pycrypt Documentation
Release 0.2

Matéj Hlavacek

February 12, 2017

Contents

1 Changelog

1.1 v02-Aprl16,2015.
1.2 vO0.1-Marl8,2014
2 Contents:
2.1 Introduction
2.1.1 Whatisitfor?
2.1.2 Whatdoesitdo?
2.13 Whoisitfor?
2.2 Gettingstarted
2.2.1 Getting pycrypt’s source
22.2 Installation
223 Runningtests
224 Firstscript.
23 Structure
23.1 Classdiagram
2.3.2 Why are you telling me all this??
233 Nextsteps
24 Translators
24.1 Basicusage
2.4.2 Making your own Translator . .
243 Furtherreading
2.5 KeyGenerators
2.5.1 Basicusage
2.5.2 Making your own KeyGenerator
2.5.3 Furtherreading
26 Scorers
2.6.1 Basicusage
2.6.2 Making your own Scorer
2.6.3 Furtherreading
27 Solvers
2.77.1 Basicusage
272 Advancedusage
2.7.3 Making your own Solver
274 Nextsteps
275 Furtherreading
2.8 What'snewinv0.2
2.8.1 Theisland model

w W

W

[ecBiecBENEEN o) fle) N o NV IV BV, BV, IRV, BV, BV, I |

................................ 17

2.8.2 Evolution plotting L. e e 19

2.8.3 CIOSSOVETS . & v v v o e 19

2.8.4 Temperature scaling oL e e e e e e e e e e 19

2.8.5 Cachedscoring e 21

2.8.6 Easierinstallation e e e 21

2.9 APL . . e 21
2.9.1 pycryptpackage e e e e e e e e e e e 21

2.9.2 pycryptutilsmodule e e e e 32

2.93 Modulecontents e e e e e e e e e e e e e e e e 33

3 Indices and tables 35
Python Module Index 37

pycrypt Documentation, Release 0.2

Pycrypt is a python suite for solving ciphers at (mostly Czech) cryptography games.

Contents 1

pycrypt Documentation, Release 0.2

2 Contents

CHAPTER 1

Changelog

1.1

v0.2 - Apr 16, 2015

ThreadedGeneticSolver, a new solver implementing the island model
crossovers module with some crossover and selection strategies
Weighted mutations based on letter frequencies

Plotting the progress of genetic solvers

Cached scoring for faster evolution

Pycrypt can now be installed directly from github with pip

Other fixes, tweaking and improvements

There’s a longer post about v0.2 here

1.2

v0.1 - Mar 18, 2014

Initial release.

pycrypt Documentation, Release 0.2

4 Chapter 1. Changelog

CHAPTER 2

Contents:

2.1 Introduction

2.1.1 What is it for?
Pycrypt was originally intended as a substitution cipher solver. When it did succeed, I wanted to bring to project a

little bit further. It is meant to be used in cryptographic games, which often take place outside and at night. Therefore,
pycrypt is (or at least is trying to be) fast to get started in, full of existing useful tools and easily extensible.

2.1.2 What does it do?

Pycrypt covers a range of most standard ciphers and usually even solves them. It comes with English and Czech dic-
tionaries to measure cipher’s proximity to being solved and right. It has a few solving algorithms and some analytical
tools. In addition to some pycrypt’s own graphical capability, external libraries fill in.

2.1.3 Who is it for?

Before you start using pycrypt, you should know basic to intermediate python programming. It does not come with a
user-friendly graphical interface, as it is intended for python script and command line use only.

2.2 Getting started

2.2.1 Getting pycrypt’s source

Pycrypt is on github here. You can clone it with:

’$ git clone https://github.com/PrehistoricTeam/pycrypt.git

2.2.2 Installation

Pycrypt was developed on Python 2.7.5, but should work fine on previous versions as well.

If you don’t have pip (you should), run this first:

https://github.com/PrehistoricTeam/pycrypt/

pycrypt Documentation, Release 0.2

‘$ curl https://raw.github.com/pypa/pip/master/contrib/get-pip.py | python ‘

You can now install pycrypt with pip:

‘$ pip install "git+https://github.com/PrehistoricTeam/pycrypt.git@masterfegg=pycrypt" ‘

If you want to hack on pycrypt’s source, install it with:

’$ pip install -e "git+https://github.com/PrehistoricTeam/pycrypt.git@master#eggzpycrypt*

It will download the source to the current directory and link it in the python installation.

Optional, but recommended packages are unidecode and ipython console for interactive use:

$ pip install unidecode
$ pip install ipython

2.2.3 Running tests

Pycrypt has some unit tests, you can run them in shell, while in the root directory of pycrypt, with:

’$ python -m unittest discover

2.2.4 First script

To start solving a basic substitution cipher, try out this code:

import pycrypt as pc

cipher = "ERU NRIEU-GUFFIUH YUA UAMFU IY A FALMU HISLTAF GILH QX CLUB IT ERU XAWIFB APPICIELIHAU. A I
solver = pc.GeneticSolver (scorer=pc.EnglishScorer())

solver.solve (cipher)

Put it in a file (e.g. first_test.py) in the root directory and run it. You’ll see some output and after some time, you
should see the result close to:

‘The White-bellied Sea Eagle is a large diurnal bird of prey in the family Accipitridae. |A distinctiwve

2.3 Structure

2.3.1 Class diagram

Pycrypt’s overall structure consist of 4 main parts. But first, let’s take a look at the UML diagram:

Warning: This diagram is just orientational. The project has evolved, while the diagram did, and probably will,
not.

As you can see, there are 4 interfaces (which, because python doesn’t support them, are just uninstantiated classes).
These are the 4 basic building blocks for solving a cipher. They are:

¢ Translators

which enable the basic encoding and decoding of a specific cipher (e.g. a Caesar cipher)

6 Chapter 2. Contents:

http://en.wikipedia.org/wiki/Substitution_cipher

pycrypt Documentation, Release 0.2

«interfaces
Scorer

I |
[+ getScoreftext : string, out score : flat) |

+ getScoreOfNgrams(text : string, out score : float)
+ getScoreOfords(text : string, out score : float)
+ setWeights(weights : list)
+ setWordList(path : string) _
a2 i jes : SortedDict) utils

+ getFrequency(length : int, out frequencies : [ist)
+ removeDiacritics(inout text ; string}
+ plotFrequenciesifreq : array)
+ plotPath(path : array)

“interface» + platArraylarr : array)
Solver
+ init (keyGenerator : KeyGenerator)
+ solve() |
+ (key : list) _ Czech:
. \ Engllshscurer —
: «interface»
i
— s, + translate(cipher : string, out result : string)
GeneticFinder >, + interactiveTranslate()
: + graphicEncode(cipher : string, out result : array}
L _ N + encode(text : string, out cipher : string)
S _ + parselnput(input : string, out out - list)
e —— «interfaces + setKey(key : int)
Y kel
+ init (translator ; Translator, scorer : Scorer) [
+ getRandomKey()
+ getAllKeys()
+ mutateKey()
+ getClosest(num : int, out closest : list) |
+ translate(key : list, out text : string) Vigenereiranslator’] |
+ getScare(key : list, out score : float) ! : | . N
+ setkey(key : string) | | | Y N, b
T L H % i SemaphoreTranslator
- CaesarTranslator | 4 ™, 1
- e ———— |
- | Y
i | Y 7]
' [+ init_UenRange : tuple) | ASCiiTranslator k!
: — MorseCodeTranslator
NumberKeyGenerator —
[PermutationKeyGenerator | + init + int) SubstitutionTranslator
+ it Ten 0 _ ‘ |+ setkeylkey : SortedDict) Pnll:ﬁcﬁslsﬁinsr:at:r =
+ setUsingCh(usingCh : boal
——— NumberedAlphabetTranslator
e ——————————— _
+ setKeylkey : list) BinaryTranslator
— — ———————
+ setStartWithOne(start : bool)
Trinary

MnhileKeghoardAlghabet [F serstmrWithonelstart - boall |

* KeyGenerators

which generate keys for the Translators. They can implement generating all keys (for brute force solving) and
mutating a key (for genetic algorithms)

¢ Scorers

which calculate how good the solution is. Typically, you’ll want to use them for scoring how close and similar
they are to a specific language

¢ Solvers

which glue everything together. They will get some keys with a KeyGenerator, apply these keys to the cipher
with a Translator and finally score these solutions with a Scorer. They will also take care of printing out progress
and optional interactions (during the solving process) from the user.

2.3.2 Why are you telling me all this??

Usually, pycrypt alone won’t do too much during a typical cryptographic game. The cipher creators try hard to steer
away from the standard ciphers. They’ll try to make something creative and something that will require an idea. It
would be impossible to cover all of these kinds of ciphers.

Pycrypt was developed with that in mind, and the user was meant to write a little bit of code during the actual solving.
The structure of pycrypt is supposed to allow you to write code just for what is needed and take care of everything else
(like printing and actual solving algorithms).

2.3.3 Next steps

You can either continue following this tutorial or jump ahead and dive into the API documentation:

See also:

2.3. Structure 7

pycrypt Documentation, Release 0.2

pycrypt API documentation

2.4 Translators

Translators take care of translating to and from a specific cipher. There are some (over 10) already included in pycrypt.

2.4.1 Basic usage

Let’s take a look at decoding a Caesar cipher with alphabet shift of 1:

import pycrypt as pc

t = pc.CaesarTranslator ()
t.setKey (1)
print t.translate ("GDKKN VNQKC!™")

Which should output:

| HELLO WORLD!

We have created a Translator, set its key (alphabet shift) to 1 and called the method t ranslate to uncover the secret
message.

Note: Since Translators are meant to be used on encrypted text, here the method t ranslate actually shifted the
alphabet by 1 back, not forward. You can also use the method decode, which is just an alias for translate and is
maybe more semantically correct.

