
Pychievements
Release 0.1.2

Apr 17, 2017

Contents

1 Getting Started 3
1.1 Installing Pychievements . 3
1.2 Introduction to Pychievments . 3
1.3 Examples . 5

2 Reference 7
2.1 Achievements . 7
2.2 Icons . 8
2.3 Trackers . 9
2.4 Signals . 10
2.5 Backends . 11
2.6 CLI . 12

3 Contribute 13

4 License 15
4.1 Indices and tables . 15

Python Module Index 17

i

ii

Pychievements, Release 0.1.2

Pychievements is a framework for creating and tracking achievements within a Python application. It includes func-
tions specifically for creating commandline applications, though it is flexible enough to be used for any application
such as web applications.

See the examples to get a good feel for what Pychievements offers. Source can be found on github.

Contents 1

https://github.com/PacketPerception/pychievements/tree/master/examples
https://github.com/PacketPerception/pychievements

Pychievements, Release 0.1.2

2 Contents

CHAPTER 1

Getting Started

Getting Started will guide you through creating your first achievements an introducing you to the pieces of the system.
From there, visit the Reference for in-depth information.

Installing Pychievements

Pychievements can be installed with pip:

$ pip install pychievements

Introduction to Pychievments

Pychievements has a number of modules that you’ll need to be at least familiar with:

tracker The default achievement tracker for pychievements is instantiated at import and is used to track
all registered achievements for specific tracked_ids.

Achievement Base Achievment class.

icons.Icon Base Icon class. Icons are used to know what to display for a given goal within an achievement
and have two states, achieved and unachieved.

backends.AchievementBackend Pychievements have pluggable backends for storing tracked achieve-
ment data. The default AchievementBackend simply keeps everyting in memory, meaning it
will be lost when the application is closed. The backend the tracker is using can be updated with the
set_backend method.

signals You can register functions as callbacks that can recieve Pychievement signals. Signals can be
generated when a level is changed, when a new goal is reached, or when all goals have been achieved
for a given achievement.

3

Pychievements, Release 0.1.2

Achievements

At the core of Pychievements is the Achievement class. It is used to define goals that are obtained at specified
levels. Levels are simply an integer. At a minimum, achievements must have the following attributes defined:

• name : Display name of your achievement

• category : Defaults to “achievements”

• goals : A tuple of goals. A goal is a dictionary with the following keys: [”level”, “name”, “icon”, “descrip-
tion”]

An example Achievement class:

class MyAchievement(Achievement):
name = "My Achievement"
category = "achievements"
keywords = ("my", "achievement")
goals = (

{"level": 10, "name": "Level 1", "icon": icons.star, "description": "Level One
→˓" },

{"level": 20, "name": "Level 2", "icon": icons.star, "description": "Level Two
→˓" },

{"level": 30, "name": "Level 3", "icon": icons.star, "description": "Level
→˓Three" },

)

An achievements current level for an id can tracked with either the increment or evaluate functions, which the
achievment can override to provide custom level manipulation.

The Tracker

A singleton tracker is created on import that is available as pychievements.tracker. The tracker provides
an interface for interacting with registered achievements for a given tracked_id. The tracker lets you:

• increment level of an achievement for a tracked_id

• evaluate level of an achievement for a tracked_id

• query all achievements by category or keywords

• query all achieved goals of an achievement for a tracked_id

• query all unachieved goals of an achievement for a tracked_id

• query the current goal being worked towards of an achievement for a tracked_id

The tracker works with the configured backend to store and retrieve all of the tracked levels.

Icons

Icons are simple classes that provide the “icon” (or what is displayed) for an achievment goal. It must define what to
display for when the goal has been achieved (achieved) or not (unachieved)

4 Chapter 1. Getting Started

Pychievements, Release 0.1.2

Examples

The easiest way to get started to check out the examples in the examples folder in the the repository. Then check out
the Reference for more information.

