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 [https://pycorrelate.readthedocs.io/en/latest/?badge=latest]Pycorrelate computes fast and accurate cross-correlation over
arbitrary time lags.
Cross-correlations can be calculated on “uniformly-sampled” signals
or on “point-processes”, such as photon timestamps.
Pycorrelate allows computing cross-correlation at log-spaced lags covering
several orders of magnitude. This type of cross-correlation is
commonly used in physics or biophysics for techniques such as
fluorescence correlation spectroscopy (FCS [https://en.wikipedia.org/wiki/Fluorescence_correlation_spectroscopy]) or
dynamic light scattering (DLS [https://en.wikipedia.org/wiki/Dynamic_light_scattering]).

Two types of correlations are implemented:


	ucorrelate [https://pycorrelate.readthedocs.io/en/latest/api.html#pycorrelate.pycorrelate.ucorrelate]:
the classical text-book linear cross-correlation between two signals
defined at uniformly spaced intervals.
Only positive lags are computed and a max lag can be specified.
Thanks to the limit in the computed lags, this function can be much faster than
numpy.correlate [https://docs.scipy.org/doc/numpy/reference/generated/numpy.correlate.html#numpy.correlate].


	pcorrelate [https://pycorrelate.readthedocs.io/en/latest/api.html#pycorrelate.pycorrelate.pcorrelate]:
cross-correlation of discrete events
in a point-process. In this case input arrays can be timestamps or
positions of “events”, for example photon arrival times.
This function implements the algorithm in
Laurence et al. Optics Letters (2006) [https://doi.org/10.1364/OL.31.000829].
This is a generalization of the multi-tau algorithm which retains
high execution speed while allowing arbitrary time-lag bins.




Pycorrelate is implemented in Python 3 and operates on standard numpy arrays.
Execution speed is optimized using numba [https://numba.pydata.org/].


	Free software: GNU General Public License v3


	Documentation: https://pycorrelate.readthedocs.io.
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Installation


Stable release

To install Pycorrelate, run this command in your terminal:

$ pip install pycorrelate





This is the preferred method to install Pycorrelate, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.




From sources

The sources for Pycorrelate can be downloaded from the Github repo [https://github.com/tritemio/pycorrelate].

You can either clone the public repository:

$ git clone git://github.com/tritemio/pycorrelate





Or download the tarball [https://github.com/tritemio/pycorrelate/tarball/master]:

$ curl  -OL https://github.com/tritemio/pycorrelate/tarball/master





Once you have a copy of the source, you can install it with:

$ python setup.py install











          

      

      

    

  

    
      
          
            
  


Usage

Imports:

import numpy as np
import pycorrelate as pyc





Create two arrays t and u of discrete events, exponentially correlated:

np.random.seed(1)
size = 10**4
t = np.sort(np.random.randint(0, 10**5, size=size))
u = np.sort(t + np.random.exponential(scale=10, size=t.size).astype(np.int64))





Compute correlation:

lags = np.arange(0, 201)
G = pyc.pcorrelate(t, u, lags)





G contains the cross-correlation of t and u at the defined lags.

For more examples see Pycorrelate examples.





          

      

      

    

  

    
      
          
            
  


API Reference

Quick links:


	pcorrelate()


	pnormalize()


	make_loglags()


	ucorrelate()





List of Pycorrelate functions

Functions to compute linear correlation on discrete signals (uniformly
sampled in time) or on point-processes (e.g. timestamps of events).


	
pycorrelate.pycorrelate.make_loglags(exp_min, exp_max, points_per_base, base=10)

	Make a log-spaced array useful as lag bins for cross-correlation.

This function conveniently creates an arrays on lag-bins to be used
with pcorrelate().


	Parameters

	
	exp_min (int) – exponent of the minimum value


	exp_max (int) – exponent of the maximum value


	points_per_base (int) – number of points per base
(i.e. in a decade when base = 10)


	base (int) – base of the exponent. Default 10.






