pyclblas Documentation

Release 0.5.0

Jon Roose
1 Blas Families 3
1.1 BLAS Level 1 Functions 3
1.1.1 SWAP - Swap elements from 2 vectors 3
1.1.2 SCAL - Scales a vector by a constant 5
1.1.3 SSCAL - Scales a complex vector by a real constant 7
1.1.4 COPY - Copies elements from vector X to vector Y 8
1.1.5 AXPY - Scale X and add to Y 10
1.1.6 DOT - Dot product of two vectors 12
1.1.7 ROTG - Constructs givens plane rotation 15
1.1.8 ROTMG - Constructs the modified givens rotation 17
1.1.9 ROT - Apply givens rotation 19
1.1.10 ROTM - Apply modified givens rotation for points in the plane 21
1.1.11 NRM2 - Euclidean norm of a vector 22
1.1.12 iAMAX - Index of max absolute value 24
1.1.13 ASUM - Sum of absolute values 26
1.2 BLAS Level 2 Functions 28
1.2.1 GEMV - General matrix-Vector multiplication 28
1.2.2 SYMV - Symmetric matrix-Vector multiplication 31
1.2.3 HEMV - Hermitian matrix-vector multiplication 33
1.2.4 TRMV - Triangular matrix vector multiply 34
1.2.5 TRSV - Triangular matrix vector Solve 37
1.2.6 GER - General matrix rank 1 operation 40
1.2.7 GERU - General matrix rank 1 operation 41
1.2.8 GERC - General matrix rank 1 operation 43
1.2.9 SYR - Symmetric rank 1 update 44
1.2.10 HER - Hermitian rank 1 operation 45
1.2.11 SYR2 - Symmetric rank 2 update 46
1.2.12 HER2 - Hermitian rank 2 update 48
1.2.13 TPMV - Triangular packed matrix-vector multiply 49
1.2.14 TPSV - Triangular packed matrix vector solve 52
1.2.15 SPMV - Symmetric packed matrix vector multiply 54
1.2.16 HPMV - Hermitian packed matrix-vector multiplication 55
1.2.17 SPR - Symmetric packed matrix rank 1 update 57
1.2.18 HPR - Hermitian packed matrix rank 1 update 58
1.2.19 SPR2 - Symmetric packed matrix rank 2 update 59
1.2.20 HPR2 - Hermitian packed matrix rank 2 update 60
1.2.21 GBMV - General banded matrix-vector multiplication 62
1.2.22 TBMV - Triangular banded matrix vector multiply 65
1.2.23 SBMV - Symmetric banded matrix-vector multiplication 68
1.2.24 HBMV - Hermitian banded matrix-vector multiplication 70
1.2.25 TBSV - Solving triangular banded matrix 71
1.3 BLAS Level 3 Functions 74
1.3.1 GEMM - General matrix-matrix multiplication 74
1.3.2 TRMM - Triangular matrix-matrix multiplication 78
1.3.3 TRSM - Solving triangular systems of equations 81
1.3.4 SYRK - Symmetric rank-k update of a matrix 85
1.3.5 SYR2K - Symmetric rank-2k update to a matrix 88
1.3.6 SYMM - Symmetric matrix-matrix multiply 91
1.3.7 HEMM - Hermitian matrix-matrix multiplication 95
1.3.8 HERK - Hermitian rank-k update to a matrix 97
1.3.9 HER2K - Hermitian rank-2k update to a matrix 99
Python Module Index 101

Contents:

CHAPTER 1

Blas Families

BLAS Level 1 Functions

SWAP - Swap elements from 2 vectors

pyclblas.clblasCswap (N, X, offx, incx, Y, offy, incy, commandQueues, eventWaitList)
wraps: clblasCswap
interchanges two vectors of complex-float elements.

Parameters

- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X}.
- X (pyopencl.Buffer [out]) - Buffer object storing vector X.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- Y (pyopencl. Buffer [out]) - Buffer object storing the vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of \mathbf{Y}. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasDswap (N, X, offx, incx, Y, offy, incy, commandQueues, eventWaitList)
wraps: clblasDswap
interchanges two vectors of double.

Parameters

- $\mathbf{N}($ int [in] $)$ - Number of elements in vector \mathbf{X}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- $\mathbf{Y}($ pyopencl. Buffer [out]) - Buffer object storing the vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasSswap (N, X, offx, incx, Y, offy, incy, commandQueues, eventWaitList)
wraps: clblasSswap
interchanges two vectors of float.

Parameters

- $\mathbf{N}($ int $[i n])-$ Number of elements in vector \mathbf{X}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- $\mathbf{Y}($ pyopencl. Buffer [out] $)$ - Buffer object storing the vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZswap (N, X, offx, incx, Y, offy, incy, commandQueues, eventWaitList)
wraps: clblasZswap
interchanges two vectors of double-complex elements.

Parameters

- $\mathbf{N}($ int [in] $)$ - Number of elements in vector \mathbf{X}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector X.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of X. Must not be zero.
- Y (pyopencl. Buffer [out]) - Buffer object storing the vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

SCAL - Scales a vector by a constant

pyclblas.clblasCscal (N, alpha, X, offx, incx, commandQueues, eventWaitList)
wraps: clblasCscal
Scales a complex-float vector by a complex-float constant.
$\bullet(\mathbf{X} \leftarrow \alpha \mathbf{X})$

Parameters

- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X}.
- alpha (complex [in]) - The constant factor for vector \mathbf{X}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasDscal (N, alpha, X, offx, incx, commandQueues, eventWaitList)
wraps: clblasDscal
Scales a double vector by a double constant.
$\cdot(\mathrm{X} \leftarrow \alpha \mathrm{X})$

Parameters

- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X}.
- alpha (float [in]) - The constant factor for vector \mathbf{X}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector X.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasSscal (N, alpha, X, offx, incx, commandQueues, eventWaitList)
wraps: clblasSscal
Scales a float vector by a float constant.
$\cdot(\mathbf{X} \leftarrow \alpha \mathbf{X})$

Parameters

- N(int [in]) - Number of elements in vector \mathbf{X}.
- alpha (float [in]) - The constant factor for vector \mathbf{X}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector X.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZscal (N, alpha, X, offx, incx, commandQueues, eventWaitList)
wraps: clblasZscal
Scales a complex-double vector by a complex-double constant.

$$
\bullet(\mathbf{X} \leftarrow \alpha \mathbf{X})
$$

Parameters

- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X}.
- alpha (complex [in]) - The constant factor for vector \mathbf{X}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector X.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

SSCAL - Scales a complex vector by a real constant

pyclblas.clblasCsscal (N, alpha, X, offx, incx, commandQueues, eventWaitList)
wraps: clblasCsscal
Scales a complex-float vector by a float constant.

$$
\bullet(\mathbf{X} \leftarrow \alpha \mathbf{X})
$$

Parameters

- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X}.
- alpha (float [in]) - The constant factor for vector \mathbf{X}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of X. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZdscal (N, alpha, X, offx, incx, commandQueues, eventWaitList)
wraps: clblasZdscal
Scales a complex-double vector by a double constant.
$\cdot(\mathrm{X} \leftarrow \alpha \mathrm{X})$

Parameters

- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X}.
- alpha (float [in]) - The constant factor for vector \mathbf{X}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector X.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of X. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

COPY - Copies elements from vector X to vector Y

pyclblas.clblasCcopy (N, X, offx, incx, Y, offy, incy, commandQueues, eventWaitList)
wraps: clblasCcopy
Copies complex-float elements from vector X to vector Y .
$\cdot(\mathrm{Y} \leftarrow \mathrm{X})$

Parameters

- $\mathbf{N}($ int [in] $)$ - Number of elements in vector \mathbf{X}.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- $\mathbf{Y}($ pyopencl. Buffer [out]) - Buffer object storing the vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasDcopy (N, X, offx, incx, Y, offy, incy, commandQueues, eventWaitList)
wraps: clblasDcopy
Copies double elements from vector X to vector Y .
$\cdot(\mathrm{Y} \leftarrow \mathrm{X})$

Parameters

- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X}.
- X (pyopencl. Buffer [in]) - Buffer object storing vector X.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- Y (pyopencl. Buffer [out]) - Buffer object storing the vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in])- OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasScopy (N, X, offx, incx, Y, offy, incy, commandQueues, eventWaitList)
wraps: clblasScopy
Copies float elements from vector X to vector Y .
$\bullet(\mathrm{Y} \leftarrow \mathrm{X})$

Parameters

- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X}.
- X (pyopencl. Buffer [in]) - Buffer object storing vector X.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- Y (pyopencl. Buffer [out]) - Buffer object storing the vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZcopy (N, X, offx, incx, Y, offy, incy, commandQueues, eventWaitList)
wraps: clblasZcopy
Copies complex-double elements from vector X to vector Y .
$\bullet(\mathrm{Y} \leftarrow \mathrm{X})$

Parameters

- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X}.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- $\mathbf{Y}($ pyopencl. Buffer [out] $)$ - Buffer object storing the vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- commandQueues (pyopencl.CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

AXPY - Scale X and add to Y

pyclblas.clblasCaxpy (N, alpha, X, offx, incx, Y, offy, incy, commandQueues, eventWaitList) wraps: clblasCaxpy

Scale vector X of complex-float elements and add to Y .
$\cdot(\mathrm{Y} \leftarrow \alpha \mathrm{X}+\mathrm{Y})$

Parameters

- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X}.
- alpha (complex [in]) - The constant factor for vector \mathbf{X}.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- \mathbf{Y} (pyopencl. Buffer [out]) - Buffer object storing the vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasDaxpy (N, alpha, X, offx, incx, Y, offy, incy, commandQueues, eventWaitList)
wraps: clblasDaxpy
Scale vector X of double elements and add to Y .
$\cdot(\mathrm{Y} \leftarrow \alpha \mathrm{X}+\mathrm{Y})$

Parameters

- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X}.
- alpha (float [in]) - The constant factor for vector \mathbf{X}.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in])- Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- Y (pyopencl. Buffer [out]) - Buffer object storing the vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasSaxpy (N, alpha, X, offx, incx, Y, offy, incy, commandQueues, eventWaitList) wraps: clblasSaxpy

Scale vector X of float elements and add to Y .
$\cdot(\mathrm{Y} \leftarrow \alpha \mathrm{X}+\mathrm{Y})$

Parameters

- \mathbf{N} (int [in]) - Number of elements in vector \mathbf{X}.
- alpha (float [in]) - The constant factor for vector \mathbf{X}.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- Y (pyopencl. Buffer [out]) - Buffer object storing the vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of \mathbf{Y}. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZaxpy (N, alpha, X, offx, incx, Y, offy, incy, commandQueues, eventWaitList)
wraps: clblasZaxpy
Scale vector X of double-complex elements and add to Y .

$$
\bullet(\mathrm{Y} \leftarrow \alpha \mathrm{X}+\mathrm{Y})
$$

Parameters

- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X}.
- alpha (complex [in]) - The constant factor for vector \mathbf{X}.
- X (pyopencl. Buffer [in]) - Buffer object storing vector X.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- Y (pyopencl. Buffer [out]) - Buffer object storing the vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

DOT - Dot product of two vectors

pyclblas.clblasDdot (N, dotProduct, offDP, X, offx, incx, Y, offy, incy, scratchBuff, commandQueues, eventWaitList)
wraps: clblasDdot
dot product of two vectors containing double elements

Parameters

- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X}.
- dotProduct (pyopencl. Buffer [out]) - Buffer object that will contain the dotproduct value.
- offDP (int [in]) - Offset to dot-product in dotProduct buffer object. Counted in elements.
- X (pyopencl. Buffer [in]) - Buffer object storing vector X.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- \mathbf{Y} (pyopencl. Buffer [in]) - Buffer object storing the vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- scratchBuff (pyopencl.Buffer [in])- Temporary cl_mem scratch buffer object of minimum size N .
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasSdot (N, dotProduct, offDP, X, offx, incx, Y, offy, incy, scratchBuff, commandQueues, eventWaitList)
wraps: clblasSdot
dot product of two vectors containing float elements

Parameters

- $\mathbf{N}($ int $[i n])-$ Number of elements in vector \mathbf{X}.
- dotProduct (pyopencl.Buffer [out]) - Buffer object that will contain the dotproduct value.
- offip (int [in]) - Offset to dot-product in dotProduct buffer object. Counted in elements.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- Y (pyopencl.Buffer [in]) - Buffer object storing the vector \mathbf{Y}.
- offy (int [in])- Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- scratchBuff (pyopencl. Buffer [in]) - Temporary cl_mem scratch buffer object of minimum size N .
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasCdotu (N, dotProduct, offDP, X, offx, incx, Y, offy, incy, scratchBuff, commandQueues, eventWaitList)
wraps: clblasCdotu
dot product of two vectors containing float-complex elements

Parameters

- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X}.
- dotProduct (pyopencl.Buffer [out]) - Buffer object that will contain the dotproduct value.
- offip (int [in]) - Offset to dot-product in dotProduct buffer object. Counted in elements.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of X. Must not be zero.
- Y (pyopencl.Buffer [in]) - Buffer object storing the vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- scratchBuff (pyopencl.Buffer [in]) - Temporary cl_mem scratch buffer object of minimum size N .
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZdotu (N, dotProduct, offDP, X, offx, incx, Y, offy, incy, scratchBuff, commandQueues, eventWaitList)
wraps: clblasZdotu
dot product of two vectors containing double-complex elements

Parameters

- \mathbf{N} (int [in]) - Number of elements in vector \mathbf{X}.
- dotProduct (pyopencl.Buffer [out]) - Buffer object that will contain the dotproduct value.
- offDP (int [in]) - Offset to dot-product in dotProduct buffer object. Counted in elements.
- X (pyopencl.Buffer [in])-Buffer object storing vector X.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- Y (pyopencl. Buffer [in]) - Buffer object storing the vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- scratchBuff (pyopencl.Buffer [in]) - Temporary cl_mem scratch buffer object of minimum size N .
- commandQueues (pyopencl.CommandQueue [in])-OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasCdotc (N, dotProduct, offDP, X, offx, incx, Y, offy, incy, scratchBuff, commandQueues, eventWaitList)
wraps: clblasCdotc
dot product of two vectors containing float-complex elements conjugating the first vector

Parameters

- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X}.
- dotProduct (pyopencl.Buffer [out]) - Buffer object that will contain the dotproduct value.
- offDP (int [in]) - Offset to dot-product in dotProduct buffer object. Counted in elements.
- \mathbf{X} (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- $\mathbf{Y}($ pyopencl.Buffer [in]) - Buffer object storing the vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- scratchBuff (pyopencl.Buffer [in])- Temporary cl_mem scratch buffer object of minimum size N .
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZdotc (N, dotProduct, offDP, X, offx, incx, Y, offy, incy, scratchBuff, commandQueues, eventWaitList)
wraps: clblasZdotc
dot product of two vectors containing double-complex elements conjugating the first vector

Parameters

- $\mathbf{N}($ int [in] $)$ - Number of elements in vector \mathbf{X}.
- dotProduct (pyopencl.Buffer [out]) - Buffer object that will contain the dotproduct value.
- offDP (int [in]) - Offset to dot-product in dotProduct buffer object. Counted in elements.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- \mathbf{Y} (pyopencl. Buffer [in]) - Buffer object storing the vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of \mathbf{Y}. Must not be zero.
- scratchBuff (pyopencl.Buffer [in]) - Temporary cl_mem scratch buffer object of minimum size N .
- commandQueues (pyopencl. CommandQueue [in])- OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

ROTG - Constructs givens plane rotation

pyclblas.clblasCrotg (CA, offCA, CB, offCB, C, offC, S, offS, commandQueues, eventWaitList) wraps: clblasCrotg
construct givens plane rotation on float-complex elements

Parameters

- CA (pyopencl. Buffer [out]) - Buffer object that contains CA.
- offca (int [in]) - Offset to CA in CA buffer object. Counted in elements.
- CB (pyopencl. Buffer [out]) - Buffer object that contains CB.
- offcb (int [in]) - Offset to CB in CB buffer object. Counted in elements.
- C (pyopencl. Buffer [out]) - Buffer object that contains C. C is real.
- offC (int [in]) - Offset to C in \mathbf{C} buffer object. Counted in elements.
- S (pyopencl.Buffer [out]) - Buffer object that contains S.
- offs (int [in]) - Offset to S in \mathbf{S} buffer object. Counted in elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasDrotg (DA, offDA, $D B$, offDB, C, offC, S, offS, commandQueues, eventWaitList)
wraps: clblasDrotg
construct givens plane rotation on double elements

Parameters

- DA (pyopencl. Buffer [out]) - Buffer object that contains DA.
- offDA (int [in]) - Offset to DA in DA buffer object. Counted in elements.
- DB (pyopencl. Buffer [out]) - Buffer object that contains DB.
- offDB (int [in]) - Offset to DB in DB buffer object. Counted in elements.
- C (pyopencl.Buffer [out]) - Buffer object that contains C.
- offC (int [in]) - Offset to C in C buffer object. Counted in elements.
- S (pyopencl. Buffer [out])-Buffer object that contains S.
- offs (int [in]) - Offset to S in \mathbf{S} buffer object. Counted in elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasSrotg (SA, offSA, SB, offSB, C, offC, S, offS, commandQueues, eventWaitList)
wraps: clblasSrotg
construct givens plane rotation on float elements

Parameters

- SA (pyopencl. Buffer [out]) - Buffer object that contains SA.
- offsA (int [in]) - Offset to SA in SA buffer object. Counted in elements.
- SB (pyopencl.Buffer [out]) - Buffer object that contains SB.
- offsB (int [in]) - Offset to SB in SB buffer object. Counted in elements.
- C (pyopencl.Buffer [out]) - Buffer object that contains C.
- offC (int [in]) - Offset to C in \mathbf{C} buffer object. Counted in elements.
- S (pyopencl. Buffer [out]) - Buffer object that contains S.
- offs (int [in]) - Offset to S in \mathbf{S} buffer object. Counted in elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZrotg (CA, offCA, $C B$, offCB, C, offC, S, offS, commandQueues, eventWaitList) wraps: clblasZrotg
construct givens plane rotation on double-complex elements

Parameters

- CA (pyopencl. Buffer [out]) - Buffer object that contains CA.
- offCA (int [in]) - Offset to CA in CA buffer object. Counted in elements.
- CB (pyopencl. Buffer [out]) - Buffer object that contains CB.
- offcB (int [in]) - Offset to CB in CB buffer object. Counted in elements.
- C (pyopencl. Buffer [out]) - Buffer object that contains C. C is real.
- offC (int [in]) - Offset to \mathbf{C} in \mathbf{C} buffer object. Counted in elements.
- S (pyopencl. Buffer [out]) - Buffer object that contains S.
- offs (int [in]) - Offset to S in \mathbf{S} buffer object. Counted in elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

ROTMG - Constructs the modified givens rotation

pyclblas.clblasDrotmg (DD1, offDD1, DD2, offDD2, DX1, offDX1, DY1, offDY1, DPARAM, offDparam, commandQueues, eventWaitList)
wraps: clblasDrotmg
construct the modified givens rotation on double elements

Parameters

- DD1 (pyopencl.Buffer [out]) - Buffer object that contains DD1.
- offidd (int [in]) - Offset to DD1 in DD1 buffer object. Counted in elements.
- DD2 (pyopencl.Buffer [out]) - Buffer object that contains DD2.
- offDD2 (int [in]) - Offset to DD2 in DD2 buffer object. Counted in elements.
- DX1 (pyopencl.Buffer [out]) - Buffer object that contains DX1.
- offDX1 (int [in]) - Offset to DX1 in DX1 buffer object. Counted in elements.
- DY1 (pyopencl. Buffer [in])-Buffer object that contains DY1.
- offDY1 (int [in]) - Offset to DY1 in DY1 buffer object. Counted in elements.
- DPARAM (pyopencl. Buffer [out]) - Buffer object that contains DPARAM array of minimum length $5 \operatorname{DPARAM}(0)=$ DFLAG DPARAM $(1)=\mathrm{DH} 11 \operatorname{DPARAM}(2)=\mathrm{DH} 21$ $\operatorname{DPARAM}(3)=$ DH12 DPARAM $(4)=\mathrm{DH} 22$.
- offDparam (int [in]) - Offset to DPARAM in DPARAM buffer object. Counted in elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied. pyclblas.clblasSrotmg (SD1, offSD1, SD2, offSD2, SX1, offSX1, SY1, offSY1, SPARAM, offSparam, commandQueues, eventWaitList)
wraps: clblasSrotmg
construct the modified givens rotation on float elements

