

pycsw 2.6.1 Documentation

	Author

	Tom Kralidis

	Contact

	tomkralidis at gmail.com

	Release

	2.6.1

	Date

	2021-10-14

	Introduction

	Features
	Standards Support

	Supported Operations

	Supported Output Formats

	Supported Output Schemas

	Supported Sorting Functionality

	Supported Filters

	Installation
	System Requirements

	Installing from Source

	Installing from the Python Package Index (PyPi)

	Installing from OpenSUSE Build Service

	Installing on Ubuntu/Mint

	Running on Windows

	Security

	Running on WSGI

	Docker
	Inspect logs

	Using pycsw-admin

	Running custom pycsw containers

	Setting up a development environment with docker

	Kubernetes

	Helm

	Configuration
	MaxRecords Handling

	Using environment variables in configuration files

	Alternate Configurations

	Administration
	Metadata Repository Setup

	Supported Information Models

	Setting up the Database

	Loading Records

	Exporting the Repository

	Optimizing the Database

	Deleting Records from the Repository

	Database Specific Notes

	Mapping to an Existing Repository

	CSW Support
	Versions

	Request Examples

	Distributed Searching
	Scenario: Federated Search

	Search/Retrieval via URL (SRU) Support

	OpenSearch Support
	OpenSearch Temporal Queries

	OAI-PMH Support

	JSON Support

	SOAP

	XML Sitemaps

	Transactions
	Supported Resource Types

	Harvesting

	Transactions

	Repository Filters
	Scenario: One Database, Many Views

	Profile Plugins
	Overview

	Requirements

	Abstract Base Class Definition

	Enabling Profiles

	Testing

	Supported Profiles
	ISO Metadata Application Profile (1.0.0)

	INSPIRE Extension

	CSW-ebRIM Registry Service - Part 1: ebRIM profile of CSW

	Repository Plugins
	Overview

	Requirements

	Configuration

	Output Schema Plugins
	Overview

	Requirements

	Implementing a new outputschema

	Testing

	GeoNode Configuration
	GeoNode Setup

	HHypermap Configuration
	HHypermap Setup

	Open Data Catalog Configuration
	Open Data Catalog Setup

	CKAN Configuration
	CKAN Setup

	API
	Simple Flask Example

	Testing
	OGC CITE

	Functional test suites

	Unit tests

	Running tests

	pycsw Migration Guide
	pycsw 1.x to 2.0 Migration

	Cataloguing and Metadata Tools
	CSW Clients

	CSW Servers

	Metadata Editing Tools

	Support
	Community

	Contributing to pycsw
	Code of Conduct

	Contributions and Licensing

	GitHub

	Code Overview

	Documentation

	Bugs

	Forking pycsw

	Development

	License
	Documentation

	Committers

 Introduction

Introduction

pycsw is an OGC CSW server implementation written in Python.

Features

	certified OGC Compliant [http://www.opengeospatial.org/resource/products/details/?pid=1374] and OGC Reference Implementation for both CSW 2.0.2 and CSW 3.0.0

	harvesting support for WMS, WFS, WCS, WPS, WAF, CSW, SOS

	implements INSPIRE Discovery Services 3.0 [http://inspire.jrc.ec.europa.eu/documents/Network_Services/TechnicalGuidance_DiscoveryServices_v3.0.pdf]

	implements ISO Metadata Application Profile 1.0.0 [http://portal.opengeospatial.org/files/?artifact_id=21460]

	implements FGDC CSDGM Application Profile for CSW 2.0 [http://portal.opengeospatial.org/files/?artifact_id=16936]

	implements the Search/Retrieval via URL (SRU [http://www.loc.gov/standards/sru/]) search protocol

	implements Full Text Search capabilities

	implements OGC OpenSearch Geo and Time Extensions

	implements Open Archives Initiative Protocol for Metadata Harvesting

	supports ISO, Dublin Core, DIF, FGDC, Atom and GM03 metadata models

	CGI or WSGI deployment

	simple configuration

	transactional capabilities (CSW-T)

	flexible repository configuration

	GeoNode [http://geonode.org/] connectivity

	HHypermap [https://github.com/cga-harvard/HHypermap] connectivity

	Open Data Catalog [https://github.com/azavea/Open-Data-Catalog/] connectivity

	CKAN [http://ckan.org/] connectivity

	federated catalogue distributed searching

	realtime XML Schema validation

	extensible profile plugin architecture

Standards Support

	Standard

	Version(s)

	OGC CSW [http://www.opengeospatial.org/standards/cat]

	2.0.2, 3.0.0

	OGC Filter [http://www.opengeospatial.org/standards/filter]

	1.1.0, 2.0.0

	OGC OWS Common [http://www.opengeospatial.org/standards/common]

	1.0.0, 2.0.0

	OGC GML [http://www.opengeospatial.org/standards/gml]

	3.1.1

	OGC SFSQL [http://www.opengeospatial.org/standards/sfs]

	1.2.1

	Dublin Core [http://www.dublincore.org/]

	1.1

	SOAP [http://www.w3.org/TR/soap/]

	1.2

	ISO 19115 [http://www.iso.org/iso/catalogue_detail.htm?csnumber=26020]

	2003

	ISO 19139 [http://www.iso.org/iso/catalogue_detail.htm?csnumber=32557]

	2007

	ISO 19119 [http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39890]

	2005

	NASA DIF [http://gcmd.gsfc.nasa.gov/add/difguide/index.html]

	9.7

	FGDC CSDGM [http://www.fgdc.gov/metadata/csdgm]

	1998

	GM03 [http://www.geocat.ch/internet/geocat/en/home/documentation/gm03.html]

	2.1

	SRU [http://www.loc.gov/standards/sru/]

	1.1

	OGC OpenSearch [http://www.opengeospatial.org/standards/opensearchgeo]

	1.0

	OAI-PMH [http://www.openarchives.org/OAI/openarchivesprotocol.html]

	2.0

Supported Operations

	Request

	Optionality

	Supported

	HTTP method binding(s)

	GetCapabilities

	mandatory

	yes

	GET (KVP) / POST (XML) / SOAP

	DescribeRecord

	mandatory

	yes

	GET (KVP) / POST (XML) / SOAP

	GetRecords

	mandatory

	yes

	GET (KVP) / POST (XML) / SOAP

	GetRecordById

	optional

	yes

	GET (KVP) / POST (XML) / SOAP

	GetRepositoryItem

	optional

	yes

	GET (KVP)

	GetDomain

	optional

	yes

	GET (KVP) / POST (XML) / SOAP

	Harvest

	optional

	yes

	GET (KVP) / POST (XML) / SOAP

	UnHarvest

	optional

	no

	

	Transaction

	optional

	yes

	POST (XML) / SOAP

Note

Asynchronous processing supported for GetRecords and Harvest requests (via csw:ResponseHandler)

Note

Supported Harvest Resource Types are listed in Transactions

Supported Output Formats

	XML (default)

