

    
      Navigation

      
        	
          index

        	
          next |

        	pycsdl2 2.0.0.0.dev5 documentation 
 
      

    


    
      
          
            
  
Welcome to pycsdl2’s documentation!

pycsdl2 is a low-overhead, compiled SDL2 [https://www.libsdl.org/] binding for CPython. It aims to
provide the familiar C API of SDL2, while offering several Pythonic [https://www.python.org/dev/peps/pep-0020/] features
such as automatic memory management, bounds checking and exceptions.

This is the documentation for pycsdl2 2.0.0.0.dev5, last generated December 14, 2016.



	API Reference
	Initialization and Shutdown

	Display and Window Management

	Blend modes

	Surface Creation and Simple Drawing

	2D Accelerated Rendering

	Pixel Formats and Conversion Routines

	Rectangle Functions

	Event Handling

	Scancode Constants

	Keycode and Key Modifier Constants

	Audio Device Management, Playing and Recording

	File I/O Abstraction












Indices and tables


	Index

	Search Page







          

      

      

    


    
         Copyright 2015, Paul Tan.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	pycsdl2 2.0.0.0.dev5 documentation 
 
      

    


    
      
          
            
  
API Reference



	Initialization and Shutdown
	Subsystem Flags

	Initialization

	Shutdown





	Display and Window Management
	Window creation

	Window flags

	Window destruction

	Window Properties

	Window Events

	OpenGL configuration attributes

	OpenGL flags

	OpenGL Profiles





	Blend modes

	Surface Creation and Simple Drawing

	2D Accelerated Rendering
	Render drivers

	Renderers

	Renderer creation flags

	Textures

	Render targets

	Device independent resolution

	Viewport

	Clip Rectangle

	Scaling

	Drawing

	Reading pixels

	Updating the screen

	OpenGL Support





	Pixel Formats and Conversion Routines
	Pixel Types

	Pixel Ordering

	Pixel Formats

	Color Palette





	Rectangle Functions

	Event Handling
	Mouse motion events





	Scancode Constants

	Keycode and Key Modifier Constants
	Keycode Constants

	Key Modifier Constants





	Audio Device Management, Playing and Recording
	Audio output format

	Audio data format

	Audio Driver Discovery

	Initialization and Cleanup

	Audio Device Discovery

	Opening and Closing an Audio Device

	Querying Playback Status

	Controlling Playback

	WAVE file format support

	Audio Data Conversion

	Audio Mixing

	Audio Locking





	File I/O Abstraction









          

      

      

    


    
         Copyright 2015, Paul Tan.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	pycsdl2 2.0.0.0.dev5 documentation 

          	API Reference 
 
      

    


    
      
          
            
  
Initialization and Shutdown


Subsystem Flags


	
csdl2.SDL_INIT_TIMER

	Timer subsystem.






	
csdl2.SDL_INIT_AUDIO

	Audio subsystem.






	
csdl2.SDL_INIT_VIDEO

	Video subsystem. (Implies SDL_INIT_EVENTS)






	
csdl2.SDL_INIT_JOYSTICK

	Joystick subsystem. (Implies SDL_INIT_EVENTS)






	
csdl2.SDL_INIT_HAPTIC

	Haptic (force feedback) subsystem.






	
csdl2.SDL_INIT_GAMECONTROLLER

	Controller subsystem. (Implies SDL_INIT_JOYSTICK)






	
csdl2.SDL_INIT_EVENTS

	Events subsystem.






	
csdl2.SDL_INIT_EVERYTHING

	Initialize all subsystems.






	
csdl2.SDL_INIT_NOPARACHUTE

	This flag is provided for compatibility and is ignored.








Initialization


	
csdl2.SDL_Init(flags)

	Initializes the SDL library. This must be called before using any other SDL
function.





	Parameters:	flags (int) – Subsystem Flags of subsystems to initialize, OR’d
together.










	
csdl2.SDL_InitSubSystem(flags)

	Initialize specific subsystems.

Subsystem initialization is ref-counted. You must call
SDL_QuitSubSystem() for each SDL_InitSubSystem() to correctly
shutdown a subsystem manually (or call SDL_Quit() to force a
shutdown). If a subsystem is already loaded then this call will increase the
refcount and return.





	Parameters:	flags (int) – Subsystem Flags of subsystems to initialize, OR’d
together.










	
csdl2.SDL_WasInit(flags)  int

	Return a mask of the specified subsystems which have previously been
initialized.





	Parameters:	flags (int) – Subsystem Flags of subsystems to query, OR’d
together.


	Returns:	The initialization status of the specified subsystems, or a mask
of all initialized subsystems if flags is 0.












Shutdown


	
csdl2.SDL_QuitSubSystem(flags)

	Shut down specific subsystems.

Subsystem initialization is ref-counted. SDL_QuitSubSystem() will
decrement the refcount for each of the specified subsystems, and if the
refcount of a subsystem reached 0 that subsystem is shut down.





	Parameters:	flags (int) – Subsystem Flags of subsystems to shut down, OR’d
together.






Note

If you start a subsystem using a call to that subsystem’s init function
(e.g. SDL_VideoInit()) instead of SDL_Init() or
SDL_InitSubSystem(), SDL_QuitSubSystem() will not work. You
will need to use that subsystem’s quit function (e.g.
SDL_VideoQuit()) directly instead.




Note

You still need to call SDL_Quit() even if you close all open
subsystems with SDL_QuitSubSystem().








	
csdl2.SDL_Quit()

	Clean up all initialized subsystems. This function should be called upon all
exit conditions.


Note

This function should be called even if all initialized subsystems have
been shut down with SDL_QuitSubSystem().




Note

It is safe to call this function even in the case of errors in
initialization.




Note

If a subsystem is started using a call to that subsystem’s init function
(e.g. SDL_VideoInit()) instead of SDL_Init() or
SDL_InitSubSystem(), then the subsystem’s quit function (e.g.
SDL_VideoQuit()) must be called to shut the subsystem down before
calling SDL_Quit().













          

      

      

    


    
         Copyright 2015, Paul Tan.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	pycsdl2 2.0.0.0.dev5 documentation 

          	API Reference 
 
      

    


    
      
          
            
  
Display and Window Management


	
class csdl2.SDL_Window

	A window.

It cannot be initialized directly. Instead, create one with
SDL_CreateWindow().






Window creation


	
csdl2.SDL_CreateWindow(title: str, x: int, y: int, w: int, h: int, flags: int)  SDL_Window

	Creates a window with the specified title, position, dimensions and flags.





	Parameters:	
	title (str) – Title of the window

	x (int) – X position of the window, SDL_WINDOWPOS_CENTERED or
SDL_WINDOWPOS_UNDEFINED.

	y (int) – Y position of the window, SDL_WINDOWPOS_CENTERED or
SDL_WINDOWPOS_UNDEFINED.

	w (int) – Width of the window.

	h (int) – Height of the window.

	flags (int) – 0, or one or more of the following flags OR’ed together:
SDL_WINDOW_FULLSCREEN,
SDL_WINDOW_FULLSCREEN_DESKTOP,
SDL_WINDOW_OPENGL,
SDL_WINDOW_SHOWN,
SDL_WINDOW_HIDDEN,
SDL_WINDOW_BORDERLESS,
SDL_WINDOW_RESIZABLE,
SDL_WINDOW_MINIMIZED,
SDL_WINDOW_MAXIMIZED,
SDL_WINDOW_INPUT_GRABBED.






	Returns:	A new SDL_Window












	
csdl2.SDL_WINDOWPOS_UNDEFINED

	Used to indicate that you don’t care what the window position is in any
display.






	
csdl2.SDL_WINDOWPOS_CENTERED

	Used to indicate that the window position should be centered in any display.








Window flags


	
csdl2.SDL_WINDOW_FULLSCREEN

	The window is fullscreen.






	
csdl2.SDL_WINDOW_OPENGL

	The window is usable with an OpenGL context.






	
csdl2.SDL_WINDOW_SHOWN

	The window is visible.






	
csdl2.SDL_WINDOW_HIDDEN

	The window is hidden.






	
csdl2.SDL_WINDOW_BORDERLESS

	The window has no window decoration.






	
csdl2.SDL_WINDOW_RESIZABLE

	The window is resizable.






	
csdl2.SDL_WINDOW_MINIMIZED

	The window is minimized.






	
csdl2.SDL_WINDOW_MAXIMIZED

	The window is maximized.






	
csdl2.SDL_WINDOW_INPUT_GRABBED

	The window has grabbed input focus.






	
csdl2.SDL_WINDOW_INPUT_FOCUS

	The window has input focus.






	
csdl2.SDL_WINDOW_MOUSE_FOCUS

	The window has mouse focus.






	
csdl2.SDL_WINDOW_FULLSCREEN_DESKTOP

	The window is exclusively fullscreen – the screen display mode is set to
match the window dimensions.






	
csdl2.SDL_WINDOW_FOREIGN

	The window was not created by SDL.








Window destruction


	
csdl2.SDL_DestroyWindow(window: SDL_Window)  None

	Destroys a window, freeing up its resources.

There is no need to manually call this function. SDL_Window will
automatically call it as part of its destructor.





	Parameters:	window (SDL_Window) – Window to be destroyed.












Window Properties


	
csdl2.SDL_GetWindowTitle(window: SDL_Window)  str

	Returns the title of the window.





	Parameters:	window (SDL_Window) – The window.


	Returns:	The title of the window.












Window Events


	
csdl2.SDL_WINDOWEVENT_NONE

	This constant is not used.






	
csdl2.SDL_WINDOWEVENT_SHOWN

	The value of SDL_WindowEvent.type when the Window has been shown.






	
csdl2.SDL_WINDOWEVENT_HIDDEN

	The value of SDL_WindowEvent.type when the window has been hidden.






	
csdl2.SDL_WINDOWEVENT_EXPOSED

	The value of SDL_WindowEvent.type when the Window has been exposed and
should been redrawn.






	
csdl2.SDL_WINDOWEVENT_MOVED

	The value of SDL_WindowEvent.type when the window has been moved.
SDL_WindowEvent.data1 is the new x position and SDL_WindowEvent.data2 is the
new y position.






	
csdl2.SDL_WINDOWEVENT_RESIZED

	The value of SDL_WindowEvent.type when the window has been resized.
SDL_WindowEvent.data1 is the new width and SDL_WindowEvent.data2 is the new
height.






	
csdl2.SDL_WINDOWEVENT_SIZE_CHANGED

	The value of SDL_WindowEvent.type when the window size has changed, either
as a result of an API call or through the system or user changing the window
size. SDL_WindowEvent.data1 is the new width and SDL_WindowEvent.data2 is
the new height.






	
csdl2.SDL_WINDOWEVENT_MINIMIZED

	The value of SDL_WindowEvent.type when the window has been minimized.






	
csdl2.SDL_WINDOWEVENT_MAXIMIZED

	The value of SDL_WindowEvent.type when the window has been maximized.






	
csdl2.SDL_WINDOWEVENT_RESTORED

	The value of SDL_WindowEvent.type when the window has been restored to
normal size and position.






	
csdl2.SDL_WINDOWEVENT_ENTER

	The value of SDL_WindowEvent.type when the window has gained mouse focus.






	
csdl2.SDL_WINDOWEVENT_LEAVE

	The value of SDL_WindowEvent.type when the window has lost mouse focus.






	
csdl2.SDL_WINDOWEVENT_FOCUS_GAINED

	The value of SDL_WindowEvent.type when the window has gained keyboard focus.






	
csdl2.SDL_WINDOWEVENT_FOCUS_LOST

	The value of SDL_WindowEvent.type when the window has lost keyboard focus.






	
csdl2.SDL_WINDOWEVENT_CLOSE

	The value of SDL_WindowEvent.type when the window manager requests that the
window be closed.








OpenGL configuration attributes

OpenGL configuration attributes control the properties of the OpenGL context
that is created with SDL_GL_CreateContext. These attributes are set with
SDL_GL_SetAttribute and read with SDL_GL_GetAttribute.

Note that the following attributes must be set before the window is created
with SDL_CreateWindow():


	SDL_GL_RED_SIZE

	SDL_GL_GREEN_SIZE

	SDL_GL_BLUE_SIZE

	SDL_GL_ALPHA_SIZE

	SDL_GL_DOUBLEBUFFER




	
csdl2.SDL_GL_RED_SIZE

	OpenGL configuration attribute for the minimum number of bits for the red
channel of the color buffer. Defaults to 3.






	
csdl2.SDL_GL_GREEN_SIZE

	OpenGL configuration attribute for the minimum number of bits for the green
channel of the color buffer. Defaults to 3.






	
csdl2.SDL_GL_BLUE_SIZE

	OpenGL configuration attribute for the minimum number of bits for the blue
channel of the color buffer. Defaults to 2.






	
csdl2.SDL_GL_ALPHA_SIZE

	OpenGL configuration attribute for the minimum number of bits for the alpha
channel of the color buffer. Defaults to 0.






	
csdl2.SDL_GL_BUFFER_SIZE

	OpenGL configuration attribute for the minimum number of bits for frame
buffer size. Defaults to 0.






	
csdl2.SDL_GL_DOUBLEBUFFER

	OpenGL configuration attribute for whether the output is single or double
buffered. Defaults to double buffering on.






	
csdl2.SDL_GL_DEPTH_SIZE

	OpenGL configuration attribute for the minimum number of bits in the depth
buffer. Defaults to 16.






	
csdl2.SDL_GL_STENCIL_SIZE

	OpenGL configuration attribute for the minimum number of bits in the stencil
buffer. Defaults to 0.






	
csdl2.SDL_GL_ACCUM_RED_SIZE

	OpenGL configuration attribute for the minimum number of bits for the red
channel of the accumulation buffer. Defaults to 0.






	
csdl2.SDL_GL_ACCUM_GREEN_SIZE

	OpenGL configuration attribute for the minimum number of bits for the green
channel of the accumulation buffer. Defaults to 0.






	
csdl2.SDL_GL_ACCUM_BLUE_SIZE

	OpenGL configuration attribute for the the minimum number of bits for the
blue channel of the accumulation buffer. Defaults to 0.






	
csdl2.SDL_GL_ACCUM_ALPHA_SIZE

	OpenGL configuration attribute for the minimum number of bits for the alpha
channel of the accumulation buffer. Defaults to 0.






	
csdl2.SDL_GL_STEREO

	OpenGL configuration attribute for whether the output is stereo 3D. Defaults
to off.






	
csdl2.SDL_GL_MULTISAMPLEBUFFERS

	OpenGL configuration attribute for the number of buffers used for
multisample anti-aliasing. Defaults to 0.






	
csdl2.SDL_GL_MULTISAMPLESAMPLES

	OpenGL configuration attribute for the number of samples used around the
current pixel used for multisample anti-aliasing. Defaults to 0.






	
csdl2.SDL_GL_ACCELERATED_VISUAL

	Set this OpenGL configuration attribute to 1 to require hardware
acceleration, set to 0 to force software rendering. Default is to allow
either.






	
csdl2.SDL_GL_CONTEXT_MAJOR_VERSION

	OpenGL configuration attribute for the OpenGL context major version.






	
csdl2.SDL_GL_CONTEXT_MINOR_VERSION

	OpenGL configuration attribute for the OpenGL context minor version.






	
csdl2.SDL_GL_CONTEXT_FLAGS

	OpenGL context creation flags. The value can be one or more of
SDL_GL_CONTEXT_DEBUG_FLAG,
SDL_GL_CONTEXT_FORWARD_COMPATIBLE_FLAG,
SDL_GL_CONTEXT_ROBUST_ACCESS_FLAG,
SDL_GL_CONTEXT_RESET_ISOLATION_FLAG. Default is 0 (no flags set).






	
csdl2.SDL_GL_CONTEXT_PROFILE_MASK

	OpenGL context creation profile. The value must be one of
SDL_GL_CONTEXT_PROFILE_CORE,
SDL_GL_CONTEXT_PROFILE_COMPATIBILITY,
SDL_GL_CONTEXT_PROFILE_ES. Default depends on the platform.






	
csdl2.SDL_GL_SHARE_WITH_CURRENT_CONTEXT

	OpenGL configuration attribute to enable context sharing. Default is 0
(don’t share contexts).








OpenGL flags

These flags are set through the SDL_GL_CONTEXT_FLAGS OpenGL
configuration attribute.


	
csdl2.SDL_GL_CONTEXT_DEBUG_FLAG

	This flag maps to GLX_CONTEXT_DEBUG_BIT_ARB in the
GLX_ARB_create_context [https://www.opengl.org/registry/specs/ARB/glx_create_context.txt] extension and WGL_CONTEXT_DEBUG_BIT_ARB
in the WGL_ARB_create_context [https://www.opengl.org/registry/specs/ARB/wgl_create_context.txt] extension, and is ignored if these
extensions are not available. This flag puts OpenGL into a “debug” mode
which might assist with debugging, possibly at a loss of performance.






	
csdl2.SDL_GL_CONTEXT_FORWARD_COMPATIBLE_FLAG

	This flag maps to GLX_CONTEXT_FORWARD_COMPATIBLE_BIT_ARB in the
GLX_ARB_create_context [https://www.opengl.org/registry/specs/ARB/glx_create_context.txt] extension and
WGL_CONTEXT_FORWARD_COMPATIBLE_BIT_ARB in the
WGL_ARB_create_context [https://www.opengl.org/registry/specs/ARB/wgl_create_context.txt] extension, and is ignored if these extensions are
not available. This flag puts OpenGL into a “forward compatible” mode, where
no deprecated functionality will be supported, possibly at a gain in
performance. This only applies to OpenGL 3.0 and later contexts.






	
csdl2.SDL_GL_CONTEXT_ROBUST_ACCESS_FLAG

	This flag maps to GLX_CONTEXT_ROBUST_ACCESS_BIT_ARB in the
GLX_ARB_create_context_robustness [https://www.opengl.org/registry/specs/ARB/glx_create_context_robustness.txt] extenstion and
WGL_CONTEXT_ROBUST_ACCESS_BIT_ARB in the
WGL_ARB_create_context_robustness [https://www.opengl.org/registry/specs/ARB/wgl_create_context_robustness.txt] extension, and is ignored if these
extensions are not available. This flag creates an OpenGL context that
supports the GL_ARB_robustness [https://www.opengl.org/registry/specs/ARB/robustness.txt] extension – a mode that offers a few APIs
that are safer than the usual defaults.






	
csdl2.SDL_GL_CONTEXT_RESET_ISOLATION_FLAG

	This flag maps to GLX_CONTEXT_RESET_ISOLATION_BIT_ARB in the
GLX_ARB_robustness_isolation [https://www.opengl.org/registry/specs/ARB/glx_robustness_isolation.txt] extension and
WGL_CONTEXT_RESET_ISOLATION_BIT_ARB in the
WGL_ARB_create_context_robustness [https://www.opengl.org/registry/specs/ARB/wgl_create_context_robustness.txt] extension, and is ignored if these
extensions are not available. This flag is intended to require OpenGL to
make promises about what to do in the event of driver or hardware failure.








OpenGL Profiles

These profile constants are used with SDL_GL_SetAttribute and
SDL_GL_CONTEXT_PROFILE_MASK. Note that these profiles are mutually
exclusive and SDL_GL_SetAttribute accepts at most one of them. Setting
SDL_GL_CONTEXT_PROFILE_MASK to 0 leaves the choice of profile up to
SDL. Should be used in conjunction with SDL_GL_CONTEXT_MAJOR_VERSION
and SDL_GL_CONTEXT_MINOR_VERSION as OpenGL profiles are defined
relative to a particular version of OpenGL. There is no way to distinguish
between the common and common lite profiles of OpenGL ES versions 1.0 and 1.1.


	
csdl2.SDL_GL_CONTEXT_PROFILE_CORE

	Core profile. Deprecated functions are disabled.






	
csdl2.SDL_GL_CONTEXT_PROFILE_COMPATIBILITY

	Compatibility profile. Deprecated functions are allowed.






	
csdl2.SDL_GL_CONTEXT_PROFILE_ES

	OpenGL ES context. Only a subset of base OpenGL functionality is allowed.











          

      

      

    


    
         Copyright 2015, Paul Tan.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	pycsdl2 2.0.0.0.dev5 documentation 

          	API Reference 
 
      

    


    
      
          
            
  
Blend modes

The following constants are used in SDL_SetTextureBlendMode(),
SDL_SetSurfaceBlendMode() and other drawing operations.


	
csdl2.SDL_BLENDMODE_NONE

	No blending.

dstRGBA = srcRGBA.






	
csdl2.SDL_BLENDMODE_BLEND

	Alpha blending.

dstRGB = (srcRGB * srcA) + (dstRGB * (1 - srcA))

dstA = srcA + (dstA * (1 - srcA))






	
csdl2.SDL_BLENDMODE_ADD

	Additive blending.

dstRGB = (srcRGB * srcA) + dstRGB

dstA = dstA






	
csdl2.SDL_BLENDMODE_MOD

	Color modulate.

dstRGB = srcRGB * dstRGB

dstA = dstA









          

      

      

    


    
         Copyright 2015, Paul Tan.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	pycsdl2 2.0.0.0.dev5 documentation 

          	API Reference 
 
      

    


    
      
          
            
  
Surface Creation and Simple Drawing


	
class csdl2.SDL_Surface

	A structure that contains a collection of pixels used in software blitting.

This structure cannot be initiated directly. Use
SDL_CreateRGBSurface(), SDL_CreateRGBSurfaceFrom(),
SDL_LoadBMP_RW() or SDL_LoadBMP() to create a new instance.


	
flags

	(readonly) A bitmask of the flags SDL_PREALLOC,
SDL_RLEACCEL and/or SDL_DONTFREE for internal use.






	
format

	(readonly) SDL_PixelFormat of the pixels stored in the surface.






	
w

	(readonly) Width of the surface in pixels.






	
h

	(readonly) Height of the surface in pixels.






	
pitch

	(readonly) The length of a row of pixels in bytes.






	
pixels

	(readonly) Buffer providing the actual pixel data.






	
userdata

	An arbitrary object that an application can set for its own use.






	
locked

	(readonly) True if the surface is locked.






	
clip_rect

	(readonly) An SDL_Rect structure used to clip bits to the
surface which can be set by SDL_SetClipRect().






	
refcount

	(readonly) SDL’s reference count of the surface. For internal use.










	
csdl2.SDL_PREALLOC

	Surface uses preallocated memory.






	
csdl2.SDL_RLEACCEL

	Surface is RLE encoded.






	
csdl2.SDL_DONTFREE

	Surface is referenced internally.






	
csdl2.SDL_MUSTLOCK(surface: SDL_Surface)  bool

	Returns True if surface needs to be locked before its
SDL_Surface.pixels can be accessed.





	Parameters:	surface (SDL_Surface) – The surface to test


	Returns:	True if the surface needs to be locked before its pixels can be
accessed, False otherwise.










	
csdl2.SDL_CreateRGBSurface(flags: int, width: int, height: int, depth: int, Rmask: int, Gmask: int, Bmask: int, Amask: int)  SDL_Surface

	Creates and returns a new blank SDL_Surface with the specified
properties.





	Parameters:	
	flags (int) – This argument is unused and should be set to 0.

	width (int) – The width of the surface in pixels.

	height (int) – The height of the surface in pixels.

	depth (int) – The depth of the surface in bits. If depth is 4 or 8
bits, an empty SDL_Palette is allocated for the
surface. If depth is greater than 8 bits, the pixel
format is set using the Rmask, Gmask, Bmask and
Amask arguments.

	Rmask (int) – Bitmask used to extract the red component from a pixel. If
0, a default mask based on the depth is used.

	Gmask (int) – Bitmask used to extract the green component from a pixel.
If 0, a default mask based on the depth is used.

	Bmask (int) – Bitmask used to extract the blue component from a pixel.
If 0, a default mask based on the depth is used.

	Amask (int) – Bitmask used to extract the alpha component from a pixel.
If 0, the surface has no alpha channel.






	Returns:	A new blank SDL_Surface structure.












	
csdl2.SDL_CreateRGBSurfaceFrom(pixels: buffer, width: int, height: int, depth: int, pitch: int, Rmask: int, Gmask: int, Bmask: int, Amask: int)  SDL_Surface

	Creates and returns a SDL_Surface with existing pixel data.





	Parameters:	
	pixels (buffer) – Existing pixel data. This can be any object that
supports the buffer protocol and exports a
C-contiguous buffer of the correct size.

	width (int) – The width of the surface in pixels.

	height (int) – The height of the surface in pixels.

	depth (int) – The depth of the surface in bits. If depth is 4 or 8
bits, an empty SDL_Palette is allocated for the
surface. If depth is greater than 8 bits, the pixel
format is set using the Rmask, Gmask, Bmask and
Amask arguments.

	Rmask (int) – Bitmask used to extract the red component from a pixel. If
0, a default mask based on the depth is used.