Parameters

- SD1 (pyopencl. Buffer [out]) - Buffer object that contains SD1.
- offsD1 (int [in]) - Offset to SD1 in SD1 buffer object. Counted in elements.
- SD2 (pyopencl.Buffer [out]) - Buffer object that contains SD2.
- offsD2 (int [in]) - Offset to SD2 in SD2 buffer object. Counted in elements.
- SX1 (pyopencl. Buffer [out]) - Buffer object that contains SX1.
- offsx1 (int [in]) - Offset to SX1 in SX1 buffer object. Counted in elements.
- SY1 (pyopencl. Buffer [in]) - Buffer object that contains SY1.
- offsy1 (int [in]) - Offset to SY1 in SY1 buffer object. Counted in elements.
- SPARAM (pyopencl.Buffer [out]) - Buffer object that contains SPARAM array of minimum length $5 \operatorname{SPARAM}(0)=\operatorname{SFLAG} \operatorname{SPARAM}(1)=\operatorname{SH} 11 \operatorname{SPARAM}(2)=\operatorname{SH} 21$ $\operatorname{SPARAM}(3)=\operatorname{SH} 12 \operatorname{SPARAM}(4)=\mathrm{SH} 22$.
- offsparam (int [in]) - Offset to SPARAM in SPARAM buffer object. Counted in elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

ROT - Apply givens rotation

pyclblas.clblasDrot (N, X, offx, incx, Y, offy, incy, C, S, commandQueues, eventWaitList)
wraps: clblasDrot
applies a plane rotation for double elements

Parameters

- $\mathbf{N}($ int $[i n])-$ Number of elements in vector \mathbf{X} and \mathbf{Y}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector X.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of X. Must not be zero.
- $\mathbf{Y}($ pyopencl. Buffer [out] $)$ - Buffer object storing the vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of \mathbf{Y}. Must not be zero.
- C (float [in]) - C specifies the cosine, cos.
- $\mathbf{S}(f l o a t[i n])-S$ specifies the sine, sin.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasSrot (N, X, offx, incx, Y, offy, incy, C, S, commandQueues, eventWaitList)
wraps: clblasSrot
applies a plane rotation for float elements

Parameters

- \mathbf{N} (int [in]) - Number of elements in vector \mathbf{X} and \mathbf{Y}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector X.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- Y (pyopencl. Buffer [out]) - Buffer object storing the vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- C (float [in]) - C specifies the cosine, cos.
- $\mathbf{S}(f l o a t[i n])-S$ specifies the sine, \sin.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasCsrot (N, X, offx, incx, Y, offy, incy, C, S, commandQueues, eventWaitList)
wraps: clblasCsrot
applies a plane rotation for float-complex elements

Parameters

- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X} and \mathbf{Y}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector X.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- Y (pyopencl. Buffer [out]) - Buffer object storing the vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- C (float [in])-C specifies the cosine, cos. This number is real.
- $\mathbf{S}(f l o a t[i n])-S$ specifies the sine, sin. This number is real.
- commandQueues (pyopencl.CommandQueue [in])-OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZdrot (N, X, offx, incx, Y, offy, incy, C, S, commandQueues, eventWaitList)
wraps: clblasZdrot
applies a plane rotation for double-complex elements

Parameters

- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X} and \mathbf{Y}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- $\mathbf{Y}($ pyopencl. Buffer [out]) - Buffer object storing the vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- C (float [in])-C specifies the cosine, cos. This number is real.
- \mathbf{S} (float [in]) - S specifies the sine, sin. This number is real.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

ROTM - Apply modified givens rotation for points in the plane

pyclblas.clblasDrotm (N, X, offx, incx, Y, offy, incy, DPARAM, offDparam, commandQueues, eventWaitList)
wraps: clblasDrotm
modified givens rotation for double elements

Parameters

- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X} and \mathbf{Y}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- Y (pyopencl. Buffer [out]) - Buffer object storing the vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- DPARAM (pyopencl.Buffer [in]) - Buffer object that contains SPARAM array of minimum length 5 DPARAM(1)=DFLAG DPARAM(2)=DH11 DPARAM(3)=DH21 DPARAM(4)=DH12 DPARAM(5)=DH22.
- offDparam (int [in]) - Offset of first element of array DPARAM in buffer object. Counted in elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasSrotm (N, X, offx, incx, Y, offy, incy, SPARAM, offSparam, commandQueues, eventWaitList)
wraps: clblasSrotm
modified givens rotation for float elements

Parameters

- $\mathbf{N}($ int $[i n])-$ Number of elements in vector \mathbf{X} and \mathbf{Y}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- Y (pyopencl. Buffer [out]) - Buffer object storing the vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- SPARAM (pyopencl.Buffer [in]) - Buffer object that contains SPARAM array of minimum length $5 \operatorname{SPARAM}(1)=$ SFLAG $\operatorname{SPARAM}(2)=\operatorname{SH} 11 \operatorname{SPARAM}(3)=\mathrm{SH} 21$ $\operatorname{SPARAM}(4)=$ SH12 SPARAM(5)=SH22.
- offsparam (int [in]) - Offset of first element of array SPARAM in buffer object. Counted in elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

NRM2 - Euclidean norm of a vector

pyclblas.clblasDnrm2 (N, NRM2, offNRM2, X, offx, incx, scratchBuff, commandQueues, eventWaitList) wraps: clblasDnrm2
computes the euclidean norm of vector containing double elements NRM2 $=\operatorname{sqrt}\left(\mathrm{X}^{\prime} * \mathrm{X}\right)$

Parameters

- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X}.
- NRM2 (pyopencl. Buffer [out]) - Buffer object that will contain the NRM2 value.
- offNRM2 (int [in]) - Offset to NRM2 value in NRM2 buffer object. Counted in elements.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- scratchBuff (pyopencl.Buffer [in]) - Temporary cl_mem scratch buffer object that can hold minimum of $(2 * N)$ elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasSnrm2 (N, NRM2, offNRM2, X, offx, incx, scratchBuff, commandQueues, eventWaitList) wraps: clblasSnrm2
computes the euclidean norm of vector containing float elements NRM2 $=\operatorname{sqrt}\left(\mathrm{X}^{\prime} * \mathrm{X}\right)$

Parameters

- $\mathbf{N}($ int [in] $)$ - Number of elements in vector \mathbf{X}.
- NRM2 (pyopencl.Buffer [out]) - Buffer object that will contain the NRM2 value.
- offnRM2 (int [in]) - Offset to NRM2 value in NRM2 buffer object. Counted in elements.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- scratchBuff (pyopencl.Buffer [in]) - Temporary cl_mem scratch buffer object that can hold minimum of $(2 * N)$ elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasScnrm2 (N, NRM2, offNRM2, X, offx, incx, scratchBuff, commandQueues, eventWaitList)
wraps: clblasScnrm2
computes the euclidean norm of vector containing float-complex elements NRM2 $=\operatorname{sqrt}\left(\mathrm{X}^{*} * \mathrm{H} * \mathrm{X}\right)$

Parameters

- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X}.
- NRM2 (pyopencl.Buffer [out]) - Buffer object that will contain the NRM2 value. Note that the answer of Scnrm2 is a real value.
- offnRM2 (int [in]) - Offset to NRM2 value in NRM2 buffer object. Counted in elements.
- X (pyopencl.Buffer [in]) - Buffer object storing vector X.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- scratchBuff (pyopencl. Buffer [in]) - Temporary cl_mem scratch buffer object that can hold minimum of $\left(2^{*} \mathrm{~N}\right)$ elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasDznrm2 (N, NRM2, offNRM2, X, offx, incx, scratchBuff, commandQueues, eventWaitList)
wraps: clblasDznrm2
computes the euclidean norm of vector containing double-complex elements NRM2 $=\operatorname{sqrt}\left(X^{*} * H^{*} \mathrm{X}\right)$

Parameters

- $\mathbf{N}($ int [in] $)$ - Number of elements in vector \mathbf{X}.
- NRM2 (pyopencl.Buffer [out]) - Buffer object that will contain the NRM2 value. Note that the answer of Dznrm2 is a real value.
- offnRM2 (int [in]) - Offset to NRM2 value in NRM2 buffer object. Counted in elements.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- scratchBuff (pyopencl.Buffer [in]) - Temporary cl_mem scratch buffer object that can hold minimum of $(2 * N)$ elements.
- commandQueues (pyopencl.CommandQueue [in])- OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

iAMAX - Index of max absolute value

pyclblas.clblasiSamax (N, iMax, offiMax, X, offx, incx, scratchBuff, commandQueues, eventWaitList) wraps: clblasiSamax
index of max absolute value in a float array

Parameters

- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X}.
- iMax (pyopencl.Buffer [out]) - Buffer object storing the index of first absolute max. The index will be of type unsigned int.
- offimax (int [in]) - Offset for storing index in the buffer iMax Counted in elements.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- scratchBuff (pyopencl.Buffer [in]) - Temprory cl_mem object to store intermediate results It should be able to hold minimum of $(2 * N)$ elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasiDamax (N, iMax, offiMax, X, offx, incx, scratchBuff, commandQueues, eventWaitList) wraps: clblasiDamax
index of max absolute value in a double array
Parameters
- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X}.
- iMax (pyopencl.Buffer [out]) - Buffer object storing the index of first absolute max. The index will be of type unsigned int.
- offimax (int [in]) - Offset for storing index in the buffer iMax Counted in elements.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- scratchBuff (pyopencl. Buffer [in]) - Temprory cl_mem object to store intermediate results It should be able to hold minimum of $(2 * \mathrm{~N})$ elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasiCamax (N, iMax, offiMax, X, offx, incx, scratchBuff, commandQueues, eventWaitList) wraps: clblasiCamax
index of max absolute value in a complex float array

Parameters

- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X}.
- iMax (pyopencl. Buffer [out]) - Buffer object storing the index of first absolute max. The index will be of type unsigned int.
- offiMax (int [in]) - Offset for storing index in the buffer iMax Counted in elements.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- scratchBuff (pyopencl.Buffer [in]) - Temprory cl_mem object to store intermediate results It should be able to hold minimum of $(2 * N)$ elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasiZamax (N, iMax, offiMax, X, offx, incx, scratchBuff, commandQueues, eventWaitList)
wraps: clblasiZamax
index of max absolute value in a complex double array

Parameters

- $\mathbf{N}($ int [in] $)$ - Number of elements in vector \mathbf{X}.
- iMax (pyopencl.Buffer [out]) - Buffer object storing the index of first absolute max. The index will be of type unsigned int.
- offimax (int [in]) - Offset for storing index in the buffer iMax Counted in elements.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- scratchBuff (pyopencl. Buffer [in]) - Temprory cl_mem object to store intermediate results It should be able to hold minimum of $(2 * \mathrm{~N})$ elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

ASUM - Sum of absolute values

pyclblas.clblasDasum (N, asum, offAsum, X, offx, incx, scratchBuff, commandQueues, eventWaitList) wraps: clblasDasum
absolute sum of values of a vector containing double elements

Parameters

- N(int [in]) - Number of elements in vector \mathbf{X}.
- asum (pyopencl.Buffer [out]) - Buffer object that will contain the absoulte sum value.
- offAsum (int [in]) - Offset to absoule sum in asum buffer object. Counted in elements.
- X (pyopencl.Buffer [in]) - Buffer object storing vector X.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- scratchBuff (pyopencl.Buffer [in]) - Temporary cl_mem scratch buffer object of minimum size N .
- commandQueues (pyopencl.CommandQueue [in])-OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasSasum (N, asum, offAsum, X, offx, incx, scratchBuff, commandQueues, eventWaitList) wraps: clblasSasum
absolute sum of values of a vector containing float elements

Parameters

- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X}.
- asum (pyopencl.Buffer [out]) - Buffer object that will contain the absoule sum value.
- offAsum (int [in]) - Offset to absolute sum in asum buffer object. Counted in elements.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- scratchBuff (pyopencl.Buffer [in])- Temporary cl_mem scratch buffer object of minimum size N .
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasScasum (N, asum, offAsum, X, offx, incx, scratchBuff, commandQueues, eventWaitList) wraps: clblasScasum
absolute sum of values of a vector containing float-complex elements

Parameters

- \mathbf{N} (int [in]) - Number of elements in vector \mathbf{X}.
- asum (pyopencl.Buffer [out]) - Buffer object that will contain the absolute sum value.
- offAsum (int [in]) - Offset to absolute sum in asum buffer object. Counted in elements.
- X (pyopencl.Buffer [in]) - Buffer object storing vector X.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- scratchBuff (pyopencl. Buffer [in]) - Temporary cl_mem scratch buffer object of minimum size N .
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasDzasum (N, asum, offAsum, X, offx, incx, scratchBuff, commandQueues, eventWaitList)
wraps: clblasDzasum
absolute sum of values of a vector containing double-complex elements

Parameters

- $\mathbf{N}($ int [in] $)-$ Number of elements in vector \mathbf{X}.
- asum (pyopencl.Buffer [out]) - Buffer object that will contain the absolute sum value.
- offAsum (int [in]) - Offset to absolute sum in asum buffer object. Counted in elements.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- scratchBuff (pyopencl.Buffer [in]) - Temporary cl_mem scratch buffer object of minimum size N .
- commandQueues (pyopencl. CommandQueue [in])- OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

BLAS Level 2 Functions

GEMV - General matrix-Vector multiplication

pyclblas.clblasCgemv (order, transA, M, N, alpha, A, offA, lda, x, offx, incx, beta, y, offy, incy, commandQueues, eventWaitList)
wraps: clblasCgemv
Matrix-vector product with a general rectangular matrix and float complex elements. Extended version. Matrixvector products:
$\cdot(\mathrm{y} \leftarrow \alpha \mathrm{A} \mathrm{x}+\beta \mathrm{y})$
$\cdot\left(\mathrm{y} \leftarrow \alpha \mathrm{A}^{\mathrm{T}} \mathrm{x}+\beta \mathrm{y}\right)$

Parameters

- order (clblasOrder [in])-Row/column order.
- transA (clblasTranspose [in]) - How matrix \mathbf{A} is to be transposed.
- M (int [in]) - Number of rows in matrix \mathbf{A}.
- $\mathbf{N}($ int [in] $)-$ Number of columns in matrix \mathbf{A}.
- alpha (complex [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}.
- \mathbf{x} (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{x}.
- offx (int [in]) - Offset of first element of vector \mathbf{x} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{x}. It cannot be zero.
- beta (complex [in]) - The factor of the vector \mathbf{y}.
- \mathbf{y} (pyopencl. Buffer [out]) - Buffer object storing the vector \mathbf{y}.
- offy (int [in]) - Offset of first element of vector \mathbf{y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of \mathbf{y}. It cannot be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasDgemv (order, transA, M, N, alpha, A, offA, lda, x, offx, incx, beta, y, offy, incy, commandQueues, eventWaitList)
wraps: clblasDgemv
Matrix-vector product with a general rectangular matrix and double elements. Extended version. Matrix-vector products:

$$
\begin{aligned}
& \bullet(\mathrm{y} \leftarrow \alpha \mathrm{~A} \mathrm{x}+\beta \mathrm{y}) \\
& \bullet\left(\mathrm{y} \leftarrow \alpha \mathrm{~A}^{\mathrm{T}} \mathrm{x}+\beta \mathrm{y}\right)
\end{aligned}
$$

Parameters

- order (clblasOrder [in]) - Row/column order.
- transA (clblasTranspose [in]) - How matrix \mathbf{A} is to be transposed.
- M (int [in]) - Number of rows in matrix \mathbf{A}.
- $\mathbf{N}($ int [in] $)-$ Number of columns in matrix \mathbf{A}.
- alpha (float [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}.
- \mathbf{x} (pyopencl.Buffer [in]) - Buffer object storing vector \mathbf{x}.
- offx (int [in]) - Offset of first element of vector \mathbf{x} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{x}. It cannot be zero.
- beta (float [in]) - The factor of the vector \mathbf{y}.
- \mathbf{y} (pyopencl. Buffer [out]) - Buffer object storing the vector \mathbf{y}.
- offy (int [in]) - Offset of first element of vector \mathbf{y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of \mathbf{y}. It cannot be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasSgemv (order, transA, M, N, alpha, A, offf, lda, x, offx, incx, beta, y, offy, incy, commandQueues, eventWaitList)
wraps: clblasSgemv
Matrix-vector product with a general rectangular matrix and float elements. Extended version. Matrix-vector products:

$$
\begin{aligned}
& \bullet(\mathrm{y} \leftarrow \alpha \mathrm{~A} \mathrm{x}+\beta \mathrm{y}) \\
& \bullet\left(\mathrm{y} \leftarrow \alpha \mathrm{~A}^{\mathrm{T}} \mathrm{x}+\beta \mathrm{y}\right)
\end{aligned}
$$

Parameters

- order (clblasOrder [in]) - Row/column order.
- transA (clblasTranspose [in]) - How matrix \mathbf{A} is to be transposed.
- M (int [in]) - Number of rows in matrix \mathbf{A}.
- N(int [in]) - Number of columns in matrix \mathbf{A}.
- alpha (float [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{N} when the order parameter is set to clblasRowMajor, or less than \mathbf{M} when the parameter is set to clblasColumnMajor.
- \mathbf{x} (pyopencl.Buffer [in]) - Buffer object storing vector \mathbf{x}.
- offx (int [in]) - Offset of first element of vector \mathbf{x} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{x}. It cannot be zero.
- beta (float [in]) - The factor of the vector \mathbf{y}.
- \mathbf{y} (pyopencl. Buffer [out]) - Buffer object storing the vector \mathbf{y}.
- offy (int [in]) - Offset of first element of vector \mathbf{y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of \mathbf{y}. It cannot be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZgemv (order, transA, M, N, alpha, A, offA, lda, x, offx, incx, beta, y, offy, incy, commandQueues, eventWaitList)
wraps: clblasZgemv

Matrix-vector product with a general rectangular matrix and double complex elements. Extended version. Matrix-vector products:

$$
\begin{aligned}
& \bullet(\mathrm{y} \leftarrow \alpha \mathrm{~A} \mathrm{x}+\beta \mathrm{y}) \\
& \bullet\left(\mathrm{y} \leftarrow \alpha \mathrm{~A}^{\mathrm{T}} \mathrm{x}+\beta \mathrm{y}\right)
\end{aligned}
$$

Parameters

- order (clblasOrder [in]) - Row/column order.
- transA (clblasTranspose [in]) - How matrix \mathbf{A} is to be transposed.
- M (int [in]) - Number of rows in matrix \mathbf{A}.
- N(int [in]) - Number of columns in matrix \mathbf{A}.
- alpha (complex [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in])-Leading dimension of matrix \mathbf{A}.
- x (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{x}.
- offx (int [in]) - Offset of first element of vector \mathbf{x} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{x}. It cannot be zero.
- beta (complex [in]) - The factor of the vector \mathbf{y}.
- \mathbf{y} (pyopencl. Buffer [out]) - Buffer object storing the vector \mathbf{y}.
- offy (int [in]) - Offset of first element of vector \mathbf{y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of \mathbf{y}. It cannot be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

SYMV - Symmetric matrix-Vector multiplication

pyclblas.clblasDsymv (order, uplo, N, alpha, A, offA, lda, x, offx, incx, beta, y, offy, incy, commandQueues, eventWaitList)
wraps: clblasDsymv
Matrix-vector product with a symmetric matrix and double elements. Matrix-vector products:
$\cdot(\mathrm{y} \leftarrow \alpha \mathrm{A} \mathrm{x}+\beta \mathrm{y})$

Parameters

- order (clblasOrder [in])-Row/columns order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- \mathbf{N} (int [in]) - Number of rows and columns in matrix \mathbf{A}.
- alpha (float [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix A. It cannot less than \mathbf{N}.
- \mathbf{x} (pyopencl.Buffer [in]) - Buffer object storing vector \mathbf{x}.
- offx (int [in]) - Offset of first element of vector \mathbf{x} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of vector \mathbf{x}. It cannot be zero.
- beta (float [in]) - The factor of vector \mathbf{y}.
- y (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{y}.
- offy (int [in]) - Offset of first element of vector \mathbf{y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of vector \mathbf{y}. It cannot be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasSsymv (order, uplo, N, alpha, A, offA, lda, x, offx, incx, beta, y, offy, incy, commandQueues, eventWaitList)
wraps: clblasSsymv
Matrix-vector product with a symmetric matrix and float elements. Matrix-vector products:
$\cdot(\mathrm{y} \leftarrow \alpha \mathrm{A} \mathrm{x}+\beta \mathrm{y})$

Parameters

- order (clblasOrder [in])-Row/columns order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- $\mathbf{N}($ int [in] $)$ - Number of rows and columns in matrix \mathbf{A}.
- alpha (float [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix A. It cannot less than \mathbf{N}.
- \mathbf{x} (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{x}.
- offx (int [in]) - Offset of first element of vector \mathbf{x} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of vector \mathbf{x}. It cannot be zero.
- beta (float [in]) - The factor of vector \mathbf{y}.
- $\mathbf{y}($ pyopencl.Buffer [out]) - Buffer object storing vector \mathbf{y}.
- offy (int [in]) - Offset of first element of vector \mathbf{y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of vector \mathbf{y}. It cannot be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