1.3. Examples 5

https://github.com/PacketPerception/pychievements/tree/master/examples
https://github.com/PacketPerception/pychievements

Pychievements, Release 0.1.2

6 Chapter 1. Getting Started

CHAPTER 2

Reference

Achievements

class pychievements.achievements.Achievement(current=0)
Base Achievement class.

An achievement primarily consists of ‘goals’, being levels that can be reached. Instances of Achievements
are used to track progress, and the current level for individual IDs. For this, an Achievement implements a
number of functions to interact with the current level. Achievements can also have a category (string) and
keywords (tuple of strings) that can be used to filter Achievements.

Goals are defined as a tuple of tuples with the format:

goals = (
{'level': 10, 'name': 'Level 1', 'icon': icons.star, 'description': 'Level One

→˓'},
{'level': 20, 'name': 'Level 2', 'icon': icons.star, 'description': 'Level Two

→˓'},
{'level': 30, 'name': 'Level 3', 'icon': icons.star, 'description': 'Level

→˓Three'},
)

Arguments:

level A positive integer that must be reached (greater than or equal) to be considered ‘met’

name A short name for the level

icon The Icon to represent the level before it has been achieved. This must be an
pychievements.icons.Icon class.

Note: There are simple ASCII icons available from pychievements.icons

description A longer description of the level.

7

Pychievements, Release 0.1.2

Achievements can be updated in two ways: increment and evaluate. Increment increments the current
level given an optional set of arguments, where evaluate performs a custom evaluation a sets the current level
based on that evaluation.

Increment is best used when the application is aware of achievement tracking, and calls to increment can be
placed throughout the application.

Evaluate is best used when actions may happen externally, and cannot be tracked using repeated calls to incre-
ment. Evaluate will also return the list of achieved goals after it has performed its evaluation.

An Achievement can be initialized with a current level, for example when restoring for a saved state.

achieved
Returns a list of achieved goals

current
Returns the current level being achieved (meaning haven’t achieved yet) as a tuple:

:: (current_level, (required_level, name, icon, description))

If all achievements have been achieved, the current level is returned with a None:

:: (current_level, None)

evaluate(*args, **kwargs)
Performs a custom evaluation to set the current level of an achievement. Returns a list of achieved goals
after the level is determined.

increment(amount=1, *args, **kwargs)
Increases the current level. Achievements can redefine this function to take options to increase the level
based on given arguments. By default, this will simply increment the current count by amount (which
defaults to 1).

set_level(level)
Overrides the current level with the given level

unachieved
Returns a list of goals that have not been met yet

Icons

pychievments.icons includes the Icon class as well as a number of pre-defined icons useful for CLI applications.

• unicodeCheck

• unicdeCheckBox

• star

class pychievements.icons.Icon(unachieved=’‘, achieved=’‘)
Simple class to represent an Icon for an achievement. It provides to functions, achieved, and unachieved,
which will return the displayable icon for the appropriate state.

The base Icon class can be used without modification to create simple text Icons, e.g.:

star = Icon(unachieved=' No ', achieved=' Yes ')

achieved(tracked_id=None, achievement=None)
Returns the achieved icon

unachieved(tracked_id=None, achievement=None)
Returns the unachieved icon

8 Chapter 2. Reference

Pychievements, Release 0.1.2

Trackers

class pychievements.trackers.AchievementTracker(backend=None)
AchievementTracker tracks achievements and current levels for tracked_id using a configured achievement
backend.

A default instance of Achievement tracker is created as a singleton when pycheivements is imported as
pychievements.tracker. Most often, this is what you will want to use.

Arguments:

backend: The backend to use for storing/retrieving achievement data. If None, the default
AchievementBackend will be used, which stores all data in memory.