	Gmask (int) – Bitmask used to extract the green component from a pixel.
If 0, a default mask based on the depth is used.

	Bmask (int) – Bitmask used to extract the blue component from a pixel.
If 0, a default mask based on the depth is used.

	Amask (int) – Bitmask used to extract the alpha component from a pixel.
If 0, the surface has no alpha channel.






	Returns:	A SDL_Surface with its contents backed by the provided
pixels buffer.












	
csdl2.SDL_LoadBMP_RW(src, freesrc)  SDL_Surface

	Load a BMP image from a seekable SDL data stream. (memory or file).





	Parameters:	
	src (SDL_RWops) – The data stream for the surface.

	freesrc (bool) – True to close the stream after being read.






	Returns:	SDL_Surface with the image data.












	
csdl2.SDL_LoadBMP(file)  SDL_Surface

	Load a surface from a BMP file on the filesystem.





	Parameters:	file (str) – The path to the file containing a BMP image.


	Returns:	SDL_Surface with the image data.










	
csdl2.SDL_FreeSurface(surface: SDL_Surface)

	Frees the surface.

There is no need to manually call this function. SDL_Surface will
automatically call this function as part of its destructor.





	Parameters:	surface (SDL_Surface) – surface to free













          

      

      

    


    
         Copyright 2015, Paul Tan.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	pycsdl2 2.0.0.0.dev5 documentation 

          	API Reference 
 
      

    


    
      
          
            
  
2D Accelerated Rendering


Render drivers

A render driver is a set of code that handles rendering and texture management
on a particular display.


	
class csdl2.SDL_RendererInfo(name=None, flags=0, num_texture_formats=0, texture_formats=0, max_texture_width=0, max_texture_height=0)

	Information on the capabilities of a render driver or context.


	
name

	Name of the renderer.






	
flags

	A mask of supported Renderer creation flags.






	
num_texture_formats

	The number of available texture formats.






	
texture_formats

	The available texture formats as an array of
Pixel format constants ints.

Note that the size of the array is always 16. However, only the first
num_texture_formats values are valid.






	
max_texture_width

	Maximum texture width.






	
max_texture_height

	Maximum texture height










	
csdl2.SDL_GetNumRenderDrivers()  int

	Get the number of 2D rendering drivers available for the current display.






	
csdl2.SDL_GetRenderDriverInfo(index)  SDL_RendererInfo

	Gets information about a specific 2D rendering driver for the current
display.





	Parameters:	index (int) – The index of the driver to query information about. It
must be in the range 0 to
SDL_GetNumRenderDrivers() - 1.


	Returns:	A new SDL_RendererInfo filled with information about the
render driver.












Renderers


	
class csdl2.SDL_Renderer

	A 2d rendering context.

This is an opaque handle that cannot be directly constructed. Instead, use
SDL_CreateRenderer() or SDL_CreateSoftwareRenderer().






	
csdl2.SDL_CreateWindowAndRenderer(width, height, window_flags)  tuple

	Creates a window and a default renderer.





	Parameters:	
	width (int) – The width of the window.

	height (int) – The height of the window.

	window_flags (int) – 0, or one or more of the Window flags OR’d
together.






	Returns:	A 2-tuple (window, renderer), where window is the created
SDL_Window and renderer is the created
SDL_Renderer.












	
csdl2.SDL_CreateRenderer(window: SDL_Window, index: int, flags: int)  SDL_Renderer

	Creates a SDL_Renderer for window.





	Parameters:	
	window (SDL_Window) – SDL_Window to render to.

	index (int) – The index of the rendering driver to initialize, or -1 to
initialize the first driver supporting flags.

	flags (int) – 0, or one or more Renderer creation flags OR’ed
together.






	Returns:	A new SDL_Renderer that renders to window.












	
csdl2.SDL_CreateSoftwareRenderer(surface: SDL_Surface)  SDL_Renderer

	Creates a SDL_Renderer for surface.





	Parameters:	surface (SDL_Surface) – SDL_Surface to render to.


	Returns:	A new SDL_Renderer that renders to surface.










	
csdl2.SDL_GetRenderer(window)  SDL_Renderer

	Returns the renderer associated with a window.





	Parameters:	window (SDL_Renderer) – The window to query.


	Returns:	The SDL_Renderer associated with the window, or None if
there is no renderer associated with the window.










	
csdl2.SDL_GetRendererInfo(renderer)  SDL_RendererInfo

	Get information about a rendering context.





	Parameters:	renderer (SDL_Renderer) – The rendering context to query.


	Returns:	A new SDL_RendererInfo filled with information about the
renderer.










	
csdl2.SDL_GetRendererOutputSize(renderer)  tuple

	Get the output size of a rendering context.





	Parameters:	renderer (SDL_Renderer) – The rendering context to query.


	Returns:	A 2-tuple (width, height) with the output width and height of
the rendering context respectively.










	
csdl2.SDL_DestroyRenderer(renderer: SDL_Renderer)  None

	Destroys renderer, freeing up its associated textures and resources.

There is no need to manually call this function. SDL_Renderer will
automatically call this function as part of its destructor.





	Parameters:	renderer (SDL_Renderer) – SDL_Renderer to destroy












Renderer creation flags

These flags can be passed to SDL_CreateRenderer() to request that the
renderer support certain functions.


	
csdl2.SDL_RENDERER_SOFTWARE

	The renderer is a software fallback.






	
csdl2.SDL_RENDERER_ACCELERATED

	The renderer uses hardware acceleration.






	
csdl2.SDL_RENDERER_PRESENTVSYNC

	SDL_RenderPresent() is synchronized with the refresh rate.






	
csdl2.SDL_RENDERER_TARGETTEXTURE

	The renderer supports rendering to texture.








Textures


	
class csdl2.SDL_Texture

	An efficient driver-specific representation of pixel data.

This is an opaque handle that cannot be directly constructed. Instead, use
SDL_CreateTexture() or SDL_CreateTextureFromSurface().






	
csdl2.SDL_CreateTexture(renderer, format, access, w, h)  SDL_Texture

	Creates a texture for a rendering context with the specified properties.





	Parameters:	
	renderer (SDL_Renderer) – The rendering context.

	format (int) – The texture pixel format. One of the
Pixel format constants.

	access (int) – Specifies whether the texture data can be modified. One
of SDL_TEXTUREACCESS_STATIC,
SDL_TEXTUREACCESS_STREAMING
or SDL_TEXTUREACCESS_TARGET.

	w (int) – Width of the texture in pixels.

	h (int) – Height of the texture in pixels.






	Returns:	A new SDL_Texture for the rendering context.












	
csdl2.SDL_TEXTUREACCESS_STATIC

	Texture changes rarely, not lockable.






	
csdl2.SDL_TEXTUREACCESS_STREAMING

	Texture changes frequently, lockable.






	
csdl2.SDL_TEXTUREACCESS_TARGET

	Texture can be used as a render target.






	
csdl2.SDL_CreateTextureFromSurface(renderer, surface)  SDL_Texture

	Creates a texture for a rendering context with the pixel data of an existing
surface.

The surface is not modified or freed by this function. The texture will be
created with SDL_TEXTUREACCESS_STATIC.





	Parameters:	
	renderer (SDL_Renderer) – The rendering context.

	surface (class:SDL_Surface) – The surface containing pixel data to fill the texture.






	Returns:	A new SDL_Texture for the rendering context.












	
csdl2.SDL_QueryTexture(texture)  tuple

	Query the attributes of a texture. Namely:


	The texture’s raw pixel format, one of the Pixel format constants.

	The texture’s access. One of SDL_TEXTUREACCESS_STATIC,
SDL_TEXTUREACCESS_STREAMING or SDL_TEXTUREACCESS_TARGET.

	The texture’s width and height, in pixels.







	Parameters:	texture (SDL_Texture) – The texture to be queried.


	Returns:	A tuple (int, int, int, int) with the texture’s raw pixel
format, access, width and height respectively.










	
csdl2.SDL_SetTextureColorMod(texture, r, g, b)

	Sets an additional color value used in render copy operations.

When the texture is rendered, during the copy operation each source color
channel is modulated by the appropriate color value according to the
following formula:

srcC = srcC * (color / 255)









	Parameters:	
	texture (SDL_Texture) – The texture to update.

	r (int) – The red color value multiplied into copy operations.

	g (int) – The green color value multiplied into copy operations.

	b (int) – The blue color value multiplied into copy operations.














	
csdl2.SDL_GetTextureColorMod(texture)  tuple

	Returns the additional color value multiplied into render copy operations.





	Parameters:	texture (SDL_Texture) – The texture to query.


	Returns:	A tuple (int, int, int) with the red, green and blue
components of the color respectively.










	
csdl2.SDL_SetTextureAlphaMod(texture, alpha)

	Sets an additional alpha value multiplied into render copy operations.

When the texture is rendered, during the copy operation the source alpha
value would be modulated by this alpha value according to the following
formula:

srcA = srcA * (alpha / 255)









	Parameters:	
	texture (SDL_Texture) – The texture to update.

	alpha (int) – The source alpha value multiplied into copy operations. It
must be within the range 0-255.














	
csdl2.SDL_GetTextureAlphaMod(texture)  int

	Returns the additional alpha value multiplied into render copy operations.





	Parameters:	texture (SDL_Texture) – The texture to query.


	Returns:	The current alpha value. It is within the range 0-255.










	
csdl2.SDL_SetTextureBlendMode(texture, blendMode: int)

	Sets the blend mode for a texture.





	Parameters:	
	texture (SDL_Texture) – The texture to update.

	blendMode (int) – The blend mode to use for texture blending. One of the
Blend modes.














	
csdl2.SDL_GetTextureBlendMode(texture)  int

	Returns the blend mode used for texture copy operations.





	Parameters:	texture (SDL_Texture) – The texture to query.


	Returns:	The texture’s blend mode. One of the Blend modes.










	
csdl2.SDL_UpdateTexture(texture, rect, pixels, pitch)

	Updates the given texture rectangle with new pixel data.





	Parameters:	
	texture (SDL_Texture) – The texture to update.

	rect (SDL_Rect buffer, or None) – The area to update, or None to update the entire texture.

	pixels (buffer) – The raw pixel data.

	pitch (int) – The number of bytes in a row of pixel data, including
padding between lines.










Note

This is a fairly slow function, intended for use with static textures
that do not change often.  If the texture is intended to be updated
often, it is preferred to create the texture as streaming and use the
locking functions SDL_LockTexture() and SDL_UnlockTexture().
While this function will work with streaming textures, for optimization
reasons you may not get the pixels back if you lock the texture
afterward.








	
csdl2.SDL_LockTexture(texture, rect)  tuple

	Locks a portion of the texture for write-only pixel access.





	Parameters:	
	texture (SDL_Texture) – The texture to lock for access, which was created with
SDL_TEXTUREACCESS_STREAMING.

	rect (SDL_Rect buffer or None) – The area to lock for access, or None to lock the entire
texture.






	Returns:	A tuple (pixels, pitch). pixels is a buffer containing the
locked pixels, and pitch is the integer length of one row in
bytes.








Note

After modifying the pixels, you must use SDL_UnlockTexture() to
unlock the pixels and apply any changes.




Note

This is a write-only operation. As an optimization, the pixels made
available for editing don’t necessarily contain the old texture data.








	
csdl2.SDL_UnlockTexture(texture)

	Unlocks a texture, uploading any changes to video memory.





	Parameters:	texture (SDL_Texture) – A texture locked by SDL_LockTexture().






Note

The pixels buffer returned by SDL_LockTexture() may contain junk
data. For consistent results, ensure that you have overwritten the pixel
buffer fully before calling this function.








	
csdl2.SDL_DestroyTexture(texture)

	Destroys the specified texture, freeing its resources.

There is no need to explictly call this function. SDL_Texture will
automatically call it upon cleanup.





	Parameters:	texture (SDL_Texture) – Texture to destroy.












Render targets


	
csdl2.SDL_RenderTargetSupported(renderer)  bool

	Queries whether a renderer supports the use of render targets.





	Parameters:	renderer (SDL_Renderer) – The rendering context.


	Returns:	True if render targets are supported, False if not.










	
csdl2.SDL_SetRenderTarget(renderer, texture)

	Sets a texture as the current rendering target.





	Parameters:	
	renderer (SDL_Renderer) – The rendering context.

	texture (SDL_Texture or None) – The targeted texture, which must be created with the
SDL_TEXTURTEACCESS_TARGET flag, or None for the
default render target.














	
csdl2.SDL_GetRenderTarget(renderer)  SDL_Texture

	Queries the renderer’s current render target.





	Parameters:	renderer (SDL_Renderer) – The rendering context.


	Returns:	The current render target, or None for the default render target.












Device independent resolution


	
csdl2.SDL_RenderSetLogicalSize(renderer, w, h)

	Sets a device independent resolution for rendering.





	Parameters:	
	renderer (SDL_Renderer) – The renderer for which resolution should be set.

	w (int) – The width of the logical resolution.

	h (int) – The height of the logical resolution.














	
csdl2.SDL_RenderGetLogicalSize(renderer)  tuple

	Queries the device independent resolution for rendering.

If the renderer did not have its logical size set by
SDL_RenderSetLogicalSize(), the function returns (0, 0).





	Parameters:	renderer (SDL_Renderer) – A rendering context.


	Returns:	An (int, int) tuple with the width and height of the logical
resolution respectively.












Viewport


	
csdl2.SDL_RenderSetViewport(renderer, rect)

	Sets the drawing area for rendering on the current target.

When the window is resized, the current viewport is automatically centered
within the new window size.





	Parameters:	
	renderer (SDL_Renderer) – The rendering context.

	rect (SDL_Rect or None) – The drawing area, or None to set the viewport to the entire
target.














	
csdl2.SDL_RenderGetViewport(renderer)  SDL_Rect

	Queries the drawing area for the current target.





	Parameters:	renderer (SDL_Renderer) – The rendering context.


	Returns:	A SDL_Rect with the drawing area for the current target.












Clip Rectangle


	
csdl2.SDL_RenderSetClipRect(renderer, rect)

	Sets the clip rectangle for the current target.





	Parameters:	
	renderer (SDL_Renderer) – The renderer for which clip rectangle should be set.

	rect (SDL_Rect or None) – The rectangle to set as the clip rectangle, or None to disable
clipping.














	
csdl2.SDL_RenderGetClipRect(renderer)  SDL_Rect

	Gets the clip rectangle for the current target.





	Parameters:	renderer (SDL_Renderer) – The renderer from which clip rectangle should be queried.


	Returns:	A SDL_Rect with the current clip rectangle, or an empty
rectangle if clipping is disabled.












Scaling


	
csdl2.SDL_RenderSetScale(renderer, scaleX, scaleY)

	Sets the drawing scale for rendering on the current target.

The drawing coordinates are scaled by the x/y scaling factors before
they are used by the renderer. This allows resolution independent drawing
with a single coordinate system.





	Parameters:	
	renderer (SDL_Renderer) – The renderer for which the drawing scale should be set.

	scaleX (float) – The horizontal scaling factor.

	scaleY (float) – The vertical scaling factor.










Note

If this results in scaling or subpixel drawing by the rendering backend,
it will be hendled using the appropriate quality hints. For best results
use integer scaling factors.








	
csdl2.SDL_RenderGetScale(renderer)  tuple

	Gets the drawing scale for the current target.





	Parameters:	renderer (SDL_Renderer) – The renderer from which drawing scale should be queried.


	Returns:	A 2-tuple (scaleX, scaleY) with the float horizontal and
vertical scaling factors respectively.












Drawing


	
csdl2.SDL_SetRenderDrawColor(renderer: SDL_Renderer, r: int, g: int, b: int, a: int)  None

	Sets the color used for drawing primitives, and for SDL_RenderClear().





	Parameters:	
	renderer (SDL_Renderer) – The rendering context.

	r (int) – The red value used to draw on the rendering target, within the
range 0-255.

	g (int) – The green value used to draw on the rendering target, within
the range 0-255.

	b (int) – The blue value used to draw on the rendering target, within
the range 0-255.

	a (int) – The alpha value used to draw on the rendering target, within
the range 0-255. Use SDL_SetRenderDrawBlendMode() to
specify how the alpha channel is used.














	
csdl2.SDL_GetRenderDrawColor(renderer: SDL_Renderer)  tuple

	Returns the color used for drawing operations.





	Parameters:	renderer (SDL_Renderer) – The rendering context.


	Returns:	The (r, g, b, a) components of the drawing color.


	Return type:	(int, int, int, int) tuple










	
csdl2.SDL_SetRenderDrawBlendMode(renderer, blendMode)

	Sets the blend mode used for drawing operations (Fill and Line).





	Parameters:	
	renderer (SDL_Renderer) – The renderer for which blend mode should be set.

	blendMode (int) – The blend mode to use for blending. One of the
Blend modes.










Note

If the blend mode is not supported, the closest supported mode is chosen.








	
csdl2.SDL_GetRenderDrawBlendMode(renderer)  int

	Gets the blend mode used for drawing operations.





	Parameters:	renderer (SDL_Renderer) – The renderer from which blend mode should be queried.


	Returns:	The current blend mode. One of the Blend modes.










	
csdl2.SDL_RenderClear(renderer: SDL_Renderer)  None

	Clears the current rendering target with the current drawing color.

The entire rendering target will be cleared, ignoring the viewport.





	Parameters:	renderer (SDL_Renderer) – The rendering context.










	
csdl2.SDL_RenderDrawPoint(renderer, x, y)

	Draws a point on the current rendering target.





	Parameters:	
	renderer (SDL_Renderer) – The renderer which should draw a point.

	x (int) – The x coordinate of the point.

	y (int) – The y coordinate of the point.














	
csdl2.SDL_RenderDrawPoints(renderer, points, count)

	Draw multiple points on the current rendering target.





	Parameters:	
	renderer (SDL_Renderer) – The rendering context.

	points (SDL_Point array) – The points to draw.

	count (int) – The number of points to draw.














	
csdl2.SDL_RenderDrawLine(renderer, x1, y1, x2, y2)

	Draw a line on the current rendering target.





	Parameters:	
	renderer (SDL_Renderer) – The rendering context.

	x1 (int) – The x coordinate of the start point.

	y1 (int) – The y coordinate of the start point.

	x2 (int) – The x coordinate of the end point.

	y2 (int) – The y coordinate of the end point.














	
csdl2.SDL_RenderDrawLines(renderer, points, count)

	Draw a series of connected lines on the current rendering target.





	Parameters:	
	renderer (SDL_Renderer) – The rendering context.

	points (SDL_Point array) – The points along the lines.

	count (int) – The number of points, drawing count - 1 lines.














	
csdl2.SDL_RenderDrawRect(renderer, rect)

	Draw a rectangle on the current rendering target.





	Parameters:	
	renderer (SDL_Renderer) – The rendering context.

	rect (SDL_Rect or None) – The rectangle to draw, or None to outline the entire rendering
target.














	
csdl2.SDL_RenderDrawRects(renderer, rects, count)

	Draw some number of rectangles on the current rendering target.





	Parameters:	
	renderer (SDL_Renderer) – The rendering context.

	rects (SDL_Rect array.) – The rectangles to be drawn.

	count (int) – The number of rectangles.














	
csdl2.SDL_RenderFillRect(renderer: SDL_Renderer, rect: SDL_Rect)  None

	Fills a rectangle on the current rendering target with the current drawing
color.





	Parameters:	
	renderer (SDL_Renderer) – The rendering context.

	rect (SDL_Rect or None) – The SDL_Rect representing the rectangle to fill. If
None, the entire rendering target will be filled.














	
csdl2.SDL_RenderFillRects(renderer, rects, count)

	Fill some number of rectangles on the current rendering target with the
current drawing color.





	Parameters:	
	renderer (SDL_Renderer) – The rendering context.

	rects (SDL_Rect array) – The rectangles to be filled.

	count (int) – The number of rectangles.














	
csdl2.SDL_RenderCopy(renderer, texture, srcrect, dstrect)

	Copies a portion of the texture to the current rendering target.

The texture is blended with the destination based on its blend mode set with
SDL_SetTextureBlendMode().

The texture color is affected based on its color modulation set by
SDL_SetTextureColorMod().

The texture alpha is affected based on its alpha modulation set by
SDL_SetTextureAlphaMod().





	Parameters:	
	renderer (SDL_Renderer) – The rendering context.

	texture (SDL_Texture) – The source texture.

	srcrect (SDL_Rect buffer or None) – The source rectangle, or None for the entire texture.

	dstrect (SDL_Rect buffer or None) – The destination rectangle, or None for the entire rendering
target. The texture will be stretched to fill the given
rectangle.














	
csdl2.SDL_RenderCopyEx(renderer, texture, srcrect, dstrect, angle, center, flip)

	Copies a portion of the texture to the current rendering target, optionally
rotating it by an angle around the given center and also flipping it
top-bottom and/or left-right.

The texture is blended with the destination based on its blend mode set with
SDL_SetTextureBlendMode().

The texture color is affected based on its color modulation set by
SDL_SetTextureColorMod().

The texture alpha is affected based on its alpha modulation set by
SDL_SetTextureAlphaMod().





	Parameters:	
	renderer (SDL_Renderer) – The rendering context.

	texture (SDL_Texture) – The source texture.

	srcrect (SDL_Rect or None) – The source rectangle, or None for the entire texture.

	dstrect (SDL_Rect or None) – The destination rectangle, or None for the entire rendering
target. The texture will be stretched to fill the given
rectangle.

	angle (float) – An angle in degrees that indicates the rotation that
will be applied to dstrect.

	center (SDL_Point or None) – The point around which dstrect will be rotated. If None,
rotation will be done around (dstrect.w/2, dstrect.h/2).

	flip (int) – Indicates which flipping actions should be performed on the
texture. One or more of SDL_FLIP_NONE,
SDL_FLIP_HORIZONTAL and/or
SDL_FLIP_VERTICAL OR’d together.














	
csdl2.SDL_FLIP_NONE

	Do not flip.






	
csdl2.SDL_FLIP_HORIZONTAL

	Flip horizontally.






	
csdl2.SDL_FLIP_VERTICAL

	Flip vertically.








Reading pixels


	
csdl2.SDL_RenderReadPixels(renderer, rect, format, pixels, pitch)

	Read pixels from the current rendering target.





	Parameters:	
	renderer (SDL_Renderer) – The rendering context.

	rect (SDL_Rect or None) – The area to read, or None for the entire render target.

	format (int) – The desired format of the pixel data (one of the
Pixel format constants), or 0 to use the format of
the rendering target.

	pixels (buffer) – The buffer to be filled in with the pixel data.

	pitch (int) – The pitch of the pixels buffer.
















Updating the screen

SDL’s rendering functions operate on a backbuffer. Calling a rendering function
such as SDL_RenderDrawLine() does not directly draw a line on the screen,
but rather updates the backbuffer. As such, after composing your entire scene
with the drawing functions, you need to present the composed buffer to the
screen as a complete picture. This is done with SDL_RenderPresent().


	
csdl2.SDL_RenderPresent(renderer: SDL_Renderer)  None

	Updates the screen with any rendering performed since the previous call.

If the renderer has VSync enabled, this function will block while waiting
for the next vertical refresh, hence eliminating screen tearing.





	Parameters:	renderer (SDL_Renderer) – The rendering context






Note

The backbuffer should be considered invalidated after each call to
SDL_RenderPresent(). Do not assume that previous contents
will exist between frames. You are strongly encouraged to call
SDL_RenderClear() to initialize the backbuffer before
drawing each frame.










OpenGL Support


	
csdl2.SDL_GL_BindTexture(texture)  tuple

	Bind an OpenGL/ES/ES2 texture to the current context for use with when
rendering OpenGL primitives directly.





	Parameters:	texture (SDL_Texture) – The texture to bind to the current OpenGL/ES/ES2 context.


	Returns:	A (float, float) tuple with the texture width and texture
height respectively.






Note

In most cases, the texture height and width will be 1.0.
However, on systems that support the GL_ARB_texture_rectangle
extension, these values will actually be the pixel width and
height used to create the texture, and so this factor needs to be
taken into account when providing texture coordinates to OpenGL.




Note

SDL may upload RGB textures as BGR (or vice-versa), and re-order
the color channels in the shader phase, so the uploaded texture
may have swapped color channels.








	
csdl2.SDL_GL_UnbindTexture(texture)

	Unbind an OpenGL/ES/ES2 texture from the current context.





	Parameters:	texture (SDL_Texture) – The texture to unbind from the current OpenGL/ES/ES2
context.















          

      

      

    


    
         Copyright 2015, Paul Tan.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	pycsdl2 2.0.0.0.dev5 documentation 

          	API Reference 
 
      

    


    
      
          
            
  
Pixel Formats and Conversion Routines


Pixel Types

The pixel type is one of the following values:


	
csdl2.SDL_PIXELTYPE_UNKNOWN

	Unknown pixel type.






