

    
      
          
            
  
Welcome to pycoal’s documentation!

Contents:



	Introduction
	What is Pycoal?

	Dependencies





	Quickstart

	Mineral Classification API

	Mining Identification API

	Environmental Correlation API








Indices and tables


	Index







          

      

      

    

  

    
      
          
            
  
Introduction

COAL is a Python library for processing hyperspectral imagery from remote sensing devices such as the Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS). COAL is being developed as a 2016 – 2017 senior capstone collaboration between scientists at the Jet Propulsion Laboratory (JPL) and computer science students at Oregon State University (OSU). COAL aims to provide a suite of algorithms for classifying land cover, identifying mines and other geographic features, and correlating them with environmental data sets. COAL is Free and Open Source Software under the terms of the Apache License Version 2.0.


What is Pycoal?

pycoal provides a suite of algorithms (written in Python) to identify, classify, characterize, and quantify (by reporting a number of key metrics) the direct and indirect impacts of MTM and related destructive surface mining activities across the continental U.S.A (and further afield).




Dependencies


	Spectral Python [http://www.spectralpython.net/]: needed for the mineral classification and mining identification APIs.

	NumPy [http://www.numpy.org/]: needed for the mineral classification and mining identification APIs.

	GDAL [http://www.gdal.org/]: needed for the GIS processing API.



More information on coal can be seen at the project Website [https://capstone-coal.github.io/] as well as the docs directory [https://github.com/capstone-coal/pycoal/tree/master/docs].







          

      

      

    

  

    
      
          
            
  
Quickstart

In the examples directory [https://github.com/capstone-coal/pycoal/tree/master/examples] you can find several Jupyter notebooks with specific applications of coal. You can launch a cloud Jupyter server using binder to edit the notebooks without installing anything. Try it out [http://mybinder.org/repo/capstone-coal/pycoal]!





          

      

      

    

  

    
      
          
            
  
Mineral Classification API


	
class pycoal.mineral.MineralClassification(libraryFilename, classNames=None, threshold=0.0, inMemory=False)

	
	
__init__(libraryFilename, classNames=None, threshold=0.0, inMemory=False)

	Construct a new MineralClassification object with a spectral library
in ENVI format such as the USGS Digital Spectral Library 06 [https://speclab.cr.usgs.gov/spectral.lib06/] or the ASTER Spectral
Library Version 2.0 [https://speclib.jpl.nasa.gov/] converted with
pycoal.mineral.AsterConversion.convert().

If provided, the optional class name parameter will initialize the
classifier with a subset of the spectral library, otherwise the full
spectral library will be used.

The optional threshold parameter defines a confidence value between zero
and one below which classifications will be discarded, otherwise all
classifications will be included.

In order to improve performance on systems with sufficient memory,
enable the optional parameter to load entire images.





	Parameters:	
	libraryFilename (str) – filename of the spectral library

	classNames (str[], optional) – list of names of classes to include

	threshold (float, optional) – classification threshold

	inMemory (boolean, optional) – enable loading entire image














	
classifyImage(imageFilename, classifiedFilename)

	Classify minerals in an AVIRIS image using spectral angle mapper
classification and save the results to a file.





	Parameters:	
	imageFilename (str) – filename of the image to be classified

	classifiedFilename (str) – filename of the classified image






	Returns:	None












	
static filterClasses(classifiedFilename)

	Modify a classified image to remove unused classes.





	Parameters:	classifiedFilename (str) – file of the classified image


	Returns:	None










	
static subsetSpectralLibrary(spectralLibrary, classNames)

	Create a copy of the spectral library containing only the named classes.





	Parameters:	
	spectralLibrary (SpectralLibrary) – ENVI spectral library

	classNames (str[]) – list of names of classes to include






	Returns:	subset of ENVI spectral library




	Return type:	SpectralLibrary












	
static toRGB(imageFilename, rgbImageFilename, red=680.0, green=532.5, blue=472.5)

	Generate a three-band RGB image from an AVIRIS image and save it to a file.





	Parameters:	
	imageFilename (str) – filename of the source image

	rgbImageFilename (str) – filename of the three-band RGB image

	red (float, optional) – wavelength in nanometers of the red band

	green (float, optional) – wavelength in nanometers of the green band

	blue (float, optional) – wavelength in nanometers of the blue band






	Returns:	None
















	
class pycoal.mineral.AsterConversion

	
	
__init__()

	This class provides a method for converting the ASTER Spectral
Library Version 2.0 into ENVI format.





	Parameters:	None – 










	
classmethod convert(data_dir='', db_file='', hdr_file='')

	This class method generates an ENVI format spectral library file.
data_dir is optional as long as db_file is provided. Note that
generating an SQLite database takes upwards of 10 minutes and creating
an ENVI format file takes up to 5 minutes. Note: This feature is still
experimental.