We can also revert the process with encode:

>>> t.encode ("Hello World!™)
'GDKKN VNQKC!'

And that’s about it! But there are some more advanced uses too.

Some translators come with the graphicEncode method, which returns typically a 2d bool NumPy array that we
can then draw with pycrypt’s plot_array function:

t = pc.MorseCodeTranslator ()
pc.plot_array (t.graphicEncode ("ST\nRN\nST\nNU\nWN\nST1"))

This will draw an image in a new window:

In this example, MorseCodeTranslator‘s graphicEncode splits the input in lines and concatenates the Morse
code characters, that represent the 1s and Os (black and white squares). You can alter the functionality with some
optional arguments.

You can also play around with the interactiveTranslate method, which just cyclically takes standard input,
so you could see intermediate results.

And that’s about all the functionality you can expect from Translators. Easy enough, isn’t it?

2.4.2 Making your own Translator

Before we will extend the Translator interface, we should see its methods from the API:

8 Chapter 2. Contents:

http://en.wikipedia.org/wiki/Caesar_cipher

pycrypt Documentation, Release 0.2

»oo/+| | &

Fig. 2.1: SIRN SINU WN SI

2.4. Translators 9

pycrypt Documentation, Release 0.2

translator Module

class pycrypt.translators.translator.Translator
Abstract class for translating standard ciphers (i.e. Morse Code)
key =[]

translate (*args)
Base method for decoding a cipher

interactiveTranslate ()
For quick translating with each character typed from the user, type ! to remove last characters

encode (*args)
Reversed translation

decode (*args)
Just and alias for translate

graphicEncode (*args)
Return in numpy array for easy plotting

parselnput (cipher)
Standardize input to a list, values preferably integers indexed from O

setKey (key)

All you have to do when inheriting from Translator is to implement the t ranslate method. Optionally, you
can implement encode and maybe even graphicEncode. parseInput is meant to be just an internal method
and implementing it is optional, but pycrypt’s standard is to always make the cipher uppercase. For examples, see to
source of some implementations.

2.4.3 Further reading

To check out all Translators, see the API:
See also:

Translators

2.5 KeyGenerators

KeyGenerators handle generating keys (that was unexpected) for specific translators. They are intended to be used
with Solvers, supplementing keys which the Solvers will then try out and process. They can implement generating
all keys (for brute force solving), mutating a key (for genetic algorithms), or anything you would need for a specific
Solver.

2.5.1 Basic usage

Most of pycrypt’s KeyGenerators have a method get A11Keys, which usually returns a python generator:

>>> import pycrypt as pc
>>> import itertools

>>> kg = pc.CombinationKeyGenerator ()
>>> for i1 in itertools.islice(kg.getAllKeys (), 30):
>>> print i

10 Chapter 2. Contents:

pycrypt Documentation, Release 0.2

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

DO PP NK XS < aH®n oo ooz REEHER"ggHDQMEMEHOQE®

~

~

~

~

~

~

~

~

~

~

~

~

o w»

~

Tip: itertools is a great python module for working with iterators (generators in this case). It is really handy and
has many different uses. You can see the docs here.

Here weuse itertools.islice tolook at the first 30 results that our CombinationKeyGenerator provides.
As you might expect, it returns every possible combination of letters. Usually, you can also set some rules for the keys
generated:

>>> kg.length_range = (3, 10)
>>> for i in itertools.islice(kg.getAllKeys (), 5):
>>> print i

'A', 'A', IAI)
'A'I 'A'I B!

)

c")

A AT IDI)
’

'A'I AT VEV)

You can use getRandomKey to ... well, guess:

>>> print kg.getRandomKey ()

(VY', VQ', VLV, YUV, YQV)

>>> print kg.getRandomKey ()

(VC', lHl, lMl, lIl)

>>> print kg.getRandomKey ()

(lZl, VCl, lWl, lM‘, 'F', lNl’ 'J'[ICII IDI)
>>> print kg.getRandomKey ()

(VC', VM', YYV)

2.5. KeyGenerators 11

http://docs.python.org/2/library/itertools.html

pycrypt Documentation, Release 0.2

Notice, how the rule we set before (length_range) also applies to this (and all other) method.

Now let’s take a look at mut ateKey, which is mainly used by the GeneticSolver. mutateKey returns a similar
key based on the random number generator. The entropy can be changed with the randFunc lambda function passed
as an optional argument:

>>> kg.mutateKey ("HELLO")
('H', 'E', 'L', lLl, lJl, IZI)
>>> kg.mutateKey ("HELLO™)
(IHI’ VEl, lLl, lPl, IOI)
>>> kg.mutateKey ("HELLO")
(VH', VE', VLV, YLV, YOV, IMY)
>>> kg.mutateKey ("HELLO")
(VH', 'N', lLl, lLl, IOI)
>>> kg.mutateKey ("HELLO")
(lHl, VEl, lLl, lLl, ILI)

2.5.2 Making your own KeyGenerator

If you're trying to solve a simpler cipher and all of the possible keys can be tried out in a reasonable time, you can
implement only the getA11Keys method. It is preferred to return a generator, as its lazy evaluation uses almost no
memory. For the more complicated ciphers (like the substitution cipher), you should implement get RandomKey and
mutateKey.

Tip: It’s great to make some applicable rules to the KeyGenerator. You can then change them interactively during the
actual cipher solving and help the solving process head the right way.

2.5.3 Further reading

To check out all KeyGenerators, see the API:
See also:

KeyGenerators

2.6 Scorers

Scorers are used by Solvers to see how good a solution is. It can be anything like scoring a Sudoku grid, but usually
you’ll be using them to score similarity to some language. Pycrypt comes with a Scorer for English and Czech.

2.6.1 Basic usage

Let’s see our EnglishScorer in action!

>>> import pycrypt as pc
>>> s = pc.EnglishScorer ()

>>> s.score ("asdsdghuioz")
0.5275818181818182

12 Chapter 2. Contents:

pycrypt Documentation, Release 0.2

>>> gs.score ("Hello World")
1.0342818181818183

As you can see, the jumbled text scored a half of what the English text did. You might expect a bit larger difference,
but this example uses just too short text. There is no normalization of the score, so you could see scores around 1 just
as well as scores over 5. Usually, jumbled text scores only a small fraction.

2.6.2 Making your own Scorer

Just extend Scorer‘s score method and you’re good to go!

If you want a LanguageScorer on the other hand, you’ll need some frequency statistics, but first, let’s look at the
CzechScorer implementation:

import languagescorer
import czechfrequencies as cze

class CzechScorer (languagescorer.LanguageScorer) :
"""Cczech scorer, credits for frequencies go to MEFE"""
def _ init__ (self):
self.setIdealNgramFrequencies ([cze.monograms, cze.bigrams, cze.trigrams
self.setWeights([10, 100, 1000, 10000, 1000007])

As you can see, all you have to do is call the set IdealNgramFrequencies method to load frequency dictionar-
ies. The setWeights just multiplies the score got from their respective n-gram frequencies (pentagrams are more
relevant than monograms and pentagrams usually score much lower because of their limited dictionaries).

The frequency dictionaries are just python dict s, which have the n-grams as a key and their probability distribution
as a value. The values, if all possible keys are referenced, should sum up to 1. The Czech data is generated from the
files here. There are only Czech and English statistics to date, but more languages are to come. Should you want to
process them, you can use the ngram_converter.py script, which comes with pycrypt.

Keep in mind, that a good Scorer should not only give good score to correct results and bad score to incorrect. It
should also give half the score (or log half or something) to half correct results. This is essential, when using the
genetic algorithms (and several others), to let the algorithm know, that it is on the right track. You should avoid
making too big local maxima as well.

2.6.3 Further reading

To check out Scorers’ source, check out the API:
See also:

Scorers

2.7 Solvers

Solvers glue everything we have learned so far together. They will get some keys from a KeyGenerator, apply these
keys to the cipher with a Translator and finally score these solutions with a Scorer. They will also take care of printing
out progress and optional interactions (during the solving process) from the user.

To date, there are only two Solvers. Since they are so essential for pycrypt’s use, we’ll go over both of them.

2.7. Solvers 13

cze.tetragr:

http://ufal.mff.cuni.cz/~hajic/courses/npfl067/stats/czech.html

pycrypt Documentation, Release 0.2

2.7.1 Basic usage

BruteForceSolver

We’ll be trying to solve a Vigenere cipher. First, we will make the actual cipher:

import pycrypt as pc

text = "The White-bellied Sea Eagle is a large diurnal bird of prey in the family Accipi
t = pc.VigenereTranslator (key="EGG")
cipher = t.encode (text)

print cipher

We will get the encoded output:

OAX RABOX-UZEEDXW NXT ZTZGX BN T EVKZZ WBPKGVE UDKW JY IMXR DG MCX YVFBGR TXVBKBMMBWVX.

Since the Vigenere cipher key is only 3 characters long, the BruteForceSolver should suffice:

s = pc.BruteForceSolver (keyGenerator=pc.CombinationKeyGenerator (length_range=(1, 3)),
translator=pc.VigenereTranslator (), scorer=pc.EnglishScorer())

s.solve (cipher)

The first line sets up our BruteForceSolver. CombinationKeyGenerator with small length_range,
so that we can try out all the keys, obviously VigenereTranslator as the specified Translator and
EnglishScorer.