Indexed Pixel Types


	
csdl2.SDL_PIXELTYPE_INDEX1

	




	
csdl2.SDL_PIXELTYPE_INDEX4

	




	
csdl2.SDL_PIXELTYPE_INDEX8

	






Packed Pixel Types


	
csdl2.SDL_PIXELTYPE_PACKED8

	




	
csdl2.SDL_PIXELTYPE_PACKED16

	




	
csdl2.SDL_PIXELTYPE_PACKED32

	






Bitmap Pixel Types


	
csdl2.SDL_PIXELTYPE_ARRAYU8

	




	
csdl2.SDL_PIXELTYPE_ARRAYU16

	




	
csdl2.SDL_PIXELTYPE_ARRAYU32

	




	
csdl2.SDL_PIXELTYPE_ARRAYF16

	




	
csdl2.SDL_PIXELTYPE_ARRAYF32

	








Pixel Ordering

Depending on the pixel type there are three different types of orderings –
bitmapped, packed or array.


Bitmap pixel order (high bit -> low bit)


	
csdl2.SDL_BITMAPORDER_NONE

	




	
csdl2.SDL_BITMAPORDER_4321

	




	
csdl2.SDL_BITMAPORDER_1234

	






Packed component order (high bit -> low bit)


	
csdl2.SDL_PACKEDORDER_NONE

	




	
csdl2.SDL_PACKEDORDER_XRGB

	




	
csdl2.SDL_PACKEDORDER_RGBX

	




	
csdl2.SDL_PACKEDORDER_ARGB

	




	
csdl2.SDL_PACKEDORDER_RGBA

	




	
csdl2.SDL_PACKEDORDER_XBGR

	




	
csdl2.SDL_PACKEDORDER_BGRX

	




	
csdl2.SDL_PACKEDORDER_ABGR

	




	
csdl2.SDL_PACKEDORDER_BGRA

	






Array component order (low byte -> high byte)


	
csdl2.SDL_ARRAYORDER_NONE

	




	
csdl2.SDL_ARRAYORDER_RGB

	




	
csdl2.SDL_ARRAYORDER_RGBA

	




	
csdl2.SDL_ARRAYORDER_ARGB

	




	
csdl2.SDL_ARRAYORDER_BGR

	




	
csdl2.SDL_ARRAYORDER_BGRA

	




	
csdl2.SDL_ARRAYORDER_ABGR

	








Pixel Formats


	
class csdl2.SDL_PixelFormat

	Pixel format information.

This structure cannot be directly constructed. Use SDL_AllocFormat()
instead.


	
format

	(readonly) A constant specifying the pixel format. See Pixel format
constants for possible values.






	
palette

	(readonly) The SDL_Palette associated with this pixel format, or
None if this format does not have a palette.






	
BitsPerPixel

	(readonly) The number of significant bits in a pixel value. E.g. 8, 15,
16, 24, 32.






	
BytesPerPixel

	(readonly) The number of bytes required to hold a pixel value. E.g. 1,
2, 3, 4.






	
Rmask

	(readonly) A mask representing the location of the red component of a
pixel.






	
Gmask

	(readonly) A mask representing the location of the green component of a
pixel.






	
Bmask

	(readonly) A mask representing the location of the blue component of a
pixel.






	
Rloss

	(readonly) The red value of a pixel has this number of bits less compared
to 8-bit values.






	
Gloss

	(readonly) The green value of a pixel has this number of bits less
compared to 8-bit values.






	
Bloss

	(readonly) The blue value of a pixel has this number of bits less
compared to 8-bit values.






	
Aloss

	(readonly) The alpha value of a pixel has this number of bits less
compared to 8-bit values.






	
Rshift

	(readonly) The bit index of the red field of a pixel.






	
Gshift

	(readonly) The bit index of the green value of a pixel.






	
Bshift

	(readonly) The bit index of the blue value of a pixel.






	
Ashift

	(readonly) The bit index of the alpha value of a pixel.










	
csdl2.SDL_AllocFormat(pixel_format: int)  SDL_PixelFormat

	Creates a SDL_PixelFormat structure corresponding to the pixel
format constant pixel_format.





	Parameters:	pixel_format (int) – One of the Pixel format constants.


	Returns:	A SDL_PixelFormat.










	
csdl2.SDL_FreeFormat(format: SDL_PixelFormat)  None

	Frees the SDL_PixelFormat structure allocated by
SDL_AllocFormat().

There is no need to manually call this function. csdl2 will automatically
call this function upon garbage collection.





	Parameters:	format (SDL_PixelFormat) – SDL_PixelFormat structure to free.










Pixel format constants


	
csdl2.SDL_PIXELFORMAT_UNKNOWN

	




	
csdl2.SDL_PIXELFORMAT_INDEX1LSB

	




	
csdl2.SDL_PIXELFORMAT_INDEX1MSB

	




	
csdl2.SDL_PIXELFORMAT_INDEX4LSB

	




	
csdl2.SDL_PIXELFORMAT_INDEX4MSB

	




	
csdl2.SDL_PIXELFORMAT_INDEX8

	




	
csdl2.SDL_PIXELFORMAT_RGB332

	




	
csdl2.SDL_PIXELFORMAT_RGB444

	




	
csdl2.SDL_PIXELFORMAT_RGB555

	




	
csdl2.SDL_PIXELFORMAT_BGR555

	




	
csdl2.SDL_PIXELFORMAT_ARGB4444

	




	
csdl2.SDL_PIXELFORMAT_RGBA4444

	




	
csdl2.SDL_PIXELFORMAT_ABGR4444

	




	
csdl2.SDL_PIXELFORMAT_BGRA4444

	




	
csdl2.SDL_PIXELFORMAT_ARGB1555

	




	
csdl2.SDL_PIXELFORMAT_RGBA5551

	




	
csdl2.SDL_PIXELFORMAT_ABGR1555

	




	
csdl2.SDL_PIXELFORMAT_BGRA5551

	




	
csdl2.SDL_PIXELFORMAT_RGB565

	




	
csdl2.SDL_PIXELFORMAT_BGR565

	




	
csdl2.SDL_PIXELFORMAT_RGB24

	




	
csdl2.SDL_PIXELFORMAT_BGR24

	




	
csdl2.SDL_PIXELFORMAT_RGB888

	




	
csdl2.SDL_PIXELFORMAT_RGBX8888

	




	
csdl2.SDL_PIXELFORMAT_BGR888

	




	
csdl2.SDL_PIXELFORMAT_BGRX8888

	




	
csdl2.SDL_PIXELFORMAT_ARGB8888

	




	
csdl2.SDL_PIXELFORMAT_RGBA8888

	




	
csdl2.SDL_PIXELFORMAT_ABGR8888

	




	
csdl2.SDL_PIXELFORMAT_BGRA8888

	




	
csdl2.SDL_PIXELFORMAT_ARGB2101010

	




	
csdl2.SDL_PIXELFORMAT_YV12

	




	
csdl2.SDL_PIXELFORMAT_IYUV

	




	
csdl2.SDL_PIXELFORMAT_YUY2

	




	
csdl2.SDL_PIXELFORMAT_UYVY

	




	
csdl2.SDL_PIXELFORMAT_YVYU

	








Color Palette


	
class csdl2.SDL_Palette

	A color palette.

Every pixel in an 8-bit surface is an index into the colors field of the
SDL_Palette referenced by the SDL_PixelFormat.

This structure cannot be directly constructed. One will be automatically
created as needed when SDL allocates a SDL_PixelFormat. It can also
be created through SDL_AllocPalette().


	
ncolors

	(readonly) Number of colors in the palette.






	
colors

	(readonly) An array of SDL_Color structures representing the
palette. This array cannot be directly modified. Use
SDL_SetPaletteColors() instead.










	
csdl2.SDL_AllocPalette(ncolors: int)  SDL_AllocPalette

	Create a new SDL_Palette with ncolors number of color entries.
The color entries are initialized to white.





	Parameters:	ncolors (int) – Number of colors in the palette.


	Returns:	A new SDL_Palette.










	
csdl2.SDL_FreePalette(palette: SDL_Palette)  None

	Frees the specified palette.

There is no need to call this function as csdl2 will automatically call this
function on garbage collection.





	Parameters:	palette (SDL_Palette) – The SDL_Palette to be freed.















          

      

      

    


    
         Copyright 2015, Paul Tan.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	pycsdl2 2.0.0.0.dev5 documentation 

          	API Reference 
 
      

    


    
      
          
            
  
Rectangle Functions


	
class csdl2.SDL_Point(x: int =0, y: int =0)

	A 2d point.


	
x

	The x location of the point.






	
y

	The y location of the point.










	
class csdl2.SDL_Rect(x: int =0, y: int =0, w: int =0, h: int =0)

	A 2d rectangle with its origin at the upper left.


	
x

	The x location of the rectangle’s upper left corner.






	
y

	The y location of the rectangle’s upper left corner.






	
w

	The width of the rectangle.






	
h

	The height of the rectangle.










	
csdl2.SDL_HasIntersection(A: SDL_Rect, B: SDL_Rect)  bool

	Determines if two rectangles intersect.





	Parameters:	
	A (SDL_Rect or None) – First rectangle.

	B (SDL_Rect or None) – Second rectangle.






	Returns:	True if there is an intersection, False otherwise. If A and/or
B are None, the function will return False.















          

      

      

    


    
         Copyright 2015, Paul Tan.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	pycsdl2 2.0.0.0.dev5 documentation 

          	API Reference 
 
      

    


    
      
          
            
  
Event Handling

Event handling allows your application to receive input from the user. Event
handling is initialized with a call to:

>>> from csdl2 import *
>>> SDL_Init(SDL_INIT_EVENTS)





SDL stores each event as a SDL_Event in an event queue. SDL_Event structures
are read from the queue with the SDL_PollEvent function and it is then up to
the application to process the information stored with them.


	
class csdl2.SDL_Event

	A union that contains structures for the different event types.


	
type

	An int specifying the event type. Use the event type’s
corresponding attribute to get/set information about the event:







	Value of type
	Attr of SDL_Event




	SDL_CONTROLLERAXISMOTION
	SDL_Event.caxis


	SDL_CONTROLLERBUTTONDOWN,
SDL_CONTROLLERBUTTONUP
	SDL_Event.cbutton


	SDL_CONTROLLERDEVICEADDED,
SDL_CONTROLLERDEVICEREMOVED,
SDL_CONTROLLERDEVICEREMAPPED
	SDL_Event.cdevice


	SDL_DOLLARGESTURE,
SDL_DOLLARRECORD
	SDL_Event.dgesture


	SDL_DROPFILE
	SDL_Event.drop


	SDL_FINGERMOTION,
SDL_FINGERDOWN,
SDL_FINGERUP
	SDL_Event.tfinger


	SDL_KEYDOWN,
SDL_KEYUP
	SDL_Event.key


	SDL_JOYAXISMOTION
	SDL_Event.jaxis


	SDL_JOYBALLMOTION
	SDL_Event.jball


	SDL_JOYHATMOTION
	SDL_Event.jhat


	SDL_JOYBUTTONDOWN,
SDL_JOYBUTTONUP
	SDL_Event.jbutton


	SDL_JOYDEVICEADDED,
SDL_JOYDEVICEREMOVED
	SDL_Event.jdevice


	SDL_MOUSEMOTION
	SDL_Event.motion


	SDL_MOUSEBUTTONDOWN,
SDL_MOUSEBUTTONUP
	SDL_Event.button


	SDL_MOUSEWHEEL
	SDL_Event.wheel


	SDL_MULTIGESTURE
	SDL_Event.mgesture


	SDL_QUIT
	SDL_Event.quit


	SDL_SYSWMEVENT
	SDL_Event.syswm


	SDL_TEXTEDITING
	SDL_Event.edit


	SDL_TEXTINPUT
	SDL_Event.text


	SDL_USEREVENT
	SDL_Event.user


	SDL_WINDOWEVENT
	SDL_Event.window










	
motion

	(readonly) If SDL_Event.type is SDL_MOUSEMOTION, use
this attribute to access the underlying SDL_MouseMotionEvent
mouse motion event data.










	
csdl2.SDL_QUIT

	User-requested quit.






	
csdl2.SDL_APP_TERMINATING

	The application is being terminated by the OS. Called on iOS in
applicationWillTerminate(). Called on Android in onDestroy().






	
csdl2.SDL_APP_LOWMEMORY

	The application is low on memory, free memory if possible. Called on iOS in
applicationDidReceiveMemoryWarning(). Called on Android in onLowMemory().






	
csdl2.SDL_APP_WILLENTERBACKGROUND

	The application is about to enter the background. Called on iOS in
applicationWillResignActive(). Called on Android in onPause().






	
csdl2.SDL_APP_DIDENTERBACKGROUND

	The application did enter the background and may not get CPU for some time.
Called on iOS in applicationDidEnterBackground(). Called on Android in
onPause().






	
csdl2.SDL_APP_WILLENTERFOREGROUND

	The application is about to enter the foreground. Called on iOS in
applicationWillEnterForeground(). Called on Android in onResume().






	
csdl2.SDL_APP_DIDENTERFOREGROUND

	The application is now interactive. Called on iOS in
applicationDidBecomeActive(). Called on Android in onResume().






	
csdl2.SDL_WINDOWEVENT

	Window state change.






	
csdl2.SDL_SYSWMEVENT

	System specific event.






	
csdl2.SDL_KEYDOWN

	Key pressed.






	
csdl2.SDL_KEYUP

	Key released.






	
csdl2.SDL_TEXTEDITING

	Keyboard text editing (composition).






	
csdl2.SDL_TEXTINPUT

	Keyboard text input.






	
csdl2.SDL_MOUSEMOTION

	Mouse moved.






	
csdl2.SDL_MOUSEBUTTONDOWN

	Mouse button pressed.






	
csdl2.SDL_MOUSEBUTTONUP

	Mouse button released.






	
csdl2.SDL_MOUSEWHEEL

	Mouse wheel motion.






	
csdl2.SDL_JOYAXISMOTION

	Joystick axis motion.






	
csdl2.SDL_JOYBALLMOTION

	Joystick trackball motion.






	
csdl2.SDL_JOYHATMOTION

	Joystick hat position change.






	
csdl2.SDL_JOYBUTTONDOWN

	Joystick button pressed.






	
csdl2.SDL_JOYBUTTONUP

	Joystick button released.






	
csdl2.SDL_JOYDEVICEADDED

	A new joystick has been inserted into the system.






	
csdl2.SDL_JOYDEVICEREMOVED

	An opened joystick has been removed.






	
csdl2.SDL_CONTROLLERAXISMOTION

	Game controller axis motion.






	
csdl2.SDL_CONTROLLERBUTTONDOWN

	Game controller button pressed.






	
csdl2.SDL_CONTROLLERBUTTONUP

	Game controller button released.






	
csdl2.SDL_CONTROLLERDEVICEADDED

	A new game controller has been inserted into the system.






	
csdl2.SDL_CONTROLLERDEVICEREMOVED

	A opened game controller has been removed.






	
csdl2.SDL_CONTROLLERDEVICEREMAPPED

	The controller mapping was updated.






	
csdl2.SDL_FINGERDOWN

	User has touched input device.






	
csdl2.SDL_FINGERUP

	User stopped touching input device.






	
csdl2.SDL_FINGERMOTION

	User is dragging finger on input device.






	
csdl2.SDL_DOLLARGESTURE

	User made a dollar gesture.






	
csdl2.SDL_DOLLARRECORD

	When recording a gesture with SDL_RecordGesture, the user made a dollar
gesture that was recorded.






	
csdl2.SDL_MULTIGESTURE

	User made a gesture with multiple fingers.






	
csdl2.SDL_CLIPBOARDUPDATE

	The clipboard changed.






	
csdl2.SDL_DROPFILE

	The system requests a file open.






	
csdl2.SDL_USEREVENT

	
csdl2.SDL_LASTEVENT

	Events SDL_USEREVENT through SDL_LASTEVENT are for your
use, and should be allocated with SDL_RegisterEvents






	
csdl2.SDL_PumpEvents()  None

	Pumps the event loop, gathering events from the input devices.

This function updates the event queue and internal input device state.
Without calling this function, no input events will ever be placed on the
queue.

SDL_PollEvent() and SDL_WaitEvent() implicitly call this
function. If you are not polling or waiting for events using these
functions, you must explicitly call SDL_PumpEvents() to force an event
queue update.

This should only be run in the thread that sets the video mode.






	
csdl2.SDL_PeepEvents(events, numevents: int, action: int, minType: int, maxType: int)  int

	If action is SDL_ADDEVENT, up to numevents events will be added
to the back of the event queue. Returns the number of events added.

If action is SDL_PEEKEVENT, up to numevents events from the
front of the event queue, within minType and maxType, will be returned
in events, but will not be removed from the queue. Returns number of
events peeked.

If action is SDL_GETEVENT, up to numevents events from the
front of the event queue, within minType and maxType, will be returned
in events, and will be removed from the queue. Returns number of events
retrieved.





	Parameters:	
	events (SDL_Event) – Either a SDL_Event object, or a buffer of
equivalent size.

	numevents (int) – If action is SDL_ADDEVENT, the number of
events to add to the event queue. If action is
SDL_PEEKEVENT or SDL_GETEVENT, the
maximum number of events to retrieve.

	action (int) – One of SDL_ADDEVENT, SDL_PEEKEVENT
or SDL_GETEVENT.

	minType (int) – minimum value of the event type to be considered.
SDL_FIRSTEVENT is a safe choice.

	maxType (int) – maximum value of the event type to be considered.
SDL_LASTEVENT is a safe choice.






	Returns:	Number of events added to the event queue for
SDL_ADDEVENT, number of events retrieved from the event
queue for SDL_PEEKEVENT and SDL_GETEVENT.












	
csdl2.SDL_ADDEVENT

	
csdl2.SDL_PEEKEVENT

	
csdl2.SDL_GETEVENT

	Possible actions for SDL_PeepEvents().






	
csdl2.SDL_FlushEvents(minType: int, maxType: int)  None

	Removes all events from the event queue within the specified minType and
maxType.

To clear all events, set minType to SDL_FIRSTEVENT and maxType
to SDL_LASTEVENT. To clear all user events, set minType to
SDL_USEREVENT and maxType to SDL_LASTEVENT.

This function only affects currently queued events. If you wish to make sure
that all pending OS events are flushed, you can call SDL_PumpEvents()
on the main thread immediately before SDL_FlushEvents().





	Parameters:	
	minType (int) – minimum event type to be cleared.

	maxType (int) – maximum event type to be cleared.














	
csdl2.SDL_PollEvent(event)  bool

	Polls for currently pending events.





	Parameters:	event (SDL_Event or None) – If not None, the next event is removed from the queue and
stored in it. If None, no event will be removed from the
queue.


	Returns:	True if there are events in the queue, False otherwise.










	
csdl2.SDL_PushEvent(event)  bool

	Copies event into the event queue.





	Parameters:	event (SDL_Event) – Event to be copied into the event queue. Either a
SDL_Event instance, or a buffer of
equivalent size.


	Returns:	True on success, False if the event was filtered.






Note

For pushing application-specific events, please use
SDL_RegisterEvents() to get an event type that does not conflict
with other code that also wants its own custom event types.








Mouse motion events

A SDL_MOUSEMOTION event occurs whenever a user moves the mouse within
any window or when SDL_WarpMouseInWindow() is called.


	
class csdl2.SDL_MouseMotionEvent

	A structure that contains mouse motion event information.

SDL_MouseMotionEvent is a member of the SDL_Event union
and is used when an event of type SDL_MOUSEMOTION is reported. You
would access it through the SDL_Event.motion attribute.


	
type

	The event type. This should be SDL_MOUSEMOTION.






	
timestamp

	Timestamp of the event.






	
windowID

	The window with mouse focus, if any.






	
which

	The mouse instance ID. This may be SDL_TOUCH_MOUSEID, for events
that were generated by a touch input device, and not a real mouse. You
might want to ignore such events, if your application already handles the
SDL_FINGERMOTION event.






	
state

	A 32-bit bitmask of the current button state and is the same as that
returned by SDL_GetMouseState(). You can test different buttons by
using the masks SDL_BUTTON_LMASK, SDL_BUTTON_MMASK,
SDL_BUTTON_RMASK, SDL_BUTTON_X1MASK and
SDL_BUTTON_X2MASK.






	
x

	X coordinate, relative to window.






	
y

	Y coordinate, relative to window.






	
xrel

	Motion in the X direction, relative to the last SDL_MOUSEMOTION
event. If relative mouse mode is enabled with
SDL_SetRelativeMouseMode(), relative movement will still be
reported even when the cursor reached the edge of the screen.






	
yrel

	Motion in the Y direction, relative to the last SDL_MOUSEMOTION
event. If relative mouse mode is enabled with
SDL_SetRelativeMouseMode(), relative movement will still be
reported even when the cursor reached the edge of the screen.















          

      

      

    


    
         Copyright 2015, Paul Tan.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	pycsdl2 2.0.0.0.dev5 documentation 

          	API Reference 
 
      

    


    
      
          
            
  
Scancode Constants

These constants are used to represent the physical location of a keyboard key
on the keybord. They are used in many places, such as the
SDL_KeyboardEvent.keysym attribute.


	
csdl2.SDL_SCANCODE_UNKNOWN

	




	
csdl2.SDL_SCANCODE_A

	




	
csdl2.SDL_SCANCODE_B

	




	
csdl2.SDL_SCANCODE_C

	




	
csdl2.SDL_SCANCODE_D

	




	
csdl2.SDL_SCANCODE_E

	




	
csdl2.SDL_SCANCODE_F

	




	
csdl2.SDL_SCANCODE_G

	




	
csdl2.SDL_SCANCODE_H

	




	
csdl2.SDL_SCANCODE_I

	




	
csdl2.SDL_SCANCODE_J

	




	
csdl2.SDL_SCANCODE_K

	




	
csdl2.SDL_SCANCODE_L

	




	
csdl2.SDL_SCANCODE_M

	




	
csdl2.SDL_SCANCODE_N

	




	
csdl2.SDL_SCANCODE_O

	




	
csdl2.SDL_SCANCODE_P

	




	
csdl2.SDL_SCANCODE_Q

	




	
csdl2.SDL_SCANCODE_R

	




	
csdl2.SDL_SCANCODE_S

	




	
csdl2.SDL_SCANCODE_T

	




	
csdl2.SDL_SCANCODE_U

	




	
csdl2.SDL_SCANCODE_V

	




	
csdl2.SDL_SCANCODE_W

	




	
csdl2.SDL_SCANCODE_X

	




	
csdl2.SDL_SCANCODE_Y

	




	
csdl2.SDL_SCANCODE_Z

	




	
csdl2.SDL_SCANCODE_1

	




	
csdl2.SDL_SCANCODE_2

	




	
csdl2.SDL_SCANCODE_3

	




	
csdl2.SDL_SCANCODE_4

	




	
csdl2.SDL_SCANCODE_5

	




	
csdl2.SDL_SCANCODE_6

	




	
csdl2.SDL_SCANCODE_7

	




	
csdl2.SDL_SCANCODE_8

	




	
csdl2.SDL_SCANCODE_9

	




	
csdl2.SDL_SCANCODE_0

	




	
csdl2.SDL_SCANCODE_RETURN

	




	
csdl2.SDL_SCANCODE_ESCAPE

	




	
csdl2.SDL_SCANCODE_BACKSPACE

	




	
csdl2.SDL_SCANCODE_TAB

	




	
csdl2.SDL_SCANCODE_SPACE

	




	
csdl2.SDL_SCANCODE_MINUS

	




	
csdl2.SDL_SCANCODE_EQUALS

	




	
csdl2.SDL_SCANCODE_LEFTBRACKET

	




	
csdl2.SDL_SCANCODE_RIGHTBRACKET

	




	
csdl2.SDL_SCANCODE_BACKSLASH

	Located at the lower left of the return key on ISO keyboards and at the
right end of the QWERTY row on ANSI keyboards.  Produces REVERSE SOLIDUS
(backslash) and VERTICAL LINE in a US layout, REVERSE SOLIDUS and VERTICAL
LINE in a UK Mac layout, NUMBER SIGN and TILDE in a UK Windows layout,
DOLLAR SIGN and POUND SIGN in a Swiss German layout, NUMBER SIGN and
APOSTROPHE in a German layout, GRAVE ACCENT and POUND SIGN in a French Mac
layout, and ASTERISK and MICRO SIGN in a French Windows layout.






	
csdl2.SDL_SCANCODE_NONUSHASH

	ISO USB keyboards actually use this code instead of 49 for the same key, but
all OSes I’ve seen treat the two codes identically. So, as an implementor,
unless your keyboard generates both of those codes and your OS treats them
differently, you should generate SDL_SCANCODE_BACKSLASH instead of this
code. As a user, you should not rely on this code because SDL will never
generate it with most (all?) keyboards.






