as of 3/16/2013:
* No Python Image Library (PIL / Pillow)

* No MySQL python 3 bindings aren’t that good.

 Popular items on https://www.djangopackages.com:

No gunicorn as async (sync does work)
No django-debug-toolbar

No django-registration

No django-extensions

No Haystack

No django-tagging

No Sentry

No django-compressor

* Much easier for new projects over existing sites

Options

1. Python 3 only

Brand new project

Fewer dependencies

2. Translated source (2to3)

3. Single codebase

3 only

Good for new Django sites.

46

Chapter 1. Conferences

https://www.djangopackages.com

pydanny-event-notes Documentation, Release 45

2to3

First tool released for maintaining code, lets you translate from Python 2 to Python 3.

It’s amazing but not that practical: if you release the Python 3 version of code generated by 2to3 and then someone
sends you a Python 3 patch, you have to port the patch to 2, apply it, and run 2to3.

Single (shared) source
Keep a single codebase that runs on both 2 and 3. Good for apps that need to support both.

How to port to Python 3

* Choose an approach from the above.

¢ Get the test suite running (use django-discover-runner, tox):

[tox]
envlist - py27-djangol4, py33-djangolb

py27-djangold

» Evaluate dependencies
* syntax changes

— print vs print()

— django.utils.six

* Fix unicode handling:

django.utils.unicode

See Jeff Triplett’s port of django-sitetree

Documentation

* django.me/py3

Moving Forward

* Django used to be the holdup for moving Python 3 usage forward

* Q&A is at room 201 upstairs

1.3.3 So Easy You Can Even Do It in JavaScript: Event-Driven Architecture for Reg-
ular Programmers

In this era of rich browser applications, everybody needs to know at least enough about events to write an ‘onclick’
handler. But events have a reputation for being confusing. In this talk I’ll explain why events can be quite easy to
understand if you think about them the right way, and how to scale your understanding from trivial browser JavaScript
to distributed systems in Python.

by Glyph

1.3. Pycon 2013 47

pydanny-event-notes Documentation, Release 45

* Founder of Twisted
* has been doing event-driven architecture since he was 8 years old

* Not stupid enough to attempt live-coding while on stage.

Note: Code samples too dense to jot down during live-noting.

Things that are hard in Javascript
e Comparing Arrays
* Adding numbers
* Defining types
¢ Loading Modules
Things that are easy in Javascript
* Calling functions
* Handling events
A Tale of Two Events
e asynchronous I/O
¢ Clicky buttons
When X -> Do Y
* Event driven architecture is incredibly simple. When X, then do Y.

* When I click -> Do Say “hi”

HTML Event-Driven Example

<!DOCTYPE html>

<button onclick="alert (this.innerHTML) ;"
Hello, world!

</button>

PyJS (Most complete Python in browser)

* http://pyjs.org
¢ Javascript compiler for Python

* Widget toolkit

48 Chapter 1. Conferences

http://pyjs.org

pydanny-event-notes Documentation, Release 45

TODO Add imports

def hello_world(button) :

alert (button.getHTML())
b = Button("Hello, world")
b.addClickListener (hello_world)

TODO Finish

TODO Add imports

def alert (txt):
1bl = Text ()
btn = Button ("OK")

vert = V.VerticalPanel ()
TODO Finish

1.3.4 Lightning Talks

Note: Live-noting lighting talks is very challenging. I'll do what I can but the level of detail provided in lightning
talk notes will in general not be the same as my notes on normal talks.

Warning: If you are presenting, never, ever, ever, ever rely on the internet.

Retask: Queue for humans (Kushal Das)

* Simplest setup

» Ease of use

* redis backend

* https://pypi.python.org/pypi/retask

* retask.rtfd.org

producer.py
from retask.task import Task
from retask.queue import Queue

queue = Queue ('example')

infol = {'user':'kushal', 'url':'http://kushaldas.in'}

info2 = {'user':'fedora planet', 'url':'http://planet.fedoraproject.org'}
taskl = Task (infol)

task2 = Task (info2)

queue.connect ()
queue.engqueue (taskl)
queue.enqueue (task?2)

consumer
from retask.task import Task
from retask.queue import Queue

1.3. Pycon 2013

49

https://pypi.python.org/pypi/retask

pydanny-event-notes Documentation, Release 45

queue = Queue ('example')
queue.connect ()
while queue.length != 0O:
task = queue.dequeue ()
if task:
print task.data

How and why a Java Expert switched to Python (Ron Cox)

* Gotinto Java v1 ages ago

¢ Worked with servlets to deliver web sites

* About 2.5 years ago was working on mobile tech including Android and iOS work.

* Was tired of Java:
— Java language wasn’t productive enough.
— Java platform was very resource intensive

¢ New stack:

Python 3.2
CherryPy
MongoDB
Mailgun
AWS

» Steve Holdren’s comment: http://www.artima.com/weblogs/viewpost.jsp?thread=42242

Coding Across America (Matt Makai)

Coding Across America is a five month journey around the United States to learn and write about technology in thirty

cities.
* 30 cities in 5 months
* Talk with developers from all cities
* Especially Python developers

* http://codingacrossamerica.com

Gitstreams (Justin Lily)

* Doesn’t like the Github activity stream
— Too much activity
— Filtering isn’t good enough
* gitstreams is an email digest of GitHub activity

* You choose the email frequency

50

Chapter 1. Conferences

http://www.artima.com/weblogs/viewpost.jsp?thread=42242
http://codingacrossamerica.com

pydanny-event-notes Documentation, Release 45

NasberryPi (Mark Ransom)

Home media server!
* Just started with RaspberryPi
* Got this working on a Pogo plug, should work fine with RaspberryPi
e What he has setup:

Fileserver

Media server

Torrent server

— More
* Setup is easy, just sudo apt-get 7 packages
European Conferences (Mike Mueller)

Euro SciPy

* August 21-24 in Brussels, Belgium
* 2 days of tutorials, 2 days of conference

* http://euroscipy.org

PyCon Germania

* Octover 14-19
* German speaking PyCon
* http://de.pycon.org

PyWeek Challenge (Richard Jones)
* Spend a week writing a video game using Python
» Learn more, create libraries, maybe even release something on Steam!

Python Epiphanies (Stuart Williams)

* How do you pretend to type during talks so you don’t make mistakes?
* Fake it until you make it!

* Use the code module from the Python stdlib

Web server (nginx, django) (For a personal home site, why does he use Nginx?)

1.3. Pycon 2013

51

http://euroscipy.org
http://de.pycon.org

pydanny-event-notes Documentation, Release 45

Job Security (Chris Neugebaur)

* PyCon Australia 2013
* People code in Python because it’s readible
— “Readability counts”

- PEP-8

Readability sucks
1. People can comprehend your code
2. You can maintain your code
3. Your code is applicable in more places

THIS IS ALL BAD! (if you want more billable hours)

* How do you write unmaintainable code?
— Variable naming systems
— Metaclasses

— Monkey-patching (roll your own stdlib)

1.3.5 Keynotes

What’s makes Python awesome? (Raymond Hettiger)

* Lives in San Jose

* http://twitter.com/raymondh

* Core contributor of PyCon since forever
— set(), frozenset(), sorted(), reversed(), enumerate(), any(), all()
— collections, itertools,etc
- etc

* I've seen previous versions of this talk. My notes at those times:

— http://pydanny-event-notes.readthedocs.org/en/latest/PyCodeConf201 1/python_is_awesome.html

Specifics

* License

» Commercial distros (ActiveState/Enthought)
e Zen of Python

e Community

* Repository of Modules (PyPI)

* Killer apps (Django, Pandas, etc)

* Win32

* books

52 Chapter 1. Conferences

http://twitter.com/raymondh
http://pydanny-event-notes.readthedocs.org/en/latest/PyCodeConf2011/python_is_awesome.html

pydanny-event-notes Documentation, Release 45

— Shameless plug: 1 wrote a book called Two Scoops of Django. Check it out at http://django.2scoops.org

High level qualities of Python

* Ease of learning

* Rapid development cycle
* Economy of expression

* Readability and Beauty

* One way to do it

* Interactive prompt

* Batteries includes

* Protocols: WSGI, dbapi, etc

search directory tree for all diplicate files
import hashlib, os, pprint

hashmap = {} # content signature —> list of filenames
for path, dirs, files in os.walk('.'"):
for filename in files:
fullname = os.path.join(path, filename)
with open(fullname) as f:
d = f.read()

h = hashlib.md5 (d) .hexdigest ()

filelist = hashmap.setdefault (h, [])

filelist.append(fullname)
pprint.pprint (hashmap)

Indentation

* This is how we write pseudo-code in or out of Python

* Contributes to the uncluttered feel of the language

List comprehensions

* arguably the most loved feature of the language
* How much stuff should we put on one line?

— Each list comprehension should represent a single English sentence

Generators

» Easiest way to write an iterator

» Simple syntax, only adds the YIELD keyword

1.3. Pycon 2013

53

http://django.2scoops.org

pydanny-event-notes Documentation, Release 45

Generator Expressions

* Same syntax as list comprehensions but with parenthesis instead of brackets
* Acts as a generator

* reduces memory footprints exponentially.

Note: Giant embarrassing oops by pydanny: At PyCon Philippines 2012 I demonstrated a Gajillionitem element
generator expression in my shell, but used brackets instead of parenthesis.

Decorators

» Expressive
» Easy on the eyes
¢ Works for functions, methods, and classes

* Adds powerful layer of composable tools

Abstract Base Classes

Uniform definition of what it means to be a sequence, mapping, etc
Ability to override is isinstance() and issubclass()
* The new duck-typing “If it says it’s a duck...”

Mix-in capability
Superstars

Unbelievably good people coming into things

Guido Van Rossum

Forthcoming

Van Lindburgh

Forthcoming

1.4 LA Migra Hack

1.4.1 About me

I am Daniel Greenfeld (blog, twitter), one of the principals at Cartwheel Web and CTO of MoveHero.

54 Chapter 1. Conferences

https://pydanny.com
https://twitter.com/pydanny
http://cartwheelweb.com
http://movehero.co

pydanny-event-notes Documentation, Release 45

1.4.2 Talks

Data Mining with Spreadsheets
by Ronald Campbell of the Journalist at the Orange County Register
Useful links

* http://census.gov/cps/data/cpstablecreator.html

The CPS table creator allows to mine data from the March analysis of Census data.

Workforce data to consider for immigrant data analysis

Generate a report using the following criteria
¢ Education Attainment (sidebar)
* Nativity: Point of origin (sidebar)
* California (topbar)

You should now have data worth mining!

Time to interview the data!

* Paste the generated data into your spreadsheet of choice.

Select the highest row with numbers and enter something like into the first empty cell to the right: =D1/BI
* Copy/paste the formula only to the empty cells corresponding to the other rows.

* Format the results to show percentages

Adjusting the Data

* Under ‘Data Options’ change the year to 2007 (sidebar)
» Formula for comparing 2012 with 2007:
- new - old / old

What does this show?

* Incoming workforce with high school and post-high school education dropped

* Surprise: Incoming workforce with bachelor’s degree or higher is increasing.
— Might be because more immigrants coming in have bachelor’s degrees.
— Might be because more immigrants are getting bachelor’s degrees.

— No way to figure out what this means from the data available. We need a journalist to investigate!

1.4. LA Migra Hack 55

http://census.gov/cps/data/cpstablecreator.html

pydanny-event-notes Documentation, Release 45

Foreign Born Workers

¢ Choose 2012 (sidebar)
 Table definitions are state and nativity (sidebar)

¢ Refresh

Visualizing the Results

I used Many Eyes (http://bit.ly/many-eyes) to quickly visualize the data. See

Google Fusion Tables Bootcamp

http://research.google.com/tables

Presented by Rebecca (of Google)

Examples

e NYC snowplow map
* Texas Tribune County map
* SF BAy Area Bike accident map

* Connection examples

Cool Tools

» Chrome Extension to find tables
* New capability to turn shared Google Spreadsheets data into visualizations automagically
* Open Refine

— Used to be Google Refine, a closed source product

— https://github.com/OpenRefine #lamigrahack

Open Refine

Makes turning data into machine readable format much, much easier. Can we have this as a hosted service somewhere?
» Used to be Google Refine, a closed source product
e https://github.com/OpenRefine #lamigrahack

* Installation: https://github.com/OpenRefine/OpenRefine/wiki/Installation-Instructions

Google Data bootcamp Advanced Track

Presented by Rebecca (of Google)

http://support.google.com/fusiontables

56 Chapter 1. Conferences

http://bit.ly/many-eyes
http://research.google.com/tables
https://github.com/OpenRefine
https://github.com/OpenRefine
https://github.com/OpenRefine/OpenRefine/wiki/Installation-Instructions
http://support.google.com/fusiontables

pydanny-event-notes Documentation, Release 45

Questions to be answered
1. How can | show 2 values for a given polygon?

Fusion tables is about column/row data and merges, so you just use a merge column to show the data you want per
polygon.

2. What are best practices for fusion tables?

Not yet covered

3. How do you use fusion tables with secure data?

Not yet covered

4. How do you import data files directly?

* Store in AppEngine
¢ Store in CloudSQL

5. How do you hide columns completely from viewers?

* It’s a setting control

Google Fusion Charts Templates

Looks like they implemented their own template language

’

1.5 Lean Startup 2012 Simulcast

I am Daniel Greenfeld (blog, twitter), one of the principals and CTO at Cartwheel Web, a software consulting shop
that builds startups. I have two startups of my own:

* Pet Cheatsheets
Build custom 1-page reference sheets for your pets in minutes.
* MoveHero

Get free, anonymous moving estimates.

1.5. Lean Startup 2012 Simulcast 57

https://pydanny.com
https://twitter.com/pydanny
http://cartwheelweb.com
http://petcheatsheets.com
http://movehero.co

pydanny-event-notes Documentation, Release 45

1.5.1 Other live-notes / live-blogs
As is frequently happens, I'm not the only one documenting the event live. Check out the hard work and excellent

writing of others!

* https://docs.google.com/document/d/1scTPA9HyYdhMISy 1 vim6XI8viEUOAkRzboDjTsI2W3fw/
preview?sle=true#

* http://www.bizwatchsearchanalytics.com/reporting/?p=907 &option=com_wordpress&Itemid=1

* http://www.shoestring.com.au/2012/12/the-lean-startup-conference-live-blog-from-4-am/#.ULO_H2zg4Ds.
twitter

1.5.2 Eric Ries
* If you are building a startup you are trying to replace the big companies you dislike. The big companies started
the same way you did, as a way to break the current system.

* We want to build the next big companies by mastering the disciplines of entrepreneurship.

1.5.3 Todd Park - USA CTO

* https://twitter.com/todd_park
¢ Previous - CTO of Health and Human Services

¢ Current: - U.S. Chief Technology Officer and Assistant to the President. Tech entrepreneur-in-residence at the
White House

* Worked a medical startup in Boston that went public in 2006

* Created two more health based companies in Boston

Work

» Often runs startup-like efforts called ‘entrepreneurs in residence’ inside the USA, which allows radical new
approaches for the federal government

* The FDA has been working with this program to help the health of the nation.

Open Data Initiatives Program

URL: http://www.data.gov
* Ronald Reagan is the godfather of the ‘Open Data Initiatives Program’!
* GPS grew out of this system which has provided billions of dollars of business

* The government is the holder of immense archives of useful data

Note: Sunlight Labs (http://sunlightlabs.com/) is a group that works to translate the often not-machine readable data
into formats that can be read and used by machines (and hence entrepreneurs).

58 Chapter 1. Conferences

https://docs.google.com/document/d/1scTPA9HyYdhMISy1vm6XI8viEUOAkRzboDjTsI2W3fw/preview
https://docs.google.com/document/d/1scTPA9HyYdhMISy1vm6XI8viEUOAkRzboDjTsI2W3fw/preview
http://www.bizwatchsearchanalytics.com/reporting/?p=907&option=com_wordpress&Itemid=1
http://www.shoestring.com.au/2012/12/the-lean-startup-conference-live-blog-from-4-am/#.UL0_H2zg4Ds.twitter
http://www.shoestring.com.au/2012/12/the-lean-startup-conference-live-blog-from-4-am/#.UL0_H2zg4Ds.twitter
https://twitter.com/todd_park
http://www.data.gov
http://sunlightlabs.com/

pydanny-event-notes Documentation, Release 45

Todd is working on...

See RFPEZ to get through government RFPs faster (find on GitHub)
 Getting your health records from the US government without pain.
* US Government runs 24,000 websites. How are they all done? How much replication happens?

« US government spends $80 billion on IT per year. Needs to be cheaper! Use open source and better IT compa-
nies!

— https://github.com/presidential-innovation-fellows

— https://github.com/presidential-innovation-fellows/rfpez

Note: This is why OpenStack (http://www.openstack.org) was started at NASA by Chris Kemp. It was to reduce
cost of single server setup from tens of thousands of dollars (mostly labor costs for meetings to discuss setting up
single machines) to the same cloud costs paid for Amazon AWS. I can tell you as an ex-NASA employee that server
provisioning was overly expensive as of 2010.

1.5.4 Diane Tavenner - Summit Public Schools
* http://www.summitps.org/
¢ Chief Executive Officer and Co-Founder of SPS

Issues

* PROS: Lots of successes! Tons of High School graduates!
* CONS: Only 50% of their graduates finished their college degrees

* Something is wrong

MVP concept

What if instead of teachers directing classrooms, students went down their own path

While this is not a new concept, they decided to map out the requirements extremely clearly to students and
parents.

They created an on-line testing system so that students could update their status by passing tests so they could
see the results instantly.

Added tons of testing and metrics. Rather than wait for years for results, they needed to know right away so
they could fix it.

Refused to use vanity metrics to promote the schools. They needed to know honest, real data on actual results -
and kept even the bad news.

Encouraged teens to provide feedback through mechanisms that teens like to use.

1.5. Lean Startup 2012 Simulcast 59

https://github.com/presidential-innovation-fellows
https://github.com/presidential-innovation-fellows/rfpez
http://www.openstack.org
http://www.summitps.org/

pydanny-event-notes Documentation, Release 45

What they discovered

¢ Lectures were not effective.

 Teachers were much more effective dealing with individual student issues, rather than just broadcasting knowl-
edge.

1.5.5 Tendai Charasika
* http://www.greaterlouisville.com/EnterpriseCORP/
* Works with the Kentucky Innovation Network

Get Out of the Building

* Get out and talk to users
* Get Uncomfortable
* Learn quickly and upfront if people actually want/need your idea implemented

¢ If you don’t ask you miss out on what they really want.

10 pragmatic ways to get out of the building

—

Don’t Ask Your Uncle. In other words, don’t ask people you know will say nice things.
Set up a booth, do a public demo

Interview potential customers.

Put your office where your customers are

Throw a party

Talk to experts in the field

Find the decision maker (everyone else is just chaff)

Listen to what customers are demanding

o ® Nk w N

Pre-order, landing pages, analytics (show demand for the product)

._.
e

Ask for the introduction

Note: Idea: Market your tech startup by sitting in a coffee shop and showing people.

1.5.6 TWO PEOPLE - Eric Ries and Tereza Nemessanyi

» Tereza Nemessanyi (https://twitter.com/TerezaN)
« Talking about using general accounting practices.
 Stay away from vanity metrics, except for what goes into a pitch deck.

* Investors use vanity metrics to make investments in your project, but using them for concrete business decision
making is dangerous.

60 Chapter 1. Conferences

http://www.greaterlouisville.com/EnterpriseCORP/
https://twitter.com/TerezaN

pydanny-event-notes Documentation, Release 45

Issue: Investors often use your original vanity metrics when determining how well your project is doing

1.5.7 Beth Comstock interviewed by Eric Ries

Beth is the Chief Marketing Officer of General Electric (GE). https://en.wikipedia.org/wiki/Beth_Comstock
GE believes that entrepreneurs are everywhere

GE has to keep reinventing itself: You don’t last for over 130 years by staying static.

Lessons learned: Partner with outside firms to help bring outside ideas into the company

Recently: GE got into energy storage (batteries) via startup/entrepreneurs and it is now a multi-billion dollar
part of their business

Lesson learned: Really focus on MVP before trying to make it perfect for market. This is critical before
ramping up to large production efforts - otherwise you have no idea what the problems really are.

Statement: You can fall in love with your technology or you can fall in love with what your customers think
about your technology.

They want help and will pay for it! See http://www.gequest.com

1.5.8 Jessica Scorpio

Founder of http://www.getaround.com/, which lets you rent cars from other people who live near you.

https://twitter.com/jessicascorpio

Were not sure if it would work, so began prototyping.

Efforts

Worked with students out of Moffet field, near San Francisco, to see if it would work.
Built an iPhone app right away to get them a working prototype.

Competed in Tech Crunch Disrupt to get publicity and won.

They have a custom product called CarKit to let it wire into your car.

Worked in litigation because part of this means granting easier access to your car. What if someone else is
driving it and wrecks it? By getting some laws passed in California they cleared up the rules for making this
service work.

1.5.9 Daniel Kim

Founder of Litmoters (http://litmotors.com/)
Builds self-balancing contained motorcycles.

https://twitter.com/litmotors

1.5. Lean Startup 2012 Simulcast 61

https://en.wikipedia.org/wiki/Beth_Comstock
http://www.gequest.com
http://www.getaround.com/
https://twitter.com/jessicascorpio
http://litmotors.com/
https://twitter.com/litmotors

pydanny-event-notes Documentation, Release 45

Thoughts

* Building a car is hard.
* Building a car and mass producing a car is crazy hard.
* If you are creating a car company, you should know how to build a car, not just be a car executive.
* Trying to build the Model-T of the 21st century. Getting it right means positive income for 90-100 years.
* Different approach from segway
— Spent a lot of money doing research if there was a need for a small, sustainable vehicle market.
— Did building of product after doing market research
* Engineering:
— Built by hand, rather via expensive machinery.
— Didn’t worry to much about meeting prototype deadlines
* Feedback
— Did a small production round to demonstrate that people would buy it. This impressed investors

— Got lots of feedback from users and drivers

1.5.10 Lane Halley

» Carbon 5
* http://www.lanehalley.com/

¢ thinknow

Process for building products

» Sketch out your ideas as a team

— Lowest response fidelity

— Cross functional pairing is important
* When designers and developers work together, they need to understand each other’s tools.
* Lean startup is great for design

— Quick

Visual

Collaborative

— innovative
» Use workflow sketches to determine the flow of a product
— Don’t worry if it’s ugly, use paper
— Don’t use fancy tools
— If you use fancy tools, you risk locking up your product in whoever controls the fancy tools.

¢ Wireframes

62 Chapter 1. Conferences

http://www.lanehalley.com/

pydanny-event-notes Documentation, Release 45

— balsamiq is great

— So is paper

1.5.11 Ron Williams

Kind-of-lean startup talk
 Founder of Knodes
— http://knod.es/
— https://twitter.com/Knodes

— If they can figure out the right people into your funnel to being a user, your user becomes better than you
about marketing your product.

* build/measure/learn for everything. .. or else
— Build: If you don’t build it you don’t know if it can be done
— Measure: Find out how it’s used, by people or whatever
— Learn from what you observe.
* Telling your team to BE lean is like a crash diet
— Don’t say: Hey I just read this awesome book and we’re going to start doing these 15 things differently.
— Changing habits is HARD.
* Beeing lean isn’t your goal
— The real goal is to have fun creating a product your customers love.

— GitHub is a GREAT example.

1.5.12 Andres Glusman

* Works at Meetup.com as Head of Insights & Strategy
* https://twitter.com/glusman

RSVPs are going up? Here is why:

Myth: People give a damn about lean methodologies

* No one wants to switch gears
» No one wants to buy a process
* Instead of convincing, just start doing it.
* Avoid Malkovich Bias
— The tendency that everyone uses technology the same way that you do.

— Example: iPhone/iPad users often don’t realize that the Android market is larger than the iPhone/iPad
market.

1.5. Lean Startup 2012 Simulcast 63

http://knod.es/
https://twitter.com/Knodes
https://twitter.com/glusman

pydanny-event-notes Documentation, Release 45

Myth: People want to test things

* People actually like to build things
* Because of this issue, try to test easy things.
* As you improve your system thanks to easy test results, testing becomes more exciting
* Failure:
— Don’t try to avoid failure, embrace it.
— Learn from each mistake via metrics and tests and improve ever since.
* Go after the things that will cause us to fail as fast and often as we can.

Reality: People want to build and test things.

Myth: You can test your way into a great experience

* Testing your way to an experience often means you create a complete and total mess
* Sometimes you have to restart from scratch and see how it goes.

* See http://www.meetup.com/create/ to see what they’ve managed to get working

1.5.13 Panel - Getting engineers to embrace Lean

* Moderator: Even Henshaw

* Melissa Sedano (http://www.bloomboard.com - https://twitter.com/Bloomboard)

* Sam McAfee (http://www.change.org / http://www.change.org/users/sammcafee)
How to get developers/engineers to switch from Agile to Lean.

* Get engineers to embrace smaller prototypes

* Get your engineers to embrace metrics

¢ Throw away the code when you are done with the MVP

Warning: Read the ‘Danger: MVPs often not disposable’ section below.

Danger: MVPs often not disposable

Throw away code after the MVP is done? That only works for established companies.

Anyone who thinks you can throw away MVP code hasn’t talked to anyone at Twitter, GitHub, or 95% of other
companies. They still run off the original MVP code. The only companies who can get away with throwing away
MVP code are pre-existing companies with multi-million dollar budgets who use MVP efforts in tiny segments of
their system architecture.

64 Chapter 1. Conferences

http://www.meetup.com/create/
http://www.bloomboard.com
https://twitter.com/Bloomboard
http://www.change.org
http://www.change.org/users/sammcafee

pydanny-event-notes Documentation, Release 45

1.5.14 TWO SPEAKERS - Nikhil Arora and Alejandro Velez

¢ http://www.backtotheroots.com/

* Started selling at farmers markets

* Used a timer to gauge how long each person hung at their booth

* Got explosive growth

» Switched from selling mushrooms to selling mushroom growing kits all over the country

e Have a fish? Grow mushrooms! http://www.kickstarter.com/projects/2142509221/
home-aquaponics-Kkit-self-cleaning-fish-tank-that- g ?ref=card

1.5.15 Stephanie Yeager

@ http://twitter.com/steph_hay
Using words that help people find you and choose you
* You want people to choose you.
* But words describing superlative are overused. Everyone is ‘the best’.
* Try using ‘Lean content’ to describe your product to someone who isn’t you.
* Look for the ah-ha body language
— See the questions they respond to you with before the ah-ha moment
¢ Use the mom test. If you feel uncomfortable explaining it to your mom, then you need to find a better way.
* Growth goal: Get found
— Test your messages in AdWords. Test for clicks, not conversions.
— Embrace the unsexy words in organic searches

— Look for Entry Points and Top Content in GA

1.5.16 Steve Blank

https://en.wikipedia.org/wiki/Steve_Blank

Teaching Entrepreneurship

What we used to believe: Entreprencurship can’t be taught.

What we know now: Entrepreneurship can be taught to anyone who volunteers to try.
Learn Entrepreneurship

What we used to believe: Learn Entrepreneurship requires a lot of education

What we know now: Learning Entrepreneurship some theory and a lot of practice

Warning: Learning entrepreneurship from an educator is risky. Their experiences may not translate to today’s
conditions.

1.5. Lean Startup 2012 Simulcast 65

http://www.backtotheroots.com/
http://www.kickstarter.com/projects/2142509221/home-aquaponics-kit-self-cleaning-fish-tank-that-g?ref=card
http://www.kickstarter.com/projects/2142509221/home-aquaponics-kit-self-cleaning-fish-tank-that-g?ref=card
http://twitter.com/steph_hay
https://en.wikipedia.org/wiki/Steve_Blank

pydanny-event-notes Documentation, Release 45

Teach the Entrepreneurial API

1. Teach how to create a business model canvas
2. Teach understanding of Customer Development

3. Teach how to implement the plan using Agile Engineering

1.5.17 George Bilbrey

“Enterprise in the lean startup”
* Part of Return Path: http://www.returnpath.com/
— new product: Anti-phishing system
* Built with small team inside of their large 400 person company

¢ Read all the lean books

Note: Read http://www.amazon.com/The-State-Philosophy-Theodore- Andrew/dp/1480290556/?71e=UTF8&tag=
cn-001-20&linkCode=ur2

Lessons learned

* Determine who the buyers really are.
* Bring in a Salesperson earlier in the process, however, the salesperson must like experimentation.
* Prepare to pivot: That means you have to be ready to admit you got it wrong

* Start small and organize for experimentation.

1.5.18 Ivory Madison

* https://twitter.com/IvoryMadison
* CEO and founder of http://redroom.com
“Bonfire of the Vanity Metrics”
* Vanity blinds you to a lack of actually important data

e Mark Twain: “Facts are stubborn, statistics are more pliable.”

Don’t use these metrics

* Page views

¢ New members
¢ Total members
e conversion rate

* Percent growth

Twitter followers

66 Chapter 1. Conferences

http://www.returnpath.com/
http://www.amazon.com/The-State-Philosophy-Theodore-Andrew/dp/1480290556/?ie=UTF8&tag=cn-001-20&linkCode=ur2
http://www.amazon.com/The-State-Philosophy-Theodore-Andrew/dp/1480290556/?ie=UTF8&tag=cn-001-20&linkCode=ur2
https://twitter.com/IvoryMadison
http://redroom.com

pydanny-event-notes Documentation, Release 45

¢ Facebook friends or likes

Characteristics of actionable metrics
* Measure success at your core business
¢ Show direct relations to revenue

Your Four: Most important Metrics

¢ Measure revenue
¢ Measure Sales Volume
¢ Measure Customer Retention

¢ Measure Relevant Growth

Find the big picture in???

Note: They switched back to the speaker after 2 seconds. :P

1.5.19 Ash Maura

“Getting the ultimate metrics dashboard”
1. Establish a standard measure of progress
2. DaveMcClure’s Pirate Metrics (look them up)

3. As you gain users, it becomes harder to measure progress.

1.5.20 Leah Busque

* Founder and CEO of Task Rabbit
“If you had only $1, where should you spend it?”
 Really understand your customer so you can target your acquisition techniques
* Be holistic:
— test everything
— not just channels
— not just funnels
* Geo-targeting is critically important.
— What works in one place will not work somewhere else

— Test and measure the results

1.5. Lean Startup 2012 Simulcast

67

pydanny-event-notes Documentation, Release 45

1.5.21 Big Panel

¢ Scott Cook (Intuit boss)
¢ Carol Howe

¢ Joe Hernandez

Barath Kadaba (VP of engineering)

Question: What is the goal you have for your venture?
* You want to stay small and insignificant? (0%)
* You want to be giant and well known? (100%)

Making it happen

e Scott:

leaders need to change and lead this change into the business

Change things to create success after new success

Large companies typically get stuck and become stifling

Companies lean on politics and slide desk to stop changes:

Leaders need to stop deciding on opinion, but to work on actionable metrics

Components of making it happen

1. Leader has to set the grand challenge

Barath Kadaba
* In 2008 he was told to change the lives of India. All the lives
* Given budget for just 3 people to do it.
* First effort:
— Decided to focus on the lives of Indian farmers.
% 150m+ of them
* Contribute 25% of India’s GDP
Most live in poverty
— Decided to solve the narrow problem:
+ Problem: To whom can they sell their produce to get the best price?
Solution: Send farmer’s SMS text messages with the latest known data
+ Quick Implementation: Faked it with hand-texted SMS messages to farmers.
* HUGE success
* They got 20+ projects done this way

— Team fought management death threats to stay alive

68 Chapter 1

. Conferences

pydanny-event-notes Documentation, Release 45

— Only survived because they were so small

— Yet increased the income of millions of farmers by 20%

2. Leader has to implement organization settings to make it possible to change

“Lawyers often are the barrier to success, they need to be instead considering how to make success more possible”
Joe Hernandez
1. Change Mindset, which will change Behavior.
How do you shift a group from saying no (leaders, lawyers) to saying yes?
2. Democratize Action

Create a clear set of guidelines in non-legalese that makes it easy for people to understand when they
can move forward.

Note: How is a set of guidelines ‘democratization’?!? I think he needs a dictionary. :P

3. Becomes the power of success

Enable easily understandable rewards so you can demonstrate success. Payment can be financial or
simple numbers.