Tip: You can set the default scorer in the conf.py file

When you’ll run this, you should see all of the possible keys with their respective solution previews. In 15 seconds or
s0, the final output will look like this:

Score:

0.35820 Key: 727U Text: OAS RAWOX-PZEZDXR NXO ZTUGX WN T ZVKUZ WWPKBVE §
Score: 0.36785 Key: ZZV Text: OAT RAXOX-QZEADXS NXP ZTVGX XN T AVKVZ WXPKCVE Q
Score: 0.29618 Key: ZZW Text: OAU RAYOX-RZEBDXT NXQ ZTWGX YN T BVKWZ WYPKDVE §
Score: 0.33593 Key: 72zX Text: OAV RAZOX-SZECDXU NXR ZTXGX ZN T CVKXZ WZPKEVE §
Score: 0.41876 Key: Z7Y Text: OAW RAAOX-TZEDDXV NXS ZTYGX AN T DVKYZ WAPKFVE T
Score: 0.33509 Key: 727272 Text: OAX RABOX-UZEEDXW NXT ZTZGX BN T EVKZZ WBPKGVE [

Score: 2.89494237918
Key: EGG
Text: THE WHITE-BELLIED SEA EAGLE IS A LARGE DIURNAL BIRD OF PREY IN THE FAMILY ACCIPITH

tridae.

A di:

T YBLOBGXMBOQ:

DKR
DKS
DKT
DKU
DKV
JIDKW

Jy
JY
JY
Jy
JY
JY

DMXM
EMXN
FMXO
GMXP
HMXOQ
IMXR

IDAE. A DIST:

If we would know, that the key was a meaningful word, we could use for instance some sort of word list KeyGenerator
(which, as of now, doesn’t exist).

GeneticSolver

3 character long keys take about 20 seconds with the BruteForceSolver, but 4 characters would take 26 times
that! That is over 8 minutes. To try out all the possible 8 character keys, it would take over 6000 years. That’s where
the GeneticSolver comes in. It uses a very basic genetic algorithm. But first, let’s make a more complex Vigenere
cipher from our sample text:

14 Chapter 2. Contents:

http://en.wikipedia.org/wiki/Vigenere_cipher
http://en.wikipedia.org/wiki/Genetic_algorithm

pycrypt Documentation, Release 0.2

t.setKey ("SPAMANDEGGS")
cipher t.encode (text)

print cipher

We’ll get this:

ARD JGUPZ-UXSSSDQ RQW ZTZSL SR N KMNBX WPBBMNK NEMW HM WBDL HZ PCX YHTSKL ZOYDIBAYSCND.

M ZDLMPUMSVU(

Now let’s try to solve it:

s = pc.GeneticSolver (keyGenerator=pc.CombinationKeyGenerator (length_range=(1, 11)),
translator=pc.VigenereTranslator (), scorer=pc.EnglishScorer())

s.solve (cipher)

You should see output similar (but maybe very different) to this:
1. Score: 0.74231 Text: HLE ENNWT-VSZLZXR MXP GNANS LY H LHUUE QOWIFUE OZTP OG XWKE OT QX
2. Score: 0.85933 Text: THE QZOSP-KMFLIEX KKZ PJOFE IS U DGQRN LCURNUD HHCM WZ PRES AT SSI
3. Score: 0.93790 Text: THE QZOSP-KMILIEX KKZ PJOIE IS U DGQRN LFURNUD HHCM WC PRES AT SSI
4. Score: 1.02072 Text: THE QZOSV-KMLLIEX KKz VJOLE IS U DGQXN LIURNUD HHIM WE PRES AT SYI
5. Score: 1.11349 Text: THE QZOSE-BMILIEX KKZ EAOIE IS U DGQGE LFURNUD HHRD WC PRES AT SHI
6. Score: 1.13169 Text: THE QOOSB-KMLLIEX ZKZ BJOLE IS U SGQDN LIURNUS HHOM WF PRES PT SEI
7. Score: 1.36420 Text: THE QZOTE-BMILIEX KKA EAOIE IS U DGRGE LFURNUD HIRD WC PRES AT THI
8. Score: 1.36962 Text: THE QZOTE-BHILIEX KKA EAJIE IS U DGRGE GFURNUD HIRD RC PRES AT THI
9. Score: 1.74856 Text: THE QZITE-BMILIEX KEA EAQOIE IS U DARGE LFURNUD BIRD WC PRES AN THI
10. Score: 1.88447 Text: THE QZITE-BEILIEX KEA EAGIE IS U DARGE DFURNUD BIRD OC PRES AN THI
11. Score: 2.20848 Text: THE QZITE-BELLIEX KEA EAGLE IS U DARGE DIURNUD BIRD (QF PRES AN THI

12. Score: 2.31031 Text: THE WZITE-BELLIED KEA EAGLE IS A DARGE DIURNAD BIRD (QF PREY AN THI

13. Score: 2.34455 Text: THE WTITE-BELLIED EEA EAGLE IS A XARGE DIURNAX BIRD OQF PREY UN THI

14. Score: 2.63445 Text: THE QHITE-BELLIEX SEA EAGLE IS U LARGE DIURNUL BIRD (QF PRES IN THI

15. Score: 2.63445 Text: THE QHITE-BELLIEX SEA EAGLE IS U LARGE DIURNUL BIRD QF PRES IN THI

16. Score: 2.63445 Text: THE QHITE-BELLIEX SEA EAGLE IS U LARGE DIURNUL BIRD OQF PRES IN THI

17. Score: 2.89494 Text: THE WHITE-BELLIED SEA EAGLE IS A LARGE DIURNAL BIRD (QF PREY IN THI

18. Score: 2.89494 Text: THE WHITE-BELLIED SEA EAGLE IS A LARGE DIURNAL BIRD QF PREY IN THI

If you’ll stop the process with Ctrl-C (you have to be in some sort of interactive shell), you’ll see the last evolution:

18. Score: 2.89494 Text: THE WHITE-BELLIED SEA EAGLE IS A LARGE DIURNAL BIRD QF PREY IN THI

Evolution interrupted! Setting starting point to continue

=====Best Solution=====

Score: 2.89494237918

Key: ['S', 'P', 'A', 'M', 'A', 'N', 'D', 'E', 'G', 'G', 'S']

Text: THE WHITE-BELLIED SEA EAGLE IS A LARGE DIURNAL BIRD OF PREY IN THE FAMILY ACCIPITRIDAE. A DIST:

Warning: Right now, it is not unusual for the genetic algorithm to get stuck in a local maxima. It does not happen
often, but when it does, just restart the script. It shouldn’t happen in the future, as many improvements are planned
to the actual algorithm as well as some more tools to help to resolve this problem.

As you can see, the GeneticSolver can prove to be highly effective. You’ll want to use them in most cases,
however, if you can try out all the keys in a reasonable time, BruteForceSolver is a better choice, as the
GeneticSolver can prove unreliable sometimes.

2.7.2 Advanced usage

Let’s move on to a more complex case of a cipher, such as a substitution cipher. Again, we’ll make the encoded text
first:

2.7. Solvers 15

pycrypt Documentation, Release 0.2

t = pc.SubstitutionTranslator ()
t.setKey(dict (zip (pc.alphabet, reversed(pc.alphabet))))
cipher = t.encode (text)

print cipher

We set the SubstitutionTranslator key to areversed alphabet (which produces a very simple cipher), but we
could have chosen any possible unordered alphabet, this is just for illustration. We’ll end up with this cipher:

GSV DSRGV-YVOORVW HVZ VZTOV RH Z OZITV WRFIMZO YRIW LU KIVB RM GSV UZNROB ZXXRKRGIRWZV.‘Z WRHGRMXGRE?

Now we will attempt to solve it with the GeneticSolver:

s = pc.GeneticSolver (keyGenerator=pc.SubstitutionKeyGenerator (),
translator=pc.SubstitutionTranslator (), scorer=pc.EnglishScorer())
s.solve (cipher)

Unless you are very lucky, you will see that the substitution cipher is much harder to solve. You might even want to
restart a few times. Let’s see an example output:

1. Score: 1.04425 Text: END PNTED-KDMMTDV HDZ DZFMD TH Z MZIFD VIRIAZM KTIV|CB YIDQ TA El
2. Score: 1.78308 Text: THE KHOTE-NECCOEB WEF EFUCE OW F CFAUE BOPAZFC NOAB|LV DAEI OZ TI
3. Score: 1.98144 Text: THE KHOTE-NECCOEB WES ESUCE OW S CSAUE BOPAZSC NOAB|LV DAEI OZ TI
4. Score: 2.03995 Text: THE KHOTE-BECCOEN WES ESUCE OW S CSAUE NOPAZSC BOAN|LV DAEI OZ TI
5. Score: 2.11829 Text: THE KHOTE-BECCOEN WES ESUCE OW S CSAUE NOPARSC BOAN |LV DAEI OR TI
6. Score: 2.18511 Text: THE KHOTE-BECCOEN WES ESUCE OW S CSRUE NOPRASC BORN|LV DREI OA TI
7. Score: 2.21979 Text: THE CHOTE-LEJJOEN WES ESBJE OW S JSABE NOPAISJ LOAN |VU DAER OI TI
8. Score: 2.27611 Text: THE KHOTE-BECCOEN WES ESUCE OW S CSRUE NOPRFSC BORN|LV IRED OF TI
9. Score: 2.34155 Text: THE WHOTE-QEVVOEB RES ESGVE OR S VSAGE BOIANSV QOAB|YC PAED ON TI
10. Score: 2.38612 Text: THE WHITE-QEVVIEB RES ESGVE IR S VSAGE BIOANSV QIAB|YK PAED IN TI
11. Score: 2.40644 Text: THE WHOTE-QEVVOEU AES ESGVE OA S VSRGE UOIRNSV QORU|YC PRED ON TI
12. Score: 2.46465 Text: THE VHOTE-QERROED FEA EAGRE OF A RASGE DOISNAR QOSD|YC PSEB ON TI
13. Score: 2.48524 Text: THE WHOTE-QERROED FES ESGRE OF S RSIGE DOAINSR QOID|YC PIEB ON TI
Evolution interrupted! Setting starting point to continue

=====Best Solution=====

Score: 2.46465315985

Key:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

KBWVLITFSXPYNZRJIMOHGCEDUQA

Text: THE VHOTE-QERROED FEA EAGRE OF A RASGE DOISNAR QOSD YC PSEB ON THE CAZORB AUUOPOTS$ODAE. A DOFT(

At the end, we have stopped the process with Ctrl-C. If you are using an interactive python shell (e.g. regular command-

line python, ipython or IDLE’s python shell), you should be able to continue issuing commands.