	
csdl2.SDL_SCANCODE_SEMICOLON

	




	
csdl2.SDL_SCANCODE_APOSTROPHE

	




	
csdl2.SDL_SCANCODE_GRAVE

	Located in the top left corner (on both ANSI and ISO keyboards). Produces
GRAVE ACCENT and TILDE in a US Windows layout and in US and UK Mac layouts
on ANSI keyboards, GRAVE ACCENT and NOT SIGN in a UK Windows layout, SECTION
SIGN and PLUS-MINUS SIGN in US and UK Mac layouts on ISO keyboards, SECTION
SIGN and DEGREE SIGN in a Swiss German layout (Mac: only on ISO keyboards),
CIRCUMFLEX ACCENT and DEGREE SIGN in a German layout (Mac: only on ISO
keyboards), SUPERSCRIPT TWO and TILDE in a French Windows layout, COMMERCIAL
AT and NUMBER SIGN in a French Mac layout on ISO keyboards, and LESS-THAN
SIGN and GREATER-THAN SIGN in a Swiss German, German, or French Mac layout
on ANSI keyboards.






	
csdl2.SDL_SCANCODE_COMMA

	




	
csdl2.SDL_SCANCODE_PERIOD

	




	
csdl2.SDL_SCANCODE_SLASH

	




	
csdl2.SDL_SCANCODE_CAPSLOCK

	




	
csdl2.SDL_SCANCODE_F1

	




	
csdl2.SDL_SCANCODE_F2

	




	
csdl2.SDL_SCANCODE_F3

	




	
csdl2.SDL_SCANCODE_F4

	




	
csdl2.SDL_SCANCODE_F5

	




	
csdl2.SDL_SCANCODE_F6

	




	
csdl2.SDL_SCANCODE_F7

	




	
csdl2.SDL_SCANCODE_F8

	




	
csdl2.SDL_SCANCODE_F9

	




	
csdl2.SDL_SCANCODE_F10

	




	
csdl2.SDL_SCANCODE_F11

	




	
csdl2.SDL_SCANCODE_F12

	




	
csdl2.SDL_SCANCODE_PRINTSCREEN

	




	
csdl2.SDL_SCANCODE_SCROLLLOCK

	




	
csdl2.SDL_SCANCODE_PAUSE

	




	
csdl2.SDL_SCANCODE_INSERT

	Insert on PC, help on some Mac keyboards (but does send code 73, not 117)






	
csdl2.SDL_SCANCODE_HOME

	




	
csdl2.SDL_SCANCODE_PAGEUP

	




	
csdl2.SDL_SCANCODE_DELETE

	




	
csdl2.SDL_SCANCODE_END

	




	
csdl2.SDL_SCANCODE_PAGEDOWN

	




	
csdl2.SDL_SCANCODE_RIGHT

	




	
csdl2.SDL_SCANCODE_LEFT

	




	
csdl2.SDL_SCANCODE_DOWN

	




	
csdl2.SDL_SCANCODE_UP

	




	
csdl2.SDL_SCANCODE_NUMLOCKCLEAR

	Num lock on PC, clear on Mac keyboards






	
csdl2.SDL_SCANCODE_KP_DIVIDE

	




	
csdl2.SDL_SCANCODE_KP_MULTIPLY

	




	
csdl2.SDL_SCANCODE_KP_MINUS

	




	
csdl2.SDL_SCANCODE_KP_PLUS

	




	
csdl2.SDL_SCANCODE_KP_ENTER

	




	
csdl2.SDL_SCANCODE_KP_1

	




	
csdl2.SDL_SCANCODE_KP_2

	




	
csdl2.SDL_SCANCODE_KP_3

	




	
csdl2.SDL_SCANCODE_KP_4

	




	
csdl2.SDL_SCANCODE_KP_5

	




	
csdl2.SDL_SCANCODE_KP_6

	




	
csdl2.SDL_SCANCODE_KP_7

	




	
csdl2.SDL_SCANCODE_KP_8

	




	
csdl2.SDL_SCANCODE_KP_9

	




	
csdl2.SDL_SCANCODE_KP_0

	




	
csdl2.SDL_SCANCODE_KP_PERIOD

	




	
csdl2.SDL_SCANCODE_NONUSBACKSLASH

	This is the additional key that ISO keyboards have over ANSI ones, located
between left shift and Y.  Produces GRAVE ACCENT and TILDE in a US or UK Mac
layout, REVERSE SOLIDUS (backslash) and VERTICAL LINE in a US or UK Windows
layout, and LESS-THAN SIGN and GREATER-THAN SIGN in a Swiss German, German,
or French layout.






	
csdl2.SDL_SCANCODE_APPLICATION

	Windows contextual menu, compose.






	
csdl2.SDL_SCANCODE_POWER

	The USB document says this is a status flag, not a physical key - but some
Mac keyboards do have a power key.






	
csdl2.SDL_SCANCODE_KP_EQUALS

	




	
csdl2.SDL_SCANCODE_F13

	




	
csdl2.SDL_SCANCODE_F14

	




	
csdl2.SDL_SCANCODE_F15

	




	
csdl2.SDL_SCANCODE_F16

	




	
csdl2.SDL_SCANCODE_F17

	




	
csdl2.SDL_SCANCODE_F18

	




	
csdl2.SDL_SCANCODE_F19

	




	
csdl2.SDL_SCANCODE_F20

	




	
csdl2.SDL_SCANCODE_F21

	




	
csdl2.SDL_SCANCODE_F22

	




	
csdl2.SDL_SCANCODE_F23

	




	
csdl2.SDL_SCANCODE_F24

	




	
csdl2.SDL_SCANCODE_EXECUTE

	




	
csdl2.SDL_SCANCODE_HELP

	




	
csdl2.SDL_SCANCODE_MENU

	




	
csdl2.SDL_SCANCODE_SELECT

	




	
csdl2.SDL_SCANCODE_STOP

	




	
csdl2.SDL_SCANCODE_AGAIN

	Redo.






	
csdl2.SDL_SCANCODE_UNDO

	




	
csdl2.SDL_SCANCODE_CUT

	




	
csdl2.SDL_SCANCODE_COPY

	




	
csdl2.SDL_SCANCODE_PASTE

	




	
csdl2.SDL_SCANCODE_FIND

	




	
csdl2.SDL_SCANCODE_MUTE

	




	
csdl2.SDL_SCANCODE_VOLUMEUP

	




	
csdl2.SDL_SCANCODE_VOLUMEDOWN

	




	
csdl2.SDL_SCANCODE_KP_COMMA

	




	
csdl2.SDL_SCANCODE_KP_EQUALSAS400

	




	
csdl2.SDL_SCANCODE_INTERNATIONAL1

	Used on Asian keyboards, see footnotes in USB doc.






	
csdl2.SDL_SCANCODE_INTERNATIONAL2

	




	
csdl2.SDL_SCANCODE_INTERNATIONAL3

	Yen.






	
csdl2.SDL_SCANCODE_INTERNATIONAL4

	




	
csdl2.SDL_SCANCODE_INTERNATIONAL5

	




	
csdl2.SDL_SCANCODE_INTERNATIONAL6

	




	
csdl2.SDL_SCANCODE_INTERNATIONAL7

	




	
csdl2.SDL_SCANCODE_INTERNATIONAL8

	




	
csdl2.SDL_SCANCODE_INTERNATIONAL9

	




	
csdl2.SDL_SCANCODE_LANG1

	Hangul/English toggle.






	
csdl2.SDL_SCANCODE_LANG2

	Hanja conversion.






	
csdl2.SDL_SCANCODE_LANG3

	Katakana.






	
csdl2.SDL_SCANCODE_LANG4

	Hiragana.






	
csdl2.SDL_SCANCODE_LANG5

	Zenkaku/Hankaku






	
csdl2.SDL_SCANCODE_LANG6

	




	
csdl2.SDL_SCANCODE_LANG7

	




	
csdl2.SDL_SCANCODE_LANG8

	




	
csdl2.SDL_SCANCODE_LANG9

	




	
csdl2.SDL_SCANCODE_ALTERASE

	Erase-Eaze






	
csdl2.SDL_SCANCODE_SYSREQ

	




	
csdl2.SDL_SCANCODE_CANCEL

	




	
csdl2.SDL_SCANCODE_CLEAR

	




	
csdl2.SDL_SCANCODE_PRIOR

	




	
csdl2.SDL_SCANCODE_RETURN2

	




	
csdl2.SDL_SCANCODE_SEPARATOR

	




	
csdl2.SDL_SCANCODE_OUT

	




	
csdl2.SDL_SCANCODE_OPER

	




	
csdl2.SDL_SCANCODE_CLEARAGAIN

	




	
csdl2.SDL_SCANCODE_CRSEL

	




	
csdl2.SDL_SCANCODE_EXSEL

	




	
csdl2.SDL_SCANCODE_KP_00

	




	
csdl2.SDL_SCANCODE_KP_000

	




	
csdl2.SDL_SCANCODE_THOUSANDSSEPARATOR

	




	
csdl2.SDL_SCANCODE_DECIMALSEPARATOR

	




	
csdl2.SDL_SCANCODE_CURRENCYUNIT

	




	
csdl2.SDL_SCANCODE_CURRENCYSUBUNIT

	




	
csdl2.SDL_SCANCODE_KP_LEFTPAREN

	




	
csdl2.SDL_SCANCODE_KP_RIGHTPAREN

	




	
csdl2.SDL_SCANCODE_KP_LEFTBRACE

	




	
csdl2.SDL_SCANCODE_KP_RIGHTBRACE

	




	
csdl2.SDL_SCANCODE_KP_TAB

	




	
csdl2.SDL_SCANCODE_KP_BACKSPACE

	




	
csdl2.SDL_SCANCODE_KP_A

	




	
csdl2.SDL_SCANCODE_KP_B

	




	
csdl2.SDL_SCANCODE_KP_C

	




	
csdl2.SDL_SCANCODE_KP_D

	




	
csdl2.SDL_SCANCODE_KP_E

	




	
csdl2.SDL_SCANCODE_KP_F

	




	
csdl2.SDL_SCANCODE_KP_XOR

	




	
csdl2.SDL_SCANCODE_KP_POWER

	




	
csdl2.SDL_SCANCODE_KP_PERCENT

	




	
csdl2.SDL_SCANCODE_KP_LESS

	




	
csdl2.SDL_SCANCODE_KP_GREATER

	




	
csdl2.SDL_SCANCODE_KP_AMPERSAND

	




	
csdl2.SDL_SCANCODE_KP_DBLAMPERSAND

	




	
csdl2.SDL_SCANCODE_KP_VERTICALBAR

	




	
csdl2.SDL_SCANCODE_KP_DBLVERTICALBAR

	




	
csdl2.SDL_SCANCODE_KP_COLON

	




	
csdl2.SDL_SCANCODE_KP_HASH

	




	
csdl2.SDL_SCANCODE_KP_SPACE

	




	
csdl2.SDL_SCANCODE_KP_AT

	




	
csdl2.SDL_SCANCODE_KP_EXCLAM

	




	
csdl2.SDL_SCANCODE_KP_MEMSTORE

	




	
csdl2.SDL_SCANCODE_KP_MEMRECALL

	




	
csdl2.SDL_SCANCODE_KP_MEMCLEAR

	




	
csdl2.SDL_SCANCODE_KP_MEMADD

	




	
csdl2.SDL_SCANCODE_KP_MEMSUBTRACT

	




	
csdl2.SDL_SCANCODE_KP_MEMMULTIPLY

	




	
csdl2.SDL_SCANCODE_KP_MEMDIVIDE

	




	
csdl2.SDL_SCANCODE_KP_PLUSMINUS

	




	
csdl2.SDL_SCANCODE_KP_CLEAR

	




	
csdl2.SDL_SCANCODE_KP_CLEARENTRY

	




	
csdl2.SDL_SCANCODE_KP_BINARY

	




	
csdl2.SDL_SCANCODE_KP_OCTAL

	




	
csdl2.SDL_SCANCODE_KP_DECIMAL

	




	
csdl2.SDL_SCANCODE_KP_HEXADECIMAL

	




	
csdl2.SDL_SCANCODE_LCTRL

	




	
csdl2.SDL_SCANCODE_LSHIFT

	




	
csdl2.SDL_SCANCODE_LALT

	Alt, option.






	
csdl2.SDL_SCANCODE_LGUI

	Windows, command (apple), meta






	
csdl2.SDL_SCANCODE_RCTRL

	




	
csdl2.SDL_SCANCODE_RSHIFT

	




	
csdl2.SDL_SCANCODE_RALT

	Alt gr, option.






	
csdl2.SDL_SCANCODE_RGUI

	Windows, command (apple), meta.






	
csdl2.SDL_SCANCODE_MODE

	




	
csdl2.SDL_SCANCODE_AUDIONEXT

	




	
csdl2.SDL_SCANCODE_AUDIOPREV

	




	
csdl2.SDL_SCANCODE_AUDIOSTOP

	




	
csdl2.SDL_SCANCODE_AUDIOPLAY

	




	
csdl2.SDL_SCANCODE_AUDIOMUTE

	




	
csdl2.SDL_SCANCODE_MEDIASELECT

	




	
csdl2.SDL_SCANCODE_WWW

	




	
csdl2.SDL_SCANCODE_MAIL

	




	
csdl2.SDL_SCANCODE_CALCULATOR

	




	
csdl2.SDL_SCANCODE_COMPUTER

	




	
csdl2.SDL_SCANCODE_AC_SEARCH

	




	
csdl2.SDL_SCANCODE_AC_HOME

	




	
csdl2.SDL_SCANCODE_AC_BACK

	




	
csdl2.SDL_SCANCODE_AC_FORWARD

	




	
csdl2.SDL_SCANCODE_AC_STOP

	




	
csdl2.SDL_SCANCODE_AC_REFRESH

	




	
csdl2.SDL_SCANCODE_AC_BOOKMARKS

	




	
csdl2.SDL_SCANCODE_BRIGHTNESSDOWN

	




	
csdl2.SDL_SCANCODE_BRIGHTNESSUP

	




	
csdl2.SDL_SCANCODE_DISPLAYSWITCH

	Display mirroring/dual display switch, video mode switch.






	
csdl2.SDL_SCANCODE_KBDILLUMTOGGLE

	




	
csdl2.SDL_SCANCODE_KBDILLUMDOWN

	




	
csdl2.SDL_SCANCODE_KBDILLUMUP

	




	
csdl2.SDL_SCANCODE_EJECT

	




	
csdl2.SDL_SCANCODE_SLEEP

	




	
csdl2.SDL_SCANCODE_APP1

	




	
csdl2.SDL_SCANCODE_APP2

	




	
csdl2.SDL_NUM_SCANCODES

	Not a key, just marks the number of scancodes for array bounds.









          

      

      

    


    
         Copyright 2015, Paul Tan.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	pycsdl2 2.0.0.0.dev5 documentation 

          	API Reference 
 
      

    


    
      
          
            
  
Keycode and Key Modifier Constants


Keycode Constants

These constants are mapped to the current layout of the keyboard and correlate
to one of the Scancode Constants. The scancode identifies the location
of a key press and the corresponding keycode gives that key press meaning in
the context of the current keyboard layout.


	
csdl2.SDLK_UNKNOWN

	




	
csdl2.SDLK_RETURN

	




	
csdl2.SDLK_ESCAPE

	




	
csdl2.SDLK_BACKSPACE

	




	
csdl2.SDLK_TAB

	




	
csdl2.SDLK_SPACE

	




	
csdl2.SDLK_EXCLAIM

	




	
csdl2.SDLK_QUOTEDBL

	




	
csdl2.SDLK_HASH

	




	
csdl2.SDLK_PERCENT

	




	
csdl2.SDLK_DOLLAR

	




	
csdl2.SDLK_AMPERSAND

	




	
csdl2.SDLK_QUOTE

	




	
csdl2.SDLK_LEFTPAREN

	




	
csdl2.SDLK_RIGHTPAREN

	




	
csdl2.SDLK_ASTERISK

	




	
csdl2.SDLK_PLUS

	




	
csdl2.SDLK_COMMA

	




	
csdl2.SDLK_MINUS

	




	
csdl2.SDLK_PERIOD

	




	
csdl2.SDLK_SLASH

	




	
csdl2.SDLK_0

	




	
csdl2.SDLK_1

	




	
csdl2.SDLK_2

	




	
csdl2.SDLK_3

	




	
csdl2.SDLK_4

	




	
csdl2.SDLK_5

	




	
csdl2.SDLK_6

	




	
csdl2.SDLK_7

	




	
csdl2.SDLK_8

	




	
csdl2.SDLK_9

	




	
csdl2.SDLK_COLON

	




	
csdl2.SDLK_SEMICOLON

	




	
csdl2.SDLK_LESS

	




	
csdl2.SDLK_EQUALS

	




	
csdl2.SDLK_GREATER

	




	
csdl2.SDLK_QUESTION

	




	
csdl2.SDLK_AT

	




	
csdl2.SDLK_LEFTBRACKET

	




	
csdl2.SDLK_BACKSLASH

	




	
csdl2.SDLK_RIGHTBRACKET

	




	
csdl2.SDLK_CARET

	




	
csdl2.SDLK_UNDERSCORE

	




	
csdl2.SDLK_BACKQUOTE

	




	
csdl2.SDLK_a

	




	
csdl2.SDLK_b

	




	
csdl2.SDLK_c

	




	
csdl2.SDLK_d

	




	
csdl2.SDLK_e

	




	
csdl2.SDLK_f

	




	
csdl2.SDLK_g

	




	
csdl2.SDLK_h

	




	
csdl2.SDLK_i

	




	
csdl2.SDLK_j

	




	
csdl2.SDLK_k

	




	
csdl2.SDLK_l

	




	
csdl2.SDLK_m

	




	
csdl2.SDLK_n

	




	
csdl2.SDLK_o

	




	
csdl2.SDLK_p

	




	
csdl2.SDLK_q

	




	
csdl2.SDLK_r

	




	
csdl2.SDLK_s

	




	
csdl2.SDLK_t

	




	
csdl2.SDLK_u

	




	
csdl2.SDLK_v

	




	
csdl2.SDLK_w

	




	
csdl2.SDLK_x

	




	
csdl2.SDLK_y

	




	
csdl2.SDLK_z

	




	
csdl2.SDLK_CAPSLOCK

	




	
csdl2.SDLK_F1

	




	
csdl2.SDLK_F2

	




	
csdl2.SDLK_F3

	




	
csdl2.SDLK_F4

	




	
csdl2.SDLK_F5

	




	
csdl2.SDLK_F6

	




	
csdl2.SDLK_F7

	




	
csdl2.SDLK_F8

	




	
csdl2.SDLK_F9

	




	
csdl2.SDLK_F10

	




	
csdl2.SDLK_F11

	




	
csdl2.SDLK_F12

	




	
csdl2.SDLK_PRINTSCREEN

	




	
csdl2.SDLK_SCROLLLOCK

	




	
csdl2.SDLK_PAUSE

	




	
csdl2.SDLK_INSERT

	




	
csdl2.SDLK_HOME

	




	
csdl2.SDLK_PAGEUP

	




	
csdl2.SDLK_DELETE

	




	
csdl2.SDLK_END

	




	
csdl2.SDLK_PAGEDOWN

	




	
csdl2.SDLK_RIGHT

	




	
csdl2.SDLK_LEFT

	




	
csdl2.SDLK_DOWN

	




	
csdl2.SDLK_UP

	




	
csdl2.SDLK_NUMLOCKCLEAR

	




	
csdl2.SDLK_KP_DIVIDE

	




	
csdl2.SDLK_KP_MULTIPLY

	




	
csdl2.SDLK_KP_MINUS

	




	
csdl2.SDLK_KP_PLUS

	




	
csdl2.SDLK_KP_ENTER

	




	
csdl2.SDLK_KP_1

	




	
csdl2.SDLK_KP_2

	




	
csdl2.SDLK_KP_3

	




	
csdl2.SDLK_KP_4

	




	
csdl2.SDLK_KP_5

	




	
csdl2.SDLK_KP_6

	




	
csdl2.SDLK_KP_7

	




	
csdl2.SDLK_KP_8

	




	
csdl2.SDLK_KP_9

	




	
csdl2.SDLK_KP_0

	




	
csdl2.SDLK_KP_PERIOD

	




	
csdl2.SDLK_APPLICATION

	




	
csdl2.SDLK_POWER

	




	
csdl2.SDLK_KP_EQUALS

	




	
csdl2.SDLK_F13

	




	
csdl2.SDLK_F14

	




	
csdl2.SDLK_F15

	




	
csdl2.SDLK_F16

	




	
csdl2.SDLK_F17

	




	
csdl2.SDLK_F18

	




	
csdl2.SDLK_F19

	




	
csdl2.SDLK_F20

	




	
csdl2.SDLK_F21

	




	
csdl2.SDLK_F22

	




	
csdl2.SDLK_F23

	




	
csdl2.SDLK_F24

	




	
csdl2.SDLK_EXECUTE

	




	
csdl2.SDLK_HELP

	




	
csdl2.SDLK_MENU

	




	
csdl2.SDLK_SELECT

	




	
csdl2.SDLK_STOP

	




	
csdl2.SDLK_AGAIN

	




	
csdl2.SDLK_UNDO

	




	
csdl2.SDLK_CUT

	




	
csdl2.SDLK_COPY

	




	
csdl2.SDLK_PASTE

	




	
csdl2.SDLK_FIND

	




	
csdl2.SDLK_MUTE

	




	
csdl2.SDLK_VOLUMEUP

	




	
csdl2.SDLK_VOLUMEDOWN

	




	
csdl2.SDLK_KP_COMMA

	




	
csdl2.SDLK_KP_EQUALSAS400

	




	
csdl2.SDLK_ALTERASE

	




	
csdl2.SDLK_SYSREQ

	




	
csdl2.SDLK_CANCEL

	




	
csdl2.SDLK_CLEAR

	




	
csdl2.SDLK_PRIOR

	




	
csdl2.SDLK_RETURN2

	




	
csdl2.SDLK_SEPARATOR

	




	
csdl2.SDLK_OUT

	




	
csdl2.SDLK_OPER

	




	
csdl2.SDLK_CLEARAGAIN

	




	
csdl2.SDLK_CRSEL

	




	
csdl2.SDLK_EXSEL

	




	
csdl2.SDLK_KP_00

	




	
csdl2.SDLK_KP_000

	




	
csdl2.SDLK_THOUSANDSSEPARATOR

	




	
csdl2.SDLK_DECIMALSEPARATOR

	




	
csdl2.SDLK_CURRENCYUNIT

	




	
csdl2.SDLK_CURRENCYSUBUNIT

	




	
csdl2.SDLK_KP_LEFTPAREN

	




	
csdl2.SDLK_KP_RIGHTPAREN

	




	
csdl2.SDLK_KP_LEFTBRACE

	




	
csdl2.SDLK_KP_RIGHTBRACE

	




	
csdl2.SDLK_KP_TAB

	




	
csdl2.SDLK_KP_BACKSPACE

	




	
csdl2.SDLK_KP_A

	




	
csdl2.SDLK_KP_B

	




	
csdl2.SDLK_KP_C

	




	
csdl2.SDLK_KP_D

	




	
csdl2.SDLK_KP_E

	




	
csdl2.SDLK_KP_F

	




	
csdl2.SDLK_KP_XOR

	




	
csdl2.SDLK_KP_POWER

	




	
csdl2.SDLK_KP_PERCENT

	




	
csdl2.SDLK_KP_LESS

	




	
csdl2.SDLK_KP_GREATER

	




	
csdl2.SDLK_KP_AMPERSAND

	




	
csdl2.SDLK_KP_DBLAMPERSAND

	




	
csdl2.SDLK_KP_VERTICALBAR

	




	
csdl2.SDLK_KP_DBLVERTICALBAR

	




	
csdl2.SDLK_KP_COLON

	




	
csdl2.SDLK_KP_HASH

	




	
csdl2.SDLK_KP_SPACE

	




	
csdl2.SDLK_KP_AT

	




	
csdl2.SDLK_KP_EXCLAM

	




	
csdl2.SDLK_KP_MEMSTORE

	




	
csdl2.SDLK_KP_MEMRECALL

	




	
csdl2.SDLK_KP_MEMCLEAR

	




	
csdl2.SDLK_KP_MEMADD

	




	
csdl2.SDLK_KP_MEMSUBTRACT

	




	
csdl2.SDLK_KP_MEMMULTIPLY

	




	
csdl2.SDLK_KP_MEMDIVIDE

	




	
csdl2.SDLK_KP_PLUSMINUS

	




	
csdl2.SDLK_KP_CLEAR

	




	
csdl2.SDLK_KP_CLEARENTRY

	




	
csdl2.SDLK_KP_BINARY

	




	
csdl2.SDLK_KP_OCTAL

	




	
csdl2.SDLK_KP_DECIMAL

	




	
csdl2.SDLK_KP_HEXADECIMAL

	




	
csdl2.SDLK_LCTRL

	




	
csdl2.SDLK_LSHIFT

	




	
csdl2.SDLK_LALT

	




	
csdl2.SDLK_LGUI

	




	
csdl2.SDLK_RCTRL

	




	
csdl2.SDLK_RSHIFT

	




	
csdl2.SDLK_RALT

	




	
csdl2.SDLK_RGUI

	




	
csdl2.SDLK_MODE

	




	
csdl2.SDLK_AUDIONEXT

	




	
csdl2.SDLK_AUDIOPREV

	




	
csdl2.SDLK_AUDIOSTOP

	




	
csdl2.SDLK_AUDIOPLAY

	




	
csdl2.SDLK_AUDIOMUTE

	




	
csdl2.SDLK_MEDIASELECT

	




	
csdl2.SDLK_WWW

	




	
csdl2.SDLK_MAIL

	




	
csdl2.SDLK_CALCULATOR

	




	
csdl2.SDLK_COMPUTER

	




	
csdl2.SDLK_AC_SEARCH

	




	
csdl2.SDLK_AC_HOME

	




	
csdl2.SDLK_AC_BACK

	




	
csdl2.SDLK_AC_FORWARD

	




	
csdl2.SDLK_AC_STOP

	




	
csdl2.SDLK_AC_REFRESH

	




	
csdl2.SDLK_AC_BOOKMARKS

	




	
csdl2.SDLK_BRIGHTNESSDOWN

	




	
csdl2.SDLK_BRIGHTNESSUP

	




	
csdl2.SDLK_DISPLAYSWITCH

	




	
csdl2.SDLK_KBDILLUMTOGGLE

	




	
csdl2.SDLK_KBDILLUMDOWN

	




	
csdl2.SDLK_KBDILLUMUP

	




	
csdl2.SDLK_EJECT

	




	
csdl2.SDLK_SLEEP

	