HEMV - Hermitian matrix-vector multiplication

pyclblas.clblasChemv (order, uplo, N, alpha, A, offa, lda, X, offx, incx, beta, Y, offy, incy, commandQueues, eventWaitList)
wraps: clblasChemv
Matrix-vector product with a hermitian matrix and float-complex elements. Matrix-vector products:

$$
\cdot(\mathrm{Y} \leftarrow \alpha \mathrm{~A} \mathrm{X}+\beta \mathrm{Y})
$$

Parameters

- order (clblasOrder [in])-Row/columns order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- $\mathbf{N}($ int [in] $)$ - Number of rows and columns in matrix \mathbf{A}.
- alpha (complex [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl.Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix A. It cannot less than \mathbf{N}.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of vector \mathbf{X}. It cannot be zero.
- beta (complex [in]) - The factor of vector \mathbf{Y}.
- Y (pyopencl.Buffer [out]) - Buffer object storing vector Y.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of vector \mathbf{Y}. It cannot be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZhemv (order, uplo, N, alpha, A, offa, lda, X, offx, incx, beta, Y, offy, incy, commandQueues, eventWaitList)
wraps: clblasZhemv
Matrix-vector product with a hermitian matrix and double-complex elements. Matrix-vector products:

$$
\bullet(\mathrm{Y} \leftarrow \alpha \mathrm{AX}+\beta \mathrm{Y})
$$

Parameters

- order (clblasOrder [in])-Row/columns order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- \mathbf{N} (int [in]) - Number of rows and columns in matrix \mathbf{A}.
- alpha (complex [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix A. It cannot less than \mathbf{N}.
- X (pyopencl. Buffer [in]) - Buffer object storing vector X.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of vector \mathbf{X}. It cannot be zero.
- beta (complex [in]) - The factor of vector \mathbf{Y}.
- Y (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of vector Y. It cannot be zero.
- commandQueues (pyopencl.CommandQueue [in])- OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

TRMV - Triangular matrix vector multiply

pyclblas.clblasCtrmv (order, uplo, trans, diag, N, A, offa, lda, X, offx, incx, scratchBuff, commandQueues, eventWaitList)
wraps: clblasCtrmv
Matrix-vector product with a triangular matrix and float complex elements. Matrix-vector products:

$$
\bullet(X \leftarrow A X)
$$

$\cdot\left(X \leftarrow A^{T} X\right)$

Parameters

- order (clblasOrder [in])-Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- trans (clblasTranspose [in]) - How matrix A is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix A is unit triangular.
- $\mathbf{N}($ int [in] $)$ - Number of rows/columns in matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{N}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector X.
- offx (int [in]) - Offset in number of elements for first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- scratchBuff (pyopencl. Buffer [in]) - Temporary cl_mem scratch buffer object which can hold a minimum of $(1+(\mathrm{N}-1) * \operatorname{abs}($ incx $))$ elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasDtrmv (order, uplo, trans, diag, N, A, offa, lda, X, offx, incx, scratchBuff, commandQueues, eventWaitList)
wraps: clblasDtrmv
Matrix-vector product with a triangular matrix and double elements. Matrix-vector products:

$$
\begin{aligned}
& \cdot(\mathrm{X} \leftarrow \mathrm{~A} \mathrm{X}) \\
& \cdot\left(\mathrm{X} \leftarrow \mathrm{~A}^{\mathrm{T}} \mathrm{X}\right)
\end{aligned}
$$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- trans (clblasTranspose [in]) - How matrix A is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix A is unit triangular.
- $\mathbf{N}($ int [in] $)-$ Number of rows/columns in matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{N}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector X.
- offx (int [in]) - Offset in number of elements for first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- scratchBuff (pyopencl. Buffer [in]) - Temporary cl_mem scratch buffer object which can hold a minimum of $(1+(\mathrm{N}-1) *$ abs(incx $))$ elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasStrmv (order, uplo, trans, diag, N, A, offa, lda, X, offx, incx, scratchBuff, commandQueues, eventWaitList)
wraps: clblasStrmv
Matrix-vector product with a triangular matrix and float elements. Matrix-vector products:

$$
\begin{aligned}
& \bullet(\mathrm{X} \leftarrow \mathrm{~A} X) \\
& \bullet\left(\mathrm{X} \leftarrow \mathrm{~A}^{\mathrm{T}} \mathrm{X}\right)
\end{aligned}
$$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- trans (clblasTranspose [in]) - How matrix A is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix A is unit triangular.
- $\mathbf{N}($ int $[i n])-$ Number of rows/columns in matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{N}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset in number of elements for first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- scratchBuff (pyopencl.Buffer [in]) - Temporary cl_mem scratch buffer object which can hold a minimum of $(1+(\mathrm{N}-1) *$ abs(incx) $)$ elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZtrmv (order, uplo, trans, diag, N, A, offa, lda, X, offx, incx, scratchBuff, commandQueues, eventWaitList)
wraps: clblasZtrmv
Matrix-vector product with a triangular matrix and double complex elements. Matrix-vector products:

$$
\begin{aligned}
& \cdot(\mathrm{X} \leftarrow \mathrm{~A} \mathrm{X}) \\
& \cdot\left(\mathrm{X} \leftarrow \mathrm{~A}^{\mathrm{T}} \mathrm{X}\right)
\end{aligned}
$$

Parameters

- order (clblasOrder [in])-Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- trans (clblasTranspose [in]) - How matrix A is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix A is unit triangular.
- $\mathbf{N}($ int [in] $)-$ Number of rows/columns in matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{N}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset in number of elements for first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- scratchBuff (pyopencl.Buffer [in]) - Temporary cl_mem scratch buffer object which can hold a minimum of $(1+(\mathrm{N}-1) *$ abs(incx $))$ elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

TRSV - Triangular matrix vector Solve

pyclblas.clblasCtrsv (order, uplo, trans, diag, N, A, offa, lda, X, offx, incx, commandQueues, eventWaitList)
wraps: clblasCtrsv
solving triangular matrix problems with float-complex elements. Matrix-vector products:

- $(\mathrm{A} \mathrm{X} \leftarrow \mathrm{X})$
$\cdot\left(A^{T} X \leftarrow X\right)$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- trans (clblasTranspose [in]) - How matrix A is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix A is unit triangular.
- $\mathbf{N}($ int [in] $)-$ Number of rows/columns in matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{N}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector X.
- offx (int [in]) - Offset in number of elements for first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- commandQueues (pyopencl.CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasDtrsv (order, uplo, trans, diag, N, A, offa, lda, X, offx, incx, commandQueues, eventWaitList)
wraps: clblasDtrsv
solving triangular matrix problems with double elements. Matrix-vector products:
- $(\mathrm{AX} \leftarrow \mathrm{X})$
- $\left(A^{T} X \leftarrow X\right)$

Parameters

- order (clblasOrder [in])-Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- trans (clblasTranspose [in]) - How matrix A is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix A is unit triangular.
- $\mathbf{N}($ int [in] $)-$ Number of rows/columns in matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{N}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset in number of elements for first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- commandQueues (pyopencl.CommandQueue [in])-OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasStrsv (order, uplo, trans, diag, N, A, offa, lda, X, offx, incx, commandQueues, eventWaitList)
wraps: clblasStrsv
solving triangular matrix problems with float elements. Matrix-vector products:

$$
\begin{aligned}
& \bullet(\mathrm{A} X \leftarrow \mathrm{X}) \\
& \bullet\left(\mathrm{A}^{\mathrm{T}} \mathrm{X} \leftarrow \mathrm{X}\right)
\end{aligned}
$$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- trans (clblasTranspose [in]) - How matrix A is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix A is unit triangular.
- $\mathbf{N}($ int [in] $)-$ Number of rows/columns in matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- Ida (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{N}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset in number of elements for first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZtrsv (order, uplo, trans, diag, N, A, offa, lda, X, offx, incx, commandQueues, eventWaitList)
wraps: clblasZtrsv
solving triangular matrix problems with double-complex elements. Matrix-vector products:

$$
\begin{aligned}
& \bullet(\mathrm{A} X \leftarrow \mathrm{X}) \\
& \bullet\left(\mathrm{A}^{\mathrm{T}} \mathrm{X} \leftarrow \mathrm{X}\right)
\end{aligned}
$$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- trans (clblasTranspose [in]) - How matrix \mathbf{A} is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix A is unit triangular.
- $\mathbf{N}($ int [in] $)-$ Number of rows/columns in matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{N}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector X.
- offx (int [in]) - Offset in number of elements for first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- commandQueues (pyopencl.CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

GER - General matrix rank 1 operation

pyclblas.clblasDger (order, M, N, alpha, X, offx, incx, Y, offy, incy, A, offa, lda, commandQueues, eventWaitList)
wraps: clblasDger
vector-vector product with double elements and performs the rank 1 operation A Vector-vector products:

$$
\bullet\left(\mathrm{A} \leftarrow \alpha \mathrm{X} \mathrm{Y}^{\mathrm{T}}+\mathrm{A}\right)
$$

Parameters

- order (clblasOrder [in])-Row/column order.
- M (int [in]) - Number of rows in matrix \mathbf{A}.
- $\mathbf{N}($ int [in] $)$ - Number of columns in matrix \mathbf{A}.
- alpha (float [in]) - specifies the scalar alpha.
- X (pyopencl. Buffer [in])-Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset in number of elements for the first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- Y (pyopencl.Buffer [in]) - Buffer object storing vector Y.
- offy (int [in]) - Offset in number of elements for the first element in vector \mathbf{Y}.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- A (pyopencl.Buffer [out]) - Buffer object storing matrix A. On exit, A is overwritten by the updated matrix.
- offa (int [in]) - Offset in number of elements for the first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}. It cannot be less than \mathbf{N} when the order parameter is set to clblasRowMajor, or less than \mathbf{M} when the parameter is set to clblasColumnMajor.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasSger (order, M, N, alpha, X, offx, incx, Y, offy, incy, A, offa, lda, commandQueues, eventWaitList)
wraps: clblasSger
vector-vector product with float elements and performs the rank 1 operation A Vector-vector products:
$\cdot\left(\mathrm{A} \leftarrow \alpha \mathrm{X}^{\mathrm{T}}+\mathrm{A}\right)$

Parameters

- order (clblasOrder [in])-Row/column order.
- M (int [in]) - Number of rows in matrix \mathbf{A}.
- $\mathbf{N}($ int [in] $)-$ Number of columns in matrix \mathbf{A}.
- alpha (float [in]) - specifies the scalar alpha.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset in number of elements for the first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- Y (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{Y}.
- offy (int [in]) - Offset in number of elements for the first element in vector \mathbf{Y}.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- A (pyopencl.Buffer [out]) - Buffer object storing matrix A. On exit, A is overwritten by the updated matrix.
- offa (int [in]) - Offset in number of elements for the first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{N} when the order parameter is set to clblasRowMajor, or less than \mathbf{M} when the parameter is set to clblasColumnMajor.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

GERU - General matrix rank 1 operation

pyclblas.clblasCgeru (order, M, N, alpha, X, offx, incx, Y, offy, incy, A, offa, lda, commandQueues, eventWaitList)
wraps: clblasCgeru
vector-vector product with float complex elements and performs the rank 1 operation A Vector-vector products:

$$
\bullet\left(\mathrm{A} \leftarrow \alpha \mathrm{X} \mathrm{Y}^{\mathrm{T}}+\mathrm{A}\right)
$$

Parameters

- order (clblasOrder [in]) - Row/column order.
- M (int [in]) - Number of rows in matrix \mathbf{A}.
- $\mathbf{N}($ int [in] $)-$ Number of columns in matrix \mathbf{A}.
- alpha (complex [in]) - specifies the scalar alpha.
- X (pyopencl.Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset in number of elements for the first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- Y (pyopencl. Buffer [in]) - Buffer object storing vector Y.
- offy (int [in]) - Offset in number of elements for the first element in vector \mathbf{Y}.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- A (pyopencl. Buffer [out]) - Buffer object storing matrix A. On exit, A is overwritten by the updated matrix.
- offa (int [in]) - Offset in number of elements for the first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{N} when the order parameter is set to clblasRowMajor, or less than \mathbf{M} when the parameter is set to clblasColumnMajor.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZgeru (order, M, N, alpha, X, offx, incx, Y, offy, incy, A, offa, lda, commandQueues, eventWaitList)
wraps: clblasZgeru
vector-vector product with double complex elements and performs the rank 1 operation A Vector-vector products:

$$
\bullet\left(\mathrm{A} \leftarrow \alpha \mathrm{X}^{\mathrm{T}}+\mathrm{A}\right)
$$

Parameters

- order (clblasOrder [in]) - Row/column order.
- M(int [in]) - Number of rows in matrix \mathbf{A}.
- N(int [in]) - Number of columns in matrix \mathbf{A}.
- alpha (complex [in]) - specifies the scalar alpha.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset in number of elements for the first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- Y (pyopencl. Buffer [in]) - Buffer object storing vector Y.
- offy (int [in]) - Offset in number of elements for the first element in vector \mathbf{Y}.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- A (pyopencl.Buffer [out]) - Buffer object storing matrix A. On exit, A is overwritten by the updated matrix.
- offa (int [in]) - Offset in number of elements for the first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}. It cannot be less than \mathbf{N} when the order parameter is set to clblasRowMajor, or less than \mathbf{M} when the parameter is set to clblasColumnMajor.
- commandQueues (pyopencl.CommandQueue [in])- OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

GERC - General matrix rank 1 operation

pyclblas.clblasCgerc (order, M, N, alpha, X, offx, incx, Y, offy, incy, A, offa, lda, commandQueues, eventWaitList)
wraps: clblasCgerc
vector-vector product with float complex elements and performs the rank 1 operation A Vector-vector products:

$$
\bullet\left(\mathrm{A} \leftarrow \alpha \mathrm{X} \mathrm{Y}^{\mathrm{H}}+\mathrm{A}\right)
$$

Parameters

- order (clblasOrder [in])-Row/column order.
- M (int [in]) - Number of rows in matrix \mathbf{A}.
- N(int [in]) - Number of columns in matrix \mathbf{A}.
- alpha (complex [in]) - specifies the scalar alpha.
- X (pyopencl. Buffer [in]) - Buffer object storing vector X.
- offx (int [in]) - Offset in number of elements for the first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- Y (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{Y}.
- offy (int [in]) - Offset in number of elements for the first element in vector \mathbf{Y}.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- A (pyopencl. Buffer [out]) - Buffer object storing matrix A. On exit, A is overwritten by the updated matrix.
- offa (int [in]) - Offset in number of elements for the first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}. It cannot be less than \mathbf{N} when the order parameter is set to clblasRowMajor, or less than \mathbf{M} when the parameter is set to clblasColumnMajor.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZgerc (order, M, N, alpha, X, offx, incx, Y, offy, incy, A, offa, lda, commandQueues, eventWaitList)
wraps: clblasZgerc
vector-vector product with double complex elements and performs the rank 1 operation A Vector-vector products:

$$
\bullet\left(\mathrm{A} \leftarrow \alpha \mathrm{X}^{\mathrm{H}}+\mathrm{A}\right)
$$

Parameters

- order (clblasOrder [in])-Row/column order.
- M (int [in]) - Number of rows in matrix \mathbf{A}.
- N(int [in]) - Number of columns in matrix \mathbf{A}.
- alpha (complex [in]) - specifies the scalar alpha.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset in number of elements for the first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- Y (pyopencl. Buffer [in])-Buffer object storing vector \mathbf{Y}.
- offy (int [in]) - Offset in number of elements for the first element in vector \mathbf{Y}.
- incy (int [in]) - Increment for the elements of \mathbf{Y}. Must not be zero.
- A (pyopencl. Buffer [out]) - Buffer object storing matrix A. On exit, A is overwritten by the updated matrix.
- offa (int [in]) - Offset in number of elements for the first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{N} when the order parameter is set to clblasRowMajor, or less than \mathbf{M} when the parameter is set to clblasColumnMajor.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

SYR - Symmetric rank 1 update

pyclblas.clblasDsyr (order, uplo, N, alpha, X, offx, incx, A, offa, lda, commandQueues, eventWaitList) wraps: clblasDsyr

Symmetric rank 1 operation with a general triangular matrix and double elements. Symmetric rank 1 operation:

$$
\bullet\left(\mathrm{A} \leftarrow \alpha \mathrm{x} \mathrm{x}^{\mathrm{T}}+\mathrm{A}\right)
$$

Parameters

- order (clblasOrder [in])-Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- $\mathbf{N}($ int [in] $)-$ Number of columns in matrix \mathbf{A}.
- alpha (float [in]) - The factor of matrix A.
- X (pyopencl. Buffer [in])-Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- A (pyopencl. Buffer [out]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of first element of matrix \mathbf{A} in buffer object.
- Ida (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{N}.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasSsyr (order, uplo, N, alpha, X, offx, incx, A, offa, lda, commandQueues, eventWaitList) wraps: clblasSsyr

Symmetric rank 1 operation with a general triangular matrix and float elements. Symmetric rank 1 operation:
$\cdot\left(\mathrm{A} \leftarrow \alpha \mathrm{X}^{\mathrm{T}}+\mathrm{A}\right)$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- $\mathbf{N}($ int [in] $)$ - Number of columns in matrix \mathbf{A}.
- alpha (float [in]) - The factor of matrix \mathbf{A}.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- A (pyopencl. Buffer [out]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of first element of matrix \mathbf{A} in buffer object.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{N}.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

HER - Hermitian rank 1 operation

pyclblas.clblasCher (order, uplo, N, alpha, X, offx, incx, A, offa, lda, commandQueues, eventWaitList) wraps: clblasCher
hermitian rank 1 operation with a general triangular matrix and float-complex elements. hermitian rank 1 operation:

$$
\bullet\left(\mathrm{A} \leftarrow \alpha \mathrm{X} \mathrm{X}^{\mathrm{H}}+\mathrm{A}\right)
$$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- $\mathbf{N}($ int [in] $)-$ Number of columns in matrix \mathbf{A}.
- alpha (float [in]) - The factor of matrix \mathbf{A} (a scalar float value).
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset in number of elements for the first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- A (pyopencl.Buffer [out]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for the first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{N}.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZher (order, uplo, N, alpha, X, offx, incx, A, offa, lda, commandQueues, eventWaitList) wraps: clblasZher
hermitian rank 1 operation with a general triangular matrix and double-complex elements. hermitian rank 1 operation:

$$
\cdot\left(\mathrm{A} \leftarrow \alpha \mathrm{X} \mathrm{X}^{\mathrm{H}}+\mathrm{A}\right)
$$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- N(int [in]) - Number of columns in matrix \mathbf{A}.
- alpha (float [in]) - The factor of matrix \mathbf{A} (a scalar double value).
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset in number of elements for the first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- A (pyopencl. Buffer [out]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for the first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{N}.
- commandQueues (pyopencl.CommandQueue [in])-OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

SYR2-Symmetric rank 2 update

pyclblas.clblasDsyr2 (order, uplo, N, alpha, X, offx, incx, Y, offy, incy, A, offa, lda, commandQueues, eventWaitList)
wraps: clblasDsyr2
Symmetric rank 2 operation with a general triangular matrix and double elements. Symmetric rank 2 operation:
$\cdot\left(\mathrm{A} \leftarrow \alpha \mathrm{xy}^{\mathrm{T}}+\alpha \mathrm{y} \mathrm{x}^{\mathrm{T}}+\mathrm{A}\right)$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- $\mathbf{N}($ int [in] $)-$ Number of columns in matrix \mathbf{A}.
- alpha (float [in]) - The factor of matrix \mathbf{A}.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- Y (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- A (pyopencl. Buffer [out]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of first element of matrix \mathbf{A} in buffer object.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{N}.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasSsyr2 (order, uplo, N, alpha, X, offx, incx, Y, offy, incy, A, offa, lda, commandQueues, eventWaitList)
wraps: clblasSsyr2
Symmetric rank 2 operation with a general triangular matrix and float elements. Symmetric rank 2 operation:
$\cdot\left(\mathrm{A} \leftarrow \alpha \mathrm{x} \mathrm{y}^{\mathrm{T}}+\alpha \mathrm{y} \mathrm{x}^{\mathrm{T}}+\mathrm{A}\right)$

Parameters

- order (clblasOrder [in])-Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- \mathbf{N} (int [in]) - Number of columns in matrix \mathbf{A}.
- alpha (float [in]) - The factor of matrix \mathbf{A}.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- Y (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- A (pyopencl.Buffer [out]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of first element of matrix \mathbf{A} in buffer object.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{N}.
- commandQueues (pyopencl.CommandQueue [in])- OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