	JSON

Supported Output Schemas

	Dublin Core

	ISO 19139

	FGDC CSDGM

	NASA DIF

	Atom

	GM03

Supported Sorting Functionality

	ogc:SortBy

	ascending or descending

	aspatial (queryable properties)

	spatial (geometric area)

Supported Filters

Full Text Search

	csw:AnyText

Geometry Operands

	gml:Point

	gml:LineString

	gml:Polygon

	gml:Envelope

Note

Coordinate transformations are supported

Spatial Operators

	BBOX

	Beyond

	Contains

	Crosses

	Disjoint

	DWithin

	Equals

	Intersects

	Overlaps

	Touches

	Within

Logical Operators

	Between

	EqualTo

	LessThanEqualTo

	GreaterThan

	Like

	LessThan

	GreaterThanEqualTo

	NotEqualTo

	NullCheck

Functions

	length

	lower

	ltrim

	rtrim

	trim

	upper

 Installation

Installation

System Requirements

pycsw is written in Python [http://python.org], and works with (tested) Python 3. Python 2 is no longer supported.

pycsw requires the following Python supporting libraries:

	lxml [http://lxml.de/] for XML support

	SQLAlchemy [http://www.sqlalchemy.org/] for database bindings

	pyproj [http://code.google.com/p/pyproj/] for coordinate transformations

	Shapely [http://toblerity.github.io/shapely/] for spatial query / geometry support

	OWSLib [https://github.com/geopython/OWSLib] for CSW client and metadata parser

	xmltodict [https://github.com/martinblech/xmltodict] for working with XML similar to working with JSON

	geolinks [https://github.com/geopython/geolinks] for dealing with geospatial links

Note

You can install these dependencies via pip [http://www.pip-installer.org]

Note

For GeoNode or Open Data Catalog or HHypermap deployments, SQLAlchemy is not required

Installing from Source

Download [https://pycsw.org/download] the latest stable version or fetch from Git.

For Developers and the Truly Impatient

The 4 minute install:

$ virtualenv pycsw && cd pycsw && . bin/activate
$ git clone https://github.com/geopython/pycsw.git && cd pycsw
$ pip install -e . && pip install -r requirements-standalone.txt
$ cp default-sample.cfg default.cfg
$ vi default.cfg
adjust paths in
- server.home
- repository.database
set server.url to http://localhost:8000/
$ python pycsw/wsgi.py
$ curl http://localhost:8000/?service=CSW&version=2.0.2&request=GetCapabilities

The Quick and Dirty Way

$ git clone git://github.com/geopython/pycsw.git

Ensure that CGI is enabled for the install directory. For example, on Apache, if pycsw is installed in /srv/www/htdocs/pycsw (where the URL will be http://host/pycsw/csw.py), add the following to httpd.conf:

<Location /pycsw/>
 Options +FollowSymLinks +ExecCGI
 Allow from all
 AddHandler cgi-script .py
</Location>

Note

If pycsw is installed in cgi-bin, this should work as expected. In this case, the tests application must be moved to a different location to serve static HTML documents.

Make sure, you have all the dependencies from requirements.txt and requirements-standalone.txt

The Clean and Proper Way

$ git clone git://github.com/geopython/pycsw.git
$ python setup.py build
$ python setup.py install

At this point, pycsw is installed as a library and requires a CGI csw.py
or WSGI pycsw/wsgi.py script to be served into your web server environment
(see below for WSGI configuration/deployment).

Installing from the Python Package Index (PyPi)

easy_install or pip will do the trick
$ easy_install pycsw
or
$ pip install pycsw

Installing from OpenSUSE Build Service

In order to install the pycsw package in openSUSE Leap (stable distribution), one can run the following commands as user root:

zypper -ar http://download.opensuse.org/repositories/Application:/Geo/openSUSE_Leap_42.1/ GEO
zypper refresh
zypper install python-pycsw pycsw-cgi

In order to install the pycsw package in openSUSE Tumbleweed (rolling distribution), one can run the following commands as user root:

zypper -ar http://download.opensuse.org/repositories/Application:/Geo/openSUSE_Tumbleweed/ GEO
zypper refresh
zypper install python-pycsw pycsw-cgi

An alternative method is to use the One-Click Installer [https://software.opensuse.org/package/python-pycsw].

Installing on Ubuntu/Mint

In order to install the most recent pycsw release to an Ubuntu-based distribution, one can use the UbuntuGIS Unstable repository by running the following commands:

sudo add-apt-repository ppa:ubuntugis/ubuntugis-unstable
sudo apt-get update
sudo apt-get install python-pycsw pycsw-cgi

Alternatively, one can use the UbuntuGIS Stable repository which includes older but very well tested versions:

sudo add-apt-repository ppa:ubuntugis/ppa
sudo apt-get update
sudo apt-get install python-pycsw pycsw-cgi

Note

Since Ubuntu 16.04 LTS Xenial release, pycsw is included by default in the official Multiverse repository.

Running on Windows

For Windows installs, change the first line of csw.py to:

#!/Python27/python -u

Note

The use of -u is required to properly output gzip-compressed responses.

Tip

MS4W [https://ms4w.com] (MapServer for Windows) as of its version 4.0 release includes pycsw,
Apache’s mod_wsgi, Python 3.7, and many other tools, all ready to use out of the box. After installing,
you will find your local pycsw catalogue endpoint, and steps for further configuration, on your
browser’s localhost page. You can read more about pycsw inside MS4W here [https://ms4w.com/README_INSTALL.html#pycsw].

Security

By default, default.cfg is at the root of the pycsw install. If pycsw is setup outside an HTTP server’s cgi-bin area, this file could be read. The following options protect the configuration:

	move default.cfg to a non HTTP accessible area, and modify csw.py to point to the updated location

	configure web server to deny access to the configuration. For example, in Apache, add the following to httpd.conf:

<Files ~ "\.(cfg)$">
 order allow,deny
 deny from all
</Files>

Running on WSGI

pycsw supports the Web Server Gateway Interface [http://en.wikipedia.org/wiki/Web_Server_Gateway_Interface] (WSGI). To run pycsw in
WSGI mode, use pycsw/wsgi.py in your WSGI server environment.

Note

mod_wsgi supports only the version of python it was compiled with. If the target server
already supports WSGI applications, pycsw will need to use the same python version.
WSGIDaemonProcess [https://code.google.com/p/modwsgi/wiki/ConfigurationDirectives#WSGIDaemonProcess] provides a python-path directive that may allow a virtualenv created from the python version mod_wsgi uses.

Below is an example of configuring with Apache:

WSGIDaemonProcess host1 home=/var/www/pycsw processes=2
WSGIProcessGroup host1
WSGIScriptAlias /pycsw-wsgi /var/www/pycsw/wsgi.py
<Directory /var/www/pycsw>
 Order deny,allow
 Allow from all
</Directory>

or use the WSGI reference implementation [http://docs.python.org/library/wsgiref.html]:

$ python ./pycsw/wsgi.py
Serving on port 8000...

which will publish pycsw to http://localhost:8000/

 Docker

Docker

pycsw is available as a Docker image. The image is hosted on the Docker Hub [https://hub.docker.com/r/geopython/pycsw/].