	Returns

	Array of log-spaced values with specified range and spacing.





Example

Compute log10-spaced bins with 2 bins per decade, starting
from 10⁻¹ and stopping at 10³:

>>> make_loglags(-1, 3, 2)
array([  1.00000000e-01,   3.16227766e-01,   1.00000000e+00,
         3.16227766e+00,   1.00000000e+01,   3.16227766e+01,
         1.00000000e+02,   3.16227766e+02,   1.00000000e+03])






See also

pcorrelate()








	
pycorrelate.pycorrelate.pcorrelate

	Compute correlation of two arrays of discrete events (Point-process).

The input arrays need to be values of a point process, such as
photon arrival times or positions. The correlation is efficiently
computed on an arbitrary array of lag-bins. As an example, bins can be
uniformly spaced in log-space and span several orders of magnitudes.
(you can use make_loglags() to creat log-spaced bins).
This function implements the algorithm described in
(Laurence 2006) [https://doi.org/10.1364/OL.31.000829].


	Parameters

	
	t (array) – first array of “points” to correlate. The array needs
to be monothonically increasing.


	u (array) – second array of “points” to correlate. The array needs
to be monothonically increasing.


	bins (array) – bin edges for lags where correlation is computed.


	normalize (bool) – if True, normalize the correlation function
as typically done in FCS using pnormalize(). If False,
return the unnormalized correlation function.






	Returns

	Array containing the correlation of t and u.
The size is len(bins) - 1.






See also

make_loglags() to genetate log-spaced lag bins.








	
pycorrelate.pycorrelate.pnormalize

	Normalize point-process cross-correlation function.

This normalization is usually employed for fluorescence correlation
spectroscopy (FCS) analysis.
The normalization is performed according to
(Laurence 2006) [https://doi.org/10.1364/OL.31.000829].
Basically, the input argument G is multiplied by:


\[\frac{T-\tau}{n(\{i \ni t_i \le T - \tau\})n(\{j \ni u_j \ge \tau\})}\]

where n({}) is the operator counting the elements in a set, t and u
are the input arrays of the correlation, τ is the time lag and T
is the measurement duration.


	Parameters

	
	G (array) – raw cross-correlation to be normalized.


	t (array) – first input array of “points” used to compute G.


	u (array) – second input array of “points” used to compute G.


	bins (array) – array of bins used to compute G. Needs to have the
same units as input arguments t and u.






	Returns

	Array of normalized values for the cross-correlation function,
same size as the input argument G.










	
pycorrelate.pycorrelate.ucorrelate

	Compute correlation of two signals defined at uniformly-spaced points.

The correlation is defined only for positive lags (including zero).
The input arrays represent signals defined at uniformily-spaced
points. This function is equivalent to numpy.correlate() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.correlate.html#numpy.correlate], but can
efficiently compute correlations on a limited number of lags.

Note that binning point-processes with uniform bins, provides
signals that can be passed as argument to this function.


	Parameters

	
	tx (array) – first signal to be correlated


	ux (array) – second signal to be correlated


	maxlag (int) – number of lags where correlation is computed.
If None, computes all the lags where signals overlap
min(tx.size, tu.size) - 1.






	Returns

	Array contained the correlation at different lags.
The size of this array is equal to the input argument maxlag
(if defined) or to min(tx.size, tu.size) - 1.





Example

Correlation of two signals t and u:

>>> t = np.array([1, 2, 0, 0])
>>> u = np.array([0, 1, 1])
>>> pycorrelate.ucorrelate(t, u)
array([2, 3, 0])





The same result can be obtained with numpy swapping t and u and
restricting the results only to positive lags:

>>> np.correlate(u, t, mode='full')[t.size - 1:]
array([2, 3, 0])















          

      

      

    

  

    
      
          
            
  


Pycorrelate examples

This notebook shows howto use pycorrelate as well as comparisons
with other implementations.



