

Python Copper

Copper is a module aimed at providing low-level hardware abstraction
layers (HAL) as Python modules. Copper aims to create a simple and well
designed API that will allow engineers with a diversity of skill sets and
skill levels to develop complex eletromechanical systems from common
off-the-shelf components.

Be lazy like a fox: control hardware with readable code.

>>> from copper.usb import firmata
>>> from copper.i2c import pca9685
>>> uno = firmata.ArduinoUno('95530343434351A002E0')
>>> uno.i2c_enable()
>>> servo = pca9685.Pca9685(i2c=uno.i2c, address=0x40)
>>> servo.set_pwm_duty(channel=0, duty=0.8)

	Introduction

	User Guide
	Installation

	Quickstart

	Contributor Guide
	Development Philosophy

	Coding Standards

	Code Contributions

History

Version 0.9

	Initial version.

	Support for USB devices:

	Arduino Uno, Mega, and Due running StandardFirmata.

	FTDI serial devices (not using D2XX or MPSSE).

	ChromiumOS Tigertail USB-C multiplexor.

	Support for I²C components:

	PCA9685 PWM controller.

	HTU21D temperature and humidity sensor.

License

Copyright 2018 Google Inc. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Copper was borne out of the desire to develop complex hardware systems using
using common off-the-shelf components while using Python as the language to
drive complex business logic. Such a system is common in hardware test
automation, autonomous vehicles, manufacturing stations, and other robotic
applications.

At the time of its inception, many solutions exist for individual components
but none share a common API theme with each other. The Copper effort attempts
to bring all of these under one effort with a single consistent API style
with interfaces for protocol delegation.

The focus of Copper is good API by design. An API should be simple and
consistent. Their affordances should be obvious–a class named Htu21d,
for example, should have methods for interacting with a HTU21D temperature
and humidity sensor and nothing else. There should be simple and obvious
methods and properties such as temperature and humidity for this
particular example.

User Guide

This part of the documentation provides information for getting started as
a user of Copper and begins with simple examples.

Installation

From PyPi

To install Copper, simply run this command in your terminal of choice:

$ pip install copper

We recommend doing this in a virtual environment or any other Python
sandboxing system you may be using.

From Source Code

Copper can be installed from source. This may be useful if you plan on
contributing to Copper:

$ git clone git://github.com/google/copper/copper.git
$ pip install -e copper

Once installed, any changes made to that directory will affect future imports
of the Copper module from thereon.

Quickstart

This page will guide you through the process of writing your first code with
Copper. Be sure that Copper is installed and updated to the
latest version. Let’s start with some basic examples.

Creating a Diagram

A good system design start off with a block diagram of major hardware
components and their connectivity with respect to each other.

[image: _images/quickstart_arch.svg]

Notice that the host system is unable to physically communicate directly with
the PCA9685, HTU21D, or the three LED circuits. Instead, the host uses an
Arduino Uno loaded with the StandardFirmata firmware and proxies I²C requests
through an I²C delegate and toggles the LED circuit through GPIO delegates.

Initializing Objects

Begin by importing the module for each unique physical device in the system.
This can be done in a REPL shell environment such as IPython.

>>> from copper.usb import firmata
>>> from copper.i2c import pca9685
>>> from copper.i2c import htu21d

This will import modules containing drivers for Firmata-based USB devices,
the PCA9685 PWM controller, and the HTU21D temperature humidity sensor. We
can now instaniate an object for each hardware device. We’ll start with the
Arduino Uno.

All USB devices in Copper are refered to by an identifier unique to each
device. This is typically iSerialNumber which can be gleaned differently
for each operating system platform. usbinfo [https://usbinfo.readthedocs.io] can be used on POSIX systems.
Once the serial number for the Arduino Uno is obtained, we can instantiate
an uno object as such:

>>> uno = firmata.ArduinoUno('95530343434351A002E0')
>>> uno.i2c_enable()

The uno object now forms a persistent Firmata connection with the Arduino
Uno. The second line initializes the I²C since the Uno is capable of using
the two pins as regular non-I²C GPIOs. The i2c member is the sole I²C
delegate for this device so the PCA9685 and HTU21D can proxy all I²C traffic
through this member. We first instantiate these two devices. For the PCA9685,
we assign its address to 0x40 since the device has been pin-strapped with
that address value.