Assuming you already have docker installed, you can get a pycsw instance up
and running by issuing the following command:

docker run -p 8000:8000 geopython/pycsw

Docker will retrieve the pycsw image from Docker Hub (if needed) and then
start a new container listening on port 8000.

The default configuration will run pycsw with an sqlite repository backend
loaded with some test data from the CITE test suite. You can use this to take
pycsw for a test drive.

Inspect logs

The default configuration for the docker image outputs logs to stdout. This is
common practice with docker containers and enables the inspection of logs
with the docker logs command:

run a pycsw container in the background
docker run \
 --name pycsw-test \
 --publish 8000:8000 \
 --detach \
 geopython/pycsw

inspect logs
docker logs pycsw-test

Note

In order to have pycsw logs being sent to standard output you must set
server.logfile= in the pycsw configuration file.

Using pycsw-admin

pycsw-admin can be executed on a running container by
using docker exec:

docker exec -ti <running-container-id> pycsw-admin.py -h

Running custom pycsw containers

pycsw configuration

It is possible to supply a custom configuration file for pycsw as a bind
mount or as a docker secret (in the case of docker swarm). The configuration
file is searched at the value of the PYCSW_CONFIG environmental variable,
which defaults to /etc/pycsw/pycsw.cfg.

Supplying the configuration file via bind mount:

docker run \
 --name pycsw \
 --detach \
 --volume <path-to-local-pycsw.cfg>:/etc/pycsw/pycsw.cfg \
 --publish 8000:8000 \
 geopython/pycsw

Supplying the configuration file via docker secrets:

first create a docker secret with the pycsw config file
docker secret create pycsw-config <path-to-local-pycsw.cfg>
docker service create \
 --name pycsw \
 --secret src=pycsw-config,target=/etc/pycsw/pycsw.cfg \
 --publish 8000:8000
 geopython/pycsw

sqlite repositories

The default database repository is the CITE database that is used for running
pycsw’s test suites. Docker volumes may be used to specify a custom sqlite
database path. It should be mounted under /var/lib/pycsw:

first create a docker volume for persisting the database when
destroying containers
docker volume create pycsw-db-data
docker run \
 --volume db-data:/var/lib/pycsw \
 --detach \
 --publish 8000:8000
 geopython/pycsw

PostgreSQL repositories

Specifying a PostgreSQL repository is just a matter of configuring a custom
pycsw.cfg file with the correct specification.

Check pycsw’s github repository [https://github.com/geopython/pycsw/tree/master/docker] for an example of a docker-compose/stack
file that spins up a postgis database together with a pycsw instance.

Setting up a development environment with docker

Working on pycsw’s code using docker enables an isolated environment that
helps ensuring reproducibility while at the same time keeping your base
system free from pycsw related dependencies. This can be achieved by:

	Cloning pycsw’s repository locally;

	Starting up a docker container with appropriately set up bind mounts. In
addition, the pycsw docker image supports a reload flag that turns on
automatic reloading of the gunicorn web server whenever the code changes;

	Installing the development dependencies by using docker exec with the
root user;

The following instructions set up a fully working development environment:

clone pycsw's repo
git clone https://github.com/geopython/pycsw.git

start a container for development
cd pycsw
docker run \
 --name pycsw-dev \
 --detach \
 --volume ${PWD}/pycsw:/usr/lib/python3.5/site-packages/pycsw \
 --volume ${PWD}/docs:/home/pycsw/docs \
 --volume ${PWD}/VERSION.txt:/home/pycsw/VERSION.txt \
 --volume ${PWD}/LICENSE.txt:/home/pycsw/LICENSE.txt \
 --volume ${PWD}/COMMITTERS.txt:/home/pycsw/COMMITTERS.txt \
 --volume ${PWD}/CONTRIBUTING.rst:/home/pycsw/CONTRIBUTING.rst \
 --volume ${PWD}/pycsw/plugins:/home/pycsw/pycsw/plugins \
 --publish 8000:8000 \
 geopython/pycsw --reload

install additional dependencies used in tests and docs
docker exec \
 -ti \
 --user root \
 pycsw-dev pip3 install -r requirements-dev.txt

run tests (for example unit tests)
docker exec -ti pycsw-dev py.test -m unit

build docs
docker exec -ti pycsw-dev sh -c "cd docs && make html"

Note

Please note that the pycsw image only uses python 3.5 and that it also does
not install pycsw in editable mode. As such it is not possible to
use tox.

Since the docs directory is bind mounted from your host machine into the
container, after building the docs you may inspect their content visually, for
example by running:

firefox docs/_build/html/index.html

Kubernetes

For Kubernetes [https://kubernetes.io/] orchestration, run the following in docker/kubernetes:

make up
make open

Helm

For Kubernetes deployment via Helm [https://helm.sh], run the following in docker/helm:

helm install pycsw .
minikube service pycsw --url

 Configuration

Configuration

pycsw’s runtime configuration is defined by default.cfg. pycsw ships with a sample configuration (default-sample.cfg). Copy the file to default.cfg and edit the following:

[server]

	home: the full filesystem path to pycsw

	url: the URL of the resulting service

	mimetype: the MIME type when returning HTTP responses

	language: the ISO 639-1 language and ISO 3166-1 alpha2 country code of the service (e.g. en-CA, fr-CA, en-US)

	encoding: the content type encoding (e.g. ISO-8859-1, see https://docs.python.org/2/library/codecs.html#standard-encodings). Default value is ‘UTF-8’

	maxrecords: the maximum number of records to return by default. This value is enforced if a CSW’s client’s maxRecords parameter is greater than server.maxrecords to limit capacity. See MaxRecords Handling for more information

	loglevel: the logging level (see http://docs.python.org/library/logging.html#logging-levels)

	logfile: the full file path to the logfile

	ogc_schemas_base: base URL of OGC XML schemas tree file structure (default is http://schemas.opengis.net)

	federatedcatalogues: comma delimited list of CSW endpoints to be used for distributed searching, if requested by the client (see Distributed Searching)

	pretty_print: whether to pretty print the output (true or false). Default is false

	gzip_compresslevel: gzip compression level, lowest is 1, highest is 9. Default is off

	domainquerytype: for GetDomain operations, how to output domain values. Accepted values are list and range (min/max). Default is list

	domaincounts: for GetDomain operations, whether to provide frequency counts for values. Accepted values are true and False. Default is false

	profiles: comma delimited list of profiles to load at runtime (default is none). See Profile Plugins

	smtp_host: SMTP host for processing csw:ResponseHandler parameter via outgoing email requests (default is localhost)

	spatial_ranking: parameter that enables (true or false) ranking of spatial query results as per K.J. Lanfear 2006 - A Spatial Overlay Ranking Method for a Geospatial Search of Text Objects [http://pubs.usgs.gov/of/2006/1279/2006-1279.pdf].