In [1]:






import numpy as np
import h5py









In [2]:






# Tweak here matplotlib style
import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams['font.sans-serif'].insert(0, 'Arial')
mpl.rcParams['font.size'] = 14
%config InlineBackend.figure_format = 'retina'
%matplotlib inline









In [3]:






import pycorrelate as pyc








Load Data

We start by downloading some timestamps data:



In [4]:






url = 'http://files.figshare.com/2182601/0023uLRpitc_NTP_20dT_0.5GndCl.hdf5'
pyc.utils.download_file(url, save_dir='data')













URL:  http://files.figshare.com/2182601/0023uLRpitc_NTP_20dT_0.5GndCl.hdf5
File: 0023uLRpitc_NTP_20dT_0.5GndCl.hdf5

File already on disk: data/0023uLRpitc_NTP_20dT_0.5GndCl.hdf5
Delete it to re-download.








In [5]:






fname = './data/' + url.split('/')[-1]
h5 = h5py.File(fname)
unit = 12.5e-9









In [6]:






num_ph = int(3e6)
detectors = h5['photon_data']['detectors'][:num_ph]
timestamps = h5['photon_data']['timestamps'][:num_ph]
t = timestamps[detectors == 0]
u = timestamps[detectors == 1]









In [7]:






t.shape, u.shape, t[0], u[0]









Out[7]:






((839592,), (1844370,), 146847, 188045)









In [8]:






t.max()*unit, u.max()*unit









Out[8]:






(599.99944191249995, 599.99847228750002)







Timestamps need to be monotonic, let’s test it:



In [9]:






assert (np.diff(t) > 0).all()
assert (np.diff(u) > 0).all()










Log-scale bins (base 10)

Here we compute the cross-correlation on log10-spaced bins.

First we compute the array of lag bins using the function
make_loglags [http://pycorrelate.readthedocs.io/en/latest/api.html#pycorrelate.pycorrelate.make_loglags]:



In [10]:






# compute lags in sec. then convert to timestamp units
bins = pyc.make_loglags(-7, 0, 10) / unit







Then, we compute the cross-correlation using the function
pcorrelate [http://pycorrelate.readthedocs.io/en/latest/api.html#pycorrelate.pycorrelate.pcorrelate]:



In [11]:






G = pyc.pcorrelate(t, u, bins)









In [12]:






fig, ax = plt.subplots(figsize=(10, 6))
plt.plot(bins*unit, np.hstack((G[:1], G)), drawstyle='steps-pre')
plt.xlabel('Time (s)')
#for x in bins[1:]: plt.axvline(x*unit, lw=0.2)  # to mark bins
plt.grid(True); plt.grid(True, which='minor', lw=0.3)
plt.xscale('log')
plt.xlim(30e-9, 2)









Out[12]:






(3e-08, 2)












[image: ../_images/notebooks_pycorrelate-examples_17_1.png]







Log-scale bins (base 2)

Here we compute the same cross-correlation on log2-spaced bins.

First we compute the array of lag bins using the function
make_loglags [http://pycorrelate.readthedocs.io/en/latest/api.html#pycorrelate.pycorrelate.make_loglags]:



In [13]:






# compute lags directly in timestamp units
bins = pyc.make_loglags(-1, 28, 1, base=2).astype('int')







Then, we compute the cross-correlation using the function
pcorrelate [http://pycorrelate.readthedocs.io/en/latest/api.html#pycorrelate.pycorrelate.pcorrelate]:



In [14]:






G = pyc.pcorrelate(t, u, bins)









In [15]:






fig, ax = plt.subplots(figsize=(10, 6))
plt.plot(bins*unit, np.hstack((G[:1], G)), drawstyle='steps-pre')
plt.xlabel('Time (s)')
#for x in bins[1:]: plt.axvline(x*unit, lw=0.2)  # to mark bins
plt.grid(True); plt.grid(True, which='minor', lw=0.3)
plt.xscale('log')
plt.xlim(30e-9, 2)