Note: The backend the tracker is using can be updated at any time using the set_backend() function.

achieved(tracked_id, achievement)
Returns achieved for a given tracked_id. See :ref:Achievement

achievement_for_id(tracked_id, achievement)
Returns Achievement for a given tracked_id. Achievement can be an Achievement class or a
string of the name of an achievement class that has been registered with this tracker.

Raises NotRegistered if the given achievement is not registered with the tracker.

If tracked_id has not been tracked yet by this tracker, it will be created.

achievements(category=None, keywords=[])
Returns all registered achievements.

Arguments:

category Filters returned achievements by category. This is a strict string match.

keywords Filters returned achievements by keywords. Returned achievements will match all
given keywords

achievements_for_id(tracked_id, category=None, keywords=[])
Returns all of the achievements for tracked_id that match the given category and keywords

current(tracked_id, achievement)
Returns current for a given tracked_id. See :ref:Achievement

evaluate(tracked_id, achievement, *args, **kwargs)
Evaluates an achievement for a given tracked_id. Achievement can be an Achievement class or a
string of the name of an achievement class that has been registered with this tracker.

Raises NotRegistered if the given achievement is not registered with the tracker.

If tracked_id has not been tracked yet by this tracker, it will be created before evaluating.

Returns list of achieved goals for the given achievement after evaluation

get_tracked_ids()
Returns all tracked ids

increment(tracked_id, achievement, amount=1, *args, **kwargs)
Increments an achievement for a given tracked_id. Achievement can be an Achievement class or a
string of the name of an achievement class that has been registered with this tracker.

Raises NotRegistered if the given achievement is not registered with the tracker.

2.3. Trackers 9

Pychievements, Release 0.1.2

If tracked_id has not been tracked yet by this tracker, it will be created before incrementing.

Returns an list of achieved goals if a new goal was reached, or False

is_registered(achievement)
Check if an achievement is registered with this AchievementTracker

register(achievement_or_iterable, **options)
Registers the given achievement(s) to be tracked.

remove_id(tracked_id)
Remove all tracked information for tracked_id

set_backend(backend)
Configures a new backend for storing achievement data.

set_level(tracked_id, achievement, level)
Returns set_level for a given tracked_id. See :ref:Achievement

unachieved(tracked_id, achievement)
Returns unachieved for a given tracked_id. See :ref:Achievement

unregister(achievement_or_iterable)
Un-registers the given achievement(s).

If an achievement isn’t already registered, this will raise NotRegistered.

Signals

class pychievements.signals.Signal
Base class for all signals

Internal attributes:

receivers { receiverkey(id): receiver }

connect(receiver, sender=None, dispatch_uid=None)
Connect receiver to sender for signal.

Arguments:

receiver A function or an instance method which is to recieve signals.

sender The sender to which the receiver should respond. Must be None to recieve events from
any sender.

dispatch_uid An identifier used to uniquely identify a particular instance of a receiver. This will
usually be a string, though it may be anything hashable.

disconnect(receiver=None, sender=None, dispatch_uid=None)
Disconnect receiver from sender for signal.

Arguments:

receiver The registered receiver to disconnect. May be none if dispatch_uid is specified.

sender The registered sender to disconnect

dispatch_uid the unique identifier of the receiver to disconnect

send(sender, **named)
Send signal from sender to all connected receivers.

10 Chapter 2. Reference

Pychievements, Release 0.1.2

If any receiver raises an error, the error propagates back through send, terminating the dispatch loop, so it
is quite possible to not have all receivers called if a raises an error.

Arguments:

sender The sender of the signal Either a specific object or None.

named Named arguments which will be passed to receivers.

Returns a list of tuple pairs [(receiver, response), ...].

send_robust(sender, **named)
Send signal from sender to all connected receivers catching errors.

Arguments:

sender The sender of the signal. Can be any python object (normally one registered with a
connect if you actually want something to occur).

named Named arguments which will be passed to receivers. These arguments must be a subset
of the argument names defined in providing_args.

Return a list of tuple pairs [(receiver, response), ...].