[manager]

	transactions: whether to enable transactions (true or false). Default is false (see Transactions)

	allowed_ips: comma delimited list of IP addresses (e.g. 192.168.0.103), wildcards (e.g. 192.168.0.*) or CIDR notations (e.g. 192.168.100.0/24) allowed to perform transactions (see Transactions)

	csw_harvest_pagesize: when harvesting other CSW servers, the number of records per request to page by (default is 10)

[metadata:main]

	identification_title: the title of the service

	identification_abstract: some descriptive text about the service

	identification_keywords: comma delimited list of keywords about the service

	identification_keywords_type: keyword type as per the ISO 19115 MD_KeywordTypeCode codelist [http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#MD_KeywordTypeCode]). Accepted values are discipline, temporal, place, theme, stratum

	identification_fees: fees associated with the service

	identification_accessconstraints: access constraints associated with the service

	provider_name: the name of the service provider

	provider_url: the URL of the service provider

	contact_name: the name of the provider contact

	contact_position: the position title of the provider contact

	contact_address: the address of the provider contact

	contact_city: the city of the provider contact

	contact_stateorprovince: the province or territory of the provider contact

	contact_postalcode: the postal code of the provider contact

	contact_country: the country of the provider contact

	contact_phone: the phone number of the provider contact

	contact_fax: the facsimile number of the provider contact

	contact_email: the email address of the provider contact

	contact_url: the URL to more information about the provider contact

	contact_hours: the hours of service to contact the provider

	contact_instructions: the how to contact the provider contact

	contact_role: the role of the provider contact as per the ISO 19115 CI_RoleCode codelist [http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml#CI_RoleCode]). Accepted values are author, processor, publisher, custodian, pointOfContact, distributor, user, resourceProvider, originator, owner, principalInvestigator

[repository]

	database: the full file path to the metadata database, in database URL format (see http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls)

	table: the table name for metadata records (default is records). If you are using PostgreSQL with a DB schema other than public, qualify the table like myschema.table

	mappings: custom repository mappings (see Mapping to an Existing Repository)

	source: the source of this repository only if not local (e.g. GeoNode Configuration, Open Data Catalog Configuration). Supported values are geonode, odc

	filter: server side database filter to apply as mask to all CSW requests (see Repository Filters)

Note

See Administration for connecting your metadata repository and supported information models.

MaxRecords Handling

The The following describes how maxRecords is handled by the configuration when handling GetRecords requests:

	server.maxrecords

	GetRecords.maxRecords

	Result

	none set

	none passed

	10 (CSW default)

	20

	14

	20

	20

	none passed

	20

	none set

	100

	100

	20

	200

	20

Using environment variables in configuration files

pycsw configuration supports using system environment variables, which can be helpful
for deploying into 12 factor [https://12factor.net/] environments for example.

Below is an example of how to integrate system environment variables in pycsw:

[repository]
database=${PYCSW_REPOSITORY_DATABASE_URI}
table=${MY_TABLE}

Alternate Configurations

By default, pycsw loads default.cfg at runtime. To load an alternate configuration, modify csw.py to point to the desired configuration. Alternatively, pycsw supports explicitly specifiying a configuration by appending config=/path/to/default.cfg to the base URL of the service (e.g. http://localhost/pycsw/csw.py?config=tests/suites/default/default.cfg&service=CSW&version=2.0.2&request=GetCapabilities). When the config parameter is passed by a CSW client, pycsw will override the default configuration location and subsequent settings with those of the specified configuration.

This also provides the functionality to deploy numerous CSW servers with a single pycsw installation.

Hiding the Location

Some deployments with alternate configurations prefer not to advertise the base URL with the config= approach. In this case, there are many options to advertise the base URL.

Environment Variables

Configuration file location

One option is using Apache’s Alias and SetEnvIf directives. For example, given the base URL http://localhost/pycsw/csw.py?config=foo.cfg, set the following in Apache’s httpd.conf:

Alias /pycsw/csw-foo.py /var/www/pycsw/csw.py
SetEnvIf Request_URI "/pycsw/csw-foo.py" PYCSW_CONFIG=/var/www/pycsw/csw-foo.cfg

Note

Apache must be restarted after changes to httpd.conf

pycsw will use the configuration as set in the PYCSW_CONFIG environment variable in the same manner as if it was specified in the base URL. Note that the configuration value server.url value must match the Request_URI value so as to advertise correctly in pycsw’s Capabilities XML.

Wrapper Script

Another option is to write a simple wrapper (e.g. csw-foo.sh), which provides the same functionality and can be deployed without restarting Apache:

#!/bin/sh

export PYCSW_CONFIG=/var/www/pycsw/csw-foo.cfg

/var/www/pycsw/csw.py

 Administration

Administration

pycsw administration is handled by the pycsw-admin.py utility. pycsw-admin.py
is installed as part of the pycsw install process and should be available in your
PATH.

Note

Run pycsw-admin.py -h to see all administration operations and parameters

Metadata Repository Setup

pycsw supports the following databases:

	SQLite3

	PostgreSQL

	PostgreSQL with PostGIS enabled

	MySQL

Note

The easiest and fastest way to deploy pycsw is to use SQLite3 as the backend.

Note

PostgreSQL support includes support for PostGIS functions if enabled

Note

If PostGIS (1.x or 2.x) is activated before setting up the pycsw/PostgreSQL database, then native PostGIS geometries will be enabled.

To expose your geospatial metadata via pycsw, perform the following actions:

	setup the database

	import metadata

	publish the repository

Supported Information Models

By default, pycsw supports the csw:Record information model.

Note

See Profile Plugins for information on enabling profiles

Setting up the Database

$ pycsw-admin.py -c setup_db -f default.cfg

This will create the necessary tables and values for the repository.

The database created is an OGC SFSQL [http://www.opengeospatial.org/standards/sfs] compliant database, and can be used with any implementing software. For example, to use with OGR [http://www.gdal.org/ogr]:

$ ogrinfo /path/to/records.db
INFO: Open of 'records.db'
using driver 'SQLite' successful.
1: records (Polygon)
$ ogrinfo -al /path/to/records.db
lots of output

Note

If PostGIS is detected, the pycsw-admin.py script does not create the SFSQL tables as they are already in the database.

Loading Records

$ pycsw-admin.py -c load_records -f default.cfg -p /path/to/records

This will import all *.xml records from /path/to/records into the database specified in default.cfg (repository.database). Passing -r to the script will process /path/to/records recursively. Passing -y to the script will force overwrite existing metadata with the same identifier. Note that -p accepts either a directory path or single file.

Note

Records can also be imported using CSW-T (see Transactions).

Exporting the Repository

$ pycsw-admin.py -c export_records -f default.cfg -p /path/to/output_dir

This will write each record in the database specified in default.cfg (repository.database) to an XML document on disk, in directory /path/to/output_dir.