3. Leader has to model pulling insights from both successes and failures

Carol Howe

* In 2009 created a start-to-finish app for Intuit that lets you take pictures of your tax documents and it files for
you.

¢ But this wasn’t how it started:

Started with a photo capture app that would upload to your computer and that would file to the government

— But when they created the app prototype, testers made it clear they wanted to just finish it on their phone

Stepped back and looked at the feedback from prototype users and listened carefully
+ Mobile fans raved in long discussions

+* Web fans said one word answers like, “nice” and ‘“neat”

Started with launch in California and took lessons from there

4. Leader has to live by the same rules and disciplines as everyone else.

Scott Cook
* Test your beliefs the same way you make others test theirs.
* If you don’t test your beliefs, then you’ll drive into places based on opinion, not science.

* By testing your hypothesis, you don’t just get better results, you often have more fun.

1.5. Lean Startup 2012 Simulcast 69

pydanny-event-notes Documentation, Release 45

1.5.22 Drew Houston

* Founder of dropbox.com
Q&A from questions given from the audience:
* Question: What do you look at in regards to metrics?
— Answer: We look primarily for: “How many active users do we have?”
* Question: What tools do you use for gathering metrics?
— Answer: The simplest tools possible to gather metrics
— Answer: Store them in google docs and other simple tools
* Question: How do you find people?
— Answer: Personal network
— Answer: Connect with the developer/business communities
* Question: What are your goals and how are you accomplishing it?
— Answer: Build something that makes me happy
— Answer: Build something that makes others happy
— Answer: Have fun making it work

— Answer: Figure out how many users you need to get in order to do the startup full time.

1.5.23 Charles Hudson

* https://twitter.com/chudson
* http://www.charleshudson.net/

“Being a VC does not protect you from making boneheaded mistakes as founder.”

How they got started

» Saw that none of the games for Android were any good
* Decided to become the ‘android guys’
* Platform decisions matter

— Tech

— Distribution Channels

— Can they go between systems?

Had to pivot

¢ Couldn’t monetize just on Android
* Tried to leverage switching to Kindle Fire and iOS

 Story isn’t done yet

70 Chapter 1

. Conferences

https://twitter.com/chudson
http://www.charleshudson.net/

pydanny-event-notes Documentation, Release 45

1.5.24 Dave Binetti

¢ co-founder of Votizen

* http://davidbinetti.com/

When you do you pivot?

¢ You need to have a vision to make a decision based off of hard metrics.
— Often people make a pivot based not on hard metrics but emotion

— Pivoting doesn’t mean changing your vision, it means changing your path

1.5.25 Mark Abramson

Did Lean Startup Machine and won it. Ran 10 experiments and pivoted 5 times during the conference
1. Experiment - Tax paying
* Discovered that restaurants over 25 employees have to pay an extra tax
¢ They all send it accountants and pay serious money.
* No pain. Not worth doing.
2. Experiment - Happy Hour Marketing
* No one has problems here. Not worth doing.
3. Experiment - Getting people into food places
* Fierce competition everywhere. Not worth doing.
4. Missed
5. Experiment - Wine club for restaurants
* 6 bi-monthly events in 2013 for the serious wino with exclusive chefs
¢ $1500 for 2 people for an annual membership
¢ People will pay for this service!
— They’ve made $4500 in days

— They could have sold out if not presenting

1.5.26 Marc Andreessen

* http://al6z.com/
* https://twitter.com/pmarca
Interviewed by Eric Ries. Notable quotes:
* Pivoted twice when it was still called, “We fucked up”
* When you get a ton of customer service requests it means you are succeeded.
* You have to move quickly in order to capture the market. You can’t wait. Just have to move.

 Until your effort makes a product market fit, it’s not a real company.

1.5. Lean Startup 2012 Simulcast 71

http://davidbinetti.com/
http://a16z.com/
https://twitter.com/pmarca

pydanny-event-notes Documentation, Release 45

We learned a lot of lessons from the dot-com crash

* Worried that people who lived through the crash are suffering psychological damage from the event.
e Many of the ideas of the time were valid, but were just too early.

* You can take the ideas of the time and with a twist, apply them to great success

The bubble itself was only 18 months. From 3rd quarter of 1998 to the 1st quarter of 2000.

Problems he hears in pitches
* Not every startup can startup can be lean. Sometimes you need to just be audacious. Think Apple, Intel, or
anything Elon Musk does these days.
— You can’t put a rocket into space on a lean program.
— Don’t let the lean startup methodology destroy other ways of doing things.

* Lean startup methodology used to avoid sales marketing strategy seriously.

Sales and marketing doesn’t happen magically.

No matter how good your product might be, people won’t come to it without sales and marketing.

Critical examples: Google, SalesForce, Facebook, and Twitter have thousands of sales rep.

Business applications do not sell themselves

Don’t rely on anything going viral

 Entrepreneurs give up too quickly
— Are you going to do the heavy lifting over a long period of time?
— keep at it!

* Failure fetish

— By taking the stigma out of pivoting, entrepreneurs have an excuse to not try hard enough. Don’t be gleeful
about failure.

— People who claim to be “serial entrepreneurs” without success are giving themselves a fancy title for being
a failure.

— Preserve the good of failing, learn from it and succeed next time.
* History is weird
— Winners are portrayed perfectly, losers are portrayed like idiots

— He contends that winners often are just lucky enough to start at the right time.

Tips
* Do not go public until your company has built a fortress. If you don’t have all the positions filled, brand
established, predictability in the market, then you are at great risk.
* Going public today is an extreme sport. It’s very dangerous.
* Lean Startup is like the Theory of Relativity for Business.
— We now have a process and science for getting things done.

— BUT you still need old fashioned sales and marketing.

72 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

1.6 PyCon Poland 2012

Dates: September 13-16 Venue:

Hotel Przedwiosnie "Early Spring"
Machocice Kapitulne 178

26-001 Maslow k / Kielce

center coordinates: 50.9024 N, 20.78021 E.

Note: Even though I don’t speak Polish, I tried to capture some of the Polish talks.

1.6.1 Talks

Fractal Architectures

* by Laurens Van Houtven

https://twitter.com/Ivh

Twisted Developer

PSF Member

Lives in Krakow

Talk Description

Traditional service architecture wisdom generally tells us to build services like this:
* Load balancer in front
* Web servers, preferably stateless
 Database (with a caching layer)

That works great for a wide variety of use cases. The point of this talk isn’t to deprecate that design, but to discuss a
radically different one.

The design I will present in this talk is one consisting of recurring, identical components. It localizes state to individual
application servers and persists it to durable stores later. It aims to be easier to scale horizontally: that is, enabling you
to increase throughput by simply adding more machines to the homogenous cluster.

I will talk about it’s benefits, such as performance and how it fits in well with many cloud providers’ services, but
also its downsides, such as the inherent complexities of distributed systems. These qualities are analyzed to come to a
conclusion about which kinds of project this design is suitable or not suitable for.

In this talk T will discuss both the abstract concepts and the practical implementation that I have built using Twisted
and Axiom (a simple object database on top of SQLite 3), which is currently running in production. Although I will
touch on the practical implementation, the talk should still be useful for anyone wanting to implement a similar idea
using different tools.

Standard Architectures

Check out Twelve Factor App.

1.6. PyCon Poland 2012 73

https://twitter.com/lvh

pydanny-event-notes Documentation, Release 45

* Level 1: Servers Database Cache
* Level 2: Application Servers
* Level 3: Load Balancing

The problem for you is that scaling all of these levels gets server and code expensive. You have to add in distributed
data, messaging queues, and extra servers. Or pay companies like Heroku and dotCloud and Redhat a lot of money.

Consider Instead...

 Sharding architecture

¢ Problems:

Expensive

Only for things on a Facebook scale.

Most people don’t need this sort of thing.

Forces restrictions on code patterns.

* Advantages
— Constraints on code means you have the freedom to do what you want within those constraints.
— Lower latency
— Great for when one user is only interacting with data that just affects themselves. For example:

Perfect for things like a webmail client. Most of the real behavior of the system is interacting with the
client, not doing SMTP.

Breaking the rules

Special cases aren’t special enough to break the rules. However, practicality beats purity
—Tim Peters, Zen of Python

Sometimes it’s good to farm things out rather then forcing it into your stack. For example, instead of doing the SMTP
yourself, let Rackspace (Mailgun) or Amazon (SMS) do it for you.

The Diablo Il example

Auction house could benefit from this architecture.
* Store the data in tiny places per user per general geolocation.
* Would work perfectly using SQLite3 per user if you add in Axiom
* Alternative databases:
— PostgreSQL
— Redis
— MySQL (not recommended)

 Try to use byte-differential storage. Unfortunately, the only professional option for this method is Dropbox.

74 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Axiom

Links:

¢ http://divmod.readthedocs.org/en/latest/products/axiom/index.html

* https://launchpad.net/divmod.org

* https://github.com/rcarmo/divmod.org/tree/master/Axiom

* http://www.devshed.com/c/a/Python/SSH-with-Twisted/3/
Installation caveat: Axiom requires Epsilon in setup.py egg-info, so you need to manually install it first
Info:

* Runs on top of SQLite3

* Object database that works with one class per one table.

 Strongly typed

* Great for doing queues

* Does filestore

* Axiom powerups can have more than just static data, you can add behaviors

Manhole

» Twisted project

* TODO: find details as to why he mentioned this

Contention of the Talk

Either make things run faster or make things do less work.
* Query latency between servers (database, caching, http, etc)

* Caching really doesn’t work for game servers and processing

Talk Contention: If you put it all on a bunch of small servers that can just do their limited collection of tasks, then

you get to avoid latency issues between components.

Poking holes in his own design

* Some of his data doesn’t fit into small shards. So things like Encyclopedic data or ‘world data’ won’t work. So

where do you put this data?
* Size of data becomes an issue. Small shards hold less data
» Data updates with 10 million user stores means you have to update 10 million datastores
— You need to keep most of your queries local per shard.
— This forces tight coupling because a shard needs to really focus on shard data
* Querying across stores is hard. :-(

— Data analytics is harder

1.6. PyCon Poland 2012

75

http://divmod.readthedocs.org/en/latest/products/axiom/index.html
https://launchpad.net/divmod.org
https://github.com/rcarmo/divmod.org/tree/master/Axiom
http://www.devshed.com/c/a/Python/SSH-with-Twisted/3/

pydanny-event-notes Documentation, Release 45

— Big data requires special tools like Hadoop, Apache HBASE, Hive, etc

* Odds are you don’t actually need Hadoop. Unless you have terabytes of data you don’t need these
tools

— Transactions are a challenge.
* Get the RDBMS to do it
% You could do it in Python, but that isn’t ideal
* No existing tools and frameworks designed explicit for sharding
— Tools he mentions are general purpose that he uses for this sort of activity
— Nothing like Django to composite everything together
— No PaaS (Heroku, dotCloud, OpenShift) to do the system engineering for you

* No load balancing exists that handles this behavior. Which means depending on your setup you’re still playing
with load balancing.

Testing

How do you do it?
e Careful focus on functional
¢ Careful focus on unit tests with mocks

* If you must, use Paxos algorithm to manage the transaction tests

Forms in python - problems and my proposal of solving them

* By Szymon Pyzalski
— STX Next Python Experts

— https://github.com/zefciu/Forms-in-python

Talk Description

My lecture would consist of two parts. First I would like to discuss what can a developer expect from a form library.
Secondly I will show a design of one that would address all these problems.

Introduction

The basis of reviews:

Why are they important?

Forms are ubiquitous across all Python frameworks
* Python is a strongly typed language so we have to handle input properly
* Closest to the user

— What they see most

76 Chapter 1. Conferences

https://github.com/zefciu/Forms-in-python

pydanny-event-notes Documentation, Release 45

— This is where they tend to see our mistakes
* Qur first line of defense against security against CSRF and other attack methods.

* Boilerplate and repition removal

Scope of Features

All form libraries need to have the following components:
 User input handling
— Type coercion
— Validation
* Widget generation
* Data schema reflection
— Ceritical boilerplate reduction

— Try not to define both data and form schema

Challenges

* Flexible but not full of feature creep

— Easy to grow too big

— but you can’t make the project unmanageable
* Allow reflection but don’t bind user’s hands

— If you can’t modify the reflection then the form library quickly becomes useless on real projects
* Portable but allows developers to use specific features

— If coupled too tightly then it’s hard to move to other projects

— If coupled too loosely then API can suffer.

FormEncode

* By Ian Book
e Minimalist: only validation, coercion, html-filling
* Was recommended by Pylons book

¢ Problem: No schema reflection

Django Forms

* Second attempt
* Plays best in the Django framework

e Problem: Hard to create new widgets

1.6. PyCon Poland 2012

77

pydanny-event-notes Documentation, Release 45

from django.forms import ModelForm, Textarea

class AuthorForm (ModelForm) :
class Meta:
model = Author

fields = ('name', 'title', 'birth_date')
widgets = {
'name': Textarea (attrs={'cols': 80, 'rows': 20}),

Sprox

¢ Combines FormEncode and ToscaWidgets
» Extendable and easy to create new widgets

* Problem: unpleasant API

from sprox.formbase import AddRecordForm

from formencode import Schema

from formencode.validators import FieldsMatch
from tw.forms import PasswordField, TextField

form_validator = Schema (chained_validators=(FieldsMatch('password',
'verify_password',
messages={'invalidNoMatch':
'Passwords do not match'}),))
class RegistrationForm(AddRecordForm) :

__model__ = User

__require_fields_ = ['password', 'user_name', 'email_address']

__omit_fields_ = ['_password']

_ field order_ = ['user_name', 'email_address', 'display_name', 'password
—', 'verify_password']

__base_validator___ = form_validator

email_address = TextField

display_name = TextField

verify_password = PasswordField('verify_password')

registration_form = RegistrationForm(DBSession)

FormAlchemy

Built on idea of shcema reflection

Generates forms and tables

» Type coercion

fs = FieldSet (User)
fs.append (Field('repeat_password') .label ('Repeat password'))

def password_match (value, field):
if value != field.parent.password.value:
raise ValidationError ('Passwords do not match')

78 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Formish and Deform

¢ deform is a fork of formish
e don’t do reflection
 Strong seperation between schema and form

* Schema can be used for other data-parsing formats

class Schema (colander.Schema) :
password = colander.SchemaNode (
colander.String (),
validator=colander.Length (min=5),
widget=deform.widget.CheckedPasswordWidget (size=20),
description='Type your password and confirm it"'")

schema = Schema ()
form = deform.Form(schema, buttons=('submit',)
Anthrax

https://github.com/zefciu/Anthrax

Note: The name comes from classic literature, where Galahad visits Castle Anthrax and has his purity threatened.

His own forms library. Pre-alpha but it looks interesting.
* Highly modular. If you create a dependency, create a module
* 4 layers

— fields

widgets

— views

templates
* building blocks
— forms: A collection of subcontainers and fields
— Field: Knows how to validate and coerce a particular data type
— Widget: a suggestion about presentation
— Validator: Works on a form or container, ad-hoc or generic

— Front-end: A complete system to render the form in forms like HTML, Dojo flavored HTML, Angular
flavored HTML, XML, etc

— View: Front end dependent object

— Template: Let you define the output in a flexible way
* Building block relations

— A form has fields. It can be rendered into a front end

— A field has a list of widgets that are called depending on the format requested

1.6. PyCon Poland 2012 79

https://github.com/zefciu/Anthrax

pydanny-event-notes Documentation, Release 45

— A front-end handles some widgets by assigning views to render them.

class RegisterForm(Form) :

__validators__ = [('equals', 'password', 'repeat_password')]
__reflect_ = ('eplasty', User)

__frontend__ = 'dojo'

login = {'label': 'Login'}

hash = salt = None

password = TextField(widgets=[PasswordInput], label="'Hasto')
repeat_password = TextField(widgets=[PasswordInput], label='Powtdrz hasio')
ok = HttpSubmit ()

My thoughts on it:
* I like the seperation of layers.
* Like the way widgets are a list attached to a field, not just as a single widget per field

e Idon’tlike the _ <SOMETHING>_ _syntax. He likes them so we’ll agree to disagree. ;-)

Continuous integration - czyli jak spedzi¢ weekend z dziewczyng zamiast z szefem

by Lukasz Langa

Note: Alas, I got convinced to try doing this late. And I don’t speak Polish.

Description

Wigkszo$¢ z nas woli programowaé zamiast debugowac. Tym bardziej mato kto lubi szuka¢ btedu na serwerze pro-
dukcyjnym w sobotni wieczor. Jak tego unikna¢? Nie wpuszczaj btedéw na produkcje. Podczas prezentacji pokaze
jak przy uzyciu takich projektéw jak nose, jenkins, pyflakes, fabric tego dokonaé.

This is a talk on continuous integration and best practices.

Pyflakes and PEP-8

 Use tools to validate the quality of your code

* Develop good habits

Coverage.py, hose, and other tools

* coverage.py lets you know how much is tested

¢ nose discovers tests.

Automatic Installation

* Create a reproducable installation procedure that is executed via tools
* Don’t do it manually

Useful tools include:

80 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

¢ Fabric
* Pip

¢ Virtualenv

Set up your own QA servers

» Set up your own servers takes a lot of work and effort.
* OpenStack is nice because:
— It does a lot of the lifting for you
— Open source so you can use it for free and contribute back

¢ My Polish is bad so I wonder if I missed him suggesting paid PaaS like Heroku, dotCloud, et al

What | missed about Python (and how JS taught me to love Python even more)

* by Audrey Roy
— https://twitter.com/audreyr
— http://audreymroy.com
— PSF Member
— My fiancee!

Description

What happens when you take a Python developer and immerse her completely in JavaScript for a few weeks? This
talk tells the story of my journey through JavaScript, from deep-diving in and looking for Python analogues in JS to
achieving a greater understanding and appreciation of Python’s design through comparative language study.

Note: Spent the talk taking pictures. Waiting for some notes taken by others that I’ll be including here.

Background

PyLadies, OpenComparison, PyCon Phillipines

Total immersion in javascript

Several weeks of intense JSing

“JS is a terribly misunderstood language”

Pre-Immersion: python is better js is invevitable

Is JS good parts is good enough to just work with it?

Is it worth it? use ajax more? use full blown python soa and backbone.js? integrate js relatime features?

JS spectrum: avoid at all cost <—> Happiliy use 100% JS

1.6. PyCon Poland 2012 81

https://twitter.com/audreyr
http://audreymroy.com

pydanny-event-notes Documentation, Release 45

Findings

Python is elegant! good parts included (in js not so readily)

JS ecosystem is thriving works where python ecosys does not very ambitious

Funcions in python intedentation begets clarity of scope docstrings, named parameters minimizing anonymous funs
Funcitions in JS the infamous ‘var’ anonymous function. .. not no default params worse documentation tools

JS is more functional, and thus better. Right? closures as solution for scope leakage closures as classes closures as
modules

(Audrey had an error on her slide, as if to emphasise cumbersomnes of JS closure hacks).

Functional programing in python iterators, generators list comprh. batteries included (itertools, functools, opera-
tor)

Lambdas — anonymous funcs are by design constrained.

You can nest functions in python has much more sense.

What python cant do? close over a non-global var in outer scope (python 3)
Python classes are elegant! scope is obvious class is namespace docstring

Klass in JS: atleast two different hacks not one obvious way prototypal inheritance is complex different is not always
better reallity: prototypal is annoying

Modules: long history in python simple, defined by files

Modules in JS: just a script tag not part of the language, some libraries provide shim

Packaging no one true way in python, confusing

Packaging JS: many alternatives: npm, ender, jam, bower not build into the lang

Code reuse two obvious necessities importing libraries organizing code int o dierctories

Design patterns classes provided by language decorators iterators and gens modules
pthon minimizes boilerplate js brings DP with libraries, many times

Standard library python has great stdlib, with some parts dated; opinionated js has none; jQuery, Node, no strong
leadership

Stdlib - datetime js date.js died, although it was touted as best python datetime has limitations, but it’s there some
good js libs exist, but lack recognition

JS and polyfills

hack away what is not defined

JS beats Python (reality wins)

js working in browser cross platform mobile dev tools huge innovation

82 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Summary

Python has good parts emphasised but has catching up to do

You should try diving deep into JS.

Diversity helps community!

Composability through multiple inheritance

Original Polish Title: Kompozycja poprzez wielokrotne dziedziczenie
note:: Talk is in English, but title and description were in Polish
* by Lukasz Langa
— https://twitter.com/llanga

— https://github.com/ambv

Description

Jednym z momentéw zwrotnych w historii byto wprowadzenie produkcji pétfabrykatéw. Poprzez tworzenie prostych
komponent6w, ktdre integruje si¢ péZniej w ztozone produkty, producenci sa w stanie budowaé szybciej i taniej, osia-
gajac lepsza jakos¢. W tej opowiesci programisty o sercu inzyniera opisuje, jak uzywam mechanizmu wielokrotnego
dziedziczenia dostgpnego w Pythonie, by realizowad te rzeczywisto$¢ przemystowa w kodzie Zrodtowym. Przyktady
bazujq gtéwnie na Django, jego ORM, formularzach i klasowych widokach. Jednakze zasady, ktére opisujg, sa ogdlne.
W trakcie wyktadu wspominam o sposobach implementacji komponowalnych modeli abstrakcyjnych, a takze mix-
inéw do formularzy i widokéw. Ttumaczg, jak to podejscie tworzy czytelne i zarzadzalne idiomy, wraz z ich plusami
i minusami. Zakoricz¢ podsumowujac moje dos§wiadczenia z préba stworzenia biblioteki $cisle reuzywalnych kompo-
nentow.

This is a talk on composition

Act I: Exposition

* You can use legos to build small things and yet also to build big things.

¢ Lego blocks do have the composability feature

» To make components work, you need to have a framework that embodies compositionality.
» UNIX pipes are a good example:

» Composition isn’t a science, it’s an art

¢ Programming done well is art. Programming done badly is trash

» Jamie Zawinksi: You can have a string that describes things accurately, or you can have a string that describes
things accurately with flair

Note: According to Lucasz, the owner of Lego stole the invention from someone else and patented it, and made a
fortune. The actual inventor died of grief.

1.6. PyCon Poland 2012 83

https://twitter.com/llanga
https://github.com/ambv

pydanny-event-notes Documentation, Release 45

Act II: Rising Action

* If you use old-style style classes, you’re going to have a bad time.

MRO

>>> class A (object):
pass

>>> A.mro ()
[<class '__main__ .A'>, <type 'object'>]

Thoughts on the diamond problem

>>> class A(object): pass
>>> class B(object): pass
>>> class AB(A,B): pass
>>> class BA(B,A): pass
>>> class C(D, AB): pass
>>> class D(A): pass

* Python has a definition of how to resolve the diamond problem in multiple inheritance.
— Python has cooperative inheritance

— In our example, you have to carefully watch how things are constructed

Super was designed to solve this problem

But it failed. It’s only useful in limited cases and can fool you.

class D(A):
def _ init_ (self):
super (D, self).__init__ (arg_a='d")

* Don’t omit super(c, self).__init__() even if your base class is object
* Don’t assume you know what arguments you are going to get
* Dont’ assume you know what arguments you should pass to super

Warning: If you mix ClassName.__init__() and super your are going to have a bad time.

Django ORM as a diamond pattern case study

* Problems: If you have a diamond pattern in Django it causes duplicate fields
* breaks the Liskov substitution pattern
» Example https://github.com/ambv/kitdjango/blob/master/src/lck/django/common/models.py

— TASK: Check out what happens when you add TimeTrackable and something else from this file. You will
apparently get duplicate fields.

84 Chapter 1. Conferences

https://github.com/ambv/kitdjango/blob/master/src/lck/django/common/models.py

pydanny-event-notes Documentation, Release 45

Act lll: Example

» Use base classes in Django models is a good way to have easily maintained code. Examples:

— EditorTrackable is a Model base that handles not just who can edit data, but also handles cascading deletes
elegantly.

— TimeTrackable is a model that tracks when something was created/deleted. Includes the following:
* Created
* Modified
+ cache_version is an field that tracks which cached version is being displayed

¢ By composing his models on many projects via Abstract Models, he can test each reused abstract model exten-
sively and repeatedly.

Monkeypatching Django

* https://github.com/ambv/kitdjango/blob/master/src/lck/django/common/monkeys.py

Using Python to Generate Art and Sound

* by Audrey Roy

https://twitter.com/audreyr

http://audreymroy.com
PSF Member

My fiancee!

Note: Lots of code samples with detailed explanations. Can’t keep up with my notes but it’s awesome.

Description

I’ve used Python to draw rainbows of different shapes and colors, Gaussian clouds, and landscapes in perspective.
I’ve also used Python to create sound effects for games. This talk explores my experiments with the various Python
imaging and sound tools. First, I walk the audience through implementing basic audio building blocks with the Python
stdlib’s wave, math, and array modules. Then, I improve upon the code with NumPy and SciPy. Finally, I demonstrate
how audio synthesis can be very similar to generative graphic art, using similar techniques to create building blocks
for basic illustration.

background of the Talk

A few years back she was painting landscapes and got tired of repetitive techniques so she decided to write a program
to do it for her

1.6. PyCon Poland 2012 85

https://github.com/ambv/kitdjango/blob/master/src/lck/django/common/monkeys.py
https://twitter.com/audreyr
http://audreymroy.com

pydanny-event-notes Documentation, Release 45

Introduction

¢ Overwhelming variety of Python libraries for audio/graphics
* Understanding the fundamentals first

* Helps you understand your options

Overview

» Simple sound with the Python stdlib
* Numpy and Scipy

* Plotting sound arrays with Matplotlib
 Creative sound generation techniques

 Using the same tricks on graphics instead

STDLIB!

* Very east to get started
¢ Other libraries can and are tricky to install
Parts she’ll be using
* Wave Module
— Use it to open and write .vave files
— Introduced in stdlib 1.6 and hasn’t changed much since
* Array Module
— Using it to store data over time
e Math module

— Using math.sin(x) to calculate 440 Hz audo audio samples

wave, array, math

Generates a 440 Hz sine wave

import array
from math import sin, pi
import wave

SAMPLE_RATE = 44100
DURATION = 3

TODO finish tons more code

Simplifying via a function

86

Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

import array
from math import sin, pi
import wave

SAMPLE_RATE = 44100

def note() # TODO finish coding this out

Can this be simplified further?

* Yes via NumPy arrays!

— perfect for sound operations

numpy.linspace (start, stop, num):
>>> linspace (0, 1, 10)
array () # TODO get this value

#sumpy.sin (x)

Now we show the simplified example:

from numpy import linspace, intl6, sin
from scipy.io.wavfile import write # Using this because it's less code to use than,
—the Wave module

def note(freq, duration, amp=10000, rate=41100):
TODO add code stuff here
pass

Is this music?

Not yet. You need chords for music!

Chords for music

» Simply add 2 notes of different frequencies together

 She looked up Piano key frequencies on wikipedia

chord function

def chord():
TODO get a sample of this code
pass

Using matplotlib to visualize the chord

She showed very nice code to plot out audio files.

1.6. PyCon Poland 2012 87

pydanny-event-notes Documentation, Release 45

Concatenate notes into sequences

She showed using numpy’s concatenate() function to add up arrays of sound samples.

Weaving it all together

File structure
* notes.py
— contains piano keys
— contains imports of all the notes components
* Used numpy’s uniform() function to create nice distributions of frequencies and durations
* Constrained the frequencies so they are humanly playable

» Explained use of random.choice over numpy.choice. Chose it because numpy’s version is in beta.

Results

* Colorful rainbow of sounds that sounds relatively pleasant to the ear

Adding Gaussian Distribution

» Using an algorithm to make things more centralized.

¢ Which blurred things so instead of a rainbow of sounds it sounded like puffy clouds. :-)

Introducing Pycairo

¢ Python API for cairo
e HTML Canvas uses cairo as well

» Showed how to use Gaussian algorithm to build clusters of dots

Blocks and Puffs

» Show same technique as used in audio to create puffs of clouds

Added blue background.

* Alpha and radial gradient background

Adjust X and Y axis of gaussian to stretch the clouds into a more cloud-like shape

Not just puffs

Can also use these processes on colors.
* Use uniform distribution for picking colors randomly

» Explore constraining to a subset of colors

88 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

* Used this technique and more to generate real paintins

Summary: Think functionally

» Parametize everything

» Use numpy array functions as much as you can

* Can combine wave, array, math from the Python stdlib for audio synthesis
* Sound and art composition are extremely similar

» Experiment with Gaussian distributions

In Memorandum

 John Hunter, founder of Numpy, passed away recently

* http://numfocus.org/johnhunter

Bonus Slide

* Tones + filters = sound effects
— Play with looping, itertools

* Image sequences + Reportlab = flipbook PDFs
— Use strokes and not fills

» Save image + sound sequences as videos

* Image composition can respond to audio input

PyCon PL 5 lat

aka Five Years of Python
* by Filip Kigbczyk

Note: I'm translating this entire talk from Polish. I don’t speak Polish except how to say, “Thanks” and now
“Questions?”.

Introduction

* We’ve been doing PyCon PL for 5 years
* How many people have been to PyCon before? (about half)

* How many people have come to their first PyCon? (about half)

1.6. PyCon Poland 2012 89

http://numfocus.org/johnhunter

pydanny-event-notes Documentation, Release 45

How did we get started?

 The inspiration comes from various other user group conferences.
* We wanted an event for Python
* We also give credit to PLUG (Polish Linux User Group)

* Piotr Kasprzyk, Ph.D, gets credit and applause for his untiring work in the Polish Python community. Many
attendees are previous students of his and he invited Audrey Roy to PyCon PL 2012.

PyCon PL 2008

* October 18-19 in Rybnik

Rybnik looks like a lovely city.

* The administration of the event has been a growing process.
* We had a big old-fashioned monitor on the presenter’s desk.
* Lennart Regebro was the first foreign guest to PyCon PL!

— Zope

— Plone

¢ Lots of beer was drunk!

PyCon PL 2009

¢ October 16-18 in Ustron

* So much fun last year we had to expand it!

The day before the conference there was a big snow storm
— It was much harder to get there

* Wesley Chun was the guest speaker

— Google App Engine

* This year we didn’t have a big monitor on the presenter desk.

PyCon PL 2010

October 8-10 in Ustron

A little bit earlier so we could miss the snow storm
* The weather was beautiful!
* So nice that people wore short sleeves outside!
* Armin Ronacher was our guest speaker
— Jinja2
— Flask
* This guy played piano a lot

920 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

PyCon PL 2011

Note: When asked who had been to all PyCons before this one people raised their hand. So I raised my hand too.

» September 22-25 in Machocice Kapitulne
* Took place at this hotel we are at now (Hotel Przedwio$nie)
* Guest speakers:
— Brandon Craig Rhodes
— Lennart Regebro
* Yummy BBQ outside with lightning talks!
— Note: looks like a very impressive setup
— You had to do it in your heavy coat

— It was fun!

PyCon PL 2012

Note: This weekend’s conference!

» September 13-16 in Machocice Kapitulne
 Took place at this hotel we are at now
* Guest speakers:

— Audrey Roy

* Have fun and do Python!

Highly scalable services in Python

Original title: Wysoko skalowalne serwisy pythonowe w OnetPoczcie
* by Igor Waligéra
— From Warsaw
— Works on high integrity systems at Onet
* About Onet

Over 70 developers use Python full time

https://twitter.com/onetpl

news portal and email provider

One of the oldest sites in Poland

Note: I'm translating this entire talk from Polish. I don’t speak Polish except how to say, “Thanks” and “Questions?”.

1.6. PyCon Poland 2012 91

https://twitter.com/onetpl

pydanny-event-notes Documentation, Release 45

Talk Description (In Polish)

W prezentacji pokazemy nasz model rozproszenia ustug pocztowych, jak zrobiliSmy to przy uzyciu Pythona.
Pokazemy metody realizacji stabilnych i skalowalnych systeméw utylizujacych niskopoziomowe biblioteki oraz model
ich zwielokrotnienia i integracji. Uchylimy rabek tajemnicy dziatania jednego z najwigkszych systeméw pocztowych
w polskim Internecie.