If any receiver raises an error (specifically any subclass of Exception), the error instance is returned as the
result for that receiver. The traceback is always attached to the error at __traceback__.

pychievements.signals.receiver(signal, **kwargs)
A decorator for connecting receivers to signals. Used by passing in the signal (or list of signals) and keyword
arguments to connect:

@receiver(goal_achieved)
def signal_receiver(sender, **kwargs):

...

@receiver([goal_achieved, level_increased], sender=tracker)
def signals_receiver(sender, **kwargs):

...

Backends

class pychievements.backends.AchievementBackend
Achievement backends implement the getting/setting/updating of achievements for tracked_id. Achieve-
ments in the system are tracked for a specific, unique ID, tracked_id.

AchievementBackend is the most basic implementation of an AchievementBackend, storing all tracked in-
formation in memory and never persisting it. All of the functions of an AchievementBackend work to re-
trieve an Achievement instance for a given tracked_id, and run the appropriate function on it, stor-
ing the results. In the least, storing results for a specific achievement, for a specific target_id should in-
clude the target_id, the Achievement class name (Achievement.__name__), and the current level
(Achievement.current)

Note: AchievementBackend is NOT thread safe

achievement_for_id(tracked_id, achievement)
Retrieves the current Achievement for the given tracked_id. If the given tracked_id does not
exist yet, it should be created. Also, if the given tracked_id hasn’t tracked the given Achievement
yet, a new instance of the Achievement should be created for the given tracked_id

2.5. Backends 11

Pychievements, Release 0.1.2

achievements_for_id(tracked_id, achievements)
Returns the current achievement for each achievement in achievements for the given tracked_id

remove_id(tracked_id)
Removes tracked_id from the backend

set_level_for_id(tracked_id, achievement, level)
Set the level for an Achievement for the given tracked_id

class pychievements.backends.SQLiteAchievementBackend(dbfile)
Stores achievement data in a SQLite database.

Arguments:

dbfile The full path and file name to store the SQLite database

To use, create the backend and then use the set_backend() method of the tracker.

mybackend = SQLiteAchievementBackend('/some/db.file')
tracker.set_backend(mybackend)

CLI

pychievements.cli.print_goal(goal, achieved=False, level=None, indent=2)
Print a goals description with its icon. Achieved (True/False) will choose the correct icon from the goal. If a
level is specified, a tracker line will be added under the icon showing the current level out of the required level
for the goal. If level is > the required level, achieved will be set to true.

pychievements.cli.print_goals(achievement_or_iter, indent=2)
Displays all of the available goals registered for the given achievement(s)

pychievements.cli.print_goals_for_tracked(tracked_id, achievement_or_iter=None,
achieved=True, unachieved=False,
only_current=False, level=False, cat-
egory=None, keywords=[], indent=2,
tracker=None)

Prints goals for a specific tracked_id from as tracked by a tracker. By default, this will print out all
achieved goals for every achievement in the tracker.

Arguments:

achievment_or_iter If None, this will print goals for all achievements registered with the
tracker. Otherwise an Achievement or list of achievements can be given to show goals
for.

achieved If True, prints out goals that have allready been achieved.

unachieved If True, prints out goals that have not been achieved.

only_current If True, only prints the goal currently being worked on (next to be achieved). This
will override the achieved and unachieved options.

category Category to filter achievements from the tracker.

keywords Keywords to filter achievements from the tracker.

level If True, show the current level with the achievements

tracker The tracker to use for getting information about achievements and tracked_id. If
tracker is None, this will default to using the default tracker.

12 Chapter 2. Reference

CHAPTER 3

Contribute

If you’d like to contribute, simply fork the repository, commit your changes to the master branch (or branch off of it),
and send a pull request. Make sure you add yourself to AUTHORS.