>>> servo = pca9685.Pca9685(i2c=uno.i2c, address=0x40)

This assigns the I²C delegate of the uno object to the PCA9685. Likewise,
we do the same for the HTU21D.

>>> environ_sensor = htu21d.Htu21d(i2c=uno.i2c)

Interacting with Devices

Each device will have its own set of methods for getting and setting
properties and performing other functions. For example, the PCA9685 is a
16-channel PWM generator. We can set its frequency to 60Hz and set the
duty cycle for various channels. For example:

>>> servo.set_pwm_freq(60) # set frequency to 60Hz
>>> servo.set_pwm_duty(0, 0.5) # set channel 0 to 50% duty

Likewise, the HTU21D temperature and humidity sensor will have its own set
of methods:

>>> environ_sensor.temperature
23.4
>>> environ_sensor.humidity
42.5

For the example above, the three LEDs can be toggled by calling their GPIO
delegate methods. For example:

>>> [uno.gpio[idx].read() for idx in range(2, 5)]
[0, 0, 0]

This indicates that GPIO_2, GPIO_3, and GPIO_4 are all low and
not driving their respective LED. The following will cause each LED to blink
in sequence for a second each.

>>> while True:
 for i in range(2, 5):
 for j in range(2, 5):
 uno.gpio[j].write(1 if i == j else 0)
 time.sleep(1)

Contributor Guide

This part of the documentation focuses on allowing users to contribute new
modules to the Copper library. Copper is designed as a living and growing
library of hardware abstractions built from community contributions.

Development Philosophy

Copper was designed around the PEP 20 [https://www.python.org/dev/peps/pep-0020] philosphy.

	Beautiful is better than ugly.

	Explicit is better than implicit.

	Simple is better than complex.

	Complex is better than complicated.

	Readability counts.

	If the implementation is hard to explain, it’s a bad idea. If the
implementation is easy to explain, it may be a good idea.

In addition, we believe in many design values espoused by Don Norman. A
software API is much like a user interface for developers so we think that
many of the same principles apply. A good API should be stylistically
consistent. It should be obvious what each part of an API affords without
the need to consult documentation or requiring the user to understand the
implementation of that API. Moreover, a good API should not carry unnecessary
functionality or have any hidden side effects.

All contributions to Copper should keep these in mind.

Coding Standards

Copper generally follows PEP 8 [https://www.python.org/dev/peps/pep-0008] with a few additions and exceptions:

	Each indentation level is 2 spaces to help avoid exceeding the 79 character
limit. This will require a change to your editor settings if your editor
automatically indents Python.

	Use parentheses instead of a continuation \ when exceeding the line
limit.

	Avoid using logging unless it is suppressed by default. Logging within
low-level code has the potential to inundate the console with excessive
information that many users may not want.

	Always use single-quoted strings unless you absolutely need to.

	Never directly reference any file path or designator that only exists in
your personal setup. For example, references to character device files like
/dev/ttyACM0 may refer to something different on someone else’s setup
than it does on yours.

Code Contributions

When contributing to Copper, you will want to follow these steps:

	Add a new issue on GitHub.

	Fork the repository on GitHub.

	Write tests that validate your changes.

	Make your change.

	Run all tests and confirm that they pass.

	Send a GitHub Pull Request to Copper’s master branch.

Index

 P

P

 	
 	
 Python Enhancement Proposals

 	PEP 20

 	PEP 8

copper

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Python Copper

 		
 Introduction

 		
 User Guide

 		
 Installation

 		
 From PyPi

 		
 From Source Code

 		
 Quickstart

 		
 Creating a Diagram

 		
 Initializing Objects

 		
 Interacting with Devices

 		
 Contributor Guide

 		
 Development Philosophy

 		
 Coding Standards

 		
 Code Contributions

_static/down-pressed.png

_static/comment-close.png

_static/up.png

_static/comment.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/comment-bright.png