System Architecture

Some sort of email system
* 200 servers
* 20 database servers
| Petabyte of data
* 4.7 million users
* 80 thousand requests a minute

e Spam

Server types

* SMTP
— Postfix > MDA > Storage
* POP3/IMAP
— Dovecot > storage
* Webmail
— PHP / JavaScript > Python Server > Storage

Persistence Server

e check RFC 822

Their Python server

e Tornado

* JSON-RPC

libOP - API

* libAUTH

* 1ibDB
libOCACHE
libANTYSPAM

92 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

* libStorage

Making Python faster

Write in C, make bindings in Cython, import into Python

// op.c

int mparser_fetch (const struct mparser_server smparser, etc) {
[...]

}

Workflow:
» Take C code that does what they need.
* Implement as Cython
— http://cython.org
* Call the Cython modules from Python

* Put all the dependencies for the C library, Cython components, and Python into setup.py files so they can easily

deploy

System Summary

e C
e Cython
¢ Tornado

* Python

Benefits

 Challenging but successful implementation
¢ Good performance
* optimized to handle any load

— 20x speed over standard Python

Critical tools

« PyPI

¢ Virtualenv

$ dpkg -i libop_1.1.0_amdé64.deb

$ mkvirtualenv mparser

(mparser) $ source mparser/bin/activate
$ pip install -r requirements.txt

1.6. PyCon Poland 2012

93

http://cython.org

pydanny-event-notes Documentation, Release 45

Results

¢ really good performance
* 99.8% uptime

* Able to handle 500 thousand spam hits a minute

Summary

* Build good systems
* C libraries are the way to go
* Use Python to build your stuff, but leverage in the C libraries
¢ Processes
— Scrum

— DevOps

Blame it on Ceasar: A rant on calendaring

by Lennart Regebro
* https://twitter.com/regebro
* http://python3porting.com/
* http://regebro.wordpress.com

* Runs a consulting shop and does really good work.

Talk Description

Timekeeping on all levels is surprisingly difficult. This talk explains why it’s sort hard, and which parts Python can
help you with.

* What is calendaring, really, and why is it so complex?
e What’s in a year?

* Dissecting the Julian/Gregorian calendar

* Mesopotamian mathematics

* Time zones

* Recurring events is less fun than you think.

Introduction

The problem with calendaring is that it is based off of multiple cycles that don’t work well with each other

Rome: They had a 10 month calendar that made winter a dead period in the calendar. Eventually they added January
and February

94 Chapter 1. Conferences

https://twitter.com/regebro
http://python3porting.com/
http://regebro.wordpress.com

pydanny-event-notes Documentation, Release 45

Lunar Calendars

* The year is twelve lunar months long.
* The year is out of sync with the seasons

* Example: The Islamic Calendar

Lunisolar calendars

* The year is 12 or 13 months long
* The year is kept in sync with season by leap months
* examples

— Hebrew

— Buddhist

Solar Calendars

The villain of the story is Caesar
* The year follows the solstices/seasons
* The moon is ignored completely
* Examples:
— French republican
— Julian Calendar

Thanks to the success of the Roman Empire Europe takes a weird Solar calendar, and thanks to the success of Europe,
the world takes it on too.

How do you implement the calendar yourself?

You don’t. You use libraries.
* Python has datetime, date, and calendar
* JavaScript is momentjs.com, which is the current best option for JavaScript
* Java has issues thanks to an early design decision mistake.
— http://date4j.net/

e The US calendar shows Sunday as the first day of the week, which is confusing because it puts the first day on
the weekend.

Timezone woes

* There are not 24 timezones, there are standard times per country
* standard times change

* If you want to accurate describe times from the past, you need a database of timezone changes.

1.6. PyCon Poland 2012 95

http://date4j.net/

pydanny-event-notes Documentation, Release 45

Abbreviation Evil

e CST
Australia CST

China Standard Time

Chungua Standard Time
- USCST

Timezones are based on politics, not science.

Daylight Savings Time

* Changing the hour can cause problems with computers. Going over midnight twice breaks things.
* JavaScript handles this well

 Python handles it well

Pytz discussion

He gave examples of how this module does a lot of the lifting for you on timezones and daylight saving time:

pytz 30 - 15 dateutil

Advantage pytz

* Works well
* Except for POSIX

Current standard specification

¢ TODO: Find out specified RFCs

Libraries

e http://pypi.python.org/pypi/tzlocal (Download and test it out!)
* http://pypi.python.org/pypi/icalendar
* http://pypi.python.org/pypi/DateUtils

Datepickers

* Based on JavaScript if you are doing the web
* http://arshaw.com/fullcalendar/

* https://github.com/collective/jquery.recurrenceinput.js

96 Chapter 1. Conferences

http://pypi.python.org/pypi/tzlocal
http://pypi.python.org/pypi/icalendar
http://pypi.python.org/pypi/DateUtils
http://arshaw.com/fullcalendar/
https://github.com/collective/jquery.recurrenceinput.js

pydanny-event-notes Documentation, Release 45

How to bootstrap a startup using Django

* by Jannis Leidal

https://twitter.com/jezdez

https://github.com/jezdez

Django core dev

DSF and PSF member

Co-maintainer of pip/virtualenv

works on PyPI

Lead engineer at http://gidsy.com

Talk Description

Based on the experiences building Gidsy.com this talk will give you valuable insights as to how your infrastructure
will evolve and how to set up the basic components (load balancer, web servers, DB, caching, celery, CDN, ...) of
your site.

What is Gidsy?

Gidsy is a place where anyone can explore, book and offer things to do.

Why did they choose Django?

¢ Big community

* Network

* Language

* Many problems already solved

The Admin

Why Django is a good choice?

* Proven technology by similar use cases

Stable APIs in a well-defined release process
* Good documentation with focus on prose

¢ Huge community of 3rd party components

Implementing search

Haystack: http://www.haystacksearch.org/
¢ Needed customizable search abstraction

* Indexing, filtering, faceting, “More like this”

1.6. PyCon Poland 2012 97

https://twitter.com/jezdez
https://github.com/jezdez
http://gidsy.com
http://www.haystacksearch.org/

pydanny-event-notes Documentation, Release 45

* Spatial search and sorting

Implementing API

Tastypie: http://tastypieapi.org/
» Highly customizable Web API library
* Hooks for auth, throttling, caching, etc
* Backbone.js compatible

 Not for 3rd parties, just to serve out system content. So no need yet for OAuth or other protocols

Task Queues

Celery: http://celeryproject.org/

If you have a user triggered process that will take a long time, use an asynchronous task queue to manage the task
* Async code execution
* Generate thumbnails, search index updates, caching, etc

¢ Collect stats without blocking

Caching

Memcached
* Periodic cache refreshing for high traffic sites
» Fragment caching with dates and cache version
* Cache warming during deployment

* All their code is based off the Django cache module. They don’t use any libraries here because their data is too
complex to rely on a caching framework.

Workflow

“Always check in a module cleaner then when you checked it out.” — Uncle Bob
e Main branch is always deployable
* Development happens in feature branches
* Code reviews via pull requests

* Shared responsibility

Testing

 Seperation of fast and slow tests
* Full test suite via private Travis CI project

¢ Fast tests locally with django-discover-runner

98 Chapter 1. Conferences

http://tastypieapi.org/
http://celeryproject.org/

pydanny-event-notes Documentation, Release 45

— http://www.djangopackages.com/packages/p/django-discover-runner/

Releasing

* Virtualenv/pip
* localshop as local PyPI host
* django-configurations for Django Settings
- http://www.djangopackages.com/packages/p/django-configurations/

¢ Upstart for processes management

Scaling up

* TODO - get slide that I missed

Deploy System

* Builds are virtualenvs

* Atomic and orchestrated releases

* Lots of notifications

* Mix of Chef and Fabric

* Trying to open source it

» Using New Relic and Hipchat to track things

¢ Operations made as easy as possible via knife and fabric

Operations

* Log everything you can for debugging
* If you deploy often you need immediate feedback
» Use services if you can:
— Mixpanel
NewRelic

Librato

Papertrail

Pageduty
» Show the metrics on a screen in the office
* django-app-metrics to get a log trail from the system

- http://www.djangopackages.com/packages/p/django-app-metrics/

1.6. PyCon Poland 2012 99

http://www.djangopackages.com/packages/p/django-discover-runner/
http://www.djangopackages.com/packages/p/django-configurations/
http://www.djangopackages.com/packages/p/django-app-metrics/

pydanny-event-notes Documentation, Release 45

Things they learned

* Only scale when you need to, but be prepared
* Be pragmatic, use the best tool to do the job

e Automate as much as you can

* Continuous integration and deployment

* Make routine tasks as easy as possible

 Use services

* Display metrics

Asynchronous and event-driven PyOpenCL programming

* by Tomasz Rybak

tomasz.rybak @post.pl
Debian Maintainer of PyOpenCL and PyCUDOA

Currently working at CodiLime

Worked at University of Geneva

Description

OpenCL is the library, API, and programming language intended to help with performing computations
on different computing devices like ordinary CPUs, graphical cards (GPU), specialized chips or FPGAs.
OpenCL provides different profiles offering various capabilities (e.g. kernel compilation during runtime,
executing native binary code, embedded function libraries) to allow to support different device types.
Programming GPUs in Python is easy thanks to PyOpenCL (and PyCUDA). Not everything offered by
OpenCL can be used in Python though, because OpenCL is defined assuming usage of the C language.
Some functionalities, like calling function in response to event, require providing pointer to C function;
fortunately such requirements show themselves only in the most sophisticated use cases. PyOpenCL helps
with achieving high performance through asynchronous event-driven programming by allowing us to use
many queues and many devices and by mixing synchronous and asynchronous calls. We can create quite
sophisticated computation workflow and OpenCL will take try to use the available hardware, e.g. by
concurrently call code and transfer data at the same time. New OpenCL versions allow for splitting one
physical device into many logical ones (fission) which can be used to reserve some computing capabilities
for usage in time-sensitive manner. We can also attach many devices to once shared context which allows
to write code performing different tasks and computations in parallel. Some of the features offered by
PyOpenCL are similar to those present in Python. Performing asynchronous computations on GPUArray
and retrieving results later is similar to Python’s Futures. So far it is impossible to retrieve Futures from
GPUArray (to integrate GPU and CPU computing) but this seems to be the case of missing functionality,
not incompatibility preventing it from happening. I want to show that creating programs performing quite
sophisticated computations might be easy thanks to Python and PyOpenCL. I would also like to start
discussion about current PyOpenCL limitations and to get feedback from PyOpenCL users.

Increasing hardware parallelism

* More’s law, increasing transistor density

100 Chapter 1. Conferences

mailto:tomasz.rybak@post.pl

pydanny-event-notes Documentation, Release 45

» Power wall

» Chip’s frequency doesn’t increase anymore

* We get more cores instead

* No more automatic performance improvements

* Different programming models

* OpenCL has emerged as a standard intended to help with programming over this obstacle.

Summary: Use OpenCL to access the power of graphics cards as math processors

OpenCL

¢ Standard maintained by Khronos
* Similar to OpenGL
— Extensions
— Different models for different devices
* Compile dor binary kernels run on cores separate from CPU
* Basedon C
* Includes events and asynchronous execution
* Information
— http://pypi.python.org/pypi/pyopencl
— http://mathema.tician.de/software/pyopencl

— http://documen.tician.de/pyopencl/

Basic OpenCL programming model

* Execution units hierarchy

— Hosts

Platforms

Computing devices

Computing units

Processing elements
e Memory hierarchy

— Global memory

Constant memory

local memory

Private memory
* Relaxed consistency of memory access

e Cache

1.6. PyCon Poland 2012 101

http://pypi.python.org/pypi/pyopencl
http://mathema.tician.de/software/pyopencl
http://documen.tician.de/pyopencl/

pydanny-event-notes Documentation, Release 45

Execution run-time hierarchy

* Context
¢ Queue
* Work-group
— A bunch of threads go into a work group
— Which means you can have 100 threads run in a group, or 1000.

e Work-item

Execution Models

e Task parallelism
— One thread running computations
— Possibility of running many threads at the same time
— Require out-of-order queue or many queues
» Computation parallelism
— Many
TODO - Get the parts I missed

PyOpenCL

e ... and PyCUDA
* Python wrapper for OpenCL
» Not only wrapper

— Pythonic

— Object oriented

Stable but still work in progress
— extensions

— high level programming

OpenCL programming workflow

1. Compile kernels
Prepare data

Transfer data to device
Run computations

After finishing computations get results from device

AN

Free resources

102 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Event based programming done in Python

¢ Instruct OpenCl to run computations
* Don’t wait for data

* Computation will get to you when it’s done

event = pyopencl.enqueue_copy (queue, a, agpu)
event .wait ()

event = program.increase (queue, a.shape, None, a_gpu)

later code

queuel = pyopencl.CommandQueue (context)
queuel = pyopencl.CommandQueue (context)
event = pyopencl.enqueue_copy (queue)

Event-related objects

* Not all PyOpenCL functions and methods accept list of event to wait for
* We can wait for these events manually

* Or we can create a marker or barrier to force the end of a queue

Fission

* Splitting one physical device into many logical ones.
* Can be used to reserve some computational power
* Solution similar to CPU virtualization

* No problems with device-to-device memory transfers

Where PyOpenCL helps

Provides:
* Array
¢ Random number generators
* Single pass element-wise expressions
* Reduction
* Parallel scan

Designed so you aren’t writing C code from scratch all the time to make your computations work fast in the graphics
cards.

Extensions

All extensions require pointers to the C so it’s tricky to make them work

1.6. PyCon Poland 2012 103

pydanny-event-notes Documentation, Release 45

OpenGL

Can share data between OpenCL and OpenGL

Future of PyOpenCL

* Intention to share code between PyOpenCL and PyCUDA
¢ Increase number 3rd party libraries
* Some of those could be added to PyOpenCL
* Resolving existing problems
— Adding extensions should be easier

— Supporting additional libraries

Suggestions

Check out http://copperhead.github.com as a way to wrap PyCUDA for easier coding.

An Extreme Talk about the Zen of Python

Note: I would have taken notes but as I was presenting it would have caused a fatal recursion error. Fortunately, three
people (Audrey Roy, Lukasz Langa, and Zbigniew Siciarz) submitted live-notes of this talk.

An Extreme Talk about the Zen of Python

Note: live-noted by Audrey Roy (audreyr) and submitted as a pull request

Daniel Greenfeld

¢ Family on both sides from Poland
* Principal at Cartwheel Web, PSF & DSF member
* Fiancee is @audreyr!

* Co-lead on OpenComparison which powers djangopackages.com and more

Zen of Python

* By Tim Peters, author of Timsort which is used everywhere

» Extreme examples of each follow

104 Chapter 1. Conferences

http://copperhead.github.com

pydanny-event-notes Documentation, Release 45

super()

¢ Built-in method

Walkthrough of circle-ellipse problem

* Can create ambiguity

* Hard to remember syntax for super()

¢ Circle.__init__(self, outer) is more explicit and simpler

» Explicit is better than implicit

Django CBVs

* Quiz: What is the ancestor chain for django.views.generic.edit.UpdateView?
— Answer: There are 8 things. Hard to remember what each ancestor does.
¢ In super(ActionUpdateView, self).form_valid(form), which form_valid() is being called?
* If not careful, super() can cause MRO problems
* Possible mitigations:
— Hope maintainers aren’t angry
— Convert to functional view

— Explore better patterns

Django

» Special cases aren’t special enough to break the rules, although practicality beats purity

WSGI is fixed

* Config & installation - working on it
e CBVs - working on it
* Not MVC. Model-Template-View. Web not necessarily appropriate for MVC.

Web2py

* Where did the response object come from?
* 3 koans broken:
— Explicit is better than implicit
— In the name of ambiguity, refuse the temptation to guess
— Namespaces are good. ..
* In their case, it’s a design decision. “Practicality beats purity”
— Easier for beginners

— Easy to learn their namespace pattern

— For experienced devs, saves boilerplate

1.6. PyCon Poland 2012 105

pydanny-event-notes Documentation, Release 45

* Web2py’s easy installation process is where they shine

OpenComparison

» Example showing a general exception

http://bitly.com/????7

* By printing (e), you don’t get the error type or stack trace

* Fixed code with a custom exception that gets raised and prints additional info

Decorators

* Awesome to use

» Easy to explain what they do

* He did a walkthrough of a sample decorator without arguments. Then one that accepts an argument.
— 3 nested functions
— Hard to read

* He corrected himself because he didn’t use @functools.wraps, which is the better way to define decorators.
More complexity.

* Hard to explain implementation

* If the implementation is hard to explain, it’s a bad idea. If the implementation is easy to explain, it may be a
good idea.

Getting it done vs. technical debt

e Tests and docs take time. Skipping them risks:
— Multiple coding standards
— Deploying broken code
— Problems upgrading dependencies
— Forgetting install/deploy

¢ Must document:

Installation/deployment

Coding standards

How to run tests
— Config

* Easy test patterns:

Always make sure test harness can run

Use tests instead of shell/repl

After 1st deadline, reject incoming code that drops coverage

Use coverage.py

106 Chapter 1. Conferences

http://bitly.com/

pydanny-event-notes Documentation, Release 45

Namespaces

* Powerful, useful, precise

e Dangerous to use import *

>>> from re import =«
>>> from os import =

>>> re.error == 0S.error
False

Breaking built-ins

Continued from above:

’>>> compare_builtins (re) ‘

* Breaks compile() built-in

’>>> compare_builtins (os) ‘

* Breaks open() built-in

* Bad shortcut pattern to teach beginners. Technical debt.

Summary

* Our community is built off of the Zen of Python
¢ Thank you: Richard Jones, Raymond Hettiger, Matt Harrison, Kenneth Love, PyCon Poland, others

Extreme Talk about Zen of Python

Note: live-noted by Lukasz Langa (ambv) and submitted as a pull request

“What mistakes I did and how I correct them.”
The speaker: Daniel Greenfeld, both his parents’ ancestors were from Poland. Learned Python at NASA.

Tim Peters is the author of “Zen of Python”, also known for Timsort.

The Opening:

* Beautiful is better than ugly.

» Explicit is better than implicit.

» Simple is better than complex.

e Complex is better than complicated.

¢ Flat is better than nested.

1.6. PyCon Poland 2012 107

pydanny-event-notes Documentation, Release 45

* Sparse is better than dense.

* Readability counts.

Example 1:

The super () method is doing things automatically and can create ambiguity. It doesn’t adhere to the Zen of Python

by being implicit.

Moreover:

* If the implementation is hard to explain, it’s a bad idea.

* If the implementation is easy to explain, it may be a good idea.

Example 2:

The ancestor chain of django.views.generic.edit.UpdateView is very long (8 ancestors or so):

>>> pprint.pprint (UpdateView.mro())

[<class 'django
<class 'django
<class 'django
<class 'django
<class 'django
<class 'django
<class 'django
<class 'django

<class 'django.

.views.
.views.
.views.
.views.
.views.
.views.
.views.
.views.

views

<type 'object'>]

generic.
generic.
generic.
generic.
generic.
generic.
generic.
generic.

.generic.

edit.UpdateView'>,

detail.SingleObjectTemplateResponseMixin'>,

base.TemplateResponseMixin'>,
edit.BaseUpdateView'>,
edit.ModelFormMixin'>,
edit.FormMixin'>,
detail.SingleObjectMixin'>,
edit.ProcessFormView'>,
base.View'>,

Readability counts and this is not readable:

* it is very hard to actually remember what each mixin does

* they can have non-obvious side effects

Possible mitigations for this view

e Jeave it as it is

* use concrete parent class methods instead of super () (bad idea)

e rebuild it to use functional views

* increase awareness of the design, simplify it, document it in detail

Controversies

 Special cases aren’t special enough to break the rules.

* Although practicality beats purity.

108

Chapter 1

. Conferences

pydanny-event-notes Documentation, Release 45

Django

Django is pretty good about following the Zen of Python.
* WSGI
- fixed
* Class-based views are too complicated (versus complex)
— author works on document them better and simplify where they’re too complicated
* Not MVC compliant

— not a concern because what matters is separation of data and presentation

web2py

Web2py argues practicality in some very specific places, will always be contentious.
» “Explicit is better than implicit.” - has implicit imports
— On the other hand this implicitness makes it easier for beginners.
— The namespace pattern is easy to learn.
— Imports are boilerplate.

* “In the face of ambiguity, refuse the temptation to guess.”

Exception handling

¢ Errors should never pass silently.
* Unless explicitly silenced.

Story: Django Packages. Once a day iterates across all packages. Updates the metadata from multiple sources.
Sometimes the APIs go down or change. Sometimes objects get deleted. Sometimes network connectivity fails.

The first approach to a solution of these problems was to catch a bare Except ion and print it out. Problems:
* the code is nearly silent: printing the exception causes the stacktrace not to appear

* print as alogger

More controversy

* In the face of ambiguity, refuse the temptation to guess.
* There should be one— and preferably only one —obvious way to do it.
* Although that way may not be obvious at first unless you’re Dutch.

Decorators are easy to explain for the user, not so much for the implementer. Especially if they should accept argu-
ments. And don’t forget about functools.wraps. Etc. etc.

Using decorators is like Zen. Writing decorators is not.

1.6. PyCon Poland 2012 109

pydanny-event-notes Documentation, Release 45

Decorator Template

def decorator (function_to_decorate) :
def wrapper (xargs, xxkwargs):
do something before invoation
result = func_to_decorate (xargs, *xkwargs)

do something after

return result
update wrapper.__doc__ and .func_name
or functools.wraps
return wrapper

class as a decorator
class decorator_class (object) :

def _ init_ (self, function):
self.function = function
def _ _call_(self, =xarg, +*+*kwargs):
result = self.function(*xarg, xxkwargs):

do stuff to result
return result

@decorator_class
def hello():
return 'hello'

On one hand:

* If the implementation is hard to explain, it’s a bad idea.

« If the implementation is easy to explain, it may be a good idea.
On the other:

¢ Practicality beats purity.

Final section

Some things can take time like tests or documentation. You can skip them risking multiple coding standards, deploying
broken code or problems upgrading dependencies. So if you have to skip documentation, at least write down:

* installation/deployment procedures
¢ coding standards
Easy test patterns for developers racing to meet deadlines:
* always make sure your test harness actually runs even if you don’t have tests yet
* try using tests instead of shell/REPL
* after the first deadline, reject any incoming code that drops coverage

* use coverage.py

Namespaces

* Extremely powerful

110 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

e Useful
¢ Precise

Beware: from ... import = makes development faster but it can be dangerous:

import re
import os

clashing names!
assert re.sys == 0S.sys
assert re.error != os.error

clashing builtins!
assert re.compile != compile
assert os.open != open

So don’t do from re import «, etc. Especially, import = is not for beginners. If you do know Python and
know about __all__, etc. you might use it if you’re careful.

Summary

>>> import this

An extreme talk about the Zen of Python

Note: live-noted by Zbigniew Siciarz (zsiciarz) and submitted as a pull request

* by Daniel Greenfeld

Description

In the Python community we are taught from the outset of learning the language that the Zen of Python serves as a
guide for how we should construct our codebases and projects. Rather than go into the zen-like meanings of each
statement, this talk will explore how individual koans are implemented via detailed displays of sophisticated code
examples.

Introduction

No easy code examples, Daniel’s gonna show some twisted, complicated code.
Daniel’s grandparents come from Dynéw, Poland. (Applause)

He was a Python programmer at NASA and later started consulting work.

Met @audreyr at PyCon 2010.

Runs some opencomparison sites - djangopackages etc.

1.6. PyCon Poland 2012 111

pydanny-event-notes Documentation, Release 45

The Zen of Python

Written by Tim Peters, author of timsort algorithm - a really smart guy according to Daniel.

The Opening

Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex is
better than complicated. Flat is better than nested. Sparse is better than dense. Readability counts.

Demonstrated using super ().
Geometrical figures, Ring derives from Circle. Obvious what super will do. But what if it wasn’t so simple?
super does things automatically and can lead to ambiguity.

In the face of ambiguity, refuse the temptation to guess.

Absolutely inheriting __init__ from base class: explicit, simpler, more readable.

Explicit > Implicit

:: Circle.__init__ > super()

Django CBVs

Composition, inheritance, polymorphism and other funny words.

What’s the ancestor chain to UpdateView? Answer: 8 ancestors. Impossible to memorize what each of them does.
form_valid (), but which one?

OMG! OMG! OMG! Even more mixins. Let’s print the MRO. A screenful of <class '...'> follows.

Filter the list on classes which have form_valid () method -> only 5 classes (I was lucky).

MRO is simple, but simple is relative.

Moving on
Django controversy

* WSGI (fixed)
* configuration and setup (working on it)
e CBVs (working on it)
* not MVC-compliant (and this is fine)
MTV !=MVC
Is MVC applicable on the web?
The Zen of Python doesn’t mention MVC.

112 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Separation of presentation from content

Django is fine. CBVs are not along the lines of Zen.

Controversy: web2py

Implicit > explicit.
Follows it’s own design patterns.

Where are the imports? No imports neccessary. WAT?

Note: Nobody expected Spanish Inqusition!

web2py breaks 3 koans of the Zen. Implicit behaviors, ambiguity, namespaces.
Although practicality beats purity.
Easy to install, easy to learn, less boilerplate. Web2py <3 Windows.

Similar to Django in terms of contention and trackage.

Exceptions in exception handling
Django Packages

Updates metadata from PyPI, Github, Bitbucket. PyPI unstable, APIs change, projects get deleted etc.
First: concatenating some string with error messages from exception handlers.

Traceback wanted. Type of the error, message, location.

Code is silent - for no good reason apart from laziness.

Solution: added loggingin __init__ in acustom Exception subclass.

Code is not silent anymore. Errors are noisy.

Cleaner code

Even more controversy. (Unless you’re Dutch).

Decorators

Decorators are easy to explain!

Wrapper function running code before/after the decorated function.
Getting harder to explain. .. closures etc.

Now let’s talk about decorators with arguments. general laughter
Danny is evil, uses confusing names: multiplier,multiple...

Whew.

1.6. PyCon Poland 2012 113

pydanny-event-notes Documentation, Release 45

Don’t forget functools.wraps. The decorator code in the slides is growing like a tumor.
It’s not easy to (explain how to) write decorators.

But decorators are awesome! Using them is like Zen, writing is not.

The last section
Getting it done vs technical dept

Tests & docs take time. Do we have to do them? Maybe not. But it brings a lot of risks.

Must-have docs

installation/deploy
* coding standards
* how to run tests

¢ version information

Test patterns

Test harness must at least run even without tests.
Use tests, not shell/repl.
Use coverage, reject code that drops coverage.

Don’t use doctests.

Namespaces

Powerful, useful, precise.
import * makes development faster. IMPORT ALL THE THINGS!
Confusing imports, same names in os and re. Subtle trouble!

Replaces things from in builtins (os.open breaks open)

The open () story

os . open needs different arguments than open. You're screwed if you confuse these calls.

COntention

import = is for people who know what to do.

Remember ___all .

114 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Summary

The Zen of Python (repeated)

One more thing

Capoeira moves!

Schedule

http://pl.pycon.org/2012/en/agenda

CouchDB and Python (unfortunately was doing client work so worked through this)

Invited Speakers

Audrey M. Roy
Jannis Leidel
Laurens Van Houtven
Kai Diefenbach
Stefan Kogl

Sponsors

1.7

Python Academy: http://www.python-academy.com/
Allegro

Onet

Megiteam

OSworld.pl: http://www.osworld.pl/

OSnews.pl: http://www.osnews.pl/

Polish Python User Group: http://pl.python.org/
Bioinformatyk http://www.bioinformatyk.eu/

Linux Magazine Poland: http://www.linuxmagazine.pl/
Wingware Python IDE

Github: https://github.com

Enthought

Coders Mill

Pycon Philippines 2012

Dates: June 30 & July 1 Venue: University of Philippines, Diliman

1.7. Pycon Philippines 2012

115

http://pl.pycon.org/2012/en/agenda
http://www.python-academy.com/
http://www.osworld.pl/
http://www.osnews.pl/
http://pl.python.org/
http://www.bioinformatyk.eu/
http://www.linuxmagazine.pl/
https://github.com

pydanny-event-notes Documentation, Release 45

1.7.1 Keynote

I was honored with the opportunity to keynote the event. My slides are available at:

1.7.2 Talks

Basic Python

by Allan Palo Barazone

http://twitter.com/titopao
* Python since 2007, but since early 2000s
Affiliated of Wikimedia Philippines, Inc

* Major equipment issues including the microphone.

* Live code writing is never a good idea. :P

About Python

Started by Guido van Rossum a.ka. Benevolent Dictator for Life
¢ Named after Month Python and the Flying Circus

¢ Logo of Python is the snake

e Dynamically typed

Variants of Python

¢ CPython

* Jython

* IronPython

* PyPy

* Stackless Python

Prerequisites

e Python 2.7
* editor scintilla.org/SciTE.html

Hello Python

print ("Hello Pycon!")

116 Chapter 1. Conferences

http://twitter.com/titopao

pydanny-event-notes Documentation, Release 45

Assigning Variables

PI = 3.1415
answer2life = 42
_secret_recipe = 0
x, vy =4, 20

Dynamic Typing

= 10

= 'python rocks'
True

= None

= Db

[V e R VR U]
Il

Numeric Data Types

>>> print range (5)
o, 1, 2, 3, 4]

>>> g = 9
>>>b = 2.0
>>>c = 0x999
Operations

>>> 2 x* 10

1024

>>> abs(-1) # absolute
1

>>> 5 % 2 # Modulus
1

>>> hex (12)

'Oxc'!

>>> oct (100)

'0144"

>>> pow (16, 0.6)
5.278031643091577

Booleans

>>> True

True

>>> true

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'true' is not defined

1.7. Pycon Philippines 2012

117

pydanny-event-notes Documentation, Release 45

and
or

is

is not

String Operators

>>> len('Hello')

5

>>> 'hello'.upper ()
HELLO

>>> s = 'Hello PyCon'
>>> s[:5]

'Hello'

Sequences

>>> 1 = [1, 2, 3, 4]
>>> t = (1, 2, 3, 4)
>>> 1.append(5)

>>> 1

[1, 2, 3, 4, 5]
Indentation

* Code blocks are defined by indentation

* The standard is 4 spaces.

Python tricks you can’t live without

* by Audrey Roy
* http://twitter.com/audreyr
* http://audreymroy.com

* My fiancee!

Note: Audrey used my laptop to present and I was manning the http://twitter.com/pyconph feed. Otherwise this
would be full of stuff. What I’'m going to to is take notes of the video and add them later.

Django Quickstart

¢ By Marconi (@marconimjr)
¢ on Facebook he is ‘Alexander Pierce’

* Wore a github shirt and gave shout out to the pony

118 Chapter 1. Conferences

http://twitter.com/audreyr
http://audreymroy.com
http://twitter.com/pyconph

pydanny-event-notes Documentation, Release 45

* Built off of Audrey’s talk. :-)

What is Django?

e MTYV framework
— Template = View

— View = Controller

Demo app

* quickstart.marconijr.com

Set up develop environment

* virtualenv + virtualenvwrapper

.profile on 0OSX or .bashrc
export WORKON_HOME=~/Envs
source /usr/local/bin/virtualenvwrapper/sh

Creating your virtual envuronment

$ mkvirtualenv pyconph
$ workon pyconph

Installing Django

$ pip install Django

Create Django project

$ django-admin.py startproject quickstart
$ cd quickstart
$ python manage.py runserver

Development server is running at http://127.0.0.8000

Directory structure

quickstart

| -manage.py

| -quickstart
|[-__init__ .py
| -settings.py

1.7. Pycon Philippines 2012 119

pydanny-event-notes Documentation, Release 45

|-urls.py
| -wsgi.py

settings.py

DATABASE = {
'default': {
'ENGINE':'django.db.backends.sglite3",
'"NAME': 'dev.db',

PROJECT_ROOT = 0S.XXXXX

Add templates

mkdir templates

quickstart

| -manage.py

| -quickstart
|-__init__ .py
| -settings.py
|-urls.py
| -wsgil.py

|-templates

Game Programming with Python

* by Mr Sony Valdez

http://twitter.com/mrvaldez
* Fantastic speaker

¢ Need to introduce him to Richard Jones

OMG he used notepad to present and pulled it off!

Quotes

* “Are you afraid of math? Too bad! In this tutorial you will learn how to math! Scary, isn’t it?”