Out[15]:






(3e-08, 2)












[image: ../_images/notebooks_pycorrelate-examples_22_1.png]







Multi-tau bins

Finally, we compute the cross-correlation on arbitrarly-spaced bins.
Similar to the multi-tau bins, here we use constant bin size for a
number of bins (n_group), then we double the bin size and we keep it
constant for another n_group and so on:



In [16]:






n_group = 4
bin_widths = []
for i in range(26):
    bin_widths += [2**i]*n_group
np.array(bin_widths)
bins = np.hstack(([0], np.cumsum(bin_widths)))







Then, we compute the cross-correlation using the function
pcorrelate [http://pycorrelate.readthedocs.io/en/latest/api.html#pycorrelate.pycorrelate.pcorrelate]:



In [17]:






G = pyc.pcorrelate(t, u, bins)









In [18]:






fig, ax = plt.subplots(figsize=(10, 6))
plt.plot(bins*unit, np.hstack((G[:1], G)), drawstyle='steps-pre')
plt.xlabel('Time (s)')
#for x in bins[1:]: plt.axvline(x*unit, lw=0.2)  # to mark bins
plt.grid(True); plt.grid(True, which='minor', lw=0.3)
plt.xscale('log')
plt.xlim(30e-9, 2)









Out[18]:






(3e-08, 2)












[image: ../_images/notebooks_pycorrelate-examples_27_1.png]







Test: comparison with np.histogram

For testing alternative (slower) implementations we use smaller input
arrays:



In [19]:






tt = t[:5000]
uu = u[:5000]







The algoritm implemented in pycorrelate.pcorrelate can be re-written
in a very simple way using numpy.histogram:



In [20]:






# compute lags in sec. then convert to timestamp units
bins = pyc.make_loglags(-7, 0, 10) / unit









In [21]:






Y = np.zeros(bins.size - 1, dtype=np.int64)
for ti in tt:
    Yc, _ = np.histogram(uu - ti, bins=bins)
    Y += Yc
G = Y / np.diff(bins)









In [22]:






assert (G == pyc.pcorrelate(tt, uu, bins)).all()







Test passed! Here we demonstrated that the logic of the algorithm is
implemented as described in the paper (and in the few lines of code
above).




Tests: comparison with np.correlate

The comparison with np.correlate is a little tricky. First we need
to bin our input to create timetraces that can be correlated by linear
convolution. For testing purposes, let’s choice some timetrace bins:



In [23]:






binwidth = 50e-6
bins_tt = np.arange(0, tt.max()*unit, binwidth) / unit
bins_uu = np.arange(0, uu.max()*unit, binwidth) / unit









In [24]:






bins_tt.max()*unit, bins_tt.size









Out[24]:






(4.1372499999999999, 82746)









In [25]:






bins_uu.max()*unit, bins_uu.size









Out[25]:






(1.8020999999999998, 36043)









In [26]:






tx, _ = np.histogram(tt, bins=bins_tt)
ux, _ = np.histogram(uu, bins=bins_uu)

plt.figure(figsize=(10, 6))
plt.plot(bins_tt[1:]*unit, tx)
plt.plot(bins_uu[1:]*unit, ux)
plt.xlabel('Time (s)')









Out[26]:






Text(0.5,0,'Time (s)')












[image: ../_images/notebooks_pycorrelate-examples_39_1.png]




The plots above are the two curves we are going to feed to
np.correlate:



In [27]:






C = np.correlate(ux, tx, mode='full')







We need to trim the result to obtain a proper alignment with the 0-time
lag:



In [28]:






Gn = C[tx.size-1:]  # trim to positive time lags







Now, we can check that both numpy.correlate and
pycorrelate.ucorrelate give the same result:



In [29]:






Gu = pyc.ucorrelate(tx, ux)
assert (Gu == Gn).all()