13

https://github.com/PacketPerception/pychievements
http://github.com/PacketPerception/pychievements/blob/master/AUTHORS

Pychievements, Release 0.1.2

14 Chapter 3. Contribute

CHAPTER 4

License

Pychievements is license under the MIT license. You can find it in github, LICENSE

Indices and tables

• genindex

• modindex

• search

15

http://github.com/PacketPerception/pychievements/blob/master/LICENSE

Pychievements, Release 0.1.2

16 Chapter 4. License

Python Module Index

p
pychievements.achievements, 7
pychievements.backends, 11
pychievements.cli, 12
pychievements.icons, 8
pychievements.signals, 10
pychievements.trackers, 9

17

Pychievements, Release 0.1.2

18 Python Module Index

Index

A
achieved (pychievements.achievements.Achievement at-

tribute), 8
achieved() (pychievements.icons.Icon method), 8
achieved() (pychievements.trackers.AchievementTracker

method), 9
Achievement (class in pychievements.achievements), 7
achievement_for_id() (pychieve-

ments.backends.AchievementBackend
method), 11

achievement_for_id() (pychieve-
ments.trackers.AchievementTracker method),
9

AchievementBackend (class in pychievements.backends),
11

achievements() (pychieve-
ments.trackers.AchievementTracker method),
9

achievements_for_id() (pychieve-
ments.backends.AchievementBackend
method), 12

achievements_for_id() (pychieve-
ments.trackers.AchievementTracker method),
9

AchievementTracker (class in pychievements.trackers), 9

C
connect() (pychievements.signals.Signal method), 10
current (pychievements.achievements.Achievement at-

tribute), 8
current() (pychievements.trackers.AchievementTracker

method), 9

D
disconnect() (pychievements.signals.Signal method), 10

E
evaluate() (pychievements.achievements.Achievement

method), 8

evaluate() (pychievements.trackers.AchievementTracker
method), 9

G
get_tracked_ids() (pychieve-

ments.trackers.AchievementTracker method),
9

I
Icon (class in pychievements.icons), 8
increment() (pychievements.achievements.Achievement

method), 8
increment() (pychievements.trackers.AchievementTracker

method), 9
is_registered() (pychieve-

ments.trackers.AchievementTracker method),
10

P
print_goal() (in module pychievements.cli), 12
print_goals() (in module pychievements.cli), 12
print_goals_for_tracked() (in module pychievements.cli),

12
pychievements.achievements (module), 7
pychievements.backends (module), 11
pychievements.cli (module), 12
pychievements.icons (module), 8
pychievements.signals (module), 10
pychievements.trackers (module), 9

R
receiver() (in module pychievements.signals), 11
register() (pychievements.trackers.AchievementTracker

method), 10
remove_id() (pychieve-

ments.backends.AchievementBackend
method), 12

remove_id() (pychieve-
ments.trackers.AchievementTracker method),
10

19

Pychievements, Release 0.1.2

S
send() (pychievements.signals.Signal method), 10
send_robust() (pychievements.signals.Signal method), 11
set_backend() (pychieve-

ments.trackers.AchievementTracker method),
10

set_level() (pychievements.achievements.Achievement
method), 8

set_level() (pychievements.trackers.AchievementTracker
method), 10

set_level_for_id() (pychieve-
ments.backends.AchievementBackend
method), 12

Signal (class in pychievements.signals), 10
SQLiteAchievementBackend (class in pychieve-

ments.backends), 12

U
unachieved (pychievements.achievements.Achievement

attribute), 8
unachieved() (pychievements.icons.Icon method), 8
unachieved() (pychieve-

ments.trackers.AchievementTracker method),
10

unregister() (pychievements.trackers.AchievementTracker
method), 10

20 Index

	Getting Started
	Installing Pychievements
	Introduction to Pychievments
	Examples

	Reference
	Achievements
	Icons
	Trackers
	Signals
	Backends
	CLI

	Contribute
	License
	Indices and tables

	Python Module Index