* If you’re not familiar with cartoons I feel very sad for you.

Ph Game Development Industry

e http://www.igda.org

120 Chapter 1. Conferences

http://twitter.com/mrvaldez
http://www.igda.org

pydanny-event-notes Documentation, Release 45

What you need to know to program games

¢ Programming language
— Traditional
* C
* C4++
— New
% Flash
* Java
* Math
* game design pattersm
o C++
* Flash
* Lua
e Python

* Javascript

Math
Coordinate System

* X,y system

Collision Detection

¢ Collection detection is the alogrithm used to see if two sprites intersects

» If two rectangles overlap then there is a collision. An event is triggered.

Game Design Patterns

¢ Game Loop is simply an infinite loop in which input, updates, and draws occur. Each iteration is what is called

a ‘Frame’

* Game object represents an object in the game

Game Platforms

* Programmers use whatever is available

¢ half-life, Warcraft 3, Multimedia Fusion, GameMaker, and pygame

1.7. Pycon Philippines 2012

121

pydanny-event-notes Documentation, Release 45

pygame

* Based on Python

* Object oriented

Let’s make a game

¢ Python
* Pygame
e Shump

Functional Programming in Python

* by Malcolm Tredinnick
* malcolmt

* Started in Python in 1.4

Intro

 Python is more than just OO, it’s also functional

* Almost every language we use is imperative

* Python can be functional

The cheatsheet for this talk

* map()

« filter()

* functools module

* itertools module

* list comprehensions

¢ generators

Functional programming is....

e ... difficult to define precisely

* Good! (most worthwhile systems are)

Maybe this?

* transform data structures, don’t manipulate state

122

Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Most useful?

¢ concentrate on function return values, not side-effects

Python Functions

 Functions are first class objects
* You can pass them around as arguments to other functions

* You can construct them dynamically

def my_function() :
print "hello"

def show_string(func, arg):
print func() + arg

>>> show_string (my_function, " Goodbye!")
hello Goodbye!

Useful language features

* lambda expressions
* functools module
— TODO: check out partial() capability in functools

e itertools module

Pull out the even numbers

def evens (seq) :
results = []
for item in seq:
if item % 2 == 0:
results.append(item)
return results

List comprehension way

def evens(seq):
results = [x for x in seq if x $ 2 == 0]
return results

pull out the even numbers
def is_even (value) :
return value % 2 == 0

def evens(seq):
return filter (is_even, seq)

using partials
from functools import partial

1.7. Pycon Philippines 2012

123

pydanny-event-notes Documentation, Release 45

def is_even (value) :
return value $ 2 == 0

evens = partial(filter, is_even)

>>> evens ([1, 2, 3, 4, 5])
[2, 4]

Types of transforms

* Apply a function to every element
— map()
— list comprehensions [x for x in ...]
— generators (x forxin...)
* Select elements and filtering
— filter()
— itertools.dropwhile()
— itertools.takewhile()
* combining elements (folding)
— functools.reduce()
— manual loops
* sometimes a good idea
* unfolding
— Manual loops

— Recursion (sometimes)

Ansible - code deployment made simple

Simple Deployment and Configuration
* by Rodney Quillo
* http://capsunlock.net

* https://github.com/cocoy

What is Ansible

* You should make it easy to get servers running

* Ansible aims to solve deployment issues

https://ansible.github.com

* 3-in-1: Just like filipino coffee

124 Chapter 1. Conferences

http://capsunlock.net
https://github.com/cocoy
https://ansible.github.com

pydanny-event-notes Documentation, Release 45

Dependencies

* Jinja2 (in case you want fancy templates of configuration files)
* PyYAML (for settings configuration)

* parameiko

Question

e Why isn’t ansible pip installable?
* How does this compare to Salt Stack?

* Why YAML for configuration?

| didn’t know it’s Python: Python Advocacy

* by Allan Palo Barazone
* http://twitter.com/titopao

 Python since 2007, but since early 2000s

Affiliated of Wikimedia Philippines, Inc
* Good advocacy talk

How you attract tourists

e ...use paid television ads?
e ...use print ads?
* ...use social media?

e ...and still be consistent

Mount a campaign!

* Slogan: It’s more fun in the Philippines!

* Logo and slogan alone do not make a good campaign

People need to know:

e What’s in it for me?

Why Python?

¢ The usual ‘advocacy’ stuff.
* Very, very gentle learning curve

— Even complete newbies can understand

1.7. Pycon Philippines 2012 125

http://twitter.com/titopao

pydanny-event-notes Documentation, Release 45

Prototyping/Gluing

¢ Easily done with Python
— Low-level modules in another language (like C or C++)
— Then Python joins ‘em all together

* Python’s simplicity allows easy rewrites of prototypes

— competitive edge over C/C++/Java

Python is...SIMPLE

* Faster learning curve
— Easier to pick up than ‘traditional’ Filipino CS 101 languages
— Focus on thinking, not synxtax
* More readable than other languages
— Probably influenced by GvR’s math background
— Similar to pseudo code

— Hard to obfuscate

Works with JAVA and .Net!!!

* Reality: IT industry in PH is Java/.Net centric

¢ problem:

— We’ve already invested in Java/.Net technologies - will we have to rewrite the stuff?

- NO!

Ten things you didn’t know that use Python

* Google!
* YouTube
— http://highscalability.com/youtube-architecture
* Blender
* reddit
* Disqus
* Dropbox
 Facebook
* Instagram
* Pinterest

» Pywikipediabot

126

Chapter 1. Conferences

http://highscalability.com/youtube-architecture

pydanny-event-notes Documentation, Release 45

Maps of Imaginary Lands

* by Malcolm Tredinnick
* malcolmt

* https://github.com/malcolmt/imaginary-maps-in-django

The Goal

* Build an imaginary land

The Problem

* Not trivial
* Some preparation required
* May be new
— THis should not be a problem, but... :-)

The Solution

¢ I have provided running code

¢ Github URL at end of the slides.

What is success?

* Get up to speed on Django and GeoDjango
* Run (and read) my code

¢ Do something better!

The Secret Tip

* All maps are mashups

The Stack

* PostGUS

* OpenLayer.js
* Mapnik

e Tilecache

¢ GeoDjango

1.7. Pycon Philippines 2012 127

https://github.com/malcolmt/imaginary-maps-in-django

pydanny-event-notes Documentation, Release 45

OpenlLayer.js

¢ Client side, Javascript framework

* For doing maps layering

Mapnik

* Server side way to combine data sources
* Different details and different zoom levels

* Input from raster or vector formats

Tilecache

* Caching tile
¢ Use this or mod_tile or tilestache or other

* Avoid recomputing common data

GeoDjango

» Use views to provide subset of data

» Easy default output in formats understood by OpenLayers

Imaginary Maps

» Need to replace base image
* GeoAdmin needs to be customized for the imaginary maps

* Mapnik WMS server running locally

Sample Model Code

class Track (models.Model) :
name = models.CharField(unique=True, max_length=50)
path = models.LineStringField (geography=True)
objects = models.GeoManager ()

def _ unicode__ (self):
return self.name

Closing Keynote: Design your open source project

* by Bryan Veloso
* https://twitter.com/bryanveloso

* https://github.com/bryanveloso

128 Chapter 1. Conferences

https://twitter.com/bryanveloso
https://github.com/bryanveloso

pydanny-event-notes Documentation, Release 45

Note: Beautiful and inspirational!

Note: Bryan got schooled on that cats have 3 whiskers per side and the Octocat only has 2 whiskers.

Choice Quotes

* [know what you really want: beer!

* Open source is about collaboration

* GitHub is your new portfolio! Hi @pydanny!

* If you test, use http://travis-ci.org

* Sphinx pretty much powers all of Python’s documentation
* Trade development knowledge for design knowledge

* https://github.com/edu

About Bryan

* Github employer
* https://github.com/jdriscoll/django-imagekit

1.8 DjangoCon Europe 2012

1.8.1 Keynotes

Jacob Kaplan-Moss

{{ keynote }}

* jacob**@jacobian**.org
* Keynotes are hard.
* Researched to find different types of keynotes
— Announcements
% Steve Jobs

Technical Tour-de-force

+ David Beasley style

State of. ..
* West Wing style
+ Make it dramatic

Celebration

1.8. DjangoCon Europe 2012 129

http://travis-ci.org
https://github.com/edu
https://github.com/jdriscoll/django-imagekit
mailto:jacob**@jacobian**.org

pydanny-event-notes Documentation, Release 45

— (Constructive) Criticism

% Cal Henderson’s 2008 DjangoCon talk
— Inspiration

Neil Gaiman

+* Adam Savage

Se he’s going to do the following talks:

¢ Technical
e State of...
¢ Celebration
e Criticism

* Inspirational

Technical Talk

Note: @jacobian pointed me out and embarrassed me so I didn’t finish copying out his sphinx example.

Sphinx is awesome:

. code-block:: html+django

Useful Sphinx stuff for authentication-protected static files:
* static: http://lukearno.com/projects/static
* barrel: http://lukearno.com/projects/barrel

These sorts of integrated components are an incredible indicator of some of the awesomeness of Python

State of Django Talk

* Django is doing very well

¢ Each release has more and more incredible stuff added.

“Always feels like we are not moving as fast as we should, but when you look at what’s been accomplished it’s
amazing. Especially since forward compatibility has been pretty well maintained.”

* Django 1.5 should give us
— Python 3 support

— Composite keys

130 Chapter 1. Conferences

http://lukearno.com/projects/static
http://lukearno.com/projects/barrel

pydanny-event-notes Documentation, Release 45

Celebration

* This year has seen a ridiculous amount of adoption for Django.

* There is no longer an industry where Django does not exist.

* Django is now considered boring compared to things like node.js. Exciting is good when you are trying some-

thing new, but “exciting” and “production” should never be combined in the same sentence.

— See this article http://blog.pinboard.in/2010/01/technical_underpinnings/

Notable tech acquisition for Instagram.

Criticism

e HTMLYS issues

— Bruno’s floppyforms handles the form elements for you: see http://django-floppyforms.rtfd.org/

¢ Real-time

State of the art: parallel MVC stacks.

Mentioned Meteor framework as state of the art.

ment.

Are we doomed to callback hell?

You are fooling yourself if you don’t realize that Meteor style systems are not the future of web develop-

Can we not do client/server apps purely in Django?

url ('people/1/', person_detail)
def person_detail (request, pk):
ctx['person'] = get_object_or_404 (Person, pk=pk)

return (request, template, ctx)

{{ person.first_name }}

Inspirational Talk

Jacob’s uncle, a lawyer asks: “But if you give it away, how will you make money?”
* By giving it away, people have made a ton of money with Django

* Jacob is doing quite well

Summary

* Huge community brought in by our boring, stable system.

1.8. DjangoCon Europe 2012

131

http://blog.pinboard.in/2010/01/technical_underpinnings/
http://django-floppyforms.rtfd.org/

pydanny-event-notes Documentation, Release 45

* Now we can get really crazy with Django

* Make good art

Karen Tracey - Django and the Community

* http://twitter.com/km_tracey

* Been programming since 1987

* Django Core dev for a while.

* Crossword puzzle constructor since 2001

¢ Cat rescuer since 2009

Note: I've been programming since 1980. See http://mytechne.com/user/pydanny/programming-languages/. I win
on the age game. So there.

Why?

* Django’s community is one of it’s greatest strengths

Her Django story

* 2006 she found Django
* Django open-sourced a year earlier

* Django 0.96

Puzzle Database

* Aid in constructing puzzles, accessible from construction tool
¢ Amassed over ~5 years

* ~5,000 puzzles, ~100,000 unique entries, ~500,000 clues

Project: Web front-end for database

* Primary goal: better ability to see data in crossword puzzle tool

* Secondary goal: learn Python

Survey of Python web frameworks in 2006

* Pylons
* Turbogears

* Django

132 Chapter 1. Conferences

http://twitter.com/km_tracey
http://mytechne.com/user/pydanny/programming-languages/

pydanny-event-notes Documentation, Release 45

Snag: Weird database

She wanted to use her old tables instead of Django generated tables. Then she wasn’t sure about the code patterns she
was exploring.

class Entry (models.Model) :
entry
TODO find the rest of this content

She contacted django-users on mailing list and talked to Malcolm and Adrian. Submitted a patch and got it accepted
fast.

Sadness

 Probably never happens today that a person contributes so quickly.
 Everything needs tests before submissions are accepted.

» Balance stability with wow-factor

Back to the mailing list post

She was hesitant to sign her name

Open source has bad with regard to treatment of women

Confident of technical ability

— ... but conscious she didn’t know much about web programming

Would she get more respect if she didn’t reveal her gender

Plea: encourage women

* Women actively discouraged from participating in open source communities
¢ Please don’t join in bad behavior

» Speak out against it when you see it

Why did she become so active?

* Learn more about Django

* Improve communication skills
* Help people

 Puzzles!

* Long range-goal: get a job

1.8. DjangoCon Europe 2012 133

pydanny-event-notes Documentation, Release 45

What did the Django community gain from Karen’s involvement?

¢ Lots of triage/bugfixes prior to 1.0
* Some features/bugfixes since 1.0

* Helped many people learn Django

What did she gain out of Django?

* Become core committer in 2008
* Asked to write a book in 2009 (got published in 2010)
* Got a great job in 2010

Get involved!

* Community events, big or small
* Mailing lists

* IRC

* Stack overflow

* Ticket triage

* Bug fixes

* Feature development

* Patch review

* Blogs

Jessica McKellar

* http://twitter.com/jessicamckellar
* http://jesstess.com

» Kernal Engineer

¢ PSF Board Director

* Co-lead of Boston Python

Theme talk

¢ Make me make good choices
— How to make a proper internationalized site

— Education and best practices by default for novice web developers

134

Chapter 1. Conferences

http://twitter.com/jessicamckellar
http://jesstess.com

pydanny-event-notes Documentation, Release 45

Accessibility

¢ Visual
¢ Motor
e Auditory

* Cognitive

Visual Accessibility

e 7-10% of Caucasian men haver some form for color blindness
* 2.6% of the global population is visually impaired
* http://www.w3.org/WAI/

* http://www.section508.gov

Note: From 2000 to 2010 I was heavily involved in Section 508 implementations for various US government funded
projects including http://science.nasa.gov/

Accessibility Guidelines

* Alt-text on images

* Accessible intra- and inter-page navigation

* Audio and video accessibilut: captions, transcriptions

¢ Indicate important info by other things besides just color
* TODO: Finish

See djangoproject.com being fixed! https://github.com/django/django/commit/
29a80354ab5e5b85fa37863t70b1cf95646dc699

Django Accessibility

* How can Django help people avoid, detect, and address accessibility issues?
* Set a good example: audit ourselves!
— Websites
— Conferences
* Accessibility tutorial?
* Accessibility checklist?

* Warnings on easily correctable issues?

1.8. DjangoCon Europe 2012 135

http://www.w3.org/WAI/
http://www.section508.gov
http://science.nasa.gov/
https://github.com/django/django/commit/29a80354ab5e5b85fa37863f70b1cf95646dc699
https://github.com/django/django/commit/29a80354ab5e5b85fa37863f70b1cf95646dc699

pydanny-event-notes Documentation, Release 45

Security

Django handles the following:
* XSS
* CSRF
— But instruction on how to do it with POSTS could be better
* SQL Injection
— Warnings on RAW SQL could be better
— ORM is EXTREMELY secure
¢ Clickjacking
— Super easy to enable, but not set by default
— Documentation on this is kind of buried
* Cookies

— Important things are possibly set the wrong way

django-secure

* Great little app.
* But if there are that many stupid little things that need to be checked, maybe the defaults should be changed?

How about a security tutorial?

» Teach people from the start what they should be doing

* Include a security checklist

Internationalization

Done:
¢ Localization
¢ Translation

¢ Timezones

Django natively supports Unicode data everywhere
* How about:

— Internationalization tutorial?

— Internationalization checklist?

Existing Security pages exists, but needs work: https://docs.djangoproject.com/en/1.4/topics/security/

136 Chapter 1. Conferences

https://docs.djangoproject.com/en/1.4/topics/security/

pydanny-event-notes Documentation, Release 45

django.contrib.auth.models.User

« First name and last name is very specific to certain Western European nations.

* Work is being done to make the User model properly extendable

Gender Issues

Code samples at djangoproject.com are gender specific:

class Foo (models.Model) :
GENDER_CHOICES = (
('M', 'Male'"),
('F', 'Female'),
)
gender = models.CharField(max_length=1, choices=GENDER_CHOICES)

Our examples should not get locked into examples from which people could feel excluded by because of personal life
choices.

1.8.2 10 Steps to better postgresql performance

* Christophe Pettus

* PostgreSQL guy

* Done PostgreSQL for over 10 years
* Django for 4 years

* Not going to explain why things work great, just will provide good options. Ask him later for details

http://thebuild.com/presentations/not-your-job.pdf

Note: Christophe talks super fast and I can’t keep up

PostgreSQL features

* Robust, feature-rich, fully ACID compliant database
* Very high performance, can handle hundreds of terabytes

¢ Default database with Django

PostgreSQL negatives

* Configuration is hard
* Installation is hard on anything but Linux

* Not NoSQL

1.8. DjangoCon Europe 2012 137

http://thebuild.com/presentations/not-your-job.pdf

pydanny-event-notes Documentation, Release 45

Configuration
Logging

* Be generous with logging; it’s very low-impact on the system
* Locations for logs

— syslog

— standard format to files

— Just paste the following:

log_destination = 'csvlog'
log_directory = 'pg_log'
TODO - get rest from Christophe

Shared_buffers

TODO - get this

work_mem

Start low: 32-64MB

* Look for ‘temporary file’ lines in logs

* set to 2-3x the largest temp file you see

* Can cause a huge speed-up if set properly

* Be careful: it can use that amount of memory per query

maintenance_work_mem

e Set to 10% of system memory, up to 1GB

effective_cache_size

* Set to the amount of file system cache available

* If you don’t know it, set it to 50% of the available memory

Checkpointing

* A complete fish of dirty buffers to disk
* Potentially a lot of I/O
¢ Done when the first of two thresholds are hit:

— A particular. ..

138 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Note: Didn’t get any of this part of things.

Easy performance boosts

* Don’t run anything else on your PostgreSQL server
e If PostgreSQL is in a VM, remember all of the other VMs on the same host
* Disable the Linux OOM Kkiller

Stupid Database Tricks

* Don’t put your sessions in the database

* Avoid aonstantly-updated accumulator records.
e Don’t put the task queues in the database

* Don’t use the database as a filesystem

* Don’t use frequently-locked singleton records
* Don’t use very long-running transactions

* Mixing transactional and data warehouse queries on the same database

One schema trick

* If one model has a constantly-updated section and a rarely-updated section
— last-seen on site field

— cut out that field into a new model

SQL Pathologies

* Gigantic IN clauses (a typical Django anti-pattern) are problematic

* Unanchored text queries like ‘%this%’ run slow

Indexing

* A good index
— Has high selectivity on commonly-used data
— Returns a small number of records
— Is determined by analysis, not guessing

» Use pg_stat_user_tables - shows sequential scans

* Use pg_stat_index_blah

1.8. DjangoCon Europe 2012

139

pydanny-event-notes Documentation, Release 45

Vacuuming

* autovacuum slowing the system down?
— increase autovacuum_vacuum_cost_limit in small increments
¢ Or if the load is periodic
— Do manual VACUUMIing instead at low-low times
— You must VACUUM on a regular basis
* Analyze your vacuum
— Collect statistics on the data to help the planner choose a good plan

— Done automatically as part of autovacuum

On-going maintenance

keeping it running

monitoring

» Keep track of disk space and system load
e memory and I/O utilization is very handy
* 1 minute bnts

* check_posgres.pl at bucardo.org

Backups

pg_dump

* Easiest backup tool for PostgreSQL
* Low impact on a running database
* Makes a copy of the database

* becomes impractical for large databases

Streaming replication

* Best solution for large databases

* Eagy to set up

* Maintains an exact logical copy of the database on a different host
* Does not guard against application-level failures, however

* Can be used for read-only queries

* if you are getting query cancellations then bump up a config

¢ Is all-or-nothing

140

Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

* If you need partial replication, you need to use Slony or Bucardo

— ..warning:: partial replication is a full-time effort

WAL Archiving

* Maintains a set of base backups and WAL segments on a remote server
* Can be used for point-in-time recovery in case of an application (or DBA) failure

¢ Slightly more complex to set up

Encodings

¢ Character encoding is fixed in a database when created
e The defaults are not what you want

* Use UTF-8 encoding

Migrations

» All modifications to a table take an exclusive lock on that table while the modification is being done.
¢ If you add a column with a default value, the table will be rewritten
* Migrating a big table

— Create the column as NOT NULL

— Add constraint later once field is populated

Note: I’ve done this a lot.

Vacuum FREEZE

* Once in a while PostgreSQL needs to scan every table
 This can be a very big surprise

¢ Run VACUUM manually periodically

Hardware

¢ Get lots of ECC RAM
¢ CPU is not as vital as RAM
¢ Use a RAID

1.8. DjangoCon Europe 2012 141

pydanny-event-notes Documentation, Release 45

AWS Survival Guide

* Biggest instance you can afford
» EBS for the data and transaction

¢ Set up streaming replication

1.8.3 Round pegs for square holes - using mongoDB with Django

¢ Audrey Roy and Daniel Greefeld
* Cartweel people

* Using mongoDB with Django

» Taken by @chrisglass

Note: Hard to keep up here

MongoDB

* Mongo is NoSQL, stores stuff in BSON, uses javascript (V8), bindings for pretty much anything available.
¢ Collections are like tables, Documents are like rows.

¢ Queries return a list of dictionnaries.

Many options
pymongo
* Plenty of connectors available, pymongo being the “official” one, that most others wrap.

* Schemaless, very fast, supported directly by 10Gen.

¢ You loose modelforms, some admin

MongoEngine

* Mongoengine is another option. It is a more Django looking piece of code, Integrates better with all the django
bells and whistles. VERY FAST development (basically Another import instead of django.model) A con is that
it’s very close to the normal way of having schemas, which is counter intuituve in a schemaless DB, and you
loose the django admin layer.

MongoKit

* MongoKit: Makes queries a little less Djangonic, more like MongoDB, therefore easier to go “schemaless”. A
litte slower, but admitedly no benchmarks <not sure it matters anyway compared to the DB-server roundtrip>

142 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Django-nonrel

* Django-nonrel with a mongodb backend: “a patch to django”, it’s actually a fork of django. You can use django
as you would normally, still lagging behind The rest of django, multi-db is confusing

Conclusions and further thoughts

* Django doesn’t really feels like a good match for NoSQL, and better suited for relational DBs
* Mongo is a greate DB, but the is some work to be done to simplify usage of Mongo, “lack of ai simple bridge”.

* If you have a schema definition anyway (models), why should you not use postgres and reap all the good stuff
people wrote?

* Treat instrospection like MongoDb queries? To investigate
* Schemaless databases bring great advantages on the other hand - it is should be worth a few compromises.

1.8.4 Square pegs and round holes - Django and MongoDB

BY DANIEL GREENFELD AND AUDREY ROY

Note: Obviously not taken by Daniel as he’s talking. This version by Marc Tamlyn (@mjtamlyn).

¢ Danny might cartwheel. ..

* Work at cartwheel web - a django consulting shop. Met at Pycon 2010. Engaged!

What is MongoDB?

¢ NoSQL
¢ Fast, indexable. ..
¢ Schema-less

e C++, Uses BSON (extended JSON), JS internals, Bindings in EVERYTHING. There’s a big community.

Analogies

¢ Collections ~ Table
¢ Document ~ Row

¢ A QS looks like a list of dictionaries.

collection = []

document = {
'_object_id': ObjectId('sadfasdfasdfsa'),
'name': 'PyDanny'

}

collection = [document,]

1.8. DjangoCon Europe 2012 143

http://twitter.com/mjtamlyn

pydanny-event-notes Documentation, Release 45

Connectors

* pymongo (low level)
* mongoengine/mongokit (Document ORM)

* Django non-rel

PyMongo

* Official binding.
» powers everything else

* low level, but nice enough api.

connection = pymongo.Connection ()
db = connection.db

for review in db.reviews.find({'rating': 3}):
review['title']

* FAST!
* Schema crazy! (each row has its own schema)

* Supported directly by 10gen who make Mongo. Their recommended solution.

Cons

* Very low level.
* Lose all of the things from Django you want.

¢ Syntax not so clear.

Mongoengine

By @harrymarr!
Looks a lot like the Django ORM.

class Review (mongoengine.Document) :
name = mongoengine.CharField ()

* Queries like the Django ORM.

* Super easy to develop with.

 Light schema, unenforced by db.

* django-mongonaught for admin-like functionality

 Supports some inter-document connections

144 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Cons

¢ Too structured?

* Validation messages sometimes unclear

* Lose on things like introspection (though that’s what mongonaut is for)
MongoKit

 Similar pattern to monogengine

class Review (Document) :

structure = {
'title': unicode,
'body': unicode

* Queries like mongo rather than Django. Much easier to make it schemaless.
* Pretty quick.
* Types are a mix of python & mongo.

* Losing the introspection again. No schema to inspect!
Django non-rel + monogdbengine
* Adds NoSQL to the ORM. A Fork of django.

* Works with App Engine, MongoDB, and SQL dbs.

Pros

* Exactly like normal django

* Has introspection from d jangotoolbox

Cons

* Forks ALL of django. (1.3...). Maintenance headache potentially.
* Multidb usage is confusing

¢ A bit idealistic. . .

Summary

* pymongo is low level
¢ monogengine is schemaless django models

e mongokit ~ pymongo++

1.8. DjangoCon Europe 2012 145

pydanny-event-notes Documentation, Release 45

* django-nonrel is a django fork

Thoughts: Danny

¢ Can we build a “simple” bridge?

* What about a 3rd party app which combines standard django apps with mongo db? (e.g. contrib.auth, forms,
social-auth etc)

* “Let’s extend the django admin” doesn’t work. . .
Why add schemas to schemaless when:

* Relational DBs

* South

* High level caching tools

allow you to do fast moving dbs easily.

Introspection tool idea:

Immediate introspection: if there’s no title then don’t show a title! Treat it like MongoDB queries.

Thoughts: Audrey

* Schemaless dbs promise performance at the expense of ACID. Lose the guarantees for the highter availability.
* This is OK when performance is more important than being consistend 100% of the time.

* Schemaless models != schemaless collections. MongoEngine is best case unless you need schema anarchy!
(Props to @harrymarr again)
Using Django with Mongo

* Big hurdles, but it’s improving rapidly.
* Needs:

— New tools

forms bridge

admin bridge

replacement for auth

creation of best practices

* Nothing wrong with mixing DBs.

Django mongonaut

Introspection for MongoEngine. Works so far. Want to make it independent from mongoengine and make more
generally useful.

Integrate some graphing tools? (e.g. graphviz) Should be based off immediate introspection rather than ahead-of-time.

146 Chapter 1. Conferences

http://twitter.com/harrymarr

pydanny-event-notes Documentation, Release 45

Summary

Consider all of the tools. It’s not impossible!

1.8.5 Class-based Generic Views: patterns and anti-patterns

« BY BRUNO RENIE
* CBVs added in Django 1.3

* https://speakerdeck.com/u/brutasse/p/class-based- views-patterns-and-anti-patterns

Note: couldn’t keep up with his code samples

Controversy

Blog posts last week
* Luke Plant
* Nick Coghlan

What are views in Django?

“A view is a callable that takes a requests and returns a response”

Deprecation
* Functional views are not deprecated
* Generic functional views are

Pre Django-1.3 Django CBVs

e Admin
¢ RSS feeds

* Sitemaps

CBV API

class View (Object) :

@classonlymethod
def as_view(cls, *+init):
def view(request, =xargs, =xxkwargs):
self = cls(**1init)
return self.dispatch(request, xargs, *xkwargs)

TODO find the rest

1.8. DjangoCon Europe 2012

147

https://speakerdeck.com/u/brutasse/p/class-based-views-patterns-and-anti-patterns

pydanny-event-notes Documentation, Release 45

Declarative vs Imperative
* CBVs have a much steeper learning curve
* ccbv.co.uk is a handy resource
Usage Tips for Django CBVs
* try to keep urls.py for URL definition and nothing else

* Keep decorators in views.oy

Decorating

TODO show Python 2.7 version here

class MyView (generic.ListView) :
pass
Complete this

MRO, extend, don’t override

Unless you’re 100% sure of what you’re doing

Case Studies

Useful recipes

Form processing

TODO - get the form processing example

Nested Navigation

TODO - get example

Pagination

TODO - get example

Registration

from le_social.registration import views

class Register (views.Register):
form_class = blah

148 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

TODO get example

Settings

Don’t set so many settings:

from le_social.registration import views

class Activate (views.Activate):
expires_in = 3600 = 24 « 7 # 7 days

Shooting yourself in the foot

The problems with using CBVs

The 500 Error

class Handler500 (generic.TemplateView) :
template_name = '500.html’

No matter what goes into this, it will throw out blank pages.

1.8.6 Django and the Real-Time Web

* by Zachary Voase

* https://speakerdeck.com/u/zacharyvoase/p/django-and-the-real-time-web

Note: Very thoughtful talk. Zachary scored some very critical points.

WWW: Changelog

* Since July 2008 Chrome has stolen the market from IE.
* Chrome is about to take over IE in the desktop.
* JavaScript and long polling has come around.

Can’t miss this opportunity

But If we spend all your time playing with bright and shiny we’ll lose our existing customer base.

1.8. DjangoCon Europe 2012 149

https://speakerdeck.com/u/zacharyvoase/p/django-and-the-real-time-web

pydanny-event-notes Documentation, Release 45

Zachary’s definition of Real-Time

* Ul before technology
¢ Proactive, not reactive

* Synchronized with the ‘real world’.

Stories

MvC

e Parc 1978-1979

¢ Originally part of Smalltalk-80

* Now the dominant UI design pattern
How it works on the web:

* Listen for reqursts

— Load session state for this user

— Persist session state, clean up objects

REST

o **RE**presentational **S**tate **T**ransfer

Roy T Fielding (2000)
* Descriptive, not prescriptive
¢ Constraints
— Client-server
Stateless

Cacheable

Layered

Code-on-demand (optional)

Uniform

WebSockets

Real TCP connection
e Magic HTTP request to port 80
* Reduces latency

* Enables real-time push

150

Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

REST & WebSockets

Full-duplex communication

* Long-running connections

Direct TCP connection

TODO missed

Version Control

* Centralized VCS (CVS, SVN, etc)
¢ Distributed VCS (Git, Mercurial, etc)

Summary of the stores

* Imagine a system where the client is a full MVC stack, as is the server.
* Content is a matter of pushing/pulling like with DVCS

* Backbone.js does this, as well as Cappucino

Caching

Read RFC 2616
* Seriously.

» Etags

* Cache-Control

¢ Conflict resolution:

(uri, etag, dirty?)

Implications

¢ Assumption of orthogonality

* Lossless representations

e Authn & Authz are hard topics
* Pub/sub

¢ Resource-oriented client

Pub/Sub

* AMQP
* OMQ
* Django Signals

1.8. DjangoCon Europe 2012 151

pydanny-event-notes Documentation, Release 45

Barriers

* Django ORM - be opinionated!

» Content Negotiation
— Don’t have a separate API app
— Created separately from the standard architecture
— This is a good use case for Django CBVs

e JavaScript

* proxies and middleware

1.8.7 Building secure Django websites

* by Erik Romijn
— hello@solidlinks.nl
— http://twitter.com/erikpub

— slides: https://speakerdeck.com/u/erik/p/building-secure-django-websites

Three Areas

* Integrity
— Internal consistency or lack of corruption in electronic data
* Confidential

— To keep data secret that was intended to be secrity

¢ Available

— ability to be used or obtained

How cookies and sessions work

Set-cookie: name: value
Cookie: name=value

Sessions

sessionid=8f70xxxxa3d9
session: {
key: 8f70xxxxa3d9,
user: Erik

}

If you can access the session of another user, you can impersonate the other user.