HER2 - Hermitian rank 2 update

pyclblas.clblasCher2 (order, uplo, N, alpha, X, offx, incx, Y, offy, incy, A, offa, lda, commandQueues, eventWaitList)
wraps: clblasCher2
Hermitian rank 2 operation with a general triangular matrix and float-compelx elements. Hermitian rank 2 operation:

$$
\bullet\left(\mathrm{A} \leftarrow \alpha \mathrm{X} \mathrm{Y} \mathrm{Y}^{\mathrm{H}}+\operatorname{conj}\{\alpha\} \mathrm{Y}^{\mathrm{H}}+\mathrm{A}\right)
$$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- $\mathbf{N}($ int [in] $)$ - Number of columns in matrix \mathbf{A}.
- alpha (complex [in]) - The factor of matrix \mathbf{A}.
- X (pyopencl. Buffer [in]) - Buffer object storing vector X.
- offx (int [in]) - Offset in number of elements for the first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- Y (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{Y}.
- offy (int [in]) - Offset in number of elements for the first element in vector \mathbf{Y}.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- A (pyopencl. Buffer [out]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for the first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{N}.
- commandQueues (pyopencl.CommandQueue [in])- OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZher2 (order, uplo, N, alpha, X, offx, incx, Y, offy, incy, A, offa, lda, commandQueues, eventWaitList)
wraps: clblasZher2
Hermitian rank 2 operation with a general triangular matrix and double-compelx elements. Hermitian rank 2 operation:
$\bullet\left(\mathrm{A} \leftarrow \alpha \mathrm{X}^{\mathrm{H}}+\operatorname{conj}\{\alpha\} \mathrm{YX}^{\mathrm{H}}+\mathrm{A}\right)$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- $\mathbf{N}($ int [in] $)-$ Number of columns in matrix \mathbf{A}.
- alpha (complex [in]) - The factor of matrix \mathbf{A}.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset in number of elements for the first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- Y (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{Y}.
- offy (int [in]) - Offset in number of elements for the first element in vector \mathbf{Y}.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- A (pyopencl. Buffer [out]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for the first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{N}.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

TPMV - Triangular packed matrix-vector multiply

pyclblas.clblasCtpmv (order, uplo, trans, diag, $N, A P$, offa, X, offx, incx, scratchBuff, commandQueues, eventWaitList)
wraps: clblasCtpmv
Matrix-vector product with a packed triangular matrix and float-complex elements. Matrix-vector products:

$$
\begin{aligned}
& \bullet(X \leftarrow A X) \\
& \bullet\left(X \leftarrow A^{T} X\right)
\end{aligned}
$$

Parameters

- order (clblasOrder [in])-Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- trans (clblasTranspose [in]) - How matrix AP is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix AP is unit triangular.
- \mathbf{N} (int [in]) - Number of rows/columns in matrix AP.
- AP (pyopencl. Buffer [in]) - Buffer object storing matrix AP in packed format.
- offa (int [in]) - Offset in number of elements for first element in matrix AP.
- X (pyopencl. Buffer [out]) - Buffer object storing vector X.
- offx (int [in]) - Offset in number of elements for first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- scratchBuff (pyopencl.Buffer [in]) - Temporary cl_mem scratch buffer object which can hold a minimum of $(1+(\mathrm{N}-1) *$ abs(incx $))$ elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasDtpmv (order, uplo, trans, diag, $N, A P$, offa, X, offx, incx, scratchBuff, commandQueues, eventWaitList)
wraps: clblasDtpmv
Matrix-vector product with a packed triangular matrix and double elements. Matrix-vector products:

$$
\begin{aligned}
& \cdot(\mathrm{X} \leftarrow \mathrm{~A} \mathrm{X}) \\
& \cdot\left(\mathrm{X} \leftarrow \mathrm{~A}^{\mathrm{T}} \mathrm{X}\right)
\end{aligned}
$$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- trans (clblasTranspose [in]) - How matrix AP is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix AP is unit triangular.
- \mathbf{N} (int [in]) - Number of rows/columns in matrix AP.
- AP (pyopencl. Buffer [in]) - Buffer object storing matrix AP in packed format.
- offa (int [in]) - Offset in number of elements for first element in matrix AP.
- X (pyopencl. Buffer [out]) - Buffer object storing vector X.
- offx (int [in]) - Offset in number of elements for first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- scratchBuff (pyopencl.Buffer [in]) - Temporary cl_mem scratch buffer object which can hold a minimum of $(1+(\mathrm{N}-1) *$ abs(incx $))$ elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasStpmv (order, uplo, trans, diag, $N, A P$, offa, X, offx, incx, scratchBuff, commandQueues, eventWaitList)
wraps: clblasStpmv
Matrix-vector product with a packed triangular matrix and float elements. Matrix-vector products:

$$
\begin{aligned}
& \cdot(\mathrm{X} \leftarrow \mathrm{~A} X) \\
& \cdot\left(\mathrm{X} \leftarrow \mathrm{~A}^{\mathrm{T}} \mathrm{X}\right)
\end{aligned}
$$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- trans (clblasTranspose [in]) - How matrix AP is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix AP is unit triangular.
- $\mathbf{N}($ int [in] $)-$ Number of rows/columns in matrix \mathbf{A}.
- AP (pyopencl.Buffer [in]) - Buffer object storing matrix AP in packed format.
- offa (int [in]) - Offset in number of elements for first element in matrix AP.
- X (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset in number of elements for first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- scratchBuff (pyopencl. Buffer [in]) - Temporary cl_mem scratch buffer object which can hold a minimum of $(1+(\mathrm{N}-1) *$ abs(incx $))$ elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZtpmv (order, uplo, trans, diag, $N, A P$, offa, X, offx, incx, scratchBuff, commandQueues, eventWaitList)
wraps: clblasZtpmv
Matrix-vector product with a packed triangular matrix and double-complex elements. Matrix-vector products:

$$
\begin{aligned}
& \cdot(\mathrm{X} \leftarrow \mathrm{AX}) \\
& \cdot\left(\mathrm{X} \leftarrow \mathrm{~A}^{\mathrm{T}} \mathrm{X}\right)
\end{aligned}
$$

Parameters

- order (clblasOrder [in])-Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- trans (clblasTranspose [in]) - How matrix AP is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix AP is unit triangular.
- \mathbf{N} (int [in]) - Number of rows/columns in matrix AP.
- AP (pyopencl. Buffer [in])-Buffer object storing matrix AP in packed format.
- offa (int [in]) - Offset in number of elements for first element in matrix AP.
- X (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset in number of elements for first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- scratchBuff (pyopencl.Buffer [in]) - Temporary cl_mem scratch buffer object which can hold a minimum of $(1+(\mathrm{N}-1) *$ abs(incx $))$ elements.
- commandQueues (pyopencl.CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

TPSV - Triangular packed matrix vector solve

pyclblas.clblasCtpsv (order, uplo, trans, diag, N, A, offa, X, offx, incx, commandQueues, eventWaitList)
wraps: clblasCtpsv
solving triangular packed matrix problems with float complex elements. Matrix-vector products:

- $(\mathrm{AX} \leftarrow \mathrm{X})$
- $\left(A^{T} X \leftarrow X\right)$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- trans (clblasTranspose [in]) - How matrix A is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix A is unit triangular.
- $\mathbf{N}($ int [in] $)-$ Number of rows/columns in matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix in packed format. A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector X.
- offx (int [in]) - Offset in number of elements for first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasDtpsv (order, uplo, trans, diag, N, A, offa, X, offx, incx, commandQueues, eventWaitList)
wraps: clblasDtpsv
solving triangular packed matrix problems with double elements. Matrix-vector products:
$\cdot(\mathrm{AX} \leftarrow \mathrm{X})$

- $\left(A^{T} X \leftarrow X\right)$

Parameters

- order (clblasOrder [in])-Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- trans (clblasTranspose [in]) - How matrix A is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix A is unit triangular.
- $\mathbf{N}($ int [in] $)-$ Number of rows/columns in matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix in packed format. A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset in number of elements for first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasStpsv (order, uplo, trans, diag, N, A, offa, X, offx, incx, commandQueues, eventWaitList)
wraps: clblasStpsv
solving triangular packed matrix problems with float elements. Matrix-vector products:
- $(\mathrm{A} X \leftarrow \mathrm{X})$
-($\left.A^{T} X \leftarrow X\right)$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- trans (clblasTranspose [in]) - How matrix A is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix A is unit triangular.
- $\mathbf{N}($ int [in] $)-$ Number of rows/columns in matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix in packed format. A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset in number of elements for first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- commandQueues (pyopencl.CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZtpsv (order, uplo, trans, diag, N, A, offa, X, offx, incx, commandQueues, eventWaitList)
wraps: clblasZtpsv
solving triangular packed matrix problems with double complex elements. Matrix-vector products:

$$
\bullet(\mathrm{AX} \leftarrow \mathrm{X})
$$

- $\left(\mathrm{A}^{\mathrm{T}} \mathrm{X} \leftarrow \mathrm{X}\right)$

Parameters

- order (clblasOrder [in])-Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- trans (clblasTranspose [in]) - How matrix \mathbf{A} is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix A is unit triangular.
- $\mathbf{N}($ int [in] $)-$ Number of rows/columns in matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix in packed format. A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- X (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{X}.
- offx $($ int $[i n])-$ Offset in number of elements for first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

SPMV - Symmetric packed matrix vector multiply

pyclblas.clblasDspmv (order, uplo, N, alpha, AP, offa, X, offx, incx, beta, Y, offy, incy, commandQueues, eventWaitList)
wraps: clblasDspmv
Matrix-vector product with a symmetric packed-matrix and double elements. Matrix-vector products:

$$
\bullet(\mathrm{Y} \leftarrow \alpha \mathrm{AX}+\beta \mathrm{Y})
$$

Parameters

- order (clblasOrder [in])-Row/columns order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- $\mathbf{N}($ int [in] $)$ - Number of rows and columns in matrix AP.
- alpha (float [in]) - The factor of matrix AP.
- AP (pyopencl. Buffer [in]) - Buffer object storing matrix AP.
- offa (int [in]) - Offset in number of elements for first element in matrix AP.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of vector \mathbf{X}. It cannot be zero.
- beta (float [in]) - The factor of vector \mathbf{Y}.
- Y (pyopencl. Buffer [out]) - Buffer object storing vector Y.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of vector \mathbf{Y}. It cannot be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasSspmv (order, uplo, N, alpha, $A P$, offa, X, offx, incx, beta, Y, offy, incy, commandQueues, eventWaitList)
wraps: clblasSspmv
Matrix-vector product with a symmetric packed-matrix and float elements. Matrix-vector products:

$$
\bullet(\mathrm{Y} \leftarrow \alpha \mathrm{AX}+\beta \mathrm{Y})
$$

Parameters

- order (clblasOrder [in])-Row/columns order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- N (int [in]) - Number of rows and columns in matrix AP.
- alpha (float [in]) - The factor of matrix AP.
- AP (pyopencl. Buffer [in]) - Buffer object storing matrix AP.
- offa (int [in]) - Offset in number of elements for first element in matrix AP.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of vector \mathbf{X}. It cannot be zero.
- beta (float [in]) - The factor of vector Y.
- Y (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of vector \mathbf{Y}. It cannot be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

HPMV - Hermitian packed matrix-vector multiplication

pyclblas.clblasChpmv (order, uplo, N, alpha, $A P$, offa, X, offx, incx, beta, Y, offy, incy, commandQueues, eventWaitList)
wraps: clblasChpmv

Matrix-vector product with a packed hermitian matrix and float-complex elements. Matrix-vector products:

$$
\bullet(\mathrm{Y} \leftarrow \alpha \mathrm{AX}+\beta \mathrm{Y})
$$

Parameters

- order (clblasOrder [in])-Row/columns order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- \mathbf{N} (int [in]) - Number of rows and columns in matrix AP.
- alpha (complex [in]) - The factor of matrix AP.
- AP (pyopencl.Buffer [in]) - Buffer object storing packed matrix AP.
- offa (int [in])-Offset in number of elements for first element in matrix AP.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of vector \mathbf{X}. It cannot be zero.
- beta (complex [in]) - The factor of vector \mathbf{Y}.
- Y (pyopencl. Buffer [out]) - Buffer object storing vector Y.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of vector \mathbf{Y}. It cannot be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZhpmv (order, uplo, N, alpha, $A P$, offa, X, offx, incx, beta, Y, offy, incy, commandQueues, eventWaitList)
wraps: clblasZhpmv
Matrix-vector product with a packed hermitian matrix and double-complex elements. Matrix-vector products:

$$
\bullet(\mathrm{Y} \leftarrow \alpha \mathrm{AX}+\beta \mathrm{Y})
$$

Parameters

- order (clblasOrder [in])-Row/columns order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- $\mathbf{N}($ int $[i n])$ - Number of rows and columns in matrix AP.
- alpha (complex [in]) - The factor of matrix AP.
- AP (pyopencl. Buffer [in]) - Buffer object storing packed matrix AP.
- offa (int [in]) - Offset in number of elements for first element in matrix AP.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of vector \mathbf{X}. It cannot be zero.
- beta (complex [in]) - The factor of vector \mathbf{Y}.
- Y (pyopencl. Buffer [out]) - Buffer object storing vector Y.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of vector \mathbf{Y}. It cannot be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

SPR - Symmetric packed matrix rank 1 update

pyclblas.clblasDspr (order, uplo, N, alpha, X, offx, incx, $A P$, offa, commandQueues, eventWaitList)
wraps: clblasDspr
Symmetric rank 1 operation with a general triangular packed-matrix and double elements. Symmetric rank 1 operation:
$\cdot\left(\mathrm{A} \leftarrow \alpha \mathrm{X} \mathrm{X}^{\mathrm{T}}+\mathrm{A}\right)$

Parameters

- order (clblasOrder [in])-Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- $\mathbf{N}($ int [in] $)$ - Number of columns in matrix \mathbf{A}.
- alpha (float [in]) - The factor of matrix \mathbf{A}.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- AP (pyopencl. Buffer [out]) - Buffer object storing packed-matrix AP.
- offa (int [in]) - Offset of first element of matrix AP in buffer object.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasSspr (order, uplo, N, alpha, X, offx, incx, $A P$, offa, commandQueues, eventWaitList) wraps: clblasSspr
Symmetric rank 1 operation with a general triangular packed-matrix and float elements. Symmetric rank 1 operation:

```
\bullet( A \leftarrow < X X X + A )
```


Parameters

- order (clblasOrder [in])-Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- $\mathbf{N}($ int [in] $)$ - Number of columns in matrix \mathbf{A}.
- alpha (float [in]) - The factor of matrix \mathbf{A}.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- AP (pyopencl. Buffer [out]) - Buffer object storing packed-matrix AP.
- offa (int [in]) - Offset of first element of matrix AP in buffer object.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

HPR - Hermitian packed matrix rank 1 update

pyclblas.clblasChpr (order, uplo, N, alpha, X, offx, incx, $A P$, offa, commandQueues, eventWaitList)
wraps: clblasChpr
hermitian rank 1 operation with a general triangular packed-matrix and float-complex elements. hermitian rank 1 operation:

- $\left(\mathrm{A} \leftarrow \alpha \mathrm{X} \mathrm{X}^{\mathrm{H}}+\mathrm{A}\right)$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- $\mathbf{N}($ int $[i n])$ - Number of columns in matrix \mathbf{A}.
- alpha (float [in]) - The factor of matrix \mathbf{A} (a scalar float value).
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset in number of elements for the first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of X. Must not be zero.
- AP (pyopencl.Buffer [out]) - Buffer object storing matrix AP.
- offa (int [in]) - Offset in number of elements for the first element in matrix AP.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZhpr (order, uplo, N, alpha, X, offx, incx, $A P$, offa, commandQueues, eventWaitList)
wraps: clblasZhpr
hermitian rank 1 operation with a general triangular packed-matrix and double-complex elements. hermitian rank 1 operation:
$\bullet\left(\mathrm{A} \leftarrow \alpha \mathrm{X} \mathrm{X}^{\mathrm{H}}+\mathrm{A}\right)$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- \mathbf{N} (int [in]) - Number of columns in matrix \mathbf{A}.
- alpha (float [in]) - The factor of matrix \mathbf{A} (a scalar float value).
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset in number of elements for the first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- AP (pyopencl. Buffer [out]) - Buffer object storing matrix AP.
- offa (int [in]) - Offset in number of elements for the first element in matrix AP.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

SPR2 - Symmetric packed matrix rank 2 update

pyclblas.clblasDspr2 (order, uplo, N, alpha, X, offx, incx, Y, offy, incy, AP, offa, commandQueues, eventWaitList)
wraps: clblasDspr2
Symmetric rank 2 operation with a general triangular packed-matrix and double elements. Symmetric rank 2 operation:

$$
\cdot\left(\mathrm{A} \leftarrow \alpha \mathrm{XY}^{\mathrm{T}}+\alpha \mathrm{Y} \mathrm{X}^{\mathrm{T}}+\mathrm{A}\right)
$$

Parameters

- order (clblasOrder [in])-Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- $\mathbf{N}($ int $[i n])-$ Number of columns in matrix \mathbf{A}.
- alpha (float [in]) - The factor of matrix A.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- Y (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- AP (pyopencl. Buffer [out]) - Buffer object storing packed-matrix AP.
- offa (int [in]) - Offset of first element of matrix AP in buffer object.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasSspr2 (order, uplo, N, alpha, X, offx, incx, Y, offy, incy, AP, offa, commandQueues, eventWaitList)
wraps: clblasSspr2
Symmetric rank 2 operation with a general triangular packed-matrix and float elements. Symmetric rank 2 operation:
$\cdot\left(\mathrm{A} \leftarrow \alpha \mathrm{X}^{\mathrm{T}}+\alpha \mathrm{Y} \mathrm{X}^{\mathrm{T}}+\mathrm{A}\right)$

Parameters

- order (clblasOrder [in])-Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- \mathbf{N} (int [in]) - Number of columns in matrix \mathbf{A}.
- alpha (float [in]) - The factor of matrix A.
- X (pyopencl. Buffer [in])-Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- Y (pyopencl.Buffer [in]) - Buffer object storing vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object.
- incy (int [in]) - Increment for the elements of \mathbf{Y}. Must not be zero.
- AP (pyopencl. Buffer [out]) - Buffer object storing packed-matrix AP.
- offa (int [in]) - Offset of first element of matrix AP in buffer object.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

HPR2 - Hermitian packed matrix rank 2 update

pyclblas.clblasChpr2 (order, uplo, N, alpha, X, offx, incx, Y, offy, incy, AP, offa, commandQueues, eventWaitList)
wraps: clblasChpr2
Hermitian rank 2 operation with a general triangular packed-matrix and float-compelx elements. Hermitian rank 2 operation:
$\bullet\left(\mathrm{A} \leftarrow \alpha \mathrm{X} \mathrm{Y}^{\mathrm{H}}+\operatorname{conj}(\right.$ alpha $\left.) \mathrm{Y} \mathrm{X}^{\mathrm{H}}+\mathrm{A}\right)$

Parameters

- order (clblasOrder [in])-Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- \mathbf{N} (int [in]) - Number of columns in matrix \mathbf{A}.
- alpha (complex [in]) - The factor of matrix \mathbf{A}.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset in number of elements for the first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of X. Must not be zero.
- Y (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{Y}.
- offy (int [in]) - Offset in number of elements for the first element in vector \mathbf{Y}.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- AP (pyopencl. Buffer [out]) - Buffer object storing packed-matrix AP.
- offa (int [in]) - Offset in number of elements for the first element in matrix AP.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZhpr2 (order, uplo, N, alpha, X, offx, incx, Y, offy, incy, AP, offa, commandQueues, eventWaitList)
wraps: clblasZhpr2
Hermitian rank 2 operation with a general triangular packed-matrix and double-compelx elements. Hermitian rank 2 operation:
$\bullet\left(\mathrm{A} \leftarrow \alpha \mathrm{X} \mathrm{Y}^{\mathrm{H}}+\operatorname{conj}(\right.$ alpha $\left.) \mathrm{Y} \mathrm{X}^{\mathrm{H}}+\mathrm{A}\right)$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- $\mathbf{N}($ int [in] $)-$ Number of columns in matrix \mathbf{A}.
- alpha (complex [in]) - The factor of matrix \mathbf{A}.
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset in number of elements for the first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- $\mathbf{Y}($ pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{Y}.
- offy (int [in]) - Offset in number of elements for the first element in vector \mathbf{Y}.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- AP (pyopencl.Buffer [out]) - Buffer object storing packed-matrix AP.
- offa (int [in]) - Offset in number of elements for the first element in matrix AP.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

GBMV - General banded matrix-vector multiplication

pyclblas.clblasCgbmv (order, trans, $M, N, K L, K U$, alpha, A, offa, lda, X, offx, incx, beta, Y, offy, incy, commandQueues, eventWaitList)
wraps: clblasCgbmv
Matrix-vector product with a general rectangular banded matrix and float-complex elements. Matrix-vector products:
$\bullet(\mathrm{Y} \leftarrow \alpha \mathrm{AX}+\beta \mathrm{Y})$
$\cdot\left(\mathrm{Y} \leftarrow \alpha \mathrm{A}^{\mathrm{T}} \mathrm{X}+\beta \mathrm{Y}\right)$

