

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Genesis

A while back I had an idea for a small cli [https://github.com/iliapolo/fileconfig] I wanted to
build. When I finished the code, I started to think about the release process.

Obviously, I needed to create and upload a wheel to PyPI. However, I had 3 additional requirements:

	Continuous

Can’t tell you how many times I waited for features just because of a complex release process or
an arbitrary release date.

Not in my house.

If features/bugfixes are not dependent on each other, there should be no reason for them to
wait in the oven.

I wanted to release a new version each time I finish implementing a certain issue, that is, each
time a PR is merged to the main branch.
This process had to be completely automated, no human involvement what so ever.

I think this is the right way to release software, and if you are not in a position to do so, it
probably means you’re doing something wrong. Obviously this only applies to software that does
not require human testing.

	Changelog generation

The release should include the relevant changelog based on Github issues. Each Github issue that
makes it to a release, should specify which release was it.

Also, the release version number should be derived from the issues that were included in the
release. Each issue will have a label specifying which semantic version bump it should perform.
(e.g an issue labeled with the ‘patch’ label will cause a patch bump, and so forth)

	Binary executable

Since the tool is supposed to kind of replace the linux sed utility (in a specific use case), I
wanted a very easy install method, and an ability to use it on environments that don’t
even have python installed. This binary file should be uploaded to the Github release as a
release asset.

So, how was I supposed to achieve this? Well, there were 3 options:

	Explore CI providers like CodeShip [https://codeship.com/] and GitLab [https://gitlab.com].

Honestly, I quickly gave up on this option since I was pretty sure the ‘Binary executable’ feature
does not exist in any of them. Also, I was already using Travis-CI [https://travis-ci.org/] and
Appveyor [https://www.appveyor.com/] for my tests, and really wanted to avoid having to learn
and configure another tool.

I knew I wanted the release process to execute immediately after the tests pass, so I was looking
for a small script I can invoke via tox [https://tox.readthedocs.io/en/latest/].

	Use existing open source tools.

I couldn’t find any tool to answer all of my requirements. There were however a few tools that
might have been somewhat helpful:

pyreleaser [https://github.com/pyrelease/pyrelease]
github-release [https://github.com/aktau/github-release]
semantic-release [https://github.com/semantic-release/semantic-release]
github-changelog [https://github.com/github-changelog-generator/github-changelog-generator]

Though these tools are in the same domain, they weren’t enough.

	Write my own!

When I reached this point, I started to realize that this might be a useful tool not just for my
project, but for any Python project hosted on Github. I believe most open source projects on
Github use either Travis-CI [https://travis-ci.org/] and/or CircleCI [https://circleci.com/]
and/or Appveyor [https://www.appveyor.com/] to run their tests, so what if they
could add a single command line to perform all these release related tasks? pretty cool.

Key Concepts

Lets take a look at some key concepts PyCI uses that are worth understanding.

Labels

PyCI uses two types of labels:

Commit categories

	feature

	bug

These labels indicate what type of change the associated commit introduces.

Semantic Versioning

	patch

	minor

	major

These labels indicate how the version should be affected by the associated commit.

Issue detection

Many features of PyCI heavily rely on identifying which issue relates to which commit. Among others, it uses issues to
generate changelogs and determine version numbers.

Issue detection is based on commit messages. There are two possible ways to reference an issue
from a commit message:

	Directly specify the issue number using # [https://help.github.com/articles/autolinked-references-and-urls/].

	Specify a PR using # [https://help.github.com/articles/autolinked-references-and-urls/], and
reference the issue number in the PR description. Notice that when you merge a PR in GitHub, it
automatically suggests a reference to the PR in the commit message.

If a commit does not reference any issue, it is considered a Dangling commit

CLI detection

As we have seen, when PyCI releases a commit, it also tries to create a binary executable file
and upload it as a release asset.

PyCI uses the entry_points argument in your setup.py to automatically determine if your project is in-fact a CLI
or not. If the argument is missing, PyCI will not attempt to create a binary file.

If your project is a CLI, but for some reason you are missing the entry_points argument, you can
specify a custom entrypoint path:

pyci pack binary --entrypoint my_project/main.py

pyci release --binary-entrypoint my_project/main.py

Triggering a release

Ideally, every push you make to the main branch should trigger a release.

However, sometimes you just want to push a README fix, or maybe some refactoring. It doesn’t
really make sense to trigger a release on every single commit. Also, releases should only be
triggered if you push to the main branch, and not any other branch. For this reason, PyCI does
some validation on the commit before it actually attempts to release it:

	Build validation

The build branch must be the main branch. That is, builds for tags, pr’s, or branches that
differ from the main branch, will not trigger the release process. Instead, you will see
something like this:

* Detected CI Provider: CircleCI
→ Releasing branch 'release'
 → Validating build https://circleci.com/gh/iliapolo/pyci/421
 * Build is not a PR... ✓
 * Build is not a TAG... ✓
 * Build branch is 'release'... ✗
* Not releasing: Commit e2a88d94c322536a3fcfbaf26d0d1fb2a31bbbe4 does not reference any issue

	Commit validation

The commit must be associated with an issue, and the issue must be labeled with one of the
release labels.

Any other commit, will trigger your CI, but wont trigger a release. Instead, you will see
something like:

* Detected CI Provider: CircleCI
→ Releasing branch 'release'
 → Validating build https://circleci.com/gh/iliapolo/pyci/421
 * Build is not a PR... ✓
 * Build is not a TAG... ✓
 * Build branch is 'release'... ✓
 → Validating commit
 * Commit references an issue... ✗
* Not releasing: Commit e2a88d94c322536a3fcfbaf26d0d1fb2a31bbbe4 does not reference any issue

Notice that in such cases, the command exists successfully, so as to not fail the build.

Versioning a release

PyCI uses the Semantic Versioning [https://semver.org/] scheme along with Github issues to
automatically determine the version of the next release.

The release command detects the issue that was
referenced by the commit (that triggered the release) and fetches the issue labels.
If the issue is labeled with the patch label, a patch bump is performed, and so forth…

Before the release is made, PyCI will create a version bump commit to the branch.

This commit replaces the current version in setup.py with the new one. The regex version=["\'](.*)["\'] is used
to read/write the version, which means you can’t do any fancy things for the version arg, like calculate stuff or
invoke functions. Keep it simple and let PyCI manipulate and determine version numbers.

Changelog Generation

Changelog is generated by analyzing the commits made to the branch after the previous
(not last!) release. Basically, here is how it works:

	Fetch all commits prior (including) mine in descending order.

	Iterate over them and stop when we find a commit that points to a release.

	All commits before we stop, should be a part of the changelog.

Note that this guarantees that you can generate a changelog for every commit, always, regardless
of which versions are released.

Each commit is then categorized into one of: (see Issue detection)

- Feature
- Bug
- Issue
- Dangling Commit

If a feature (or bug) label if found, the commit is categorized as a feature (or bug).
If these labels are not found, the commit is categorized as a regular issue. If the commit
does not reference any issue, the commit is left “Dangling”.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