Interactive mode

The ability to interrupt the process is very useful, as we can help the Solver. You might want to play around with

different settings for the algorithm (like population size or the randomness of mutations). But we can have a more

direct control. For instance, if we take a look at the last evolution from our last example:

’13. Score: 2.48524 Text: THE WHOTE-QERROED FES ESGRE OF S RSIGE DOAINSR QOID ‘*c PIEB ON THI

We can tell, that the “THE” is probably right. We can then lock it in place, so further evolution doesn’t change it.

]>>> s.lock ("THE") ‘

16 Chapter 2. Contents:

pycrypt Documentation, Release 0.2

GeneticSolver‘s lock processes the arguments and the just calls its keyGenerator’s Lock to add some rules. If
no key is set (as an optional argument), it locks according to the key from the last evolution. If we, for example, would
know that A translates to Z (which it does), we could call SubstitutionKeyGenerator‘s lock directly:

‘>>> s.keyGenerator.lock ('A"'", 'Z") ‘

Also now that we have some readable results, we can increase the randomness a bit:

‘>>> s.keyGenerator.randFunc = lambda x: x ** 3

When the SubstitutionKeyGenerator calculates how many elements to swap around, it gets a random value
between 0 and 1. It is then put through its randFunc. The defaultis lambda x: x *x 6, so now, it will tend to
swap more characters.

Tip: If, for any reason, you want to start the evolution again while keeping the locks, you can do:

’>>> s.setStartingPoint (None) ‘

Now, let’s continue the evolution:

’>>> s.solve (cipher) ‘

You may have to set up some more locks, but in the end, you should end up with this:

17. Score: 2.89556 Text: THE WHITE-BELLIED SEA EAGLE IS A LARGE DIURNAL BIRD
Evolution interrupted! Setting starting point to continue

Score: 2.89555799257

Key:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ZYXWVUTSRQPONMLKJIHGFEDCBA
Text: THE WHITE-BELLIED SEA EAGLE IS A LARGE DIURNAL BIRD OF PREY IN THE FAMILY ACCIPITH

As we can see, the correct key is in fact the reversed alphabet.

2.7.3 Making your own Solver

All you have to do is to implement the solve method. You should be supporting the startingPoint variable, as
it is a useful feature. For printing, there are prepared the printer and lastPrint methods. (TODO)

2.7.4 Next steps

We have covered Solvers, which is the last part of pycrypt. You should be now able to use it efficiently.
Next, we will go over some useful external modules, which could come in handy.

If you want more guidelines, you can see example uses on ciphers from real cryptography game (hopefully regularly
updated).

2.7.5 Further reading

To see the source code of Solvers, you can refer to the API:

See also:

2.7. Solvers 17

OF PREY IN TI

IDAE. A DIST:

pycrypt Documentation, Release 0.2

Solvers

2.8 What’s new in v0.2

Apart from some bug fixes and improvements, version 0.2 of pycrypt came with some new features. Let’s break them
down:

2.8.1 The island model

The biggest improvement in pycrypt is that it’s now multi-threaded. It can now eat up all your processing power and
is about 4 (or equivalent to your number of cores) times faster.

The new ThreadedGeneticSolver has the same interface as GeneticSolver, but runs as many instances
of GeneticSolver as you have cores (you can change that with the num_processes argument). They don’t
just run separated though, every 10 iterations (set by migration_iterations) the “islands” exchange their best
individuals in a cyclic pattern.

Island 1

O ‘ Individual

O (’
Migration
Island 3 . Island 2

O

This strategy makes it a lot better, mainly because the evolution doesn’t get stuck in local maxima as much now. If we
look at a plot of an evolution with ThreadedGeneticSolver:

Even though island 2 got behind, the other islands helped it get back up to speed on iteration 20 (migrations occur on
every tenth iteration).

Warning: The interactive interruption of ThreadedGeneticSolver doesn’t work so well. On different OSes
happen different problems, the safest bet is just to set the iteration max and wait for the evolution to actually finish.

This brings us to another feature:

18 Chapter 2. Contents:

pycrypt Documentation, Release 0.2

fitness

— lIsland 1]
— Island 2
— Island 3
— Island 4

1 i I i i
0 5 10 15 20 25 30
iteration

2.8.2 Evolution plotting
Both ThreadedGeneticSolver and GeneticSolver now support the plotLog method, you just need to
enable logging with 1og=True. Let’s take a look at GeneticSolver plot:

This proved to be very helpful during development, as it revealed some quirks the algorithms had.

2.8.3 Crossovers

Initially, pycrypt didn’t include crossovers in its genetic algorithms. That was because permutations (which are used as
keys for substitution ciphers) aren’t easily crossed over. Inspired by the algorithm described here (the order crossover
1), along with some standard algorithms as 1 and 2 point crossovers and tournament selection, they are now imple-
mented.

I think that this added some not insignificant boost, but it’s not easily measured.

2.8.4 Temperature scaling

Another experimental feature, which is based on cooling down the mutations as the fitness gets better. It works a
bit different in pycrypt - with high temperature, the most frequent letters like ‘E’, “T” and ‘A’ get switched. As the
evolution progresses, less frequent letters get switched, so that the finishing touches on the solution are made.

This approach didn’t prove very useful though, so I turned it off by default. I think it is because he biggest problems
are local maxima and they don’t necessarily have the infrequent letters wrong, so the evolution gets stuck even more.

2.8. What’s new in v0.2 19

http://www.cs.colostate.edu/~genitor/1995/permutations.pdf

pycrypt Documentation, Release 0.2

fitness

— max
avg
min

0 5 10 15 20 25 30 35 40
iteration

20 Chapter 2. Contents:

pycrypt Documentation, Release 0.2

2.8.5 Cached scoring
The scoring is the performance bottleneck of pycrypt. All scoring is now cached, so if you score an individual twice,

the score gets computed only once. This is managed by the cache decorator in the utils module and it can be
applied to any function or method you want.

2.8.6 Easier installation

Pycrypt is now structured as a legit python package with requirements done finally right, so you can install it quickly
with:

$ pip install "git+https://github.com/PrehistoricTeam/pycrypt.git@master#egg=pycrypt"

I might even consider getting pycrypt on PyPI in the near future.

2.9 API

2.9.1 pycrypt package
pycrypt.keygenerators package

Submodules
pycrypt.keygenerators.combinationkeygenerator module

class pycrypt .keygenerators.combinationkeygenerator.CombinationKeyGenerator (alphabet="ABCDEFGH
rand_func=<function
<lambda>>,
length_range=(1,
6),
**kwargs)
Bases: pycrypt.keygenerators.keygenerator.KeyGenerator

getRandomKey (length=None)
If length is None, random from range is set

getAllKeys ()
Generator of all combinations from shortest to longest from length_range

mutateKey (key)
Changes random number of elements, randomly changes length by 1

pycrypt.keygenerators.crossovers module

pycrypt.keygenerators.crossovers.pointl (parentl, parent2)
Basic 1 point crossover for lists

pycrypt.keygenerators.crossovers.point2 (parentl, parent2)
Basic 2 point crossover for lists

pycrypt.keygenerators.crossovers.permutation (parentl, parent2)
Crossover for permutations, parents should be dicts. Inspired by order crossover 1 from
http://www.cs.colostate.edu/~genitor/1995/permutations.pdf

2.9. API 21

http://www.cs.colostate.edu/~genitor/1995/permutations.pdf

pycrypt Documentation, Release 0.2

Note that crossing over two same individuals won’t always return the same.

class pycrypt .keygenerators.crossovers.Tournament (crossover_func=<function point2>,

) tournament_size=20, crossovers=0)
Basic tournament selector for crossovers

crossover (population)
Returns a list of new offsprings from population

pycrypt.keygenerators.keygenerator module

class pycrypt .keygenerators.keygenerator .KeyGenerator (crossover=<pycrypt.keygenerators.crossovers.Tournamer

instance>, **kwargs)
Bases: object

Abstract class for generating keys for specific Translator

getRandomKey ()
Random key i.e. for starting genetic population

getAllKeys ()
Get all possible keys, python generator preferably

mutateKey (key)
For genetics - get similar key

crossover (population)
For genetics - get some new offsprings

pycrypt.keygenerators.numberkeygenerator module

class pycrypt .keygenerators.numberkeygenerator .NumberKeyGenerator (max_number=26,
rand_func=<function

<lambda>>,
**kwargs)
Bases: pycrypt.keygenerators. keygenerator.KeyGenerator
getRandomKey ()
getAllKeys ()

mutateKey (key)
Change randFunc for different transformation number after random.random

pycrypt.keygenerators.permutationkeygenerator module

class pycrypt .keygenerators.permutationkeygenerator.PermutationKeyGenerator (sequence="ABCDEFGH
rand_func=<function
<lambda>>,

**kwargs)
Bases: pycrypt.keygenerators.substitutionkeygenerator.SubstitutionKeyGenerator

getRandomKey ()

getAllKeys ()
Returns all permutations in lexicographic order (according to indexing in the given sequence)