Key Modifier Constants

Key Modifier masks. These constants may be OR’d together.


	
csdl2.KMOD_NONE

	0 (no modifier is applicable)






	
csdl2.KMOD_LSHIFT

	The left Shift key is down.






	
csdl2.KMOD_RSHIFT

	The right Shift key is down.






	
csdl2.KMOD_LCTRL

	The left Ctrl (Control) key is down.






	
csdl2.KMOD_RCTRL

	The right Ctrl (Control) key is down.






	
csdl2.KMOD_LALT

	The left Alt key is down.






	
csdl2.KMOD_RALT

	The right Alt key is down.






	
csdl2.KMOD_LGUI

	The left GUI key (often the Windows key) is down.






	
csdl2.KMOD_RGUI

	The right GUI key (often the Windows key) is down.






	
csdl2.KMOD_NUM

	The Num lock key (may be located on an extended keypad) is down.






	
csdl2.KMOD_CAPS

	The Caps Lock key is down.






	
csdl2.KMOD_MODE

	The AltGr key is down.






	
csdl2.KMOD_CTRL

	(KMOD_LCTRL | KMOD_RCTRL)






	
csdl2.KMOD_SHIFT

	(KMOD_LSHIFT | KMOD_RSHIFT)






	
csdl2.KMOD_ALT

	(KMOD_LALT | KMOD_RALT)






	
csdl2.KMOD_GUI

	(KMOD_LGUI | KMOD_RGUI)











          

      

      

    


    
         Copyright 2015, Paul Tan.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	pycsdl2 2.0.0.0.dev5 documentation 

          	API Reference 
 
      

    


    
      
          
            
  
Audio Device Management, Playing and Recording


Audio output format


	
class csdl2.SDL_AudioSpec(freq=0, format=0, channels=0, silence=0, samples=0, size=0, callback=None, userdata=None)

	Specifies an audio output format. This is used in functions like
SDL_OpenAudioDevice(), SDL_OpenAudio() for specifying the audio
callback, desired and obtained audio output, and by functions like
SDL_LoadWAV() for returning the audio data format of the wave source
data.


	
freq

	Specifies the number of sample frames sent to the audio device per
second. Common values are 11025, 22050, 44100 and 48000. Larger values
produce cleaner audio, in much the same way that larger resolutions
produce cleaner graphics.






	
format

	Specifies the size and type of each sample element. One of the Audio
data format values. See Audio data format for more info.






	
channels

	Specifies the number of output channels. Supported values are 1 (mono), 2
(stereo), 4 (quad) and 6 (5.1).






	
silence

	Calculated by SDL_OpenAudioDevice(). The audio device silence
value.






	
samples

	The audio buffer size in samples. A sample is a chunk of audio data of
the size specified in format multiplied by the number of channels. Must
be a power of two.






	
size

	Calculated by SDL_OpenAudioDevice(). The audio buffer size in
bytes.






	
callback

	When used with SDL_OpenAudioDevice(), it specifies the callable to
call when the audio device needs more data. The callable must have the
function signature:

callback(userdata, stream, len) -> None





where stream is a pointer to the audio data buffer which must be filled
in by the callback. len is the length of that buffer in bytes.

Stereo samples are stored in a LRLR ordering.






	
userdata

	Object that is passed as the userdata argument to the audio callback.












Audio data format

The audio format is a 16-bit integer, with its bits used as follows:







	Bits
	Value




	0-7
	Sample bit size


	8
	Sample is float if set


	12
	Sample is big-endian if set


	15
	Sample is signed if set





Unspecified bits are always zero, but may be used in later versions of SDL.


	
csdl2.SDL_AUDIO_MASK_BITSIZE

	Bitmask of the bits storing the sample bit size (bits 0-7).






	
csdl2.SDL_AUDIO_MASK_DATATYPE

	Bitmask of the bit storing the sample data type flag (bit 8).






	
csdl2.SDL_AUDIO_MASK_ENDIAN

	Bitmask of the bit storing the sample endianness flag (bit 12).






	
csdl2.SDL_AUDIO_MASK_SIGNED

	Bitmask of the bit storing the sample sign flag (bit 15).






	
csdl2.SDL_AUDIO_BITSIZE(x)  int

	Query the sample bit size of the audio format.

This is equivalent to the value of:

x & SDL_AUDIO_MASK_BITSIZE









	Parameters:	x (int) – The audio format integer.


	Returns:	The sample bit size of the audio format.










	
csdl2.SDL_AUDIO_ISFLOAT(x)  bool

	Query whether the audio format is a floating point format.

This is equivalent to the value of:

bool(x & SDL_AUDIO_MASK_DATATYPE)









	Parameters:	x (int) – The audio format integer.


	Returns:	True if the audio format is a floating point format, False
otherwise.










	
csdl2.SDL_AUDIO_ISBIGENDIAN(x)  bool

	Query whether the audio format is a big endian format.

This is equivalent to the value of:

bool(x & SDL_AUDIO_MASK_ENDIAN)









	Parameters:	x (int) – The audio format integer.


	Returns:	True if the audio format is a big endian format, False otherwise.










	
csdl2.SDL_AUDIO_ISSIGNED(x)  bool

	Query whether the audio format is a signed format.

This is equivalent to the value of:

bool(x & SDL_AUDIO_MASK_SIGNED)









	Parameters:	x (int) – The audio format integer.


	Returns:	True if the audio format is a signed format, False otherwise.










	
csdl2.SDL_AUDIO_ISINT(x)  bool

	Query whether the audio format is an integer format.

This is equivalent to the value of:

not SDL_AUDIO_ISFLOAT(x)









	Parameters:	x (int) – The audio format integer.


	Returns:	True if the audio format is an integer format, False otherwise.










	
csdl2.SDL_AUDIO_ISLITTLEENDIAN(x)  bool

	Query whether the audio format is a little endian fornmat.

This is equivalent to the value of:

not SDL_AUDIO_ISBIGENDIAN(x)









	Parameters:	x (int) – The audio format integer.


	Returns:	True if the audio format is a little endian format, False
otherwise.










	
csdl2.SDL_AUDIO_ISUNSIGNED(x)  bool

	Query whether the audio format is an unsigned format.

This is equivalent to the value of:

not SDL_AUDIO_ISSIGNED(x)









	Parameters:	x (int) – The audio format integer.


	Returns:	True if the audio format is an unsigned format, False otherwise.










Audio data format values

The following are thus the possible audio data format values:


	
csdl2.AUDIO_U8

	Unsigned 8-bit samples.






	
csdl2.AUDIO_S8

	Signed 8-bit samples.






	
csdl2.AUDIO_S16LSB

	Signed 16-bit samples in little-endian byte order.






	
csdl2.AUDIO_S16MSB

	Signed 16-bit samples in big-endian byte order.






	
csdl2.AUDIO_S16SYS

	Signed 16-bit samples in native byte order.






	
csdl2.AUDIO_S16

	Aliased to AUDIO_S16LSB.






	
csdl2.AUDIO_U16LSB

	Unsigned 16-bit samples in little-endian byte order.






	
csdl2.AUDIO_U16MSB

	Unsigned 16-bit samples in big-endian byte order.






	
csdl2.AUDIO_U16SYS

	Unsigned 16-bit samples in native byte order.






	
csdl2.AUDIO_U16

	Aliased to AUDIO_U16LSB.






	
csdl2.AUDIO_S32LSB

	32-bit integer samples in little-endian byte order.






	
csdl2.AUDIO_S32MSB

	32-bit integer samples in big-endian byte order.






	
csdl2.AUDIO_S32SYS

	32-bit integer samples in native byte order.






	
csdl2.AUDIO_S32

	Aliased to AUDIO_S32LSB.






	
csdl2.AUDIO_F32LSB

	32-bit floating point samples in little-endian byte order.






	
csdl2.AUDIO_F32MSB

	32-bit floating point samples in big-endian byte order.






	
csdl2.AUDIO_F32SYS

	32-bit floating point samples in native byte order.






	
csdl2.AUDIO_F32

	Aliased to AUDIO_F32LSB.










Audio Driver Discovery


	
csdl2.SDL_GetNumAudioDrivers()  int

	Returns the number of audio drivers that SDL supports.





	Returns:	The number of builtin audio drivers.


	Return type:	int










	
csdl2.SDL_GetAudioDriver(index: int)  str

	Use this function to get the name of a builtin audio driver. The presence of
a driver in this list does not mean that it will function, it just means SDL
is capable of interacting with that interface.





	Parameters:	index (int) – Index of the audio driver. The value ranges from 0 to
SDL_GetNumAudioDrivers() - 1.


	Returns:	The name of the audio driver at the requested index.


	Return type:	str










	
csdl2.SDL_GetCurrentAudioDriver()

	Returns the name of the current audio driver.





	Returns:	The name of the current audio driver, or None if no driver has
been initialized.


	Return type:	str or None












Initialization and Cleanup

These functions are used internally, and should not be used unless you have a
specific need to specify the audio driver.


	
csdl2.SDL_AudioInit(driver_name)

	Initializes a particular audio driver.





	Parameters:	driver_name (str or None) – The name of the desired audio driver.










	
csdl2.SDL_AudioQuit()

	Use this function to shut down audio if you initialized it with
SDL_AudioInit().








Audio Device Discovery


	
csdl2.SDL_GetNumAudioDevices(iscapture)  int

	Query the number of audio devices.

This function may trigger a complete redetection of available hardware,
which is an expensive operation.





	Parameters:	iscapture (bool) – False to request playback devices, True to request
recording devices.


	Returns:	The number of available devices exposed by the current driver, or
-1 if an explicit list of devices can’t be determined.






Note

The iscapture parameter is for future expansion and should
always be False for now.








	
csdl2.SDL_GetAudioDeviceName(index, iscapture)  str

	Query the name of an audio device.





	Parameters:	
	index (int) – The index of the audio device. The value ranges from 0 to
SDL_GetNumAudioDevices() - 1

	iscapture (bool) – True to specify a device that has recording
capability.






	Returns:	The name of the audio device at the requested index.








Note

This function is only valid after successfully initializing the audio
subsystem. The values returned by this function reflect the latest call
to SDL_GetNumAudioDevices(). Re-call that function to re-detect
available hardware.










Opening and Closing an Audio Device

SDL provides 2 methods for accessing audio devices. The recommended way is to
open the audio device with SDL_OpenAudioDevice() and then control it with
SDL_PauseAudioDevice(), SDL_LockAudioDevice() etc. The legacy way
is to open the audio device with SDL_OpenAudio(), and then control it
with SDL_PauseAudio(), SDL_LockAudio() etc.

Audio data is passed to the audio device through an audio callback, which is
specified through the SDL_AudioSpec.callback attribute. Once the audio
device has been opened, and the audio device unpaused, SDL will call the audio
callback to fill the audio buffer with audio data as needed.


	
class csdl2.SDL_AudioDevice

	An opaque handle returned by SDL_OpenAudioDevice() representing an
opened audio device. It’s destructor will call SDL_CloseAudioDevice().






	
csdl2.SDL_OpenAudioDevice(device, iscapture, desired, obtained, allowed_changes)  SDL_AudioDevice

	Opens a specific audio device.

An opened audio device starts out paused, and should be enabled for playing
by calling SDL_PauseAudioDevice() when the audio callback function is
ready to be called.

The audio callback runs in a separate thread in most cases. You can prevent
race conditions between your callback and other threads without fully
pausing playback with SDL_LockAudioDevice().





	Parameters:	
	device (str or None) – The name of the device to open as reported by
SDL_GetAudioDeviceName(). If None, the default device
is opened.

	iscapture (bool) – True to specify the device should be obtained for
recording, not playback.

	desired (SDL_AudioSpec) – A SDL_AudioSpec specifying the audio callback and
desired output format.

	obtained (SDL_AudioSpec or None) – If a SDL_AudioSpec is provided, it will be filled
with the actual output format. Depending on the value of
allowed_changes, this can differ from the desired
SDL_AudioSpec.

	allowed_changes – If set to 0, SDL will transparently handle all
differences between the desired audio output
format and the actual hardware. This handling can be
selectively disabled by specifying zero or more of
the following flags OR’d together:


	SDL_AUDIO_ALLOW_FREQUENCY_CHANGE

	SDL_AUDIO_ALLOW_FORMAT_CHANGE

	SDL_AUDIO_ALLOW_CHANNELS_CHANGE

	SDL_AUDIO_ALLOW_ANY_CHANGE



If these flags are set, the corresponding fields in
the obtained SDL_AudioSpec will be set to
the values of the actual hardware audio output
format.








	Returns:	An SDL_AudioDevice object representing the opened audio
device.












	
csdl2.SDL_AUDIO_ALLOW_FREQUENCY_CHANGE

	Allow the actual audio output frequency to differ from the desired
frequency.






	
csdl2.SDL_AUDIO_ALLOW_FORMAT_CHANGE

	Allow the actual audio output format to differ from the desired format.






	
csdl2.SDL_AUDIO_ALLOW_CHANNELS_CHANGE

	Allow the actual number of channels to differ from the desired number of
channels.






	
csdl2.SDL_AUDIO_ALLOW_ANY_CHANGE

	Allow all of the above changes.






	
csdl2.SDL_CloseAudioDevice(dev)  None

	Shuts down audio processing and closes the specified device.

There is no need to explictly call this function. SDL_AudioDevice
will automatically call this function as part of its destructor.





	Parameters:	dev (SDL_AudioDevice) – Audio device to close










	
csdl2.SDL_OpenAudio(desired, obtained)

	Opens the audio device with the desired output format.

This function is a legacy means of opening the audio device. Use
SDL_OpenAudioDevice() instead.





	Parameters:	
	desired (SDL_AudioSpec) – Specifies the desired output format and audio callback

	obtained (SDL_AudioSpec or None) – A SDL_AudioSpec that will be filled in with the
hardware parameters. If None, the the output format of the
audio device is guaranteed to match the desired output
format. SDL will convert the audio data to the actual
hardware audio format if necessary. The desired
SDL_AudioSpec will have its fields modified as
well.














	
csdl2.SDL_CloseAudio()

	Shuts down audio processing and closes the audio device.








Querying Playback Status

An audio device can be in any one of these 3 states:


	
csdl2.SDL_AUDIO_STOPPED

	Audio device is stopped.






	
csdl2.SDL_AUDIO_PLAYING

	Audio device is playing.






	
csdl2.SDL_AUDIO_PAUSED

	Audio device is paused.





SDL_GetAudioStatus() and SDL_GetAudioDeviceStatus() can be used to
query the playback status of an audio device.


	
csdl2.SDL_GetAudioDeviceStatus(dev)  int

	Query the playback status of the specified audio device.





	Parameters:	dev (SDL_AudioDevice) – Audio device to query.


	Returns:	The playback status of the specified audio device, which is one of
SDL_AUDIO_STOPPED, SDL_AUDIO_PLAYING or
SDL_AUDIO_PAUSED.










	
csdl2.SDL_GetAudioStatus()  int

	Query the playback status of the audio device.

This function is a legacy means of querying the audio device. Use
SDL_GetAudioDeviceStatus() instead.





	Returns:	The playback status of the audio device, which is one of
SDL_AUDIO_STOPPED, SDL_AUDIO_PLAYING or
SDL_AUDIO_PAUSED.












Controlling Playback


	
csdl2.SDL_PauseAudioDevice(dev, pause_on)  None

	Pause or unpause audio playback on the specified device. When the device is
paused, silence will be written to the audio device and the audio callback
is guaranteed to not be called.

Pausing state does not stack. Even if the device is paused several times, a
single unpause will start the device playing again, and vice versa.

If you need to protect a few variables from race conditions with the audio
callback, you should not pause the audio device as it will lead to dropouts
in audio playback. Instead, use SDL_LockAudioDevice().





	Parameters:	
	dev (SDL_AudioDevice) – Audio device to pause or unpause

	pause_on (bool) – If True, the audio device will be paused, otherwise
the audio device will be unpaused.














	
csdl2.SDL_PauseAudio(pause_on)

	Pause or unpause audio playback on the audio device. When the device is
paused, silence will be written to the audio device and the audio callback
is guaranteed to not be called.

Pausing state does not stack. Even if the device is paused several times, a
single unpause will start the device playing again, and vice versa.

If you need to protect a few variables from race conditions with the audio
callback, you should not pause the audio device as it will lead to dropouts
in audio playback. Instead, use SDL_LockAudio().

This function is a legacy means of pausing the audio device. Use
SDL_PauseAudioDevice() instead.





	Parameters:	pause_on (bool) – If True, the audio device will be paused, otherwise
audio device will be unpaused.












WAVE file format support

SDL supports loading a Waveform Audio File Format (WAVE) file from a data
stream.


	
csdl2.SDL_LoadWAV_RW(src: SDL_RWops, freesrc: bool)

	Loads a WAVE from the data source.





	Parameters:	
	src (SDL_RWops) – Data source for the wave file.

	freesrc (bool) – If True, the data source will be freed with
SDL_RWclose().






	Returns:	A 3-tuple (SDL_AudioSpec, buffer, int):


	A SDL_AudioSpec specifying the audio format of the
wave file.

	A byte buffer containing the audio data.

	An int specifying the size of the audio data buffer in bytes.
















	
csdl2.SDL_LoadWAV(file: str)

	Loads a WAVE from a file.





	Parameters:	file (str) – Name of the file to load


	Returns:	A 3-tuple (SDL_AudioSpec, buffer, int):
	A SDL_AudioSpec specifying the audio format of the
wave file.

	A byte buffer containing the audio data.

	An int specifying the size of the audio data buffer in bytes.














	
csdl2.SDL_FreeWAV(audio_buf)  None

	Frees the buffer previously allocated with SDL_LoadWAV() or
SDL_LoadWAV_RW().

There is no need to explictly call this function. The buffer returned by
SDL_LoadWAV() or SDL_LoadWAV_RW() will automatically call this
function as part of its destructor.





	Parameters:	audio_buf (buffer) – Buffer created by SDL_LoadWAV() or
SDL_LoadWAV_RW().












Audio Data Conversion

Audio data conversion is done in 3 steps:


	An SDL_AudioCVT structure is initialized with
SDL_BuildAudioCVT().

	The application sets up an appropriately-sized buffer containing the source
data, assigning it to SDL_AudioCVT.buf. The application must also
set SDL_AudioCVT.len to the source data size in bytes. The actual
size of the buffer must be at least len * len_mult bytes large, as the
conversion will be done using this buffer.

	The actual audio data conversion is done by calling SDL_ConvertAudio()
with the SDL_AudioCVT struct. The converted audio data will be
written to the provided audio buffer.




	
class csdl2.SDL_AudioCVT

	A structure that contains audio data conversion information.

It is initialized with SDL_BuildAudioCVT(), and passed to
SDL_ConvertAudio() to do the actual conversion once the application
has set up appropriately-sized buffers between these two function calls.

conversion is done by SDL_ConvertAudio()


	
needed

	(readonly) True if conversion is needed.






	
src_format

	(readonly) Source audio format.






	
dst_format

	(readonly) Target audio format






	
rate_incr

	(readonly) Rate conversion increment.






	
buf

	This attribute should point to the audio data that will be used in the
conversion.

The buffer is both the source and the destination, which means the
converted audio data overwrites the original data. It also means that
converted data may be larger than the original data (if you were
converting from 8-bit to 16-bit, for instance), so you must ensure
SDL_AudioCVT.buf is larger enough for any stage of the
conversion, regardless of the final converted data’s size.

The buffer must have a size of at least len * len_mult.






	
len

	Length of original audio buffer in bytes.






	
len_cvt

	(readonly) Length of converted audio buffer.






	
len_mult

	(readonly) The length multiplier for determining the size of the
converted data.

The audio buffer may need to be larger than either the original data or
the converted data. The allocated size of SDL_AudioCVT.buf
must have a size of at least len * len_mult bytes.






	
len_ratio

	(readonly) The length ratio of the converted data to the original data.

When you have finished converting your audio data, you need to know how
much of your audio buffer is valid. len * len_ratio is the size of
the converted audio data in bytes.

This is similar to SDL_AudioCVT.len_mult. However, when the
converted audio data is shorter than the original,
SDL_AudioCVT.len_mult will be 1. SDL_AudioCVT.len_ratio
on the other hand will be a fractional number between 0 and 1.










	
csdl2.SDL_BuildAudioCVT(cvt, src_format, src_channels, src_rate, dst_format, dst_channels, dst_rate)  bool

	Initialize a SDL_AudioCVT structure for conversion.





	Parameters:	
	cvt (SDL_AudioCVT) – An SDL_AudioCVT structure to be filled in with audio
conversion information.

	src_format (int) – The source format of the audio data. One of the
Audio data format values.

	src_channels (int) – The number of channels in the source.

	src_rate (int) – The frequency (sample-frames-per-second) of the source.

	dst_format (int) – The destination format of the audio data. One of the
Audio data format values.

	dst_channels (int) – The number of channels in the destination.

	dst_rate (int) – The frequency (sample-frames-per-second) of the
destination.






	Returns:	True if conversion is needed, False otherwise.








Note

This function will zero out every field of the SDL_AudioCVT, so
it must be called before the application fills in the final buffer
information.








	
csdl2.SDL_ConvertAudio(cvt)

	Convert the audio data as specified by the SDL_AudioCVT structure.





	Parameters:	cvt – An SDL_AudioCVT structure with the information required
for audio conversion.






Note

The SDL_AudioCVT structure must first be initialized with
SDL_BuildAudioCVT().

The application then needs to set the SDL_AudioCVT structure’s
SDL_AudioCVT.buf attribute to the audio buffer containing the
source audio data, and SDL_AudioCVT.len attribute to the size, in
bytes, of the source data.

This same buffer is used for data conversion, and will contain the
converted audio data after calling this function. The converted audio
data, or any of the intermediate conversion data, may be larger than the
source data, and thus the actual size of the buffer must be at least
len * len_mult bytes long.

This function will write the converted audio data to the buffer, and will
set SDL_AudioCVT.len_cvt to the size in bytes of the converted
audio data.










Audio Mixing


	
csdl2.SDL_MixAudioFormat(dst, src, len, volume)

	Mix audio data in a specified format.

This takes a source audio buffer, and mixes it into the destination audio
buffer, performing addition, volume adjustment, and overflow clipping.

This is provided for convenience – you can mix your own audio data.





	Parameters:	
	dst (buffer) – The destination for the mixed audio.

	src (buffer) – The source audio data to be mixed in.

	format (int) – The audio format. One of the
Audio data format values.

	len (int) – The length of the source and destination buffers in bytes.

	volume (int) – Ranges from 0 to 128, and should be set to
SDL_MIX_MAXVOLUME for full audio volume.










Note

Do not use this function for mixing together more than two streams of
sample data. The output from repeated application of this function may be
distorted by clipping, because there is no accumulator with greater range
than the input. Use mixing functions from SDL_mixer, OpenAL or write your
own mixer instead.








	
csdl2.SDL_MixAudio(dst, src, len, volume)

	This function is a legacy means of mixing audio, and is equivalent to
calling:

SDL_MixAudioFormat(dst, src, format, len, volume)





where format is the obtained format of the audio device from the legacy
SDL_OpenAudio() function.