152 Chapter 1. Conferences

mailto:hello@solidlinks.nl
http://twitter.com/erikpub
https://speakerdeck.com/u/erik/p/building-secure-django-websites

pydanny-event-notes Documentation, Release 45

Cross Site Request Forging

Fortunately for us, if you use POST, Django by default has CSRF protection enabled via:

<form>
% csrf token %}

</form>

XSS Injection

Injecting HTML or JavaScript into things like field data

<p>Injecting issues <script>alert ("I'm a JavaScript injection!");</script></p>

Reflected vs. Stored XSS

* Previous examples are reflected XSS
— Have to try the user into visiting my link
* Other possibility is stored XSS
— Store some data which is later sent back to users, e.g. blog comments

Cookie security

* HTTPOnly flag will prevent reading cookie from JS
* Alternate attack is Cross Site Tracing (XST): disable TRACE on your web server

* Note: if cookie domain is set to e.g. djangocon, every website under djangocon.eu is at risk.

Server side injections

SQL injection

* No concern, Django ORM prevents injection

* If you don’t use it, stick to prepared statements

LDAP Injections

* You can play creative games if you know the LDAP specification

Note: I saw this at NASA HQ before we rolled out my first professional Python application back in 2006.

Shell Injection

* Always use subprocess

1.8. DjangoCon Europe 2012 153

pydanny-event-notes Documentation, Release 45

Trusting the Browser

* The browser is under the user’s control

* Which means you cannot trust anything that the user is doing
Be careful with ModelForms

Don’t use the exclude Meta attribute in ModelForms!

class Profile (models.Model) :
user = ForeignKey (User)
phone = models.CharField()
is_admin = BooleanField() # added later

class ProfileForm (ModelForm) :

model = Profile
exclude = ('user',)
<form>
{{ form.non_field_errors }}
Phone: {{ form.phone }}
</form>

Passwords and SSL

* Don’t use plaintext passwords
e Limit the number of attempts (django-axes, django-lockout)
* If you use logins, use SSL

e If you use SSL, look at django-secure

Clickjacking and Django

* Protection in Django 1.4
¢ django.middleware.clickjacking

e etc

Backups

* Run backups
* If you don’t have backups, who owns your stuff?

* Test your restores!

Introducing PLY

* PLY is an implementation of lex and yacc for Python

* Made by David Beazley

154 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

* http://www.dabeaz.com/ply/
* Naming conventions and introspection => very “economic” code

Let’s us compile things like:

groups name="XXX" AND NOT groups__name="YYY"
(modified > 1/4/2011 OR NOT state_ _name="OK") AND groups__name=="XXX"

into django.db.models.Q objects

1.8.8 Implementing DSLs in Django Apps

* by Mattieu Amiguet

Initial Motivation: Searching Contacts

class Contact (models.Model) :

first_name = models.CharField()
groups = models.ManyToManyField ('Group"')

¢ Client wants to customize things themselves
* giving them access to code is dangerous

e Limit their actions

Other reasons

* Quick and easy to implement (if you use the right tools)

¢ Fun to code!

Not for the end user

* Only to be used by power users

* Your DSL could be used as a scripting language

How to make a DSL in Python/Django

* Basics
— Lexer (vocabulary)
— Parser (grammar)
— Some kind of backend
* The lexer and parser part are quite generic

— use code generator

1.8. DjangoCon Europe 2012 155

http://www.dabeaz.com/ply/

pydanny-event-notes Documentation, Release 45

Sample

import ply.lex as lex

tokens = (
'COMPA', # comparison operator
"STRING',
'NUMBER'
)
t_COMPA = r'=|[<>]=2|~~2"
literals = '()' # shortcut for I1-character functions

def t_STRING(t):
TN AT RN

t.value = t.value[l:-1]

def t_NUMBER(t) :
r'\d+"'
TODO - finish this function

Note: Not sure how this works. Me need to read up on PLY

Parser - The Grammar

expression : expression B_OP expression expression : U_OP expression expression : ‘(* expression ‘)’
value : STRING

NUMBER
DATE

Parser in PLY

e Grammar rules go into docstrings

* Special argument p corresponds to rule parts

def p_expression_u_op (p) :
"'"'expression : U_OP expression'''
if p[l] == 'NOT':

pl0] = pl1]

1.8.9 | hate your database

by Andrew Godwin
* Lead developer for South http://south.aeracode.org/
* Cheese fan
* http://twitter.com/andrewgodwin

* Slides: http://www.aeracode.org/static/slides/djangocon-eu-2012.pdf

156 Chapter 1. Conferences

http://south.aeracode.org/
http://twitter.com/andrewgodwin
http://www.aeracode.org/static/slides/djangocon-eu-2012.pdf

pydanny-event-notes Documentation, Release 45

Hate? Databases?

Countering
e Misuse
* Ignorance

e Lies

Different Databases, different occasions

* People use the same database for everything they touch

* You shouldn’t use a database for things it was not designed to do.

* Types of databases:

Relational

Document

Key-value
Graph
Object / Heirarchial

Spatial
— Time-series / RRD
— Search

* Relational
— PostgreSQL
- MySQL
— SQLite

e Document
— MongoDB
— CouchDB

* Key-value
— Redis
- Riak

Some quick theory

* ACID

Atomicity

Consistency

Isolation

Durability

1.8. DjangoCon Europe 2012

157

pydanny-event-notes Documentation, Release 45

e CAP Theorem (you can only have 2 of the 3 of them)
— Consistency
— Availability

— Partition Tolerance

MySQL

Very interesting database system
* No transactional DDL

* Poor query optimizer

MyISAM: full-table locking, no transactions
¢ Oracle

* Very fast for some operations

SQLite

« Little integrity checking

* Impossible to do some table alterations
* No concurrent access

* Low overhead

* Very portable

PostgreSQL

* Slow default configuration
* Can be a little harder to learn
¢ Almost too many features

* Incredibly reliable

MongoDB

* No fixed schema

* Very similar to Python types
* Immature (but improving)

* No transactons

* No integrity checking

158 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Key/value stores

Redis, Riak, memcached
* Horizontal scaling (but with drawbacks)
» Extremely fast
* Can only fetch objects by key
* Batch/map-reduce queries

* Transactions not possible

Spatial databases

* Knowledge of projections useful

* Spatial indexes really speed up some problems

* Generally add-on to existing DB

Filesystems

* Hierarchal key-value store

* Allows multiple writers for appends

» Supports very large files
Graph Databases

* Allow efficient neighbor queries

* Generally not much use for anything else
Round-Robin Database

* Deliberately loses old data

» Useful for logging or statistics

Summary

¢ It’s unlikely your data all fits in one paradigm

* Just buying bigger servers goes a long way to overcoming shortcomings of a particular database

e Try multiple things before making a decision. Educate yourself!

1.8. DjangoCon Europe 2012

159

pydanny-event-notes Documentation, Release 45

1.8.10 LFS - Lightning Fast Shop

http://www.getlfs.com/
by Kai Diefenbach
* Living in Germany
* Does Python and Django
* Lead on LFS
* http://diefenba.ch/
* http://twitter.com/diefenbach

* Slides: https://speakerdeck.com/u/diefenbach/p/Ifs-an-online-shop-based-on-django

LF = Lightning Fast WTF?

¢ Faster than the old Plone shop they used to support
 Calculation ~200ms / ~100ms
* Page 0.5 - 2 seconds

* Renders pretty fast

Numbers & Facts

¢ Django

* JQuery

* BSD license

* 100,000 downloads on PyPI

* Google Group > 170 members
* O committers

* On github

* ~40 known shops

Samples

* http://demmelhuber.net
* https://www.anwaltakademie.de/

* http://www.holzimgarten.de/

Features

* Custom management interface
¢ default theme is attractive

¢ Products can have variants

160 Chapter 1. Conferences

http://www.getlfs.com/
http://diefenba.ch/
http://twitter.com/diefenbach
https://speakerdeck.com/u/diefenbach/p/lfs-an-online-shop-based-on-django
http://demmelhuber.net
https://www.anwaltakademie.de/
http://www.holzimgarten.de/

pydanny-event-notes Documentation, Release 45

* Downloadable products coming soon!
* Topsellers

* Vouchers

* SEO

* Sitemaps

* Prepared for Google Analytics

* Good URL patterns

* Portlets

* Filtered navigation

Properties

 Extend products

 Create variants & configurable products
* Filtering

¢ Select field, float field, and text field

Accessories

* Lets you tack accessory products to a product
— Roofs could list nails and tiles

— MBA could list Sublime Text 2

Variable Payment Methods

e Credit
¢ Debit
* PayPal

* Pluggable so we can add Stripe

Development

* On Github
PEPS & pyflakes

» Every new feature must have a real live use case
* Every new feature must have tests

* Every new feature must have documentation

* Using Jenkins for CI

* Deprecations over two releases

1.8. DjangoCon Europe 2012 161

pydanny-event-notes Documentation, Release 45

1.8.11 Using CSS preprocessors effectively

by Jonas Wagner
* Known for doing crazy and creative stuff
* Porting Physic engines to JavaScript via Python
* Works as Software Engineer at local.ch

* 3.1 million unique clients

Don’t make a mess
* Most programming languages encourage good code pattern
* CSS is not one of those languages

Issues with CSS

* No Variables
* No hierarchy
* Prefixes

* Sprites

e Lack of abstraction

Solution: CSS Preprocessors

Choosing a Preprocessor

SASS

Official implementation is in Ruby
¢ Two dialects scss and sass
» Sassy CSS

» Syntactically Awesome Stylesheets

PySCSS is an implementaton of SCSS in Python

* Compass is

LESS

* Originally written in Ruby
* Now implemented using JavaScript in Node.js
* Can be compiled on the client and using Node.js

 Twitter bootstrap uses LESS

162 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Which one?

* Features virtually equivalent
* Both are a superset of CSS
* He recommends SCSS
— More explicit syntax
— Compass offers lots of goodies

— Decent Python implementation

Common Features

* Variables

* math and functions

* nesting

¢ avoiding CSS hacks

* More elegant comment system
¢ Mixins

¢ Prefixes

Doing it with Django

pip install webassets cssmin

STATICFILES_FINDERS = (
'django_assets.finders.AssetsFinder',
INSTALLED_APPS = (

.

'django_assets',

in assets.py:

from django_assets import Bundle, register

js = Bundle ('common/jquery.js', 'site/base.js', 'site/widgets.js',
filters="'Jsmin', output='gen/packed.js')

register('js_all', 3Js)

{% load assets %}
% assets "Js_all" %}

<script type="text/Jjavascript" src="{{ ASSET URL }}"></script>
% endassets %}

1.8. DjangoCon Europe 2012 163

pydanny-event-notes Documentation, Release 45

Tools

* Good editor support for Preprocessors
* Graphical tools like LiveReload and Compass.app
* FireSASS

Warning

¢ Increased complexity
* Might not work with IE
* Makes debugging harder

¢ Potential for bloat

Conclusion

* Preprocessors solve common problems
* Allow us to focus on writing clear and meaningful CSS

 Try it on at least one project

Plain old CSS feels very silly

1.8.12 Arkestra: semantic information publishing for organizations

by Daniele Procida
* Works at Cardiff University School of Medicine
e http://medicine.cf.ac.uk is his main site

* http://arkestra-project.org/

http://readthedocs.org/docs/arkestra/

* slides: https://speakerdeck.com/u/evildmp/p/arkestra-at-djangocon-europe-2012

Note: Good talk but some slides had too many bullets.

What typically happens when working with a CMS

* You have to repeat yourself

* data gets wasted and lost

* content & presentation becomes inconsistent
* info in templates gets broken and petrifies

* information ages, withers & dies

* users play fast & loose

* The larger the site the worse the problems get

164 Chapter 1. Conferences

http://medicine.cf.ac.uk
http://arkestra-project.org/
http://readthedocs.org/docs/arkestra/
https://speakerdeck.com/u/evildmp/p/arkestra-at-djangocon-europe-2012

pydanny-event-notes Documentation, Release 45

His idea

Create a model of the real world

Informtation, not just data

¢ information not useless stupid data
* templates don’t hold information
¢ Semantic modeling real-world relationships

e user semantics!

Organization

¢ Can you model a CMS based off an organization?

* He created a concept of entity

* Many interconnections of content and data

* He did it on http://medicine.cf.ac.uk
— Entities are associated with pages
— Not entity needs to have a page

* We did a very similar effort on http://science.nasa.gov/, but. ..
— not so well organized.

— grown organically during the course of a number of badly run meetings

Don’t waste people’s time

* Make everything re-usable and re-use it

e Make it easier to re-use then re-enter

Django-CMS and Arkestra

* Django CMS & Arkestra grew up together
* have been developed alongside each other
* portions of Django CMS conceived as part of Arkestra

* integration with pages, placeholders/plugins, menus

The Semantic Presentation Editor

The problem:
* Create complex, flexible, multiple-column layouts
¢ produce well-structured semantic HTML

¢ Need no HTML/CSS skills

1.8. DjangoCon Europe 2012

165

http://medicine.cf.ac.uk
http://science.nasa.gov/

pydanny-event-notes Documentation, Release 45

Solution:
* The Semantic Presentation Editor
» Special text editor that renders out things in a lovely, semantic fashion

* See https://bitbucket.org/spookylukey/semanticeditor/wiki/Home

1.8.13 Django Chuck - Your powerful project punch button

by Bastian Ballmann and Lukas Biinger

Note: Looks to be an amazing, modular tool for standing up projects easily. Missed most of the talk so my notes are
incomplete.

Why the name Chuck?

¢ Chuck is not informal term for meal
* Not meaning vomit

* Chuck has no times to anything

Use case for django-chuck

* Same setup all the time
* Manual project setups

» Same conditions apply all the time

Why not Pinax?

* No modular template structure or code base
* Monolithic Python script
* Addresses project creation only

* No flexible build process management

Installation

pip install django-chuck

copy example_conf.py to:
~/django_chuck_conf.py
See django-chuck.rtfd.org

166 Chapter 1. Conferences

https://bitbucket.org/spookylukey/semanticeditor/wiki/Home

pydanny-event-notes Documentation, Release 45

Example usage

chuck create_project <prefix> <name> [modules] -a [pip modules]
chuck create_project ni djangocon django-cms, test,nginx

What happened?

This got generated:
* settings
* requirements
e uwsgi
* fabfile
* hosting
* jenkins

* templates

Setup an existing project from source

chuck setup_project git@whatever.com:your-project.git

Note: Stepped away for things.

1.8.14 It’s about time

by Aymeric Augustin
* Django core dev

* http://static.myks.org/data/20120605-DjangoCon-It’s_about_time.pdf

Note: Had to deal with a business thing so didn’t get all of Aymeric’s talk down. What I got was from some really
awesome material.

RFC 3339

e Current era

Stated offset
e universal time

e instant in time

1.8. DjangoCon Europe 2012 167

http://static.myks.org/data/20120605-DjangoCon-It's_about_time.pdf

pydanny-event-notes Documentation, Release 45

from datetime import datetime
datetime (
year=2012, month=6, day=>5
hour=16, minute=10, second-0,
microsecond=0,
tzinfo=FixedOffset (120)

Time zones add complexity

aware vs naive datetimes

>>> naive = datetime (2012, 6, 5, 16, 15)

>>> tz = timzeone ("Europe/Paris")
>>> aware - tz.localize (naive)
>>> naive - aware

From the Python docs: Whether a naive datetime object represents UTC, local time, or time in some other timezone is
purely up to the program.

DST transitions

from datetime import datetime

dates and datetimes

* dates are always naive
* they don’t suffer from the same problems as naive datetimes
* using an aware datetime as a date is an accident waiting to happen

* Django supports mixing naive datetimes and dates

Django >= 1.4

e Uses aware datetimes in URC internally
* stores naive datetime sin UTC in the database (except PostgreSQL)
 converts to aware datetimes in local time in forms and templates

* supports multiple time zones!

default and current time zones

* default = settings. TIME_ZONE

— used in models for conversions between naive and aware objects
e current = end user’s time zone

— used in templates and forms

— for multiple time zones support

168 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

auto-conversions

* ensure backwards compatibility
* avoid surprises for single time zone sites
* but support sloppy contructs e.g.,

— filter a DateTimeField with a date

— save a datetime in a DateField

Utilities

>>> from django.conf import settings
>>> from django.utils import timezone

>>> settings.USE_TZ = True
>>> timezone.now ()
<snip>

limitations in Django 1.4

¢ The database works in UTC (ticket #17260)
* QuerySet.dates()
— __year/month/day/week_day

* Author of pluggable apps may have to handle two cases

Key learnings

1. A datetime is a point in time. A date is a calendaring concept.
2. Use aware datetimes in UTC and convert to local time for humans.
3. learn how to use pytz properly especially localize and normalize

Time isn’t as simple as it seems. Learn and practice!

1.8.15 Healthy Webapps Through Continuous Introspection

by Erik van Zijst
* http://twitter.com/erikvanzijst
* https://bitbucket.org/evzijst
e Slides: http://t.co/VOrHYjlu

Case study: Wasted cycles on Bitbucket

=> SSHD => cong (Python) => git/hg

* congq is our custom SSH shell

1.8. DjangoCon Europe 2012

169

http://twitter.com/erikvanzijst
https://bitbucket.org/evzijst
http://t.co/V0rHYjIu

pydanny-event-notes Documentation, Release 45

* conq imports Django ORM and Bitbucket code

* takes ~1.41 seconds to start (spawns ~50/second)

Solution after analysis: Stop the imports and just write native SQL

* 16 times faster to start up (0.09s vs 1.41s)

¢ 60% load decrease on all web servers!

Lessons learned

e Test your stuff

* Monitor your servers

Common problems

Slowness in Web Apps

Slow SQL queries (or too many!)
* lock contention

— between threads

— database table/row locks

— fine locks (git/hg)
¢ excessive 10 (disk/network)

e evilregex: r'” (a+) +$'

consequences

* 503 - worker pools full
* 500 if requests time out (Gunicorn SIGKILL)

The latter is best avoided as it destroys forensic evidence and leaves stale state (e.g. lock files)

Dogslow

* Django middleware
 emails tracebacks of slow requests
* no performance penalty, safe on prod

* https://bitbucket.org/evzijst/dogslow

170 Chapter 1. Conferences

https://bitbucket.org/evzijst/dogslow

pydanny-event-notes Documentation, Release 45

django-geordi

Designed to profile your production environment without impacting performance
* selectively profile individual requests
e add “?__geordi__" to any URL
e products PDF call graph
* https://bitbucket.org/brodie/geordi

interruptingcow

Designed to let you catch and then bubble up a system locking issue

import re
from interruptingcow import timeout

try:
with timeout (20.0, RuntimeError) :
#evil regix
re.match(r'” (a+)+$', 'aaaaaaaaaaaa')
except RuntimeError:
print 'Interrupted'

1.8.16 Adding tests to an uncovered application
by Zach Smith
« Slides: https://speakerdeck.com/u/zmsmith/p/adding-tests-to-an-uncovered-app
Instagram started as burbn
* Instagram started as a HTMLS version of 4square
* Pivoted
« If they had written tests those tests were wasted
When to automate testing?

* Think about time: can you spend the time to write these tests?

Types of Tests

* Acceptance tests
* Functional tests

e Unit tests

1.8. DjangoCon Europe 2012

171

https://bitbucket.org/brodie/geordi
https://speakerdeck.com/u/zmsmith/p/adding-tests-to-an-uncovered-app

pydanny-event-notes Documentation, Release 45

Libraries to help increase test coverage

¢ Jettuce

* sprinter

1.8.17 Implementing real time web apps with Django

by Kristian Ollegaard
* Works at Divio
* Django since 0.96

* Danish, but lived in Zurich for 1.5 years

http://kristian.io

http://twitter.com/oellegaard

* slides: http://www.slideshare.net/oellegaard/implementing-real-time-web-applications-with-django

Why real time?

* Better user experience

* More options in front end

* Make the web feel like native apps
¢ Showing live data

¢ Collaboration is much easier

Finding the right tool

¢ Criterias

— Use websockets but has fallbacks

Good browser support including old IE

Should be usable from Python

Does not require extensive changes in frontend

As fast as it can be

The tools you want

* Node.js
— Built on Chrome’s JavaScript runtime
— Uses an event-driven non-blocking I/0 model
* Socket.io
— one interface for all transport methods (sockets, polling, etc)

— Compatible with almost everything

172 Chapter 1. Conferences

http://kristian.io
http://twitter.com/oellegaard
http://www.slideshare.net/oellegaard/implementing-real-time-web-applications-with-django

pydanny-event-notes Documentation, Release 45

Why not implement it in Python?

* Already active community
¢ Can be used from python without too much trouble
* Most people know very basic javascript

* More importantly, frontend engineers know javascript and can therefore contribute to the different browser-
specific implementations.

Using redis for cross-language communications

 Support for many datatypes
* Can be used both as storage and as a queue
* Implemented in many different languages

* For the usage in this talk, any other queue could have been used as well

Basic Concept

* Something happens, the user must be notified in real time
— From Django we insert the new value into the queue

— Node.js listens on the queue

var io = require('socket.io).listen(8001);
var redis = require('redis') .createClient();
redis.psubscribe ("socketio_x");

// TODO add the rest

<! Add this part >

import redis

import json

redis_subscribe = redis.StrictRedis ()
redis_subscribe.publish ('socketio_news',

json.dumps ("Hey, how are you?"))

Hosting socket.io

» Nginx does not support websockets!
* Needs its own app, if hosted on an application cloud (e.g. Heroku)
* Recommended to expose the node server directly

— But hey, it’s node.js, it scales!

Using this today?

* Maybe not

¢ Do some research

1.8. DjangoCon Europe 2012 173

pydanny-event-notes Documentation, Release 45

Client Authentication

* Socket.io handles authentication from node -> client
* Currently no authentication between django and node

* Could possibly be solved by storing your sessions in redis and checking them between systems

1.8.18 How Heroku Uses Heroku To Build Heroku

by Craig Kerstiens
* Works at Heroku

* http://twitter.com/craigkerstiens

What is Heroku?

¢ Platform as a Service (PaaS)

* focuses on developer productivity
* 4000 heroku apps

* 500+ releases a day

e 200+ deploys a day

* 105 public github repos

* 85 people across 21 teams

¢ acloud unix

Philosophies

* Do 1 thing and do it well
* Run and forget

¢ Defined Contract/API

* Developer Environments

* Environment Parity

Do 1 thing and do it well

* Small functional apps

» KISSMetrics Data Loader
— Open DB connection
— Run query
— Post data

* Others
— OAuth

174 Chapter 1. Conferences

http://twitter.com/craigkerstiens

pydanny-event-notes Documentation, Release 45

— Vault
- API

— Core

Run and forget

* Start an app
e Let them run
* Forget about them

* Alert me when things break

Sample standing up an app

git clone git://github.com/opencomparison/opencomparison.git
heroku create -s cedar
git push heroku master

Environmental Parity

Dev and staging and production should be identical

DEFAULT_FROM_EMAIL = os.environ.get ('DEFAULT_FROM_EMAIL', 'pydanny
—<pydanny@cartwheelweb.com>")
AWS_ACCESS_KEY_ID = os.environ.get ('AWS_ACCESS_KEY_ID')

More philosophies in use by Heroku

* ownership
e productivity

* agility

Specifics

* “Let engineers be engineers”

* You choose the tools to get the job done, you support the API for others, you own the features to make users
happier, you ensure it works, you carry the pager

* Broad focus around quality, quality comes from solid engineering, give time to engineers, get stuff done.
* Iterate fast and often, a failed attempt is a successful experiment, culture around seeing/doing over talking

¢ Github issues alone doesn’t fix communication

1.8. DjangoCon Europe 2012 175

pydanny-event-notes Documentation, Release 45

Focus on Quality

* Make good art
* Hire for quality and culture

* Quality doesn’t work with deadlines

1.8.19 Involving women in the community

by Lynn Root
* http://twitter.com/roguelynn
* Founder of the San Francisco chapter of pyladies (hundreds of members)

* Event coordinator for Women learning to code

New Developer

Started last fall

* Ran into problems with signing up for classes because of her last name
* Comes from a financial background

* correlation vs causation

— http://xkcd.com/552/

Opened the floor to questions and discussion

1)

“I don’t think we should care that much, because if we care too much then the problem gets bigger.

Note: Cause if you ignore the problem, it goes away, right? This is a really bad path to take.

Paraphrasing: “Sauna statements with mention of female body parts.”

Note: WHAT THE FUCK?!?

» “Hire anyone because they are smart, not because of gender.”

Note: YES! If you are having trouble finding developers, hire smart people regardless of their race, gender, creed, etc
and train them up.

e “I have a game: Any time someone says, ‘Women tend to’ or ‘Men tend to’, interrupt them and yell ‘BULL-
SHIT!””

Note: Brilliant! I’'m going to play this game.

“Is this the right place or platform for this discussion? With so many people watching it’s all too easy for me to screw
this up and offend someone.”

176 Chapter 1. Conferences

http://twitter.com/roguelynn
http://xkcd.com/552/

pydanny-event-notes Documentation, Release 45

Note: Good point. This is very, very hard. We’ve all made mistakes. I’'m not sure what the answer is.

“For those of you wondering about if it’s okay to sponsor women/minorities and give special treatment, it makes a
huge difference in the lives of those who benefits. Including Audrey Roy”

Note: I agree. :-)

“Now is the time. Don’t let this fade. Our ancestors fought hard for our rights, lets’ keep up the cause”

Note: Simple summary of my statement

“Don’t make sexist jokes”

Note: Awesome

1.8.20 Flasky Goodness (or Why Django Sucks?)

by Kenneth Reitz
* http://twitter.com/kennethreitz

¢ Works for Heroku

Hos Open Source work

* http://python-guide.org
— Documented best practices
— Guidebook for newcomers
— Reference for seasoned veterans

— Don’t panic & always carry a towel

http://python-requests.org
— HTTP for humans

http://httpbin.org

* legit: Git workflow for Humans
* Envoy: Subprocess for Humans
Tablib: Tabular Data for Humans
Clint: CLI App Toolkit

* Autoenv: Magic Shell Environments

OSX-GCC Installer: Provokes Lawyers

1.8. DjangoCon Europe 2012 177

http://twitter.com/kennethreitz
http://python-guide.org
http://python-requests.org
http://httpbin.org

pydanny-event-notes Documentation, Release 45

Open Source All The Things!

» Components become concise and decoupled

* Concerns separate themselves

* Best practices emerge

* Documentation and tests become crucial
* Code can be released at any time

e Abstraction

Let’s build something

Why pick Django?
¢ Makes modular decisions for you
* Makes security decisions for you
» Excellent documentation
¢ Installable third-party Django apps
* Tremendous resources & Community

* much more cause anything is possible!

Django Application

* Tools & Utilities
— Management Tools
— Supporting Services
* Web Process
User Interface

- API

Data Persistence

CRUD Admin

Authentication

e Worker Process
— Deferred Tasks
— Scheduled Tasks

Single Codebases are great

¢ All the benefits of the Django stack
* Figure out architecture as you go

* Shared modules keep you dry

178

Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

* Make broad, sweeping changes

* Only need to deploy once

Single codebases are EVIL!

* Tight coupling of components

* Broad tribal knowledge required

* Iterative change of components difficult
 Technical debt has a tendency to spread
* Forced to deploy everything at once.

Anything is possible. .. but that ends up with a monolithic application.

CONSTRAINTS FOSTER CREATIVITY

» Having rules gives you an environment in which to play.

 Text Editors vs IDEs (Vim lets you do so much, Sublime Text limits what you can do)
* Prime vs Zoom Lenses

e Mac OS X vs Desktop Linux

 Pen/paper vs electronic notes

Build for services

» Components become concise & decoupled
» Concerns separate themselves
* Best practices emerge

¢ Documentation and contracts become crucial

Note: missed some here

Results in composability

Django: For API Services

» Significant boilerplate code for simple views
* No need to templates, tags, etc
* API Libraries are buggy; could use some love

e if request.method == 'POST'

1.8. DjangoCon Europe 2012 179

pydanny-event-notes Documentation, Release 45

Django: For APl Consumer

» Keep in mind, database is handled by the API
¢ Makes modular decisions for you

* Deals with the database for you

Installable third-party Django apps

Enter Flask

e HTTP Web Framework based on Werkzeug
» Excellent for building web services

* Elegant and simple

Flask Familiarities

* WSGI Application Framework

* Jinja2

* activity community

* Started an April Fool’s joke

* Just 800 lines of code

* Heavily tested, 1500 lines of tests
 Exhaustively document; 200 pages of docs

» Layered API; built on Werkzeug, WSGI

Flask Differences

» Explicit & Passable app objects

» Simple, elegant API. No boiler player
* BYOB: Bring your own batteries

* No built-in ORM or form validation

 Context locals. Keeps things looking clean

Flask Improvements

» Fewer batteries == greater flexibility

* Jinja2 is an incredible template system

» Everything harnesses actual references

» Configuration is a simple dictionary

¢ It’s hard to build monolithic applications

* Response objects are WSGI applications

180 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

* Werzueg debugger

* No import-time side effects

* Signals system outside of ORM

* Tests are simpler with real app objects

e return (content, status)

Popular Flask Extensions

* Flask-SQLAIchemy: Database Mapper
* Flask-Celery: Delayed jobs

* Flask-Script: Management commands
* Flask-WTF: Form Validation

Services are agnhostic

e Just speak HTTP
* Use both Django and Flask

1.8.21 General Notes

¢ Location: Zurich, Switzerland

1.9 Pycon 2012

Note: Github was gracious enough to donate their booth to our startup, Consumer Notebook. So instead of going to
many awesome talks and taking notes, I spent most of the time at our booth. Tons of people came by and checked us
out. On Sunday I learned just how painful standing for two days on concrete combined with feet pounding Capoeira
action can be. ;)

1.9.1 Diversity in Practice

“How the Boston Python User Group grew to 1700 people and over 15% women”
¢ by Jessica McKellar , Asheesh Laroia
* Boston Python user group organizers
* PSF members
» PSF outreach and education committed members
* Open hatch
FOSS

1.9. Pycon 2012 181

http://consumernotebook.com

pydanny-event-notes Documentation, Release 45

Basics
* Diversity membership makes user groups better.
* Diversity outreach helps user groups group
Motivation

* No women at user group events

* No pipeline for newcomers / beginners.

 To fix it, they decided to change things from within

Goals

1. Bring more women into the community. Get to 15%

2. Show examples of great women programmers

3. Encourage other user groups to think about diversity

Workshop goals

» workshops + follow up events
* Over 200 women alums
» Large volunteer base

* Beginner’s stay inside!

Schedule

How they do it:

Friday: Spaces

* Windows and Python sucks.
* Fixing tabs versus spaces
* Practice with the interpreter

¢ All their materials are available on the web

Saturday: Lecture and practice

* Basics of python objects and structures (2 hours)
e Lunch
* Build your own project (2 hours)

— A couple games

— Play with the twitter API

182

Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Post event

* Hack nights

* Discussion groups

The results

Before

* 1 organizer (Ned Batchelder)

¢ 700 members

After

* 3 organizers

1800 members

* Monthly lecture-style events
* hack nights
* classes

® more

Reflection & Sharing

* Volunteers are awesome
e Why’d you sign up? “Women, judgement-free, free”
e Staff wrap-up. Lesson’s learned:

— More coding practice

— simplified projects

How they share the work

¢ Curriculem on wiki
¢ Share their code:

— codingbat.com

Scaling out: impact beyond Boston

How they influenced the world
* Montreal Python: Women & friends workshop
* Pystar: Workshops and material

— PyStar Philly

1.9. Pycon 2012 183

pydanny-event-notes Documentation, Release 45

» PyLadies: women-friendly python user group(s)
 Ladies learning code: women-oriented tech programming in Toronto
7 of the 50 poster sessions came out of women who got involved because of these groups

Next steps

 Continuing innovation of organization
* Get people in via workshops, user groups, PSF memberships,

* project nights

Resources

* http://bostonpython.org

Other

* Lessons from Railsbridge:

from sf.ruby
import railsbridge

1.9.2 Transifex: Beautiful Python app localization

by Dimitris Glezos

Intro

¢ Github for translations

» Develop for an international audience

Workflow

* Mark translatable strings
* Release string freeze
¢ Translator: VCS checkout
* Translate w/special tools
* Get ‘em files back

— SSH, email, tickets

* For every frigging release

184 Chapter 1. Conferences

http://bostonpython.org

pydanny-event-notes Documentation, Release 45

Python & Gettext

TODO show Django import
from gettext import gettext as _

thing = _("I'm going to be translated")

{% load 1i18n %}
{% trans "person" %}

{% blocktrans count ppl|length as num %}
TODO show moar

¢ Generates PO files

How to render PO files

TODO: show the command-line actions for pure Python and Django

Traditional model of translations

* Content owner/developer
* Localization manager
* Content management system

* Developers

Existing solutions before Transifex

* Emails to translation agencies
— loss of control
— Expensive

* Build own L10N system
— Lots of work

— Expensive

Transifex

* SaaS product
* Open source platform

* Built for developers to maintain

1.9. Pycon 2012

185

pydanny-event-notes Documentation, Release 45

Simpler model of translations

» Content owner/developer
* Content Management System

e Transifex

Transifex size of project
e 17,000 users
* 3,000 products

Tech

* Django, Python, PostgreSQL, MongoDB, Redis
* Celery AMQP
* Django Add-ons

¢ Mercurial, Git

Workflow automation

$ pip install transifex-client
$ tx set —-—-auto-local -r myrproj.myres —--source-lang en etc...