Parameters

- order (clblasOrder [in])-Row/column order.
- trans (clblasTranspose [in]) - How matrix A is to be transposed.
- M (int [in]) - Number of rows in banded matrix \mathbf{A}.
- $\mathbf{N}($ int [in] $)-$ Number of columns in banded matrix \mathbf{A}.
- KL (int [in]) - Number of sub-diagonals in banded matrix \mathbf{A}.
- KU (int [in]) - Number of super-diagonals in banded matrix A.
- alpha (complex [in]) - The factor of banded matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing banded matrix A.
- offa (int [in]) - Offset in number of elements for the first element in banded matrix A.
- lda (int [in]) - Leading dimension of banded matrix A. It cannot be less than ($\mathbf{K L}+$ $\mathbf{K U}+1$).
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in])- Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- beta (complex [in]) - The factor of the vector \mathbf{Y}.
- $\mathbf{Y}($ pyopencl. Buffer [out]) - Buffer object storing the vector \mathbf{y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- commandQueues (pyopencl.CommandQueue [in])- OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasDgbmv (order, trans, $M, N, K L, K U$, alpha, A, offa, lda, X, offx, incx, beta, Y, offy, incy, commandQueues, eventWaitList)
wraps: clblasDgbmv
Matrix-vector product with a general rectangular banded matrix and double elements. Matrix-vector products:

$$
\begin{aligned}
& \bullet(\mathrm{Y} \leftarrow \alpha \mathrm{~A} \mathrm{X}+\beta \mathrm{Y}) \\
& \bullet\left(\mathrm{Y} \leftarrow \alpha \mathrm{~A}^{\mathrm{T}} \mathrm{X}+\beta \mathrm{Y}\right)
\end{aligned}
$$

Parameters

- order (clblasOrder [in]) - Row/column order.
- trans (clblasTranspose [in]) - How matrix A is to be transposed.
- M (int [in]) - Number of rows in banded matrix \mathbf{A}.
- $\mathbf{N}($ int [in] $)$ - Number of columns in banded matrix \mathbf{A}.
- KL (int [in]) - Number of sub-diagonals in banded matrix \mathbf{A}.
- KU (int [in]) - Number of super-diagonals in banded matrix \mathbf{A}.
- alpha (float [in]) - The factor of banded matrix A.
- A (pyopencl. Buffer [in]) - Buffer object storing banded matrix A.
- offa (int [in]) - Offset in number of elements for the first element in banded matrix A.
- lda (int [in]) - Leading dimension of banded matrix A. It cannot be less than ($\mathbf{K L}+$ $\mathbf{K U}+1$).
- X (pyopencl.Buffer [in]) - Buffer object storing vector X.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- beta (float [in]) - The factor of the vector \mathbf{Y}.
- $\mathbf{Y}($ pyopencl. Buffer [out]) - Buffer object storing the vector \mathbf{y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- commandQueues (pyopencl.CommandQueue [in])-OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasSgbmv (order, trans, $M, N, K L, K U$, alpha, A, offa, lda, X, offx, incx, beta, Y, offy, incy, commandQueues, eventWaitList)
wraps: clblasSgbmv

Matrix-vector product with a general rectangular banded matrix and float elements. Matrix-vector products:

$$
\begin{aligned}
& \bullet(\mathrm{Y} \leftarrow \alpha \mathrm{~A} \mathrm{X}+\beta \mathrm{Y}) \\
& \bullet\left(\mathrm{Y} \leftarrow \alpha \mathrm{~A}^{\mathrm{T}} \mathrm{X}+\beta \mathrm{Y}\right)
\end{aligned}
$$

Parameters

- order (clblasOrder [in])-Row/column order.
- trans (clblasTranspose [in]) - How matrix A is to be transposed.
- M (int [in]) - Number of rows in banded matrix \mathbf{A}.
- $\mathbf{N}($ int [in] $)-$ Number of columns in banded matrix \mathbf{A}.
- KL (int [in]) - Number of sub-diagonals in banded matrix \mathbf{A}.
- KU (int [in]) - Number of super-diagonals in banded matrix \mathbf{A}.
- alpha (float [in]) - The factor of banded matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing banded matrix A.
- offa (int [in]) - Offset in number of elements for the first element in banded matrix A.
- lda (int [in]) - Leading dimension of banded matrix A. It cannot be less than ($\mathbf{K L}+$ $\mathbf{K U}+1$).
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- beta (float [in]) - The factor of the vector \mathbf{Y}.
- \mathbf{Y} (pyopencl. Buffer [out]) - Buffer object storing the vector \mathbf{y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of Y. Must not be zero.
- commandQueues (pyopencl.CommandQueue [in])-OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZgbmv (order, trans, $M, N, K L, K U$, alpha, A, offa, lda, X, offx, incx, beta, Y, offy, incy, commandQueues, eventWaitList)
wraps: clblasZgbmv
Matrix-vector product with a general rectangular banded matrix and double-complex elements. Matrix-vector products:
$\cdot(\mathrm{Y} \leftarrow \alpha \mathrm{A} \mathbf{X}+\beta \mathrm{Y})$
$\cdot\left(\mathrm{Y} \leftarrow \alpha \mathrm{A}^{\mathrm{T}} \mathrm{X}+\beta \mathrm{Y}\right)$

Parameters

- order (clblasOrder [in]) - Row/column order.
- trans (clblasTranspose [in]) - How matrix A is to be transposed.
- M (int [in]) - Number of rows in banded matrix \mathbf{A}.
- \mathbf{N} (int [in]) - Number of columns in banded matrix \mathbf{A}.
- KL (int [in]) - Number of sub-diagonals in banded matrix \mathbf{A}.
- KU (int [in]) - Number of super-diagonals in banded matrix \mathbf{A}.
- alpha (complex [in]) - The factor of banded matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing banded matrix A.
- offa (int [in]) - Offset in number of elements for the first element in banded matrix A.
- lda (int [in]) - Leading dimension of banded matrix A. It cannot be less than (KL + $\mathbf{K U}+1$).
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- beta (complex [in]) - The factor of the vector \mathbf{Y}.
- \mathbf{Y} (pyopencl. Buffer [out]) - Buffer object storing the vector \mathbf{y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of \mathbf{Y}. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

TBMV - Triangular banded matrix vector multiply

pyclblas.clblasCtbmv (order, uplo, trans, diag, N, K, A, offa, lda, X, offx, incx, scratchBuff, commandQueues, eventWaitList)
wraps: clblasCtbmv
Matrix-vector product with a triangular banded matrix and float-complex elements. Matrix-vector products:
$\cdot(X \leftarrow A X)$
$\cdot\left(X \leftarrow A^{T} X\right)$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- trans (clblasTranspose [in]) - How matrix A is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix A is unit triangular.
- $\mathbf{N}($ int [in] $)$ - Number of rows/columns in banded matrix \mathbf{A}.
- K (int [in]) - Number of sub-diagonals/super-diagonals in triangular banded matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than (K+1).
- X (pyopencl. Buffer [out]) - Buffer object storing vector X.
- offx (int [in]) - Offset in number of elements for first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- scratchBuff (pyopencl. Buffer [in]) - Temporary cl_mem scratch buffer object which can hold a minimum of $(1+(\mathrm{N}-1) * \operatorname{abs}($ incx $))$ elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasDtbmv (order, uplo, trans, diag, N, K, A, offa, lda, X, offx, incx, scratchBuff, commandQueues, eventWaitList)
wraps: clblasDtbmv
Matrix-vector product with a triangular banded matrix and double elements. Matrix-vector products:

- $(\mathrm{X} \leftarrow \mathrm{AX})$
$\cdot\left(X \leftarrow A^{T} X\right)$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- trans (clblastranspose [in]) - How matrix \mathbf{A} is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix A is unit triangular.
- $\mathbf{N}($ int [in] $)-$ Number of rows/columns in banded matrix \mathbf{A}.
- K (int [in]) - Number of sub-diagonals/super-diagonals in triangular banded matrix A.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- lda (int [in])-Leading dimension of matrix \mathbf{A}. It cannot be less than ($\mathbf{K}+1$).
- X (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{X}.
- offx $($ int $[i n])$ - Offset in number of elements for first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- scratchBuff (pyopencl.Buffer [in]) - Temporary cl_mem scratch buffer object which can hold a minimum of $(1+(\mathrm{N}-1) *$ abs(incx $))$ elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasStbmv (order, uplo, trans, diag, N, K, A, offa, lda, X, offx, incx, scratchBuff, commandQueues, eventWaitList)
wraps: clblasStbmv
Matrix-vector product with a triangular banded matrix and float elements. Matrix-vector products:

$$
\begin{aligned}
& \bullet(X \leftarrow A X) \\
& \bullet\left(X \leftarrow A^{T} X\right)
\end{aligned}
$$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- trans (clblasTranspose [in]) - How matrix A is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix A is unit triangular.
- $\mathbf{N}($ int [in] $)$ - Number of rows/columns in banded matrix \mathbf{A}.
- K (int [in]) - Number of sub-diagonals/super-diagonals in triangular banded matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than (K+1).
- X (pyopencl.Buffer [out]) - Buffer object storing vector X.
- offx (int [in]) - Offset in number of elements for first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- scratchBuff (pyopencl. Buffer [in]) - Temporary cl_mem scratch buffer object which can hold a minimum of $(1+(\mathrm{N}-1) *$ abs (incx $)$) elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZtbmv (order, uplo, trans, diag, N, K, A, offa, lda, X, offx, incx, scratchBuff, commandQueues, eventWaitList)
wraps: clblasZtbmv
Matrix-vector product with a triangular banded matrix and double-complex elements. Matrix-vector products:

$$
\begin{aligned}
& \bullet(X \leftarrow A X) \\
& \bullet\left(X \leftarrow A^{T} X\right)
\end{aligned}
$$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- trans (clblasTranspose [in]) - How matrix A is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix A is unit triangular.
- $\mathbf{N}($ int [in] $)$ - Number of rows/columns in banded matrix \mathbf{A}.
- K (int [in]) - Number of sub-diagonals/super-diagonals in triangular banded matrix A.
- A (pyopencl.Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}. It cannot be less than ($\mathbf{K}+1$).
- X (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{X}.
- offx $($ int [in] $)$ - Offset in number of elements for first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- scratchBuff (pyopencl.Buffer [in]) - Temporary cl_mem scratch buffer object which can hold a minimum of $(1+(\mathrm{N}-1) * \operatorname{abs}($ incx $))$ elements.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

SBMV - Symmetric banded matrix-vector multiplication

pyclblas.clblasDsbmv (order, uplo, N, K, alpha, A, offa, lda, X, offx, incx, beta, Y, offy, incy, commandQueues, eventWaitList)
wraps: clblasDsbmv
Matrix-vector product with a symmetric banded matrix and double elements. Matrix-vector products:

$$
\bullet(\mathrm{Y} \leftarrow \alpha \mathrm{AX}+\beta \mathrm{Y})
$$

Parameters

- order (clblasOrder [in])-Row/columns order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- $\mathbf{N}($ int [in] $)-$ Number of rows and columns in banded matrix \mathbf{A}.
- K (int [in]) - Number of sub-diagonals/super-diagonals in banded matrix \mathbf{A}.
- alpha (float [in]) - The factor of matrix A.
- A (pyopencl.Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than ($\mathbf{K}+1$).
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of vector \mathbf{X}. It cannot be zero.
- beta (float [in]) - The factor of vector \mathbf{Y}.
- Y (pyopencl. Buffer [out]) - Buffer object storing vector Y.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of vector \mathbf{Y}. It cannot be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasSsbmv (order, uplo, N, K, alpha, A, offa, lda, X, offx, incx, beta, Y, offy, incy, commandQueues, eventWaitList)
wraps: clblasSsbmv
Matrix-vector product with a symmetric banded matrix and float elements. Matrix-vector products:

$$
\bullet(\mathrm{Y} \leftarrow \alpha \mathrm{AX}+\beta \mathrm{Y})
$$

Parameters

- order (clblasOrder [in])-Row/columns order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- \mathbf{N} (int [in]) - Number of rows and columns in banded matrix \mathbf{A}.
- K (int [in]) - Number of sub-diagonals/super-diagonals in banded matrix \mathbf{A}.
- alpha (float [in]) - The factor of matrix A.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than ($\mathbf{K}+1$).
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int $[i n])$ - Increment for the elements of vector \mathbf{X}. It cannot be zero.
- beta (float [in]) - The factor of vector \mathbf{Y}.
- Y (pyopencl. Buffer [out]) - Buffer object storing vector Y.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of vector \mathbf{Y}. It cannot be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

HBMV - Hermitian banded matrix-vector multiplication

pyclblas.clblasChbmv (order, uplo, N, K, alpha, A, offa, lda, X, offx, incx, beta, Y, offy, incy, commandQueues, eventWaitList)
wraps: clblasChbmv
Matrix-vector product with a hermitian banded matrix and float elements. Matrix-vector products:
$\bullet(\mathrm{Y} \leftarrow \alpha \mathrm{AX}+\beta \mathrm{Y})$

Parameters

- order (clblasOrder [in]) - Row/columns order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- $\mathbf{N}($ int [in] $)$ - Number of rows and columns in banded matrix \mathbf{A}.
- K (int [in]) - Number of sub-diagonals/super-diagonals in banded matrix \mathbf{A}.
- alpha (complex [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}. It cannot be less than ($\mathbf{K}+1$).
- X (pyopencl.Buffer [in]) - Buffer object storing vector X.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of vector \mathbf{X}. It cannot be zero.
- beta (complex [in]) - The factor of vector \mathbf{Y}.
- Y (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{Y}.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of vector \mathbf{Y}. It cannot be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZhbmv (order, uplo, N, K, alpha, A, offa, lda, X, offx, incx, beta, Y, offy, incy, commandQueues, eventWaitList)
wraps: clblasZhbmv
Matrix-vector product with a hermitian banded matrix and double elements. Matrix-vector products:

$$
\bullet(\mathrm{Y} \leftarrow \alpha \mathrm{AX}+\beta \mathrm{Y})
$$

Parameters

- order (clblasOrder [in])-Row/columns order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- \mathbf{N} (int [in]) - Number of rows and columns in banded matrix \mathbf{A}.
- K (int [in]) - Number of sub-diagonals/super-diagonals in banded matrix \mathbf{A}.
- alpha (complex [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}. It cannot be less than ($\mathbf{K}+1$).
- X (pyopencl. Buffer [in]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset of first element of vector \mathbf{X} in buffer object. Counted in elements.
- incx (int [in]) - Increment for the elements of vector \mathbf{X}. It cannot be zero.
- beta (complex [in]) - The factor of vector \mathbf{Y}.
- Y (pyopencl. Buffer [out]) - Buffer object storing vector Y.
- offy (int [in]) - Offset of first element of vector \mathbf{Y} in buffer object. Counted in elements.
- incy (int [in]) - Increment for the elements of vector \mathbf{Y}. It cannot be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

TBSV - Solving triangular banded matrix

pyclblas.clblasCtbsv (order, uplo, trans, diag, N, K, A, offa, lda, X, offx, incx, commandQueues, eventWaitList)
wraps: clblasCtbsv
solving triangular banded matrix problems with float-complex elements. Matrix-vector products:

$$
\begin{aligned}
& \bullet(\mathrm{A} X \leftarrow \mathrm{X}) \\
& \cdot\left(\mathrm{A}^{\mathrm{T}} \mathrm{X} \leftarrow \mathrm{X}\right)
\end{aligned}
$$

Parameters

- order (clblasOrder [in])-Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- trans (clblasTranspose [in]) - How matrix A is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix A is unit triangular.
- $\mathbf{N}($ int [in] $)$ - Number of rows/columns in banded matrix \mathbf{A}.
- K (int [in]) - Number of sub-diagonals/super-diagonals in triangular banded matrix \mathbf{A}.
- A (pyopencl.Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}. It cannot be less than ($\mathbf{K}+1$).
- X (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset in number of elements for first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of X. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasDtbsv (order, uplo, trans, diag, N, K, A, offa, lda, X, offx, incx, commandQueues, eventWaitList)
wraps: clblasDtbsv
solving triangular banded matrix problems with double elements. Matrix-vector products:

$$
\begin{aligned}
& \cdot(\mathrm{A} X \leftarrow \mathrm{X}) \\
& \cdot\left(\mathrm{A}^{\mathrm{T}} \mathrm{X} \leftarrow \mathrm{X}\right)
\end{aligned}
$$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- trans (clblastranspose [in]) - How matrix \mathbf{A} is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix \mathbf{A} is unit triangular.
- $\mathbf{N}($ int [in] $)-$ Number of rows/columns in banded matrix \mathbf{A}.
- K (int [in]) - Number of sub-diagonals/super-diagonals in triangular banded matrix A.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}. It cannot be less than ($\mathbf{K}+1$).
- X (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{X}.
- offx $($ int $[i n])$ - Offset in number of elements for first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasStbsv (order, uplo, trans, diag, N, K, A, offa, lda, X, offx, incx, commandQueues, eventWaitList)
wraps: clblasStbsv
solving triangular banded matrix problems with float elements. Matrix-vector products:

- $(\mathrm{AX} \leftarrow \mathrm{X})$
- $\left(A^{T} X \leftarrow X\right)$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- trans (clblasTranspose [in]) - How matrix A is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix A is unit triangular.
- $\mathbf{N}($ int [in] $)-$ Number of rows/columns in banded matrix \mathbf{A}.
- K (int [in]) - Number of sub-diagonals/super-diagonals in triangular banded matrix A.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}. It cannot be less than ($\mathbf{K}+1$).
- \mathbf{x} (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset in number of elements for first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZtbsv (order, uplo, trans, diag, N, K, A, offa, lda, X, offx, incx, commandQueues, eventWaitList)
wraps: clblasZtbsv
solving triangular banded matrix problems with double-complex elements. Matrix-vector products:

- $(\mathrm{A} X \leftarrow \mathrm{X})$
- $\left(A^{T} X \leftarrow X\right)$

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- trans (clblasTranspose [in]) - How matrix A is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix A is unit triangular.
- $\mathbf{N}($ int [in] $)$ - Number of rows/columns in banded matrix \mathbf{A}.
- K (int [in]) - Number of sub-diagonals/super-diagonals in triangular banded matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset in number of elements for first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}. It cannot be less than ($\mathbf{K}+1$).
- X (pyopencl. Buffer [out]) - Buffer object storing vector \mathbf{X}.
- offx (int [in]) - Offset in number of elements for first element in vector \mathbf{X}.
- incx (int [in]) - Increment for the elements of \mathbf{X}. Must not be zero.
- commandQueues (pyopencl.CommandQueue [in])-OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

BLAS Level 3 Functions

GEMM - General matrix-matrix multiplication

pyclblas.clblasCgemm (order, transA, transB, M, N, K, alpha, A, offA, lda, B, offB, ldb, beta, C, offC, ldc, commandQueues, eventWaitList)
wraps: clblasCgemm
Matrix-matrix product of general rectangular matrices with float complex elements. Extended version. <dl class="section note"> <dt> Note </dt> <dd> This function is not thread-safe. </dd> </dl> Matrix-matrix products:

$$
\begin{aligned}
& \cdot(\mathrm{C} \leftarrow \alpha \mathrm{AB}+\beta \mathrm{C}) \\
& \cdot\left(\mathrm{C} \leftarrow \alpha \mathrm{~A}^{\mathrm{T}} \mathrm{~B}+\beta \mathrm{C}\right) \\
& \cdot\left(\mathrm{C} \leftarrow \alpha \mathrm{AB}^{\mathrm{T}}+\beta \mathrm{C}\right) \\
& \cdot\left(\mathrm{C} \leftarrow \alpha \mathrm{~A}^{\mathrm{T}} \mathrm{~B}^{\mathrm{T}}+\beta \mathrm{C}\right)
\end{aligned}
$$