Optimizing the Database

$ pycsw-admin.py -c optimize_db -f default.cfg

Note

This feature is relevant only for PostgreSQL and MySQL

Deleting Records from the Repository

$ pycsw-admin.py -c delete_records -f default.cfg

This will empty the repository of all records.

Database Specific Notes

PostgreSQL

	if PostGIS is not enabled, pycsw makes uses of PL/Python functions. To enable PostgreSQL support, the database user must be able to create functions within the database. In case of recent PostgreSQL versions (9.x), the PL/Python extension must be enabled prior to pycsw setup

	PostgreSQL Full Text Search [http://www.postgresql.org/docs/9.2/static/textsearch.html] is supported for csw:AnyText based queries. pycsw creates a tsvector column based on the text from anytext column. Then pycsw creates a GIN index against the anytext_tsvector column. This is created automatically in pycsw.admin.setup_db. Any query against csw:AnyText or apiso:AnyText will process using PostgreSQL FTS handling

PostGIS

	pycsw makes use of PostGIS spatial functions and native geometry data type.

	It is advised to install the PostGIS extension before setting up the pycsw database

	If PostGIS is detected, the pycsw-admin.py script will create both a native geometry column and a WKT column, as well as a trigger to keep both synchronized.

	In case PostGIS gets disabled, pycsw will continue to work with the WKT [http://en.wikipedia.org/wiki/Well-known_text] column

	In case of migration from plain PostgreSQL database to PostGIS, the spatial functions of PostGIS will be used automatically

	When migrating from plain PostgreSQL database to PostGIS, in order to enable native geometry support, a “GEOMETRY” column named “wkb_geometry” needs to be created manually (along with the update trigger in pycsw.admin.setup_db). Also the native geometries must be filled manually from the WKT [http://en.wikipedia.org/wiki/Well-known_text] field. Next versions of pycsw will automate this process

Mapping to an Existing Repository

pycsw supports publishing metadata from an existing repository. To enable this functionality, the default database mappings must be modified to represent the existing database columns mapping to the abstract core model (the default mappings are in pycsw/config.py:MD_CORE_MODEL).

To override the default settings:

	define a custom database mapping based on etc/mappings.py

	in default.cfg, set repository.mappings to the location of the mappings.py file:

[repository]
...
mappings=path/to/mappings.py

Note you can also reference mappings as a Python object as a dotted path:

[repository]
...
mappings='path.to.pycsw_mappings'

See the GeoNode Configuration, HHypermap Configuration, and Open Data Catalog Configuration for further examples.

Existing Repository Requirements

pycsw requires certain repository attributes and semantics to exist in any repository to operate as follows:

	pycsw:Identifier: unique identifier

	pycsw:Typename: typename for the metadata; typically the value of the root element tag (e.g. csw:Record, gmd:MD_Metadata)

	pycsw:Schema: schema for the metadata; typically the target namespace (e.g. http://www.opengis.net/cat/csw/2.0.2, http://www.isotc211.org/2005/gmd)

	pycsw:InsertDate: date of insertion

	pycsw:XML: full XML representation

	pycsw:AnyText: bag of XML element text values, used for full text search. Realized with the following design pattern:

	capture all XML element and attribute values

	store in repository

	pycsw:BoundingBox: string of WKT [http://en.wikipedia.org/wiki/Well-known_text] or EWKT [http://en.wikipedia.org/wiki/Well-known_text#Variations] geometry

The following repository semantics exist if the attributes are specified:

	pycsw:Keywords: comma delimited list of keywords

	pycsw:Links: structure of links in the format “name,description,protocol,url[^,,,[^,,,]]”

Values of mappings can be derived from the following mechanisms:

	text fields

	Python datetime.datetime or datetime.date objects

	Python functions

Further information is provided in pycsw/config.py:MD_CORE_MODEL.

 CSW Support

CSW Support

Versions

pycsw supports both CSW 2.0.2 and 3.0.0 versions by default. In alignment with
the CSW specifications, the default version returned is the latest supported
version. That is, pycsw will always behave like a 3.0.0 CSW unless the client
explicitly requests a 2.0.2 CSW.

The sample URLs below provide examples of how requests behaves against
various/missing/default version parameters.

http://localhost/csw # returns 3.0.0 Capabilities
http://localhost/csw?service=CSW&request=GetCapabilities # returns 3.0.0 Capabilities
http://localhost/csw?service=CSW&version=2.0.2&request=GetCapabilities # returns 2.0.2 Capabilities
http://localhost/csw?service=CSW&version=3.0.0&request=GetCapabilities # returns 3.0.0 Capabilities

Request Examples

The best place to look for sample requests is within the tests/ directory,
which provides numerous examples of all supported APIs and requests.

Additional examples:

	Data.gov CSW HowTo v2.0 [https://gist.github.com/kalxas/6ecb06d61cdd487dc7f9]

	pycsw Quickstart on OSGeoLive [http://live.osgeo.org/en/quickstart/pycsw_quickstart.html]

 Distributed Searching

Distributed Searching

Note

Your server must be able to make outgoing HTTP requests for this functionality.

pycsw has the ability to perform distributed searching against other CSW servers. Distributed searching is disabled by default; to enable, server.federatedcatalogues must be set. A CSW client must issue a GetRecords request with csw:DistributedSearch specified, along with an optional hopCount attribute (see subclause 10.8.4.13 of the CSW specification). When enabled, pycsw will search all specified catalogues and return a unified set of search results to the client. Due to the distributed nature of this functionality, requests will take extra time to process compared to queries against the local repository.

Scenario: Federated Search

pycsw deployment with 3 configurations (CSW-1, CSW-2, CSW-3), subsequently providing three (3) endpoints. Each endpoint is based on an opaque metadata repository (based on theme/place/discipline, etc.). Goal is to perform a single search against all endpoints.

pycsw realizes this functionality by supporting alternate configurations, and exposes the additional CSW endpoint(s) with the following design pattern:

CSW-1: http://localhost/pycsw/csw.py?config=CSW-1.cfg

CSW-2: http://localhost/pycsw/csw.py?config=CSW-2.cfg

CSW-3: http://localhost/pycsw/csw.py?config=CSW-3.cfg

…where the *.cfg configuration files are configured for each respective metadata repository. The above CSW endpoints can be interacted with as usual.