Creates a local .tx file that set sup the configuration file. This can be uploaded to git.

commands to interact with Transifex
$ tx pull --source
$ tx push —--translations

Workflow automation

* Continious integration

* VCS commit hooks

* API to translate content

* Services on Github and Bitbucket
¢ Heroku Addon

Nifty features

* Social interactivity, comes with a onboarded community

186 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

1.9.3 Python Web Summit March 8, 2012

* Hosted by
— Michael Ryabushkin
— Chris McDonough
e url: https://us.pycon.org/2012/community/WebDevSummit/

Note: Taking notes on a panel is really challenging. Apologies on whatever or to whoever I miss. Any misquotes are
my fault and not the fault of the speaker.

Introduction

by Michael Ryabushkin

How did this start?

* People:

Chris McDonough
Mike Orr

Phil Jenvey
Mike Bayer
Danny Greenfeld
Audrey Roy

During the summit

* Panels are important, but take people aside if need be

Creating a Better Deployment Story

Moderated by Jacob Kaplan-Moss (Django DBFL)
Panelists:
 Tarek Ziadé (Distribute/Packaging)

— New distutils lets you specify versions of third-party packages. But... redhat and other OS tools have
their own package names. Ugh.

* Nate Aune (DjangoZoom, Appsembler)

— All tools (Plone, Django) makes it hard to do deployments. Hence his deployment startups (DjangoZoom
and Appsembler).

— We need to come up with a standard and insist on using it.
¢ Kenneth Reitz (Heroku)
— pip needs to be able to set versions of Python

— PyPI needs more attention

1.9. Pycon 2012 187

https://us.pycon.org/2012/community/WebDevSummit/

pydanny-event-notes Documentation, Release 45

* Jan Bicking (Paste/WebOb/Silver Lining)

— Let’s create a formal Application Package specification.

— Problem to overcome is the difference between developers and sys admin
¢ Jim Fulton (Buildout/Zope)

— Company does development and maintains 500 applications

— “Packaging needs to be better so we can deploy more easily.”

Questions

1. How come Java .war files do it better than Python?
2. How do we make it so that Python is as easy to deploy to the web as PHP.
3. What is the status quo?

4. What are people working on to make this better?

Formal Application Package Specification?

Ian Bicking’s thought on how to do it. Would have these things:

Formal path specification

Formal dependency listings

Project description

Python version labeling

Include non-Python components (database, libraries, fortran, etc)

Jacob’s comment: Is this going down the route of Chef/Puppet?

Namespacing Distributions

» Tarek as to play namespacing games to make sure that we get to use DistUtils backporting across versions of
Python.

e Armin Ronacher commented: “The fact that having the same package name for distutils2/packaging would be
a problem shows the root of the issue: no proper version deps.”

Takeaways

 Force deployed applications be a package.
» Formal application specification?

 Specify Python versions in virtualenv/buildout

The challenge of dealing with vendor named projects

* Jacob is going to publish a specification that will hopefully get the community moving. And he invites others to
participate on his work.

— The others pledged to help out or work on best practices.

188 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Porting to Python 3

Moderated by Barry Warsaw (Canonical, Python FLUFL)
¢ Chris McDonough (Pyramid/WebOb)
* Armin Ronacher (Flask, Jinja2)
* Guido van Rossum (Python)

— I don’t know much about how you guys do Python web development and want to know so I can make it
easier for Python 3 conversions.

— There was artificial ambiguity introduced in Python 2 in regards to strings.

Mike Bayer (SQLAIchemy/Mako)

— The Python database API needs some love. I agree in that a huge, unmentioned hurdle for Python three
are other libraries besides web frameworks and unicode. DBAPI, PIL, etc.

— PEP 249 doesn’t mention unicode. http://www.python.org/dev/peps/pep-0249/
* Robert Brewer (CherryPy)

Questions

¢ Chris McDonough: Who runs web apps on Python 37?: crickets
e Barry: What are the big blockers
e Me: What about auxiliary library blockers like PIL, Ixml, DB-API?

Answer: http://stackoverflow.com/questions/3896286/image-library-for-python-3

Answer: https://github.com/gpolo/pil-py3k

Answer: https://github.com/sloonz/pil-py3k

Answer: http://www.lfd.uci.edu/~gohlke/pythonlibs/#pil

Answer: http://www.imagemagick.org/download/python/

Note: Pillow does not solve the Python 3 issue

* Dylan Jay: Why are library writers having to maintain two copies of their library code?

Compelling arguments for/on Python 3

* Armin: Python 3 has some powerful features for sockets and other components that Python 2.x lacks.
* Barry Warsaw: Newer and more powerful libraries being written in Python 3.

* Wayne Witzel: Give a ton options for porting to python3, they won’t choose any of them. Most people just want
to be told what is right.

* Barry Warsaw: 2-to-3 tool is useful for getting started, but once in the weeds I find that I dive into the code.

1.9. Pycon 2012 189

http://www.python.org/dev/peps/pep-0249/
http://stackoverflow.com/questions/3896286/image-library-for-python-3
https://github.com/gpolo/pil-py3k
https://github.com/sloonz/pil-py3k
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pil
http://www.imagemagick.org/download/python/

pydanny-event-notes Documentation, Release 45

Final Thoughts

Note: my summary of their statements.

* Chris McDonough: We need to make people more enthusiastic about Python 3.
¢ Armin Ronacher: Improve the guides on porting.

* Guido Van Rossum: This will be resolved. It’s going to be a while, but we can make it. We’ll remember how
hard it was to move forward to Python 3.

* Mike Bayer: This will be resolved when we think in Python 3 by default. And make Python 2.x a boring
backport.

e Robert Brewer:

Factoring Code for Reuse

Moderated by Danny Greenfeld (consumernotebook.com)
* Tres Seaver (Zope/CMF/Pyramid)
e Mariano Reingart (Web2Py)
* Alex Gaynor (Django/PyPy)
¢ Michael Foord (IronPython, Mock)
* Carl Meyer (Virtualenv, Pip)

“State-Of” Multi-Talk Round 1

Each of these speakers, a leader in their field, gets time to talk about his subject.

Graham Dumpleton (WSGI 2 ideas)

¢ PEP 333 was created back in 2003
e PEP 3333 was created back in 2010

e Wanted something better:

Make it simpler

standardized high level request/response objects

Async support (not possible because so different)

Resource management

— Unknown request content length

* no compressed request content
* No chunked requests

* no full duplex HTTP

¢ Has the boat sailed?

190 Chapter 1. Conferences

http://consumernotebook.com

pydanny-event-notes Documentation, Release 45

— Too much legacy code relying on WSGI 1.0
— Missed opportunity with Python 3
Graham’s ideas:
— use context managers to improve resource management
+ need to override close() of the iterable
— Implement wsgi.input as an iterable

— TODO add what I missed

Benoit Chesneau (gunicorn)

The state of gunicorn:

First commit was November 30, 2009, Three users at first
preform model

Thread-safe

Automatic worker process management
Manage using signals

Natively support WSGI, Django, Paster
HTTP streams: decode on the fly http chunks
Supporting sendfile & FileWrapper

Simple Python configuration

Multiple workers (sync and async)

Various server hooks

use your own logger

Some issues:

Reload - graceful (HUP) or reexec (USR2)

The Django case: python-manage.py

Performance issues due to WSGI

CGI compatibility: headers
CONTENT_TYPE,CONTENT_LENGTH,SCRIPT_NAME

The WSGI spec needs to be completed

Async workers & blocking issues
x JO access like the filesystem are not greened

% C drivers

Web app configurations & deployment: we need a standard
Challenges:
— Python 3

the case of sync workers

1.9. Pycon 2012

191

pydanny-event-notes Documentation, Release 45

+ Handle extensions/plugins
— New needs on the web: websockets, SPDY
— modular HTTP & WSGI server in Python

Ben Bangert (Pylons Project)

State of the Pylons Project:
* Lots of community plugins developing
 Larger frameworks on top taking off along with bootstraps
* Ploneconf Pyramid track
¢ 62 reports, 31 devs with commit
¢ lots of pyramid_ x packages
Challenges

* Porting to Python 3 (is doing very well)

* organizing and simplifying sometimes overly pedantic documentation

* TurboGears

— Still exists

— Some progress on community migration
* Standardizing deployment
 Foundation efforts
* Pylons conf (189 members of the SF Bay Pylons meetup)
¢ Increasing presence at conferences (not just Python ones)
* More awareness of professional support

¢ Moar books?

Robert Brewer (CherryPy)

State of CherryPy
* It works in Python 2.7x

e It works in Python 3.x

* Being broken up into modular components so the WSGI HTTP server can be used in things like Pyramid

Promoting Python for Web Use

Moderated by Paul Everitt (Pyramid)
* Steve Holden (PSF/DjangoCon)
* Liz Leddy (Plone/PloneConf)
¢ Eric Holscher (Readthedocs.org)

192

Chapter 1. Conferences

http://rtfd.org

pydanny-event-notes Documentation, Release 45

¢ Leah Culver (Grove.io)

* Danny Greenfeld (consumernotebook.com)

“State-Of” Multi-Talk - Round 2

Glyph Lefkowitz (Twisted)

¢ It works for the web!

¢ Lots of cool features

* Works more as a container rather than a platform.

» Has excellent support for Windows. Has an MSI, Executable, etc

* Needs to fight the impression of being a giant library. It is actually small.

Jannis Leidel (Django Project)

* Used in a lot of places around the world in small and gigantic projects

e 21,700 user list

* 7,000 developer list

¢ 33 committers

* 2,5000 downloads/day

* 2,100 projects on PyPI

* Django 1.4 almost out:

New project layout

Custom project templates

Standard WSGT entrypoint

Full timezone support

In browser testing

Cookie session backend

Clickjacking protection

New form wizard

i18n URLs

No exception wrapping templates anymore

*args, xxkwargs

New orm functions:

select_for_update()
bulk_create ()
distinct ('filename')

New template stuff:

1.9. Pycon 2012

193

http://grove.io
http://consumernotebook.com

pydanny-event-notes Documentation, Release 45

@assignment_tag

% elif %}

{% static %}

% truncatechars %}

Django 1.5 news:

* Cool stuff is coming

Quotes

“Django isn’t a functional unit. You include it and it just sits there.”

1.9.4 Keynotes

Stormy Peters

Note: I was working a project issue and couldn’t take notes. Sorry Stormy!

Paul Graham

» PyCon is the center of Silicon Valley.
* His notes are online are at:
» The biggest startup ideas are frightening:
— The threaten your identity
— Think the John Malkovich room
 Let’s say you want to start the next google?

— Microsoft tried and

1.9.5 Other Pycon Notes

Where I'm listing other people’s notes until I get a dedicated site up:

e William McVery, @wam, https://www.dropbox.com/sh/i5jibofn60y14dt/rEs_RzYFxs

1.9.6 Other events I'll be attending

 Saturday’s Consumer Notebook booth on PyCon Startup Row.

 Saturday’s Capoeira Roda

194 Chapter 1. Conferences

https://www.dropbox.com/sh/i5jibofn60y14dt/rEs_RzYFxs
http://consumernotebook.com
https://us.pycon.org/2012/community/startuprow/
https://us.pycon.org/2012/community/openspaces/capoeira/

pydanny-event-notes Documentation, Release 45

1.10 Scale 10x

1.10.1 It’s all good- Decorating Python like Martha Stewart

* by Matt Harrison

http://twitter.com/_mharrison_
* Works for http://fusion.io
* http://hairysun.com/books/decorators/

— His talk is under creative commons

Impetus

You can get by in Python with basic constructs but. ..
* you might get bored
* be confused by other’s code

¢ want more power

Function Review

A function is an instance ot type function

>>> def spam():
"A function"
print 'eggs'
>>> spam
<function 0x2342342>
>>> callable (spam)
True
>>> spam()
'eggs Al

Functions have attributes

>>> spam.func_name
'spam'

>>> spam.__doc_
"A function"

A function knows about itself

>>> def foo2():
print "NAME", foo2.func_name

A function can have attributes assigned:

>>> def foo3():
print "STUFE", foo3.stuff
>>> foo3.stuff = "Data"
>>> foo3()
Data

1.10. Scale 10x 195

http://twitter.com/_mharrison_
http://fusion.io
http://hairysun.com/books/decorators/

pydanny-event-notes Documentation, Release 45

Function Definition

def func_name (argl, arg2=value, *args, +**kwargs):

"nr o docstring
implementation

Function Gotcha

When a function is created, the named/default parameters are defined when the function is created

def named_param(a, foo=[]):
if not poo:
foo.append (a)

print named_param.func_defaults

(rn

named_param (1)
print named_param. func_defaults
([, 1)

Lists and dicts are mutable. When you modify them you don’t create a new list (or dict). Strings and ints are immutable
Parameters are evaluated when the def they belong to is imported

Don’t default to mutable types.

def named_param(a, foo=None):
foo = foo or []
if not foo:
foo.append (a)

*args and **kwargs

Looksee:
* “*args is a tuple of parameter values.

» *¥*kwargs is a dictionary of key/values

def param_func(a, b=2, c=5):
print [x for x in [a, b, c]]

The “*’ before args flattens the tuple of parameters values.

def param_func(a, =*args):
print [x for x in [args]]
TODO check I got this right

def kwargs_func(a, xxkwargs):
print [x for x in [kwargs]]
TODO check I got this right

def param_func(a, b='b', *args, =xxkwargs):
print [x for x in [a, b, args, kwargs]]

196 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Closures

* PEP 227 and came out in Python 2.1

¢ Don’t be afraid of them

¢ In Python a function can return a new function. The inner function a closuse and any variable it accesses that

are defined outside of that function are free variables.

def add_x(x):
def adder (num) :
we have read acces to x
return x + num # x is a free variable here
return adder

sadd_5 = add_x(5)

add_5 # doctest: + ELLIPSESS
<function add at 0x12324ewe>
print add_5(10)

15

Nested functions only have write access to global and local scope.

x = 3
def outer():
x = 4 # now local
y = 2
def inner():
global x
x =5 #
print x
inner () # only changes the local inside the function
print x
print outer()
4
4
print x # since global the global value
5

Python 3.x has a non-local keyword that replaces the global in Python 2.x

Decorators

* PEPS 318, 3129, implemented in Python 2.4
¢ allow you to

— modify arguments

— modify function

— modify results

count how many times a function is called
call_count = 0
def count (func) :
def wrapper (xargs, *xkwargs):
global call_count
call_count += 1

1.10. Scale 10x

197

pydanny-event-notes Documentation, Release 45

return func(xargs, =*xkwargs)
return wrapper

def hello():
print 'invoked hello'

>>> hello = count (hello) # invoking count with the argument being the hello object
>>> hello()

>>> print call_count

>>> 1

>>> hello()

>>> print call_count

>>> 2

Decorator Shortcut
@count
def hello():

return 'hello'

Better decorator:

def count2 (func) :
TODO — show this one out

Decorator Template

def decorator (function_to_decorate) :
def wrapper (xargs, *xkwargs):
do something before invoation
result = func_to_decorate (xargs, =*xkwargs)

do something after

return result
update wrapper.__doc__ and .func_name
or functools.wraps
return wrapper

class as a decorator
class decorator_class (object) :

def _ init__ (self, function):
self.function = function
def _ _call_ (self, =xarg, =**kwargs):
result = self.function(xarg, =**kwargs):

do stuff to result
return result

@decorator_class
def hello():
return 'hello'

Note: Anything that is callable can be used to create a decorator

198 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

using a class instance as a decorator

instead of using __call__ use __init__ and then instantiate the class before using,

‘*}lt .
deco = Decorator ()

@deco
def hello():

return 'hello'

You can modify deco later! This is UBER powerful!

Note: Not the same as “Class Decorators”. See PEP 3129

Paramaterized decorators

¢ need 2 closures

def limit (length):
def decorator (function):
def wrapper (xargs, *xkwargs):
result = function(xargs, *xkwargs)
return result[:length]
return wrapper
return decorator

Qlimit (5) #notice parens
def echo (foo):
return foo

usage
echo ('123456")
'12345"

#syntactical sugar for
echo = limit (5)

Warning: Function attributes get mangled in decorators

* I’ve run into this - when you wrap a function a decorator the attributes get lost

* Docstring kills me

¢ Do this:

def limit (length):
def decorator (function)
def wrapper (xargs, xxkwargs):
result = function(xargs, *xkwargs)
result = result[:length]
return wrapper
wrapper. doc = function. doc
return decorator

You can also use functools to deal with this issue, but it’s not as clear a read

1.10. Scale 10x

199

pydanny-event-notes Documentation, Release 45

import functools
def limit (length):
def decorator (function)
@functools.wraps (function)
def wrapper (xargs, xxkwargs):
result = function(xargs, =*xkwargs)
result = result[:length]
return wrapper
wrapper. doc_ = function._ doc_
return decorator

Uses for decorators

e caching
— I wrote a cache decorator that uses Raymond Hettinger’s LRU cache code.
* monkey patching stfio
* jsonify
* logging time in function call
* change cwd

¢ timeout a function call

What if | want to tweak decorator paramers at runtime?

What if I made a mistake in a param and want to change values?
* Use class instance decorator
» Tweak wrapper attributes
* Use context manager
*Or..

— Since a decorator is just a class you can invoke it at runtime. Like this:

TODO get example
result = limit (4) (echo)

1.10.2 Juju Charm School

Some kind of deployment tool.
* http://www.socallinuxexpo.org/scale10x/presentations/juju-charm-school
e https://github.com/charms

* https://juju.ubuntu.com/

Note: Demo was powered 100% by the shell. And conference internet is always flaky. This is why I don’t do
command-line demos.

200 Chapter 1. Conferences

http://www.socallinuxexpo.org/scale10x/presentations/juju-charm-school
https://github.com/charms
https://juju.ubuntu.com/

pydanny-event-notes Documentation, Release 45

1.11 Mongo LA 2012

1.11.1 Keynote: Welcome and What’s new in Mongo DB

by Paul Pederson, Deputy CTO, 10gen

Design Goal: Rich data model

* JSON/BSON documents

* Good mapping to native programming language types
* Flexibility for dynamic data

* Better data locality

* Schema-free or dynamic schema

Footnote to design goal

(DB degrees of freedom)
» Zero degrees of freedom: static queries, static data
* One degree of freedom: dynamic queries, static schema (Relational DB)

* Two degrees of freedom: dynamic queries, dynamic schema (NoSQL DB)

General-purpose DBMS

* Sophisticated secondary indexes
* Dynamic queries

 Sorting

* Rich updates, upserts

» Easy aggregation

* Viable primary data store

Design Goal: Web Scale

* Scale linearly with sharing
e Say ‘no’ to distributed joins
* Increase capacity with no downtime

* Make scaling transparent to the application

1.11. Mongo LA 2012 201

pydanny-event-notes Documentation, Release 45

Design Goal: Minimal knobs

* Make it easy to deploy and manage
* Find natural default configuration options

* Do the right thing out of the box

Release History

* 1.0 August 2009: supported bson and BTree range query optimization
¢ 1.2 December 2009: map-reduce

* 1.4 March 2010: Background indexing, geo indexes

* 1.6 August 2010: sharding, replica sets

* 1.8 March 2011: journaling, sparse, and covered indexes

¢ 1.10 =2.0: September 2011: cumulative changes

Changes in 2.0

Here we go...

Journaling improvements

Enabled by default for 64-bit platforms
* Journal is compressed for faster commits to disk
* —journalCommitiInterval command line option exists for specifying some neat feature

* May wait for group commit on write with j=true arg to getLastError()

Compaction improvements

Note: run this after adding an index

¢ Collection-level command:

db.mycollection.runCommand ('compact');

» Copies extent-by-extent using a single 2GB scratch space
» BUilds all the indexes at the end in parallel:

— First half off external sort occurs while copying extent data. For each doc find all index keys and store
these and process.

202 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Index improvements

Note: Once you migrate to 2.0 the index changes are not reversable

» Keeping the index working set in RAM is important
* v.20 indexes are 25% smaller than v1.8 indexes
¢ Index compression arises by optimization of BTree index key BSON representation

Concurrency improvements

* Yielding mitigates reader-witer lock contention
¢ In general mongodb yields all the time long table scan, yield every 100

e IN v2.0 we now yield around page faults.

Map-reduce performance

¢ About 3x faster in 2.0 over 1.8

THings to follow up on:

Note: TODO find out what was given in terms of improvements

* Priorities
* Replica set force reconfigure
* Durability

New features

* Multiple location geo search
* Map-reduce sharded output
* Query syntax: $and

* Custom shell prompts

Links

* http//v.gd/mongodb20

1.11.2 Schema Design

by Kevin Hanson, Solutions Architect, 10gen

1.11. Mongo LA 2012 203

pydanny-event-notes Documentation, Release 45

Parallels

Tables == Collections Row == Document Column == Field Index == Index Join == Embedding & Linking Schema
Object == None

The Big Question

Do we link or do we embed?

Blog posts and comments

Embedded

¢ Faster

* But large embeds can make the master document slow. Ex: If a post has a billion comments

Linked

e Slower

* Returning the master document requires extra logic

Each comment gets own doc

Comment gets its own copy of the master blog post
* Fast but inverted
* Great if you have gajillions of comments

* Even more logic

Denormalization

¢ Caching via memchached, redis, etc are functionally denormalized instances of data sets.
* NoSQL means you cut out the middleman
More thoughts on denormalized data
 Faster than normalized
* More object-oriented

* application level applications

Managing Arrays

* Pussing to an array infinitely
— Document will grow larger than Pre-allocated size

— Document may increase max doc size of 16MB

204 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Sometimes you have to limit size of an array

Logic idea:

first 200 comments are insert into the blog document
After that have a linked comment document

Schema decisions when sharding

* Can we intelligently partition data?
» Will this partitioning create hotspots?
 Can our partitioning actually improve overall performance?

Bad shard key:

’Sharding on "date" field and constantly inserting most recent data... ‘

Good example:

sharding blog posts on "author" ‘

Note: TODO find out why the Good example is actually good

1.11.3 Running MongoDB in the Cloud

* by Dan Crosta, Software Engineer, 10gen

e I know speaker from twitter and him answering questions about MongoDB to help me with http://
consumernotebook.com

Note: Late cause we were intercepted by Redhat/OpenShift marketing who wanted our advice on logos.

MongoDB components

» Config Servers send config data to shards

* Shards can run with the config server down, but it is not fun.

Replica Sets

Different methods of setup:
1. The most popular
e Primary
* Secondary
¢ Secondary

2. Another way

1.11. Mongo LA 2012 205

http://consumernotebook.com
http://consumernotebook.com

pydanny-event-notes Documentation, Release 45

e Primary
¢ Secondary
* Arbiter
3. The big option
e Primary
¢ Secondary
* Secondary
» Secondary

¢ Secondary

Amazon EC2 Instance Types

Warning: Never deploy with 32-bit. Don’t do it!!!

* Go for a Large or Extra-Large on-demand instance. More expensive but worth it.

* ConfigD / Arbiter can be done via micro on demand instances

Operating System

¢ Use ext4, xfs
* Use RAID:
— Raid 10 on MongoD
— Raidl on ConfighDB
* Turn off atime
— File descriptor limits:

cat >> /etc/security/limits.conf << EOF * hard nofile 65536 * soft nofile 65536 EOF

1.11.4 Turning JSON into info

by Roger Bodamer

Note: Did not show the query code. I have to look it up online. Ugh.

Relative Queries

» 2 aggregations at the same time
— 1 by user
— 1 by location

* Break up into several queries

206 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

* Fairly complex
* Easiest in Python or other programming languages
A note on queries

* There is no notion of declared schema
* The augmented scheme is coded in queries

* Reuse is very hard, happens at a query language

A word on rendering graphs and reports

¢ Some libraries

— Gruff

Scruffy
HighCharts (Paid for)
JRafael

JQuery Vizualize
MooCharts

Services:
http://getgauag.es
* But basically you have to know how to program

Punchlines

* Fluid requirements are what you get to handle when you use MongoDB
¢ Know how to program Python (or anything else)

* If you are a business analyst, you’re screwed (Not an acceptable answer)

1.11.5 Diagnostics & Performance Computing

by Dan Crosta, Software Engineer, 10gen

Speed

* MongoDB is a high performance database

* But how do you know you are getting the best performance

1.11. Mongo LA 2012

207

http://getgauag.es

pydanny-event-notes Documentation, Release 45

Tools

1. mongostat

* give it a host and port number. So we can connect to production. Woot!
* tons of useful columns
* mapped
* vsize
* res
e faults - how many disk faults
¢ locked %
— In a given window of time, measures two things (TODO find out)

— Rough percentage measure - not perfectly accurate

2. serverStatus

What powers mongostat

> db.serverStatus () ;

{
"host":"MacBook.local",
"version": "2.0.1",
"prodess": "mongod",

// lots more stats

}

3. Profiler

> db.setProfilingLevel (2)
{"was": 0, "slowms": 100, "ok": 1}

This saves the data into a collection within the MongoDB. Which is nice cause you can reference it later.

See it in operation!

> db.system.profile.find()

{
"ts": ISODate,

"Op“ . Hquery"’
"ns": "docs.spreadsheet",
"query": {"username":"dcrosta"},

"scanned": 200001,
"millis": 1407
// tons more!

}

208

Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Note: This is a capped collection of 1IMB. So it stores only the most recent. You can change this with some hacks.
TODO - find it out

4. Monitoring Service

* MMS: 10gen.com/try-mms (Free service provided by 10gen)
 Also check out Nagios

¢ Also check out Munis

Common problems

1. Slow Operations

Check the logs! From the shell:

query docs.spreadsheets ntoreturn:100
reslen:510436

nscanned:19976 { username: "dcrosta"}
nreturned:100 147ms

This means you need to index the username field

2. Replication Lag

Every time you do a read/write, it hits a capped collection called the oplog. Replication lag refers to the time between
when a read/write is called and when it is performed.

Example: If you have a very high write rate on the Primary, your secondaries can have trouble keeping up.

3. Resident Memory

Always use 64-bit!

> db.serverStatus () .mem
{
"bits"64, // need 64, not 32
"" resident: 7151
"virtual": 2?7?27
"7 22

> db.stats ()

{

// other things

"avgObjSize": 5107.02342342, // capped at 16MB

"dataSixe": 234424323423, // make sure this doesn't exceed your server space!
// other things

}

1.11. Mongo LA 2012 209

pydanny-event-notes Documentation, Release 45

Equation:

indexSize + dataSize <= RAM

4, Page Faults

> db.serverStatus () .extra_info

"heap_usage_buytes": 2313132,
"page_faults": 2381

5. Write Lock Percentage

> db.serverStatus () .global_lock

"totalTime": 23234234,
"lockTime": 134646546,
"ration": 0.002342342

‘What to look for: ???

6. Reader and Writer Queues

> db.serverStatus () .globallock

{
"blah": "blak=h"

What to look for: Things that are eating up tons of process. To stop it, run:

7. Background Flushing

> db.serverStatus () .backgroundFlushing

"flushes": 5634,
"total_ms": 83556,
"average_ms": 14.832342342,
"last_ms": 4,

"last finished": ISODate

In some case you should flush more frequently then MongoDB does by default

210 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Disk Considerations

¢ Raid: Use it
» SSD: If you can get your server on a SSD, then things will go much, much faster.

* SAN?:

8. Connections

> db.serverStatus () .connections
{"current": 7, "available": 19993}

* Make sure you have enough connections.
¢ On Linux, change the number of connections that can be opened.

* MongoDB can handle up to 20,000 open connections

9. Network Speed

> db.serverStatus () ..network
// data here

Check this as one of the things that might be bottlenecking

10. Fragmentation

> db.spreadsheets.stats ()
{// data here
}

* When you move data around frequently, fragmentation occurs.
* THis will cost you more memory, slowing things down

* “2 is the magic number”. You disk should be at least twice as big as the MongoDB memory

// blocking command.
// Be careful!!!
db.speadsheets.runCommand ("compact") ;

Compacting fixes the problem, but it stops operations on that server. So run it against a secondary instead of the
primary.

1.11.6 Indexing & Query Optimization

by Kevin Hanson, Solutions Architect, 10gen

1.11. Mongo LA 2012 211

pydanny-event-notes Documentation, Release 45

High level

e What’s an index and why do we need one?

¢ As we insert data into MongoDB, we store that as a linked list

* So if you search for something in 7 documents, it has to search in all 7 of them

Creating indexes in MongoDB

* You can index anything
¢ All docs have an _id field that is auto-indexed

¢ new indexes:

db.blog.save ({author: "James", ts: new Date() })
db.blogs.ensurelIndex ({Author: 1, ts:—-1})

Things to know about indexes

* Slows down writes
* But speeds up reads!

* Forces uniqueness on a title

Note: TODO - check that we don’t have dupe titles

Covered Index

* Query resolved in index only
* Eliminated need to pull documents from DB

* NEked to exclude _id from items projected.

db.blogs.save ({
author:"Kevin",
editor:"Katie"

})
db.blogs.ensurelIndex ({author: 1, editor: 1});
db.blogs.find ({author}) // TODO finish this

Spare Index

* Key value included if and only if the value is present
* Reduces the size of index

* Limited to a single field

// TODO fill this out

212

Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Unique Sparse Index

» Key value included if and only if the value is present
* Reduces the size of index
* Limited to a single field

e Null and not-present are different

// TODO fill this out

Geospation indexes

¢ Geo hash stored in B-Tree

¢ First two values indexed

Query Performance Analysis

Note: Speaker had to go super fast here because he kept answering questions. This is why you ask people to wait for
the Q&A at the end.

1.11.7 Closing session and MongoDB roadmap
* by Paul Pederson, Deputy CTO, 10gen
* paul@10gen.com

v2.2 projectedt 2012 Q1

* Concurrency: yielding and db or collection-level locking
* Improved free list implementation

* New aggregation framework

TTL collections
* Hash shard key
— Hashing gives you flat distribution

Concurrency Issues

* No excessive blocking

dropIndex

getLastError

isMaster
- etc...

* May block for long times

1.11. Mongo LA 2012 213

mailto:paul@10gen.com

pydanny-event-notes Documentation, Release 45

— foreground index creation

— reindex

— compacty (is that a startup name? ha ha ha)

— repair database

— creating a very large (many gb) capped collection

— validate connection

Aggregation Framework

* Declarative, no JavaScript reipred
* Pipeline model: $match, $project, $group
* Easy to add new operations

e C++ native (non-JavaScript) implementation

TTL Collections

¢ Currently: Evict old data to make room for new records by crating a timestamp index, an d create a cron job to

delete stale items with update

* Coming: per object or per collection: automates deleting documents older than some limit.

Harsh Shard Key

« If you are not expecting range queries on the shard key
* Then it makes sense to shard by hask key, you naturally get a flat distribution
* In a sense this is the easiest possible case

* Mongodb started by solving the hard case.

Short List (not in 2.2 but coming up)

* Full text Search (so you don’t need SOLR)
— The absolute number one requested feature

Done but needs to be vetted and tested better

Text searches can generate bajillions of extra records and other issues

Sounds like they are trying to do it right.
* More concurrency
* Online compaction
— Make the system smaller on the fly
— This way you don’t have to play replica set games to clean things up
¢ Internal compression

* Read tagging

214 Chapter 1

. Conferences

pydanny-event-notes Documentation, Release 45

10gen Hiring
* NYC/Silicon Valley - may see us
*« EU
— London
— Dublin
* Anywhere - Language Evangelist

1.11.8 Sponsors

10gen, makers of MongoDB

The main hosts of the event

Redhat for Open Shift Paas

Redhat’s cloud hosting system with git powered deployments.