	Parameters:	
	data_dir (str, optional) – path to directory containing ASCII data files

	db_file (str) – name of the SQLite file that either already exists if
data_dir isn’t provided, or will be generated if
data_dir is provided

	hdr_file (str) – name of the ENVI spectral library to generate
(without the .hdr or .sli extension)





















          

      

      

    

  

    
      
          
            
  
Mining Identification API


	
class pycoal.mining.MiningClassification(classNames=[u'Schwertmannite BZ93-1 s06av95a=b', u'Renyolds_TnlSldgWet SM93-15w s06av95a=a', u'Renyolds_Tnl_Sludge SM93-15 s06av95a=a'])

	
	
__init__(classNames=[u'Schwertmannite BZ93-1 s06av95a=b', u'Renyolds_TnlSldgWet SM93-15w s06av95a=a', u'Renyolds_Tnl_Sludge SM93-15 s06av95a=a'])

	Construct a new MiningClassification object given an optional list of
spectral class names which defaults to coal mining proxies.





	Parameters:	classNames (str[]) – list of class names to identify.










	
classifyImage(imageFilename, classifiedFilename)

	Classify mines or other features in a PyCOAL mineral classified image by
copying relevant pixels and discarding the rest in a new file.





	Parameters:	
	imageFilename (str) – filename of the image to be classified

	classifiedFilename (str) – filename of the classified image






	Returns:	None



















          

      

      

    

  

    
      
          
            
  
Environmental Correlation API


	
class pycoal.environment.EnvironmentalCorrelation

	
	
__init__()

	Construct a new EnvironmentalCorrelation object.






	
createEmptyCopy(sourceFilename, destinationFilename)

	Create an empty copy of a PyCOAL classified image with the same size.





	Parameters:	
	sourceFilename (str) – filename of the source image

	destinationFilename (str) – filename of the destination image














	
intersectProximity(miningFilename, vectorFilename, proximity, correlatedFilename)

	Generate an environmental correlation image containing pixels from the
mining classified image detected within a given distance of features
within a vector layer.





	Parameters:	
	miningImage (str) – filename of the mining classified image

	vectorLayer (str) – filename of vector layer

	proximity (float) – distance in meters

	correlatedImage (str) – filename of the correlated image














	
proximity(featureFilename, proximityFilename)

	Generate a proximity map from the features.





	Parameters:	
	featureFilename (str) – filename of the feature image

	proximityFilename (str) – filename of the proximity image














	
rasterize(vectorFilename, featureFilename)

	Burn features from a vector image onto a raster image.





	Parameters:	
	vectorFilename (str) – filename of the vector image

	featureFilename (str) – filename of the raster image





















          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | C
 | E
 | F
 | I
 | M
 | P
 | R
 | S
 | T
 


_


  	
      	__init__() (pycoal.environment.EnvironmentalCorrelation method)

      
        	(pycoal.mineral.AsterConversion method)


        	(pycoal.mineral.MineralClassification method)


        	(pycoal.mining.MiningClassification method)


      


  





A


  	
      	AsterConversion (class in pycoal.mineral)


  





C


  	
      	classifyImage() (pycoal.mineral.MineralClassification method)

      
        	(pycoal.mining.MiningClassification method)


      


  

  	
      	convert() (pycoal.mineral.AsterConversion class method)


      	createEmptyCopy() (pycoal.environment.EnvironmentalCorrelation method)


  





E


  	
      	EnvironmentalCorrelation (class in pycoal.environment)


  





F


  	
      	filterClasses() (pycoal.mineral.MineralClassification static method)


  





I


  	
      	intersectProximity() (pycoal.environment.EnvironmentalCorrelation method)


  





M


  	
      	MineralClassification (class in pycoal.mineral)


  

  	
      	MiningClassification (class in pycoal.mining)


  





P


  	
      	proximity() (pycoal.environment.EnvironmentalCorrelation method)


  





R


  	
      	rasterize() (pycoal.environment.EnvironmentalCorrelation method)


  





S


  	
      	subsetSpectralLibrary() (pycoal.mineral.MineralClassification static method)


  





T


  	
      	toRGB() (pycoal.mineral.MineralClassification static method)


  







          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		Welcome to pycoal's documentation!


        		Introduction
          
          		What is Pycoal?


          		Dependencies


          


        


        		Quickstart


        		Mineral Classification API


        		Mining Identification API


        		Environmental Correlation API


      


    
  

_static/comment.png





_static/plus.png





_static/down.png





_static/comment-close.png





_static/file.png





_static/minus.png





_static/up-pressed.png





_static/comment-bright.png





_static/up.png





_static/down-pressed.png





_static/ajax-loader.gif