To federate the discovery of the three (3) portals into a unified search, pycsw realizes this functionality by deploying an additional configuration which acts as the superset of CSW-1, CSW-2, CSW-3:

CSW-all: http://localhost/pycsw/csw.py?config=CSW-all.cfg

This allows the client to invoke one (1) CSW GetRecords request, in which the CSW endpoint spawns the same GetRecords request to 1..n distributed CSW endpoints. Distributed CSW endpoints are advertised in CSW Capabilities XML via ows:Constraint:

<ows:OperationsMetadata>
...
 <ows:Constraint name="FederatedCatalogues">
 <ows:Value>http://localhost/pycsw/csw.py?config=CSW-1.cfg</ows:Value>
 <ows:Value>http://localhost/pycsw/csw.py?config=CSW-2.cfg</ows:Value>
 <ows:Value>http://localhost/pycsw/csw.py?config=CSW-3.cfg</ows:Value>
 </ows:Constraint>
...
</ows:OperationsMetadata>

…which advertises which CSW endpoint(s) the CSW server will spawn if a distributed search is requested by the client.

in the CSW-all configuration:

[server]
...
federatedcatalogues=http://localhost/pycsw/csw.py?config=CSW-1.cfg,http://localhost/pycsw/csw.py?config=CSW-2.cfg,http://localhost/pycsw/csw.py?config=CSW-3.cfg

At which point a CSW client request to CSW-all with distributedsearch=TRUE, while specifying an optional hopCount. Query network topology:

 AnyClient
 ^
 |
 v
 CSW-all
 ^
 |
 v
 /-------------\
 ^ ^ ^
 | | |
 v v v
CSW-1 CSW-2 CSW-3

As a result, a pycsw deployment in this scenario may be approached on a per ‘theme’ basis, or at an aggregate level.

All interaction in this scenario is local to the pycsw installation, so network performance would not be problematic.

A very important facet of distributed search is as per Annex B of OGC:CSW 2.0.2. Given that all the CSW endpoints are managed locally, duplicates and infinite looping are not deemed to present an issue.

 Search/Retrieval via URL (SRU) Support

Search/Retrieval via URL (SRU) Support

pycsw supports the Search/Retrieval via URL [http://www.loc.gov/standards/sru/] search protocol implementation as per subclause 8.4 of the OpenGIS Catalogue Service Implementation Specification.

SRU support is enabled by default. HTTP GET requests must be specified with mode=sru for SRU requests, e.g.:

http://localhost/pycsw/csw.py?mode=sru&operation=searchRetrieve&query=foo

See http://www.loc.gov/standards/sru/simple.html for example SRU requests.

 OpenSearch Support

OpenSearch Support

pycsw supports the OGC OpenSearch Geo and Time Extensions 1.0 [http://www.opengeospatial.org/standards/opensearchgeo] standard via the following conformance classes:

	Core (GeoSpatial Service) {searchTerms}, {geo:box}, {startIndex}, {count}

	Temporal Search core {time:start}, {time:end}

OpenSearch support is enabled by default. HTTP requests must be specified with mode=opensearch in the base URL for OpenSearch requests, e.g.:

http://localhost/pycsw/csw.py?mode=opensearch&service=CSW&version=2.0.2&request=GetCapabilities

This will return the Description document which can then be autodiscovered [https://github.com/dewitt/opensearch/blob/master/opensearch-1-1-draft-6.md#Autodiscovery].

OpenSearch Temporal Queries

By default, pycsw’s OpenSearch temporal support will query the Dublin Core dc:date property. To
enable temporal extent search, set profiles=apiso which will query the temporal extents of
a metadata record (apiso:TempExtent_begin and apiso:TempExtent_end).

At the HTTP API level, time is supported via one of time=t1/t2 or start=t1&stop=t2. If the
time parameter is present, it will override either/both of the start and stop parameters
respectively.

 OAI-PMH Support

OAI-PMH Support

pycsw supports the The Open Archives Initiative Protocol for Metadata Harvesting [http://www.openarchives.org/OAI/openarchivesprotocol.html] (OAI-PMH) standard.

OAI-PMH OpenSearch support is enabled by default. HTTP requests must be specified with mode=oaipmh in the base URL for OAI-PMH requests, e.g.:

http://localhost/pycsw/csw.py?mode=oaipmh&verb=Identify

See http://www.openarchives.org/OAI/openarchivesprotocol.html for more information on OAI-PMH as well as request / reponse examples.

 JSON Support

JSON Support

pycsw supports JSON support for DescribeRecord, GetRecords and GetRecordById requests. Adding outputFormat=application/json to your CSW request will return the response as a JSON representation.

 SOAP

SOAP

pycsw supports handling of SOAP encoded requests and responses as per subclause 10.3.2 of OGC:CSW 2.0.2. SOAP request examples can be found in tests/index.html.

 XML Sitemaps

XML Sitemaps

XML Sitemaps [http://www.sitemaps.org/] can be generated by running:

$ pycsw-admin.py -c gen_sitemap -f default.cfg -o sitemap.xml

The sitemap.xml file should be saved to an an area on your web server (parallel to or above your pycsw install location) to enable web crawlers to index your repository.

 Transactions

Transactions

pycsw has the ability to process CSW Harvest and Transaction requests (CSW-T). Transactions are disabled by default; to enable, manager.transactions must be set to true. Access to transactional functionality is limited to IP addresses which must be set in manager.allowed_ips.

Supported Resource Types

For transactions and harvesting, pycsw supports the following metadata resource types by default:

	Resource Type

	Namespace

	Transaction

	Harvest

	Dublin Core

	http://www.opengis.net/cat/csw/2.0.2

	yes

	yes

	FGDC

	http://www.opengis.net/cat/csw/csdgm

	yes

	yes

	GM03

	http://www.interlis.ch/INTERLIS2.3

	yes

	yes

	ISO 19139

	http://www.isotc211.org/2005/gmd

	yes

	yes

	ISO GMI

	http://www.isotc211.org/2005/gmi

	yes

	yes

	OGC:CSW 2.0.2

	http://www.opengis.net/cat/csw/2.0.2

	
	yes

	OGC:WMS 1.1.1/1.3.0

	http://www.opengis.net/wms

	
	yes

	OGC:WMTS 1.0.0

	http://www.opengis.net/wmts/1.0

	
	yes

	OGC:WFS 1.0.0/1.1.0/2.0.0

	http://www.opengis.net/wfs

	
	yes

	OGC:WCS 1.0.0

	http://www.opengis.net/wcs

	
	yes

	OGC:WPS 1.0.0

	http://www.opengis.net/wps/1.0.0

	
	yes

	OGC:SOS 1.0.0

	http://www.opengis.net/sos/1.0

	
	yes

	OGC:SOS 2.0.0

	http://www.opengis.net/sos/2.0

	
	yes

	WAF [http://seabass.ieee.org/groups/geoss/index.php?option=com_sir_200&Itemid=157&ID=183]

	urn:geoss:urn

	
	yes

Additional metadata models are supported by enabling the appropriate Profile Plugins.

Note

For transactions to be functional when using SQLite3, the SQLite3 database file (and its parent directory) must be fully writable. For example:

$ mkdir /path/data
$ chmod 777 /path/data
$ chmod 666 test.db
$ mv test.db /path/data

For CSW-T deployments, it is strongly advised that this directory reside in an area that is not accessible by HTTP.