22 Chapter 2. Contents:

pycrypt Documentation, Release 0.2

mutateKey (key)
Swaps random number of elements around

lock (indx, value)
Lock an index of the key, so that the other functions return only keys with the set value on the given index

unlock (indx)

pycrypt.keygenerators.substitutionkeygenerator module

class pycrypt .keygenerators.substitutionkeygenerator.SubstitutionKeyGenerator (alphabet="ABCDEF(
rand_func=<function
<lambda>>,
weighted=None,
crossover=<pycrypt.h
in-
stance>,
**kwargs)

Bases: pycrypt.keygenerators.keygenerator.KeyGenerator

getRandomKey (_return_list=False)

getAllKeys (_return_list=False)
Generator of all keys in lexicographic order (according to indexing in the given alphabet)

mutateKey (key, _return_list=False, temp=1)
Swaps random number of elements around

lock (element, value=None, key=None)
Lock an element of the key, so that the other functions return only keys with the set value

unlock (element)

clearLock ()

pycrypt.keygenerators.test_crossovers module

class pycrypt.keygenerators.test_crossovers.TestCrossovers (methodName="runTest’)
Bases: unittest.case.TestCase

test_pointl ()
test_point2 ()

test_permutation ()

2.9. API 23

pycrypt Documentation, Release 0.2

Module contents

pycrypt.scorers package

Submodules
pycrypt.scorers.cgetngramfrequencies module

pycrypt.scorers.czechfrequencies module

Czech frequencies, extract from http://ufal.mff.cuni.cz/~hajic/courses/npfl067/stats/czech.html data from 564532247

characters, kept only most relevant for speed

pycrypt.scorers.czechscorer module

class pycrypt.scorers.czechscorer.CzechScorer
Bases: pycrypt.scorers.languagescorer.LanguageScorer

Czech scorer, credits for frequencies go to MFF

pycrypt.scorers.englishfrequencies module
pycrypt.scorers.englishscorer module

class pycrypt.scorers.englishscorer.EnglishScorer
Bases: pycrypt.scorers.languagescorer.LanguageScorer

English scorer, frequencies got from interwebz

pycrypt.scorers.languagescorer module

class pycrypt.scorers.languagescorer.LanguageScorer
Bases: pycrypt.scorers.scorer.Scorer

Scorer for languages based on N-grams and words
words = None

minWordLen =3

maxWordLen = 10

log = False

ngramWeights = None

wordWeight =0

unidec = True
setIdealNgramFrequencies (fregs)

loadWordList (path, minwordlen=3, maxwordlen=10)
Load words from file, 1 word per line

24 Chapter 2

. Contents:

http://ufal.mff.cuni.cz/~hajic/courses/npfl067/stats/czech.html

pycrypt Documentation, Release 0.2

setWeights (ngram_weights, word_weight=0)
Score multipliers, ngram_weights is list corresponding to ideal frequencies when something is 0, it’s ig-
nored when scoring

getNgramFrequencies (fext, length)
Get dictionary of frequencies of N-grams (of given length)

scoreNgrams (fext)
scoreWords (fext)

score (*args, **kwargs)

pycrypt.scorers.ngram_converter module
pycrypt.scorers.scorer module

class pycrypt.scorers.scorer.Scorer
Abstract class for scoring strings (i.e. language resemblance)

score (text)
Get score of a string

Module contents

pycrypt.solvers package

Submodules
pycrypt.solvers.bruteforcesolver module

class pycrypt.solvers.bruteforcesolver.BruteForceSolver (keyGenerator=<pycrypt.keygenerators.numberkeygene

object>, transla-
tor=<pycrypt.translators.caesartranslator. CaesarTran
instance>,

scorer=<pycrypt.scorers.czechscorer.CzechScorer

instance>, quiet=False)
Bases: pycrypt.solvers.solver.Solver

Tries out all possible solutions

solve (text=None, return_all_keys=False)
lastPrint (key, score, text=None)
setKeyGenerator (keyGenerator)

setStartingPoint (startingPoint)

2.9. API 25

pycrypt Documentation, Release 0.2

pycrypt.solvers.geneticsolver module

class pycrypt.solvers.geneticsolver.GeneticSolver (keyGenerator=None, transla-
tor=<pycrypt.translators.substitutiontranslator.SubstitutionTrar
instance>,
scorer=<pycrypt.scorers.czechscorer.CzechScorer
instance>, population_size=20,
mutations=20, ran-
dom_starting_population=1000,
quiet=False, exclude_tried=False,
log=False, crossover=True,
temperature=False, tempera-

ture_func=<function <lambda>>)
Bases: pycrypt.solvers.solver.Solver

Uses own genetic algorithm, calls KeyGenerators mutateKey method

solve (text=None, iterations=0, return_all_keys=False)
Set iterations to O for infinite loop

printer (key, score, text=None, iterations=None)
Gets the best sample in population in every cycle

setStartingPoint (startingPoint)
Starting population -> can be list

lock (string, key=None)
Lock character in the keyGenerator for the given key, if None, startingPoint key is used

plotLog ()

pycrypt.solvers.solver module

class pycrypt.solvers.solver.Solver (keyGenerator, translator=None,
scorer=<pycrypt.scorers.czechscorer.CzechScorer in-
stance>)

Bases: object
Abstract class for connecting KeyGenerators, Scorers and optionally Translators

solve (text=None)
Find best scored key for the given text (if None, the key itself will be scored) Returns best (score, key) pair

setStartingPoint (startingPoint)
Set where the solve method should start (useful for continuing genetics)

score (key, text=None, return_ciphered=True)

printer (key, score, text=None)
Callback method for every key generated and scored

lastPrint (key, score, text=None)
Callback method for last and best result

pycrypt.solvers.threadedgeneticsolver module

pycrypt.solvers.threadedgeneticsolver .mapper (solver)

26 Chapter 2. Contents:

pycrypt Documentation, Release 0.2

class pycrypt.solvers.threadedgeneticsolver.ThreadedGeneticSolver (keyGenerator=<pycrypt.keygenerators.

Bases: pycrypt.solvers.solver.Solver
Implements the island model using GeneticSolver

solve (text=None, iterations=0, return_all_keys=False)

object>,

transla-
tor=<pycrypt.translators.substitutiontrc
instance>,
scorer=<pycrypt.scorers.czechscorer.C:
instance>,

num_processes=None,

migra-

tion_iterations=10,

migra-

tion_size=10,

quiet=False,

log=False,

**kwargs)

Paralelized GeneticSolver’s solve. Note that you can’t interrupt the evolution as you could normally.

printer (key, score, text=None, iterations=None)
Gets the best sample in population in every cycle

setStartingPoint (startingPoint)
lock (string, key=None)
plotLog ()

Module contents

pycrypt.translators package

Submodules
pycrypt.translators.asciitranslator module

class pycrypt.translators.asciitranslator.ASCIITranslator
Bases: pycrypt.translators.translator.Translator

Simple ASCII translation using unichr
parselnput (cipher)
translate (cipher)

encode (cipher)

pycrypt.translators.binarytranslator module

class pycrypt.translators.binarytranslator.BinaryTranslator (start_with_one=False)

Bases: pycrypt.translators.translator.Translator
startWithOne = False

setStartWithOne (b)

2.9. API

27

pycrypt Documentation, Release 0.2

parselnput (cipher)
translate (cipher)
encode (cipher)

graphicEncode (cipher)

pycrypt.translators.brailletranslator module

class pycrypt.translators.brailletranslator.BrailleTranslator
Bases: pycrypt.translators.translator.Translator

Braille, translation formats: swza is T (qQw as zx)

key ={: ¢ ¢, ‘qzx’: ‘U, ‘azws’: ‘T, ‘qzs’: ‘O’, ‘qzw’: ‘M, ‘qzwx’: ‘X, ‘aw’: ‘I, ‘q’: ‘A’, ‘qaw’: ‘F’, ‘qas’: ‘H’, ‘qaz’: ‘
parselnput (cipher)

translate (cipher)

encode (cipher)

graphicEncode (cipher)

pycrypt.translators.caesartranslator module

class pycrypt.translators.caesartranslator.CaesarTranslator (key=13)
Bases: pycrypt.translators.translator.Translator

Simple alphabet rotation, default ROT13
parselnput (cipher)
translate (cipher)

encode (cipher)

pycrypt.translators.morsecodetranslator module

class pycrypt.translators.morsecodetranslator.MorseCodeTranslator
Bases: pycrypt.translators.translator.Translator

Morse Code, translation formats: .-//-... ; ., ,... ; [[0,1],[1,0,0,0]]

key = {71 €4 mi=f 4, Chnn= A, 4L 50, 49000 B, e X0, G- RO, =t W, LG <20, GG A 4L D, L= <43,
parselnput (cipher)

translate (cipher)

encode (cipher)

graphicEncode (cipher, gkey={‘-: [1], *: [0]})
change gkey dict to other . and - representations (i.e. ‘- can be [1, 1, 1])

28 Chapter 2. Contents:

pycrypt Documentation, Release 0.2

pycrypt.translators.numberedalphabettranslator module

class pycrypt.translators.numberedalphabettranslator.NumberedAlphabetTranslator
Bases: pycrypt.translators.translator.Translator

parselnput (cipher)
translate (cipher)

encode (cipher)

pycrypt.translators.polishcrosstranslator module

class pycrypt.translators.polishcrosstranslator.PolishCrossTranslator (using_ch=True)
Bases: pycrypt.translators.translator.Translator