Now, let’s compute the correlation also with pycorrelate.pcorrelate:



In [30]:






maxlag_sec = 3.9
lagbins = (np.arange(0, maxlag_sec, binwidth) / unit).astype('int64')









In [31]:






Gp = pyc.pcorrelate(tt, uu, lagbins) * int(binwidth / unit)







Let’s plot a comparison:



In [32]:






fig, ax = plt.subplots(figsize=(10, 6))
Gn_t = np.arange(1, Gn.size+1) * binwidth * 1e3
Gu_t = np.arange(1, Gu.size+1) * binwidth * 1e3
Gp_t = lagbins[1:] * unit * 1e3
plt.plot(Gn_t, Gn, alpha=1, lw=2, label='numpy.correlate')
plt.plot(Gu_t, Gu, alpha=0.6, lw=2, label='pycorrelate.ucorrelate')
plt.plot(Gp_t, Gp, alpha=0.7, lw=2, label='pycorrelate.pcorrelate')
plt.xlabel('Time (ms)', fontsize='large')
plt.grid(True)
plt.xlim(30e-3, 500)
plt.xscale('log')
plt.title('pycorrelate.correlate vs numpy.correlate', fontsize='x-large')
plt.legend(loc='best', fontsize='x-large');












[image: ../_images/notebooks_pycorrelate-examples_50_0.png]







Conclusion


	numpy.correlate and pycorrelate.ucorrelate give identical
results, with the latter being much faster. Note that the inputs are
swapped between the two functions.


	pycorrelate.ucorrelate and pycorrelate.pcorrelate agree when
using uniform time-lag bins.










          

      

      

    

  

    
      
          
            
  


Simple FCS example

This notebook shows howto compute and fit an FCS curve using
pycorrelate.


Initial imports



In [1]:






import numpy as np
import h5py









In [2]:






# Tweak here matplotlib style
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams['font.sans-serif'].insert(0, 'Arial')
mpl.rcParams['font.size'] = 14









In [3]:






import pycorrelate as pyc
pyc.__version__









Out[3]:






'0.3'









In [4]:






import lmfit
lmfit.__version__









Out[4]:






'0.9.7'










Load Data

We start downloading a sample dataset of a smFRET “measurement” with a
single CW excitation laser and two detectors donor (D) and acceptor (A)
(the data is actually a simulation performed with
PyBroMo [http://tritemio.github.io/PyBroMo/]).



In [5]:






url = 'http://files.figshare.com/4917046/smFRET_44f3da_P_20_s0_20_s20_D_6.0e11_6.0e11_E_75_30_EmTot_200k_200k_BgD1500_BgA800_t_max_600s.hdf5'
pyc.utils.download_file(url, save_dir='data')













URL:  http://files.figshare.com/4917046/smFRET_44f3da_P_20_s0_20_s20_D_6.0e11_6.0e11_E_75_30_EmTot_200k_200k_BgD1500_BgA800_t_max_600s.hdf5
File: smFRET_44f3da_P_20_s0_20_s20_D_6.0e11_6.0e11_E_75_30_EmTot_200k_200k_BgD1500_BgA800_t_max_600s.hdf5

File already on disk: data/smFRET_44f3da_P_20_s0_20_s20_D_6.0e11_6.0e11_E_75_30_EmTot_200k_200k_BgD1500_BgA800_t_max_600s.hdf5
Delete it to re-download.