	Parameters:	
	dst (buffer) – The destination buffer for the mixed audio.

	src (buffer) – The source audio buffer to be mixed in.

	len (int) – The length of the source and destination buffers in bytes.

	volume (int) – Ranges from 0 to 128, and should be set to
SDL_MIX_MAXVOLUME for full audio volume.










Note

This function requires the audio device to be open with
SDL_OpenAudio(), and will silently fail if the audio device is not
open.








	
csdl2.SDL_MIX_MAXVOLUME

	The maximum volume for mixing.








Audio Locking

The lock manipulated by these functions protects the callback function. During
a SDL_LockAudio()/SDL_UnlockAudio() or
SDL_LockAudioDevice()/SDL_UnlockAudioDevice() pair, you can be
guaranteed the callback function is not running. Do not call these from the
callback function or you will cause deadlock.

It is safe to lock the audio device multiple times, as long as you unlock it an
equivalent number of times. The audio callback will not run until the device
has been unlocked completely.


	
csdl2.SDL_LockAudioDevice(dev)

	Lock out the audio callback function for a specified audio device.





	Parameters:	dev (SDL_AudioDevice) – The audio device to be locked.










	
csdl2.SDL_UnlockAudioDevice(dev)

	Unlock the audio callback function for a specified audio device.





	Parameters:	dev (SDL_AudioDevice) – The audio device to be unlocked.










	
csdl2.SDL_LockAudio()

	This function is a legacy means of locking the audio device. Use
SDL_LockAudioDevice() instead.






	
csdl2.SDL_UnlockAudio()

	This function is a legacy means of unlocking the audio device. Use
SDL_UnlockAudioDevice() instead.











          

      

      

    


    
         Copyright 2015, Paul Tan.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	pycsdl2 2.0.0.0.dev5 documentation 

          	API Reference 
 
      

    


    
      
          
            
  
File I/O Abstraction

SDL provides the RWops interface for reading from and writing to various types
of data streams.


	
class csdl2.SDL_RWops

	Provides an abstract interface to stream I/O.

This structure cannot be initiated directly. Instead, use SDL_AllocRW(),
SDL_RWFromFile(), SDL_RWFromFP(), SDL_RWFromMem() or SDL_RWFromConstMem() to create
an instance of this structure.

Applications shouldn’t have to care about the specifics of this structure.
They should treat this as an opaque object and use the SDL_RWsize(),
SDL_RWseek(), SDL_RWtell(), SDL_RWread(),
SDL_RWwrite() and SDL_RWclose() functions on them.


	
type

	The type of stream. It is currently one of these values, though
applications can usually ignore this information:







	Identifier
	Description




	SDL_RWOPS_UNKNOWN
	Unknown stream type or application defined.


	SDL_RWOPS_WINFILE
	Win32 file handle.


	SDL_RWOPS_STDFILE
	stdio FILE*


	SDL_RWOPS_JNIFILE
	Android asset


	SDL_RWOPS_MEMORY
	Memory stream (read/write)


	SDL_RWOPS_MEMORY_RO
	Memory stream (read-only)





Applications and libraries rolling their own implementations should use
SDL_RWOPS_UNKNOWN. All other values are currently reserved for
SDL’s internal use.






	
size

	A function that reports the stream’s total size in bytes. It must the
same function signature as SDL_RWsize().






	
seek

	A function that positions the next read/write operation in the stream. It
must have the same function signature as SDL_RWseek().






	
read

	A function that reads from the stream. It must have the same function
signature as SDL_RWread().






	
write

	A function that writes to the stream. It must have the same function
signature as SDL_RWwrite().






	
close

	A function that cleans up the stream. It must release any resources
used by the stream and free the SDL_RWops itself with
SDL_FreeRW(). It must have the same function signature as
SDL_RWclose().










	
csdl2.SDL_RWOPS_UNKNOWN

	Unknown stream type.






	
csdl2.SDL_RWOPS_WINFILE

	Win32 file.






	
csdl2.SDL_RWOPS_STDFILE

	Stdio file.






	
csdl2.SDL_RWOPS_JNIFILE

	Android asset.






	
csdl2.SDL_RWOPS_MEMORY

	Memory stream.






	
csdl2.SDL_RWOPS_MEMORY_RO

	Read-only memory stream.






	
csdl2.SDL_RWFromFile(file: str, mode: str)  SDL_RWops

	Creates and returns a SDL_RWops structure for reading from and/or
writing to the file with name file.

mode is one of the following:







	mode
	Behavior




	r
	Open a file for reading. The file must exist.


	w
	Create an empty file for writing. If a file with the same name
already exists, its contents are erased and the file is treated as a
new empty file.


	a
	Append to a file. Writing operations append data at the end of the
file. The file is created if it does not exist.


	r+
	Open a file for both reading and writing. The file must exist.


	w+
	Create an empty file for both reading and writing. If a file with the
same name already exists its contents are erased and the file is
treated as a new empty file.


	a+
	Open a file for reading and appending. All writing operations are
performed at the end of the file. You can seek the internal pointer
to anywhere in the file for reading, but writing operations will move
it back to the end of the file. The file is created if it does not
exist.









	Parameters:	
	file (str) – File path

	mode (str) – File open mode






	Returns:	A new SDL_RWops structure












	
csdl2.SDL_AllocRW()  SDL_RWops

	Allocates a new SDL_RWops structure and returns it.

Applications do not need to use this function unless they are providing
their own RWops implementation. You should use the built-in implementations
in SDL, like SDL_RWFromFile(), SDL_RWFromMem() etc.





	Returns:	A new SDL_RWops structure










	
csdl2.SDL_FreeRW(area: SDL_RWops)  None

	Frees the SDL_RWops structure allocated by SDL_AllocRW().

Applications do not need to use this function unless they are providing
their own SDL_RWops.close implementation. When using the built-in
implementations of SDL_RWops (e.g. through SDL_RWFromFile(),
SDL_RWFromMem() etc.), you just need to call SDL_RWclose() with
the SDL_RWops object, as the built-in implementations of
SDL_RWops.close will call SDL_FreeRW() internally.





	Parameters:	area (SDL_RWops) – The SDL_RWops structure allocated with
SDL_AllocRW().










	
csdl2.SDL_RWsize(context: SDL_RWops)  int

	Returns the size of the data stream in the SDL_RWops.





	Parameters:	context (SDL_RWops) – The SDL_RWops stream to get the size of.


	Returns:	Size of the data stream in bytes.










	
csdl2.SDL_RWseek(context: SDL_RWops, offset: int, whence: int)  int

	Seeks to offset relative to whence.





	Parameters:	
	context (SDL_RWops) – Stream to seek in.

	offset (int) – New position in stream, measured in bytes, relative to
whence.

	whence (int) – RW_SEEK_SET, RW_SEEK_CUR or
RW_SEEK_END.






	Returns:	New offset, measured in bytes, from the start of the stream.












	
csdl2.RW_SEEK_SET

	Seek from the beginning of data.






	
csdl2.RW_SEEK_CUR

	Seek relative to current read point.






	
csdl2.RW_SEEK_END

	Seek relative to the end of data.






	
csdl2.SDL_RWread(context: SDL_RWops, ptr: buffer, size: int, maxnum: int)  int

	Reads up to maxnum objects, each of size size bytes, from the data
source to the buffer ptr.





	Parameters:	
	context (SDL_RWops) – Data stream to read from.

	ptr (buffer) – Buffer to read data into. It must be exactly
size * maxnum bytes.

	size (int) – The size of each object to read, in bytes.

	maxnum (int) – The maximum number of objects to be read.






	Returns:	The number of objects read. This function may read less objects
than requested.












	
csdl2.SDL_RWwrite(context: SDL_RWops, ptr: buffer, size: int, num: int)  int

	Writes exactly num objects, each size bytes, from the buffer ptr to
the stream.





	Parameters:	
	context (SDL_RWops) – Data stream to write to.

	ptr (buffer) – Buffer containing the data to write to the stream. It
must be exactly size * num bytes.

	size (int) – The size of each object to write, in bytes.

	maxnum (int) – The number of objects to write.






	Returns:	The number of objects written, which can be less than num on
error or when the end of file has been reached.












	
csdl2.SDL_RWclose(context: SDL_RWops)  None

	Closes and cleans up the data stream. The SDL_RWops object will be
freed.





	Parameters:	context (SDL_RWops) – Data stream to close.






Note

The SDL_RWops object will still be freed even when an
exception occurs while closing the stream.











          

      

      

    


    
         Copyright 2015, Paul Tan.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	pycsdl2 2.0.0.0.dev5 documentation 
 
      

    


    
      
          
            

Index



 A
 | B
 | C
 | D
 | F
 | G
 | H
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W
 | X
 | Y
 


A


  	
      
  	Aloss (csdl2.SDL_PixelFormat attribute)
  


      
  	Ashift (csdl2.SDL_PixelFormat attribute)
  


      
  	AUDIO_F32 (in module csdl2)
  


      
  	AUDIO_F32LSB (in module csdl2)
  


      
  	AUDIO_F32MSB (in module csdl2)
  


      
  	AUDIO_F32SYS (in module csdl2)
  


      
  	AUDIO_S16 (in module csdl2)
  


      
  	AUDIO_S16LSB (in module csdl2)
  


      
  	AUDIO_S16MSB (in module csdl2)
  


      
  	AUDIO_S16SYS (in module csdl2)
  


  

  	
      
  	AUDIO_S32 (in module csdl2)
  


      
  	AUDIO_S32LSB (in module csdl2)
  


      
  	AUDIO_S32MSB (in module csdl2)
  


      
  	AUDIO_S32SYS (in module csdl2)
  


      
  	AUDIO_S8 (in module csdl2)
  


      
  	AUDIO_U16 (in module csdl2)
  


      
  	AUDIO_U16LSB (in module csdl2)
  


      
  	AUDIO_U16MSB (in module csdl2)
  


      
  	AUDIO_U16SYS (in module csdl2)
  


      
  	AUDIO_U8 (in module csdl2)
  


  





B


  	
      
  	BitsPerPixel (csdl2.SDL_PixelFormat attribute)
  


      
  	Bloss (csdl2.SDL_PixelFormat attribute)
  


      
  	Bmask (csdl2.SDL_PixelFormat attribute)
  


  

  	
      
  	Bshift (csdl2.SDL_PixelFormat attribute)
  


      
  	buf (csdl2.SDL_AudioCVT attribute)
  


      
  	BytesPerPixel (csdl2.SDL_PixelFormat attribute)
  


  





C


  	
      
  	callback (csdl2.SDL_AudioSpec attribute)
  


      
  	channels (csdl2.SDL_AudioSpec attribute)
  


      
  	clip_rect (csdl2.SDL_Surface attribute)
  


  

  	
      
  	close (csdl2.SDL_RWops attribute)
  


      
  	colors (csdl2.SDL_Palette attribute)
  


  





D


  	
      
  	dst_format (csdl2.SDL_AudioCVT attribute)
  


  





F


  	
      
  	flags (csdl2.SDL_RendererInfo attribute)
  


      	
        
  	(csdl2.SDL_Surface attribute)
  


      


      
  	format (csdl2.SDL_AudioSpec attribute)
  


      	
        
  	(csdl2.SDL_PixelFormat attribute)
  


        
  	(csdl2.SDL_Surface attribute)
  


      


  

  	
      
  	freq (csdl2.SDL_AudioSpec attribute)
  


  





G


  	
      
  	Gloss (csdl2.SDL_PixelFormat attribute)
  


      
  	Gmask (csdl2.SDL_PixelFormat attribute)
  


  

  	
      
  	Gshift (csdl2.SDL_PixelFormat attribute)
  


  





H


  	
      
  	h (csdl2.SDL_Rect attribute)
  


      	
        
  	(csdl2.SDL_Surface attribute)
  


      


  





K


  	
      
  	KMOD_ALT (in module csdl2)
  


      
  	KMOD_CAPS (in module csdl2)
  


      
  	KMOD_CTRL (in module csdl2)
  


      
  	KMOD_GUI (in module csdl2)
  


      
  	KMOD_LALT (in module csdl2)
  


      
  	KMOD_LCTRL (in module csdl2)
  


      
  	KMOD_LGUI (in module csdl2)
  


      
  	KMOD_LSHIFT (in module csdl2)
  


  

  	
      
  	KMOD_MODE (in module csdl2)
  


      
  	KMOD_NONE (in module csdl2)
  


      
  	KMOD_NUM (in module csdl2)
  


      
  	KMOD_RALT (in module csdl2)
  


      
  	KMOD_RCTRL (in module csdl2)
  


      
  	KMOD_RGUI (in module csdl2)
  


      
  	KMOD_RSHIFT (in module csdl2)
  


      
  	KMOD_SHIFT (in module csdl2)
  


  





L


  	
      
  	len (csdl2.SDL_AudioCVT attribute)
  


      
  	len_cvt (csdl2.SDL_AudioCVT attribute)
  


      
  	len_mult (csdl2.SDL_AudioCVT attribute)
  


  

  	
      
  	len_ratio (csdl2.SDL_AudioCVT attribute)
  


      
  	locked (csdl2.SDL_Surface attribute)
  


  





M


  	
      
  	max_texture_height (csdl2.SDL_RendererInfo attribute)
  


      
  	max_texture_width (csdl2.SDL_RendererInfo attribute)
  


  

  	
      
  	motion (csdl2.SDL_Event attribute)
  


  





N


  	
      
  	name (csdl2.SDL_RendererInfo attribute)
  


      
  	ncolors (csdl2.SDL_Palette attribute)
  


  

  	
      
  	needed (csdl2.SDL_AudioCVT attribute)
  


      
  	num_texture_formats (csdl2.SDL_RendererInfo attribute)
  


  





P


  	
      
  	palette (csdl2.SDL_PixelFormat attribute)
  


      
  	pitch (csdl2.SDL_Surface attribute)
  


  

  	
      
  	pixels (csdl2.SDL_Surface attribute)
  


  





R


  	
      
  	rate_incr (csdl2.SDL_AudioCVT attribute)
  


      
  	read (csdl2.SDL_RWops attribute)
  


      
  	refcount (csdl2.SDL_Surface attribute)
  


      
  	Rloss (csdl2.SDL_PixelFormat attribute)
  


      
  	Rmask (csdl2.SDL_PixelFormat attribute)
  


  

  	
      
  	Rshift (csdl2.SDL_PixelFormat attribute)
  


      
  	RW_SEEK_CUR (in module csdl2)
  


      
  	RW_SEEK_END (in module csdl2)
  


      
  	RW_SEEK_SET (in module csdl2)
  


  





S


  	
      
  	samples (csdl2.SDL_AudioSpec attribute)
  


      
  	SDL_ADDEVENT (in module csdl2)
  


      
  	SDL_AllocFormat() (in module csdl2)
  


      
  	SDL_AllocPalette() (in module csdl2)
  


      
  	SDL_AllocRW() (in module csdl2)
  


      
  	SDL_APP_DIDENTERBACKGROUND (in module csdl2)
  


      
  	SDL_APP_DIDENTERFOREGROUND (in module csdl2)
  


      
  	SDL_APP_LOWMEMORY (in module csdl2)
  


      
  	SDL_APP_TERMINATING (in module csdl2)
  


      
  	SDL_APP_WILLENTERBACKGROUND (in module csdl2)
  


      
  	SDL_APP_WILLENTERFOREGROUND (in module csdl2)
  


      
  	SDL_ARRAYORDER_ABGR (in module csdl2)
  


      
  	SDL_ARRAYORDER_ARGB (in module csdl2)
  


      
  	SDL_ARRAYORDER_BGR (in module csdl2)
  


      
  	SDL_ARRAYORDER_BGRA (in module csdl2)
  


      
  	SDL_ARRAYORDER_NONE (in module csdl2)
  


      
  	SDL_ARRAYORDER_RGB (in module csdl2)
  


      
  	SDL_ARRAYORDER_RGBA (in module csdl2)
  


      
  	SDL_AUDIO_ALLOW_ANY_CHANGE (in module csdl2)
  


      
  	SDL_AUDIO_ALLOW_CHANNELS_CHANGE (in module csdl2)
  


      
  	SDL_AUDIO_ALLOW_FORMAT_CHANGE (in module csdl2)
  


      
  	SDL_AUDIO_ALLOW_FREQUENCY_CHANGE (in module csdl2)
  


      
  	SDL_AUDIO_BITSIZE() (in module csdl2)
  


      
  	SDL_AUDIO_ISBIGENDIAN() (in module csdl2)
  


      
  	SDL_AUDIO_ISFLOAT() (in module csdl2)
  


      
  	SDL_AUDIO_ISINT() (in module csdl2)
  


      
  	SDL_AUDIO_ISLITTLEENDIAN() (in module csdl2)
  


      
  	SDL_AUDIO_ISSIGNED() (in module csdl2)
  


      
  	SDL_AUDIO_ISUNSIGNED() (in module csdl2)
  


      
  	SDL_AUDIO_MASK_BITSIZE (in module csdl2)
  


      
  	SDL_AUDIO_MASK_DATATYPE (in module csdl2)
  


      
  	SDL_AUDIO_MASK_ENDIAN (in module csdl2)
  


      
  	SDL_AUDIO_MASK_SIGNED (in module csdl2)
  


      
  	SDL_AUDIO_PAUSED (in module csdl2)
  


      
  	SDL_AUDIO_PLAYING (in module csdl2)
  


      
  	SDL_AUDIO_STOPPED (in module csdl2)
  


      
  	SDL_AudioCVT (class in csdl2)
  


      
  	SDL_AudioDevice (class in csdl2)
  


      
  	SDL_AudioInit() (in module csdl2)
  


      
  	SDL_AudioQuit() (in module csdl2)
  


      
  	SDL_AudioSpec (class in csdl2)
  


      
  	SDL_BITMAPORDER_1234 (in module csdl2)
  


      
  	SDL_BITMAPORDER_4321 (in module csdl2)
  


      
  	SDL_BITMAPORDER_NONE (in module csdl2)
  


      
  	SDL_BLENDMODE_ADD (in module csdl2)
  


      
  	SDL_BLENDMODE_BLEND (in module csdl2)
  


      
  	SDL_BLENDMODE_MOD (in module csdl2)
  


      
  	SDL_BLENDMODE_NONE (in module csdl2)
  


      
  	SDL_BuildAudioCVT() (in module csdl2)
  


      
  	SDL_CLIPBOARDUPDATE (in module csdl2)
  


      
  	SDL_CloseAudio() (in module csdl2)
  


      
  	SDL_CloseAudioDevice() (in module csdl2)
  


      
  	SDL_CONTROLLERAXISMOTION (in module csdl2)
  


      
  	SDL_CONTROLLERBUTTONDOWN (in module csdl2)
  


      
  	SDL_CONTROLLERBUTTONUP (in module csdl2)
  


      
  	SDL_CONTROLLERDEVICEADDED (in module csdl2)
  


      
  	SDL_CONTROLLERDEVICEREMAPPED (in module csdl2)
  


      
  	SDL_CONTROLLERDEVICEREMOVED (in module csdl2)
  


      
  	SDL_ConvertAudio() (in module csdl2)
  


      
  	SDL_CreateRenderer() (in module csdl2)
  


      
  	SDL_CreateRGBSurface() (in module csdl2)
  


      
  	SDL_CreateRGBSurfaceFrom() (in module csdl2)
  


      
  	SDL_CreateSoftwareRenderer() (in module csdl2)
  


      
  	SDL_CreateTexture() (in module csdl2)
  


      
  	SDL_CreateTextureFromSurface() (in module csdl2)
  


      
  	SDL_CreateWindow() (in module csdl2)
  


      
  	SDL_CreateWindowAndRenderer() (in module csdl2)
  


      
  	SDL_DestroyRenderer() (in module csdl2)
  


      
  	SDL_DestroyTexture() (in module csdl2)
  


      
  	SDL_DestroyWindow() (in module csdl2)
  


      
  	SDL_DOLLARGESTURE (in module csdl2)
  


      
  	SDL_DOLLARRECORD (in module csdl2)
  


      
  	SDL_DONTFREE (in module csdl2)
  


      
  	SDL_DROPFILE (in module csdl2)
  


      
  	SDL_Event (class in csdl2)
  


      
  	SDL_FINGERDOWN (in module csdl2)
  


      
  	SDL_FINGERMOTION (in module csdl2)
  


      
  	SDL_FINGERUP (in module csdl2)
  


      
  	SDL_FLIP_HORIZONTAL (in module csdl2)
  


      
  	SDL_FLIP_NONE (in module csdl2)
  


      
  	SDL_FLIP_VERTICAL (in module csdl2)
  


      
  	SDL_FlushEvents() (in module csdl2)
  


      
  	SDL_FreeFormat() (in module csdl2)
  


      
  	SDL_FreePalette() (in module csdl2)
  


      
  	SDL_FreeRW() (in module csdl2)
  


      
  	SDL_FreeSurface() (in module csdl2)
  


      
  	SDL_FreeWAV() (in module csdl2)
  


      
  	SDL_GetAudioDeviceName() (in module csdl2)
  


      
  	SDL_GetAudioDeviceStatus() (in module csdl2)
  


      
  	SDL_GetAudioDriver() (in module csdl2)
  


      
  	SDL_GetAudioStatus() (in module csdl2)
  


      
  	SDL_GetCurrentAudioDriver() (in module csdl2)
  


      
  	SDL_GETEVENT (in module csdl2)
  


      
  	SDL_GetNumAudioDevices() (in module csdl2)
  


      
  	SDL_GetNumAudioDrivers() (in module csdl2)
  


      
  	SDL_GetNumRenderDrivers() (in module csdl2)
  


      
  	SDL_GetRenderDrawBlendMode() (in module csdl2)
  


      
  	SDL_GetRenderDrawColor() (in module csdl2)
  


      
  	SDL_GetRenderDriverInfo() (in module csdl2)
  


      
  	SDL_GetRenderer() (in module csdl2)
  


      
  	SDL_GetRendererInfo() (in module csdl2)
  


      
  	SDL_GetRendererOutputSize() (in module csdl2)
  


      
  	SDL_GetRenderTarget() (in module csdl2)
  


      
  	SDL_GetTextureAlphaMod() (in module csdl2)
  


      
  	SDL_GetTextureBlendMode() (in module csdl2)
  


      
  	SDL_GetTextureColorMod() (in module csdl2)
  


      
  	SDL_GetWindowTitle() (in module csdl2)
  


      
  	SDL_GL_ACCELERATED_VISUAL (in module csdl2)
  


      
  	SDL_GL_ACCUM_ALPHA_SIZE (in module csdl2)
  


      
  	SDL_GL_ACCUM_BLUE_SIZE (in module csdl2)
  


      
  	SDL_GL_ACCUM_GREEN_SIZE (in module csdl2)
  


      
  	SDL_GL_ACCUM_RED_SIZE (in module csdl2)
  


      
  	SDL_GL_ALPHA_SIZE (in module csdl2)
  


      
  	SDL_GL_BindTexture() (in module csdl2)
  


      
  	SDL_GL_BLUE_SIZE (in module csdl2)
  


      
  	SDL_GL_BUFFER_SIZE (in module csdl2)
  


      
  	SDL_GL_CONTEXT_DEBUG_FLAG (in module csdl2)
  


      
  	SDL_GL_CONTEXT_FLAGS (in module csdl2)
  


      
  	SDL_GL_CONTEXT_FORWARD_COMPATIBLE_FLAG (in module csdl2)
  


      
  	SDL_GL_CONTEXT_MAJOR_VERSION (in module csdl2)
  


      
  	SDL_GL_CONTEXT_MINOR_VERSION (in module csdl2)
  


      
  	SDL_GL_CONTEXT_PROFILE_COMPATIBILITY (in module csdl2)
  


      
  	SDL_GL_CONTEXT_PROFILE_CORE (in module csdl2)
  


      
  	SDL_GL_CONTEXT_PROFILE_ES (in module csdl2)
  


      
  	SDL_GL_CONTEXT_PROFILE_MASK (in module csdl2)
  


      
  	SDL_GL_CONTEXT_RESET_ISOLATION_FLAG (in module csdl2)
  


      
  	SDL_GL_CONTEXT_ROBUST_ACCESS_FLAG (in module csdl2)
  


      
  	SDL_GL_DEPTH_SIZE (in module csdl2)
  


      
  	SDL_GL_DOUBLEBUFFER (in module csdl2)
  


      
  	SDL_GL_GREEN_SIZE (in module csdl2)
  


      
  	SDL_GL_MULTISAMPLEBUFFERS (in module csdl2)
  


      
  	SDL_GL_MULTISAMPLESAMPLES (in module csdl2)
  


      
  	SDL_GL_RED_SIZE (in module csdl2)
  


      
  	SDL_GL_SHARE_WITH_CURRENT_CONTEXT (in module csdl2)
  