Polish cross, Ch optional as argument, input: ql -> A, c3 ->7Z
key={‘a’:3,‘c’: §,‘¢’: 2,‘d’: 5,¢q’: 0, ‘s’: 4, ‘w’: 1,‘x’: 7, ‘Z’: 6}
setUsingCh (using_ch)

parselnput (cipher)

translate (cipher)

encode (cipher)

graphicEncode (cipher, three_by_three_grid=False)
Splits input to words, draws letters in words over each other. If three_by_three_grid argument is False,
9x3 grid with individual letters in the polish cross will be used

pycrypt.translators.semaphoretranslator module

class pycrypt.translators.semaphoretranslator.SemaphoreTranslator
Bases: pycrypt.translators.translator.Translator

Semaphore, translation format: zx is A (qwe a d zxc)

key ={“: ¢ ¢, cac’: S, ‘ad’: ‘R’, ‘xc’: ‘G, ‘ea’: ‘Q’, ‘ec’: ‘X0, ‘zc’: ‘N, ‘zx’: ‘A’, ‘ex’: ‘E’, ‘ez’: ‘L, ‘ax’: ‘B’, ‘az’: ‘H’, ‘
parselnput (cipher)

translate (cipher)

encode (cipher)

graphicEncode (cipher)

pycrypt.translators.substitutiontranslator module

class pycrypt.translators.substitutiontranslator.SubstitutionTranslator (key="ZYXWVUTSRQPONMLF
Bases: pycrypt.translators.translator.Translator

Basic substitution, default key reversed alphabet
setKey (key)
parselnput (cipher)

translate (cipher)

2.9. API 29

pycrypt Documentation, Release 0.2

encode (cipher)

pycrypt.translators.test_binarytranslator module

class pycrypt.translators.test_binarytranslator.TestBinaryTranslator (methodName="runTest’)
Bases: unittest.case.TestCase

setUp ()
test_translate ()
test_encode ()

test_graphicEncode ()

pycrypt.translators.test_brailletranslator module

class pycrypt.translators.test_brailletranslator.TestBrailleTranslator (methodName="runTest’)
Bases: unittest.case.TestCase

setUp ()
test_translate ()
test_encode ()

test_graphicEncode ()

pycrypt.translators.test_caesartranslator module

class pycrypt.translators.test_caesartranslator.TestCaesarTranslator (methodName="runTest’)
Bases: unittest.case.TestCase

setUp ()
test_translate ()
test_encode ()

test_parselInput ()

pycrypt.translators.test_morsecodetranslator module

class pycrypt.translators.test_morsecodetranslator.TestMorseCodeTranslator (methodName="runTest’)
Bases: unittest.case.TestCase

setUp ()
test_translate()
test_encode ()

test_graphicEncode ()

30 Chapter 2. Contents:

pycrypt Documentation, Release 0.2

pycrypt.translators.test_polishcrosstranslator module

class pycrypt.translators.test_polishcrosstranslator.TestPolishCrossTranslator (methodName="runl
Bases: unittest.case.TestCase

setUp ()
test_translate ()
test_encode ()

test_graphicEncode ()

pycrypt.translators.test_semaphoretranslator module

class pycrypt.translators.test_semaphoretranslator.TestSemaphoreTranslator (methodName="runTest’)
Bases: unittest.case.TestCase

setUp ()
test_translate ()
test_encode ()

test_graphicEncode ()

pycrypt.translators.test_substitutiontranslator module

class pycrypt.translators.test_substitutiontranslator.TestSubstitutionTranslator (methodName="'ri
Bases: unittest.case.TestCase

setUp ()
test_translate(()
test_encode ()
test_parseInput ()

test_setKey ()

pycrypt.translators.test_vigeneretranslator module

class pycrypt.translators.test_vigeneretranslator.TestVigenereTranslator (methodName="runTest’)
Bases: unittest.case.TestCase

setUp ()
test_translate()

test_encode ()

pycrypt.translators.translator module

class pycrypt.translators.translator.Translator
Abstract class for translating standard ciphers (i.e. Morse Code)

key =[]

2.9. API 31

pycrypt Documentation, Release 0.2

translate (*args)
Base method for decoding a cipher

interactiveTranslate ()
For quick translating with each character typed from the user, type ! to remove last characters

encode (*args)
Reversed translation

decode (*args)
Just and alias for translate

graphicEncode (*args)
Return in numpy array for easy plotting

parselnput (cipher)
Standardize input to a list, values preferably integers indexed from O

setKey (key)

pycrypt.translators.vigeneretranslator module

class pycrypt.translators.vigeneretranslator.VigenereTranslator (key="A’, ig-

nore_nonletters=True)
Bases: pycrypt.translators.translator.Translator

Adds perpetually key letters to text (Caesar with longer keys)
parselnput (cipher)
translate (cipher, a_is_one=True)

encode (cipher)

pycrypt.translators.xortranslator module

class pycrypt.translators.xortranslator.XorTranslator
Bases: pycrypt.translators.translator.Translator

One time pad translator
translate (cipher)

encode (cipher)
Module contents

2.9.2 pycrypt.utils module

pycrypt.utils.split (string)
pycrypt.utils.line_split (string)

pycrypt.utils.array_concat (raw_arrays)
Concats 2d numpy arrays to one big one, lines don’t have to be the same size

pycrypt.utils.plot_array (arr)
Plots binary 2d numpy array

32 Chapter 2. Contents:

pycrypt Documentation, Release 0.2

pycrypt.utils.get_£frequency (string, freq_alphabet="ABCDEFGHIJKLMNOPQRSTUVWXYZ’,

ratio=False)
Count frequency of given alphabet, if None, count every char. Set ratio True to divide by length

pycrypt.utils.plot_dict (d)
Plots bar graph of dict (usually used with get_frequency)

pycrypt.utils.pprint_dict (d)
Prints dicts keys and values on top of each other

pycrypt.utils.plot_genetic_log (log)
Plots the max, min and avg fitness of the population

pycrypt.utils.plot_genetic_log_threaded (log)
Plots each island individually

pycrypt.utils.cache (func)
General decorator for function caching, if called with same arguments, it is bypassed

2.9.3 Module contents

2.9. API 33

pycrypt Documentation, Release 0.2

34 Chapter 2. Contents:

CHAPTER 3

Indices and tables

¢ genindex
* modindex

e search

35

pycrypt Documentation, Release 0.2

36 Chapter 3. Indices and tables

Python Module Index

P

pycrypt, 33
pycrypt.keygenerators, 24

pycrypt.keygenerators.combinationkeygenerator,
pycrypt.translators.

21
pycrypt .keygenerators
pycrypt.keygenerators

.crossovers, 21
.keygenerator, 22

pycrypt.keygenerators.numberkeygenerator, 30

22 pycrypt.translators.
pycrypt.keygenerators.permutationkeygenerator, 30

22 pycrypt.translators
pycrypt.keygenerators.substitutionkeygeneraton30

23 pycrypt.translators
pycrypt.keygenerators.test_crossovers, 30

23 pycrypt.translators
pycrypt.scorers, 25 31
pycrypt.scorers.czechfrequencies, 24 pycrypt.translators
pycrypt.scorers.czechscorer, 24 31
pycrypt.scorers.englishfrequencies, 24 pycrypt.translators
pycrypt.scorers.englishscorer, 24 31
pycrypt.scorers.languagescorer, 24 pycrypt.translators
pycrypt.scorers.scorer, 25 31
pycrypt.solvers, 27 pycrypt.translators
pycrypt.solvers.bruteforcesolver, 25 pycrypt.translators
pycrypt.solvers.geneticsolver, 26 32
pycrypt.solvers.solver, 26 pycrypt.translators
pycrypt.solvers.threadedgeneticsolver, pycrypt.utils, 32

26
pycrypt.translators, 32

pycrypt.translators
29

pycrypt.translators.

29

29
pycrypt.translators

pycrypt.translators.

pycrypt.translators.
27

pycrypt.translators
28

pycrypt.translators
28

pycrypt.translators
28

pycrypt.translators
29

asciitranslator, 27
binarytranslator,

.brailletranslator,

.caesartranslator,

.morsecodetranslator

.numberedalphabettranslator,

.polishcrosstranslator,

semaphoretranslator,

substitutiontranslator,

.test_binarytranslator,

test_brailletranslator,

.test_caesartranslator,
.test_morsecodetranslator,
.test_polishcrosstranslator,
.test_semaphoretranslator,
.test_substitutiontranslator,
.test_vigeneretranslator,