In [6]:






fname = './data/' + url.split('/')[-1]
h5 = h5py.File(fname)
unit = h5['photon_data']['timestamps_specs']['timestamps_unit'][()]
unit









Out[6]:






4.9999999999999998e-08







We can check that there are only two detectors:



In [7]:






np.unique(h5['photon_data']['detectors'][:])









Out[7]:






array([0, 1], dtype=uint8)







Then load the timestamps in two arrays t and u:



In [8]:






detectors = h5['photon_data']['detectors'][:]
timestamps = h5['photon_data']['timestamps'][:]
t = timestamps[detectors == 0]
u = timestamps[detectors == 1]









In [9]:






t.shape, u.shape, t[0], u[0]









Out[9]:






((1152331,), (755468,), 50, 128800)









In [10]:






t.max()*unit, u.max()*unit









Out[10]:






(599.99934099999996, 599.99989349999998)







Timestamps need to be monotonic:



In [11]:






assert (np.diff(t) >= 0).all()
assert (np.diff(u) >= 0).all()










Compute CCF

To avoid afterpulsing, we can compute the cross-correlation function
(CCF) between D and A channels.

We first create the lag bins array with the
make_loglags() [http://pycorrelate.readthedocs.io/en/latest/api.html#pycorrelate.pycorrelate.make_loglags]
function:



In [12]:






# compute lags in sec. then convert to timestamp units
bins_per_dec = 20
bins = pyc.make_loglags(-6, 1, bins_per_dec)[bins_per_dec // 2:] / unit







Then, we compute the cross-correlation with
pcorrelate [http://pycorrelate.readthedocs.io/en/latest/api.html#pycorrelate.pycorrelate.pcorrelate]:



In [13]:






Gn = pyc.pcorrelate(t, u, bins, normalize=True)







Plotting the CCF function Gn we observe the typical diffusion shape:



In [14]:






fig, ax = plt.subplots(figsize=(10, 6))
plt.semilogx(bins[1:]*unit, Gn, drawstyle='steps-pre')
plt.xlabel('Time (s)')
plt.grid(True); plt.grid(True, which='minor', lw=0.3);












[image: ../_images/notebooks_Simple_FCS_example_21_0.png]







Fit FCS model

The next step is fitting the computed CCF with a model. For
freely-diffusing species under confocal excitation (and no
photo-physics) the simplest model is the 2D model (i.e. the PSF z
dimension is neglected):


\[G(\tau) = 1 + A_0 \, \left(1 + \frac{\tau}{\tau_D} \right)^{-1}\]

The full 3D model is just slightly more complicated:


\[G(\tau) = 1 + A_0 \, \left(1 + \frac{\tau}{\tau_D} \right)^{-1} \;
\left[ 1 + \left(\frac{r}{z}\right)^2\frac{\tau}{\tau_D} \right]^{-1/2}\]

There is a link between \(A_0\) and concentration. Neglecting
background, \(A_0 = 1/N\) where \(N\) is the mean number of
molecules in the excitation volume. The background makes
\(A_0 < 1/N\). For full expression see Orrit
2002 [http://doi.org/10.1002%2F1438-5171%28200211%293%3A5%2F6%3C255%3A%3AAID-SIMO255%3E3.0.CO%3B2-8].

Here, for the sake of the example, we will just fit the simple 2D model.

Let’s start defining the model functions and the array of time-lags:



In [15]:






def diffusion_2d(timelag, tau_diff, A0):
    return 1 + A0 * 1/(1 + timelag/tau_diff)

def diffusion_3d(timelag, tau_diff, A0, waist_z_ratio=0.1):
    return (1 + A0 * 1/(1 + timelag/tau_diff) *
            1/np.sqrt(1 + waist_z_ratio**2 * timelag/tau_diff))









In [16]:






tau = 0.5 * (bins[1:] + bins[:-1]) * unit







Now we build a “fitting model” with
lmfit [https://lmfit.github.io/lmfit-py/] and use it to fit the CCF
curve Gn:



In [17]:






model = lmfit.Model(diffusion_2d)
params = model.make_params(A0=1, tau_diff=1e-3)
params['A0'].set(min=0.01, value=1)
params['tau_diff'].set(min=1e-6, value=1e-3)
#params['waist_z_ratio'].set(value=1/6, vary=False)  # 3D model only

weights = np.ones_like(Gn)
#weights = np.log(np.sqrt(G*np.diff(bins)))  # and example of using weights
fitres = model.fit(Gn, timelag=tau, params=params, method='least_squares',
                   weights=weights)
print('\nList of fitted parameters for %s: \n' % model.name)
fitres.params.pretty_print(colwidth=10, columns=['value', 'min', 'max'])