Joyent Cloud

Better, cheaper, faster system in the cloud. They sell the systems that PaaS are built on.

VMware Cloud Foundry

Completely open source PaaS - same was what ActiveState Stackato uses

1.12 PyCodeConf 2011

* Organizer: Github!
* Venue: Epic Hotel, Miami, USA

1.12.1 Future is Bright

* By Jesse Noller
* http://bit.ly/qqxpt8

What he does

* PSF board member
* Pycon chair
* Python core dev

* Dad, developer

1.12. PyCodeConf 2011 215

http://bit.ly/qqxpt8

pydanny-event-notes Documentation, Release 45

What is Python?

* Language

e Community

PyPy, PyPI

* Heroku: http://bit.ly/073sOR

— Humble community - no rockstar personas
— Approachable

— etc

Where is Python used?

 Disney Animation Studios

* NASA

* Many other things

* Too many cool places to list
* Python is everywhere

» Everyone uses Python

Python is amazing

 Easy to learn
* Easy to use
* Very fast

» Large scale, small scale

Status of the Language

* Approx 123 accepted PEPS
¢ about 80 Built-in functions

250+ stdlibs

Python 2.7 .x is last of the 2.X series
* How about status of http://www.python.org/dev/peps/pep-0397/?
— Windows installer for Windows

— I'don’t use Windows, but my students usually do

216 Chapter 1. Conferences

http://bit.ly/o73sOR
http://www.python.org/dev/peps/pep-0397/

pydanny-event-notes Documentation, Release 45

Jesse’s Personal Wishlist

* Better messaging systems
* Actor support in stdlib

* Support for gevent and other things

Jesse says we need

¢ More Pythonic APIs (mentions Kenneth Reitz)
* ...to remain conservative in changing the language too much
e ...but adding to the stdlib is a problem

— Barely fits in the head

— stdlib stalls things

PyPy!

* Super-fast
* Gets things done
* A bit complex - needs people like Alex Gaynor to do the work
* Doesn’t handle cpython stuff that touches C stuff.
e predictions:
— Will be used more and more

— Will continue to be based off the cpython implementation

Python interpeters

* Need to work together, tests, compatibility, etc
* BFFs:

- PyPy

— CPython

Jython

IronPython

Python 3

* Keep calm and carry on
e Python is 21 years old, a 5 year plan to migrate to it is nothing
* Python 3 porting is getting finding

* The PSF is willing to give out grants

1.12. PyCodeConf 2011 217

pydanny-event-notes Documentation, Release 45

Community

* Look at the number of Python conferences!
¢ I got mentioned by Jesse! Yeah!
* Come to workshops and meetup groups
* Get involved
— Outreach
— sprints
— http://pyladies.com
* Don’t be a jerk
— Stay positive
— Not all criticism is constructive

— It can be hard to fight through vitriol and find what’s worthwhiel

Questions

* CW: What PEPs will affect the language
— Answer: Hard to say cause there are so many things going on
— Answer: Twisted components into core is on the docket

— Answer: Some API sugar

1.12.2 Embracing the GIL

* by David Beazley
* slides: http://dabeaz.com/talks/EmbraceGIL/

Embracing the GIL could be better

* People love to talk about it
* Rant about it

¢ Godwin’s Law of Python?

premise

* People love to hate on them
¢ That’s because threads are useful
* Threads make great stuff work

* Even if you don’t see them directly

218

Chapter 1. Conferences

http://pyladies.com
http://dabeaz.com/talks/EmbraceGIL/

pydanny-event-notes Documentation, Release 45

The Gil in a Nutshell

* Every Python file gets compiled into VM instructions
¢ In cpython, it is unsafe to execute instruction concurrently

* Hence: Locking

What GIL protects

Note: duh missed this

Major GIL issues

* Threads using multiple CPUs

The Challenge

The GIL is unlikely to go away anytime soon
* Can it be improved? Yes!
* How can it be done?

* How about Python 3!

Experiment

* request/reply server for size-prefixed messages

* each method has payload/header

Why this experiment?

* Comes up in a lot of contexts
* Involves 10

* Used as a foundation for a lot of other things

Five different implementations

* 1000 iterations of some simple code
* Done on EC2 with nothing else running
¢ implementations

- C+0mgq

— Python + Omq

1.12. PyCodeConf 2011 219

pydanny-event-notes Documentation, Release 45

— Python + multiprocessing

— Python + blocking sockets

— Python + nonblocking sockets
* Results

— All finish in about 13 seconds

What happens when you introduce a thread?

e What does it do to the performance?

C + Omq (samish seed)

Python + Omq (7x slower)

Python + multiprocessing (8.9x slower)

Python + blocking sockets (approx 10.x slower)

Python + nonblocking sockets (approx 10.x slower)

Commentary

e Simple test
* Not a hard-core realistic talk
* How about PyPI?
— What? Older version was 567 slower!

— New version is much faster. .. note:: Get results!

Warning: Distracted by some work stuff. Missed some awesome stuff here.

Performance Explained - thread priorities

* To fix this, you need priorities
* The original “Fix GIL” patch had priorities

¢ That should be revisited

Another experiment

» David’s 3.2 fork with priorities
* Not suitable for real work
* Interesting for testing

* Lets you set the priorities manually

220

Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

import sys
import threading
def spin(value):

sys.set_priority(-1)

Some thoughts

* Huge boost in Python with only minor changes to a few files
* Is this the only GIL improvement?

- No

— There are other ways to do it

— GIL released on non-blocking I/O operations

PyDanny take away

* Now I think I grok the GIL issues finally

¢ Ya, me is slow. :)

1.12.3 Python is Awesome

Note: Watched this at PyCon AU. Copied over my notes from there so I can fill in the holes here.

* By LA Python’s own Raymond Hettinger

Context for Success

* License

* Commercial Distributions

e Zen

e Community

* Repository of Modules (PyPI)

* Killer Apps and Success Stories
* Win32

* Books

License

* Most Python releases are GPL-compatible. This makes it free.

* Going to a closed source language means you are trapped.

1.12. PyCodeConf 2011 221

pydanny-event-notes Documentation, Release 45

Community

* Mailing lists
* Newsgroups? HA HA HA
 Python User Groups

PyPI

* Repo for Python programming language
* Over 16,000 packages
* pip install ordereddict works for Python 2.5!

Killer apps

* Zope, Django, Pyramid

e Numpy and Scipy

* Bittorrent and Twisted

* YouTube

¢ Blender and Maya

* Win32 - Factoid: Me, @pydanny, has done all his windows programming using cpython and Win32!

Easy to learn!

* Good teachers.
* Think how fast you got the types and control structures in Python. General 3 hours
* In a day you can learn special methods and stdlib

* Critical because if you need good Python developers it doesn’t take long to get up to speed. Converting devel-
opers takes:

— C takes 2 years to get competent
— Java takes 6 months to get competent
— Python takes a week to get competent
* Rapid development cycle
— Scripting languages are unbeatable for development speed
— Programs are grown organically
— Interactive testing lets people work with their code results immediately.

— Bang out real code fast

222 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Economy of expression

* Not many words or characters to get things done.
¢ clear English means non-coders can understand your work

* Pydanny factoid: One of the first times I wrote Python on a whiteboard for a boss at NASA/SAIC they thought
it was very legible pseudo code representing a complex process.

import hashlib
import os
import pprint
hashmap = {}

for path, dirs, files in os.walk('.'"):
for filename in files:
fullname = os.path.join(path, filename)
with open(fullname) as f:
d = f.read()

h = hashlib.md5 (d) .hexdigest ()

filelist = hashmap.setdefault(h, [])

filelist.append(fullname)
pprint.pprint (hashmap)

Beauty Counts

» Readability is the #1 mentioned characteristics of why organizations choose Python
* The beautiful appearance on the page directly affects a programmer’s sense of joy

* Makes us go home and write code

* If you can read other people’s code that makes it easier to maintain

* Because we all mostly share the same idiom it means we can read each other’s code. That doesn’t stifle creativity
- it just means we can get along.

— As a parent I can say I would have loved having a formal uniform at school. As a geek in school I would
have loved that too. :P

Interactive Prompt (REPL)

 Python experts don’t memorize Python
* They use the interactive prompt often (I try to write tests...)
 This is a killer features that runs circles around compiled languages
— Python shell
— IPython
— BPython (My favorite)

Behind the Scenes

Philosophy of core dev
» Conservative growth

» We read Knuth so you don’t have to

1.12. PyCodeConf 2011 223

pydanny-event-notes Documentation, Release 45

* Aim for simple implementation

Protocols

To interact with these we have defined protocols
* DBAPI
* Hashlib
» Compression
* WSGI for the web

* Conversion protocols

Specifics of Python: The Foundation

* Dictionaries and Lists

e Automatic memory management

* Overridable syntax

* Exceptions

* You can reprogram the brackets?

* And we can reprogram the dot?!?

Winner Language Feature: Iterator Protocol

 High level glue that holds the language together
* Iterables: strings, Isits, sets, dicts, collections, files, open urls, csv readers, itertools

e Um... I know this. I’ve had to construct these on my own in other languages. But not Python... Wow - I just
realized this just now.

When Raymond wrote x#xsortedx+ he wasn't thinking about sets
But they still just works

sorted(set ('abracadabra'))

sorted(set (open (filename))

sorted(set (open(filename))

Warning: If you say “Python has iterators, you have to explain how it is globally implemented. Other languages
have iterators, but they have to be implemented and extended and stuft”

Winner Language Feature: Generators

* List comprehensions give us joy
* Logical extension to list comprehensions and generators to unify the language
* List generators are amazing. No one else has them

* Serious magic

224 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

* A million rows in a generators is nothing

» Simple syntax to do them. You only need the YIELD keyword.

Sample generator code
def pager (lines, page_len=60):

for lineno, line in enumerate (lines) :
yield line

if lineno % pagelen == 0:
yield FORMFEED

genexps setcomps and dictcomps
sum(x+*3 for x in xrange (10000))

Note: I've used list generations to super-optimize slow code

Proposal: Generators that accept inputs

* Generators support send(), throw(), close()

¢ Unique to Python

* Makes it possible to implement Twisted’s inline deferreds

* Add one line of Twisted to your code and it infects your whole app
— Twisted forces you to write in callbacks
— Callback coding is hard to follow and debug

— Wouldn’t it be great if we could have the benefits of Twisted in procedural code?

two way generator example
@inlined_defereed
def session(request, cleared=False):
while not cleared:
cleared = yield authenticate (request.user)
db_result = yield database_query (request.query)
html - yield format_data (db_result)
TODO finish getting this down

Winning language Decorators

Note: I have problem writing these things. Serious problems. :’(

* Expressive

 Easy on the eyes

¢ Works for functions, methods, and classes
* Adds powerful layer of composable tools

¢ Raymond shows sample code from Daniel Lindsley’s Itty!

1.12. PyCodeConf 2011

225

pydanny-event-notes Documentation, Release 45

— https://github.com/toastdriven/itty

Winning Language Features: exec, eval, type

* Not a fan of exec and eval because when used in my experience they are done badly

* But type is awesome

Winning Language Feature: With Statement

* Clean, elegant resource management: threads, locks. etc
* Important tool for factoring code
¢ Factors-out common setUp and tearDown code.

¢ The reverse of functions

with locking:
access_resource ()

Winning Language Feature: Abstract Base Classes

» Uniform definition of what it means to be a sequence, mapping, etc
* Ability to override isinstance() and issubclass()

— New duck typing method: Just say you are duck!
* Mix-in capability

e Sample:

clas ListBasedSet (collections.Set) :

def _ init_ (self, iterable):

self.elements = lst = []
TODO add more

def _ iter_ (self):
return iter (self.elements)

TODO add more methods

Winning Language Feature: Indentation

* Makes the code really clear
* We write our pseudo code this way
* Less errors!

* Less ambiguity!

226 Chapter 1. Conferences

https://github.com/toastdriven/itty

pydanny-event-notes Documentation, Release 45

1.12.4 Backbone.js + Django

Note: I’'m having trouble keeping up when it comes to writing JavaScript fast. :P

Question: Why not JQuery templates?

Question: Best Practices?

by Leah Culver

Works at convore.com, a YC Combinator funded project
LeafyChat - Django Dash 2009

web-based IRC client

Convore issue?

Who is supposed to use it?
Internal company stuff

What kind of discussions

Grove!

IRC for your company
Internal for companies

https://grove.io

Leafy Chat

Pure JavaScript
very barebones - just JQuery

Very dirty in that their construct HTML manually

Each submit for chat:

1.
2.
3.
4,

handle form submit
create new message
display mesage in list

POST method in AJAX

Backbone!

MVC style of programming for AJAX/JavaScript
More like DJango: MTV

1.12.

PyCodeConf 2011

227

https://grove.io

pydanny-event-notes Documentation, Release 45

// models are easy!

window.Message = Backbone.model.extend ({
model: Message,
initialize: function() {

this.model.bind('add', this.addMessage)
// TODO

b

)i

// form submits
submitForm: function () {

}i

Handlebars templates

* handlebars.js templates

* looks like Django/Jinja2 templates

¢ See include_raw template tag as per htto://djangosnippets.org/snippets/1684

Addition Goodies about backbone.js

* Uses similiar routing to Django

¢ Handy code snippet by Leah for Django CBV usage:
— https://gist.github.com/1265346

* Event based asynchronous

— One thing can fire off multiple request

— Soif I am watching and someone else posts then I see the results

Router

* Can do overlaps of views

1.12.5 PyPy talk

by Alex Gaynor
* Student at RPI
* Core Python Dev
— cpython
- PyPy
* Core Django Dev

228

Chapter 1. Conferences

https://gist.github.com/1265346

pydanny-event-notes Documentation, Release 45

¢ Interned at Quora and got them on PyPY

* Dressed very classy.

Two things go faster than C

* neutrinos

* PyPy

Story of PyPy

* psyco was JIT python
— Managing it was hard
— hardcoded for 32 bit CPUs and we are on 64 bit
— Any changes to core Python killed pysco

* Years ago created a Python interpreter inside of Python

2000x slower than cpython

ran on restricted Python (r-python)

Wrote a great compiler: now 10x slower than cpython

Added better garbage collection: now 4x slower than cpython

* New JIT for Python

Writing a JIT for Python sucks

Writing a generator for making JITs for any language is easier

Alex Statement: “PyPy is the only project I know of that uses SVN branches. That’s the most impressive
part”

— Doing it this way made it faster? How? Wizard Magic?

* Now PyPY is going fast:

Crazy that it runs so much faster than cpython

Hard to believe

Python using a JIT generator to create a JIT library?

Faster than cpython

http://speed.pypy.org/

Why you should use PyPy
Science!
* Fast and scientist friendly

* Now works with numpy!

— Not complete

1.12. PyCodeConf 2011 229

http://speed.pypy.org/

pydanny-event-notes Documentation, Release 45

Tools

* jitviewer
— Finding slow spots in existing code

— Looks at Python, byte code, assembler, et al

Fast!!!

¢ Faster than cpython
* They now metric it’s speed against C, not Python
* Compatibilities
— Much work with third-party integration
— lots of people are using Python instead of C extensions
— PEP in place so that new stdlib stuff has to be pure python

* Quora is much more snappy

Python 3

* PyPy is beginning the move to Python 3

 JIT generator to the rescue!

JIT generator means...

e They can branch the Python 2.7 PyPy stuff to Python 3
— Make the Python 3 version work
— And since the JIT generator makes the code, both versions will just work
* Can do a GIL version for single CPU or non-GIL for multicore
— JIT generated so...

— Both versions just work!!!

The Future

* Lets make Python faster!

* Give us problem children to fix!

1.12.6 Processing Firefox Crash Reports With Python

* by Laura Thomson
— Web tools engineering manager

— author of two books:

230 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

+* PHP and MySQL Web Development
+ The Surrealists
— Done about 100 talks!

— Mozilla is hiring like crazy

Overview

¢ The basics
¢ The numbers

* Work process and tools

The Basics

* Socorro crash information collector thingee
* Lots of companies use it to track this data:
— Steam (game stuff)
— Other things

How crashy is the browser?

* Mozilla Crash report - please use it!
* Will email you if you have malware they detect
* Generates https://crash-stats.mozilla.com/products/Firefox

* Mozilla needs your data to make Firefox better.

Basic Architecure

 Database is PostGres
* HBase for map-reduce, she wants to replace it with something else
* Lots of components powered by Python

¢ Front-end is PHP but will be converted to Django in 2012

Lifetime to a crash

* Browser crashes

* Sends data to Mozilla in a big binary dump with a JSON header

* Mozilla processes the header and tries to generate a signature of the crash
— They need more than just the function that created the crash
— Doesn’t cover all cases

— Uses a regex to glean out other things from the binary crash dump

1.12. PyCodeConf 2011 231

https://crash-stats.mozilla.com/products/Firefox

pydanny-event-notes Documentation, Release 45

Back end processing

Large number of cron jobs, e.g.:

Calculate aggregates: Top Crashers (Farmville if you want to know)
Process incoming builds from ftp server

Match known crashes to bugzilla bugs

Duplicate detection

Match up pairs of dumps (OOPP, content crashes, etc)

Generates extracts (CSV) for engineers to analyze

Middleware

* Enable other front ends to data and us to rewrite webapp using Django in 2012

Moving all data access to be through REST API (by end of year)

(Still some queries in webapp)

Upcoming (2011 or 2012) each component will have it’s own API

Webapp

Hard parts: How to vizualize some of this data
Ex: Nightly builds, moving to reporting in build time, not clock time

Code crufty (old KohanaPHP)

Implementation Details

Python 2.6 mostly (PHP is the exception)
Post Gres 9.1

memcache for the webapp

Thrift for HBase access

— HBase is meant to work with Java

Could do it in Clojure/Scala but finding resources would be hard

Thought about Jython then backed off

Considering alternatives
100 users

100 Terabytes of data

232

Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Some Numbers

At peak 2300 crashes per minute

2.5 million per day

Median crash size 150K, max size 20MB (reject bigger)
~110TB stored in HDFS (3x replication, ~40TB of HBase data)

What can they do?

Impl

Does a version of FF crash more than others?
Analyze differences between versions of Flash
Detect duplicate crashes

Detect explosive crashes

Find “frankenstalls” that can happen on Windows

Email victims of malware

ementation Scale

> 115 boxes (not cloud cause that won’t cut it)

* Now 8 devs + sysadmins + QA + Hadoop ops/analysts

— Hiring: https://whitespacejobs.org

* Deploy approximatelt weekly but could do continuous if they need

Development Process

Fork

Hard to install (must use VM)

Pull request with bugfix/feature

Code review

Jenkins polls github master, picks up changes
Jenkins runs tests, builds a package

Package picked up and moved to dev

Wanted changes merged to release branch
Jenkins builds release branch, manual push to stage
QA runs acceptance on stage

TODO missing

TODO missing

. PyCodeConf 2011

233

https://whitespacejobs.org

pydanny-event-notes Documentation, Release 45

Absolutely Critical!
Build all the machinery for continuous deployment even if you don’t want to deploy continuously
* You don’t want to install HBase
Upcoming
¢ ElasticSearch implemented for better search
* More analytics; automatic detection of explosive crashes, malware, etc
* Better queueing
» Grand Unified Configuration System

Everything is Open Source

e https://github.com/mozilla/socorro

1.12.7 The Future of Collaboration - Daniel Greenfeld

Note: Audreyr took these notes. :)

Intro

Danny cartwheels, still blogs, works on Django Packages and whitespacejobs.org
Mark Pilgrim is gone

* feedparser, httplib2, Dive into Python, Dive into HTMLS5

* How much did we lose with Mark leaving the developer community?

* kennethreitz created a mirror at https://github.com/diveintomark
Where is httplib2?

* PyPI? No

* Not Google code

* Hard to find cached download

* Many libraries depend on it
Repeating history?

* django-piston, python.org, opencomparison.org all have bus factor and need active maintenance

234 Chapter 1. Conferences

https://github.com/mozilla/socorro
https://github.com/diveintomark

pydanny-event-notes Documentation, Release 45

Dark future?

Critical Python packages vanish

Build scripts fail

Can’t always replace from caches/backups
Legacy projects unmaintainable

Domain knowledge leaves

Hard to move forward

3rd party community as critical as core

Actually, this is not the future. It’s today

Like the Library of Alexandria

When we lose our history, we lose ourselves

Trust issues

External and internal social issues
Makes collaboration hard

Causes “Not Invented Here” plague

Solutions?

Sponsorships

* But focused on short-term development, unusable code from interns

Server costs are not the issue

Community managers

Needs core/senior devs
They’re busy

Volunteers have different priorities

Paid community managers

¢ Precedence: Ubuntu, Fedora, Twilio, Github
How do we keep Python’s community projects active?

* PSF project incubation: YC-style seed funding

Work with package authors/maintainers

Mitigate social issues

* Helping market projects via python.org, blogs, other channels

* Help community projects find a business model, sustain themselves

» Copy startup model for projects that benefit Python

1.12.

PyCodeConf 2011

235

pydanny-event-notes Documentation, Release 45

1.12.8 The State of Packaging & Dependency Management

by Craig Kairsterns

Note: started late cause was coming off my talk

Pip
* replaced easy_install
* Actually supports uninstalling

* Lots of small improvements

* Supports version control (Use only pinned versions!)
virtualenv

* Sandbox tool

 Destroy and recreate often

Best practices

* pin your versions
* Don’t use repos for production

* Not for deployment!

What’s missing?

¢ Jocks

Recap

* packaging
— use PyPI

* Dependency Management
- Pip

— virtualenv

Thoughts

* We’re in better shape than realized

* Just need to use the tools we have effectively

236

Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

1.12.9 API Design and Pragmatic Python

* by Kenneth Reitz

* Works for readability.com

* Used to work for changelog
* loves open source

* Author of requests and tablib libraries

Note: Kenneth’s mic kept going out. Hope all his words are captured!

Alternative Titles?

* Python is a Ghetto
* Python Jumped the Shark
 Python for Humans!

His libraries

* Requests: HTTP for humans

Tablibs: Pythonic Tabular Datasets

* legit: Awesome Git Interface

* OSX-GCC-Installer (angers lawyers)
* Clint: Command-line Interface Tools

* Hittpbin.org: Request & Response Server

Philosophy

We share a dark part:
e PHP
e Java
* ColdFusion
We all love the Zen of Python:

>>> import this

Bits:
* Beautiful is better than ugly
» Explicit is better then implicit
 Simple is better than complex
* If the implementation is hard to explain, its a bad idea (unless you are PyPy)

* There should be one and only one way to do things

1.12. PyCodeConf 2011 237

pydanny-event-notes Documentation, Release 45

HTTP as an example of APl issues

Github API client in Ruby

TODO: Get Ruby example from his slides. Ruby makes this easy

Github API client in Python: Ugh

* Pick the right std 1ib http/url/lib/2
TODO: Show the the example Python code from Confessions that I stole from Kenneth. :)

TODO: Show his example from trying to hit a private repo

Admit it

* If this were you coming into Python, you would leave and not come back

* THis is a serious problem

urllib2 is toxic

* Over-engineering
* Makes the simple/trivial hard
* Hard to debug

e Hard to test

Solution

 Python needs more pragmatic packages
* Pragmatic means implementation without focusing too much on thoery

* Figure out the actual reqs

Contention

* If you have to revisit docs every time to use an API the API is bad

Subprocess

¢ Powerful
¢ Effective

¢ Second worst stdlib module ever

238 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Solution

* envoy

* Replaces/wraps Subprocess

File and System Operations

* sys | shutils | os | os.path | io
* Really difficult to run external commands

* The blocks dev+ops guys from wanting to use Python

Installing Python

* Installing Python
* Decisions, Decisions (Binary, Homebrew, 32 bit, Macports, Source, what?!?)
* What happened to just one way to do it?

¢ Pain on Mac, Windows

XML

e etree is terrible

¢ [xml is awesome, but difficult to install

Packages and Dependencies

* pip and easy_install?
* setuptools not inclued with python?
* Distribute?

* No easyt_uninstall

Date[time]s
¢ datetime, time, calendar? Which one?
e What third-party libraries are around

Unicode

» Kenneth says it’s a simple problem

* Danny: Maybe the core docs should have an easy-to-find good description? Am I missing something? Is it an
SEO issue?

» Example: http://farmdev.com/talks/unicode is great, but how do you find it?

1.12. PyCodeConf 2011 239

http://farmdev.com/talks/unicode

pydanny-event-notes Documentation, Release 45

Installing Dependencies

Hard to do:
* PIL
* TODO: get more

Hitchhikers Guide to Python

* http://python-guide.org

* A guide to newcomes

» References for seasoned veterans
* Install resistance to doctest

 Stays with just one way to do things

Solves

* makes Python more accessible

¢ Great references

Manifesto

» Simplify terrible APIs

* Document best practices

1.12.10 Python is Only Slow If You Use it Wrong

* by Avery Pennarun
* Google employee
— But this talk has nothing to do with them
— If you apply to google and say his name he get’s money. :)

* Trying to talk about bitter

Stuff he’s done

* bup: Python software doing massive things for real problems
— http://github.com/apenwarr/bup
* sshuttle: VPN software tht handles 802..11 g/n speeds in python

— http://github.com/apenwarr/sshuttle

240 Chapter 1. Conferences

http://python-guide.org
http://github.com/apenwarr/bup
http://github.com/apenwarr/sshuttle

pydanny-event-notes Documentation, Release 45

Easiest way to do Python wrong

tight inner loops

chars = open.file('file') .read()
for char in chars:

slow

e Don’t do this

» Apparently for dynamically typed languages, this is a very, very slow operation

Speeding things up

» Use regexes and ¢ modules

* No such thing as 100% pure python

* forget about SWIG
— writing C modules is easy and integrating them easy too
— SWIG is a code generator for C++

¢ python + C is so far the winning combination

 C is simple; Python is simple; PyPy is hard
— The concept behind PyPy is really hard

— Python and C are relatively straightforward compared to the concepts of PyPy

Note: I want to learn how to write C and then add it to my Python work.

Other way to do things wrong

* Computation threads

— Worthless becauxe of GIL
» Threads are okay for I/O
* fork() works great for both

¢ C modules that use threads are fine

Garbage Collection

Refcounting

» Every time I use a variable I increase its reference count by one
» Every time I don’t use something its reference count goes down by one

e When it hits ZERO then it goes away

1.12. PyCodeConf 2011 241

pydanny-event-notes Documentation, Release 45

Refcount... and threads: BAD COMBO

¢ Variable shared between threads forces a lock on the refcount
* One reason why removing the GIL is almost impossible

e There are tricks...

Python is not a garbage collected language++

for i in xrange (1000000) :
a = "\0"'+x10000

» Sample code in Python
¢ Metric test done in Python, PyPy, Java, C, and Go

— Java: Running this loop takes more memory and more time than CPython!

PyPy takes about the same time as Python

C is much faster

Go is much slower

Java is a garbage collected language

* Three different collection strategies
* See his upcoming research paper: Seriously Java, WTF?
* Amusingly, the new threaded java system is slower and takes more memory

* “Ever notice complex Java programs seem to run slow and take up tons of memory?”

++Exception sometimes python is a garbage collected language

¢ Refcount sometimes fails
* Did you know Perl never drops objects?
— This is why you can have memory leaks with it.

— Avoiding this requires a deep understanding of Perl

Get the most out of Python’s GC

« JUST AVOID IT AT ALL COSTS

* Break circular references by hand when you are done
— trees are a good example
— TODO: find out what he meant somehow

¢ Better still: use the weakref module

242 Chapter 1

. Conferences

pydanny-event-notes Documentation, Release 45

Deterministic Destructors

Quiz: Does this program work on win32?

open('file', 'w').write('hello")
open('file', 'w').write('hello')
YES!!! Cause Python doesn't do Garbage Collection. refcounting FTW!

With “real” GC you habe to manually manage reosurces:
* files
* database handlers
* sockets
* locks

When you are done with a variable, it should go away. It shouldn’t stick around. Predictable behavior!

Don’t take away our Deterministic Destructors

* Maybe the GIL is a good thing

* refcounting is good

JIT vs 22?2

Note: TODO - find out the missing half of this title

* HelloMark benchmark language

 Simple process benchmark for command-line tools
1. C

2. Go

3. Perl

4. Ruby 1.8

5. Ruby 1.9

6. Python

7. mono

8. Java

9. java-client

10. java -XX:+UseConcMarkSweepGC
1. pypy

12. C + valgrind

13. jython

e Many it commands run in about 2x the time of C hello world.

1.12. PyCodeConf 2011 243

pydanny-event-notes Documentation, Release 45

* This is not good for Git

» Slow speed hurts user experience

.pyc rocks

* are awesome
» compiles Python files so you get fast
* Ruby tools like Rails take forever to reload after a file change

* Django, Pyramid, Tornado, et al does it really fast

Summary

* Love refcounting, hate gc
* Don’t write tight inner loops

* If you are using the JIT, you are doing it wrong
1.12.11 Amazing Things in Open Source
* by Audrey Roy
* Lots of volunteer work: PyLadies and opencomparison.org

Python community is a meritocracy

If your work has merit people use it
¢ Anyone can build anything
* Anyone can start a user group

* Anyone can be a leader

No permission needed

* Just implement or emperiment with what you want/need
* Fork if necessary

* Ask forgiveness later!

It’s fun

* Rewarding to see your work published

244 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Who’s in charge

You are if. . .
e ...you deliver code

* ...you maintain it

Decisions

* Forced to make quick decisions during Django Dash
* All packages are added manually, using:
— package name
- PyPIURL
— repo URL
* No spiders, no automation, good decision?
— Doesn’t matter, looks like it’s successful
* Be careful of mailing lists, IRC, et all
— don’t talk too much before implementation

— Just get something done

Your gut instinct is often right

* Django Packages
— Fun fact Many of the grids were created as test fixtures and have remained

— You can change them but keep in mind we’ll track the changes and hunt down people who do wrong

Django
Why she uses Django these days

* Lots of packages

 Can wire things together

Django Core vs Apps

* Many, many batteries included
* Gives you one obvious way to do things
* Third party apps: “Django apps”
* Good

— One pretty clear way to do things
* Bad

1.12. PyCodeConf 2011 245

pydanny-event-notes Documentation, Release 45

— Stuck with one way to do things.

— Example: URL routing differences

Clear pattern for Django apps

» Simple
 Easy to understand, implement, install
* Documented

* Repeatable

Django’s Ecosystem over time

* More and more new innovations implemented as 3rd-party packages
* Problem with adding all to core is then you are stuck
— Deprecation becomes challenging

— Additional complexity

Observation on Packages

e Umpteen JQuery plugins
* Perl: 100K modules
* Python: 17K packages

So very useful!

Pyramid Core vs. Add-ons approach

¢ smaller core, more add-ons

* Anyone can write add-ons

* Some are “officially endorsed”

* Easier to do extensions of the core

* Young, but potential for rapid growth

— Hopefully http://pyramid.opencomparison.org will help that growth

Pyramid’s Ecosystem over time

e Past: Pylons, Repoze.BFG, TurboGears
* Present: small core, docs for doing add-ons - but not many yet

¢ FutureL Lots of add-ons!

246

Chapter 1. Conferences

http://pyramid.opencomparison.org

pydanny-event-notes Documentation, Release 45

Checklist: What 3rd Party Package Devs need

» “Best practices” doc on how to write 3rd party packages
* Well defined, easy-to-understand spec

* Sample code (as much as possible)

Warning: Telling people to “read the source code” is not the answer.

e Active Community
* Mailing list, IRC

* Docs, tutorial, sample projects

What about too many options?

* Zen of Python: “There should be one— and preferable only one —obvious way to do it”
— This is about Python language constructs
— Not about 3rd party packages

» Sometimes packages are close duplicates
— Please document how you are different from other tools

— deprecate when your stuff gets old, don’t leave people hanging!

Too much fragmentation?

* Lots of Python groups and tools! Maybe too much?
* NO SUCH THING. MOAR IDEAS PLEAZE!

* We need diversity of ideas and approaches

What makes a package useful?