Harvesting

Note

Your server must be able to make outgoing HTTP requests for this functionality.

pycsw supports the CSW-T Harvest operation. Records which are harvested require to setup a cronjob to periodically refresh records in the local repository. A sample cronjob is available in etc/harvest-all.cron which points to pycsw-admin.py (you must specify the correct path to your configuration). Harvest operation results can be sent by email (via mailto:) or ftp (via ftp://) if the Harvest request specifies csw:ResponseHandler.

Note

For csw:ResponseHandler values using the mailto: protocol, you must have server.smtp_host set in your configuration.

OGC Web Services

When harvesting OGC web services, requests can provide the base URL of the service as part of the Harvest request. pycsw will construct a GetCapabilities request dynamically.

When harvesting other CSW servers, pycsw pages through the entire CSW in default increments of 10. This value can be modified via the manager.csw_harvest_pagesize configuration option. It is strongly advised to use the csw:ResponseHandler parameter for harvesting large CSW catalogues to prevent HTTP timeouts.

Transactions

pycsw supports 3 modes of the Transaction operation (Insert, Update, Delete):

	Insert: full XML documents can be inserted as per CSW-T

	Update: updates can be made as full record updates or record properties against a csw:Constraint

	Delete: deletes can be made against a csw:Constraint

Transaction operation results can be sent by email (via mailto:) or ftp (via ftp://) if the Transaction request specifies csw:ResponseHandler.

The Testing contain CSW-T request examples.

 Repository Filters

Repository Filters

pycsw has the ability to perform server side repository / database filters as a means to mask all CSW requests to query against a specific subset of the metadata repository, thus providing the ability to deploy multiple pycsw instances pointing to the same database in different ways via the repository.filter configuration option.

Repository filters are a convenient way to subset your repository at the server level without the hassle of creating proper database views. For large repositories, it may be better to subset at the database level for performance.

Scenario: One Database, Many Views

Imagine a sample database table of records (subset below for brevity):

	identifier

	parentidentifier

	title

	abstract

	1

	33

	foo1

	bar1

	2

	33

	foo2

	bar2

	3

	55

	foo3

	bar3

	4

	55

	foo1

	bar1

	5

	21

	foo5

	bar5

	5

	21

	foo6

	bar6

A default pycsw instance (with no repository.filters option) will always process CSW requests against the entire table. So a CSW GetRecords filter like:

<ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>apiso:Title</ogc:PropertyName>
 <ogc:Literal>foo1</ogc:Literal>
 </ogc:PropertyIsEqualTo>
</ogc:Filter>

…will return:

	identifier

	parentidentifier

	title

	abstract

	1

	33

	foo1

	bar1

	4

	55

	foo1

	bar1

Suppose you wanted to deploy another pycsw instance which serves metadata from the same database, but only from a specific subset. Here we set the repository.filter option:

[repository]
database=sqlite:///records.db
filter=pycsw:ParentIdentifier = '33'

The same CSW GetRecords filter as per above then yields the following results:

	identifier

	parentidentifier

	title

	abstract

	1

	33

	foo1

	bar1

Another example:

[repository]
database=sqlite:///records.db
filter=pycsw:ParentIdentifier != '33'

The same CSW GetRecords filter as per above then yields the following results:

	identifier

	parentidentifier

	title

	abstract

	4

	55

	foo1

	bar1

The repository.filter option accepts all core queryables set in the pycsw core model (see pycsw.config.StaticContext.md_core_model for the complete list).

 Profile Plugins

Profile Plugins

Overview

pycsw allows for the implementation of profiles to the core standard. Profiles allow specification of additional metadata format types (i.e. ISO 19139:2007, NASA DIF, INSPIRE, etc.) to the repository, which can be queried and presented to the client. pycsw supports a plugin architecture which allows for runtime loading of Python code.

All profiles must be placed in the pycsw/plugins/profiles directory.

Requirements

pycsw/
 plugins/
 __init__.py # empty
 profiles/ # directory to store profiles
 __init__.py # empty
 profile.py # defines abstract profile object (properties and methods) and functions to load plugins
 apiso/ # profile directory
 __init__.py # empty
 apiso.py # profile code
 ... # supporting files, etc.

Abstract Base Class Definition

All profile code must be instantiated as a subclass of profile.Profile. Below is an example to add a Foo profile:

from pycsw.plugins.profiles import profile

class FooProfile(profile.Profile):
 profile.Profile.__init__(self,
 name='foo',
 version='1.0.3',
 title='My Foo Profile',
 url='http://example.org/fooprofile/docs',
 namespace='http://example.org/foons',
 typename='foo:RootElement',
 outputschema=http://example.org/foons',
 prefixes=['foo'],
 model=model,
 core_namespaces=namespaces,
 added_namespaces={'foo': 'http://example.org/foons'}
 repository=REPOSITORY['foo:RootElement'])

Your profile plugin class (FooProfile) must implement all methods as per profile.Profile. Profile methods must always return lxml.etree.Element types, or None.

Enabling Profiles

All profiles are disabled by default. To specify profiles at runtime, set the server.profiles value in the Configuration to the name of the package (in the pycsw/plugins/profiles directory). To enable multiple profiles, specify as a comma separated value (see Configuration).

Testing

Profiles must add examples to the Testing interface, which must provide example requests specific to the profile.

Supported Profiles

ISO Metadata Application Profile (1.0.0)

Overview

The ISO Metadata Application Profile (APISO) is a profile of CSW 2.0.2 which enables discovery of geospatial metadata following ISO 19139:2007 and ISO 19119:2005/PDAM 1.

Configuration

No extra configuration is required.

Querying

	typename: gmd:MD_Metadata

	outputschema: http://www.isotc211.org/2005/gmd

Enabling APISO Support

To enable APISO support, add apiso to server.profiles as specified in Configuration.

Testing

A testing interface is available in tests/index.html which contains tests specific to APISO to demonstrate functionality. See Testing for more information.

INSPIRE Extension

Overview

APISO includes an extension for enabling INSPIRE Discovery Services 3.0 [http://inspire.jrc.ec.europa.eu/documents/Network_Services/TechnicalGuidance_DiscoveryServices_v3.0.pdf] support. To enable the INSPIRE extension to APISO, create a [metadata:inspire] section in the main configuration with enabled set to true.

Configuration

[metadata:inspire]

	enabled: whether to enable the INSPIRE extension (true or false)

	languages_supported: supported languages (see http://inspire.ec.europa.eu/schemas/common/1.0/enums/enum_eng.xsd, simpleType euLanguageISO6392B)

	default_language: the default language (see http://inspire.ec.europa.eu/schemas/common/1.0/enums/enum_eng.xsd, simpleType euLanguageISO6392B)

	date: date of INSPIRE metadata offering (in ISO 8601 [http://en.wikipedia.org/wiki/ISO_8601] format)

	gemet_keywords: a comma-seperated keyword list of GEMET INSPIRE theme keywords [http://www.eionet.europa.eu/gemet/inspire_themes] about the service (see http://inspire.ec.europa.eu/schemas/common/1.0/enums/enum_eng.xsd, complexType inspireTheme_eng)

	conformity_service: the level of INSPIRE conformance for spatial data sets and services (conformant, notConformant, notEvaluated)

	contact_organization: the organization name responsible for the INSPIRE metadata

	contact_email: the email address of entity responsible for the INSPIRE metadata

	temp_extent: temporal extent of the service (in ISO 8601 [http://en.wikipedia.org/wiki/ISO_8601] format). Either a single date (i.e. yyyy-mm-dd), or an extent (i.e. yyyy-mm-dd/yyyy-mm-dd)

CSW-ebRIM Registry Service - Part 1: ebRIM profile of CSW

Overview

The CSW-ebRIM Registry Service is a profile of CSW 2.0.2 which enables discovery of geospatial metadata following the ebXML information model.