Parameters

- order (clblasOrder [in]) - Row/column order.
- transA (clblasTranspose [in]) - How matrix \mathbf{A} is to be transposed.
- transB (clblasTranspose [in]) - How matrix B is to be transposed.
- M(int [in]) - Number of rows in matrix \mathbf{A}.
- $\mathbf{N}($ int $[i n])$ - Number of columns in matrix B.
- \mathbf{K} (int [in]) - Number of columns in matrix \mathbf{A} and rows in matrix \mathbf{B}.
- alpha (complex [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}.
- B (pyopencl. Buffer [in]) - Buffer object storing matrix B.
- offb (int [in]) - Offset of the first element of the matrix \mathbf{B} in the buffer object. Counted in elements.
- ldb (int [in])-Leading dimension of matrix \mathbf{B}.
- beta (complex [in]) - The factor of matrix \mathbf{C}.
- C (pyopencl. Buffer [out]) - Buffer object storing matrix C.
- offC (int [in]) - Offset of the first element of the matrix \mathbf{C} in the buffer object. Counted in elements.
- ldc (int [in]) - Leading dimension of matrix \mathbf{C}.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasDgemm (order, transA, trans B, M, N, K, alpha, A, offA, lda, B, off $B, l d b$, beta, C, off C, ldc, commandQueues, eventWaitList)
wraps: clblasDgemm
Matrix-matrix product of general rectangular matrices with double elements. Extended version. <dl class="section note"> <dt> Note </dt> <dd> This function is not thread-safe. </dd> </dl> Matrix-matrix products:

$$
\begin{aligned}
& \bullet(\mathrm{C} \leftarrow \alpha \mathrm{~A} \mathrm{~B}+\beta \mathrm{C}) \\
& \bullet\left(\mathrm{C} \leftarrow \alpha \mathrm{~A}^{\mathrm{T}} \mathrm{~B}+\beta \mathrm{C}\right) \\
& \bullet\left(\mathrm{C} \leftarrow \alpha \mathrm{~A} \mathrm{~B}^{\mathrm{T}}+\beta \mathrm{C}\right) \\
& \cdot\left(\mathrm{C} \leftarrow \alpha \mathrm{~A}^{\mathrm{T}} \mathrm{~B}^{\mathrm{T}}+\beta \mathrm{C}\right)
\end{aligned}
$$

Parameters

- order (clblasOrder [in]) - Row/column order.
- transA (clblasTranspose [in]) - How matrix \mathbf{A} is to be transposed.
- transB (clblasTranspose [in]) - How matrix \mathbf{B} is to be transposed.
- M (int [in]) - Number of rows in matrix \mathbf{A}.
- $\mathbf{N}($ int [in] $)$ - Number of columns in matrix B.
- K (int [in]) - Number of columns in matrix \mathbf{A} and rows in matrix \mathbf{B}.
- alpha (float [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offA (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}.
- B (pyopencl. Buffer [in]) - Buffer object storing matrix B.
- offB (int [in]) - Offset of the first element of the matrix \mathbf{B} in the buffer object. Counted in elements.
- ldb (int [in])-Leading dimension of matrix B.
- beta (float [in]) - The factor of matrix \mathbf{C}.
- C (pyopencl. Buffer [out]) - Buffer object storing matrix C.
- offC (int [in]) - Offset of the first element of the matrix \mathbf{C} in the buffer object. Counted in elements.
- ldc (int [in]) - Leading dimension of matrix \mathbf{C}.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasSgemm (order, transA, trans B, M, N, K, alpha, A, off $A, l d a, B$, off $B, l d b$, beta, C, off C, ldc, commandQueues, eventWaitList)
wraps: clblasSgemm
Matrix-matrix product of general rectangular matrices with float elements. Extended version. <dl class="section note" $><\mathrm{dt}>$ Note $</ \mathrm{dt}><\mathrm{dd}>$ This function is not thread-safe. </dd> </dl> Matrix-matrix products:

$$
\begin{aligned}
& \cdot(\mathrm{C} \leftarrow \alpha \mathrm{AB}+\beta \mathrm{C}) \\
& \cdot\left(\mathrm{C} \leftarrow \alpha \mathrm{~A}^{\mathrm{T}} \mathrm{~B}+\beta \mathrm{C}\right) \\
& \cdot\left(\mathrm{C} \leftarrow \alpha \mathrm{AB}^{\mathrm{T}}+\beta \mathrm{C}\right) \\
& \cdot\left(\mathrm{C} \leftarrow \alpha \mathrm{~A}^{\mathrm{T}} \mathrm{~B}^{\mathrm{T}}+\beta \mathrm{C}\right)
\end{aligned}
$$

Parameters

- order (clblasOrder [in]) - Row/column order.
- transA (clblasTranspose [in]) - How matrix \mathbf{A} is to be transposed.
- transB (clblasTranspose [in]) - How matrix B is to be transposed.
- M (int [in]) - Number of rows in matrix \mathbf{A}.
- \mathbf{N} (int [in]) - Number of columns in matrix \mathbf{B}.
- K (int [in]) - Number of columns in matrix \mathbf{A} and rows in matrix \mathbf{B}.
- alpha (float [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offA (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}. It cannot be less than \mathbf{K} when the order parameter is set to clblasRowMajor, or less than \mathbf{M} when the parameter is set to clblasColumnMajor.
- B (pyopencl. Buffer [in]) - Buffer object storing matrix B.
- offB (int [in]) - Offset of the first element of the matrix \mathbf{B} in the buffer object. Counted in elements.
- ldb (int [in]) - Leading dimension of matrix B. It cannot be less than \mathbf{N} when the order parameter is set to clblasRowMajor, or less than \mathbf{K} when it is set to clblasColumnMajor.
- beta (float [in]) - The factor of matrix \mathbf{C}.
- C (pyopencl. Buffer [out]) - Buffer object storing matrix C.
- offc (int [in]) - Offset of the first element of the matrix \mathbf{C} in the buffer object. Counted in elements.
- ldc (int [in]) - Leading dimension of matrix \mathbf{C}. It cannot be less than \mathbf{N} when the order parameter is set to clblasRowMajor, or less than \mathbf{M} when it is set to clblasColumnMajorOrder.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZgemm (order, transA, trans B, M, N, K, alpha, A, off $A, l d a, B$, off $B, l d b$, beta,C, offC, ldc, commandQueues, eventWaitList)
wraps: clblasZgemm
Matrix-matrix product of general rectangular matrices with double complex elements. Exteneded version. <dl class="section note" $><\mathrm{dt}>$ Note $</ \mathrm{dt}><\mathrm{dd}>$ This function is not thread-safe. </dd> </dl> Matrix-matrix products:
$\cdot(\mathbf{C} \leftarrow \alpha \mathrm{AB}+\beta \mathrm{C})$
$\bullet\left(\mathrm{C} \leftarrow \alpha \mathrm{A}^{\mathrm{T}} \mathrm{B}+\beta \mathrm{C}\right)$
$\cdot\left(\mathbf{C} \leftarrow \alpha \mathrm{A} \mathrm{B}^{\mathrm{T}}+\beta \mathbf{C}\right)$
$\cdot\left(\mathrm{C} \leftarrow \alpha \mathrm{A}^{\mathrm{T}} \mathrm{B}^{\mathrm{T}}+\beta \mathrm{C}\right)$

Parameters

- order (clblasOrder [in])-Row/column order.
- transA (clblastranspose [in]) - How matrix \mathbf{A} is to be transposed.
- transB (clblasTranspose [in]) - How matrix \mathbf{B} is to be transposed.
- M (int [in]) - Number of rows in matrix \mathbf{A}.
- \mathbf{N} (int [in]) - Number of columns in matrix \mathbf{B}.
- K (int [in]) - Number of columns in matrix \mathbf{A} and rows in matrix \mathbf{B}.
- alpha (complex [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}.
- B (pyopencl. Buffer [in]) - Buffer object storing matrix B.
- offB (int [in]) - Offset of the first element of the matrix \mathbf{B} in the buffer object. Counted in elements.
- ldb (int [in])-Leading dimension of matrix B.
- beta (complex [in]) - The factor of matrix \mathbf{C}.
- C (pyopencl. Buffer [out]) - Buffer object storing matrix C.
- offc (int [in]) - Offset of the first element of the matrix \mathbf{C} in the buffer object. Counted in elements.
- ldc (int [in])-Leading dimension of matrix \mathbf{C}.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

TRMM - Triangular matrix-matrix multiplication

pyclblas.clblasCtrmm (order, side, uplo, transA, diag, M, N, alpha, A, off $A, l d a, B$, off $B, l d b$, commandQueues, eventWaitList)
wraps: clblasCtrmm
Multiplying a matrix by a triangular matrix with float complex elements. Extended version. Matrix-triangular matrix products:

$$
\begin{aligned}
& \bullet(\mathrm{B} \leftarrow \alpha \mathrm{AB}) \\
& \bullet\left(\mathrm{B} \leftarrow \alpha \mathrm{~A}^{\mathrm{T}} \mathrm{~B}\right) \\
& \bullet(\mathrm{B} \leftarrow \alpha \mathrm{~B} A) \\
& \cdot\left(\mathrm{B} \leftarrow \alpha \mathrm{~B} \mathrm{~A}^{\mathrm{T}}\right)
\end{aligned}
$$

where \mathbf{T} is an upper or lower triangular matrix.

Parameters

- order (clblasOrder [in]) - Row/column order.
- side (clblasSide [in]) - The side of triangular matrix.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- transA (clblasTranspose [in]) - How matrix A is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix is unit triangular.
- M (int [in]) - Number of rows in matrix \mathbf{B}.
- $\mathbf{N}($ int [in] $)$ - Number of columns in matrix B.
- alpha (complex [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}.
- B (pyopencl. Buffer [out]) - Buffer object storing matrix B.
- offB (int [in]) - Offset of the first element of the matrix \mathbf{B} in the buffer object. Counted in elements.
- ldb (int [in])-Leading dimension of matrix \mathbf{B}.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasDtrmm (order, side, uplo, transA, diag, M, N, alpha, A, off $A, l d a, B$, off $B, l d b$, commandQueues, eventWaitList)
wraps: clblasDtrmm
Multiplying a matrix by a triangular matrix with double elements. Extended version. Matrix-triangular matrix products:

$$
\begin{aligned}
& \bullet(\mathrm{B} \leftarrow \alpha \mathrm{AB}) \\
& \bullet\left(\mathrm{B} \leftarrow \alpha \mathrm{~A}^{\mathrm{T}} \mathrm{~B}\right) \\
& \cdot(\mathrm{B} \leftarrow \alpha \mathrm{~B} \mathrm{~A}) \\
& \cdot\left(\mathrm{B} \leftarrow \alpha \mathrm{~B}^{\mathrm{T}}\right)
\end{aligned}
$$

where \mathbf{T} is an upper or lower triangular matrix.

Parameters

- order (clblasOrder [in])-Row/column order.
- side (clblasSide [in]) - The side of triangular matrix.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- transA (clblasTranspose [in]) - How matrix \mathbf{A} is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix is unit triangular.
- M (int [in]) - Number of rows in matrix \mathbf{B}.
- \mathbf{N} (int [in]) - Number of columns in matrix \mathbf{B}.
- alpha (float [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}.
- B (pyopencl. Buffer [out]) - Buffer object storing matrix B.
- offB (int [in]) - Offset of the first element of the matrix \mathbf{B} in the buffer object. Counted in elements.
- ldb (int [in])-Leading dimension of matrix B.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasStrmm (order, side, uplo, transA, diag, M, N, alpha, A, offA, lda, B, off B, ldb, commandQueues, eventWaitList)
wraps: clblasStrmm
Multiplying a matrix by a triangular matrix with float elements. Extended version. Matrix-triangular matrix products:

$$
\begin{aligned}
& \bullet(\mathrm{B} \leftarrow \alpha \mathrm{AB}) \\
& \bullet\left(\mathrm{B} \leftarrow \alpha \mathrm{~A}^{\mathrm{T}} \mathrm{~B}\right)
\end{aligned}
$$

-($\mathrm{B} \leftarrow \alpha \mathrm{BA})$

- $\left(\mathrm{B} \leftarrow \alpha \mathrm{B} \mathrm{A}^{\mathrm{T}}\right)$
where \mathbf{T} is an upper or lower triangular matrix.

Parameters

- order (clblasOrder [in])-Row/column order.
- side (clblasSide [in]) - The side of triangular matrix.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- transA (clblasTranspose [in]) - How matrix \mathbf{A} is to be transposed.
- diag (clblasDiag [in])-Specify whether matrix is unit triangular.
- M (int [in]) - Number of rows in matrix \mathbf{B}.
- $\mathbf{N}($ int [in] $)$ - Number of columns in matrix B.
- alpha (float [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}. It cannot be less than \mathbf{M} when the side parameter is set to clblasLeft, or less than \mathbf{N} when it is set to clblasRight.
- B (pyopencl. Buffer [out]) - Buffer object storing matrix B.
- offB (int [in]) - Offset of the first element of the matrix \mathbf{B} in the buffer object. Counted in elements.
- ldb (int [in]) - Leading dimension of matrix B. It cannot be less than \mathbf{N} when the order parameter is set to clblasRowMajor, or not less than \mathbf{M} when it is set to clblasColumnMajor.
- commandQueues (pyopencl.CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZtrmm (order, side, uplo, transA, diag, M, N, alpha, A, off A, lda, B, off B, ldb, commandQueues, eventWaitList)
wraps: clblasZtrmm
Multiplying a matrix by a triangular matrix with double complex elements. Extended version. Matrix-triangular matrix products:
$\cdot(\mathrm{B} \leftarrow \alpha \mathrm{AB})$
$\cdot\left(\mathrm{B} \leftarrow \alpha \mathrm{A}^{\mathrm{T}} \mathrm{B}\right)$

- $(\mathbf{B} \leftarrow \alpha \mathrm{BA})$
$\cdot\left(\mathrm{B} \leftarrow \alpha \mathrm{B} \mathrm{A}^{\mathrm{T}}\right)$
where \mathbf{T} is an upper or lower triangular matrix.

Parameters

- order (clblasOrder [in])-Row/column order.
- side (clblasSide [in]) - The side of triangular matrix.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- transA (clblasTranspose [in]) - How matrix \mathbf{A} is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix is unit triangular.
- M (int [in]) - Number of rows in matrix \mathbf{B}.
- $\mathbf{N}($ int $[i n])$ - Number of columns in matrix B.
- alpha (complex [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}.
- B (pyopencl. Buffer [out]) - Buffer object storing matrix B.
- offB (int [in]) - Offset of the first element of the matrix \mathbf{B} in the buffer object. Counted in elements.
- ldb (int [in])-Leading dimension of matrix B.
- commandQueues (pyopencl.CommandQueue [in])- OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

TRSM - Solving triangular systems of equations

pyclblas.clblasCtrsm (order, side, uplo, transA, diag, M, N, alpha, A, off $A, l d a, B$, off $B, l d b$, commandQueues, eventWaitList)
wraps: clblasCtrsm
Solving triangular systems of equations with multiple right-hand sides and float complex elements. Extended version. Solving triangular systems of equations:

$$
\begin{aligned}
& \cdot\left(\mathrm{B} \leftarrow \alpha \mathrm{~A}^{-1} \mathrm{~B}\right) \\
& \cdot\left(\mathrm{B} \leftarrow \alpha \mathrm{~A}^{\wedge}\{-\mathrm{T}\} \mathrm{B}\right) \\
& \cdot\left(\mathrm{B} \leftarrow \alpha \mathrm{~B}^{-1}\right) \\
& \cdot\left(\mathrm{B} \leftarrow \alpha \mathrm{~B}^{\wedge}\{-\mathrm{T}\}\right)
\end{aligned}
$$

where \mathbf{T} is an upper or lower triangular matrix.

Parameters

- order (clblasOrder [in]) - Row/column order.
- side (clblasSide [in]) - The side of triangular matrix.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- transA (clblasTranspose [in]) - How matrix \mathbf{A} is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix is unit triangular.
- M (int [in]) - Number of rows in matrix \mathbf{B}.
- $\mathbf{N}($ int $[i n])$ - Number of columns in matrix B.
- alpha (complex [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}.
- B (pyopencl. Buffer [out]) - Buffer object storing matrix B.
- offB (int [in]) - Offset of the first element of the matrix \mathbf{B} in the buffer object. Counted in elements.
- ldb (int [in])-Leading dimension of matrix B.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasDtrsm (order, side, uplo, transA, diag, M, N, alpha, A, off $A, l d a, B$, off $B, l d b$, commandQueues, eventWaitList)
wraps: clblasDtrsm
Solving triangular systems of equations with multiple right-hand sides and double elements. Extended version. <dl class="section note"> <dt> Note </dt> <dd> This function is not thread-safe. </dd> </dl> Solving triangular systems of equations:

$$
\begin{aligned}
& \cdot\left(\mathrm{B} \leftarrow \alpha \mathrm{~A}^{-1} \mathrm{~B}\right) \\
& \cdot\left(\mathrm{B} \leftarrow \alpha \mathrm{~A}^{\wedge}\{-\mathrm{T}\} \mathrm{B}\right) \\
& \cdot\left(\mathrm{B} \leftarrow \alpha \mathrm{~B} \mathrm{~A}^{-1}\right) \\
& \cdot\left(\mathrm{B} \leftarrow \alpha \mathrm{~B} \mathrm{~A}^{\wedge}\{-\mathrm{T}\}\right)
\end{aligned}
$$

where \mathbf{T} is an upper or lower triangular matrix.

Parameters

- order (clblasOrder [in]) - Row/column order.
- side (clblasSide [in]) - The side of triangular matrix.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- transA (clblasTranspose [in]) - How matrix A is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix is unit triangular.
- M (int [in]) - Number of rows in matrix \mathbf{B}.
- \mathbf{N} (int [in]) - Number of columns in matrix \mathbf{B}.
- alpha (float [in]) - The factor of matrix A.
- A (pyopencl.Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}.
- B (pyopencl. Buffer [out]) - Buffer object storing matrix B.
- offB (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- ldb (int [in])-Leading dimension of matrix B.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasStrsm (order, side, uplo, transA, diag, M, N, alpha, A, off $A, l d a, B$, off $B, l d b$, commandQueues, eventWaitList)
wraps: clblasStrsm
Solving triangular systems of equations with multiple right-hand sides and float elements. Extended version. <dl class="section note" $><\mathrm{dt}>$ Note </dt> <dd> This function is not thread-safe. </dd> </dl> Solving triangular systems of equations:
$\cdot\left(\mathrm{B} \leftarrow \alpha \mathrm{A}^{-1} \mathrm{~B}\right)$
$\cdot\left(\mathrm{B} \leftarrow \alpha \mathrm{A}^{\wedge}\{-\mathrm{T}\} \mathrm{B}\right)$
- $\left(\mathrm{B} \leftarrow \alpha \mathrm{B} \mathrm{A}^{-1}\right)$
$\cdot\left(\mathrm{B} \leftarrow \alpha \mathrm{B}^{\wedge}\{-\mathrm{T}\}\right)$
where \mathbf{T} is an upper or lower triangular matrix.

Parameters

- order (clblasOrder [in])-Row/column order.
- side (clblasSide [in]) - The side of triangular matrix.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- transA (clblasTranspose [in]) - How matrix \mathbf{A} is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix is unit triangular.
- M (int [in]) - Number of rows in matrix B.
- $\mathbf{N}($ int [in] $)$ - Number of columns in matrix B.
- alpha (float [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{M} when the side parameter is set to clblasLeft, or less than \mathbf{N} when it is set to clblasRight.
- B (pyopencl. Buffer [out]) - Buffer object storing matrix B.
- offB (int [in]) - Offset of the first element of the matrix \mathbf{B} in the buffer object. Counted in elements.
- ldb (int [in]) - Leading dimension of matrix B. It cannot be less than \mathbf{N} when the order parameter is set to clblasRowMajor, or less than \mathbf{M} when it is set to clblasColumnMajor.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZtrsm (order, side, uplo, transA, diag, M, N, alpha, A, off $A, l d a, B$, offB, ldb, commandQueues, eventWaitList)
wraps: clblasZtrsm
Solving triangular systems of equations with multiple right-hand sides and double complex elements. Extended version. Solving triangular systems of equations:

$$
\begin{aligned}
& \cdot\left(\mathrm{B} \leftarrow \alpha \mathrm{~A}^{-1} \mathrm{~B}\right) \\
& \cdot\left(\mathrm{B} \leftarrow \alpha \mathrm{~A}^{\wedge}\{-\mathrm{T}\} \mathrm{B}\right) \\
& \cdot\left(\mathrm{B} \leftarrow \alpha \mathrm{~B} \mathrm{~A}^{-1}\right) \\
& \cdot\left(\mathrm{B} \leftarrow \alpha \mathrm{~B} \mathrm{~A}^{\wedge}\{-\mathrm{T}\}\right)
\end{aligned}
$$

where \mathbf{T} is an upper or lower triangular matrix.

Parameters

- order (clblasOrder [in]) - Row/column order.
- side (clblasSide [in]) - The side of triangular matrix.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- transA (clblasTranspose [in]) - How matrix A is to be transposed.
- diag (clblasDiag [in]) - Specify whether matrix is unit triangular.
- M (int [in]) - Number of rows in matrix \mathbf{B}.
- $\mathbf{N}($ int [in] $)$ - Number of columns in matrix B.
- alpha (complex [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}.
- B (pyopencl. Buffer [out]) - Buffer object storing matrix B.
- offB (int [in]) - Offset of the first element of the matrix \mathbf{B} in the buffer object. Counted in elements.
- ldb (int [in])- Leading dimension of matrix B.
- commandQueues (pyopencl.CommandQueue [in])-OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

SYRK - Symmetric rank-k update of a matrix

pyclblas.clblasCsyrk (order, uplo, transA, N, K, alpha, A, offA, lda, beta, C, offC, ldc, commandQueues, eventWaitList)
wraps: clblasCsyrk
Rank-k update of a symmetric matrix with complex float elements. Extended version. Rank-k updates:
$\cdot\left(\mathrm{C} \leftarrow \alpha \mathrm{A} \mathrm{A}^{\mathrm{T}}+\beta \mathrm{C}\right)$
$\cdot\left(\mathbf{C} \leftarrow \alpha \mathrm{A}^{\mathrm{T}} \mathrm{A}+\beta \mathrm{C}\right)$
where \mathbf{C} is a symmetric matrix.