* Unix philosophy: Do one thing and do it well
* Usability: install docs, pip, PyPI

 Reliability: tests, maintained, community

Anti-patterns

* Don’t underestimate the impact of your notes on-line
— Your snippet on your blog can get hit 25K+ times
— Package up your stuff and deploy to PyPI

* Don’t over-engineer things to make them pluggable, abstract
— urllib2 is a good example

— counter: sometimes a single file is good

1.12. PyCodeConf 2011

247

pydanny-event-notes Documentation, Release 45

* Too much functionality
— Kitchen-sink base platforms
— utility, do-everything packages
django-extensions: ugh
— duct-tape packages that try to fix everything once

* HTML world: CSS resets that also do typography, layouts, and more

Glory Pattern: Be Pythonic

* Why do we love Python?
— Elegance
— Ease of Use
— Explicitness, clarity

— Simplicity

Community Building

* Mentorship
— Today’s new users are tomorrow’s contributors & leaders
— Mentorship groups: Positive encouragement
PyLadies
Python Core Mentorship

+ (need more like this)

Diversity of Ideas

* Look at schedules & slides from PyCons around the world
— KiwiPycon: Home of Twisted!
— PyCon AU: Focus on core Python, PyPI

¢ Ideas differ country-to-country

» Same goes for other types of diversity besides geographic
— SoCol Python is often more about deployment/scaling

— LA PyLadies is often about asynchronous

Summary

* Build what you want
* Encourage the 3rd party community to support your effort

* Be helpful

248 Chapter 1

. Conferences

pydanny-event-notes Documentation, Release 45

1.12.12 The Prejudgement of Programming Languages

* by Gary Bernhardt
e runs Destroy all software

Alternative Title: 10 years of failures and bad mistakes

2001-

¢ Used to be ignorant of software

2001

* C is the best thing!
* Java Sucks cause it has garbage collection

* Programming is supposed to be hard, right?

2003

» Learned Lisp
* Started his own crazy language
* But Python did the same thing, so went with that instead

* Python <3

2006

* Exhausted by his company, Python
* BitBacker

2009

* Started doing Ruby/Python 50/50
* Every day of the year switched languages halfway through
Quotes of the time:
* “I can integrate Python lib in 10 minutes, Ruby lib in an hour...”
* “Ruby syntax tricks can be hard, but other languages might want to take note”

* “Wrote a Python specer that would have been trivial to do in Python”

Not sure Ruby is serious cause the docs have some crazy stuff

1.12. PyCodeConf 2011 249

pydanny-event-notes Documentation, Release 45

Q2 2010

Writing tests in python:

class TestCount (UnitTest) :
def test_counter (self):
c = Counter ()

c.count (1)
self.assertEquals (1, c)

Writing tests in ruby:

require 'counter'
describe do

if "increments" do

c = .new

expect { c.increment }.to change { c.count }.by (1)
end

* claim: “RSpec is confusing”
— But not really true
— Feigned ignorance
* Python is based off of SUnit: 1994

Awesome tweet he made: “Python programmer rejects without considering its value, Ruby accept without con-
sidering it’s value”

Instance Variables in Ruby

» Ugly things in Ruby

class Horse

def what
@mustard
end
end
puts .new.what # => 5

* Really? Let’s take another look. ..

class Horse

def what
@mustard | |= compute_it
end
end
puts .new.expensive

* This is how you do memoization in Ruby.
* Really trivial to do something really important

* Some bits being added to Python already exist in Ruby

250 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

— Generators

— Decorators

Summary

It is really clear in Python why certain decisions were made
* No other language makes the design decisions so clearly

* Ruby’s design is not that hard for a good developer

Ruby is different
— More testing
— Crazy bleeding edge that often doesn’t work

— Community changes things in weird ways sometimes

Why does this all matter?

* You can’t evaluate something until you really play with it

¢ Blocks rock

1.12.13 Cherry-picking for Huge Success

* by Armin Ronacher
— @mitsuhiko

— http://lucumr.pocoo.org/talks/

Part of the Pocoo team
* Guy behind flask, jinja2, much more

* slides: http://www.scribd.com/doc/67925053/Cherry-Picking
Preface

* Doesn’t care about language fights

» Use the best tool for the job

Consider Twitter

* 2006: off the shelf Rails application, static HTML, basic XML API
* Now: The API is the service. Website itself is a JavaScript app. Scala/Erlang backend

1.12. PyCodeConf 2011 251

http://lucumr.pocoo.org/talks/
http://www.scribd.com/doc/67925053/Cherry-Picking

pydanny-event-notes Documentation, Release 45

Does this mean Ruby sucks?

¢ Not it does not

* Neither does Python

Ruby / Python are amazing for prototyping

» Expect applications to change and grow in implementation over time

Proposed Solution

* Build smaller apps

* Combine apps to make bigger apps

Cross boundaries

* Pygments is awesome
* Need Pygments in Ruby
— A: rewrite in Ruby
— B: Use different syntax highlight
— C: Use pygments as a service called by Ruby

“It only does Django”

* You wrote a library that does something useful (thumb-nailing for example)
¢ Don’t make it depend on Django if you can help it
* Try to make it independent

* Then implement a separate Django app that calls your tool

Note: This also happens with the Zope community. They did “Zope Only Projects” first. ;)

Protocol Examples

Flask Views

* Wiews can return response objects
* Respons eobjects are WSGI apps
* no typecheck

e Return any WSGI app

¢ WSGI server doesn’t care if it

252 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Difflib + Genshi

¢ Genshi is valid XML

Difflib returns a string
» Change Difflib to be <ins>/ so Genshi can render it

* Instant pages!

Serializers

* pickle, phpserialize, itsdangerous, json

* Within the compatible types it

Loosely couple all the ways!!!

Many small bits with specific merge points that are loosely coupled
* WSGI
* HTTP
e ZeroMQ
* Message queues
 Datastore

e JavaScript

WSGI

* Dictionary passed around

* Framework independent, but only for Python

» Tornado and Twisted don’t do it, but everything else does
» Middlewares are unused and hard to make

— TODO: Get his middleware example for use as possible sub-domain hack

WSGI middleware has issues:

— Can’t consume dform data

Processing response from application is complex

Can’t inject HTML
— TODO - last bullet?
e Libraries
— Werkzeug
- WebOb

— Paste

1.12. PyCodeConf 2011 253

pydanny-event-notes Documentation, Release 45

Django & WSGI

* Django used to do WSGI badly

* Getting documented

HTTP

Pure HTTP is more work than WSGI

* Easily debugged

» Language independant

* Need syntax highlighting with Pygments but your project is Ruby?

— Write small Flask app that exposes Pygments as a service

Libraries

* Python-Requests
* TODO
* TODO

1.12.14 Breakdancer

* by Dustin Sallings
— memcached contributor
— http://dustin.github.com/

* Does a lot of programming languages

https://github.com/dustin/BreakDancer
http://dustin.github.com/2010/10/27/breakdancer.html

Testing is a boring/hard subject

* How do you find those edge cases?
* How do you detect crazy pairs of edge cases?
» Wait until there is a reported error?

¢ pydanny contention: UnitTest makes it hard to document patterns in tests. User controlled

Wrote a framework to help set tests

* Actions are the tests
¢ Drivers performs the tests and include specific conditions

* So that means your tests are independent of the conditions but defined in code?

254 Chapter 1. Conferences

http://dustin.github.com/
https://github.com/dustin/BreakDancer
http://dustin.github.com/2010/10/27/breakdancer.html

pydanny-event-notes Documentation, Release 45

Note: Seems like a design of separation of presentation from content in tests!!! MVC anyone?

MVC test framework? Pydanny Thoughts...

* Can this be implemented on top of UnitTest?
¢ If so, it can be back ported to other systems
* Not actually MVC, just a defined pattern

* BreakDance seems to generate code

Conclusions

* Unit Testing isn’t enough
* Find ways to detect and fire off edge case tests
* itertools will save you

* python makes otherewuse tedious tasks boring

1.12.15 The Many Hats of Building and Launching a Web Startup

* by Tracy Osborn

— @limedaring

— Founder of http://weddinginvitelove.com
 Designer not a programmer

¢ piloshophy: “An entrpeneur tends to bire off a lottle than he can chew hoping he’ll quick;y learn how to chew
it”

* project is ‘ramen profitable’

1. Start off on the Right Foot

* Have a good amount of money in hand to lesson stress
* Be in good health
* Relationships in good shape

* Quit your job cause you can’t do this as a side project

Redefine success

* Don’t try to beat google
* Make your goals modest

* Small goals to begin with

1.12. PyCodeConf 2011 255

http://weddinginvitelove.com

pydanny-event-notes Documentation, Release 45

| know HTML! | can program!

« Started in Computer Science but graduated Graphic Design
* Joined a startup as the Designer that grew into a medium sized company
* Got bored

* Wanted to do something that could impact the world

Tried to find a co-founder

* Why weddings?
* Work on something you love to work on
* Cofounders are awesome, but no cofounder is better than the wrong cofounder

* Things didn’t go well with the cofounder didn’t go well

Did it herself

¢ Learn Python The Hard Way (Zed Shaw) Great programming starter book
¢ Got recommended to use Django because of so many apps available

* Launched weddinglovely.com in 6 weeks!

2. Launch as fast as possible

e Don’t try to build giant from the start
 Easy to get discourage
 Everything is going to change once you launch - you can’t predict the direction of things

» Take out as many features as possible - add them later if you need them

Work on the hard stuff first

* Programming before HTML layout/design

e Then make it pretty

Active Learning

* Don’t go through a whole book chapter by chapter. Learn the things that work
* http://gigantuan.net

* http://gettingstartedwithdjango.com got mentioned!

256 Chapter 1

. Conferences

http://gigantuan.net
http://gettingstartedwithdjango.com

pydanny-event-notes Documentation, Release 45

Launch with bad code

* Don’t worry about optimization (speed, caching, code smell, etc)
* get it done!
3. Have a plan for monetization
* Have at least a vague plan to making money
» Raising money is a pain in the butt
4. Don’t be forever alone

* Network and meet people!

Surround yourself with experts (in her case - programming)

Marketers

Designers

find the people who can help you do the work you want to do

* NDAs suck
— Most people won’t sign em, so they won’t be able to help you with advice
— Most people aren’t going to try and implement your idea
— Competition isn’t necessarily a bad thing

* Ask when you get stuck
— Don’t waste time banging your head against an impossible problem
— Go ask for help

* Stack Overflow

* twitter

* Jocal meetups

¢ Surround yourself with good influences

5. Take Shortcuts

* Skip the hard things if you can, eventually you’ll undertand them

* Django is plug & play!

http://djangopackages.com

South for migrations

hosted on https://www.dotcloud.com (special pricing for startups)

launchrock.com

1.12. PyCodeConf 2011

257

http://djangopackages.com
https://www.dotcloud.com

pydanny-event-notes Documentation, Release 45

Summary

1. Start off on the Right Foot
Launch as fast as possible
Have a plan for monetization

Don’t be forever alone

A

Take Shortcuts

1.12.16 Future of Python and NumPy for array-oriented computing

* by Travis Oliphant

* NumPy

* SciPy

¢ Array-Oriented Computed
* Enthought is hiring!

Note: Itook Travis’ tutorial on it in 2006. I want to use this for serious number crunching. Why bridge out to another

language/server if NumPy can do it for me fast and right in Python?

Python fits your brain

Thesis: Software engineering today is more about neuroscience than computer science
* Even fits the brains of Scientists

* Engineers say things differently than scientists

engineering solution
from scipy.signal import lfilter, lifiltic
from numpy import zeros

TODO get values here
def fibonocci (value) :

x = zeros (N)
y, zf = 1filter(b,a,x,zi=zi)

* But this is not fast enough for scientists
— C speed
— CPU speed
— FASTER!!!

Conway’s Game of Life

* http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

258

Chapter 1. Conferences

http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

pydanny-event-notes Documentation, Release 45

APL.: first array oriented language

* 1964

¢ Descendants still alive: J, K, matlab

e NumPy is a descendant of J

* Crazy non-standard unicode characters
* Very compact

* Can do Conway in a single line of very dense code

Derivative Calculations

* Complex data can be memory intensive
* Big sets break even list generators

e NumPy can do this for you

History of SciPy and NumPy

e Travis started in 1997 on Python 1.4

* Early contributors added numeric as a Python extension
— Jim Hugenin (numeric)
— Jim Fulton
— Paul Dubiois

* Fortran still exists because of complex numbers. Most languages got it wrong for a long time, including C and
Java.

Travis Found Python and Numeric in 1997

* Was good at MATLAB but it wasn’t efficient
* Loved the expressive syntax of Python

* Loved that slicing didn’t make copies

* Love the multiple data types

* Much more flexible than MATLAB

Loved that he could read source code a year later

1999: Early SciPy emerges

* Wanted something more complete than numeric
¢ A set of libraries and stuff

* Lots of early contributors

1.12. PyCodeConf 2011 259

pydanny-event-notes Documentation, Release 45

NumPy started in 2006

* Wasn’t happy with some of the directions of Numeric

* Got it working after 18 months and the work of 6+ dedicated people

SciPy Today

¢ Conferences
¢ Collection of Tools (NumPy, et al)
e Community

* being looked at by the Financial community

What SciPy Does

SciPy

* Lots of cool data shaping tools

NumPy

* We aren’t talking about simple lists but gigantic multidimensional arrays
* Super-duper fast
* Terse but understandable notation
» See Zen of NumPy:
— strided is better than scattered
— contiguous is better than strided
— descriptive is better than imperative

— TODO: finish writing this out!

Call to Action: Collaboration between Python Core and the Scientific Communication

Contention: Collaboration between Python core and scientific developers needs to be tighter
¢ Index array operator (matrix multiplication is not domain specific)
» Use of slice notation inside function calls
¢ Array overloading of and and or

e DSL blocks?

260 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Call to Action: NumPy and PyPy

* Stop chasing C, start chasing Fortran. Against an example:

Python: 202 seconds
PyPy: 4.71 seconds

NumPy: 5.56 seconds

Cython: 2.21 seconds

Fortran 90: 0.8 seconds

* Mock Fortran if you will, but it is blazing fast for some important stuff.

1.12.17 Discussions

* Talked to Mark Ramm and Wayne Witzel about SourceForge API

1.13 DjangoCon US 2011

1.13.1 Keynotes
David Eaves

* Professional negotiator
¢ Professional speaker

* Good, positive message

Russell Keith-Magee

¢ President of DSF
* Django core dev

* Presenting on Django Software Foundation

Organization of the DSF
Board members

* Russell Keith-Magee

* Adrian Holovaty

* Jacob Kaplan-Moss

* Dan Cox (president of Mediaphormedia)

1.13. DjangoCon US 2011 261

pydanny-event-notes Documentation, Release 45

Officers

* Treasurer: Joseph Kocherhans

* Secretary:

Committees

¢ Infrastructure

Developer Members

* Contributed to Django in a material fashion
* Admissions approved by the board
* Can be anyone “sufficiently material”

¢ Members can nominate new board

Corporate Member

 Small: $500/year
e Medium: $1000/year
* Large: $500/year

What does the DSF do?

* Trademark management
— The DSF has two lawyers, including a core dev (Justin Bronn)

o stuff

Manages Ownership of Django

* Django is owned by the individual contributors

Idan Gazit

Title Designers make it go to eleven
* Benevolent Designer for Life of Django
* BDesignerFL
* Took the role in Spring of 2011

262

Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Compromise is the soul of design

* You can’t get everything you want

¢ You have to make choices

Usability Stuff

¢ Color charts

* chunking 8001234567 vs 800-123-4567

Audience

e who
e what
e why

¢ where

Critical issues that hurts Django in regards to designers

* Python on windows is a problem

* local setup

* project templates - some basic architecture layours
* deployment has been a pain point

e trac is sucky

Glyph Lefkowitz

Title: Why does Django hate Python

Note: Trying to follow Glyph in notes is probably going to fail. He is that awesome

* Started with prose

*] come to bury Python, not to praise it

* “Adding manpower to a late software project makes it later.” - Fred Brooks

¢ “Over the centuries native Americans came up with sign languages. Developers have a zillion languages” - Alan
» “Systematically identify top designers as early as possible” - Fred Brooks on getting a software architect in place

* Give in to your hate - Glyph on hating things that aren’t Python

1.13. DjangoCon US 2011 263

pydanny-event-notes Documentation, Release 45

1.13.2 Read the Docs

by Eric Holscher

Note: arrived late. :(

Intro

¢ launched in Django Dash 2010
* Makes documentation hosting trivial

* uses sphinx

Things you can do

* Post commit hooks on Github
* Add custom sphinx theme
* PDF generation via download think

¢ Use their REST API for links to http://djangopackages.com

CNAME support

* Request for docs.fabfile.org

¢ docs.fabfile.org > (need to finish this out)

Architecture

* Python
¢ Front end caching via varnish
— Varnish is the current single point of failure.
* Django front ended via gunicorn and nginx
— Docs are hosted out via nginx
* Postgres SQL
* Haystack and SOLR
* Chef for deployment
* Nagios & Munin
 CoffeeScript (Where is the Python version? This is only in Ruby)
e CLI support via http://rtd.rtfd.org (need to check this out!)

264 Chapter 1. Conferences

http://djangopackages.com
http://rtd.rtfd.org

pydanny-event-notes Documentation, Release 45

Ope

Pros:

n source!

Patches
People trust you most because they can see the code

BSD license

Cons:

Hop

Known architecture information was on github
Early version had exposed data like IP addresses and other things
ing it makes people write more docs

mod_wsgi

django-piston

Lessons Learned

Think about your URLs. Really hard

— Adding versions was hard
Lay your project out sanely

— started with no tests

— Shoved code in

— Racked up a lot of technical debt

— worked hard to make the project layout a bit more sane
Write tests!

— Had a complicated code base without tests

— They have hosted continuous integration
Build around a standard tool

— Lots of good communication between rtfd and Sphinx
Passing data through systems is hard
Serving static files is annoying

Log. Everything.

— Hard to find people’s problems until they added sophisticated logging

— I personally like the build reports
Promote your projects!

— Blog

— Tweet

— http://djangopackages.com

1.13

. DjangoCon US 2011

265

http://djangopackages.com

pydanny-event-notes Documentation, Release 45

- G+
* Find a designer
* Follow the Unix Philosophy
— Do one thing and do it well

— Stay to your project goal and don’t deviate

— RTFD does so well cause all it does is Sphinx documentation hosting

e Have a mission

— RTFD fixes the problem in open source that projects are not well documented

— WIKIs are where your project goes to die

— Sphinx lets you accept Pull Requests

Sponsors

* Revsys
* PSF
* Divio

* pyladies

Questions

Note: ask Russ his question
* How easy to deploy internally?
— Open Source
— Documented
— Chef
* Designer thoughts?

— Started with the project with a designer

Mirror your project in your test layouts

Note: I love this pattern and use it myself!
¢ Create test modules following the same file layout as your project
* Have as few root test utils as possible
— Use it sparingly

— just a few simple helper functions!

266

Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

1.13.3 Testing: The Developer Strikes Back

Note: Sandy really, really, really rocked this talk

by Sandy Strong
* Been doing Django since fall of 2009

* Pyladies co-founder

Hard to do it right

* Delegate responsibilitiues correctly
* wont always get it right first time
* Presents reasons for refactoring

* increases stability because you can test updates and patches
What is unit testing
* A unit is the smallest possible part of an application

* Integration tests the whole and is often built out of unit tests

Practices

¢ Each class, method, and function should have its own test
* Starting Django test.py files are limited
* Organize however you want

* Maintain consistency in your test patterns

» Separate your tests between models, views, and hitting other services

— keep things simple
— easy to understand tests
* Don’t keep all your tests into monolithic test.py files

* make multiple assertions

Mirror your project in your test layouts

Note: I love this pattern and use it myself!

* Create test modules following the same file layout as your project

» Have as few root test utils as possible
— Use it sparingly

— just a few simple helper functions!

1.13. DjangoCon US 2011

267

pydanny-event-notes Documentation, Release 45

* Your tests should copy the model/view/whatever tightly

Use ObjectCreator classes for mocks instead of fixtures

* Mock your data by using the ORM or whatever persistence your system uses
 Better than fixtures because mocking your objects this way means you are doing an addition ORM test

» The mock library is supposed to be good

Beyond the business logic

* Testing third-party libraries should be separate from other unit tests
* Third party APIs go down. Even the big ones.
¢ Mock 3rd party API responses

* Means you can continue to work when Facebook, Google, et al go down

Dealing with cache

* Very hard
* I tend to blow away the cache in a tearDown method

* Her issues are beyond mine. Sandy rocks!

Writing tests can improve coding tests

* Small functions can be tested. 200 lines functions cannot
* Write more tests

— Find good test patterns

— Functions should perform a single function

— Units of code should be true to the definition

What about T.D.D.?

e Step 1 - Write your tests

* Step 2 - Then write the code

Sandy doesn’t believe it exists.

Note: I've done it for short periods.
* Goes against prototyping
* Requires full team buyOin to really work

* Business owners rarely get it

268 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Well tested code is often a happy medium

¢ More realistic
* More practical

* Allows for a more individual style in coding

Options to get people to test

¢ webhooks tests to block code that isn’t test
* coverage.py makes it a game

¢ Public shaming!

Junction between unit and integration

* Difficult areas to test because behavior is driven upon environment

* Some code doesn’t always work the way you want because people don’t script/document things out

Testing a virgin codebase: 0-100%

* You may find yourself faced with a project without tests

* Set a pattern for tests, establish a framework follow it and get the team on board
* Smaller tighter tests really help

* Jenkins (continuous integration) is critical

 Test Debt is part of Technical debt

* Enforce the rule that All future code MUST have tests

Graceful code degratation
» Developers need to think outside the box - their local machine is not the same as Staging/Production

¢ Service unavailable should not be an unavailable site

With good coverage You can survive these things down...

¢ Search. 3rd party API, Cache
* Test your dependencies on these things when they are shut down

* This way your site doesn’t just die

1.13. DjangoCon US 2011 269

pydanny-event-notes Documentation, Release 45

Test Infrastructure

* No one gets staging environments that match production
* Run SOLR and RabbitMQ on staging environments

* Don’t overdo logging as it will slow everything down

Useful tools

¢ coverage
® nose

¢ one-more

How to sell testing at your Django shop

* Pretty coverage charts

* Code not tested is broken by design

» Saves money when you have problems
* Makes it easier to add features

» Happier developers

Questions

* If someone breaks a test pattern and won’t fix it go back and make their tests follow the pattern

* Interesting to see that Sandy is into Behavior Driven Development

1.13.4 Fireside Chat with a BDFL

Moderated by Sean O’Conner and starring Jacob Kaplan-Moss

How did Django get started?

* 2002 - 2003 LJ World hired Adrian Holovaty to become their dedicated Web Developer
* Previous to 2002 had Frank Wiles making things for them in Perl
* Adrian hired Simon Willison as the most overqualified intern until Alex Gaynor
* Because of the fast news cycle at a newspaper you don’t have the luxuries of other jobs.
* Sometimes you have to build a project within 24 hours
* Adrian and Simon decided to do it all in Python
* The Python ecosphere didn’t have all the tools they needed so they made things up
— Zope/Plone couldn’t cut it
— No light frameworks existed

* At PyCon 2005 they went to a success story workshop and Adrian demonstrated a blog in 5 minutes

270 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

— Nothing else in Python could do it at the time
— People asked them to open source it
— LJ World was okay with open sourcing it

¢ In July 2005 they released it as open source

Why did Django get traction and other light Python frameworks didn’t?

* Luck of timing
* They did a lot more documentation than any other emerging option
— Jacob and Adrian focused on the on-boarding of incoming developers
— Good input from Wilson Minor on design and the result was that it looked better than it’s competitors

¢ Spent a lot of time considering how the community ought to be built

How has Django’s community and structure has changed?

 Jacob mentions their are 6 developer journalists. The reality is that there are a lot more
* Linear community growth until 2006 and then it’s grown exponentially
* 20,000 members on the mailing list

* Huge issue: Not enough man hours for the leadership to increase the number of contributors.

What about Django 2.0?

* Jacob never wants to have a not backwards compatible version of Python
* Doesn’t want to see Django 1.11, wants to go Django 2.0 at that point

* Massive incompatible rewrites are really challenging

Wishlist?

* Wants to see a better job for formalizing the app interface
* Wants to see Django become a micro-kernel.
— Less features and more APIs and hooks
— No more features in Django
* Delighted that Python Package has been shaped by the Django community!

* Wants to see more people empowered to help build Django

How can Django can become a better part of the Python community?

* 2 years ago the communities were a bit separate
» Some tension caused by Django because we as a community sometimes get aggressive

* Some tension caused by Python because the anti-establishment guys don’t like winners

1.13. DjangoCon US 2011 271

pydanny-event-notes Documentation, Release 45

* Django needs to help push for better Packaging in python

Let’s port to Python 3!

Note: I think having the Django community cook up a good alternative to PIL and make it pure Python.

In your role as BDFL have you had to go against the community?

 Jacob/Adrian admit being wrong about the template language not auto-escaping

Doesn’t want to overlord too much

How have things changed for the Django community since the last hate talk?

1.13.5 Real World Deployment using Chef

* Changed the core developer rules so that the quorum for new core devs could work

* Any time a core developer says “no” to something, they have to explain why

by Noah Kantrowitz

Ops Code guy

Really good at Python!

Django hacker

Ruby user (tolerates it and not enthusiastic about ti)

Developer

Who is here

Sys admins
Designers
Developers

Designers

How and why

* Rebuild a system via a script that includes servers and database

Infrastructure as good

— Configuration management
— System integration

% Don’t use wikis

* don’t use spreadsheets

% use code!

272

Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

How does thus work?

¢ Provision
— Servers
— Load balancers
— etcs
* Configure
— Servers
— Load balancers

- etcs

About chef

* Reasonability
¢ flexibility

* libraties and primitives

* ohai

e chef-client

e chef-server

* knife (command line utility)

..note:: mixed a section here

ecosysye,

* Apache license 2

400 contrib

¢ opeén source code

* On github

Infrastructure

* Recipe
— Have a type
— have a name
— have parameters

— take actions to change state

1.13. DjangoCon US 2011

273

pydanny-event-notes Documentation, Release 45

— can send notifications to other resources
¢ Resources
— resources take action through providers

— What operating system you are on will determine what action is run

common resources

* package ‘apache2
e template “/etc/apache2/httpd.conf”

* cookbook_file (Load a recipe that does this sort of thing)

Idempotence

Note: what does that word mean anyhow? Ha ha
* Convergence

¢ Gaurd clauses

Chef Recipes

* Runs just like a script. Doesn;t that make them. .. scripts?
* Recipes can include other recipes
» Extend recipes with Ruby

* Dynamic configuration through search - so you can search your servers for stuff

Chef Roles

* Things can be assigned server roles
¢ Roles describe nodes
¢ Roles have a run list

¢ Roles can have attributes

Other chef terms

» Cookbooks are collections recipes

JSON blobs

* Other thing 1
¢ Other thing 2

274 Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Python cookbook

* You can use pip and virtualenv! Yeah!
* gunicorn::default

* supervisor::default

* Debian-style fot now

® servicer service

Case Studies - Packaginator

* Inatll users
* configure sudo
* apt-get update

* install gcc

Warning: Some of the Chef stuff Noah goes over isn’t public yet. Probably in a few days

notes

¢ Always run the migrations!

* Apparently we have our reqs in a weird place. I kind of agree

* Old-style custom collectstatic. Need to finish the 1.3 integration!
* https://github.com/coderanger/djangocon2011

* Mentions the issues with settings that Jacob Kaplan-Moss taught me.

1.13.6 Making the Django ORM Multilingual

By Jonas Obrist

 Lead of the django-cms project: https://django-cms.org

What this is all about

* Models

e The ORM
* Admin

* Forms

* not gettext!

1.13. DjangoCon US 2011 275

https://github.com/coderanger/djangocon2011
https://django-cms.org

pydanny-event-notes Documentation, Release 45

Que?

* Because you may not understand this title!

* You might lose customers and users

What does he want

* Multilingual content in the database
« Editable in a usable admin inteface
* Easy, Django-like API
* Good performance
— Most of the existing tools are slow

— Bad performance

State of now

* 10 packages at http://djangopackages.com/
* No consensus on how this should be done
- API
— Base solutions

— many ideas floating around

Approaches

e 1 table, 1 extra field

* 1 extra table with key/value translations

¢ 2 tables, one for translated fields one for translated fields (dual-table) - How I’ve done it

* Translations serialized into a single field (Pickle/JSON) - No search without a ton of hacking!!!

¢ gettext
* Google Translate
— This is not a serious service for a real project

— Third party and relies on Google management

Single Table Approach

Pros
e Somewhat easy
» few queries
* fallbacks

* Hard to implement filtering

276

Chapter 1. Conferences

http://djangopackages.com/

pydanny-event-notes Documentation, Release 45

Cons
* Multisite this falls apart. Doesn’t work
» Migrations are painful because each language requires a schema migration
* Size of query result can get big
* Hard to make nice admin
* Hard to handle required fields

Example:

. sourcecode:: sqgl

select book.isbn, book.title_en, book.title_de from book;

Dictionary Table Approach

Pros

* Easy to implement
Cons

* No filtering

* No sorting

* Admin

No example cause the Query is too big

Two Table Approach

Pros:
* Can be made very fast
* few queries
* Works with south
* makes sense
* possible but hard to make nice admin
Cons:
¢ Hard to implement
* joins
* Usually done with bad performance I addressed this with caching and celery

* Incompatible with lots of other packages (requires custom queries unless you are really careful)

1.13. DjangoCon US 2011 277

pydanny-event-notes Documentation, Release 45

Common problems

¢ Admin doesn’t like new ideas
— django.contrib.admin.validation is a blocker
— Extensible but not customizable

— Forms are a weak spot in Django, and Admin uses them in a really odd way

ORM just wasn’t written to be extended, was written to be used
— Relations: Starting model controls everything
— Not intended to be changed
— Nice things: QuerySet.iterator

 Performance issues on all of them

¢ Usually written under time pressure (deadline)

* Many packages are undocumented and lack tests

Summary: The Situation

¢ Translatable models are hard
 All available solutions have their problems

* Maybe something needs to be done in Django

What could Django do?

* Do nothing
¢ Provide hooks/APIs to make this easier

* Provide support for translated models

If Django does nothing

e List of multilingual libraries grow

* Many custom undocumented implementations

If Django adds new APIs

* Probably too low-level

¢ abstract solutions add overhead

278

Chapter 1. Conferences

pydanny-event-notes Documentation, Release 45

Django adds multilingul support

* Bikeshedding potential

— What approach to take?

— What API should look like?
 Easiest way to implement

* Could be done backwards compatible

1.13.7 Why the Django Documentation Sucks
by Steve Holden
¢ PSF chairman
e Rambles
Rambles
¢ All documentation sucks because the mind of the writer can’t match the mind of the reader
» Use cases mostly appear to be “I want to know about X”
Use cases

* Documentation wasn’t necessarily done with use cases in mind

Images and pictures!

* No pictures? A picture is worth a thousand words

* Some people need visual pictures to process things - visual thinkers
No jokes?

* Jokes cut through barriers and allow people to interact more intimately
* Humor negates fear

¢ But you run the risk of looking silly

Problem: overview

* google “django overview” https://docs.djangoproject.com/en/dev/intro/overview/
— shouldn’t a glance be visual?

— Gigantic document

1.13. DjangoCon US 2011

279

https://docs.djangoproject.com/en/dev/intro/overview/

pydanny-event-notes Documentation, Release 45

Problem: Tutorial

 Put your apps in project subdirectories
* It’s like they’d never heard of the Python PATH

* manage.py startapp still does it that way.

Problem: SEO optimization

e Why isn’t the first Google hit on every ‘django’ somewhere in the docs
* Problem: Curious noob gets odd things

* django users doesn’t return good results

Problem: People might get smug about Django docs

* Because they have become smug

Solutions

¢ Make documentation submissions process easier

* Ask for all doc submissions and reserve the right to edit

1.13.8 Best Practices for Front-End Django Developers

by Christine Cheung
* One of the co-founders of Pyladies
* Works for Red Interactive Agency
* Does front end development
— Also does a lot of backend stuff
— Quickly mastered CBVs so she has serious chops
* @webdevgirl on http://twitter.com/webdevgirl

* http://