List of fitted parameters for Model(diffusion_2d):

Name           Value        Min        Max
A0             3.219       0.01        inf
tau_diff   0.0001495      1e-06        inf






Finally, we plot fit results and residuals:



In [18]:






fig, ax = plt.subplots(2, 1, figsize=(10, 8), sharex=True,
                       gridspec_kw={'height_ratios': [3, 1]})
plt.subplots_adjust(hspace=0)
ax[0].semilogx(tau, Gn)
for a in ax:
    a.grid(True); a.grid(True, which='minor', lw=0.3)
ax[0].plot(tau, fitres.best_fit)
ax[1].plot(tau, fitres.residual*weights, 'k')
ym = np.abs(fitres.residual*weights).max()
ax[1].set_ylim(-ym, ym)
ax[1].set_xlim(bins[0]*unit, bins[-1]*unit);
tau_diff_us = fitres.values['tau_diff'] * 1e6
msg = ((r'$G(0)-1$ = {A0:.2f}'+'\n'+r'$\tau_D$ = {tau_diff_us:.0f} μs')
       .format(A0=fitres.values['A0'], tau_diff_us=tau_diff_us))
ax[0].text(.75, .9, msg,
           va='top', ha='left', transform=ax[0].transAxes, fontsize=18);
ax[0].set_ylabel('G(τ)')
ax[1].set_ylabel('residuals')
ax[0].set_title('Donor-Acceptor CCF')
ax[1].set_xlabel('Time Lag, τ (s)');
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The flatness of the residual indicates a good fit. If you followed so
far, you should be able to extent this example to use more complex
models when needed.







          

      

      

    

  

    
      
          
            
  


Theory


Cross-correlation of point processes

In fluorescence correlation spectroscopy (FCS) the
(normalized) cross-correlation function (CCF)
of two continuous signals \(I_1(t)\) and
\(I_2(t)\) is defined as:


\[G(\tau) = \frac{\langle I_1(t)\; I_2(t) \rangle}
               {\langle I_1(t)\rangle\langle I_2(t) \rangle}\]

The auto-correlation function (ACF) is just a special case where
\(I_1(t) = I_2(t)\).

In actual experiments, signals are not continuous but come from
single-photon detectors that produce a pulse for each photon. These pulses
are usually timestamped with ~10ns resolution. The series of photon
arrival times is used as input for ACF or CCF computations.

In principle, timestamps can be binned to produce a discrete-time signal.
In signal processing, the (non-normalized) cross-correlation of two
real discrete-time signals \(\{A_i\}\) and
\(\{B_i\}\) is defined as


\[c[k] = \sum_{i=0}^{N} A[i]\ B[i+k].\]

The previous formula is implemented by ucorrelate() and
numpy.correlate [https://docs.scipy.org/doc/numpy/reference/generated/numpy.correlate.html#numpy.correlate].

Binning timestamps to obtain timetraces would be very inefficient for FCS
analysis where time-lags spans may orders of magnitude.
It is much more efficient to directly compute the cross-correlation function
from timestamps.
The popular multi-tau algorithm allows computing the correlation directly
from timestamps on a fixed arrangement of quasi-log-spaced bins.
More generally, Laurence algorithm
(Laurence et al. Optics Letters (2006) [https://doi.org/10.1364/OL.31.000829])
allows computing cross-correlation from timestamps on arbitrary bins of
time-lags, with similar performances as the multi-tau.
Computing cross-correlation \(C(\tau)\) from timestamps is fundamentally
a counting tasks. Given two timestamps arrays t and u and
considering the k-th time-lag bin \([\tau_k, \tau_{k+1})\),
\(C(k)\) is the number of pairs where:


\[\tau_k \le t_i - u_j < \tau_{k+1}\]

for all the possible i and j combinations.