.translator, 10
.vigeneretranslator,

.Xortranslator, 32

37

pycrypt Documentation, Release 0.2

38 Python Module Index

Index

A encode() (pycrypt.translators.caesartranslator.CaesarTranslator
array_concat() (in module pycrypt.utils), 32 method), 28
ASCIITranslator (class in py- encode() (pyc;y;;tjtr;gslators.morsecodetranslator.MorseCodeTranslator
crypt.translators.asciitranslator), 27 method),
encode() (pycrypt.translators.numberedalphabettranslator. Numbered Alphab
B method), 29
BinaryTranslator (class in py- encode() (rpg/ectz);:it).tr;gslators.pohshcrosstranslator.PohshCrossTranslator
t.t lators.bi t lator), 27 ’
. CyPLUANSIAtors. binarytransia or? encode() (pycrypt.translators.semaphoretranslator.SemaphoreTranslator
BrailleTranslator (class in py- method), 29
t.translators.brailletranslator), 28 ’ . o
CypLUransiators.brattietransia or? encode() (pycrypt.translators.substitutiontranslator.SubstitutionTranslator
BruteForceSolver (class in py- method), 29
t.solvers.brutef 1 25 ’
crypt.solvers.bruteforcesolver), encode() (pycrypt.translators.translator. Translator
C method), 10, 32
)) encode() (pycrypt.translators.vigeneretranslator. Vigenere Translator
cache() (in module pycrypt.utils), 33 method), 32
CaesarTranslator (class n PY= encode() (pycrypt.translators.xortranslator. XorTranslator
crypt.translators.caesartranslator), 28 method). 32
clearLock() (pycrypt.keygenerators.substitutionkeygeneratoﬁllélfgﬂggg&{{g mw&ypt.scorers.englishscorer), 24
method), 23
CombinationKeyGenerator (class in y- G
t.k tors.combinationk t
;rlyp eygenerators.combinationkeygenerator), GeneticSolver (class in pycrypt.solvers.geneticsolver), 26
crossover() (pycrypt.keygenerators.crossovers. Tournament get_frequency() (in module pycrypt.utils), 32
getAllKeys() (pycrypt.keygenerators.combinationkeygenerator.Combinatior
method), 22 method), 21
t.k tors.ki tor.KeyG t ’
crossover(r)n(eIR/lgii);p 2Zeygenera ofs.Keygenetator ey enelFagoertAllKeys() (pycrypt.keygenerators.keygenerator.KeyGenerator
> method), 22
CzechS 1 t. .czechi 24 ’
zechScorer (class in pycrypt.scorers.czechscorer), getAllKeys() (pycrypt.keygenerators.numberkeygenerator.NumberKeyGene
D method), 22
getAllKeys() (pycrypt.keygenerators.permutationkeygenerator.Permutationl
decode() (pycrypt.translators.translator. Translator method), 22
method), 10, 32 getAllKeys() (pycrypt.keygenerators.substitutionkeygenerator.SubstitutionK
E method), 23
getNgramFrequencies() (py-
encode() (pycrypt.translators.asciitranslator. ASCII Translator crypt.scorers.languagescorer.LanguageScorer
method), 27 method), 25
encode() (pycrypt.translators.binarytranslator. Binary TranslatQitR andomKey() (pycrypt.keygenerators.combinationkeygenerator.Combin
method), 28 method), 21
encode() (pycrypt.translators.brailletranslator. BrailleTranslatiR andomKey() (pycrypt.keygenerators.keygenerator.KeyGenerator
method), 28 method), 22

39

pycrypt Documentation, Release 0.2

getRandomKey() (pycrypt.keygenerators.numberkeygenerattodknipecKgptGohartshreadedgeneticsolver. ThreadedGeneticSolver

method), 22 method), 27
getRandomKey() (pycrypt.keygenerators.permutationkey gedemtépPenyptsatovalidufipumegasoorer. LanguageScorer at-
method), 22 tribute), 24
getRandomKey() (pycrypt.keygenerators.substitutionkeygenerator.SubstitutionKeyGenerator
method), 23 M
graphicEncode() (pycrypt.translators.binarytranslator. Binaryrhegspsdatpr (in module py-
method), 28 crypt.solvers.threadedgeneticsolver), 26
graphicEncode() (pycrypt.translators.brailletranslator. BraillethgaawlataIen (pycrypt.scorers.languagescorer.LanguageScorer
method), 28 attribute), 24
graphicEncode() (pycrypt.translators.morsecodetranslator. MgyispfVogeileang ey pt.scorers.languagescorer. LanguageScorer
method), 28 attribute), 24
graphicEncode() (pycrypt.translators.polishcrosstranslator. Palish{erasddmanskitaor (class in py-
method), 29 crypt.translators.morsecodetranslator), 28
graphicEncode() (pycrypt.translators.semaphoretranslator. SemaahskeJ3uphateypt key generators.combinationkeygenerator.Combination
method), 29 method), 21
graphicEncode() (pycrypt.translators.translator. Translator mutateKey() (pycrypt.keygenerators.keygenerator.KeyGenerator
method), 10, 32 method), 22
mutateKey() (pycrypt.keygenerators.numberkeygenerator.NumberKeyGene
I method), 22
interactiveTranslate() (py- mutateKey() (pycrypt.keygenerators.permutationkeygenerator.Permutationk
crypt.translators.translator. Translator method), method), 22
10, 32 mutateKey() (pycrypt.keygenerators.substitutionkeygenerator.SubstitutionK
method), 23

K

key (pycrypt.translators.brailletranslator.BrailleTranslator N

attribute), 28 ngramWeights (pycrypt.scorers.languagescorer.LanguageScorer
key (pycrypt.translators.morsecodetranslator. MorseCodeTranslator attribute), 24

attribute), 28 NumberedAlphabetTranslator (class in py-
key (pycrypt.translators.polishcrosstranslator.PolishCrossTranslator crypt.translators.numberedalphabettranslator),

attribute), 29 29
key (pycrypt.translators.semaphoretranslator.Semaphore Tral¥laitberKeyGenerator (class in py-

attribute), 29 crypt.keygenerators.numberkeygenerator),
key (pycrypt.translators.translator. Translator attribute), 22

10, 31
KeyGenerator (class in py- P

crypt.keygenerators.keygenerator), 22 parselnput() (pycrypt.translators.asciitranslator. ASCII Translator

method), 27

L parselnput() (pycrypt.translators.binarytranslator.BinaryTranslator
LanguageScorer (class in py- method), 27

crypt.scorers.languagescorer), 24 parselnput() (pycrypt.translators.brailletranslator.BrailleTranslator
lastPrint() (pycrypt.solvers.bruteforcesolver.BruteForceSolver method), 28

method), 25 parselnput() (pycrypt.translators.caesartranslator.Caesar Translator
lastPrint() (pycrypt.solvers.solver.Solver method), 26 method), 28
line_split() (in module pycrypt.utils), 32 parselnput() (pycrypt.translators.morsecodetranslator. MorseCodeTranslator
loadWordList() (pycrypt.scorers.languagescorer.LanguageScorer method), 28

method), 24 parselnput() (pycrypt.translators.numberedalphabettranslator.Numbered Alp
lock() (pycrypt.keygenerators.permutationkeygenerator. PermutationKeyp€bndpatd?

method), 23 parselnput() (pycrypt.translators.polishcrosstranslator.PolishCrossTranslato:
lock() (pycrypt.keygenerators.substitutionkeygenerator.SubstitutionKest@thd i3t

method), 23 parselnput() (pycrypt.translators.semaphoretranslator.SemaphoreTranslator
lock() (pycrypt.solvers.geneticsolver.GeneticSolver method), 29

method), 26 parselnput() (pycrypt.translators.substitutiontranslator.SubstitutionTranslatc

method), 29

40 Index

pycrypt Documentation, Release 0.2

parselnput() (pycrypt.translators.translator. Translator
method), 10, 32

pycrypt.translators.asciitranslator (module), 27
pycrypt.translators.binarytranslator (module), 27

parselnput() (pycrypt.translators.vigeneretranslator. Vigenereffjrangpatioanslators.brailletranslator (module), 28

method), 32
permutation() (in module py-
crypt.keygenerators.crossovers), 21
PermutationKeyGenerator (class in py-

crypt.keygenerators.permutationkeygenerator),
22
plot_array() (in module pycrypt.utils), 32
plot_dict() (in module pycrypt.utils), 33
plot_genetic_log() (in module pycrypt.utils), 33
plot_genetic_log_threaded() (in module pycrypt.utils), 33

pycrypt.translators.caesartranslator (module), 28
pycrypt.translators.morsecodetranslator (module), 28
pycrypt.translators.numberedalphabettranslator (module),
29
pycrypt.translators.polishcrosstranslator (module), 29
pycrypt.translators.semaphoretranslator (module), 29
pycrypt.translators.substitutiontranslator (module), 29
pycrypt.translators.test_binarytranslator (module), 30
pycrypt.translators.test_brailletranslator (module), 30
pycrypt.translators.test_caesartranslator (module), 30

plotLog() (pycrypt.solvers.geneticsolver.GeneticSolver pycrypt.translators.test_morsecodetranslator (module),
method), 26 30

plotLog() (pycrypt.solvers.threadedgeneticsolver. ThreadedGeyetygf otanslators.test_polishcrosstranslator (module),
method), 27 31

pointl() (in module pycrypt.keygenerators.crossovers), pycrypt.translators.test_semaphoretranslator (module),
21 31

point2() (in module pycrypt.keygenerators.crossovers), pycrypt.translators.test_substitutiontranslator (module),
21 31

PolishCrossTranslator (class in
crypt.translators.polishcrosstranslator), 29

pprint_dict() (in module pycrypt.utils), 33

printer() (pycrypt.solvers.geneticsolver.GeneticSolver
method), 26

printer() (pycrypt.solvers.solver.Solver method), 26

py-

pycrypt.translators.test_vigeneretranslator (module), 31
pycrypt.translators.translator (module), 10, 31
pycrypt.translators.vigeneretranslator (module), 32
pycrypt.translators.xortranslator (module), 32
pycrypt.utils (module), 32

printer() (pycrypt.solvers.threadedgeneticsolver.ThreadedGeS:ticSolver

method), 27
pycrypt (module), 33
pycrypt.keygenerators (module), 24
pycrypt.keygenerators.combinationkeygenerator
ule), 21
pycrypt.keygenerators.crossovers (module), 21
pycrypt.keygenerators.keygenerator (module), 22
pycrypt.keygenerators.numberkeygenerator (module), 22