      
  	SDL_GL_STENCIL_SIZE (in module csdl2)
  


      
  	SDL_GL_STEREO (in module csdl2)
  


      
  	SDL_GL_UnbindTexture() (in module csdl2)
  


      
  	SDL_HasIntersection() (in module csdl2)
  


      
  	SDL_Init() (in module csdl2)
  


      
  	SDL_INIT_AUDIO (in module csdl2)
  


      
  	SDL_INIT_EVENTS (in module csdl2)
  


      
  	SDL_INIT_EVERYTHING (in module csdl2)
  


      
  	SDL_INIT_GAMECONTROLLER (in module csdl2)
  


      
  	SDL_INIT_HAPTIC (in module csdl2)
  


      
  	SDL_INIT_JOYSTICK (in module csdl2)
  


      
  	SDL_INIT_NOPARACHUTE (in module csdl2)
  


      
  	SDL_INIT_TIMER (in module csdl2)
  


      
  	SDL_INIT_VIDEO (in module csdl2)
  


      
  	SDL_InitSubSystem() (in module csdl2)
  


      
  	SDL_JOYAXISMOTION (in module csdl2)
  


      
  	SDL_JOYBALLMOTION (in module csdl2)
  


      
  	SDL_JOYBUTTONDOWN (in module csdl2)
  


      
  	SDL_JOYBUTTONUP (in module csdl2)
  


      
  	SDL_JOYDEVICEADDED (in module csdl2)
  


      
  	SDL_JOYDEVICEREMOVED (in module csdl2)
  


      
  	SDL_JOYHATMOTION (in module csdl2)
  


      
  	SDL_KEYDOWN (in module csdl2)
  


      
  	SDL_KEYUP (in module csdl2)
  


      
  	SDL_LASTEVENT (in module csdl2)
  


      
  	SDL_LoadBMP() (in module csdl2)
  


      
  	SDL_LoadBMP_RW() (in module csdl2)
  


      
  	SDL_LoadWAV() (in module csdl2)
  


      
  	SDL_LoadWAV_RW() (in module csdl2)
  


      
  	SDL_LockAudio() (in module csdl2)
  


      
  	SDL_LockAudioDevice() (in module csdl2)
  


      
  	SDL_LockTexture() (in module csdl2)
  


      
  	SDL_MIX_MAXVOLUME (in module csdl2)
  


      
  	SDL_MixAudio() (in module csdl2)
  


      
  	SDL_MixAudioFormat() (in module csdl2)
  


      
  	SDL_MOUSEBUTTONDOWN (in module csdl2)
  


      
  	SDL_MOUSEBUTTONUP (in module csdl2)
  


      
  	SDL_MOUSEMOTION (in module csdl2)
  


      
  	SDL_MouseMotionEvent (class in csdl2)
  


      
  	SDL_MOUSEWHEEL (in module csdl2)
  


      
  	SDL_MULTIGESTURE (in module csdl2)
  


      
  	SDL_MUSTLOCK() (in module csdl2)
  


      
  	SDL_NUM_SCANCODES (in module csdl2)
  


      
  	SDL_OpenAudio() (in module csdl2)
  


      
  	SDL_OpenAudioDevice() (in module csdl2)
  


      
  	SDL_PACKEDORDER_ABGR (in module csdl2)
  


      
  	SDL_PACKEDORDER_ARGB (in module csdl2)
  


      
  	SDL_PACKEDORDER_BGRA (in module csdl2)
  


      
  	SDL_PACKEDORDER_BGRX (in module csdl2)
  


      
  	SDL_PACKEDORDER_NONE (in module csdl2)
  


      
  	SDL_PACKEDORDER_RGBA (in module csdl2)
  


      
  	SDL_PACKEDORDER_RGBX (in module csdl2)
  


      
  	SDL_PACKEDORDER_XBGR (in module csdl2)
  


      
  	SDL_PACKEDORDER_XRGB (in module csdl2)
  


      
  	SDL_Palette (class in csdl2)
  


      
  	SDL_PauseAudio() (in module csdl2)
  


      
  	SDL_PauseAudioDevice() (in module csdl2)
  


      
  	SDL_PEEKEVENT (in module csdl2)
  


      
  	SDL_PeepEvents() (in module csdl2)
  


      
  	SDL_PixelFormat (class in csdl2)
  


      
  	SDL_PIXELFORMAT_ABGR1555 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_ABGR4444 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_ABGR8888 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_ARGB1555 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_ARGB2101010 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_ARGB4444 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_ARGB8888 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_BGR24 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_BGR555 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_BGR565 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_BGR888 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_BGRA4444 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_BGRA5551 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_BGRA8888 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_BGRX8888 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_INDEX1LSB (in module csdl2)
  


      
  	SDL_PIXELFORMAT_INDEX1MSB (in module csdl2)
  


      
  	SDL_PIXELFORMAT_INDEX4LSB (in module csdl2)
  


      
  	SDL_PIXELFORMAT_INDEX4MSB (in module csdl2)
  


      
  	SDL_PIXELFORMAT_INDEX8 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_IYUV (in module csdl2)
  


      
  	SDL_PIXELFORMAT_RGB24 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_RGB332 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_RGB444 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_RGB555 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_RGB565 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_RGB888 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_RGBA4444 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_RGBA5551 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_RGBA8888 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_RGBX8888 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_UNKNOWN (in module csdl2)
  


      
  	SDL_PIXELFORMAT_UYVY (in module csdl2)
  


      
  	SDL_PIXELFORMAT_YUY2 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_YV12 (in module csdl2)
  


      
  	SDL_PIXELFORMAT_YVYU (in module csdl2)
  


      
  	SDL_PIXELTYPE_ARRAYF16 (in module csdl2)
  


      
  	SDL_PIXELTYPE_ARRAYF32 (in module csdl2)
  


      
  	SDL_PIXELTYPE_ARRAYU16 (in module csdl2)
  


      
  	SDL_PIXELTYPE_ARRAYU32 (in module csdl2)
  


      
  	SDL_PIXELTYPE_ARRAYU8 (in module csdl2)
  


      
  	SDL_PIXELTYPE_INDEX1 (in module csdl2)
  


      
  	SDL_PIXELTYPE_INDEX4 (in module csdl2)
  


      
  	SDL_PIXELTYPE_INDEX8 (in module csdl2)
  


      
  	SDL_PIXELTYPE_PACKED16 (in module csdl2)
  


      
  	SDL_PIXELTYPE_PACKED32 (in module csdl2)
  


      
  	SDL_PIXELTYPE_PACKED8 (in module csdl2)
  


      
  	SDL_PIXELTYPE_UNKNOWN (in module csdl2)
  


      
  	SDL_Point (class in csdl2)
  


      
  	SDL_PollEvent() (in module csdl2)
  


      
  	SDL_PREALLOC (in module csdl2)
  


      
  	SDL_PumpEvents() (in module csdl2)
  


      
  	SDL_PushEvent() (in module csdl2)
  


      
  	SDL_QueryTexture() (in module csdl2)
  


      
  	SDL_QUIT (in module csdl2)
  


      
  	SDL_Quit() (in module csdl2)
  


      
  	SDL_QuitSubSystem() (in module csdl2)
  


      
  	SDL_Rect (class in csdl2)
  


      
  	SDL_RenderClear() (in module csdl2)
  


      
  	SDL_RenderCopy() (in module csdl2)
  


      
  	SDL_RenderCopyEx() (in module csdl2)
  


      
  	SDL_RenderDrawLine() (in module csdl2)
  


      
  	SDL_RenderDrawLines() (in module csdl2)
  


      
  	SDL_RenderDrawPoint() (in module csdl2)
  


      
  	SDL_RenderDrawPoints() (in module csdl2)
  


      
  	SDL_RenderDrawRect() (in module csdl2)
  


      
  	SDL_RenderDrawRects() (in module csdl2)
  


      
  	SDL_Renderer (class in csdl2)
  


      
  	SDL_RENDERER_ACCELERATED (in module csdl2)
  


      
  	SDL_RENDERER_PRESENTVSYNC (in module csdl2)
  


      
  	SDL_RENDERER_SOFTWARE (in module csdl2)
  


      
  	SDL_RENDERER_TARGETTEXTURE (in module csdl2)
  


      
  	SDL_RendererInfo (class in csdl2)
  


      
  	SDL_RenderFillRect() (in module csdl2)
  


      
  	SDL_RenderFillRects() (in module csdl2)
  


      
  	SDL_RenderGetClipRect() (in module csdl2)
  


      
  	SDL_RenderGetLogicalSize() (in module csdl2)
  


      
  	SDL_RenderGetScale() (in module csdl2)
  


      
  	SDL_RenderGetViewport() (in module csdl2)
  


      
  	SDL_RenderPresent() (in module csdl2)
  


      
  	SDL_RenderReadPixels() (in module csdl2)
  


      
  	SDL_RenderSetClipRect() (in module csdl2)
  


      
  	SDL_RenderSetLogicalSize() (in module csdl2)
  


      
  	SDL_RenderSetScale() (in module csdl2)
  


      
  	SDL_RenderSetViewport() (in module csdl2)
  


      
  	SDL_RenderTargetSupported() (in module csdl2)
  


      
  	SDL_RLEACCEL (in module csdl2)
  


      
  	SDL_RWclose() (in module csdl2)
  


      
  	SDL_RWFromFile() (in module csdl2)
  


      
  	SDL_RWops (class in csdl2)
  


      
  	SDL_RWOPS_JNIFILE (in module csdl2)
  


      
  	SDL_RWOPS_MEMORY (in module csdl2)
  


      
  	SDL_RWOPS_MEMORY_RO (in module csdl2)
  


      
  	SDL_RWOPS_STDFILE (in module csdl2)
  


      
  	SDL_RWOPS_UNKNOWN (in module csdl2)
  


      
  	SDL_RWOPS_WINFILE (in module csdl2)
  


      
  	SDL_RWread() (in module csdl2)
  


      
  	SDL_RWseek() (in module csdl2)
  


      
  	SDL_RWsize() (in module csdl2)
  


      
  	SDL_RWwrite() (in module csdl2)
  


      
  	SDL_SCANCODE_0 (in module csdl2)
  


      
  	SDL_SCANCODE_1 (in module csdl2)
  


      
  	SDL_SCANCODE_2 (in module csdl2)
  


      
  	SDL_SCANCODE_3 (in module csdl2)
  


      
  	SDL_SCANCODE_4 (in module csdl2)
  


      
  	SDL_SCANCODE_5 (in module csdl2)
  


      
  	SDL_SCANCODE_6 (in module csdl2)
  


      
  	SDL_SCANCODE_7 (in module csdl2)
  


      
  	SDL_SCANCODE_8 (in module csdl2)
  


      
  	SDL_SCANCODE_9 (in module csdl2)
  


      
  	SDL_SCANCODE_A (in module csdl2)
  


      
  	SDL_SCANCODE_AC_BACK (in module csdl2)
  


      
  	SDL_SCANCODE_AC_BOOKMARKS (in module csdl2)
  


      
  	SDL_SCANCODE_AC_FORWARD (in module csdl2)
  


      
  	SDL_SCANCODE_AC_HOME (in module csdl2)
  


      
  	SDL_SCANCODE_AC_REFRESH (in module csdl2)
  


      
  	SDL_SCANCODE_AC_SEARCH (in module csdl2)
  


      
  	SDL_SCANCODE_AC_STOP (in module csdl2)
  


      
  	SDL_SCANCODE_AGAIN (in module csdl2)
  


      
  	SDL_SCANCODE_ALTERASE (in module csdl2)
  


      
  	SDL_SCANCODE_APOSTROPHE (in module csdl2)
  


      
  	SDL_SCANCODE_APP1 (in module csdl2)
  


      
  	SDL_SCANCODE_APP2 (in module csdl2)
  


      
  	SDL_SCANCODE_APPLICATION (in module csdl2)
  


      
  	SDL_SCANCODE_AUDIOMUTE (in module csdl2)
  


      
  	SDL_SCANCODE_AUDIONEXT (in module csdl2)
  


      
  	SDL_SCANCODE_AUDIOPLAY (in module csdl2)
  


      
  	SDL_SCANCODE_AUDIOPREV (in module csdl2)
  


      
  	SDL_SCANCODE_AUDIOSTOP (in module csdl2)
  


      
  	SDL_SCANCODE_B (in module csdl2)
  


      
  	SDL_SCANCODE_BACKSLASH (in module csdl2)
  


      
  	SDL_SCANCODE_BACKSPACE (in module csdl2)
  


      
  	SDL_SCANCODE_BRIGHTNESSDOWN (in module csdl2)
  


      
  	SDL_SCANCODE_BRIGHTNESSUP (in module csdl2)
  


      
  	SDL_SCANCODE_C (in module csdl2)
  


      
  	SDL_SCANCODE_CALCULATOR (in module csdl2)
  


      
  	SDL_SCANCODE_CANCEL (in module csdl2)
  


      
  	SDL_SCANCODE_CAPSLOCK (in module csdl2)
  


      
  	SDL_SCANCODE_CLEAR (in module csdl2)
  


      
  	SDL_SCANCODE_CLEARAGAIN (in module csdl2)
  


      
  	SDL_SCANCODE_COMMA (in module csdl2)
  


      
  	SDL_SCANCODE_COMPUTER (in module csdl2)
  


      
  	SDL_SCANCODE_COPY (in module csdl2)
  


      
  	SDL_SCANCODE_CRSEL (in module csdl2)
  


      
  	SDL_SCANCODE_CURRENCYSUBUNIT (in module csdl2)
  


      
  	SDL_SCANCODE_CURRENCYUNIT (in module csdl2)
  


      
  	SDL_SCANCODE_CUT (in module csdl2)
  


      
  	SDL_SCANCODE_D (in module csdl2)
  


      
  	SDL_SCANCODE_DECIMALSEPARATOR (in module csdl2)
  


      
  	SDL_SCANCODE_DELETE (in module csdl2)
  


      
  	SDL_SCANCODE_DISPLAYSWITCH (in module csdl2)
  


      
  	SDL_SCANCODE_DOWN (in module csdl2)
  


      
  	SDL_SCANCODE_E (in module csdl2)
  


      
  	SDL_SCANCODE_EJECT (in module csdl2)
  


      
  	SDL_SCANCODE_END (in module csdl2)
  


      
  	SDL_SCANCODE_EQUALS (in module csdl2)
  


      
  	SDL_SCANCODE_ESCAPE (in module csdl2)
  


      
  	SDL_SCANCODE_EXECUTE (in module csdl2)
  


      
  	SDL_SCANCODE_EXSEL (in module csdl2)
  


      
  	SDL_SCANCODE_F (in module csdl2)
  


      
  	SDL_SCANCODE_F1 (in module csdl2)
  


      
  	SDL_SCANCODE_F10 (in module csdl2)
  


      
  	SDL_SCANCODE_F11 (in module csdl2)
  


      
  	SDL_SCANCODE_F12 (in module csdl2)
  


      
  	SDL_SCANCODE_F13 (in module csdl2)
  


      
  	SDL_SCANCODE_F14 (in module csdl2)
  


      
  	SDL_SCANCODE_F15 (in module csdl2)
  


      
  	SDL_SCANCODE_F16 (in module csdl2)
  


      
  	SDL_SCANCODE_F17 (in module csdl2)
  


      
  	SDL_SCANCODE_F18 (in module csdl2)
  


      
  	SDL_SCANCODE_F19 (in module csdl2)
  


      
  	SDL_SCANCODE_F2 (in module csdl2)
  


      
  	SDL_SCANCODE_F20 (in module csdl2)
  


      
  	SDL_SCANCODE_F21 (in module csdl2)
  


      
  	SDL_SCANCODE_F22 (in module csdl2)
  


      
  	SDL_SCANCODE_F23 (in module csdl2)
  


      
  	SDL_SCANCODE_F24 (in module csdl2)
  


      
  	SDL_SCANCODE_F3 (in module csdl2)
  


      
  	SDL_SCANCODE_F4 (in module csdl2)
  


      
  	SDL_SCANCODE_F5 (in module csdl2)
  


      
  	SDL_SCANCODE_F6 (in module csdl2)
  


      
  	SDL_SCANCODE_F7 (in module csdl2)
  


      
  	SDL_SCANCODE_F8 (in module csdl2)
  


      
  	SDL_SCANCODE_F9 (in module csdl2)
  


      
  	SDL_SCANCODE_FIND (in module csdl2)
  


      
  	SDL_SCANCODE_G (in module csdl2)
  


      
  	SDL_SCANCODE_GRAVE (in module csdl2)
  


      
  	SDL_SCANCODE_H (in module csdl2)
  


      
  	SDL_SCANCODE_HELP (in module csdl2)
  


      
  	SDL_SCANCODE_HOME (in module csdl2)
  


      
  	SDL_SCANCODE_I (in module csdl2)
  


      
  	SDL_SCANCODE_INSERT (in module csdl2)
  


      
  	SDL_SCANCODE_INTERNATIONAL1 (in module csdl2)
  


      
  	SDL_SCANCODE_INTERNATIONAL2 (in module csdl2)
  


      
  	SDL_SCANCODE_INTERNATIONAL3 (in module csdl2)
  


      
  	SDL_SCANCODE_INTERNATIONAL4 (in module csdl2)
  


      
  	SDL_SCANCODE_INTERNATIONAL5 (in module csdl2)
  


      
  	SDL_SCANCODE_INTERNATIONAL6 (in module csdl2)
  


      
  	SDL_SCANCODE_INTERNATIONAL7 (in module csdl2)
  


      
  	SDL_SCANCODE_INTERNATIONAL8 (in module csdl2)
  


      
  	SDL_SCANCODE_INTERNATIONAL9 (in module csdl2)
  


      
  	SDL_SCANCODE_J (in module csdl2)
  


      
  	SDL_SCANCODE_K (in module csdl2)
  


      
  	SDL_SCANCODE_KBDILLUMDOWN (in module csdl2)
  


      
  	SDL_SCANCODE_KBDILLUMTOGGLE (in module csdl2)
  


      
  	SDL_SCANCODE_KBDILLUMUP (in module csdl2)
  


      
  	SDL_SCANCODE_KP_0 (in module csdl2)
  


      
  	SDL_SCANCODE_KP_00 (in module csdl2)
  


      
  	SDL_SCANCODE_KP_000 (in module csdl2)
  


      
  	SDL_SCANCODE_KP_1 (in module csdl2)
  


      
  	SDL_SCANCODE_KP_2 (in module csdl2)
  


      
  	SDL_SCANCODE_KP_3 (in module csdl2)
  


      
  	SDL_SCANCODE_KP_4 (in module csdl2)
  


      
  	SDL_SCANCODE_KP_5 (in module csdl2)
  


      
  	SDL_SCANCODE_KP_6 (in module csdl2)
  


      
  	SDL_SCANCODE_KP_7 (in module csdl2)
  


      
  	SDL_SCANCODE_KP_8 (in module csdl2)
  


      
  	SDL_SCANCODE_KP_9 (in module csdl2)
  


      
  	SDL_SCANCODE_KP_A (in module csdl2)
  


      
  	SDL_SCANCODE_KP_AMPERSAND (in module csdl2)
  


  

  	
      
  	SDL_SCANCODE_KP_AT (in module csdl2)
  


      
  	SDL_SCANCODE_KP_B (in module csdl2)
  


      
  	SDL_SCANCODE_KP_BACKSPACE (in module csdl2)
  


      
  	SDL_SCANCODE_KP_BINARY (in module csdl2)
  


      
  	SDL_SCANCODE_KP_C (in module csdl2)
  


      
  	SDL_SCANCODE_KP_CLEAR (in module csdl2)
  


      
  	SDL_SCANCODE_KP_CLEARENTRY (in module csdl2)
  


      
  	SDL_SCANCODE_KP_COLON (in module csdl2)
  


      
  	SDL_SCANCODE_KP_COMMA (in module csdl2)
  


      
  	SDL_SCANCODE_KP_D (in module csdl2)
  


      
  	SDL_SCANCODE_KP_DBLAMPERSAND (in module csdl2)
  


      
  	SDL_SCANCODE_KP_DBLVERTICALBAR (in module csdl2)
  


      
  	SDL_SCANCODE_KP_DECIMAL (in module csdl2)
  


      
  	SDL_SCANCODE_KP_DIVIDE (in module csdl2)
  


      
  	SDL_SCANCODE_KP_E (in module csdl2)
  


      
  	SDL_SCANCODE_KP_ENTER (in module csdl2)
  


      
  	SDL_SCANCODE_KP_EQUALS (in module csdl2)
  


      
  	SDL_SCANCODE_KP_EQUALSAS400 (in module csdl2)
  


      
  	SDL_SCANCODE_KP_EXCLAM (in module csdl2)
  


      
  	SDL_SCANCODE_KP_F (in module csdl2)
  


      
  	SDL_SCANCODE_KP_GREATER (in module csdl2)
  


      
  	SDL_SCANCODE_KP_HASH (in module csdl2)
  


      
  	SDL_SCANCODE_KP_HEXADECIMAL (in module csdl2)
  


      
  	SDL_SCANCODE_KP_LEFTBRACE (in module csdl2)
  


      
  	SDL_SCANCODE_KP_LEFTPAREN (in module csdl2)
  


      
  	SDL_SCANCODE_KP_LESS (in module csdl2)
  


      
  	SDL_SCANCODE_KP_MEMADD (in module csdl2)
  


      
  	SDL_SCANCODE_KP_MEMCLEAR (in module csdl2)
  


      
  	SDL_SCANCODE_KP_MEMDIVIDE (in module csdl2)
  


      
  	SDL_SCANCODE_KP_MEMMULTIPLY (in module csdl2)
  


      
  	SDL_SCANCODE_KP_MEMRECALL (in module csdl2)
  


      
  	SDL_SCANCODE_KP_MEMSTORE (in module csdl2)
  


      
  	SDL_SCANCODE_KP_MEMSUBTRACT (in module csdl2)
  


      
  	SDL_SCANCODE_KP_MINUS (in module csdl2)
  


      
  	SDL_SCANCODE_KP_MULTIPLY (in module csdl2)
  


      
  	SDL_SCANCODE_KP_OCTAL (in module csdl2)
  


      
  	SDL_SCANCODE_KP_PERCENT (in module csdl2)
  


      
  	SDL_SCANCODE_KP_PERIOD (in module csdl2)
  


      
  	SDL_SCANCODE_KP_PLUS (in module csdl2)
  


      
  	SDL_SCANCODE_KP_PLUSMINUS (in module csdl2)
  


      
  	SDL_SCANCODE_KP_POWER (in module csdl2)
  


      
  	SDL_SCANCODE_KP_RIGHTBRACE (in module csdl2)
  


      
  	SDL_SCANCODE_KP_RIGHTPAREN (in module csdl2)
  


      
  	SDL_SCANCODE_KP_SPACE (in module csdl2)
  


      
  	SDL_SCANCODE_KP_TAB (in module csdl2)
  


      
  	SDL_SCANCODE_KP_VERTICALBAR (in module csdl2)
  


      
  	SDL_SCANCODE_KP_XOR (in module csdl2)
  


      
  	SDL_SCANCODE_L (in module csdl2)
  


      
  	SDL_SCANCODE_LALT (in module csdl2)
  


      
  	SDL_SCANCODE_LANG1 (in module csdl2)
  


      
  	SDL_SCANCODE_LANG2 (in module csdl2)
  


      
  	SDL_SCANCODE_LANG3 (in module csdl2)
  


      
  	SDL_SCANCODE_LANG4 (in module csdl2)
  


      
  	SDL_SCANCODE_LANG5 (in module csdl2)
  


      
  	SDL_SCANCODE_LANG6 (in module csdl2)
  


      
  	SDL_SCANCODE_LANG7 (in module csdl2)
  


      
  	SDL_SCANCODE_LANG8 (in module csdl2)
  


      
  	SDL_SCANCODE_LANG9 (in module csdl2)
  


      
  	SDL_SCANCODE_LCTRL (in module csdl2)
  


      
  	SDL_SCANCODE_LEFT (in module csdl2)
  


      
  	SDL_SCANCODE_LEFTBRACKET (in module csdl2)
  


      
  	SDL_SCANCODE_LGUI (in module csdl2)
  


      
  	SDL_SCANCODE_LSHIFT (in module csdl2)
  


      
  	SDL_SCANCODE_M (in module csdl2)
  


      
  	SDL_SCANCODE_MAIL (in module csdl2)
  


      
  	SDL_SCANCODE_MEDIASELECT (in module csdl2)
  


      
  	SDL_SCANCODE_MENU (in module csdl2)
  


      
  	SDL_SCANCODE_MINUS (in module csdl2)
  


      
  	SDL_SCANCODE_MODE (in module csdl2)
  


      
  	SDL_SCANCODE_MUTE (in module csdl2)
  


      
  	SDL_SCANCODE_N (in module csdl2)
  


      
  	SDL_SCANCODE_NONUSBACKSLASH (in module csdl2)
  