Parameters

- order (clblasOrder [in])-Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix \mathbf{C} being referenced.
- transA (clblasTranspose [in]) - How matrix \mathbf{A} is to be transposed.
- \mathbf{N} (int [in]) - Number of rows and columns in matrix \mathbf{C}.
- K (int [in]) - Number of columns of the matrix \mathbf{A} if it is not transposed, and number of rows otherwise.
- alpha (complex [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing the matrix A.
- offA (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}.
- beta (complex [in]) - The factor of the matrix \mathbf{C}.
- C (pyopencl. Buffer [out]) - Buffer object storing matrix C.
- offC (int [in]) - Offset of the first element of the matrix \mathbf{C} in the buffer object. Counted in elements.
- ldc (int [in]) - Leading dimension of matrix C. It cannot be less than \mathbf{N}.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasDsyrk (order, uplo, transA, N, K, alpha, A, offA, lda, beta, C, offC, ldc, commandQueues, eventWaitList)
wraps: clblasDsyrk
Rank-k update of a symmetric matrix with double elements. Extended version. Rank-k updates:
- $\left(\mathbf{C} \leftarrow \alpha \mathrm{A} \mathrm{A}^{\mathrm{T}}+\beta \mathbf{C}\right)$
- $\left(\mathbf{C} \leftarrow \alpha \mathrm{A}^{\mathrm{T}} \mathrm{A}+\beta \mathrm{C}\right)$
where \mathbf{C} is a symmetric matrix.

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix \mathbf{C} being referenced.
- transA (clblasTranspose [in]) - How matrix \mathbf{A} is to be transposed.
- \mathbf{N} (int [in]) - Number of rows and columns in matrix \mathbf{C}.
- \mathbf{K} (int [in]) - Number of columns of the matrix \mathbf{A} if it is not transposed, and number of rows otherwise.
- alpha (float [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing the matrix \mathbf{A}.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix A.
- beta (float [in]) - The factor of the matrix C.
- C (pyopencl.Buffer [out]) - Buffer object storing matrix \mathbf{C}.
- offC (int [in]) - Offset of the first element of the matrix \mathbf{C} in the buffer object. Counted in elements.
- ldc (int [in]) - Leading dimension of matrix \mathbf{C}. It cannot be less than \mathbf{N}.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasSsyrk (order, uplo, transA, N, K, alpha, A, offA, lda, beta, C, offC, ldc, commandQueues, eventWaitList)
wraps: clblasSsyrk
Rank-k update of a symmetric matrix with float elements. Extended version. Rank-k updates:
- $\left(\mathbf{C} \leftarrow \alpha \mathrm{A} \mathrm{A}^{\mathrm{T}}+\beta \mathrm{C}\right)$
- $\left(\mathrm{C} \leftarrow \alpha \mathrm{A}^{\mathrm{T}} \mathrm{A}+\beta \mathrm{C}\right)$
where \mathbf{C} is a symmetric matrix.

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix \mathbf{C} being referenced.
- transA (clblasTranspose [in]) - How matrix \mathbf{A} is to be transposed.
- $\mathbf{N}($ int [in] $)-$ Number of rows and columns in matrix \mathbf{C}.
- K (int [in]) - Number of columns of the matrix \mathbf{A} if it is not transposed, and number of rows otherwise.
- alpha (float [in]) - The factor of matrix A.
- A (pyopencl. Buffer [in]) - Buffer object storing the matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}. It cannot be less than \mathbf{K} if \mathbf{A} is in the row-major format, and less than \mathbf{N} otherwise.
- beta (float [in]) - The factor of the matrix \mathbf{C}.
- C (pyopencl. Buffer [out]) - Buffer object storing matrix C.
- offc (int [in]) - Offset of the first element of the matrix \mathbf{C} in the buffer object. Counted in elements.
- ldc (int [in]) - Leading dimension of matric C. It cannot be less than \mathbf{N}.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZsyrk (order, uplo, transA, N, K, alpha, A, offA, lda, beta, C, offC, ldc, commandQueues, eventWaitList)
wraps: clblasZsyrk
Rank-k update of a symmetric matrix with complex double elements. Extended version. Rank-k updates:
$\cdot\left(\mathrm{C} \leftarrow \alpha \mathrm{A} \mathrm{A}^{\mathrm{T}}+\beta \mathrm{C}\right)$
$\cdot\left(\mathrm{C} \leftarrow \alpha \mathrm{A}^{\mathrm{T}} \mathrm{A}+\beta \mathrm{C}\right)$
where \mathbf{C} is a symmetric matrix.

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix \mathbf{C} being referenced.
- transA (clblasTranspose [in]) - How matrix \mathbf{A} is to be transposed.
- $\mathbf{N}($ int [in] $)$ - Number of rows and columns in matrix \mathbf{C}.
- K (int [in]) - Number of columns of the matrix \mathbf{A} if it is not transposed, and number of rows otherwise.
- alpha (complex [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing the matrix \mathbf{A}.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}.
- beta (complex [in]) - The factor of the matrix \mathbf{C}.
- C (pyopencl.Buffer [out]) - Buffer object storing matrix C.
- offC (int [in]) - Offset of the first element of the matrix \mathbf{C} in the buffer object. Counted in elements.
- ldc (int [in]) - Leading dimension of matrix C. It cannot be less than \mathbf{N}.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

SYR2K - Symmetric rank-2k update to a matrix

pyclblas.clblasCsyr2k (order, uplo, transAB, N, K, alpha, A, off $A, l d a, B$, off $B, l d b$, beta, C, off $C, l d c$, commandQueues, eventWaitList)
wraps: clblasCsyr2k
Rank-2k update of a symmetric matrix with complex float elements. Extended version. Rank-k updates:
$\cdot\left(\mathrm{C} \leftarrow \alpha \mathrm{AB}^{\mathrm{T}}+\alpha \mathrm{B} \mathrm{A}^{\mathrm{T}}+\beta \mathrm{C}\right)$

- $\left(\mathbf{C} \leftarrow \alpha \mathrm{A}^{\mathrm{T}} \mathrm{B}+\alpha \mathrm{B}^{\mathrm{T}} \mathrm{A} \beta \mathrm{C}\right)$
where \mathbf{C} is a symmetric matrix.

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix \mathbf{C} being referenced.
- transAB (clblasTranspose [in]) - How matrices \mathbf{A} and \mathbf{B} is to be transposed.
- \mathbf{N} (int [in]) - Number of rows and columns in matrix \mathbf{C}.
- K (int [in]) - Number of columns of the matrices \mathbf{A} and \mathbf{B} if they are not transposed, and number of rows otherwise.
- alpha (complex [in]) - The factor of matrices A and \mathbf{B}.
- A (pyopencl.Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in])-Leading dimension of matrix \mathbf{A}.
- B (pyopencl. Buffer [in]) - Buffer object storing matrix B.
- offB (int [in]) - Offset of the first element of the matrix \mathbf{B} in the buffer object. Counted in elements.
- ldb (int [in])-Leading dimension of matrix \mathbf{B}.
- beta (complex [in]) - The factor of matrix \mathbf{C}.
- C (pyopencl. Buffer [out]) - Buffer object storing matrix C.
- offC (int [in]) - Offset of the first element of the matrix \mathbf{C} in the buffer object. Counted in elements.
- ldc (int [in]) - Leading dimension of matrix \mathbf{C}. It cannot be less than \mathbf{N}.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pycliblas.clblasDsyr2k (order, uplo, transAB, N, K, alpha, A, off $A, l d a, B$, off $B, l d b$, beta, C, offC, $l d c$, commandQueues, eventWaitList)
wraps: clblasDsyr2k
Rank-2k update of a symmetric matrix with double elements. Extended version. Rank-k updates:
$\cdot\left(\mathrm{C} \leftarrow \alpha \mathrm{AB}^{\mathrm{T}}+\alpha \mathrm{B} \mathrm{A}^{\mathrm{T}}+\beta \mathrm{C}\right)$
$\cdot\left(\mathrm{C} \leftarrow \alpha \mathrm{A}^{\mathrm{T}} \mathrm{B}+\alpha \mathrm{B}^{\mathrm{T}} \mathrm{A} \beta \mathrm{C}\right)$
where \mathbf{C} is a symmetric matrix.

Parameters

- order (clblasOrder [in])-Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix \mathbf{C} being referenced.
- transAB (clblasTranspose [in]) - How matrices A and B is to be transposed.
- \mathbf{N} (int [in]) - Number of rows and columns in matrix \mathbf{C}.
- K (int [in]) - Number of columns of the matrices \mathbf{A} and \mathbf{B} if they are not transposed, and number of rows otherwise.
- alpha (float [in]) - The factor of matrices \mathbf{A} and \mathbf{B}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offA (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}.
- B (pyopencl. Buffer [in]) - Buffer object storing matrix B.
- offB (int [in]) - Offset of the first element of the matrix \mathbf{B} in the buffer object. Counted in elements.
- ldb (int [in]) - Leading dimension of matrix B.
- beta (float [in]) - The factor of matrix \mathbf{C}.
- C (pyopencl.Buffer [out]) - Buffer object storing matrix C.
- offC (int [in]) - Offset of the first element of the matrix \mathbf{C} in the buffer object. Counted in elements.
- ldc (int [in]) - Leading dimension of matrix C. It cannot be less than \mathbf{N}.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasSsyr2k (order, uplo, transAB, N, K, alpha, A, off $A, l d a, B$, off $B, l d b$, beta, C, off $C, l d c$, commandQueues, eventWaitList)
wraps: clblasSsyr2k
Rank-2k update of a symmetric matrix with float elements. Extended version. Rank-k updates:
$\cdot\left(\mathbf{C} \leftarrow \alpha \mathrm{A} \mathrm{B}^{\mathrm{T}}+\alpha \mathrm{B}^{\mathrm{T}}+\beta \mathrm{C}\right)$
$\bullet\left(\mathrm{C} \leftarrow \alpha \mathrm{A}^{\mathrm{T}} \mathrm{B}+\alpha \mathrm{B}^{\mathrm{T}} \mathrm{A} \beta \mathrm{C}\right)$
where \mathbf{C} is a symmetric matrix.

Parameters

- order (clblasOrder [in])-Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix \mathbf{C} being referenced.
- transAB (clblasTranspose [in]) - How matrices A and \mathbf{B} is to be transposed.
- \mathbf{N} (int [in]) - Number of rows and columns in matrix \mathbf{C}.
- K (int [in]) - Number of columns of the matrices A and B if they are not transposed, and number of rows otherwise.
- alpha (float [in]) - The factor of matrices \mathbf{A} and \mathbf{B}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{K} if \mathbf{A} is in the row-major format, and less than \mathbf{N} otherwise.
- B (pyopencl. Buffer [in])-Buffer object storing matrix B.
- offB (int [in]) - Offset of the first element of the matrix \mathbf{B} in the buffer object. Counted in elements.
- ldb (int [in]) - Leading dimension of matrix \mathbf{B}. It cannot be less less than \mathbf{K} if \mathbf{B} matches to the op(\mathbf{B}) matrix in the row-major format, and less than \mathbf{N} otherwise.
- beta (float [in]) - The factor of matrix \mathbf{C}.
- C (pyopencl. Buffer [out]) - Buffer object storing matrix C.
- offC (int [in]) - Offset of the first element of the matrix \mathbf{C} in the buffer object. Counted in elements.
- ldc (int [in]) - Leading dimension of matrix \mathbf{C}. It cannot be less than \mathbf{N}.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZsyr2k (order, uplo, transAB, N, K, alpha, A, off $A, l d a, B$, off $B, l d b, b e t a, C$, off $C, l d c$, commandQueues, eventWaitList)
wraps: clblasZsyr2k
Rank-2k update of a symmetric matrix with complex double elements. Extended version. Rank-k updates:

- $\left(\mathrm{C} \leftarrow \alpha \mathrm{AB}^{\mathrm{T}}+\alpha \mathrm{B} \mathrm{A}^{\mathrm{T}}+\beta \mathrm{C}\right)$
$\cdot\left(\mathrm{C} \leftarrow \alpha \mathrm{A}^{\mathrm{T}} \mathrm{B}+\alpha \mathrm{B}^{\mathrm{T}} \mathrm{A} \beta \mathrm{C}\right)$
where \mathbf{C} is a symmetric matrix.

Parameters

- order (clblasOrder [in])-Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix \mathbf{C} being referenced.
- transAB (clblasTranspose [in]) - How matrices A and B is to be transposed.
- N(int [in]) - Number of rows and columns in matrix \mathbf{C}.
- K (int [in]) - Number of columns of the matrices \mathbf{A} and \mathbf{B} if they are not transposed, and number of rows otherwise.
- alpha (complex [in]) - The factor of matrices \mathbf{A} and \mathbf{B}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}.
- B (pyopencl. Buffer [in]) - Buffer object storing matrix B.
- offB (int [in]) - Offset of the first element of the matrix \mathbf{B} in the buffer object. Counted in elements.
- ldb (int [in])-Leading dimension of matrix \mathbf{B}.
- beta (complex [in]) - The factor of matrix \mathbf{C}.
- C (pyopencl. Buffer [out]) - Buffer object storing matrix C.
- offc (int [in]) - Offset of the first element of the matrix \mathbf{C} in the buffer object. Counted in elements.
- ldc (int [in]) - Leading dimension of matrix C. It cannot be less than \mathbf{N}.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

SYMM - Symmetric matrix-matrix multiply

pyclblas.clblasCsymm (order, side, uplo, M, N, alpha, A, offa, lda, B, offb, ldb, beta, C, offc, ldc, commandQueues, eventWaitList)
wraps: clblasCsymm
Matrix-matrix product of symmetric rectangular matrices with float-complex elements. Matrix-matrix products:

$$
\begin{aligned}
& \bullet(\mathrm{C} \leftarrow \alpha \mathrm{AB}+\beta \mathrm{C}) \\
& \bullet(\mathrm{C} \leftarrow \alpha \mathrm{~B} \mathrm{~A}+\beta \mathrm{C})
\end{aligned}
$$

Parameters

- order (clblasOrder [in]) - Row/column order.
- side (clblasSide [in]) - The side of triangular matrix.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- M (int [in]) - Number of rows in matrices \mathbf{B} and \mathbf{C}.
- \mathbf{N} (int [in]) - Number of columns in matrices \mathbf{B} and \mathbf{C}.
- alpha (complex [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}. It cannot be less than \mathbf{M} when the side parameter is set to clblasLeft, or less than \mathbf{N} when the parameter is set to clblasRight.
- B (pyopencl. Buffer [in])-Buffer object storing matrix B.
- offb (int [in]) - Offset of the first element of the matrix \mathbf{B} in the buffer object. Counted in elements.
- ldb (int [in]) - Leading dimension of matrix B. It cannot be less than \mathbf{N} when the order parameter is set to clblasRowMajor, or less than \mathbf{M} when it is set to clblasColumnMajor.
- beta (complex [in]) - The factor of matrix \mathbf{C}.
- C (pyopencl. Buffer [out]) - Buffer object storing matrix C.
- offc (int [in]) - Offset of the first element of the matrix \mathbf{C} in the buffer object. Counted in elements.
- ldc (int [in]) - Leading dimension of matrix \mathbf{C}. It cannot be less than \mathbf{N} when the order parameter is set to clblasRowMajor, or less than \mathbf{M} when it is set to clblasColumnMajorOrder.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasDsymm (order, side, uplo, M, N, alpha, A, offa, lda, B, offb, ldb, beta, C, offc, ldc, commandQueues, eventWaitList)
wraps: clblasDsymm
Matrix-matrix product of symmetric rectangular matrices with double elements. Matrix-matrix products:

$$
\begin{aligned}
& \bullet(\mathrm{C} \leftarrow \alpha \mathrm{AB}+\beta \mathrm{C}) \\
& \bullet(\mathrm{C} \leftarrow \alpha \mathrm{~B} \mathrm{~A}+\beta \mathrm{C})
\end{aligned}
$$

Parameters

- order (clblasOrder [in])-Row/column order.
- side (clblasSide [in]) - The side of triangular matrix.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- \mathbf{M} (int [in]) - Number of rows in matrices \mathbf{B} and \mathbf{C}.
- $\mathbf{N}($ int [in] $)$ - Number of columns in matrices \mathbf{B} and \mathbf{C}.
- alpha (float [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{M} when the side parameter is set to clblasLeft, or less than \mathbf{N} when the parameter is set to clblasRight.
- B (pyopencl. Buffer [in])-Buffer object storing matrix B.
- offb (int [in]) - Offset of the first element of the matrix \mathbf{B} in the buffer object. Counted in elements.
- ldb (int [in]) - Leading dimension of matrix B. It cannot be less than \mathbf{N} when the order parameter is set to clblasRowMajor, or less than \mathbf{M} when it is set to clblasColumnMajor.
- beta (float [in]) - The factor of matrix \mathbf{C}.
- C (pyopencl. Buffer [out]) - Buffer object storing matrix C.
- offc (int [in]) - Offset of the first element of the matrix \mathbf{C} in the buffer object. Counted in elements.
- ldc (int [in]) - Leading dimension of matrix \mathbf{C}. It cannot be less than \mathbf{N} when the order parameter is set to clblasRowMajor, or less than \mathbf{M} when it is set to clblasColumnMajorOrder.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasSsymm (order, side, uplo, M, N, alpha, A, offa, lda, B, offb, ldb, beta, C, offc, ldc, commandQueues, eventWaitList)
wraps: clblasSsymm
Matrix-matrix product of symmetric rectangular matrices with float elements. Matrix-matrix products:

$$
\begin{aligned}
& \bullet(\mathrm{C} \leftarrow \alpha \mathrm{AB}+\beta \mathrm{C}) \\
& \bullet(\mathrm{C} \leftarrow \alpha \mathrm{~B} \mathrm{~A}+\beta \mathrm{C})
\end{aligned}
$$

Parameters

- order (clblasOrder [in]) - Row/column order.
- side (clblasSide [in]) - The side of triangular matrix.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- M (int [in]) - Number of rows in matrices \mathbf{B} and \mathbf{C}.
- \mathbf{N} (int [in]) - Number of columns in matrices \mathbf{B} and \mathbf{C}.
- alpha (float [in]) - The factor of matrix A.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- Ida (int [in]) - Leading dimension of matrix \mathbf{A}. It cannot be less than \mathbf{M} when the side parameter is set to clblasLeft, or less than \mathbf{N} when the parameter is set to clblasRight.
- B (pyopencl. Buffer [in]) - Buffer object storing matrix B.
- offb (int [in]) - Offset of the first element of the matrix \mathbf{B} in the buffer object. Counted in elements.
- ldb (int [in]) - Leading dimension of matrix B. It cannot be less than \mathbf{N} when the order parameter is set to clblasRowMajor, or less than \mathbf{M} when it is set to clblasColumnMajor.
- beta (float [in]) - The factor of matrix \mathbf{C}.
- C (pyopencl. Buffer [out]) - Buffer object storing matrix C.
- offc (int [in]) - Offset of the first element of the matrix \mathbf{C} in the buffer object. Counted in elements.
- ldc (int [in]) - Leading dimension of matrix \mathbf{C}. It cannot be less than \mathbf{N} when the order parameter is set to clblasRowMajor, or less than \mathbf{M} when it is set to clblasColumnMajorOrder.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZsymm (order, side, uplo, M, N, alpha, A, offa, lda, B, offb, ldb, beta, C, offc, ldc, commandQueues, eventWaitList)
wraps: clblasZsymm
Matrix-matrix product of symmetric rectangular matrices with double-complex elements. Matrix-matrix products:

$$
\begin{aligned}
& \bullet(\mathrm{C} \leftarrow \alpha \mathrm{AB}+\beta \mathrm{C}) \\
& \bullet(\mathrm{C} \leftarrow \alpha \mathrm{~B} \mathbf{A}+\beta \mathrm{C})
\end{aligned}
$$