(mod-

pycrypt.keygenerators.permutationkeygenerator (mod-
ule), 22

pycrypt.keygenerators.substitutionkeygenerator ~ (mod-
ule), 23

pycrypt.keygenerators.test_crossovers (module), 23
pycrypt.scorers (module), 25
pycrypt.scorers.czechfrequencies (module), 24
pycrypt.scorers.czechscorer (module), 24
pycrypt.scorers.englishfrequencies (module), 24
pycrypt.scorers.englishscorer (module), 24
pycrypt.scorers.languagescorer (module), 24
pycrypt.scorers.scorer (module), 25
pycrypt.solvers (module), 27
pycrypt.solvers.bruteforcesolver (module), 25
pycrypt.solvers.geneticsolver (module), 26
pycrypt.solvers.solver (module), 26
pycrypt.solvers.threadedgeneticsolver (module), 26
pycrypt.translators (module), 32

score() (pycrypt.scorers.languagescorer.LanguageScorer
method), 25

score() (pycrypt.scorers.scorer.Scorer method), 25

score() (pycrypt.solvers.solver.Solver method), 26

scoreNgrams() (pycrypt.scorers.languagescorer.LanguageScorer

method), 25
Scorer (class in pycrypt.scorers.scorer), 25

scoreWords() (pycrypt.scorers.languagescorer.LanguageScorer

method), 25
SemaphoreTranslator (class in py-
crypt.translators.semaphoretranslator), 29
setldealNgramFrequencies() (py-

crypt.scorers.languagescorer.LanguageScorer

method), 24

setKey() (pycrypt.translators.substitutiontranslator.SubstitutionTranslator
method), 29

setKey() (pycrypt.translators.translator. Translator
method), 10, 32

setKeyGenerator() (py-
crypt.solvers.bruteforcesolver.BruteForceSolver
method), 25

setStartingPoint() (pycrypt.solvers.bruteforcesolver.BruteForceSolver

method), 25

setStartingPoint() (pycrypt.solvers.geneticsolver.GeneticSolver

method), 26

Index

41

pycrypt Documentation, Release 0.2

setStartingPoint() (pycrypt.solvers.solver.Solver method), test_encode() (pycrypt.translators.test_semaphoretranslator. TestSemaphore”

26 method), 31
setStartingPoint() (pycrypt.solvers.threadedgeneticsolver. ThresidediGede ¢ pybrempt. translators.test_substitutiontranslator. TestSubstitutio
method), 27 method), 31
setStartWithOne() (pycrypt.translators.binarytranslator. Binatg§franslatha() (pycrypt.translators.test_vigeneretranslator. TestVigenereTran:
method), 27 method), 31
setUp() (pycrypt.translators.test_binarytranslator. TestBinaryEsanghatphicEncode() (py-
method), 30 crypt.translators.test_binarytranslator. TestBinaryTranslator
setUp() (pycrypt.translators.test_brailletranslator. TestBrailleTranslatomethod), 30
method), 30 test_graphicEncode() (py-
setUp() (pycrypt.translators.test_caesartranslator. TestCaesarTranslatorcrypt.translators.test_brailletranslator. TestBrailleTranslator
method), 30 method), 30
setUp() (pycrypt.translators.test_morsecodetranslator. TestM tase (GoaeHickstaide () (py-
method), 30 crypt.translators.test_morsecodetranslator. TestMorseCodeTransla
setUp() (pycrypt.translators.test_polishcrosstranslator. TestPolishCrossihethdd)oB 0
method), 31 test_graphicEncode() (py-
setUp() (pycrypt.translators.test_semaphoretranslator. TestSemaphore Teayysiaranslators.test_polishcrosstranslator. TestPolishCrossTransl:
method), 31 method), 31
setUp() (pycrypt.translators.test_substitutiontranslator. TestS tdsitigraphiEEmsdatet) (py-
method), 31 crypt.translators.test_semaphoretranslator.TestSemaphoreTranslat
setUp() (pycrypt.translators.test_vigeneretranslator. TestVigenere Transhatthod), 31
method), 31 test_parselnput() (pycrypt.translators.test_caesartranslator. TestCaesarTransl
setUsingCh() (pycrypt.translators.polishcrosstranslator.PolishCrossTrameldtod), 30
method), 29 test_parselnput() (pycrypt.translators.test_substitutiontranslator. TestSubstitt
setWeights() (pycrypt.scorers.languagescorer.LanguageScorer method), 31
method), 24 test_permutation() (pycrypt.keygenerators.test_crossovers.TestCrossovers
solve() (pycrypt.solvers.bruteforcesolver.BruteForceSolver method), 23
method), 25 test_point1() (pycrypt.keygenerators.test_crossovers.TestCrossovers
solve() (pycrypt.solvers.geneticsolver.GeneticSolver method), 23
method), 26 test_point2() (pycrypt.keygenerators.test_crossovers.TestCrossovers
solve() (pycrypt.solvers.solver.Solver method), 26 method), 23
solve() (pycrypt.solvers.threadedgeneticsolver. Threaded Genttse Ssaltleey () (pycrypt.translators.test_substitutiontranslator. TestSubstitutio
method), 27 method), 31
Solver (class in pycrypt.solvers.solver), 26 test_translate() (pycrypt.translators.test_binarytranslator. TestBinaryTranslat
split() (in module pycrypt.utils), 32 method), 30
startWithOne (pycrypt.translators.binarytranslator.Binary Traestatoanslate() (pycrypt.translators.test_brailletranslator. TestBrailleTranslat
attribute), 27 method), 30
SubstitutionKeyGenerator (class in py- test_translate() (pycrypt.translators.test_caesartranslator. TestCaesarTranslat
crypt.keygenerators.substitutionkeygenerator), method), 30
23 test_translate() (pycrypt.translators.test_morsecodetranslator. TestMorseCod
SubstitutionTranslator (class in py- method), 30
crypt.translators.substitutiontranslator), 29 test_translate() (pycrypt.translators.test_polishcrosstranslator. TestPolishCro
method), 31
T test_translate() (pycrypt.translators.test_semaphoretranslator. TestSemaphor
test_encode() (pycrypt.translators.test_binarytranslator. TestBinary TradSkifsed), 31
method), 30 test_translate() (pycrypt.translators.test_substitutiontranslator. TestSubstituti
test_encode() (pycrypt.translators.test_brailletranslator. TestBrailleTrarf8gifed), 31
method), 30 test_translate() (pycrypt.translators.test_vigeneretranslator. TestVigenereTrai
test_encode() (pycrypt.translators.test_caesartranslator. TestCaesar TrariSg#opd). 31
method), 30 TestBinaryTranslator (class in py-
test_encode() (pycrypt.translators.test_morsecodetranslator. TestMorse€To@é Tiasiieys. test_binarytranslator), 30
method), 30 TestBrailleTranslator (class in py-
test_encode() (pycrypt.translators.test_polishcrosstranslator. TestPolisHTYSSstTaRskaigst. test_brailletranslator), 30
method), 31

42 Index

pycrypt Documentation, Release 0.2

TestCaesarTranslator (class in py-
crypt.translators.test_caesartranslator), 30

TestCrossovers (class in py-
crypt.keygenerators.test_crossovers), 23

TestMorseCodeTranslator (class in py-
crypt.translators.test_morsecodetranslator),
30

TestPolishCrossTranslator (class in py-
crypt.translators.test_polishcrosstranslator),
31

TestSemaphoreTranslator (class in py-
crypt.translators.test_semaphoretranslator),
31

TestSubstitutionTranslator (class in py-
crypt.translators.test_substitutiontranslator),
31

TestVigenereTranslator (class in py-
crypt.translators.test_vigeneretranslator),
31

ThreadedGeneticSolver (class in py-

crypt.solvers.threadedgeneticsolver), 26
Tournament (class in pycrypt.keygenerators.crossovers),
22

unlock() (pycrypt.keygenerators.substitutionkeygenerator.SubstitutionKeyG
method), 23

V

VigenereTranslator (class in
crypt.translators.vigeneretranslator), 32

Py-

W

words (pycrypt.scorers.languagescorer.LanguageScorer
attribute), 24
wordWeight (pycrypt.scorers.languagescorer.LanguageScorer

attribute), 24

X

XorTranslator (class in pycrypt.translators.xortranslator),
32

translate() (pycrypt.translators.asciitranslator. ASCIITranslator

method), 27

translate() (pycrypt.translators.binarytranslator.Binary Translator

method), 28

translate() (pycrypt.translators.brailletranslator.BrailleTranslator

method), 28

translate() (pycrypt.translators.caesartranslator.CaesarTranslator

method), 28

translate() (pycrypt.translators.morsecodetranslator. MorseCodeTranslator

method), 28

translate() (pycrypt.translators.numberedalphabettranslator.Numbered AlphabetTranslator

method), 29

translate() (pycrypt.translators.polishcrosstranslator.PolishCrossTranslator

method), 29

translate() (pycrypt.translators.semaphoretranslator.SemaphoreTranslator

method), 29

translate() (pycrypt.translators.substitutiontranslator.Substitution Translator

method), 29
translate()
method), 10, 31

(pycrypt.translators.translator. Translator

translate() (pycrypt.translators.vigeneretranslator. Vigenere Translator

method), 32

translate() (pycrypt.translators.xortranslator. XorTranslator

method), 32
Translator (class in pycrypt.translators.translator), 10, 31

U

unidec (pycrypt.scorers.languagescorer.LanguageScorer

attribute), 24

unlock() (pycrypt.keygenerators.permutationkeygenerator.PermutationKeyGenerator

method), 23

Index

43

	Changelog
	v0.2 - Apr 16, 2015
	v0.1 - Mar 18, 2014

	Contents:
	Introduction
	What is it for?
	What does it do?
	Who is it for?

	Getting started
	Getting pycrypt's source
	Installation
	Running tests
	First script

	Structure
	Class diagram
	Why are you telling me all this??
	Next steps

	Translators
	Basic usage
	Making your own Translator
	Further reading

	KeyGenerators
	Basic usage
	Making your own KeyGenerator
	Further reading

	Scorers
	Basic usage
	Making your own Scorer
	Further reading

	Solvers
	Basic usage
	Advanced usage
	Making your own Solver
	Next steps
	Further reading

	What's new in v0.2
	The island model
	Evolution plotting
	Crossovers
	Temperature scaling
	Cached scoring
	Easier installation

	API
	pycrypt package
	pycrypt.utils module
	Module contents

	Indices and tables
	Python Module Index