      
  	SDL_SCANCODE_NONUSHASH (in module csdl2)
  


      
  	SDL_SCANCODE_NUMLOCKCLEAR (in module csdl2)
  


      
  	SDL_SCANCODE_O (in module csdl2)
  


      
  	SDL_SCANCODE_OPER (in module csdl2)
  


      
  	SDL_SCANCODE_OUT (in module csdl2)
  


      
  	SDL_SCANCODE_P (in module csdl2)
  


      
  	SDL_SCANCODE_PAGEDOWN (in module csdl2)
  


      
  	SDL_SCANCODE_PAGEUP (in module csdl2)
  


      
  	SDL_SCANCODE_PASTE (in module csdl2)
  


      
  	SDL_SCANCODE_PAUSE (in module csdl2)
  


      
  	SDL_SCANCODE_PERIOD (in module csdl2)
  


      
  	SDL_SCANCODE_POWER (in module csdl2)
  


      
  	SDL_SCANCODE_PRINTSCREEN (in module csdl2)
  


      
  	SDL_SCANCODE_PRIOR (in module csdl2)
  


      
  	SDL_SCANCODE_Q (in module csdl2)
  


      
  	SDL_SCANCODE_R (in module csdl2)
  


      
  	SDL_SCANCODE_RALT (in module csdl2)
  


      
  	SDL_SCANCODE_RCTRL (in module csdl2)
  


      
  	SDL_SCANCODE_RETURN (in module csdl2)
  


      
  	SDL_SCANCODE_RETURN2 (in module csdl2)
  


      
  	SDL_SCANCODE_RGUI (in module csdl2)
  


      
  	SDL_SCANCODE_RIGHT (in module csdl2)
  


      
  	SDL_SCANCODE_RIGHTBRACKET (in module csdl2)
  


      
  	SDL_SCANCODE_RSHIFT (in module csdl2)
  


      
  	SDL_SCANCODE_S (in module csdl2)
  


      
  	SDL_SCANCODE_SCROLLLOCK (in module csdl2)
  


      
  	SDL_SCANCODE_SELECT (in module csdl2)
  


      
  	SDL_SCANCODE_SEMICOLON (in module csdl2)
  


      
  	SDL_SCANCODE_SEPARATOR (in module csdl2)
  


      
  	SDL_SCANCODE_SLASH (in module csdl2)
  


      
  	SDL_SCANCODE_SLEEP (in module csdl2)
  


      
  	SDL_SCANCODE_SPACE (in module csdl2)
  


      
  	SDL_SCANCODE_STOP (in module csdl2)
  


      
  	SDL_SCANCODE_SYSREQ (in module csdl2)
  


      
  	SDL_SCANCODE_T (in module csdl2)
  


      
  	SDL_SCANCODE_TAB (in module csdl2)
  


      
  	SDL_SCANCODE_THOUSANDSSEPARATOR (in module csdl2)
  


      
  	SDL_SCANCODE_U (in module csdl2)
  


      
  	SDL_SCANCODE_UNDO (in module csdl2)
  


      
  	SDL_SCANCODE_UNKNOWN (in module csdl2)
  


      
  	SDL_SCANCODE_UP (in module csdl2)
  


      
  	SDL_SCANCODE_V (in module csdl2)
  


      
  	SDL_SCANCODE_VOLUMEDOWN (in module csdl2)
  


      
  	SDL_SCANCODE_VOLUMEUP (in module csdl2)
  


      
  	SDL_SCANCODE_W (in module csdl2)
  


      
  	SDL_SCANCODE_WWW (in module csdl2)
  


      
  	SDL_SCANCODE_X (in module csdl2)
  


      
  	SDL_SCANCODE_Y (in module csdl2)
  


      
  	SDL_SCANCODE_Z (in module csdl2)
  


      
  	SDL_SetRenderDrawBlendMode() (in module csdl2)
  


      
  	SDL_SetRenderDrawColor() (in module csdl2)
  


      
  	SDL_SetRenderTarget() (in module csdl2)
  


      
  	SDL_SetTextureAlphaMod() (in module csdl2)
  


      
  	SDL_SetTextureBlendMode() (in module csdl2)
  


      
  	SDL_SetTextureColorMod() (in module csdl2)
  


      
  	SDL_Surface (class in csdl2)
  


      
  	SDL_SYSWMEVENT (in module csdl2)
  


      
  	SDL_TEXTEDITING (in module csdl2)
  


      
  	SDL_TEXTINPUT (in module csdl2)
  


      
  	SDL_Texture (class in csdl2)
  


      
  	SDL_TEXTUREACCESS_STATIC (in module csdl2)
  


      
  	SDL_TEXTUREACCESS_STREAMING (in module csdl2)
  


      
  	SDL_TEXTUREACCESS_TARGET (in module csdl2)
  


      
  	SDL_UnlockAudio() (in module csdl2)
  


      
  	SDL_UnlockAudioDevice() (in module csdl2)
  


      
  	SDL_UnlockTexture() (in module csdl2)
  


      
  	SDL_UpdateTexture() (in module csdl2)
  


      
  	SDL_USEREVENT (in module csdl2)
  


      
  	SDL_WasInit() (in module csdl2)
  


      
  	SDL_Window (class in csdl2)
  


      
  	SDL_WINDOW_BORDERLESS (in module csdl2)
  


      
  	SDL_WINDOW_FOREIGN (in module csdl2)
  


      
  	SDL_WINDOW_FULLSCREEN (in module csdl2)
  


      
  	SDL_WINDOW_FULLSCREEN_DESKTOP (in module csdl2)
  


      
  	SDL_WINDOW_HIDDEN (in module csdl2)
  


      
  	SDL_WINDOW_INPUT_FOCUS (in module csdl2)
  


      
  	SDL_WINDOW_INPUT_GRABBED (in module csdl2)
  


      
  	SDL_WINDOW_MAXIMIZED (in module csdl2)
  


      
  	SDL_WINDOW_MINIMIZED (in module csdl2)
  


      
  	SDL_WINDOW_MOUSE_FOCUS (in module csdl2)
  


      
  	SDL_WINDOW_OPENGL (in module csdl2)
  


      
  	SDL_WINDOW_RESIZABLE (in module csdl2)
  


      
  	SDL_WINDOW_SHOWN (in module csdl2)
  


      
  	SDL_WINDOWEVENT (in module csdl2)
  


      
  	SDL_WINDOWEVENT_CLOSE (in module csdl2)
  


      
  	SDL_WINDOWEVENT_ENTER (in module csdl2)
  


      
  	SDL_WINDOWEVENT_EXPOSED (in module csdl2)
  


      
  	SDL_WINDOWEVENT_FOCUS_GAINED (in module csdl2)
  


      
  	SDL_WINDOWEVENT_FOCUS_LOST (in module csdl2)
  


      
  	SDL_WINDOWEVENT_HIDDEN (in module csdl2)
  


      
  	SDL_WINDOWEVENT_LEAVE (in module csdl2)
  


      
  	SDL_WINDOWEVENT_MAXIMIZED (in module csdl2)
  


      
  	SDL_WINDOWEVENT_MINIMIZED (in module csdl2)
  


      
  	SDL_WINDOWEVENT_MOVED (in module csdl2)
  


      
  	SDL_WINDOWEVENT_NONE (in module csdl2)
  


      
  	SDL_WINDOWEVENT_RESIZED (in module csdl2)
  


      
  	SDL_WINDOWEVENT_RESTORED (in module csdl2)
  


      
  	SDL_WINDOWEVENT_SHOWN (in module csdl2)
  


      
  	SDL_WINDOWEVENT_SIZE_CHANGED (in module csdl2)
  


      
  	SDL_WINDOWPOS_CENTERED (in module csdl2)
  


      
  	SDL_WINDOWPOS_UNDEFINED (in module csdl2)
  


      
  	SDLK_0 (in module csdl2)
  


      
  	SDLK_1 (in module csdl2)
  


      
  	SDLK_2 (in module csdl2)
  


      
  	SDLK_3 (in module csdl2)
  


      
  	SDLK_4 (in module csdl2)
  


      
  	SDLK_5 (in module csdl2)
  


      
  	SDLK_6 (in module csdl2)
  


      
  	SDLK_7 (in module csdl2)
  


      
  	SDLK_8 (in module csdl2)
  


      
  	SDLK_9 (in module csdl2)
  


      
  	SDLK_a (in module csdl2)
  


      
  	SDLK_AC_BACK (in module csdl2)
  


      
  	SDLK_AC_BOOKMARKS (in module csdl2)
  


      
  	SDLK_AC_FORWARD (in module csdl2)
  


      
  	SDLK_AC_HOME (in module csdl2)
  


      
  	SDLK_AC_REFRESH (in module csdl2)
  


      
  	SDLK_AC_SEARCH (in module csdl2)
  


      
  	SDLK_AC_STOP (in module csdl2)
  


      
  	SDLK_AGAIN (in module csdl2)
  


      
  	SDLK_ALTERASE (in module csdl2)
  


      
  	SDLK_AMPERSAND (in module csdl2)
  


      
  	SDLK_APPLICATION (in module csdl2)
  


      
  	SDLK_ASTERISK (in module csdl2)
  


      
  	SDLK_AT (in module csdl2)
  


      
  	SDLK_AUDIOMUTE (in module csdl2)
  


      
  	SDLK_AUDIONEXT (in module csdl2)
  


      
  	SDLK_AUDIOPLAY (in module csdl2)
  


      
  	SDLK_AUDIOPREV (in module csdl2)
  


      
  	SDLK_AUDIOSTOP (in module csdl2)
  


      
  	SDLK_b (in module csdl2)
  


      
  	SDLK_BACKQUOTE (in module csdl2)
  


      
  	SDLK_BACKSLASH (in module csdl2)
  


      
  	SDLK_BACKSPACE (in module csdl2)
  


      
  	SDLK_BRIGHTNESSDOWN (in module csdl2)
  


      
  	SDLK_BRIGHTNESSUP (in module csdl2)
  


      
  	SDLK_c (in module csdl2)
  


      
  	SDLK_CALCULATOR (in module csdl2)
  


      
  	SDLK_CANCEL (in module csdl2)
  


      
  	SDLK_CAPSLOCK (in module csdl2)
  


      
  	SDLK_CARET (in module csdl2)
  


      
  	SDLK_CLEAR (in module csdl2)
  


      
  	SDLK_CLEARAGAIN (in module csdl2)
  


      
  	SDLK_COLON (in module csdl2)
  


      
  	SDLK_COMMA (in module csdl2)
  


      
  	SDLK_COMPUTER (in module csdl2)
  


      
  	SDLK_COPY (in module csdl2)
  


      
  	SDLK_CRSEL (in module csdl2)
  


      
  	SDLK_CURRENCYSUBUNIT (in module csdl2)
  


      
  	SDLK_CURRENCYUNIT (in module csdl2)
  


      
  	SDLK_CUT (in module csdl2)
  


      
  	SDLK_d (in module csdl2)
  


      
  	SDLK_DECIMALSEPARATOR (in module csdl2)
  


      
  	SDLK_DELETE (in module csdl2)
  


      
  	SDLK_DISPLAYSWITCH (in module csdl2)
  


      
  	SDLK_DOLLAR (in module csdl2)
  


      
  	SDLK_DOWN (in module csdl2)
  


      
  	SDLK_e (in module csdl2)
  


      
  	SDLK_EJECT (in module csdl2)
  


      
  	SDLK_END (in module csdl2)
  


      
  	SDLK_EQUALS (in module csdl2)
  


      
  	SDLK_ESCAPE (in module csdl2)
  


      
  	SDLK_EXCLAIM (in module csdl2)
  


      
  	SDLK_EXECUTE (in module csdl2)
  


      
  	SDLK_EXSEL (in module csdl2)
  


      
  	SDLK_f (in module csdl2)
  


      
  	SDLK_F1 (in module csdl2)
  


      
  	SDLK_F10 (in module csdl2)
  


      
  	SDLK_F11 (in module csdl2)
  


      
  	SDLK_F12 (in module csdl2)
  


      
  	SDLK_F13 (in module csdl2)
  


      
  	SDLK_F14 (in module csdl2)
  


      
  	SDLK_F15 (in module csdl2)
  


      
  	SDLK_F16 (in module csdl2)
  


      
  	SDLK_F17 (in module csdl2)
  


      
  	SDLK_F18 (in module csdl2)
  


      
  	SDLK_F19 (in module csdl2)
  


      
  	SDLK_F2 (in module csdl2)
  


      
  	SDLK_F20 (in module csdl2)
  


      
  	SDLK_F21 (in module csdl2)
  


      
  	SDLK_F22 (in module csdl2)
  


      
  	SDLK_F23 (in module csdl2)
  


      
  	SDLK_F24 (in module csdl2)
  


      
  	SDLK_F3 (in module csdl2)
  


      
  	SDLK_F4 (in module csdl2)
  


      
  	SDLK_F5 (in module csdl2)
  


      
  	SDLK_F6 (in module csdl2)
  


      
  	SDLK_F7 (in module csdl2)
  


      
  	SDLK_F8 (in module csdl2)
  


      
  	SDLK_F9 (in module csdl2)
  


      
  	SDLK_FIND (in module csdl2)
  


      
  	SDLK_g (in module csdl2)
  


      
  	SDLK_GREATER (in module csdl2)
  


      
  	SDLK_h (in module csdl2)
  


      
  	SDLK_HASH (in module csdl2)
  


      
  	SDLK_HELP (in module csdl2)
  


      
  	SDLK_HOME (in module csdl2)
  


      
  	SDLK_i (in module csdl2)
  


      
  	SDLK_INSERT (in module csdl2)
  


      
  	SDLK_j (in module csdl2)
  


      
  	SDLK_k (in module csdl2)
  


      
  	SDLK_KBDILLUMDOWN (in module csdl2)
  


      
  	SDLK_KBDILLUMTOGGLE (in module csdl2)
  


      
  	SDLK_KBDILLUMUP (in module csdl2)
  


      
  	SDLK_KP_0 (in module csdl2)
  


      
  	SDLK_KP_00 (in module csdl2)
  


      
  	SDLK_KP_000 (in module csdl2)
  


      
  	SDLK_KP_1 (in module csdl2)
  


      
  	SDLK_KP_2 (in module csdl2)
  


      
  	SDLK_KP_3 (in module csdl2)
  


      
  	SDLK_KP_4 (in module csdl2)
  


      
  	SDLK_KP_5 (in module csdl2)
  


      
  	SDLK_KP_6 (in module csdl2)
  


      
  	SDLK_KP_7 (in module csdl2)
  


      
  	SDLK_KP_8 (in module csdl2)
  


      
  	SDLK_KP_9 (in module csdl2)
  


      
  	SDLK_KP_A (in module csdl2)
  


      
  	SDLK_KP_AMPERSAND (in module csdl2)
  


      
  	SDLK_KP_AT (in module csdl2)
  


      
  	SDLK_KP_B (in module csdl2)
  


      
  	SDLK_KP_BACKSPACE (in module csdl2)
  


      
  	SDLK_KP_BINARY (in module csdl2)
  


      
  	SDLK_KP_C (in module csdl2)
  


      
  	SDLK_KP_CLEAR (in module csdl2)
  


      
  	SDLK_KP_CLEARENTRY (in module csdl2)
  


      
  	SDLK_KP_COLON (in module csdl2)
  


      
  	SDLK_KP_COMMA (in module csdl2)
  


      
  	SDLK_KP_D (in module csdl2)
  


      
  	SDLK_KP_DBLAMPERSAND (in module csdl2)
  


      
  	SDLK_KP_DBLVERTICALBAR (in module csdl2)
  


      
  	SDLK_KP_DECIMAL (in module csdl2)
  


      
  	SDLK_KP_DIVIDE (in module csdl2)
  


      
  	SDLK_KP_E (in module csdl2)
  


      
  	SDLK_KP_ENTER (in module csdl2)
  


      
  	SDLK_KP_EQUALS (in module csdl2)
  


      
  	SDLK_KP_EQUALSAS400 (in module csdl2)
  


      
  	SDLK_KP_EXCLAM (in module csdl2)
  


      
  	SDLK_KP_F (in module csdl2)
  


      
  	SDLK_KP_GREATER (in module csdl2)
  


      
  	SDLK_KP_HASH (in module csdl2)
  


      
  	SDLK_KP_HEXADECIMAL (in module csdl2)
  


      
  	SDLK_KP_LEFTBRACE (in module csdl2)
  


      
  	SDLK_KP_LEFTPAREN (in module csdl2)
  


      
  	SDLK_KP_LESS (in module csdl2)
  


      
  	SDLK_KP_MEMADD (in module csdl2)
  


      
  	SDLK_KP_MEMCLEAR (in module csdl2)
  


      
  	SDLK_KP_MEMDIVIDE (in module csdl2)
  


      
  	SDLK_KP_MEMMULTIPLY (in module csdl2)
  


      
  	SDLK_KP_MEMRECALL (in module csdl2)
  


      
  	SDLK_KP_MEMSTORE (in module csdl2)
  


      
  	SDLK_KP_MEMSUBTRACT (in module csdl2)
  


      
  	SDLK_KP_MINUS (in module csdl2)
  


      
  	SDLK_KP_MULTIPLY (in module csdl2)
  


      
  	SDLK_KP_OCTAL (in module csdl2)
  


      
  	SDLK_KP_PERCENT (in module csdl2)
  


      
  	SDLK_KP_PERIOD (in module csdl2)
  


      
  	SDLK_KP_PLUS (in module csdl2)
  


      
  	SDLK_KP_PLUSMINUS (in module csdl2)
  


      
  	SDLK_KP_POWER (in module csdl2)
  


      
  	SDLK_KP_RIGHTBRACE (in module csdl2)
  


      
  	SDLK_KP_RIGHTPAREN (in module csdl2)
  


      
  	SDLK_KP_SPACE (in module csdl2)
  


      
  	SDLK_KP_TAB (in module csdl2)
  


      
  	SDLK_KP_VERTICALBAR (in module csdl2)
  


      
  	SDLK_KP_XOR (in module csdl2)
  


      
  	SDLK_l (in module csdl2)
  


      
  	SDLK_LALT (in module csdl2)
  


      
  	SDLK_LCTRL (in module csdl2)
  


      
  	SDLK_LEFT (in module csdl2)
  


      
  	SDLK_LEFTBRACKET (in module csdl2)
  


      
  	SDLK_LEFTPAREN (in module csdl2)
  


      
  	SDLK_LESS (in module csdl2)
  


      
  	SDLK_LGUI (in module csdl2)
  


      
  	SDLK_LSHIFT (in module csdl2)
  


      
  	SDLK_m (in module csdl2)
  


      
  	SDLK_MAIL (in module csdl2)
  


      
  	SDLK_MEDIASELECT (in module csdl2)
  


      
  	SDLK_MENU (in module csdl2)
  


      
  	SDLK_MINUS (in module csdl2)
  


      
  	SDLK_MODE (in module csdl2)
  


      
  	SDLK_MUTE (in module csdl2)
  


      
  	SDLK_n (in module csdl2)
  


      
  	SDLK_NUMLOCKCLEAR (in module csdl2)
  


      
  	SDLK_o (in module csdl2)
  


      
  	SDLK_OPER (in module csdl2)
  


      
  	SDLK_OUT (in module csdl2)
  


      
  	SDLK_p (in module csdl2)
  


      
  	SDLK_PAGEDOWN (in module csdl2)
  


      
  	SDLK_PAGEUP (in module csdl2)
  


      
  	SDLK_PASTE (in module csdl2)
  


      
  	SDLK_PAUSE (in module csdl2)
  


      
  	SDLK_PERCENT (in module csdl2)
  


      
  	SDLK_PERIOD (in module csdl2)
  


      
  	SDLK_PLUS (in module csdl2)
  


      
  	SDLK_POWER (in module csdl2)
  


      
  	SDLK_PRINTSCREEN (in module csdl2)
  


      
  	SDLK_PRIOR (in module csdl2)
  


      
  	SDLK_q (in module csdl2)
  


      
  	SDLK_QUESTION (in module csdl2)
  


      
  	SDLK_QUOTE (in module csdl2)
  


      
  	SDLK_QUOTEDBL (in module csdl2)
  


      
  	SDLK_r (in module csdl2)
  


      
  	SDLK_RALT (in module csdl2)
  


      
  	SDLK_RCTRL (in module csdl2)
  


      
  	SDLK_RETURN (in module csdl2)
  


      
  	SDLK_RETURN2 (in module csdl2)
  


      
  	SDLK_RGUI (in module csdl2)
  


      
  	SDLK_RIGHT (in module csdl2)
  


      
  	SDLK_RIGHTBRACKET (in module csdl2)
  


      
  	SDLK_RIGHTPAREN (in module csdl2)
  


      
  	SDLK_RSHIFT (in module csdl2)
  


      
  	SDLK_s (in module csdl2)
  


      
  	SDLK_SCROLLLOCK (in module csdl2)
  


      
  	SDLK_SELECT (in module csdl2)
  


      
  	SDLK_SEMICOLON (in module csdl2)
  


      
  	SDLK_SEPARATOR (in module csdl2)
  


      
  	SDLK_SLASH (in module csdl2)
  


      
  	SDLK_SLEEP (in module csdl2)
  


      
  	SDLK_SPACE (in module csdl2)
  


      
  	SDLK_STOP (in module csdl2)
  


      
  	SDLK_SYSREQ (in module csdl2)
  


      
  	SDLK_t (in module csdl2)
  


      
  	SDLK_TAB (in module csdl2)
  


      
  	SDLK_THOUSANDSSEPARATOR (in module csdl2)
  


      
  	SDLK_u (in module csdl2)
  


      
  	SDLK_UNDERSCORE (in module csdl2)
  


      
  	SDLK_UNDO (in module csdl2)
  


      
  	SDLK_UNKNOWN (in module csdl2)
  


      
  	SDLK_UP (in module csdl2)
  


      
  	SDLK_v (in module csdl2)
  


      
  	SDLK_VOLUMEDOWN (in module csdl2)
  


      
  	SDLK_VOLUMEUP (in module csdl2)
  


      
  	SDLK_w (in module csdl2)
  


      
  	SDLK_WWW (in module csdl2)
  


      
  	SDLK_x (in module csdl2)
  


      
  	SDLK_y (in module csdl2)
  


      
  	SDLK_z (in module csdl2)
  


      
  	seek (csdl2.SDL_RWops attribute)
  


      
  	silence (csdl2.SDL_AudioSpec attribute)
  


      
  	size (csdl2.SDL_AudioSpec attribute)
  


      	
        
  	(csdl2.SDL_RWops attribute)
  


      


      
  	src_format (csdl2.SDL_AudioCVT attribute)
  


      
  	state (csdl2.SDL_MouseMotionEvent attribute)
  


  





T


  	
      
  	texture_formats (csdl2.SDL_RendererInfo attribute)
  


      
  	timestamp (csdl2.SDL_MouseMotionEvent attribute)
  


  

  	
      
  	type (csdl2.SDL_Event attribute)
  


      	
        
  	(csdl2.SDL_MouseMotionEvent attribute)
  


        
  	(csdl2.SDL_RWops attribute)
  


      


  





U


  	
      
  	userdata (csdl2.SDL_AudioSpec attribute)
  


      	
        
  	(csdl2.SDL_Surface attribute)
  


      


  





W


  	
      
  	w (csdl2.SDL_Rect attribute)
  


      	
        
  	(csdl2.SDL_Surface attribute)
  


      


      
  	which (csdl2.SDL_MouseMotionEvent attribute)
  


  

  	
      
  	windowID (csdl2.SDL_MouseMotionEvent attribute)
  


      
  	write (csdl2.SDL_RWops attribute)
  


  





X


  	
      
  	x (csdl2.SDL_MouseMotionEvent attribute)
  


      	
        
  	(csdl2.SDL_Point attribute)
  


        
  	(csdl2.SDL_Rect attribute)
  


      


  

  	
      
  	xrel (csdl2.SDL_MouseMotionEvent attribute)
  


  





Y


  	
      
  	y (csdl2.SDL_MouseMotionEvent attribute)
  


      	
        
  	(csdl2.SDL_Point attribute)
  


        
  	(csdl2.SDL_Rect attribute)
  


      


  

  	
      
  	yrel (csdl2.SDL_MouseMotionEvent attribute)
  


  







          

      

      

    


    
         Copyright 2015, Paul Tan.
      Created using Sphinx 1.3.5.
    

  _static/comment-bright.png





_static/up-pressed.png





_static/file.png





_static/plus.png





_static/down.png





_static/comment.png





_static/down-pressed.png





_static/up.png





_static/minus.png





_static/ajax-loader.gif





search.html


    
      Navigation


      
        		
          index


        		pycsdl2 2.0.0.0.dev5 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2015, Paul Tan.
      Created using Sphinx 1.3.5.
    

  

_static/comment-close.png