Configuration

No extra configuration is required.

Querying

	typename: rim:RegistryObject

	outputschema: urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0

Enabling ebRIM Support

To enable ebRIM support, add ebrim to server.profiles as specified in Configuration.

Testing

A testing interface is available in tests/index.html which contains tests specific to ebRIM to demonstrate functionality. See Testing for more information.

 Repository Plugins

Repository Plugins

Overview

pycsw allows for the implementation of custom repositories in order to connect to a backend different from the pycsw’s default. This is especially useful when downstream applications manage their own metadata model/database/document store and want pycsw to connect to it directly instead of using pycsw’s default model, thus creating duplicate repositories which then require syncronization/accounting. Repository plugins enable a single metadata backend which is independent from the pycsw setup. pycsw thereby becomes a pure wrapper around a given backend in providing CSW and other APIs atop a given application.

All outputschemas must be placed in the pycsw/plugins/outputschemas directory.

Requirements

Repository plugins:

	can be developed and referenced / connected external to pycsw

	must be accessible within the PYTHONPATH of a given application

	must implement pycsw’s pycsw.core.repository.Repository properties and methods

	must be specified in the pycsw Configuration as a class reference (e.g. path.to.repo_plugin.MyRepository)

	must minimally implement the query_insert, query_domain, query_ids, and query methods

Configuration

	set pycsw’s repository.source setting to the class which implements the custom repository:

[repository]
mappings='path.to.repo_plugin.MyRepository'

 Output Schema Plugins

Output Schema Plugins

Overview

pycsw allows for extending the implementation of output schemas to the core standard. outputschemas allow for a client to request metadata in a specific format (ISO, Dublin Core, FGDC, NASA DIF Atom and GM03 are default).

All outputschemas must be placed in the pycsw/plugins/outputschemas directory.

Requirements

pycsw/
 plugins/
 __init__.py # empty
 outputschemas/
 __init__.py # __all__ is a list of all provided outputschemas
 atom.py # default
 dif.py # default
 fgdc.py # default
 gm03.py # default

Implementing a new outputschema

Create a file in pycsw/plugins/outputschemas, which defines the following:

	NAMESPACE: the default namespace of the outputschema which will be advertised

	NAMESPACE: dict of all applicable namespaces to outputschema

	XPATH_MAPPINGS: dict of pycsw core queryables mapped to the equivalent XPath of the outputschema

	write_record: function which returns a record as an lxml.etree.Element object

Add the name of the file to __init__.py:__all__. The new outputschema is now supported in pycsw.

Testing

New outputschemas must add examples to the Testing interface, which must provide example requests specific to the profile.

 GeoNode Configuration

GeoNode Configuration

GeoNode (http://geonode.org/) is a platform for the management and publication of geospatial data. It brings together mature and stable open-source software projects under a consistent and easy-to-use interface allowing users, with little training, to quickly and easily share data and create interactive maps. GeoNode provides a cost-effective and scalable tool for developing information management systems. GeoNode uses CSW as a cataloguing mechanism to query and present geospatial metadata.

pycsw supports binding to an existing GeoNode repository for metadata query. The binding is read-only (transactions are not in scope, as GeoNode manages repository metadata changes in the application proper).

GeoNode Setup

pycsw is enabled and configured by default in GeoNode, so there are no additional steps required once GeoNode is setup. See the CATALOGUE and PYCSW settings.py entries [http://docs.geonode.org/en/latest/developers/reference/django-apps.html#id1] at http://docs.geonode.org/en/latest/developers/reference/django-apps.html#id1 for customizing pycsw within GeoNode.

The GeoNode plugin is managed outside of pycsw within the GeoNode project.

 HHypermap Configuration

HHypermap Configuration

HHypermap (Harvard Hypermap) Registry (https://github.com/cga-harvard/HHypermap) is an application that manages OWS, Esri REST, and other types of map service harvesting, and maintains uptime statistics for services and layers. HHypermap Registry will publish to HHypermap Search (based on Lucene) which provides a fast search and visualization environment for spatio-temporal materials.

HHypermap uses CSW as a cataloguing mechanism to ingest, query and present geospatial metadata.

pycsw supports binding to an existing HHypermap repository for metadata query.

HHypermap Setup

pycsw is enabled and configured by default in HHypermap, so there are no additional steps required once HHypermap is setup. See the REGISTRY_PYCSW hypermap/settings.py entries [https://github.com/cga-harvard/HHypermap/blob/master/hypermap/settings.py] for customizing pycsw within HHypermap.

The HHypermap plugin is managed outside of pycsw within the HHypermap project. HHypermap settings must ensure that REGISTRY_PYCSW['repository']['source'] is set to``hypermap.search.pycsw_repository``.

 Open Data Catalog Configuration

Open Data Catalog Configuration

Open Data Catalog (https://github.com/azavea/Open-Data-Catalog/) is an open data catalog based on Django, Python and PostgreSQL. It was originally developed for OpenDataPhilly.org, a portal that provides access to open data sets, applications, and APIs related to the Philadelphia region. The Open Data Catalog is a generalized version of the original source code with a simple skin. It is intended to display information and links to publicly available data in an easily searchable format. The code also includes options for data owners to submit data for consideration and for registered public users to nominate a type of data they would like to see openly available to the public.

pycsw supports binding to an existing Open Data Catalog repository for metadata query. The binding is read-only (transactions are not in scope, as Open Data Catalog manages repository metadata changes in the application proper).

Open Data Catalog Setup

Open Data Catalog provides CSW functionality using pycsw out of the box (installing ODC will also install pycsw). Settings are defined in https://github.com/azavea/Open-Data-Catalog/blob/master/OpenDataCatalog/settings.py#L165.

ODC settings must ensure that REGISTRY_PYCSW['repository']['source'] is set to``hypermap.search.pycsw_repository``.

At this point, pycsw is able to read from the Open Data Catalog repository using the Django ORM.

 CKAN Configuration

CKAN Configuration

CKAN (http://ckan.org) is a powerful data management system that makes data accessible – by providing tools to streamline publishing, sharing, finding and using data. CKAN is aimed at data publishers (national and regional governments, companies and organizations) wanting to make their data open and available.

ckanext-spatial [https://github.com/okfn/ckanext-spatial] i