Parameters

- order (clblasOrder [in])-Row/column order.
- side (clblasSide [in]) - The side of triangular matrix.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- \mathbf{M} (int [in]) - Number of rows in matrices \mathbf{B} and \mathbf{C}.
- \mathbf{N} (int [in]) - Number of columns in matrices \mathbf{B} and \mathbf{C}.
- alpha (complex [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}. It cannot be less than \mathbf{M} when the side parameter is set to clblasLeft, or less than \mathbf{N} when the parameter is set to clblasRight.
- B (pyopencl. Buffer [in]) - Buffer object storing matrix B.
- offb (int [in]) - Offset of the first element of the matrix \mathbf{B} in the buffer object. Counted in elements.
- ldb (int [in]) - Leading dimension of matrix B. It cannot be less than \mathbf{N} when the order parameter is set to clblasRowMajor, or less than \mathbf{M} when it is set to clblasColumnMajor.
- beta (complex [in]) - The factor of matrix \mathbf{C}.
- C (pyopencl. Buffer [out]) - Buffer object storing matrix C.
- offc (int [in]) - Offset of the first element of the matrix \mathbf{C} in the buffer object. Counted in elements.
- ldc (int [in]) - Leading dimension of matrix \mathbf{C}. It cannot be less than \mathbf{N} when the order parameter is set to clblasRowMajor, or less than \mathbf{M} when it is set to clblasColumnMajorOrder.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

HEMM - Hermitian matrix-matrix multiplication

pyclblas.clblasChemm (order, side, uplo, M, N, alpha, A, offa, lda, B, offb, ldb, beta, C, offc, ldc, commandQueues, eventWaitList)
wraps: clblasChemm
Matrix-matrix product of hermitian rectangular matrices with float-complex elements. Matrix-matrix products:

$$
\begin{aligned}
& \bullet(\mathrm{C} \leftarrow \alpha \mathrm{~A} \mathbf{B}+\beta \mathrm{C}) \\
& \bullet(\mathrm{C} \leftarrow \alpha \mathrm{~B} \mathbf{A}+\beta \mathrm{C})
\end{aligned}
$$

Parameters

- order (clblasOrder [in]) - Row/column order.
- side (clblasSide [in]) - The side of triangular matrix.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- M (int [in]) - Number of rows in matrices \mathbf{B} and \mathbf{C}.
- \mathbf{N} (int [in]) - Number of columns in matrices \mathbf{B} and \mathbf{C}.
- alpha (complex [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{M} when the side parameter is set to clblasLeft, or less than \mathbf{N} when the parameter is set to clblasRight.
- B (pyopencl. Buffer [in])-Buffer object storing matrix B.
- offb (int [in]) - Offset of the first element of the matrix \mathbf{B} in the buffer object. Counted in elements.
- ldb (int [in]) - Leading dimension of matrix B. It cannot be less than \mathbf{N} when the order parameter is set to clblasRowMajor, or less than \mathbf{M} when it is set to clblasColumnMajor.
- beta (complex [in]) - The factor of matrix \mathbf{C}.
- C (pyopencl. Buffer [out]) - Buffer object storing matrix C.
- offc (int [in]) - Offset of the first element of the matrix \mathbf{C} in the buffer object. Counted in elements.
- ldc (int [in]) - Leading dimension of matrix \mathbf{C}. It cannot be less than \mathbf{N} when the order parameter is set to clblasRowMajor, or less than \mathbf{M} when it is set to clblasColumnMajorOrder.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZhemm (order, side, uplo, M, N, alpha, A, offa, lda, B, offb, ldb, beta, C, offc, ldc, commandQueues, eventWaitList)
wraps: clblasZhemm
Matrix-matrix product of hermitian rectangular matrices with double-complex elements. Matrix-matrix products:

$$
\begin{aligned}
& \bullet(\mathrm{C} \leftarrow \alpha \mathrm{AB}+\beta \mathrm{C}) \\
& \bullet(\mathrm{C} \leftarrow \alpha \mathrm{~B} \mathrm{~A}+\beta \mathrm{C})
\end{aligned}
$$

Parameters

- order (clblasOrder [in])-Row/column order.
- side (clblasSide [in]) - The side of triangular matrix.
- uplo (clblasUplo [in]) - The triangle in matrix being referenced.
- M(int [in]) - Number of rows in matrices \mathbf{B} and \mathbf{C}.
- $\mathbf{N}($ int [in] $)$ - Number of columns in matrices \mathbf{B} and \mathbf{C}.
- alpha (complex [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing matrix A.
- offa (int [in]) - Offset of the first element of the matrix \mathbf{A} in the buffer object. Counted in elements.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}. It cannot be less than \mathbf{M} when the side parameter is set to clblasLeft, or less than \mathbf{N} when the parameter is set to clblasRight.
- B (pyopencl. Buffer [in]) - Buffer object storing matrix B.
- offb (int [in]) - Offset of the first element of the matrix \mathbf{B} in the buffer object. Counted in elements.
- ldb (int [in]) - Leading dimension of matrix B. It cannot be less than \mathbf{N} when the order parameter is set to clblasRowMajor, or less than \mathbf{M} when it is set to clblasColumnMajor.
- beta (complex [in]) - The factor of matrix \mathbf{C}.
- C (pyopencl. Buffer [out]) - Buffer object storing matrix C.
- offc (int [in]) - Offset of the first element of the matrix \mathbf{C} in the buffer object. Counted in elements.
- ldc (int [in]) - Leading dimension of matrix \mathbf{C}. It cannot be less than \mathbf{N} when the order parameter is set to clblasRowMajor, or less than \mathbf{M} when it is set to clblasColumnMajorOrder.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

HERK - Hermitian rank-k update to a matrix

pyclblas.clblasCherk (order, uplo, transA, N, K, alpha, A, offa, lda, beta, C, offc, ldc, commandQueues, eventWaitList)
wraps: clblasCherk
Rank-k update of a hermitian matrix with float-complex elements. Rank-k updates:
$\cdot\left(\mathrm{C} \leftarrow \alpha \mathrm{A} \mathrm{A}^{\mathrm{H}}+\beta \mathrm{C}\right)$
$\cdot\left(\mathrm{C} \leftarrow \alpha \mathrm{A}^{\mathrm{H}} \mathrm{A}+\beta \mathrm{C}\right)$
where \mathbf{C} is a hermitian matrix.

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix \mathbf{C} being referenced.
- transA (clblasTranspose [in]) - How matrix \mathbf{A} is to be transposed.
- \mathbf{N} (int [in]) - Number of rows and columns in matrix \mathbf{C}.
- \mathbf{K} (int [in]) - Number of columns of the matrix \mathbf{A} if it is not transposed, and number of rows otherwise.
- alpha (float [in]) - The factor of matrix A.
- A (pyopencl.Buffer [in]) - Buffer object storing the matrix \mathbf{A}.
- offa (int [in]) - Offset in number of elements for the first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}. It cannot be less than \mathbf{K} if \mathbf{A} is in the row-major format, and less than \mathbf{N} otherwise.
- beta (float [in]) - The factor of the matrix \mathbf{C}.
- C (pyopencl. Buffer [out]) - Buffer object storing matrix C.
- offc (int [in]) - Offset in number of elements for the first element in matrix \mathbf{C}.
- ldc (int [in]) - Leading dimension of matric \mathbf{C}. It cannot be less than \mathbf{N}.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZherk (order, uplo, transA, N, K, alpha, A, offa, lda, beta, C, offc, ldc, commandQueues, eventWaitList)
wraps: clblasZherk
Rank-k update of a hermitian matrix with double-complex elements. Rank-k updates:
$\cdot\left(\mathrm{C} \leftarrow \alpha \mathrm{A}^{\mathrm{H}}+\beta \mathrm{C}\right)$
$\cdot\left(\mathrm{C} \leftarrow \alpha \mathrm{A}^{\mathrm{H}} \mathrm{A}+\beta \mathrm{C}\right)$
where \mathbf{C} is a hermitian matrix.

Parameters

- order (clblasOrder [in]) - Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix \mathbf{C} being referenced.
- transA (clblasTranspose [in]) - How matrix \mathbf{A} is to be transposed.
- \mathbf{N} (int [in]) - Number of rows and columns in matrix \mathbf{C}.
- K (int [in]) - Number of columns of the matrix \mathbf{A} if it is not transposed, and number of rows otherwise.
- alpha (float [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing the matrix A.
- offa (int [in]) - Offset in number of elements for the first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}. It cannot be less than \mathbf{K} if \mathbf{A} is in the row-major format, and less than \mathbf{N} otherwise.
- beta (float [in]) - The factor of the matrix \mathbf{C}.
- C (pyopencl.Buffer [out]) - Buffer object storing matrix C.
- offc (int [in]) - Offset in number of elements for the first element in matrix \mathbf{C}.
- ldc (int [in]) - Leading dimension of matric \mathbf{C}. It cannot be less than \mathbf{N}.
- commandQueues (pyopencl.CommandQueue [in])- OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

HER2K - Hermitian rank-2k update to a matrix

pyclblas.clblasCher2k (order, uplo, trans, N, K, alpha, A, offa, lda, B, offb, ldb, beta, C, offc, ldc, commandQueues, eventWaitList)

wraps: clblasCher2k

Rank-2k update of a hermitian matrix with float-complex elements. Rank-k updates:
$\cdot\left(\mathrm{C} \leftarrow \alpha \mathrm{AB}^{\mathrm{H}}+\operatorname{conj}(\alpha) \mathrm{B}^{\mathrm{H}}+\beta \mathrm{C}\right)$
$\bullet\left(\mathrm{C} \leftarrow \alpha \mathrm{A}^{\mathrm{H}} \mathrm{B}+\operatorname{conj}(\alpha) \mathrm{B}^{\mathrm{H}} \mathrm{A}+\beta \mathrm{C}\right)$
where \mathbf{C} is a hermitian matrix.

Parameters

- order (clblasOrder [in])-Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix \mathbf{C} being referenced.
- trans (clblasTranspose [in])-How matrix A is to be transposed.
- \mathbf{N} (int [in]) - Number of rows and columns in matrix \mathbf{C}.
- K (int [in]) - Number of columns of the matrix \mathbf{A} if it is not transposed, and number of rows otherwise.
- alpha (complex [in]) - The factor of matrix \mathbf{A}.
- A (pyopencl. Buffer [in]) - Buffer object storing the matrix \mathbf{A}.
- offa (int [in]) - Offset in number of elements for the first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix \mathbf{A}. It cannot be less than \mathbf{K} if \mathbf{A} is in the row-major format, and less than \mathbf{N} otherwise. Vice-versa for transpose case.
- B (pyopencl. Buffer [in]) - Buffer object storing the matrix B.
- offb (int [in]) - Offset in number of elements for the first element in matrix \mathbf{B}.
- ldb (int [in]) - Leading dimension of matrix B. It cannot be less than \mathbf{K} if \mathbf{B} is in the row-major format, and less than \mathbf{N} otherwise. Vice-versa for transpose case.
- beta (float [in]) - The factor of the matrix \mathbf{C}.
- C (pyopencl. Buffer [out]) - Buffer object storing matrix C.
- offc (int [in]) - Offset in number of elements for the first element in matrix \mathbf{C}.
- ldc (int [in]) - Leading dimension of matric C. It cannot be less than \mathbf{N}.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.

Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.
pyclblas.clblasZher2k (order, uplo, trans, N, K, alpha, A, offa, lda, B, offb, ldb, beta, C, offc, ldc, commandQueues, eventWaitList)
wraps: clblasZher2k
Rank-2k update of a hermitian matrix with double-complex elements. Rank-k updates:

$$
\cdot\left(\mathrm{C} \leftarrow \alpha \mathrm{AB}^{\mathrm{H}}+\operatorname{conj}(\alpha) \mathrm{B}^{\mathrm{H}}+\beta \mathrm{C}\right)
$$

$\cdot\left(\mathrm{C} \leftarrow \alpha \mathrm{A}^{\mathrm{H}} \mathrm{B}+\operatorname{conj}(\alpha) \mathrm{B}^{\mathrm{H}} \mathrm{A}+\beta \mathrm{C}\right)$
where \mathbf{C} is a hermitian matrix.

Parameters

- order (clblasOrder [in])-Row/column order.
- uplo (clblasUplo [in]) - The triangle in matrix \mathbf{C} being referenced.
- trans (clblasTranspose [in]) - How matrix A is to be transposed.
- \mathbf{N} (int [in]) - Number of rows and columns in matrix \mathbf{C}.
- K (int [in]) - Number of columns of the matrix \mathbf{A} if it is not transposed, and number of rows otherwise.
- alpha (complex [in]) - The factor of matrix A.
- A (pyopencl. Buffer [in]) - Buffer object storing the matrix \mathbf{A}.
- offa (int [in]) - Offset in number of elements for the first element in matrix \mathbf{A}.
- lda (int [in]) - Leading dimension of matrix A. It cannot be less than \mathbf{K} if \mathbf{A} is in the row-major format, and less than \mathbf{N} otherwise. Vice-versa for transpose case.
- B (pyopencl. Buffer [in]) - Buffer object storing the matrix B.
- offb (int [in]) - Offset in number of elements for the first element in matrix \mathbf{B}.
- ldb (int [in]) - Leading dimension of matrix B. It cannot be less than \mathbf{K} if \mathbf{B} is in the row-major format, and less than \mathbf{N} otherwise. Vice-versa for transpose case.
- beta (float [in]) - The factor of the matrix \mathbf{C}.
- C (pyopencl. Buffer [out]) - Buffer object storing matrix C.
- offc (int [in]) - Offset in number of elements for the first element in matrix \mathbf{C}.
- ldc (int [in]) - Leading dimension of matric C. It cannot be less than \mathbf{N}.
- commandQueues (pyopencl. CommandQueue [in]) - OpenCL command queues. A list, tuple, or single instance of pyopencl.CommandQueue. Must not be None.
- eventWaitList (pyopencl.Event [in]) - Event wait list. A list, tuple, or single instance of pyopencl.Event. May be None.
Returns A tuple of pyopencl.Event instances, one for each commandQueue supplied.

Python Module Index
p
pyclblas, 24

C

clblasCaxpy() (in module pyclblas), 10 clblasCcopy() (in module pyclblas), 8 clblasCdotc() (in module pyclblas), 14 clblasCdotu() (in module pyclblas), 13 clblasCgbmv() (in module pyclblas), 62 clblasCgemm() (in module pyclblas), 74 clblasCgemv() (in module pyclblas), 28 clblasCgerc() (in module pyclblas), 43 clblasCgeru() (in module pyclblas), 41 clblasChbmv() (in module pyclblas), 70 clblasChemm() (in module pyclblas), 95 clblasChemv() (in module pyclblas), 33 clblasCher() (in module pyclblas), 45 clblasCher2() (in module pyclblas), 48 clblasCher2k() (in module pyclblas), 99 clblasCherk() (in module pyclblas), 97 clblasChpmv() (in module pyclblas), 55 clblasChpr() (in module pyclblas), 58 clblasChpr2() (in module pyclblas), 60 clblasCrotg() (in module pyclblas), 15 clblasCscal() (in module pyclblas), 5 clblasCsrot() (in module pyclblas), 20 clblasCsscal() (in module pyclblas), 7 clblasCswap() (in module pyclblas), 3 clblasCsymm() (in module pyclblas), 91 clblasCsyr2k() (in module pyclblas), 88 clblasCsyrk() (in module pyclblas), 85 clblasCtbmv() (in module pyclblas), 65 clblasCtbsv() (in module pyclblas), 71 clblasCtpmv() (in module pyclblas), 49 clblasCtpsv() (in module pyclblas), 52 clblasCtrmm() (in module pyclblas), 78 clblasCtrmv() (in module pyclblas), 34 clblasCtrsm() (in module pyclblas), 81 clblasCtrsv() (in module pyclblas), 37 clblasDasum() (in module pyclblas), 26 clblasDaxpy() (in module pyclblas), 10 clblasDcopy() (in module pyclblas), 8
clblasDdot() (in module pyclblas), 12 clblasDgbmv() (in module pyclblas), 63 clblasDgemm() (in module pyclblas), 75 clblasDgemv() (in module pyclblas), 29 clblasDger() (in module pyclblas), 40 clblasDnrm2() (in module pyclblas), 22 clblasDrot() (in module pyclblas), 19 clblasDrotg() (in module pyclblas), 16 clblasDrotm() (in module pyclblas), 21 clblasDrotmg() (in module pyclblas), 17 clblasDsbmv() (in module pyclblas), 68 clblasDscal() (in module pyclblas), 5 clblasDspmv() (in module pyclblas), 54 clblasDspr() (in module pyclblas), 57 clblasDspr2() (in module pyclblas), 59 clblasDswap() (in module pyclblas), 3 clblasDsymm() (in module pyclblas), 92 clblasDsymv() (in module pyclblas), 31 clblasDsyr() (in module pyclblas), 44 clblasDsyr2() (in module pyclblas), 46 clblasDsyr2k() (in module pyclblas), 89 clblasDsyrk() (in module pyclblas), 85 clblasDtbmv() (in module pyclblas), 66 clblasDtbsv() (in module pyclblas), 72 clblasDtpmv() (in module pyclblas), 50 clblasDtpsv() (in module pyclblas), 52 clblasDtrmm() (in module pyclblas), 78 clblasDtrmv() (in module pyclblas), 35 clblasDtrsm() (in module pyclblas), 82 clblasDtrsv() (in module pyclblas), 38 clblasDzasum() (in module pyclblas), 27 clblasDznrm2() (in module pyclblas), 23 clblasiCamax() (in module pyclblas), 25 clblasiDamax() (in module pyclblas), 24 clblasiSamax() (in module pyclblas), 24 clblasiZamax() (in module pyclblas), 25 clblasSasum() (in module pyclblas), 26 clblasSaxpy() (in module pyclblas), 11
clblasScasum() (in module pyclblas), 27
clblasScnrm2() (in module pyclblas), 23
clblasScopy() (in module pyclblas), 9 clblasSdot() (in module pyclblas), 12 clblasSgbmv() (in module pyclblas), 63 clblasSgemm() (in module pyclblas), 76 clblasSgemv() (in module pyclblas), 30 clblasSger() (in module pyclblas), 40 clblasSnrm2() (in module pyclblas), 22 clblasSrot() (in module pyclblas), 19 clblasSrotg() (in module pyclblas), 16 clblasSrotm() (in module pyclblas), 21 clblasSrotmg() (in module pyclblas), 18 clblasSsbmv() (in module pyclblas), 69 clblasSscal() (in module pyclblas), 6 clblasSspmv() (in module pyclblas), 55 clblasSspr() (in module pyclblas), 57 clblasSspr2() (in module pyclblas), 60 clblasSswap() (in module pyclblas), 4 clblasSsymm() (in module pyclblas), 93 clblasSsymv() (in module pyclblas), 32 clblasSsyr() (in module pyclblas), 45 clblasSsyr2() (in module pyclblas), 47 clblasSsyr2k() (in module pyclblas), 89 clblasSsyrk() (in module pyclblas), 86 clblasStbmv() (in module pyclblas), 67 clblasStbsv() (in module pyclblas), 72 clblasStpmv() (in module pyclblas), 50 clblasStpsv() (in module pyclblas), 53 clblasStrmm() (in module pyclblas), 79 clblasStrmv() (in module pyclblas), 36 clblasStrsm() (in module pyclblas), 83 clblasStrsv() (in module pyclblas), 38 clblasZaxpy() (in module pyclblas), 11 clblasZcopy() (in module pyclblas), 9 clblasZdotc() (in module pyclblas), 15 clblasZdotu() (in module pyclblas), 14 clblasZdrot() (in module pyclblas), 20 clblasZdscal() (in module pyclblas), 7 clblasZgbmv() (in module pyclblas), 64 clblasZgemm() (in module pyclblas), 77 clblasZgemv() (in module pyclblas), 30 clblasZgerc() (in module pyclblas), 43 clblasZgeru() (in module pyclblas), 42 clblasZhbmv() (in module pyclblas), 70 clblasZhemm() (in module pyclblas), 96 clblasZhemv() (in module pyclblas), 33 clblasZher() (in module pyclblas), 46 clblasZher2() (in module pyclblas), 48 clblasZher2k() (in module pyclblas), 99 clblasZherk() (in module pyclblas), 98
clblasZhpmv() (in module pyclblas), 56
clblasZhpr() (in module pyclblas), 58
clblasZhpr2() (in module pyclblas), 61
clblasZrotg() (in module pyclblas), 17
clblasZscal() (in module pyclblas), 6
clblasZswap() (in module pyclblas), 4
clblasZsymm() (in module pyclblas), 94
clblasZsyr2k() (in module pyclblas), 90
clblasZsyrk() (in module pyclblas), 87
clblasZtbmv() (in module pyclblas), 67
clblasZtbsv() (in module pyclblas), 73
clblasZtpmv() (in module pyclblas), 51
clblasZtpsv() (in module pyclblas), 53
clblasZtrmm() (in module pyclblas), 80
clblasZtrmv() (in module pyclblas), 36
clblasZtrsm() (in module pyclblas), 84
clblasZtrsv() (in module pyclblas), 39

P

pyclblas (module), 3, 5, 7, 8, 10, 12, 15, 17, 19, 21, 22, $24,26,28,31,33,34,37,40,41,43-46,48,49$, $52,54,55,57-60,62,65,68,70,71,74,78,81$, 85, 88, 91, 95, 97, 99