(1)\[C(k) = \frac{n(\{(i,j) \ni t_i < u_i - \Delta\tau_k\})}{\Delta\tau_k}\]

where n({}) is the operator counting the elements in a set,
\(\Delta\tau_k\) is the duration of the k-th time-lag bin and T
is the measurement duration.
For FCS we normally want the normalized CCF, that is:


(2)\[G(k) = \frac{n(\{(i,j) \ni t_i < u_i - \Delta\tau_k\})}
            {n(\{i \ni t_i \le T - \Delta\tau_k\})\:n(\{j \ni u_j \ge \Delta\tau_k\})}
       \frac{(T-\Delta\tau_k)}{\Delta\tau_k}\]

Eq. (1) and (2) are implemented by pcorrelate(),
where the argument normalize allows choosing between the normalized
and unnormalized version.


Note

In Laurence 2006 the expression for G(k) (there called
\(C_{AB}(\tau)\)) does not include the \(\Delta\tau_k\)
in the denominator due to a typo.
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Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:


Types of Contributions


Report Bugs

Report bugs at https://github.com/tritemio/pycorrelate/issues.

If you are reporting a bug, please include:


	Your operating system name and version.


	Any details about your local setup that might be helpful in troubleshooting.


	Detailed steps to reproduce the bug.







Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.




Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.




Write Documentation

Pycorrelate could always use more documentation, whether as part of the
official Pycorrelate docs, in docstrings, or even on the web in blog posts,
articles, and such.




Submit Feedback

The best way to send feedback is to file an issue at https://github.com/tritemio/pycorrelate/issues.

If you are proposing a feature:


	Explain in detail how it would work.


	Keep the scope as narrow as possible, to make it easier to implement.


	Remember that this is a volunteer-driven project, and that contributions
are welcome :)









Get Started!

Ready to contribute? Here’s how to set up pycorrelate for local development.


	Fork the pycorrelate repo on GitHub.


	Clone your fork locally:

$ git clone git@github.com:your_name_here/pycorrelate.git







	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv pycorrelate
$ cd pycorrelate/
$ python setup.py develop







	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature





Now you can make your changes locally.



	When you’re done making changes, check that your changes pass tests (not yet, see #3 [https://github.com/tritemio/pycorrelate/issues/3]), and that notebooks runs without errors.


	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature







	Submit a pull request through the GitHub website.







Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:


	The pull request should include tests (for now see #3 [https://github.com/tritemio/pycorrelate/issues/3]).


	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.


	The pull request should work for Python 3.5+. Check
https://travis-ci.org/tritemio/pycorrelate/pull_requests
and make sure that the tests pass for all supported Python versions.







Tips

To run a subset of tests (not yet, see #3 [https://github.com/tritemio/pycorrelate/issues/3]):

$ py.test tests.test_pycorrelate











          

      

      

    

  

    
      
          
            
  


Credits


Development Lead


	Antonino Ingargiola <tritemio@gmail.com>







Contributors

None yet. Why not be the first?







          

      

      

    

  

    
      
          
            
  


History


0.2.1 (2017-11-15)


	Added normalization for FCS curves (see pnormalize [http://pycorrelate.readthedocs.io/en/latest/api.html#pycorrelate.pycorrelate.pnormalize]).


	Added example notebook showing how to fit a simple FCS curve


	Renamed ucorrelate [http://pycorrelate.readthedocs.io/en/latest/api.html#pycorrelate.pycorrelate.ucorrelate] argument from maxlags to maxlag.


	Added theory page [http://pycorrelate.readthedocs.io/en/latest/theory.html] in the documentation, showing the exact formula used for CCF calculations.







0.1.0 (2017-07-23)


	First release on PyPI.
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